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1

INTRODUCT ION

Living in an information age guarantees nearly infinite amounts of available

knowledge. A huge portion of this information is encoded in written form of

natural language while many facts already have been stored in a structured

form like in databases. Structured and easy accessible knowledge is integrated

in many business processes and is a well-established source for analyses with

various objectives (e. g. quality assurance or business innovations). Still, the

tremendous knowledge hidden in textual data is kept out of most of such pro-

cesses as the analysis of language is difficult and yet not considered a solved

task. Text Mining methods are developed to process natural language data and

to detect and extract interesting facts.

With the growing amount of knowledge that can be automatically extracted

from textual data, companies gradually perceive the potential in analyzing the

data to improve business processes. The Daimler AG initiated a Text Mining

project to extract knowledge and useful facts out of numerous textual resources

available within the automotive domain to improve corporate quality analysis

regarding two different scopes.

The major task was to improve processes for classical quality assurance. Qual-

ity assurance processes of most companies are still dominated by structured

data (e. g. part codes, labor operation codes, etc.) stored in databases. This

data is mined employing data mining methods which proved to extract reliable

facts and to reveal statistical abnormalities. As information is often stored in

an encoded form, the data loses many details due to the abstraction and clas-

1



introduction 2

sification into a finite set of discrete codes. The aim of the Text Mining project

was to transform unstructured data provided by repair orders into structured

facts retaining the information density provided in the texts. Established data

mining methods can be applied afterwards to induce further information along

with newly developed sophisticated analysis methods properly considering the

textual data’s nature.

The second use case was Automotive Internet Mining. Many specialized inter-

net fora and blogs exist throughout the World Wide Web containing facts and

opinions about automobiles. This data’s value originates in containing unasked

and uncensored thoughts of the customers. It contains problem descriptions as

in repair orders, opinions about certain features or even suggestions, in which

way a car could be improved. As this information is available for all manufac-

turers, mining this data unveils information that is not obtainable by any other

quality sensor.

The extraction of facts is divided into two major parts – entity recognition

and the extraction of relations between entities. While most scientific research in

these fields deal with newspaper text and concentrate on extraction of entities

like persons, organizations, places and temporal expressions, this thesis deals

with entities of the automotive domain. Components, locations all over vehicles,

failure describing symptoms and corrective actions applied by technicians are

some of the entities in question.

In order to analyze the requirements of different components for natural lan-

guage processing, the major differences between both data sources – repair or-

der texts and automotive internet forum posts – in terms of language will be

explored. Dedicated solutions for each of various natural language processing

tasks are developed and applied to both use cases. The major aim of this thesis is

to develop a relation extraction algorithm concentrating on the scope automotive

domain.
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1.1 motivation

With the growing amount of data Information Extraction (IE) gains growing at-

tention, too. Remarkable progress has been made in both of its major subtasks

– Entity Recognition (ER) and Relation Extraction (RE). While ER deals with the

detection of entities, aims RE on extraction of relation between different entities.

In past and recent research, ER concentrates on extraction of Named Entities

(namely Named Entity Recognition (NER)). As the scientific community focused

on analyzing newspaper corpora (which is still true in most cases) the most

studied named entities are person names, organizations, places and temporal

expressions. For these entities several annotated corpora exist and are used for

training and evaluation. The performance of state of the art systems on news-

paper data achieves scores in the high nineties and is close to perfection. The

scientific field of RE looks very similar. Highly sophisticated and linguistically

grounded models exist yielding very strong results for relations between the

aformentioned Named Entities (e. g. is-a, is-CEO-of or X-acquired-Y).

Although very good results are achieved in both subtasks, most of the applied

approaches per se cannot be easily adapted to specialized domains. Research on

domain adaption showed that data in some specialized fields show fundamen-

tal differences in language on all levels – starting with different morphology,

terminology and syntax. The scope also differs regarding some semantic issues

like entity and relation types. The automotive domain needs to focus on com-

ponents and symptoms describing real world problems of the customers rather

than extracting knowledge about names and places all over the world.

In order to develop a relation extraction system fulfilling all requirements

of the automotive domain, characteristics of its domain language need to be

considered and understood thoroughly. Analyses of state of the art systems will

reveal the necessity of unsupervised algorithms that can adapt to textual data

sources showing arbitrary linguistic characteristics. This thesis will present these

analyses and unsupervised natural language processing methods and applies

them to real world data and problems.
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1.2 scientific contribution

A lot of effort has been put into development of unsupervised algorithms for

Natural Language Processing (NLP). Nevertheless, many algorithms use super-

vised approaches to pre-annotate training data, but do not match certain criteria

when adapting them to real world systems (e. g. memory consumption, run

time or black box behavior). This thesis will deal with the requirements analysis

of a dedicated automotive relation extraction system. Essential annotation steps

will be identified and incorporated into a relation extraction system yielding

state of the art results for two fundamentally different textual resources of the

automotive domain.

The main contribution is the development of unsupervised algorithms for nat-

ural language processing. It will be shown, how unsupervised part-of-speech

tagging can be improved by integration of disambiguation of high frequency

words. Although disambiguation has been knowingly ignored due to only small

potential for improvement on newspaper corpora, automotive corpora show a

high portion of high frequency words yielding different syntactical functions.

An approach to unsupervised parsing will be presented. In contrast to most al-

gorithms for grammar induction, additionally knowledge beyond induced gram-

mars and parse trees is extracted. The presented algorithm recognizes different

phrases bearing the same syntactical function and labels them appropriately. It

also provides information about heads and modifiers that facilitates further pro-

cessing like relation extraction. A verb detection module detects verbs of the

language in question which supports sentence segmentation, nominal phrase

detection and enables the possibility of unsupervised verb–argument detection.

For information extraction out of automotive corpora a syntactic relation ex-

traction methodology is developed – relying on unsupervised pre-processing.

The only supervised annotation step throughout the proposed relation extrac-

tion system is the NER module. Named Entity Recognition is achieved by appli-

cation of a domain dependent thesaurus to ensure high quality results focusing

on domain-specific terminology. The resulting relation extraction algorithm is
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based on probabilistic relation extraction incorporating both syntactic and se-

mantic features.



Part I

THEORET ICAL I SSUES



2

TEXT M IN ING

During the last decade, many researchers tried to find a definition of what ex-

actly Text Mining is. The efforts can be concluded defining Text Mining as the

research area attempting to detect and extract meaningful information out of

natural language text. This definition does not cover the necessary methodology

to achieve this goal. Witten & Frank (2000) see Text Mining as the application of

data mining methods to textual data. This may be considered to be true for some

tasks (e. g. from the field of Information Retrieval), for which it suffices to repre-

sent a document as feature vector containing information about the presence or

absence of words. This is not the case for more complex tasks demanding more

sophisticated approaches. It is todays common understanding that Text Mining

can be seen as a challenging task as indicated by Gao et al. (2005):

Text mining is the art and technology of extracting information and

knowledge from text collections [...].

Compared to structured data which is explored by data mining methods, tex-

tual data is unstructured, contains ambiguous words and is amorphous.

Data Mining is looking for patterns in data while Text Mining looks for pat-

terns in text. Although both fields seem to be similar to each other, major dif-

ferences appear when looking below the surface. Data Mining extracts implicit

knowledge from the data that was previously unknown (see Witten & Frank,

2000). This information is hidden and not stated explicitly. Contrarily, the in-

formation extracted by Text Mining is explicitly uttered in the text. It is not

7
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hidden and in most cases unambiguously. The challenge for Text Mining is

the data representation itself. Textual data is not stored in a structured way

like in databases, instead it is couched by natural language. Natural language

is not suitable for machine learning approaches directly and thus, Text Mining

strives to extract valuable information and to transform it into a more structured,

machine-processible form.

Mehler & Wolff (2005) present four different perspectives from which to con-

sider Text Mining: the Information Retrieval Perspective, the Data Mining Per-

spective, the Methods Perspective, and the Knowledge-oriented Perspective. Re-

garding the third perspective, Text Mining can be seen as a collection of methods

for automatic processing of natural language data. Methods from various fields

can be applied. Information Retrieval methods are used to extract relevant doc-

uments or to create topic-specific corpora. Linguistic methods are employed to

augment unstructured textual data with structural information. This includes

proper tokenization, lemmatization, part-of-speech tagging and syntactic pars-

ing. Based on these linguistic enrichments, Information Extraction methods detect

entities, proper entities and extract relations between different entities. Statistical

and Data Mining methods are then applied to extract implicit knowledge based on

extracted entities, relations and the like. Furthermore, classification methods are

used to classify texts or parts of texts into topic-specific groups, while automatic

text summarization is used to concentrate on the essential parts of the data.

According to Feldman & Sanger (2007) one of the major differences between

Data Mining and Text Mining is the preprocessing step. While preprocessing

for Data Mining concentrates on scrubbing and normalization of the data, Text

Mining requires a comprehensively identification and extraction of natural lan-

guage features to represent the information contained in the document. This

step achieves a structured storage of unstructured data which is not necessary

for most Data Mining systems as the data is already stored appropriately.

This thesis deals with this preprocessing step essential for every Text Mining

system. It focusses on domain-specific Information Extraction out of textual data

which relies on linguistic processing steps. Due to the unstructured format of
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natural language data, linguistic processing is crucial to dive into the structure

of textual data in order to generate structured features useable for application of

Data Mining methods.

In the following, a short introduction to machine learning approaches em-

ployed in NLP is given in Sec. 4. As applications of these approaches are

grounded on linguistic considerations, a brief overview of linguistic foundations

is presented in Section 4.2. Finally, both automotive corpora are presented in Sec-

tion 5 along with corpora used for evaluation purposes. Following this, the per-

formance of state-of-the-art algorithms when being applied on domain-specific

data from the automotive domain is analyzed in Section 6.

The second part of this thesis deals with unsupervised methods for Informa-

tion Extraction. As the analysis will show, most approaches do not perform well

on automotive data. Hence, unsupervised methods for NLP are developed to

consider the specific linguistic properties of the data. These algorithms include

part-of-speech tagging (see Section 7) and syntactic parsing (see Section 8). Fi-

nally, a statistical approach to RE is presented in Section 9 building the actual

core algorithm for feature extraction in terms of relations.



3

INFORMAT ION EXTRACT ION

The field of IE emerged during the last decades and bridges the gap between

keyword based methods and highly sophisticated efforts towards complete lan-

guage understanding.

Starting with a conference series initiated by the Defense Advanced Research

Projects Agency (DARPA) – the Message Understanding Conferences (1987 – 1997,

see Grishman (1995); Grishman & Sundheim (1995)) – information extraction

became a clearly defined tasked focusing on the extraction of facts and relations

between different entities. For each challenge, pre-annotated training and test

sets were provided to the scientific community containing texts from real news

corpora (e. g. the extraction of terrorist attacks or joint venture announcements).

The importance of NER as independent subtask has first been underlined during

MUC-6. Since the origins during the Message Understanding Conferences, several

Named Entity types are well established. Those types contain amongst others:

proper names of people, companies / organizations, places and numbers like

date, time, money or percent values (see Borthwick et al., 1998; Sang, 2002; Sang

& Meulder, 2003). The actual task of relation extraction was called template

filling as it was formulated as a slot-filling task of templates.

The task of information extraction is divided into at least two successive sub-

tasks:

entity detection Entities are the things the information and facts given in

texts is about. Entity types cover a huge variety including the named en-

tities mentioned before and basically every nominal phrase (e. g. noun

10
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phrases like the table or my car and pronouns like he). Everything in a sen-

tence that can fill a slot of a relation is an entity. Consequently, the task of

entity detection is to detect all of the required entities.

relation extraction A very intuitive and vivid definition of relation was

shaped by De Morgan (1966):

When two objects, qualities, classes, or attributes, viewed to-

gether by the mind, are seen under some connexion, that connex-

ion is called a relation.

From a formal point of view, a relation R over the entity sets E0, . . . ,En is a

subset of their Cartesian product:

(3.1) R ⊆ E0 × . . .× En

Additionally, each relation can have a type which defines the kind of the

connection more precisely (e. g. is-head-of vs. is-employee-of ). Following

the spirit of both definitions, the task of Relation Extraction is to extract

tuples of n entities that present an instance of a particular n-ary relation.

3.1 entity recognition

Most approaches to entity recognition focus on named entities. Named entities

are entities for which rigid designators (or Kripkean soul) stands for the referent

(see Kripke, 1980). As defined in most NER tasks (see Sang, 2002), it is general

agreement that temporal expressions and numerical expressions (e. g. money

values, percentages, etc.) are also considered named entities. When aiming on

extraction of domain-specific entities, entities beyond the scope of classical NER

tasks have to be thought of (e. g. names of genes in molecular biology as in

Settles (2004)). Regarding the automotive domain, vehicle-related entities (see

Table 3, p. 71) and certain codes for parts, actions and quality assurance are

of special interest. Most of these are represented by arbitrary noun phrases (e.
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g. My car, a puncture) and thus, classical NER approaches do not recognize the

entities in question.

Entity recognition can be divided into two parts: entity detection and entity

classification (see Krauthammer & Nenadic, 2004). Entity detection is the task of

marking single or adjacent words denoting an entity. Entity classification assigns

the proper entity type to detected entities afterwards. Although several machine

learning approaches exist for both subtasks (see Collins (1996) for proper noun

tagging and Collins & Singer (1999) for entity classification), classification of the

entity’s type is often achieved as result of the training on annotated data (see

Sang, 2002). Actually, all machine learning approaches can be employed (with

different success and depending on feature selection, see Nadeau et al. (2006))

to entity recognition, but especially named entity detection can be achieved by

simpler methods, e. g. POS Tagging.

Starting with the Message Understanding Conferences, rule based methods

achieved the best results for many years (see Chieu & Ng, 2002). The advantage

of rule based systems is the independence from manually annotated training

data and thus, they are a suitable option for fast and flexible domain adaptation,

although some effort has to be put into rule creation.

Since more and more annotated corpora became available to researches, ap-

proaches based on classifiers (see Isozaki & Kazawa, 2002; Kazama et al., 2002)

achieve better results and lead to combined models for entity detection and clas-

sification. All of them are based on either manually created rules (see Appelt

et al., 1992), dictionaries containing entity information (see Borthwick et al., 1998)

or annotated training data (see Sang, 2002). As manual annotation of these re-

sources is time-consuming and costly, often none the ones above are available

for various languages and / or domains. Hence, it is a challenge to adapt ER to

other domains or languages as it strongly depends on these resources, feature

selection and the extend of available annotated corpora (see McCallum & Li,

2003).

In order to reduce the amount of manual annotation, semi-supervised meth-

ods are used to extend a small set of seed annotations. This strategy is called boot-
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strapping (see Brin, 1998; Agichtein & Gravano, 2000; Kozareva, 2006). Bootstrap-

ping methods are iterated (semi-)supervised classifiers that are initially trained

on a small training set of annotated instances. In each iteration, new instances

are generated – optionally filtered in a supervised fashion – and added to the

seed set which grows steadily and results in a comprehensive training set.

Most supervised approaches can be turned into an iterated bootstrapping al-

gorithm, although the original approach concentrates on extraction of patterns

(see Riloff, 1996; Riloff & Thelen, 2002). Several criteria can be employed to de-

cide when to stop the iteration, e. g. a certain number of iterations, convergence

or further conditions (see Borthwick et al., 1998; Collins & Singer, 1999; Chieu &

Ng, 2002).

Brin (1998) suggests a combined module for NER and RE, but using separate

modules increases robustness and retains convenient modularization.

3.2 relation types

Relation extraction can deal with several types of relations. However, sophisti-

cated extraction algorithms rely strongly on relation characteristics, such as arity,

entity and relations types.

Simple semantic relations are given by synonymy and antonymy, hyponymy

(hyponym is-a hyperonym), meronymy (meronym is part of complex thing) and co-

hyponymy (co-hyponym a and co-hyponym b are hyperonyms). Those relations are

given in thesauri such as WordNet1 (see Miller et al., 1990) or GermaNet2 (see

Hamp & Feldweg, 1997) that often serve as knowledge base for relation extrac-

tion systems (for enrichment with hypernyms see Culotta & Sorensen, 2004).

These relations can be extracted using corpus statistics (see Biemann & Bordag,

2003; Mahn, 2005) or pattern based approaches (see Hearst, 1992). Especially

1 http://wordnet.princeton.edu/
2 http://www.sfs.uni-tuebingen.de/lsd/
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pattern based approaches relying on lexico-syntactic patterns (e. g. NP like other

NP or NP is a NP) achieve very accurate results.

Although semantic relations can be rather arbitrary with regard to arity, com-

plexity, the use of nested relations and involved entity types, the scientific com-

munity focuses on linguistic relations and binary logical relations. Linguistic re-

lations (e. g. syntactic relations, dependency relations, head-modifier relations)

are dealt with in Section 8, this section focusses on (binary) logical relations.

Logical relations yield informative semantic knowledge about arbitrary con-

cepts and entities. Some relations are well established in the scientific field for

comparison of different approaches. Examples are mergers of companies (see

Yangarber et al., 2000), companies and associated locations of their headquarters

(see Culotta & Sorensen, 2004) or relations between authors and books (see Brin,

1998). These relations are widely established and often reconsidered in works

on RE due to easier comparison with other approaches.

Regarding the automotive domain, logical relations are the ones to be ex-

tracted. Table 4 (p. 72) gives an overview about the most important automotive

relations.

3.3 relation identification

Before applying any methodology to extract relations, target relations have to

be identified in either supervised or unsupervised manner. Relations between

entities are characterized by the entities and their types along with the type of

the relation. The type of a relation specifies the type of connection between the

corresponding entities. For most constellations, more than one possible type is

applicable. Even different relations between identical entities exist. Regarding

the entities person Will Smith and movie Hancock, at least two relation types can

be annotated: is-actor-of and is-producer-of 3.

3 see http://www.imdb.com/title/tt0448157/
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In most cases, relations are manually defined and a huge amount of human

effort has to be put into adaptation to new domains and scenarios. Starting with

the Message Understanding Conferences, certain entities and relation types were

established and almost every algorithm is trained and evaluated on those types.

Most tasks provide an annotated data set and with it, entities and relations.

In order to reduce the manual effort, Shinyama & Sekine (2006) propose an

approach to Unrestricted Relation Discovery. The basic idea is to cluster men-

tions of entity pairs to detect different relation types. This preemptive processing

step generates instances of all extracted relation types and thus, can be used to

annotate training data for relation extraction methods. It only relies on entity

annotations, but as entity detection is a highly domain-dependent task, the most

suitable entity recognition approach (regarding the task’s context) can be used.

Unsupervised Relation Identification (URI) – a similar approach based on Unre-

stricted Relation Discovery – is presented by Rosenfeld & Feldman (2007). The

task of URI is defined as “an automatic discovery of all interesting relations in a

large body of text” (see Rosenfeld & Feldman, 2007). A relation can be descrip-

tively defined by a representative set of instances. The task of URI is to extract

relation types along with such a representative set of instances.

This descriptive definition of relation type enables fully unsupervised relation

extraction provided that entity annotations exist. Supervised approaches do not

rely on any kind of relation identification as they automatically learn the correct

type given in the training data.

3.4 relation extraction

The task of RE is defined as the extraction of instances for a given set of target

relation types. These relations belong to the class of logical relations for which

instances contain a type and the corresponding related entities.

Prerequisites of RE are entity recognition and relation identification, both can

be achieved in a supervised or unsupervised manner.
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Relation Extraction approaches can be divided into two classes – pattern-based

approaches and kernel-based approaches. All approaches need training data

containing instances of the target relations. Although they differ in number of

necessary instances, at least some examples have to be annotated manually.

Many approaches to unsupervised Relation Extraction exist (e. g. Rosenfeld &

Feldman, 2006b; Feldman & Rosenfeld, 2006; Yan et al., 2009), but nearly all of

them rely on knowledge that was extracted in a supervised or semi-supervised

preprocessing step. In most scenarios, named entity sets and / or relations are

considered to be given.

3.4.1 Pattern-based approaches

Pattern-based relation extraction is achieved by mainly four steps (see Auger &

Barrière, 2008):

defining target relations Various relation types stand in the focus of Infor-

mation Extraction. While simple semantic relations like hypernymy (see

Caraballo, 1999), meronymy (see Winston et al., 1987; Berland & Charniak,

1999; Girju et al., 2003; Pennacchiotti et al., 2006) and definitional relations

(see Pasca, 2005) are studied thoroughly, some logical relations also gain a

lot of attention (located-in, book-authored-by, birthdate-of as in Blohm & Cimi-

ano (2007); Ravichandran & Hovy (2002)). Pantel et al. (2006) studied an

extraordinary set of relations containing succession (e. g. for presidents:

Bush and Obama), chemical reactions (e. g. magnesium and oxygen) and

production (e. g. hydrogen and metal hybrids) showing applicability of

pattern-based approaches to both factual knowledge extraction and ency-

clopedic information extraction.

discovering patterns expressing target relations Research may have

two opposite points of view – an onomasiological and a semasiological one.

Most work on RE follow the onomasiological approach using a predefined

set of target relations and extract patterns expressing these relations as
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precisely as possible. Some work use the opposite approach. A relation

identification step is integrated to automatically detect clusters containing

relation instances, each referring to a certain relation type (see Shinyama &

Sekine, 2006; Rosenfeld & Feldman, 2006a, 2007). For the latter approach,

each relation instance cluster gets a proper relation type assigned, which

is described by the contents of the cluster.

The major strategy of pattern-based approaches is to use the contextual

lexical units of an instance to compile a list of reliable patterns for each

relation type. Analogously to entity extraction, this can be turned into an

iterative bootstrapping method to increase coverage of the target relations

(see Hearst, 1992; Brin, 1998).

Although most approaches initially start with a few entity pairs instanti-

ating a relation, some recent work uses a seed set consisting of reliable

patterns (see Etzioni et al., 2004) or keywords (see Rosenfeld & Feldman,

2006b). It is noteworthy that all bootstrapping strategies to semantic rela-

tion extraction (as for most other tasks) require any kind of quality control

for newly learned patterns to avoid drifting (see Auger & Barrière, 2008).

Even in extensive training corpora, certain relations appear only in a lim-

ited number of variations and data sparseness becomes a problem. Cimi-

ano et al. (2003a) criticizes pattern-based approaches in that manner:

The approaches of Hearst and others are characterized by a (rel-

atively) high precision in the sense that the quality of the learned

relations is high. However, these approaches suffer from a very

low recall which is due to the fact that the patterns are very rare

in corpora.

searching for new instances Given some patterns for a relation, instances

of that relation can be detected and the corresponding entities can be as-

signed to their respective roles. Regarding a basic example: instances of

the relation is-a(X, Y) can be detected matching the pattern x is a y in a text.
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The mentions of x and y will be assigned to the relation’s roles X and Y,

respectively.

Measuring confidence of extracted patterns is often achieved by the pat-

tern’s pure frequency. Another important aspect is the specificity of a pat-

tern – the capability at expressing the relation in question only. Specificity

is thoroughly explored in Alfonseca et al. (2006) and Turney (2006) addi-

tionally defines the pertinence of a pattern with respect to a specific entity

tuple. Although a lot of effort has been put into evaluation of extracted

patterns, there is still space for improvement. This evaluation step is cru-

cial for any approach based on bootstrapping as it controls the quality of

the method decisively.

structuring new instances Detected relation instances represent facts and

extracted knowledge. In order to make access to it feasible, the resulting

instances need to be stored in a formalized and structured way. Several

standards (e. g. Resource Description Framework (RDF) and Web Ontol-

ogy Language (OWL)) exist for formalization and structuring conceptual

classes along with instances of those. These standards can be implemented

creating ontological resources being capable of storing extracted facts and

knowledge.

3.4.2 Kernel-based approaches

Recent research on machine learning methods for RE focuses on sophisticated

kernels and Support Vector Machine (SVM)s. As most supervised machine learn-

ing algorithms, positive and negative instances are necessary to train a SVM.

Relation instances need syntactic enrichment (e. g. part-of-speech tags as in

Collins & Duffy (2001), dependency trees as in Culotta & Sorensen (2004), con-

stituency trees as in Moschitti (2004), entity and role annotations as in Zelenko

et al. (2002, 2003)) to be valid training examples. After obtaining a trained model,

new sentences can be classified. Multiple resulting classifications are possible –
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a sentence may contain a relation, various relations of different types or no rela-

tion at all. Some decisions influence the performance of such a classifier, some

of these decisions are:

• employ multiple binary classifiers or one multi-class classifier4,

• augment data with dependency parse trees or constituency parse trees5,

and

• selection of the kernel function6.

Some researches argue in favor of dependency parsers (see Fundel et al., 2006;

Wang et al., 2006), but Jiang & Zhai (2007) testify inferior performance of de-

pendency parses in the task of RE. The choice of the kernel function mostly

influences the results. Instances are not represented as feature sets like in other

machine learning approaches. Instead, the kernel function explores the instance

on a complex object level without any transformation.

The annotation of the training set is easier than for most other tasks. The aug-

mentation with syntactic and semantic information can be done in an automatic

way. The only manual effort is the annotation of present relation types.

Employing this approach for RE reduces the extraction of relation instances to

a simple classification task.

4 see Section 4.5 for more details
5 see Section 4.2.4 for differences among grammar theories
6 see Section 4.6 for suitable kernel functions
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MACH INE LEARN ING ALGOR ITHMS

Machine learning algorithms are employed to turn data into knowledge. As-

suming sufficient amounts of available data, machine learning algorithms try

to extract information, detect patterns or to infer knowledge that is (implicitly)

hidden in the data.

From a psychological perspective, machine learning is of special interest as it

can facilitate understanding human learning itself. Formalization of learning the-

ories forces researches to go into detail of every aspect of the theory. Comparing

the performance of the model with humans provide insights about shortcomings

of the theory and thus, can suppose reasonable steps towards improved models.

Most approaches to machine learning apply supervised methods. Training ex-

amples containing input to the algorithm along with the desired output are used

to create or iteratively improve a model. This approach can be compared to the

learning of children which are exposed to samples provided by their parents

and other people. Especially language acquisition by children is a field of ris-

ing interest (see Schütze & Walsh, 2008) and appropriate data sets consisting of

communication between children and their playmates, siblings and caretakers is

freely available (see MacWhinney, 2000).

Regarding NLP, various machine learning techniques operating on different

levels of supervision (see Sec. 4.1) are employed for different tasks. Among the

most important ones are naive Bayes classifiers based on Bayes’ Theorem (see Bayes

& Price, 1763), Neural Networks inspired by human brains and Decision Trees (see

Pagallo, 1990).

20
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Three approaches will be explained in detail as they are often employed for the

tasks of part-of-speech tagging (Hidden Markov Models, see Sec. 4.3; Cluster-

ing Analysis, see Sec. 4.4), syntactic parsing (Clustering Analysis) and Relation

Extraction (Support Vector Machines, see Sec. 4.5; Kernels, see Sec. 4.6).

4.1 levels of supervision

The level of supervision denotes the amount of human effort that has to be put

into training of an algorithm. Normally, three different levels of supervision are

distinguished:

supervised algorithms Supervised algorithms are trained on training sam-

ples. Training samples consist of the input that is presented to the algorithm

and the desired output which is expected to be generated by the algorithm.

Training with a given training set is often performed iteratively until the

model of the algorithm converges so that the algorithm produces the ex-

pected results. Supervised methods proved to achieve very accurate results

for NLP tasks under the condition that sufficient training samples are avail-

able. The drawback of supervised methods is the creation of such training

samples which needs to be done manually in most cases. Furthermore,

the annotation of a large amount of data is necessary for each language,

domain and text type.

semi-supervised algorithms Semi-supervision relies on large amounts of

unlabeled data and a small seed set of annotated data. The seed set is used

to initially train a model which is then used to annotate the unlabeled data.

The union of the newly annotated instances and the initial seed set is used

afterwards to train an improved model. This is done iteratively until pre-

viously defined abort criteria (e. g. convergence of the model, maximum

number of iterations) are met. Additional human supervision can be ap-
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plied to validate the newly extracted instances to keep error propagation

to a minimum and ensure accurate results.

unsupervised algorithms Completely unsupervised algorithms solely rely

on unlabeled data. This leads to greatest independence from human effort

and consequently, unsupervised algorithms can be easily applied to new

data sets. As unsupervised algorithms cannot use human annotations, ex-

tracted knowledge is unlabeled, too. E. g. it is possible to cluster data

like documents or words inducing clusters containing documents about a

distinct topic or words belonging to the same part-of-speech. The resulting

clusters cannot be labeled by topic x or part-of-speech y as no information

about the topic or correct part-of-speech is given. Instead, descriptive labels

can be defined for each cluster using common properties of its members (e.

g. word cluster containing sunday, car, lamp, etc.).

4.2 linguistic foundations

Most approaches to Information Extraction rely on linguistic features. In this

section, a short introduction to the foundations of corpus linguistics is given to

finally present machine learning approaches exploiting these features.

Starting with de Saussure (see de Saussure, 1966), linguists shifted from di-

achronic to synchronic analyses describing language as interconnected lexical

units of different levels. In modern corpus linguistics, utterances of a language

are collected to build a corpus which is then thoroughly explored. Exploration

of language data includes classification of elements of different linguistic lev-

els (see Sec. 4.2.1). Furthermore, de Saussure proposed to study structural

phenomena like collocations between units. Current approaches to syntax and

semantics employing co-occurrences (see Sec. 4.2.2.2) are based on syntagmatic

and paradigmatic analyses (see Sec. 4.2.2) which were originally proposed by de

Saussure (see Heyer & Bordag, 2007).
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With huge corpora being available, corpus linguistics shift to employ distribu-

tional approaches describing units through distributional properties. Especially

classification into linguistic categories is modeled by context distributions (see

Sec. 4.2.3). These ideas go back to Harris (1954) and Firth (1957) who initially

state that similar words occur in similar contexts or are paradigmatically related

to use de Saussure’s terminology. In more recent research, even more complex

syntactic phenomena such as grammars (see Sec. 4.2.4) can be explored by dis-

tributional approaches (see Klein & Manning, 2002b).

4.2.1 Levels of language

Language is obviously structured in a hierarchical way. Humans know the dif-

ference between diesel and diesel engine. Although the pure character strings

show a significant similarity at their beginnings, the entities denoted by these

two strings are completely different ones. Furthermore, it seems that the shorter

string (diesel) is a part of the second one which has been built of it and another

entity (engine) following some rules.

Two composition rules exist to form complex linguistic elements:

composition Composition of elements aggregate elements to a complex one.

This composition underlies certain language-dependent rules which have

to be obeyed in order to produce a linguistic unit of the next level. Multiple

units cannot be uttered at the same time and thus, the order of involved

lexical units is important to maintain the intended meaning. Even if some

rules are violated, human language processing might be able to understand

the utterance.

abstraction Atoms of a language level can be classified into equivalence clus-

ters regarding to some of their properties. This is called abstraction or

selection. The members of such a cluster show similarity for some prop-

erties and can be distinguished by other properties. Abstraction is a very
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commonly employed method throughout language processing and will be

employed for extraction of various relation types.

Linguists distinguish between several levels. A very common hierarchical

structure is based on Harris (1968):

phonemes / graphemes The basic atoms of spoken language are phones. Mul-

tiple phones build phonemes which are the smallest units distinguishing

meaning of an utterance. Usage of phonemes is not language independent.

Some phonemes are used in a language very commonly and barely in an-

other. Graphemes are the written forms of phonemes. The transformation of

phonemes into graphemes is not unambiguous and for different languages

using different grapheme sets (called alphabet, e. g. Latin alphabet: a, b,

c, . . .; Greek alphabet: α, β, γ, . . .) identical phonemes may be encoded

through different graphemes.

morphemes Morphemes consist of one or more graphemes and form the small-

est units bearing meaning. Two different types of morphemes can be dis-

tinguished: free and bound morphemes. Free morphemes (e. g. dream) can

build words by themselves. Bound morphemes (e. g. ing as in dream-ing) are

not allowed to occur without a free morpheme as they only bear syntactic

function. It is common for some languages (e. g. German), that multiple

bound morphemes are attached to a stem.

words A valid combination of morphemes is called word form. The class of

semantically equivalent word forms is denoted by word. A word is rep-

resented by its basic form – nominative singular for nouns and infinitive

presence for verbs, respectively. E. g. the word dream includes at least the

word forms dream, dreaming, dreamed and dreams.

phrases / constituents Phrases consist of morpho-syntactic combinations of

word forms. All phrases are constituents which build the basic elements of

a sentence. Within a constituent, word forms have to show agreement on

certain grammatical properties. For nouns, these properties are: person,
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number, gender and case (noun only). Verbs additionally need to agree

on tense, aspect, mood and voice. A sequence of words can be tested for

constituency employing so-called constituency tests (see Adger, 2003).

sentences A valid (according to grammatical constraints) hierarchical struc-

ture built of constituents is denoted as well-formed sentence. Complete

sentences are usually uttered in human communication – including short

ones leaving parts out (e. g. ellipsis).

text / document Larger elements like texts (often referred to as documents

in the context of Information Extraction) consist of multiple sentences and

optional meta-information (e. g. author, date).

corpus A corpus is a collection of textual data. It is often enriched with lin-

guistic annotations of any level – tokens, parts-of-speech, phrases / parse

trees.

4.2.2 Syntagmatic and Paradigmatic Relations

Syntagmatic and paradigmatic relations are the two fundamental relation types

for lexical items (see Heyer et al., 2006). According to de Saussure (1966), two

lexical items stand in syntagmatic relation if they occur together. Similarly, a

paradigmatic relation between two units exists, if they are observed within similar

contexts.

In order to use these two definitions for computational language processing,

they need to be expressed in a formal way. Let L = {W,S} be a language with

a set of all of its word forms W (word forms contained in W are denoted by w)

and all of its sentences S (sentences contained in S are denoted by s).

Each sentence s (with length n) is defined as an ordered sequence consisting

of word forms:

(4.1) s = 〈w1, . . . ,wn〉
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4.2.2.1 Context

The local context context (w, s) of a word w in a sentence s consists of words that

can be observed within a given distance of w. The distance can be defined rather

arbitrarily, but certain definitions are well established as they proved to achieve

reasonable results for different tasks.

Among the most prominent contexts is the neighborhood context. It usually

consists of the preceding and succeeding words of the target word.

More formally:

(4.2) contextNB(d) (wx, s) = 〈wx−d, . . . ,wx−1,wx+1, . . . ,wx+d〉 with wi ∈ s

Neighborhood context must not exceed sentence boundaries.

Choosing context size d big enough leads to a context containing all words of

the sentence: the sentence context1:

(4.3) contextS (wx, s) = s\wx

The global context context (wx) is the sum of all observed local contexts of a

given word wx with respect to a corpus.

Both local and global contexts can be altered using appropriate filters. The

choice of a filter strongly depends on the task and influences the performance

decisively. Common filters discard low frequent occurrences of context entries

(e. g. for word clustering) or entries regarding to their part-of-speech (e. g. for

synonym extraction).

4.2.2.2 Syntagmatic Relations

Using the definition of local context, two word forms wx,wy ∈W are syntagmat-

ically related if and only if a local context exists that contains both word forms.

The occurrence of two word forms in a certain context is called co-occurrence.

(4.4) SYN (wx,wy)↔ ∃s ∈ S : wy ∈ context (wx, s)

1 Contrary to the neighborhood context, word order is ignored for sentence context calculation.



4.2 linguistic foundations 27

The construction of natural language sentences is nearly unrestricted (except

for rules ensuring grammaticality) and thus, nearly every word form could co-

occur with all other word forms in a sentence. This results in syntagmatic rela-

tions between all possible word form pairs. The actual question is: are there any

pairs of word forms standing in a statistically significant syntagmatic relation?

To decide which word form pairs occur in a statistically significant relation, a

significance measure is applied (see Sec. 4.2.2.4).

Consequently, two words wx,wy ∈ W stand in a statistically significant syn-

tagmatic relation SYNsig (wx,wy) if they are syntagmatically related and their

co-occurrence is statistically significant with respect to a significance measure

(see Heyer & Bordag, 2007).

The choice of context calculation and the applied significance measure influ-

ences the results. Significant co-occurrences can be used to study various lin-

guistic phenomena like dependencies (e. g. sun shines), idioms (e. g. make your

day), syntactic relations (e. g. the sun) and multi-word units (e. g. The Ney York

Times).

4.2.2.3 Paradigmatic Relations

Two words stand in paradigmatic relation PARA (wx,wy) if and only if their

respective global contexts are similar with respect to a similarity measure SIM

(see Sec. 4.2.2.5):

(4.5) PARA (wx,wy)↔ SIM (context (wx) , context (wy))

While syntagmatic relatedness is derived from local properties, paradigmatic

relatedness is a global property depending on all sentences of a given language.

It is common sense to use filters (e. g. significance filter and threshold to thin

out the local contexts, part-of-speech filter to allow only words of the same part-

of-speech) to improve results.

Words occurring within similar contexts – and thus, standing in paradigmatic

relation – often belong to the same semantic cluster. The words sun, lamp and bulb

all share the property to shine and thus, occur within similar sentence contexts.
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They also occur within similar neighborhood contexts as they share the part-of-

speech property.

4.2.2.4 Significance measures

Significance measures are employed to decide which co-occurrences are statisti-

cally significant and which are not. Several measures have been proposed, most

of them are based on either bigram probabilities (e. g. Frequency Measure),

statistical independence (e. g. Mutual Information) or likelihood measures (e. g.

log-likelihood).

A comprehensive study on significance measures is given in Pecina (2005). De-

pending on the task, different measures fulfill the requirements of the objective

in different quality levels. A combination of multiple measures may improve

the overall performance significantly as properties of the measures can be com-

bined with respect to the task (see Pecina & Schlesinger, 2006). Computation of

co-occurrences and their significance values is a complex task for big corpora. A

fast and efficient solution to this problem is presented in Büchler (2006).

In the following sections, the principles of some of the most prominent mea-

sures are presented. All measures are defined to calculate the significance of the

co-occurrence of the words A and B where na denotes the frequency of word A

in the given corpus with size n, nb is analogously defined as nb = f (B) and nab

denotes the co-occurrence AB.

frequency measure The most basic measure is provided by pure frequency:

(4.6) sigfreq (n,na,nb,nab) = nab

The frequency measure is used to extract co-occurrences that occur more

often than a defined threshold nmin. Due to independence from na, nb

and n, co-occurrences that would intuitively be classified as significant (e.

g. na = nb = nab) achieve low scores compared to co-occurrences showing

a higher frequency (e. g. ncd > nab with nc,nd >> ncd).
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dice coefficient The Dice Coefficient originally was proposed to calculate

similarity of sets (see Dice, 1945) and can be derived from the harmonic

mean:

(4.7) sigdice (n,na,nb,nab) =
2nab

na +nb

The resulting significance is normalized into the range [0 . . . 1] and addi-

tionally uses the frequency of the words. This measure shows interesting

properties: the most significant co-occurrences according to this measure

consist of words with na ≈ nb and the most insignificant co-occurrences

consist of a high-frequency and a low-frequency word (see Büchler, 2006).

mutual information Mutual information is based on statistical independence.

It is defined as the ratio of actually observed frequency nab and expected

frequency under the assumption of statistical independence. The logarithm

is employed for numerical reasons. The probabilities can be very small and

thus, multiplying them is computationally difficult.

(4.8)
sigMI (n,na,nb,nab) = log2 P (nab) − log2 P (na)P (nb)

= log2

P (nab)

P (na)P (nb)

Mutual information can also be derived from an entropy-based approach

(see Büchler, 2006).

Low frequency co-occurrences obtain high scores using Mutual Informa-

tion. To circumvent the low ranking of high frequency co-occurrences, a

combined measure is proposed by Evert (2004) namely local mutual infor-

mation:

(4.9)
sigLMI (n,na,nb,nab) = sigfreq (n,na,nb,nab) sigMI (n,na,nb,nab)

= nab log2

P (nab)

P (na)P (nb)

With the additional factor, high frequency co-occurrences will be ranked

higher than on pure mutual information.
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log-likelihood Log-likelihood is based on binomial distribution and statisti-

cal independence (see Dunning, 1993).

(4.10)

siglog (n,na,nb,nab) =

(
n

nab

)
pnab (1− p)n−nab with p = p (na)p (nb)

For this measure, n denotes the number of sentences and as property of the

binomial distribution, the restriction nab � n has to be hold. Analogously

to the mutual information measure, the log-likelihood ratio measures the

deviation of the actual observed frequency from the expected frequency of

a co-occurrence.

4.2.2.5 Similarity Measures

Similarity measures are essential to compare things with each other. Regarding

NLP tasks, feature vectors often need to be compared (e. g. tests for paradigmatic

relatedness which need to compare global contexts of words). Global contexts

contain all local contexts and are treated as vectors for easier computation.

As all vectors can be represented as sets, suitable similarity measures can be

either defined on sets or directly on vectors. In the following, two prominent

similarity measures for similarity calculation of two feature vectors / sets A and

B are presented.

cosine measure Cosine similarity is probably the most established similarity

measure. It measures the cosine of the angle θ between two feature vectors.

This similarity measure takes values in [0 . . . 1] as the cosine of 0 is 1 for

perfect agreement and is lower for all other values.

(4.11) simcos (A,B) = cos (θ) =
A ·B
|A| |B|

=

∑n
i=1 Ai ×Bi√∑n

i=1 A
2
i ×

√∑n
i=1 B

2
i

The cosine measure is often applied to document comparison (see Wilkin-

son & Hingston, 1991) or to measure cluster cohesion (see Tan et al., 2005).

jaccard coefficient The Jaccard coefficient was originally proposed by Jac-

card (1901). It is used to compare similarity and diversity of two sets A
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and B. The Jaccard index denotes the ratio of the intersection’s size and

the size of the union of both sets as given in:

(4.12) simJaccard (A,B) =
|A∩B|
|A∪B|

4.2.3 Linguistic Categories

One of the most fundamental linguistic distinctions are provided by linguistic

categories. Elements of all language levels can be assigned to certain categories,

distinguished by syntactic features into part-of-speech classes on the word level,

into vocals and consonants one the phonem level, into various phrase types on

the constituent level to name just a few possibilities.

Depending on the language level, the variety of classes and degree of dif-

ferentiation differs significantly. Regarding the word level, words can be dis-

tinguished by syntactic or semantic properties. A basic distinction of syntactic

functions can be achieved by classification of words into the four main categories

nouns, verbs, adjectives and function words (see Bordag, 2007). Although this cat-

egorization seem to suffice for some tasks (e. g. ER as in Schierle (2011)), more

fine-grained classifications are employed for most linguistic tasks.

A set of part-of-speech classes is referred to as tagset. While the classification

into four main classes can be applied to all languages, some classes are only

employed for a distinct language. Thus, different tagsets were proposed, each

for a certain language. Due to differences in languages regarding syntactic com-

plexity, corresponding tagsets differ in size and granularity. The Penn Tree Tagset

(see Marcus et al., 1993) is a well-established tagset for the English language. It

contains 45 tags – 36 for words and 9 for punctuation (see Appendix A.1). The

Stuttgart-Tübingen Tagset is a tagset for German (see Appendix A.2). It contains

54 classes – 51 for words and 3 for punctuation. Both tagsets differ heavily in

degree and classes of distinction.

Both tagsets contain more than four classes, which is necessary for deeper

linguistic studies. The distinction between normal nouns and proper nouns,
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different verb classes (e. g. for modal verbs and different tenses) makes sense

and facilitates further analyses like parsing.

Words belonging to the same syntactic class stand in paradigmatic relations.

Thus, literature often speaks of distributional classes. In order to derive syn-

tactic classes containing words with similar syntactic functions (e. g. such as

nouns, proper nouns, adjectives, etc.), the neighborhood context is used to cre-

ate global contexts (see Schütze, 1995). Paradigmatic relatedness can also be

exploited to create semantic clusters. For this purpose, complete sentences build

the respective local contexts. When using an appropriate significance measure,

words occurring in similar contexts share semantic properties (e. g. sun, candle,

shines, bright). As stated before, filters can be applied to retain only words of the

same part-of-speech in each class (e. g. restriction to nouns will lead to sun and

candle).

Distributional classes exist on all levels. Starting on morphemes bearing simi-

lar inflectional functions and ending on phrase types (e. g. noun phrases, preposi-

tionl phrases). On text or document level, documents can be clustered regarding

to their respective topics or text types.

4.2.4 Grammar Theories

The grammar of a language is a set of syntactic or structural rules. These rules

have to be obeyed in order to create valid words, phrases and sentences of this

language. The term grammar also denotes the scientific fields studying those

rules, including phonology, phonetics, morphology, syntax, semantics and prag-

matics.

Regarding relation extraction, two grammar theories are of special importance:

Phrase structure grammar (PSG) (see Sec. 4.2.4.3) and Dependency Grammar

(DG) (see Sec. 4.2.4.4). Syntactic trees of both theories are used in recent works

on RE. In this section, foundations of formal languages are presented (see Sec.

4.2.4.1) along with a brief introduction to both grammar theories.
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4.2.4.1 Formal Languages and Grammars

Formal grammars were introduced in the first half of the twentieth century by

amongst others Post (1943), although this work benefited from earlier work (e. g.

from Thue, see Thomas, 2010). The study of natural languages and the formal

description of these did first begin with Chomsky (1956).

Each formal language relies on an alphabet Σ which is a finite nonempty set

of symbols or terminals. A word w over Σ is defined as a finite sequence of

symbols of the alphabet with length |w|. For each language, exactly one empty

word ε exists with |ε| = 0.

Concatenation of two words a = a1 . . . an and b = b1 . . . bn will create a new

word ab = a1 . . . anb1 . . . bn. Naturally, concatenation of a word a and the empty

word ε does not create a new word, instead results in a = aε = εa. an denotes

the sequential concatenation of n � 0 copies of word a.

A language over an alphabet Σ is a set of words. The set of all possible words

over Σ is denoted by Σ∗ and the set of all nonempty words is denoted by Σ+.

Based on these formal basics, a grammar can be defined as a quadruple (Σ, V ,

S, P), where:

• Σ is the terminal alphabet.

• V is a finite nonempty set containing nonterminal symbols. V is disjoint

from Σ.

• S is a distinguished nonterminal symbol referred to as start symbol.

• P is a finite set of production rules of the form α → β where α consists

of terminals and at least one nonterminal and β consists of any number of

terminal and nonterminal symbols.

4.2.4.2 The Chomsky Hierarchy

Constraints on the set of production rules can restrict the complexity and the pro-

duction mightiness of a grammar. Chomsky proposed a grammar classification
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into four classes (see Chomsky, 1956, 1963). Starting with an unrestricted gram-

mar, restrictions increase with each class shaping this categorization’s name:

Chomsky hierarchy.

Let G be a grammar (Σ,V ,S,P):

type 0: unrestricted grammar G is an unrestricted grammar and no restric-

tions have to be satisfied.

type 1: context-sensitive grammar G is a context-sensitive grammar if only

non-shortening production rules exist, formally: |α| � |β|. One exception

to this constraint exists: the production rule S→ ε is allowed, if S does not

occur on the right side of any rule.

type 2: context-free grammar G is a context-free grammar if the left side of

all production rules satisfies |α| = 1 or in other words: all left sides must

consist of exactly one non-terminal symbol.

type 3: regular grammar G is a regular grammar if all production rules have

one of the three types A → cB, A → c or A → ε where A and B are non-

terminals (A = B is allowed) and c is a terminal symbol. Grammars of this

type are also called right-linear grammars as productions only operate on

the right-most end of a production.

4.2.4.3 Phrase Structure Grammar

The term Phrase Structure Grammar denotes grammars consisting of re-write rules

structuring a sentence based on hierarchical constituents. Phrase structure rules

were originally introduced by Chomsky (1957), although this kind of rules have

been studied previously by Thue (1914); Post (1943).

Linguists formalize the grammar by generative rules that assign constituency

tree structures to sentences. Hence, PSGs are also called constituency grammars.

The phrase structure rules are a consolidation of traditional subject-predicate

structure and immediate constituent analysis of Bloomfield (1933). Constituency

relations are defined by grammar rules that function in deep structure making

explicit the domination of constituents over other constituents.
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The phrase structure is usually represented as a parse tree or bracketing. The

nodes of a parse tree are labeled by their respective constituent types (e. g. N

for noun, NP for noun phrase, VP for verb phrase, etc.). A constituent dominates

another one if it is placed directly above the other. Constituents can dominate

multiple other constituents and thus, larger constituents can consist of multiple

smaller ones. Thereby, the linear order of words and constituents is retained.

A constituent precedes another one if it stands directly in front of the second

constituent.

S

N

Mary

VP

V

brought

NP

D

a

N

cat

Figure 1.: Constituency parse tree for Mary brought a cat

The parse tree of Fig. 1 can be generated by six grammar rules:

S → N VP D → a

VP → V NP N → Mary, cat

NP → D N V → brought

Table 1.: Grammar Rules for generation of Mary brought a cat

Phrase structure grammars are very strong in structural descriptions of a lan-

guage. Despite its power in segmentation and categorization, yet it is incapable

of accounting for all phenomena of natural languages. PSGs show difficulties

in analyzing questions, ambiguities, discontiguous constituents and remote rela-

tionships.

Due to the deficient analyses in those cases and as reaction to the Transforma-

tional Grammar (see Chomsky, 1956), researchers put some effort into advance-

ments of the PSG. Gazdar et al. (1985) introduce the Generalized Phrase Structure

Grammar which aims on context-free description of natural language. Further-
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more, syntactic derivations are augmented with semantic annotations and meta-

rules to compute the meaning of a sentence. Most of the ideas were integrated in

the highly lexicalized Head-driven Phrase Structure Grammar (see Pollard & Sag,

1994).

All kinds of PSG are based on constituents. Constituents are contiguous se-

quences of words that can be treated as a single lexical unit. Even dependency

grammars (see Sec. 4.2.4.4) allow analysis of constituent parts.

Basically, each sequence of words is a candidate for being a constituent. In or-

der to identify those sequences that function as a single unit, several constituency

tests (see Radford, 1988) can be applied. These tests are not perfectly reliable and

thus, a single test is not enough to make a decision for a candidate. To be sure

about a sequence, as many tests as possible have to be employed. Each test

applies a transformation to the sentence. If the sentence is still grammatically

sound then the candidate could be a constituent.

The most important tests are:

fronting / topicalisation test The candidate sequence is moved to the be-

ginning of the sentence.

clefting test The test sequence c is placed into the structure It was c that . . ..

replacement test The candidate sequence is replaced by an appropriate pro-

form (e. g. pronoun).

answer ellipsis test A question is created for which the test sequence is the

answer.

passivization test An active sentence is transformed into a passive sentence,

or vice versa. Hence, the object is changed to the subject and the other way

around.

deletion test The test sequence is omitted.

coordination test The candidate sentence is coordinate with a constituent of

the same type.
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4.2.4.4 Dependency Grammar

While PSGs study constituency relations of a language, DGs are defined on depen-

dency relations. Modern dependency grammars are inspired by Tesnière (1959)

who first developed a formal description of dependency grammars. A depen-

dency is a binary directed relation between two words, one of the words (the

dependent) depends on the other one (the head). The major assumption of DGs

is: All words of a sentence – except for one – depend on other words. Depen-

dencies between words are either motivated syntactically or semantically. Words

that are complements or modifiers of others depend on the latter and thus, mul-

tiple words can depend on the same head (e. g. transitive verbs require two

complements). A dependency tree is given in Fig. 2:

brought

Mary cat

a

Figure 2.: Dependency tree for Mary brought a cat

Robinson (1970) formulated four axioms to ensure well-formedness of depen-

dency structures. The four axioms are:

1. Exactly one element is independent.

2. All other words depend directly on another word.

3. No word depends directly on multiple words.

4. If word X depends directly on Y and element Z intervenes between them

(regarding the linear word order), then Z either depends directly on A, B

or another intervening element.

The first two axioms cover the essential conditions for dependency tree struc-

tures (allowing exactly one root node). The third axiom additionally ensures

single-headedness of all elements. The fourth axiom – the requirement of pro-

jectivity – forbids crossing edges in dependency trees and thereby deprives one

major advantage of dependency grammars over phrase structure grammars.
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To retain this advantage, Duchier (1999) proposes a non-projective DG. Well-

formedness of dependency trees is defined without any reference to word order.

This especially allows accurate analyses of languages with free word order.

4.3 hidden markov models

Hidden Markov Models (see Baum & Petrie, 1966; Baum & Eagon, 1967; Baum

& Sell, 1968; Baum, 1972) are used to model non-deterministic processes which

pass unobservable – hidden – states. Such processes are called hidden Markov

processes. All kinds of Markov processes obey certain rules, but the current

state of a hidden Markov model is not observable (contrary to regular Markov

models). Only the output of such a hidden process can be observed and used

to derive knowledge about inner transitions. Hidden Markov Model (HMM)s

are used to model various processes like pattern recognition (e. g. speech and

gestures), part-of-speech tagging and protein classification in bioinformatics.

A Markov model consists of n states Ω = {ω1, . . . ,ωn} and a transition matrix

A containing the transition probabilities between two states. Thereby,

(4.13) aij = P
(
ωj (t+ 1) |ωi (t)

)
denotes the probability that the system transitions from state ωi into state ωj at

a discrete point in time t. The transition probabilities must satisfy the normal-

ization constraint ∀i : ∑n
j=1 aij = 1.

All Markov models satisfy the Markov property (see Markov, 1954). This term

denotes the property that the system’s state ω (t+ 1) at point t+ 1 only depends

on the directly preceding state ω (t) and thus, Markov processes are memoryless.

The state of HMMs cannot be observed directly, instead only the resulting ef-

fects can be studied. Whenever the system passes a state, an observable symbol

v ∈ K is emitted. Hence, after passing the complete model consisting of t states,

a sequence Vt = {v1, . . . , vt} is generated.
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Additional to the states Ω and the transitions A, emission probabilities B are

defined for the probability bj (vt) assuming that symbol vt is emitted at point in

time t and the system is in state ωj (t):

(4.14) bj (vt) = P
(
vt|ωj (t)

)
The emission probabilities are normalized regarding the sum of all emission

probabilities for a given state: ∀k ∈ K :
∑

k bj (k) = 1.

In order to apply HMMs to problems, two challenges have to be solved. The

first problem is the proper estimation of the model’s parameters: transition prob-

abilities A and emission probabilities B. Baum et al. (1970) propose the so-called

Baum-Welch algorithm which iteratively optimizes a model given a suboptimal

model.

To employ a trained model to a problem raises the task: find the sequence of

hidden states that generates the observed sequence Vt with the highest probabil-

ity. This task can be solved using the Viterbi algorithm.

The Viterbi algorithm (see Viterbi, 1967; Forney Jr., 1973) finds the most likely

path through a HMM. This Viterbi path contains the sequence of passed hidden

states. Instead of testing all possible sequences for the one yielding the highest

probability, a dynamic programming approach reduces complexity of this task

significantly.

The key idea behind the Viterbi algorithm is to compute the most probable

path of length t that generates Vt while the current machine state is i for a given

model M:

(4.15) δi (t) = max
ω1,...,ωt∈Ωt

P (ω1, . . . ,ωt = i, v1, . . . , vt|M)

As the underlying model M is memoryless and the transition to the next state

solely depends on the current state, the function δi (t) can be defined recursively:

(4.16) δi (t) = max
1�j�N

δj (t− 1) · aij · bj (vt)

To obtain the complete sequence of passed states is of interest, the last state

ϑi (t) needs to be memorized for each step. Starting with length t = 1 and
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incrementing t until the complete observed sequence is processed, the best path

of length t is computed. Afterwards, the sequence of passed hidden states can

be reconstructed starting with the last state and sequentially going backwards

using ϑi (t) to the beginning.

The Viterbi algorithm uses the complete context and thus, generates the glob-

ally best path of hidden states.

HMMs proved to achieve high accuracy scores for the task of part-of-speech

tagging (see Sec. 7). Regarding this task, the Viterbi path provides the best

part-of-speech tag sequence for an observed word sequence.

4.4 clustering analysis

Clustering analysis is an important method for machine learning problems. Clus-

tering emerged from the field of explorative data mining and became a major

technique in pattern recognition, information retrieval and NLP.

Clustering belongs to the group of unsupervised learning methods bearing

great potential advantages compared to supervised methods. Especially in the

field of NLP, efforts and costs raised by human annotation of training data

for supervised machine learning approaches shows high potential for optimiza-

tion. Algorithms for POS tagging (see Clark, 2003; Goldwater & Griffiths, 2007),

word sense disambiguation (see Shin & Choi, 2004), semantic role labeling (see

Baldewein et al., 2004) and grammar induction (see Klein, 2005) based on clus-

tering were recently presented and achieve competitive results.

Clustering is the process of detecting groups within a given data set. Each ob-

ject is assigned to a class (or cluster) so that objects of a cluster are more similar

to each other than to objects outside the cluster. Contrarily to classification tasks,

the number and properties of classes are a priori unknown. Similarity of objects

is calculated with respect to certain properties of the objects. The properties of

an object are presented as a so-called feature vector as similarity computation

on vectors is much more convenient than on arbitrary objects. Instead of defin-
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ing the similarity of objects, an inverse distance function d (a,b) is defined to

measure the distance between two objects a and b. An overview about the most

commonly used metrics is given in Sec. 4.4.1.

Clustering methods can basically be divided into two classes: hierarchical

clustering (see Sec. 4.4.2) and partitional clustering (see Sec. 4.4.3). Hierarchi-

cal approaches induce a hierarchical structure which is extracted in an iterative

manner. Partitional approaches on the other side seek the best flat partitioning

of the data.

Most clustering techniques belong to the group of strict clustering methods

– they assign exactly one class to each object. Some object distributions cannot

be separated that strictly without obtaining arguable class assignments. Thus,

some approaches allow outlier object which are not assigned to a class at all (see

Brito et al., 1997) or allow fuzzy assignment of classes (multiple classes) to one

object (see Nock & Nielsen, 2006).

4.4.1 Metrics

As objects are described by feature vectors, distance measures are defined in

the feature space Rn. Cluster algorithms use distance measures to detect objects

with the smallest distance in between. Similarity measures can also be applied

as they can be transformed into a distance measure.

In the following, some well-established metrics are presented.

euclidean distance The Euclidean distance measures the distance of the two

points a and b in the vector space:

(4.17) d (a,b) =
√∑

i

(ai − bi)
2

squared euclidean distance Analogously, the squared Euclidean distance

measures the squared distance of the two points a and b in the vector

space:

(4.18) d (a,b) =
∑
i

(ai − bi)
2
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manhattan distance The Manhattan Distance measures the sum of the abso-

lute differences of all components of the feature vectors a and b:

(4.19) d (a,b) =
∑
i

|ai − bi|

maximum distance The Maximum Distance denotes the maximum distance

regarding one component of the feature vectors a and b. Components

with smaller differences are not taken into account:

(4.20) d (a,b) = max
i

|ai − bi|

cosine similarity Cosine Similarity measures the similarity between two vec-

tors (see Sec. 4.2.2.5). It can be easily transformed into a distance measure

(e. g. d (a,b) = 1− s (a,b)) as it is normalized between 0 and 1.

(4.21) s (a,b) =
a · b
|a| |b|

4.4.2 Hierarchical Clustering

The emergence of clusters out of a set of objects can be seen from two different

perspectives. It can either be defined as the task of iteratively merging the most

similar objects2 into a cluster or as separation task – dividing the set into smaller

subsets. The first strategy is called agglomerative clustering. Each object is ini-

tially put into a single cluster and with each iteration, most similar clusters are

merged until exactly one cluster remains that contains all objects. The opposite

approach – divisive clustering – starts with all objects in one cluster. Recursively,

each cluster is split until no cluster consisting of more than object exists. In

either case, a hierarchy of the involved objects is induced.

The decision which clusters to merge or where to split requires a linkage crite-

rion. A linkage criterion determines how to estimate the distance of two clusters

based on the distances of the contained objects of each cluster.

2 In terms of clustering analysis, the expression most similar objects is used synonymously for objects

showing the smallest distance.
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complete linkage Complete linkage defines the distance of two clusters A

and B as the maximum distance between two contained elements.

(4.22) link (A,B) = max {d (a,b) : a ∈ A,b ∈ B}

single linkage Contrary to complete linkage, single linkage defines the dis-

tance of two clusters by the smallest distance between two participating

elements.

(4.23) link (A,B) = min {d (a,b) : a ∈ A,b ∈ B}

average linkage Average linkage is a tradeoff between the both criteria above.

The distance is defined as the arithmetic mean of all object pairs (a,b) ∈
A×B:

(4.24) link (A,B) =
1

|A| |B|

∑
a∈A

∑
b∈B

d (a,b)

centroid linkage Similar to average linkage, centroid linkage takes all objects

of both clusters into account. Instead of averaging over all possible entity

pairs, the centroids a and b are defined for both clusters A and B respec-

tively. The distance is then defined as the distance between centroids:

(4.25) link (A,B) = d
(
a,b

)

These linkage criteria represent only some of the most prominent ones, several

more exist (e. g. Minimum energy clustering, sum of intra-cluster variance,

Ward’s criterion or V-linkage). The choice of a proper linkage criteria influences

results of clustering tasks decisively and thus, an appropriate criterion has to be

picked according to the task’s objective and specific properties of the data.

4.4.3 Partitional Clustering

Partitional Clustering aims to identify the best flat separation of the data regard-

ing to certain measures. A representative of this kind of clustering algorithms is



4.4 clustering analysis 44

k-means (see Lloyd, 1957; Steinhaus, 1957; MacQueen, 1967). The objective is to

separate n objects into k � n clusters C = {C1, . . . ,Ck}. Thereby for each cluster,

the sum of squared distances between each contained object and the centroid of

the cluster should be minimized.

In a formal way: argmin
S

∑k
i=1

∑
xj∈Si

∣∣xj − μi

∣∣2.

Before iterating over two steps and successively improving the clustering, a

set of k centroids (or means) have to be initialized. The centroids of the clusters

C1, . . . ,Ck are denoted by c1, . . . , ck respectively.

After this initialization step, the following two steps are repeated until the

clustering converges or the maximum number of iterations is met:

cluster assignment Each object x is assigned to the cluster y with the closest

mean (argmin
y

d (x, cy) with 1 � y � k). Each object is assigned to exactly

one cluster, although multiple centroids may be equally distant.

centroid calculation The centroid ci is re-calculated for each cluster Ci:

(4.26) ci =
1

|Ci|

∑
x∈Ci

x

One drawback of k-means is the possibility for convergence to a local mini-

mum which is heavily discussed (see Pollard, 1982; Bottou & Bengio, 1995).

4.4.4 Evaluation Measures

Evaluation of clustering algorithms is a challenging task. For NLP, comparison

of two clusterings is very important to verify accurate results (e. g. as for POS

induction).

Evaluation techniques for clustering are often divided into internal and exter-

nal evaluation. Internal evaluation is performed directly on the clustered data

and measures scores like density and well-separateness of the data. Results of

NLP algorithms shall often be compared to existing gold standards which are

created manually and thus, provide a reliable basis for evaluation. This type of

evaluation is called external evaluation.
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Most proposed evaluation metrics can be assigned to either mapping-based

measures or entropy-based measures. As there is no perfect measure, results for

multiple measures are given to weaken certain metric-specific (dis-)advantages

of clustering approaches.

4.4.4.1 Mapping-based Measures

Mapping-based measures try to map the induced clustering to a gold clustering.

Basically, two measures are established, both can be applied using the Kuhn-

Munkres Algorithm (see Kuhn, 1955; Munkres, 1957):

1-to-1 mapping It measures the best cluster assignment accuracy under the

condition that at most one created cluster is assigned to any gold cluster.

m-to-1 mapping It measures the fraction of correctly assigned clusters under

the condition that each created class is mapped to the gold cluster with

which it most frequently co-occurs.

Further (more complex) mappings try to circumvent the drawbacks of these two

measures (see Larsen & Aone, 1999; van Dongen, 2000; Zeng et al., 2002).

4.4.4.2 Entropy-based Measures

A shift to measures motivated by information yield can be observed in latest

research. Consequentially, more measures based on entropy are proposed.

A contingency matrix A is defined for efficient computation and convenient

entropy definition. K =
{
k1, . . . , k|K|

}
denotes the gold classes to which all N

points are assigned in the gold standard. Analogously, C =
{
c1, . . . , c|C|

}
denotes

the induced clustering. The contingency matrix A is then defined as A =
{
aij

}
with the dimensions |K| × |C| such that aij is the number of objects that are

members of gold class ki and are assigned to class cj by the clustering algorithm.

The following entropies can be defined over the data:

(4.27) H (C|K) = −

|K|∑
k=1

|C|∑
c=1

ack

N
log

ack∑|C|
c=1 ack
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(4.28) H (C) = −

|C|∑
c=1

∑|K|
k=1 ack

n
log

∑|K|
k=1 ack

n

(4.29) H (K|C) = −

|C|∑
c=1

|K|∑
k=1

ack

N
log

ack∑|K|
k=1 ack

(4.30) H (K) = −

|K|∑
k=1

∑|C|
c=1 ack

n
log

∑|C|
c=1 ack

n

variation of information The measure Variation of Information is proposed

by Meila (2007). Least homogeneous clusterings result in maximum values

for H (C|K) and H (K|C). For homogeneous clusterings, both entropy values

decrease to 0. Consequently, better clusterings achieve lower VI scores (see

Equ. 4.31).

(4.31) VI = H (C|K) +H (K|C)

validity measure The Validity Measure (see Rosenberg & Hirschberg, 2007)

measures to which extend the criteria of homogeneity and completeness are

satisfied. Homogeneity measures if only data points of a single gold class

are assigned to a single cluster (see Equ. 4.32). Completeness measures if

all objects of a gold class are assigned to a single cluster (see Equ. 4.33).

(4.32) h =

⎧⎪⎪⎨
⎪⎪⎩
1 if H (C,K) = 0

1−
H(C|K)
H(C) else

(4.33) c =

⎧⎪⎪⎨
⎪⎪⎩
1 if H (K,C) = 0

1−
H(K|C)
H(K) else

Based on these two criteria, the V measure is defined as the harmonic mean

of homogeneity and completeness:

(4.34) V =
2hc

h+ c

Values of V lie in [0 . . . 1] and higher values imply superior clusterings.
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normalized variation of information The measure Normalized Variation

of Information is a normalized version of Variation of Information (see Re-

ichart & Rappoport, 2009) and thus, can be employed to compare different

clusterings across different data sets. As it is based on VI, lower scores

denote better clusterings.

(4.35) NVI =

⎧⎪⎪⎨
⎪⎪⎩

H(C|K)+H(K|C)
H(C) H (C) �= 0

H (K) H (C) = 0

4.5 support vector machines

A SVM (see Vapnik, 1995; Cortes & Vapnik, 1995) is a supervised machine learn-

ing algorithm. It is a binary classifier operating in a multidimensional space.

SVMs use a maximum margin hyperplane to find the optimal linear separation

of two classes.

Figure 3.: SVM: Maximum separation hyperplane
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Data points on the margin of the hyperplane are called support vectors (see Fig.

3 3).

Given the training instances T4, a n-dimensional hyperplane f(x) is defined as

in Equ. 4.37 (see Press et al., 2007).

(4.36) T = {(xi,yi) : i = 1, . . . ,n} ⊂ �d × {−1, 1}

(4.37) f(x) ≡ wx + b = 0

As the hyperplane f (x) should separate both classes, all training instances of

one class (with yi = 1) are on the opposite side as the instances of the other

class (with yi = −1). After determination of the normal vector w and the offset

b, the hyperplane can be used as decision function to determine the class of new

instances (f(x) > 0 and f(x) < 0, respectively).

To choose the hyperplane that separates the data in an optimal way, the max-

imum margin approach is applied. This means that the Euclidean distance

between the support vectors and the hyperplane is maximized. This can be

achieved by adjusting w and b so that:

(4.38)
wxi + b � +1 if yi = +1

wxi + b � −1 if yi = −1

or reformulated

(4.39) yi(w · xi + b) � 1

The distance d between the hyperplanes can be defined as (see Fig. 3):

(4.40) d =
2

|w|

3 http://en.wikipedia.org/wiki/Support_vector_machine
4 It is assumed that the training instances are linearly separable.
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Instead of maximizing d with respect to |w|, |w|2 can be minimized using the

Lagrangian (see Schnitzler & Eitrich, 2006) and the condition 4.39:

(4.41) L =
1

2
w ·w +

∑
i

αi(1 − yi(w · xi + b))

Equ. 4.41 can be reduced by calculation of the partial derivates for w and b

and substitution. This leads to Equ. 4.42.

(4.42) L(α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj(xi · xj)

After estimation of αi, w and b, the maximum margin hyperplane is obtained

and the following decision function can be used to classify instances into one of

the classes:

(4.43) F (x) = sig

⎛
⎝ ∑

xi∈SV
αiyi (xi · x) + b

⎞
⎠

SVMs can be used to separate non-linearly separable data in two different ways.

One possibility is the introduction of a slack variable ξi for each instance xi. For

every linearly separable data point, the corresponding slack variable ξi is zero,

while it describes the amount of discrepancy for all other instances (see Press

et al., 2007):

(4.44) yi(w · xi + b) � 1− ξi

The calculation is analogous to linearly separable data and is skipped at this

point.

Another possibility is the usage of Kernel methods (see Cristianini & Shawe-

Taylor, 2000) which will be described in detail in the next section (see Sect. 4.6).

Multi-class classification can be achieved by application of multiple binary

classifiers. An empirical study of some multi-class SVM configurations can be

found in Duan & Keerthi (2005).
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4.6 kernel methods

In order to separate non-linearly separable data the so called kernel trick (see

Aizerman et al., 1964) can be applied. A function Φ is applied to transform the

input data from the input space �d into a higher dimensional feature space H,

so that a linear separation can be performed in H:

(4.45) Φ : �d → H and x �→ Φ (x)

The hyperplane will be calculated in H due to easier linear separation. Scalar

products 〈Φ (p) ,Φ (q)〉 for two instances p and q are necessary for the hyper-

plane calculation, but the complexity increases with the dimensionality of H.

To avoid such difficult scalar product calculations, a kernel function can be

defined in �d:

(4.46) K (p,q) = 〈Φ (p) ,Φ (q)〉

The calculation of scalar products in the high-dimensional feature space H

is obsolete due to kernel functions. To ensure, that a function behaves as ex-

pected and can be employed as a kernel function, the criteria of Mercer’s theorem

(see Mercer, 1909) have to be fulfilled. A kernel function must be symmetric:

K (p,q) = K (q,p). Additionally, the kernel matrix K with Kij = K
(
pi,pj

)
has to

be positive and (semi-)definite for all training instances pi:

(4.47) atKa =
∑
i,j

aiajKij � 0 ∀a ∈ �d

With the possibility of kernel methods, SVMs can be applied to more complex

input data as just simple vector data. Hence, various problems such as clas-

sification of strings (see Lodhi et al., 2002), images (see Barla et al., 2002) or

phylogenetic profiles (see Vert, 2002) can be approached.

Kernel methods show a unique property distinguishing them from other ma-

chine learning approaches: no features have to be generated or extracted out

of instances. Instead, the original representation (e. g. parses with additional
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annotations) of the instances is retained and similarity or kernel functions are ap-

plied directly to the data. This enables the machine learning approach to explore

a much larger feature space than on generated feature vectors.

4.6.1 Tree Kernels

Syntactic features like parse trees can improve the performance of relation extrac-

tion approaches (see Miller et al., 2000). Defining kernel functions on syntactic

trees enables classifiers to train and classify relation instances using comprehen-

sive syntactic features like words, part-of-speech tags, syntactic tree structures

and semantic roles (see Gildea & Jurafsky, 2002).

Many kernels have been proposed for application to relation extraction tasks,

but despite the fact that all of them operate on syntactic tree structures, remark-

able differences in feature selection exist.

A major distinction can per achieved by estimating the syntactic structure

search space. Regarding the example sentence “Mary brought a cat” (see Mos-

chitti, 2006), several syntactic trees can be created. The corresponding con-

stituency parse tree is given in Fig. 4a, the dependency parse tree in Fig. 4b.

Tree kernels for RE have been proposed for both constituency (see Collins &

Duffy, 2001; Zelenko et al., 2003) and dependency parse trees (see Culotta &

Sorensen, 2004; Bunescu & Mooney, 2005). Further considerations will focus on

constituency trees as they yield superior results than dependency parse trees for

the task of relation extraction (see Jiang & Zhai, 2007).

The idea behind tree kernel function is to detect and compare fragments of

trees in order to calculate similarity. Three important characterization of tree

fragments can be distinguished (see Moschitti, 2006):

subtrees Subtrees are obtained by selection of any node out of a tree with all

its descendants. Fig. 5 shows all subtrees of the parse tree given in Fig. 4a.
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Figure 4.: Parse trees for “Mary brought a cat”
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Figure 5.: All subtrees for “Mary brought a cat”

subset trees While grammatical rules will be satisfied, terminal symbols can

be left out. Fig. 6 shows some subset trees of the VP given in Fig. 4a. Tree

6d matches all constraints of the rule NP ← DN, while discarding of D or

N would violate the grammaticality of this tree fragment.
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Figure 6.: Some subset trees for “Mary brought a cat”

partial trees The most general form of tree substructures are partial trees.

No constraints about grammaticality or completeness have to be matched

leading to a very rich tree space (see Fig. 7a for violation of VP ← V NP).

Some partial trees of the VP given in Fig. 4a are shown in Fig. 7:
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Figure 7.: Some partial trees for “Mary brought a cat”

The growing number of possible substructures represents the different infor-

mation levels of each of the three tree spaces. In the following, four different tree

kernels for RE will be introduced along with their feature selection strategies.

All presented kernels belong to the group of Convolution Kernels (see Haussler,

1999; Watkins, 1999). Convolution kernels are recursively defined kernels over

fragments of a discrete structure. In the case of trees and the corresponding

substructures, it is very convenient to calculate the score of a node recursively

as a function of its descendants.

4.6.1.1 Subset Tree Kernel

The Subset Tree Kernel (STK) presented in Collins & Duffy (2001) is one of the

first kernel functions applied to NLP problems. It uses subset trees to build a

feature space:

(4.48) F =
{
f1, f2, . . . , f|F|

}

As all tree kernels aim to count common tree fragments in order to calculate

similarity of two trees T1 and T2, an indicator function is proposed by Collins

& Duffy (2001) to determine whether a tree fragment fi of F is rooted under a

certain node n:

(4.49) Ii (n) =

⎧⎪⎪⎨
⎪⎪⎩
1 fi is rooted in n

0 else

The inner product of two trees is defined by

(4.50) K (T1, T2) = h (T1) · h (T2)
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with N being the node set of tree T and h (T) denoting the count of contained

tree fragments from the feature space:

(4.51) h (T) =
∑
n∈N

Ii (n)

The value of K (T1, T2) depends strongly on the tree sizes. A normalization

step is essential to ensure proper comparability between kernel scores obtained

for trees of significantly different sizes. Lodhi et al. (2002) propose a suitable

normalization function that still fulfills all criteria of Mercer’s Theorem:

(4.52) K ′ (T1, T2) =
K (T1, T2)√

K (T1, T1)K (T2, T2)

This normalization is applied to all tree kernels.

4.6.1.2 Contiguous Subtree Kernel

The Contiguous Subtree Kernel (CSTK) functions presented in Zelenko et al.

(2003) show different characteristics when being compared to other tree ker-

nels. They do not belong to the class of convolution kernels per se, but are much

related to these kernels. A more important difference is there inclusion of the

requirements of relation extraction tasks. Their definition of nodes allows an

arbitrary set of properties containing entity types and roles which are ignored

by most kernel functions.

Zelenko et al. (2003) define two functions: a matching function t (see Equ.

4.53) estimating the matchability of two nodes and a similarity function k (see

Equ. 4.54).

(4.53) t (T1.p, T2.p) =

⎧⎪⎪⎨
⎪⎪⎩
1 if T1.Type = T2.Type and T1.Role = T2.Role

0 otherwise

(4.54) k (T1.p, T2.p) =

⎧⎪⎪⎨
⎪⎪⎩
1 if T1.Text = T2.Text

0 otherwise
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Based on these two functions, the following kernel function is defined:

(4.55) K (T1, T2) =

⎧⎪⎪⎨
⎪⎪⎩
0 t (T1.p, T2.p) = 0

k (T1.p, T2.p) +Kc (T1.c, T2.c) otherwise

Kc (T1.c, T2.c) is the similarity function on the child nodes of the trees T1 and

T2, respectively. The definition of Kc decides which features space F is employed

throughout the kernel score calculation.

For arbitrary tree fragments, Kc can be noted as

(4.56)

Kc (T1.c, T2.c) =
∑

i,j,l(i)=l(j)

λd(i)λd(j)K (T1 [i] , T2 [j])
∏

s=1,...,l(i)

t (T1 [is] .p, T2 [js] .p)

where i and j are sequences of indices with i1 � i2 � . . . � in (j is defined

analogously). The function l (i) = |i| denotes the length of the sequence i, while

d (i) = in − i1 + 1 stands for the maximum distance of two elements of i.

In case of contiguous subtree kernel computation, only contiguous child sub-

sequences need to be enumerated by Kc.

Formally, Kc
5 reduces to

(4.57) Kc (T1.c, T2.c) =
∑

i,j,l(i)l(j)

λl(i)K (T1 [i] , T2 [j])
∏

s=1,...,l(i)

t (T1 [is] .p, T2 [js] .p)

4.6.1.3 Sparse Subtree Kernel

Analogously to the contiguous subtree kernel presented in the last section, Ze-

lenko et al. (2003) proposes the Sparse Subtree Kernel (SSTK). In this case, dis-

contiguous child sequences are allowed with d (i) > l (i).

4.6.1.4 Partial Tree Kernel

The Partial Tree Kernel (PTK) proposed in (Moschitti, 2006) operates in the par-

tialtree space and thus, uses the richest search space of the four kernels regarding

5 A small change to notion: λ stands for λ2 (as in Equ. 4.56)
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syntactic features. It computes the number of common partialtrees in both trees

T1 and T2. A kernel space F is defined containing all partialtrees of those trees.

Within space F an indicator function Ii (n) is defined as given in Equ. 4.49.

The kernel function K (T1, T2) is defined as

(4.58) K (T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Δ (n1,n2)

where NT1 and NT2 are the node sets contained in T1 and T2, respectively. The

number of common tree fragments of two nodes n1 and n2 is denoted by:

(4.59) Δ (n1,n2) =

|F|∑
i=1

Ii (n1) Ii (n2)

The properties of all presented kernel methods will be analyzed in the next

section. The focus of this discussion is the applicability to relation extraction

tasks on automotive domain data.



5

CORPORA AND PREPROCESS ING

In the following sections, the corpora being used for training and evaluation

throughout this thesis are introduced focusing on their respective characteristics.

A major argument for unsupervised natural language processing is the exis-

tence of heterogeneous language resources of different language or type. Not

only do they differ in language and dialect, textual resources from multiple

domains and/or stylistic origin show distinct characteristics. Despite this fact,

most NLP approaches are often trained and evaluated on high quality newspaper

corpora which have been – in most cases manually – augmented with linguistic

annotations (e. g. part-of-speech tags, parse trees, semantic roles, named entities

and relations).

Obviously, this course of action seems to be inappropriate and inconsistent for

experiments employing unsupervised methods. Thus, using several different

data sources is predestinated for unsupervised approaches. This is probably the

most meaningful evaluation to prove algorithms to be able to perform well on

diversified textual resources.

This section deals with characterization of textual resources and appropriate

measures. Most differences match one of the following categories:

language Most of the existing natural languages differ by nature. Important

aspects with regard to syntactic analyses are word order, branching (right

vs. left), inflection and compounding. For many languages several dialects

exist showing significant differences in some cases even within a language.

57



corpora and preprocessing 58

orthography Correct spelling is available in most textual resources. But with

the rising importance of the Web2.0, nearly unlimited amounts of textual

data without such a high standard in terms of proper spelling and correct

usage of case sensitivity is available. User generated data (e. g. forum

posts, blog entries or chat logs) is often generated within very short time

and without any need for quality assurance. Abbreviations are used very

freely and in a very creative way during live communication where fast

responses are considered to be more important than correct orthography.

Even missing or additional whitespaces occur.

terminology High quality texts often contain more sophisticated terms and

constructions than standard text. Depending on the domain, technical

terms or common terms with a domain-dependent meaning are used. In

the Web2.0, new words are invented very rapidly. A completely new In-

ternet slang has been invented covering abbreviations, emoticons and the

rapid distribution of Leetspeak.

stylistics Some authors prefer certain constructions and expressions or tend

to use longer sentences or short ones. These and similar features are used

in fields like linguistic fingerprinting and author identification (see Holmes,

1994). The texts stylistics do also have huge impact on readability (see

Gunning, 1952). This especially holds for domain language and data to

avoid misunderstanding of facts or relations.

text type The structure of a document is sometimes predetermined by its text

type. Letters have a fix structure and it is no surprise that they show more

addresses than other types of text. In current NLP research, Wikipedia1

articles are used as knowledge base (see Kazama & Torisawa, 2007; Sumida

& Torisawa, 2008). Due to its fixed structure, it is convenient to crawl those

articles and split them into parts containing the required information.

1 http://www.wikipedia.org/
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5.1 measures for language statistics

Statistical measures can be used to describe language statistics in a quantitative

manner. The objective is to compare the available corpora and to derive appro-

priate processing steps. Besides some general language statistics measures some

special domain language measures are presented and considered. A comprehen-

sive description of the following measures can be found in Schierle (2011).

In the following, a brief description of all necessary measures for corpus com-

parison is given:

entropy The Shannon entropy denotes the information gain obtained by random

experiment (see Shannon, 1948; Manning & Schütze, 1999). In language

statistics, it presents a measure of information loss when a certain token is

missing.

The given formula is normalized to the vocabulary size |V |:

(5.1) H = −
∑
ti∈V

p(ti) log|V | p(ti)

information density For information extraction purposes, a very meaning-

ful measure is the information density of the corpus. With the scope automo-

tive domain, relevant entities are amongst others components, symptom

descriptions or corrective actions. The information density ID is defined

as the ratio of the number of relevant tokens Nr and the corpus size N:

(5.2) IDcorpus =
Nr

N

misspelling ratio As most algorithms are trained on high quality newspaper

corpora, misspellings cannot be observed (or very rarely). Regarding do-

main specific corpora which do not contain data from reviewed or revised

sources misspellings occur more frequently. Schierle (2011) proposes the

spelling accuracy measure SAvoc which is defined as the ratio of correctly

spelled tokens and all tokens:

(5.3) SAvoc =
Ncor

N



5.1 measures for language statistics 60

sentence length The average sentence length is a grammatical measure. The

length |Si| of a sentence Si is defined as the number of the tokens of Si. The

average sentence length L(Si) of a corpus is accordingly defined as:

(5.4) L(Si) =
1

|S|

∑
Si∈S

|Si|

grammaticality A rather simple measure for grammatical complexity GC (see

Schierle, 2011) calculates the ratio of function words Nf and non-function

(meaningful) words Nm:

(5.5) GC =
Nf

Nm

predictability Corpus predictability is a measure for the ability to predict suc-

cessor words (see Tesitelová, 1992). It is based on the entropy of a first

order Markov source:

(5.6) H(S) = −
∑
i

pi
∑
j

pi(j) logpi(j)

The corpus predictability CP is defined as:

(5.7) CP = 1−
H(S)

Hmax(S)

where Hmax(S) is the maximum possible entropy. A high value of CP

stands for high predictability meaning a high probability of correct succes-

sor word prediction.

vocabulary size Vocabulary size is defined as the number of different types

observed in the corpus normalized to the size of the corpus N:

(5.8) Rvoc =
|V |

N

dispersion Another vocabulary-based measure is the dispersion. It measures

the relative portion of low frequency types Vlow = {t|t ∈ V ∧ f(t) < 10}

among all types V (see Schierle, 2011):

(5.9) Dvoc =
|Vlow|

|V |
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concentration The concentration of vocabulary (see Tesitelová, 1992) is defined

as the relative portion of tokens of high frequency types Vtop = {t|t ∈
V ∧ r(t) < 10} and the corpus size N:

(5.10) Cvoc =

∑
v∈Vtop

f (v)

N

5.2 automotive corpora

Two different corpora consisting of domain language are considered and ana-

lyzed throughout this thesis. Both corpora focus on the automotive domain, but

from a different perspective.

The QUIS Corpus contains repair order texts and consists of problem descrip-

tions by the customer along with analysis results and applied corrections by the

corresponding technician.

The AIM Corpus on the other hand consists of internet forum entries. These

texts contain everything about automobiles, even loosely related topics and dis-

cussions.

5.2.1 Quality Information System Corpus

The QUIS Corpus contains repair order texts. For each repair order a text is created

consisting of basically three parts:

complaint The customer states a problem – commonly consisting of compo-

nents and observed symptoms.

cause The technician shortly describes the cause of the problem.

correction The technician describes the applied corrective actions.

The QUIS Corpus contains about 4.1 million English repair orders. A very re-

stricted domain language is used containing a high portion of special tokens,

such as mileage, codes and common numbers.
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A distinct set of repair orders has been manually annotated and is used for

evaluation. This set is referred to as QUIS Eval. It consists of 500 repair orders.

5.2.2 Automotive Internet Mining Corpus

With the possibility of discussions in the World Wide Web, many use this op-

portunity to exchange their problems, thoughts and concerns about automotive

issues. In contrast to the QUIS Corpus, the field of discussion is much broader

in this corpus. Besides similar problem descriptions, subjective opinions (e. g.

“I don’t like the new headlights.”, soft quality issues (e. g. “Why can’t I order

these two features together?”) and off-topic discussions (e. g. Formula 1) are

covered by this corpus.

This requires further processing steps. Off-topic discussions should be de-

tected and discarded as they do not convey valuable information for the au-

tomobile manufacturer. Additionally, sentiment analysis becomes essential to

detect sentiment trends for discussed issues.

The AIM Corpus contains 8.6 million German sentences. A distinct set of 860 fo-

rum entries has been manually annotated to build the evaluation corpus AIM Eval.

5.3 newspaper corpora

Most approaches originating in the scientific field of NLP are trained and evalu-

ated on newspaper corpora. This is, admittedly, reasonable as newspaper text is

of very high quality. Linguistic theories can be easily examined and no or only

little effort has to be put into data cleaning steps. To be comparable with other

approaches, evaluations for some tasks (e. g. Part-of-speech tagging, syntactic

parsing) are performed on identical corpora.
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5.3.1 Penn Treebank

For English data sets, the Wall Street Journal Corpus (WSJ) of the Penn Treebank

(see Santorini, 1990; Marcus et al., 1993) is a widely established data set. It con-

tains written English newswire annotated with parts-of-speech and constituency

parses.

For some evaluations, only parts of the WSJ are used. In order to obtain a

better representation of the data for human learners, punctuation and empty

elements are removed (see Klein, 2005). Empty elements are tagged by -NONE-,

punctuation tags are , . : “”-LRB- and -RRB-.

As newspaper text is not similar to general spoken language, some efforts has

been made in Roark (2001) to re-order words or to spell-out numbers to adapt the

data to general language. These changes would improve induced grammars, but

were left out due to comparability to other approaches (e. g. Klein & Manning,

2004; Klein, 2005; Bod, 2006a, 2007b).

Evaluations are performed on two versions of this corpus. WSJ contains all

49208 trees of the WSJ. A less complex sub corpus – referred to as WSJ10 –

contains all sentences containing at most 10 tokens (after the removals described

above). This smaller corpus contains 7422 sentences.

5.3.2 NEGRA Corpus

For evaluation on German language data sets, the NEGRA Corpus (NEGRA) (see

Skut et al., 1998) is analogously prepared. NEGRA is annotated with part-of-

speech tags from the Stuttgart-Tübingen Tagset (STTS) (see Schiller et al., 1995).

Empty element tags start with an asterisk, punctuation tags are $. $, $( and $).

Similar to the English data, evaluations are performed on either the com-

plete NEGRA containing 20602 sentences or a reduced version – referred to as

NEGRA10 – consisting of 2175 sentences with length of at most 10 tokens.
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5.4 corpus comparison

Concluding the measureable differences of the three available corpus types, all

presented measures have been calculated and collected in Figure 82. The first

corpus contains data from repair orders3, the second corpus contains entries

crawled from automotive internet fora4 and the news corpus contains news texts

from WikiNews5.

Figure 8.: Characteristics of different corpora

A comprehensive and thorough discussion can be found in Schierle (2011)

and only the most important differences influencing information extraction are

briefly discussed at this point.

2 see Schierle (2011)
3 see Section 5.2.1
4 see Section 5.2.2
5 http://en.wikinews.org
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With increasing information density, syntactical complexity seems to decrease.

While news texts show only a marginal amount of automotive information,

grammaticality, sentence length and vocabulary size achieve the highest scores.

Repair order texts on the other hand yield a very high portion of automotive

information, only short sentences and restricted vocabulary and grammar com-

plexity is used.

Regarding relation extraction based on syntactic features such as parse trees

(e. g. kernel-based approaches), both corpora provide suboptimal conditions:

repair order data cannot be parsed properly due to inaccurate POS tags and

the very restricted language use, internet data contrarily shows very complex

sentences containing many errors on various levels. Thus, approaches relying

on accurate linguistic enhancements will perform worse than on high quality

data (see Sec. 6).

Given these conditions, both corpora require extensive preprocessing to adjust

the corpora’s properties to newspaper texts as this kind of data can be processed

more easily.

5.5 corpus preprocessing

Before algorithms for RE can be applied, some preprocessing steps have to be run

for both corpora. The tasks of the following preprocessing steps is to prepare

both automotive corpora for Relation Extraction. This includes data cleaning

steps along with linguistic analyses and semantic annotations.

Summarizing, these steps are:

tokenization Tokenization is the process of segmenting a text into meaningful

tokens – in most cases into words (see Jackson & Moulinier, 2002). Domain

corpora do contain a high portion of specific codes for certain information

and thus, finding correct segments is more complex than it firstly appears

to be. In the automotive domain, codes for repair actions, parts etc. are
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very common along with mileage details (e. g. 20000km), prices for parts

or information about consumptions. Especially all tokens consisting partly

of numbers state a challenge for most tokenizer approaches. Thus, a rule

based tokenizer method was chosen. Prioritized regular expressions are

used to ensure high quality extractions (see Lehmann, 2006). Employing

this approach, further processing steps benefit of additional information

about the tokens, such as types (mileage, numbers, dates, part codes etc.)

and semantic interpretations (e.g. 20k ml→ 20000 miles).

spelling correction Due to the huge amount of spelling mistakes in repair

orders, a spelling correction step is performed before further processing.

Forum entries are no subject to spelling correction as they show only a

small portion of mistakes (see Fig. 8). Besides typographical errors, a

high percentage of (ambigouos) abbreviations exist. A context-sensitive

approach is able to exploit the high predictability and to disambiguate

abbreviations. The complete spelling correction is described in Schierle &

Schulz (2007), it is based on Lehmann (2006).

entity detection In contrast to proper nouns recognized by most approaches

to NER, automotive entities are not an open class. In fact, relevant entities

are spread over multiple parts-of-speech. While components are nouns (e.

g. combustion engine), symptoms can be nouns (e. g. problem), adjectives or

adverbs (e. g. inoperative). Further categories like locations and corrections

contain terms of different parts-of-speech, too. Those automotve entities

can be enumerated and thus, it is not essential to be able to detect and

extend the known entities extensively. An additional requirement is a hier-

archical structure of all entities for structured reports and accumulation of

results on different levels of abstraction. Using a wordlist-based approach

can achieve all requirements if a hierarchical structure is realized as a the-

saurus (see Schierle & Trabold, 2010; Schierle, 2011).

sentiment analysis Recent research on sentiment analysis focuses on classifi-

cation of words (see Hatzivassiloglou & Mckeown, 1997), sentences (see
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Kim & Hovy, 2004, 2005) or even documents (see Pang et al., 2002). Both

rule-based and machine learning methods are employed achieving reason-

able results. But all of them state the assumption that the textual unit in

question (be it a word, sentence or document) contains exactly one topic.

This assumption is true on word level, but its substance may be doubted

on sentence and document level (except for certain text types, e. g. product

reviews). Within blog entries or forum discussions the corresponding au-

thor often addresses more than one topic (e. g. I love X, but Y seems a little

weird.). The same observation can be made on technical reports describing

customers’ complaints which often cover more than one problem.

In order to provide a fine-grained analysis along with relations between

opinion holders and opinion targets, sentiment analysis has to be per-

formed on a deeper level – the phrase level. This is crucial for topic-centric

sentiment analysis that is able to extract opinions and their respective tar-

gets (e. g. X and love, Y and little weird).

The approach of Remus & Hänig (2011) is employed as it achieves ac-

curate results and is easily extendable due to its flexible rule based and

yet language-independent architecture. The Polarity Composition Model

(PCM) is based on findings of related fields of research (e. g. psychology)

and its design is empirically validated by surveys with human subjects.

The Polarity Composition Model is designed as a two-layered polarity anal-

ysis – one level dealing with words, the other one with phrases relying

on the first. The objective is to assign a word’s prior polarity without any

given context (see Wilson et al., 2009). A dictionary containing words, their

inflected forms along with the prior polarity for each word is SentiWS (see

Remus et al., 2010) which is used for word level sentiment analysis on the

AIM Corpus. In contrast to other dictionaries, words are not classified into

two classes (positive and negative, see Hatzivassiloglou & Mckeown, 1997),

instead polarity values v ∈ [−1, 1] express intensity classifications where a

bigger |v| identifies more expressive words.
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Abbreviation Category Examples

ADJ Adjectives, adverbs superb

N Nouns displeasure

V Verbs despair

NEG Negations not

INC Strengthening Intensifiers very

DEC Weakening Intensifiers barely

Table 2.: Categories and their abbreviations

Still on word level, each word is put into a category to distinguish be-

tween potential polar words and modifying words (Polanyi & Zaenen (2006)

propose the terminus Contextual Valence Shifters (CVS)). Assigned POS

tags are used as light-weight word sense disambiguation (see Wilks & Steven-

son, 1998). The category layer separates syntactic functions of the words

from their semantic tasks. Table 2 gives an overview about these categories.

Phrase-level polarity analysis uses the results of word-level polarity analy-

sis and thus, word level polarity analysis serves as abstraction from words

and language. The objective of phrase level polarity analysis is to identify

a word’s contextual polarity (see Wilson et al., 2009). This is achieved by

taking the local context into account – e. g. the (linguistic) phrase structure.

In order to compose the polarity of a phrase out of its contained lexical

units, a bottom-up approach following the compositional principle is used

(see Moilanen & Pulman, 2007; Neviarouskaya et al., 2009).

Each rule r has the form

(5.11) r := [(d, f,p)CATi . . . CATj]

where CATk is contained in {ADJ, N, V, NEG, INC, DEC} or CATk is a rule

by itself. Additional operators like . . . (an optional marker for disconti-
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nuity), {CATk} (a marker for optional categories), direction d ∈ {→,←}, an

aggregation function f ∈ {a+,a∗} and a parameter p ∈ Q (obligatory for

a×) build the formal environment to build complex formal constructs. A

visualization of a rule is shown in Figure 9.

Figure 9.: Visualization of the formal construct

Because of the formal construct’s recursive definition, the creation of rules of

arbitrary complexity is possible. An example for polarity composition is

given in Fig. 10:

Figure 10.: Visualization of polarity composition

A comprehensive discussion about design, modeling decisions and empir-

ical validation of the PCM is given in Remus & Hänig (2011).
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ANALYS IS OF STATE -OF-THE -ART ALGOR ITHMS

With the growing number of annotated language resources supervised methods

for NLP achieve more and more accurate results. Models for many languages

exist and hence, supervised methods can be applied to many tasks. There is

an argument about domain adaptation of supervised approaches. Many works

focus on domain adaptation (for automatic taxonomy creation, see Cimiano et al.,

2003b) to bridge the gap between supervised machine learning methods and

application on real-world data and tasks. Remarkable results are achieved, but

most of the approaches rely on high quality data which is not always available

in certain environments (see Sec. 5.2).

In this section, state-of-the-art algorithms are analyzed to understand their

strengths and weaknesses when being applied to the task of information extrac-

tion in the automotive domain and the respective textual data.

6.1 automotive entity types

Information Extraction for the automotive domain focusses on an enumerable

set of entities. Table 3 lists the most important ones which will serve as target

entities throughout the evaluations of information related algorithms.

Those entities are detected as described in Sec. 5.5. It is very obvious that

these entities do not belong to the well-studied set of named entities which are

not in the scope of corporate quality analysis.

70
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Entity type description

component parts of vehicles, e. g. wheel, gas pump

symptom problem descriptions, e. g. problem, defect, inoperative

correction corrective actions, e. g. changed, fixed

condition certain conditions, e. g. when raining, in the morning

location locations all over the vehicle, e. g. front, driver side

negation negations of all kind, e. g. not, no

vehicle any mention of models, e. g. A4, BMW, C Class, Golf IV

sentiment polar phrases, e. g. nice feature, not desirable, stunning model

Table 3.: Target Entities for the Automotive Domain

6.2 automotive relation types

Arbitrary relations consist of a type and the corresponding entities (with their

respective types). The entities embody certain roles of the relation and fill the

assigned slots (e. g. the relation is-president-of accepts entities for both of the

assignable roles president and country).

Automotive relation types show slightly different characteristics. Roles of en-

tities (and the respective semantics) are directly defined by the category of the

entity. Hence, the relation type is implicitly defined by the types of the related

entities. A listing of all automotive relation types being evaluated on is given in

Table 4.

Most of the relations provide insight into the data being useful for classic

quality assurance analyses. The latter two relation types can be exploited by

modern market research exploring the customer’s opinion.
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Relation type description

component – symptom defect component and the observable symptom

component – correction corrective action applied to a defect component

component – location the location of a component within the vehicle

negation – symptom negation of a symptom

vehicle – sentiment polar utterance about a vehicle

component – sentiment polar utterance about a component

Table 4.: Target Relations for the Automotive Domain

6.3 supervised pos tagging

Part-of-speech tagging is the assignment of parts-of-speech to a sentence’s words

(see Manning & Schütze, 1999). POS tags are essential for further processing like

parsing and relation extraction. Highly sophisticated approaches (see Schmid,

1994; Brants, 2000; Collins, 2002) achieve more than 95% accuracy on token level

for this task.

This performance seems close to perfection, but assuming an average sentence

length of 20 still results in one incorrect tag per sentence.

In the following analysis on automotive data the Stanford Tagger (see Toutanova

& Manning, 2000; Toutanova et al., 2003, accuracy of about 97%) serves as repre-

sentative for supervised part-of-speech tagging approaches. Schierle (2011) eval-

uated the performance of five POS taggers on QUIS Corpus data and the Stanford

Tagger achieved the most accurate results.

A more detailed introduction to the task of POS tagging can be found in Sec.

7.
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6.4 supervised parsing

Parsing is the task of assigning a syntactical structure to a sentence (Surdeanu

et al., 2008). This structure is usually represented as a syntactic tree providing

word order and hierarchical structure of phrases or dependencies (depending

on the chosen grammar theory, see Section 4.2.4).

Most approaches to parsing use entropy maximization (see Charniak, 2000),

maximum-likelihood estimation (see Klein & Manning, 2003a) or are based on

Markov rules or HMMs (see Collins, 2003; Klein & Manning, 2003b). Due to the

extensive research in the field of natural language parsing, a variety of models

exist and are freely available for many languages1.

For the following experiments, the Stanford Parser is used (see Klein & Man-

ning, 2003a,b) as it yields accurate results and comes with available models for

various languages.

6.5 training of relation extraction kernels

In order to train a classifier for each relation type of interest, the training sen-

tences are preprocessed as described in Section 5.5. This includes proper tok-

enization, spelling correction (for QUIS Corpus data only), entity detection and

sentiment analysis (for AIM Corpus data only). Additionally, all instances are aug-

mented with POS tags and constituency parses as described in the two preceding

sections.

Starting with an entry out of the QUIS Corpus (see Fig. 11a), preprocessing

expands abbreviations context-sensitively (e. g. C/S → customer states and LT

→ left2) and corrects typos and misspellings (e. g. DRIVNIG → driving). All

characters are transformed into their respective lower-case versions in order to

1 e. g. for the Stanford Parser, see http://nlp.stanford.edu/software/lex-parser.shtml
2 LT is a common abbreviation for left and light. Context-sensitive disambiguation is able to pick

the correct expansion.
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obtain better tagging results. Leaving the words upper-case results in tagging

nearly every word as proper noun or normal noun. The cleaned entry of this

example is given in Fig. 11b:

C/S LT MARKER LAMP WARNING LIGHT COMES ON WHEN DRIVNIG
(a) original entry

customer states left marker lamp warning light comes on when driving

(b) preprocessed entry

S

NP

NN

customer

NNS

states

VP

VBD

location

left

SBAR

S

NP

component

NP

NN

marker

NN

lamp

VP

VBG

warning

NP

NN

light

VP

VBZ

symptom

comes

(on)

PP

IN

on

SBAR

condition

WHADVP

WRB

when

S

VP

VBG

driving

(c) parsed and annotated entry

Figure 11.: QUIS Corpus example

Although this example seems very easy to process as humans understand it

without any trouble, state-of-the-art algorithms make mistakes. Incorrectly as-

signed POS tags (e. g. NNS ← states and VBD ← left) entail parsing errors (e.

g. left is an adjective of component marker lamp warning light). The completely

processed entry is shown in Fig. 11c. The entity annotations (e. g. location,

component, symptom and condition) are integrated into the tree for improved

readability and do not alter the tree coming from the parser in the real applica-

tion.
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For each relation type, training instances were generated in a semi-supervised

way. An automated candidate selection step extracted all sentences containing

exactly two entities of the necessary types regarding the target relation. From

this candidate set 200 instances were selected to form the positive training in-

stances of a relation. Additionally, 200 negative instances were randomly se-

lected. One half of them contain another relation type, the other half contains no

relation at all and less than two entities. A binary SVM is trained for each relation

type using the set of positive and negative instances. The implementation of lib-

SVM (see Chang & Lin, 2011) has been used for training and classification. The

results of the experiments on data from QUIS Corpus and AIM Corpus are given in

the following section.

6.6 evaluation results and discussion

In this section the results of the relation extraction evaluation employing kernel

methods are presented. All methods are tested on two data sets: QUIS Eval and

AIM Eval, the results are given in Table 5 and Table 6, respectively3:

Relation Kernel Precision Recall F-Score

component – correction STK 0.0476 0.6273 0.0884

component – symptom STK 0.0245 0.4828 0.0466

component – location STK 0.3333 0.0123 0.0238

negation – symptom / condition STK 0.0007 0.0200 0.0014

Table 5.: Relation Extraction results on QUIS Eval

Although kernel methods proved to achieve very accurate results on newspa-

per test sets, this is not the case for the available data from the automotive do-

main. This originates in characteristics of the data, peculiarities of the relations

3 Only results for the kernel method achieving the best results are shown.
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Relation Kernel Precision Recall F-Score

component – correction PTK 0.0502 0.1204 0.0708

component – symptom PTK 0.0667 0.0685 0.0676

component – location PTK 0.0385 0.4286 0.0707

Table 6.: Relation Extraction results on AIM Eval

and feature selection of the kernel methods. These reasons will be analyzed in

the following.

6.6.1 Arbitrariness of Automotive Relations

Logical relations that are studied in most related work often connect named enti-

ties. Named entities are mostly expressed through nouns, noun phrases or other

nominal expressions (except for numbers, temporal expressions, etc.). Entities

of the automotive domain do not show this property. Most components occur

as nominal expressions, but symptoms and corrections are mostly expressed as

verbs and adjectives. Some concepts of the class symptom even have mixed

nominal and verbal terms consisting of multiple tokens (e. g. no problem found).

As consequence automotive relations are not typically expressed as simpler

relations like is-a (e. g. X is a Y, X as other Ys, etc.) or is-CEO-of (e. g. X (head

of Y), X became CEO of Y, etc.). Often, entities of a relation (e. g. component –

symptom ) succeed each other directly. For these instances, only little contextual

information is given. Typical verbs are not available (e. g. makes as in engine

makes some noise is often discarded in repair orders and the utterance is reduced

to engine noisy) making detection of such relations using predefined patterns

difficult. Unsupervised pattern-based approaches as in Etzioni et al. (2005) au-

tomatically extract describing patterns for relations. They create characteristic

patterns using the context before, between and after both entities through detec-
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tion of descriptive words. As there are no words in between the involved entities,

the most important information is absent.

RE seems so be trivial on directly succeeding entities, but repair orders are

covered by 83% with automotive entities (see Hänig & Schierle, 2009) leading

to many sequences of multiple directly succeeding entities. E. g. the example

in Fig. 11 contains such a contiguous entity sequence (location component

symptom condition). It is difficult to decide which entity is related to which

other entity as no information except for the entity sequence itself is given. Thus,

is it nearly impossible for pattern-approaches to solve this problem and kernel

methods need a enormous amount of training examples which is not available4

for such data sources.

The opposite case exists, too. Entities occur in manifold expressions and

high-distance relations. This can be observed in entries from internet fora (see

AIM Corpus, Section 5.2.2).

Three examples demonstrate the complexity (Fig. 12):

Is it possible the component transmission is symptom stuck in a higher gear and

that is what is causing the symptom poor acceleration?

(a)

The symptom common problem with first generation vehicle W220s is the

component airmatic suspension.

(b)

The component suspension is negation not symptom malfunctioning, but I hear

a lot of symptom road noise.
(c)

Figure 12.: AIM Corpus examples

All three examples contain at least one relation of the type component – symp-

tom . While the first relation (component transmission is symptom stuck in a

4 Creation of such a tremendous training set is to costly and time consuming for real world ap-

plications as it needs to be done whenever a new data source should be integrated or another

language should be studied.
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higher gear) is expressed using a basic pattern (component is symptom ), most

of the others need more complex patterns to be matched. Many related entities

occur within a distance of ten or more words creating a landscape of numerous

patterns. Thus, pattern-based approaches can achieve high precision results, but

recall will suffer as only few instances will be covered even with a high number

of patterns. Feldman & Rosenfeld (2006) suggest patterns containing wildcards

to improve recall. Their method detects identical words in different patterns to

extract the denoting terms. As discussed above, denoting terms are very rare for

automotive relations and the available denoting terms (e. g. is) are to generic

and need a reliable verification.

6.6.2 Feature Selection of Kernel Functions

Proposed kernel functions for RE mainly employ syntactic features to calculate

similarities between two instances. The kernel’s feature space influences the per-

formance decisively. Zelenko et al. (2003) argues in favor for richer feature spaces

(SSTK outperforms CSTK), but Moschitti et al. (2006) presents a deeper investiga-

tion. Experiments indicate that kernels operating on partial tree spaces perform

better on dependency trees while kernels show superior results on constituency

parses when using subset tree feature spaces.

This effect is grounded in the subtree space. Both subset trees and partial trees

contain tree fragments without lexical items.

The example given in Fig. 13a contains an automotive relation (component

suspension – symptom noisy). A sentence with completely different semantic con-

tents but still nearly identical syntactic structure (see Fig. 13b) shares numerous

subset trees (see Fig. 14a) and partial trees (see Fig. 14b).

According to the kernel function definitions, which basically count common

tree fragments, these two trees achieve a kernel score signifying similarity. This

results in many overpropositions and thus, reduces precision. Especially forum

entries contain long sentences which provoke a high portion of similar subtrees

without sharing semantic information. Employing a contiguous subtree kernel
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Figure 13.: Similar trees with and without automotive relation
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(b) Some shared partial trees

Figure 14.: Shared tree fragments

avoids this problem, but this feature space suffers from similar problems as

patterns – low coverage on diverse expressions.

One possibility is to mind the involved entities’ types in order to filter sen-

tences without corresponding information. Zelenko et al. (2003) therefore pro-

poses a matching function (see Section 4.6.1.2) to increase the importance of in-

volved entities. This matching function forbids matching of nodes containing

entities of either different roles or types. Although Zelenko et al. (2003) intro-

duce a customized kernel for relation extraction that improves processing of rela-

tion instances, their matching function only weakens the problem. Syntactically
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similar nodes without role or type annotations still are matched and increase

similarity scores of analyzed instances.

6.7 conclusions

Available algorithms for Relation Extraction are not applicable to the data con-

tained in both automotive corpora. Existing part-of-speech taggers achieve rea-

sonable results when trained on a reduced tagset for this data (see Schierle,

2011), but creation of training data for parsers is to costly and time consuming

as parsers need much more annotated data to be trained properly. Syntactic

augmentation yields valuable features for RE and thus, unsupervised methods

for part-of-speech tagging and parsing should be studied to obtain syntactic

enrichment of the data.

Existing kernel functions do not achieve good results when integrated into this

RE workflow of the automotive domain. Typical tagsets (see Sec. 4.2.3) contain

less than 100 tags. Unsupervised methods often induce significantly more word

classes leading to fewer matches of syntactic similar tree fragments due to too

fine-grained tagging.

In the following sections, appropriate algorithms for unsupervised part-of-

speech tagging (see Section 7), parsing (see Section 8) and relation extraction

(see Section 9) will be presented. While the first two algorithms deal with a gen-

eral formulation of the respective NLP task, the latter deals with a sophisticated

algorithm regarding the automotive domain.



Part II

UNSUPERV ISED RELAT ION EXTRACT ION



7

PART-OF-SPEECH TAGG ING

Part-of-Speech tagging is the task of assigning parts-of-speech to words (see

Manning & Schütze, 1999). Parts-of-speech are linguistic categories (see Sec.

4.2.3) on the word level and denote groups of words with similar syntactic prop-

erties and functions. Besides numerous supervised approaches to POS tagging

(e. g. employing entropy maximization as in Toutanova et al. (2003)), unsuper-

vised POS induction algorithms gain a lot attention in recent research. Despite

the fact that results of unsupervised POS induction improve steadily, one major

difference will remain due to the nature of unsupervised algorithms: the clus-

ter labeling. Supervised approaches use manually annotated data for training

and learn to correctly replicate this tagging on new unseen data. The trained

tagger accordingly assigns exactly those tags of a specific tagset provided in the

training data. Unsupervised algorithms do not rely on annotated data and do

not have the possibility to learn which tags exist in a conventional way. The

output of an unsupervised tagger is the assignment of word clusters to words.

Words contained in a cluster implicitly define the part-of-speech although it is

not denoted by NN, DT or other commonly used labels.

Most word types mainly bear one syntactic function and consequently, are

tagged by one POS tag. Some word types accomplish different syntactic func-

tions and are tagged by various tags depending on the current instance’s func-

tion (e. g. this can be a determiner or a pronoun depending on the context). Never-

theless, there is a predominant tag word most effected word types (see Manning

& Schütze, 1999) and this is why many approaches ignore proper disambigua-

82
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tion. Experiments show comparable results achieved by simple approaches that

always assign the most frequent tag of a word type (see Schierle, 2011).

In this section, several approaches to unsupervised POS tagging are presented.

Afterwards, an extension for improvement of any unsupervised POS tagging

algorithm is introduced. Different syntactic functions are disambiguated for

certain word types depending on the tagging without proper disambiguation.

7.1 pos tagging – related work

With the growing amount of internet texts, the need for unsupervised robust

processing is growing analogously to avoid time-consuming annotation of train-

ing data when adapting to a new genre or domain. This general statement is

also true for POS tagging, which can be seen as one of first NLP tasks being

approached in a completely unsupervised manner.

All approaches to unsupervised POS tagging rely on context clustering in any

form and thus, are based on the distributional description of word types as ini-

tially proposed by Schütze (1995). This idea is based on paradigmatic relations.

Word types occurring within similar contexts (regarding local neighborhood con-

texts) show similar syntactic functions. This observation is exploited by all ap-

proaches, although different definitions of how exactly the appropriate context

looks like are employed. Further disambiguation of existing algorithms can be

achieved by looking at the applied cluster algorithms to eventually cluster word

types into word classes.

Current approaches additionally incorporate more features, such as morphol-

ogy (see Abend et al., 2010).
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7.1.1 Distributional POS Tagging

Distributional POS Tagging (see Schütze, 1995) uses vector representations of a

word types’ context. Therefore, four different feature vectors are created to de-

scribe a word w:

• the left context of word w,

• the right context of word w,

• the right context of the word preceding w, and

• the left context of the word following w.

Each of the four context vectors consists of frequencies counting how often a

context word cw occurs within the defined position relatively to w. The moti-

vation of the first two vectors is obviously grounded in direct neighborship and

thus, contributing significantly to the clarification of the word’s syntactic func-

tion. The latter two represent properties of the word’s context. They express the

expectation of the context which syntactic category should appear at the position

of w. In order to assign the correct tag to the word work in her work seemed to be

important the fact that a noun phrase is expected in front of seemed is important,

while the right context of seemed is not (see Schütze, 1995). Analogously, the

right context of the left context word of w contributes to disambiguation of the

proper word class.

As the dimension of each feature vector would be of the size of the lexicon,

only the 250 most frequent words are taken into account. Hence, four feature

vectors each containing 250 components are created.

In order to reduce data sparseness and influence of some idiosyncrasies (e. g.

phonological constraints after a and an), a Singular Value Decomposition (SVD)

is applied. All contexts vectors are concatenated and represented as matrix C.

C consists of n rows where n is the number of different word types that will
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be clustered and k = 250 columns, one for each possible context word. SVD is

applied to decompose C as in:

(7.1) C = T0S0D
′
0

The diagonal matrix S0 contains all singular values of C in descending order.

All matrices are restricted to their first m < k (m = 50) columns representing the

principal components. The product of the resulting matrices T , S and D ′ then

represent the optimal feature matrix Ĉ = TSD ′ of rank m.

Finally, the cosine measure is applied to calculate similarities between two

feature vectors during the clustering process. All accounted word types are

classified into c = 200 word classes using Buckshot clustering (see Cutting et al.,

1992).

7.1.2 SVD2

The approach presented in Lamar et al. (2010b,a) can be seen as an iterated

version of Distributional POS Tagging.

Left and right context vectors are created using the most frequent 1000 word

types. The additional context vectors (right context of the preceding context

word and left context of the following context word) are not used for this ap-

proach. Analogously, SVD is applied to reduce the feature dimensions down to

m1 = 100. Afterwards, k-means clustering is applied to cluster all words of the

corpus into k1 = 500 classes (using cosine similarity).

A second pass of this process is carried out – using generalized contexts this

time. Generalized contexts are calculated exactly like the other contexts de-

scribed above, but instead of counting context words, the corresponding classes

induced during the first iteration are counted. This kind of context generaliza-

tion has been previously proposed by Schütze (1995), but he found that “one

cannot conclude with certainty that generalized context vectors induce tags

of higher quality”. During the second pass, the matrices are reduce to rank
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m2 = 300 and k-means is applied to cluster the word types into k2 clusters,

where k2 denotes the desired number of tags.

This iterated version outperforms the original approach and other state-of-the-

art taggers (e. g. based on HMM, see Gao & Johnson, 2008; Graça et al., 2009).

7.1.3 unsuPOS

The approach presented in Biemann (2006b) is distinct from the other regarding

at least two major points. First, it does employ a graph clustering algorithm and

thus, the number of induced tags can be detected by the clustering algorithm

itself instead of using a predefined number of clusters. Secondly, two separate

runs are performed for high / medium frequency words and for medium / low

frequency words.

Similarly to the other approaches, the 200 most frequent words are used to

build context vectors with a maximum distance of two. Instead of clustering

all word types into fixed clusters, only the 10000 most frequent word types are

clustered into fixed classes.

After merging both clusterings for high / medium and medium / low fre-

quency words, a Viterbi model is trained. It is able to tag words that are previ-

ously unseen (all words with rank > 10000) and thus, provides disambiguation

for out-of-lexicon words.

7.2 advanced unsupervised pos tagging

Most approaches to unsupervised POS tagging ignore proper disambiguation

of words. Lamar et al. (2010b) present the upper bound in accuracy of M-to-1

mapping of tagging without considering ambiguity of words and find it to be

about 95% on WSJ. Regarding other tagsets, this upper bound is much lower. An



7.2 advanced unsupervised pos tagging 87

example is the very frequent word to. A special tag TO is used to tag this word

veiling the word’s syntactic ambiguity.

A deeper analysis shows that low frequency and previously unseen words

often are disambiguated as they will not be clustered into a class directly. Tag

assignment is achieved by methods relying on the context of the word (e. g.

HMM as in Biemann (2006b)) instead of the word itself. This is not the case for

high frequency words which bear syntactic information about the structure of a

sentence.

To visualize this effect, some high frequency words are shown along with their

different syntactic functions. Tables 7 and 8 (see Hänig, 2010b) give some exam-

ples for English (SUSANNE corpus1) and German (TIGER corpus, see Brants

et al., 2002).

English

to Infinitive marker 63% Preposition 37%

that Conjunction 75% Pronoun 15% Determiner 10%

as Preposition 82% Adverb 18%

this Determiner 62% Pronoun 38%

about Preposition 77% Adverb 23%

Table 7.: Examples of different syntactic functions of high frequency words for English

These high frequency words often bear syntactical functions, so it is essential

for syntactic processing of a sentence to appropriately disambiguate the differ-

ent syntactic functions of the contained words. The effect on subsequent steps

relying on POS tagging (e. g. syntactic parsing and relation extraction) is more

distinctive than being directly observed during POS tagging evaluation. Further-

more, Lamar et al. (2010a) state that removing the disambiguation ability from

a disambiguating model increases its accuracy. This is counterintuitive as this

step prohibits parsers to rely on correct syntactic categories from the beginning.

1 http://www.grsampson.net/RSue.html
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German

die Determiner 89% Subst. rel. pronoun 10%

Subst. dem. pronoun 1%

das Determiner 76% Subst. dem. pronoun 17%

Subst. rel. pronoun 8%

zu Infinitive marker 64% Preposition 32%

Particle 4%

auf Preposition 94% Particle of sep. verb 6%

als Preposition 61% Comp. conjunction 31%

Subord. conj. w. sentence 8%

Table 8.: Examples of different syntactic functions of high frequency words for German

Sophisticated approaches to unsupervised parsing rely on POS tags in any

form and depend on the tagger’s accuracy and ability to assign correct – and in

some cases disambiguated – syntactic roles to word types.

The high number of part-of-speech classes induced in an unsupervised man-

ner entails difficulties for parsing approaches. The classes are more fine-grained

(and sometimes consist of only a few word types) than common parts-of-speech

which leads to low significance / probability values for subtrees, co-occurrences

or substrings. Consequently, these syntactic dependencies may not be induced2.

Based on the distribution of parts-of-speech over several classes, multiple similar

rules have to be induced to cover certain syntactic dependencies (e. g. A and

NN, AN and NN and THE and NN where A, AN and THE denote the classes

containing a, an and the, respectively).

In order to improve the performance of POS taggers with regard to facilitation

of subsequent processing steps, a method for disambiguation of high frequency

words is presented.

2 See Section 8 for more details on unsupervised parsing methods.
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7.2.1 Clustering of Contexts

Distributional similarity of word types is used to induce part-of-speech classes.

In order to disambiguate different syntactic roles of a word type, the contexts the

word type occurs in need to be clustered. Each of the resulting context clusters

embodies a syntactic function.

From a corpus linguistic perspective, the local context contextNB(d) (wx, s) (see

Sec. 4.2.2.1) of the xth word wx of sentence s contains the d left and d right

neighbors of wx. If the context hits a sentence boundary, the remaining context

words are filled with special tokens marking the beginning and the end of a

sentence to retain this information.

The global context contextw is the sum of all local contexts the word w ap-

pears in. The objective is to divide the global context into as many clusters as

the number of syntactic functions the word holds. To do that, a similarity func-

tion between local contexts needs to be defined. Similarly to the similarity of

two words, similarity sim (ca, cb) between two local contexts c (a) and c (b) is

calculated as the weighted mean of their component’s similarity:

(7.2) sim (c (a) , c (b)) =
∑
i

w(i) · sim (c (a)i , c (b)i)

The weighting function w(i) determines the weight of the ith component. Intu-

itively, directly preceding or succeeding words seem to be more important than

more distant ones. In order to confirm this intuition, several weighting functions

are studied:

uniform All components of a context vector obtain the same weight – indepen-

dently from the distance to the target word.

(7.3) w(i) =
1

2n

linear descending Direct neighbors have more influence than distant neigh-

bors and yield higher weights. A linear approximation is employed to

decrease the weights with increasing distance.

(7.4) w(i) =
n−

∣∣2n−1
2 − i

∣∣+ 3
2

n · (n+ 1)
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exponential Direct neighbors have more influence than distant neighbors and

yield higher weights. An exponential approximation is employed to de-

crease the weights with increasing distance.

(7.5) w(i) =
2n−|

2n−1
2 −i|+1

2

2n+1 − 2

linear ascending This weighting function is proposed to prove the initial as-

sumption. Contrary to other functions, weights linearly increase with in-

creasing distance.

(7.6) w(i) =

∣∣2n−1
2 − i

∣∣+ 1
2

n · (n+ 1)

Each of the weighting functions can be employed using different context sizes n.

The respective influence is explored within the experiments.

7.2.2 Integration

The number of different syntactic roles a word type holds is a priori unknown

and a well-known problem emerges: into how many clusters should the items

be clustered? This is essentially a clustering problem and at this point, a graph

clustering algorithm (Chinese Whispers, see Biemann, 2006a) is applied to deter-

mine the number of clusters for each word type.

The complete tagging process can be briefly described as:

tag corpus with existing non-disambiguating tagger

for each of the most frequent 1000 words:

collect contexts

calculate similarities between observed local contexts

cluster contexts

re-tag instances of the word with new tag

This integration is very flexible as every POS tagger can be extended using this

approach. The re-tagging of word types can be skipped, if only one syntactic
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function is found. Otherwise, all instances clustered into the dominant syntactic

function will retain the original tag while all instances bearing further syntactic

roles are tagged by a new tag.

7.2.3 Evaluation

Three different evaluation methods are applied. The first one evaluates the clus-

tering performance itself, estimating the influence of parameters. The second

method shows how unsupervised POS tagging can avoid clusters containing

only a few word types. The third evaluation uses established measures to esti-

mate the overall influence on the task of POS tagging.

7.2.3.1 Context size and weighting function

First, the clustering performance itself will be evaluated. Therefore, both cor-

pora (SUSANNE for English and TiGer for German) are transformed so that

each word type is tagged by its most frequent POS tag. This is the exact state

after (perfect) non-disambiguating POS tagging. A beneficial side effect is that

interpretation of the resulting clusterings is much easier compared to interpre-

tation of unsupervised POS tags which are labeled by numbers due to lacking

information about the contained part-of-speech.

The objective of this evaluation is to measure the influence of context size and

applied weighting function. The cluster purity is calculated for each possible

combination of context size n and the applied weighting function w to find the

most suitable one. Cluster purity pci of a cluster ci is defined as

(7.7) pci =
1

|ci|
maxk (|ci|class=k)

where |ci| denotes the cluster size of ci and |ci|class=k is the number of items of

class k assigned to cluster ci. The overall purity P of a clustering on a dataset D

is the weighted sum of the individual cluster purities:

(7.8) P =
∑
i

|ci|

|D|
pci
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The impact of weighting functions depends on context size. All weighting

functions show similar behavior for smaller n and diverge with increasing con-

text size. As stated by related work on unsupervised POS tagging, the baseline

is very high. Regarding cluster purity of the initial non-disambiguating tagging,

the scores are 0.931 for English and 0.921 for German. These scores also con-

firm the assumption that ambiguity does only cover a small portion (at most

7% for English) and that English language shows less ambiguity than German

(regarding to these two tagsets).

The results obtained after clustering are given in Table 9:

uniform linear descending exponential linear ascending

English

n = 1 0.932 0.932 0.932 0.932

n = 2 0.934 0.936 0.936 0.933

n = 3 0.933 0.935 0.936 0.933

German

n = 1 0.941 0.941 0.941 0.941

n = 2 0.938 0.940 0.940 0.926

n = 3 0.925 0.928 0.929 0.923

Table 9.: Cluster purity depending on context size and applied weighting function

The exponential weighting function achieves the best purities independent

from the context size n.

A context size of 2 seems to suffice for this task as it yields the best combined

purity for both languages and no other context size achieves significantly better

results. Linear descending and exponential weighting functions are identical for

n � 2 and thus, applying the computationally less complex linear descending

function is recommended.
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Another interesting aspect is that for German data, bigger context size affects

the results negatively. This observation is contrary to most machine learning

approaches where more data or features yield better results.

Although both baselines are very high, clustering contexts achieves an error

reduction of 7.2% for English and 25.3% for German in comparison to the gold

standard. In the following, the influence on parsing is depicted using an exam-

ple, because cluster purity can be gamed by putting each instance into a separate

class.

Figure 15.: Resulting clusters for to

The obtained clusters for to are shown in Figure 15. Basically, two huge clus-

ters are detected, one contains only prepositions (labeled P, light-green cluster at

the lower right part of the figure), the other one mainly contains particles mark-

ing infinitives (labeled AUX; purple cluster). The smaller cluster containing

prepositions is absolutely pure, while the other one erroneously contains prepo-
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sitions, too. Non-disambiguating part-of-speech tagging tags all occurrences of

to using the same tag. Context clustering distinguishes both syntactic functions

of to correctly. Having untangled these functions facilitates unsupervised gram-

mar induction as statistics will be correct (or at least improved) and no syntactic

function of a word type is veiled behind a more significant one. The actual de-

gree of influence depends on the induction algorithm and ranking of different

possible syntactic structures.

7.2.3.2 Influence on small word classes

Non-disambiguating unsupervised POS tagging often induce clusters containing

only one or few word types. This originates in initial centroid detection (in the

case of SVD2) or the fact that contexts of the word types are not similar enough

to be clustered into one class. This evaluation method shows that clustering con-

texts can fix this problem as disambiguated subclusters show significantly higher

distributional similarity to other word types with the same syntactic function.

In this experiment, five German prepositions (ab, aus, mit, vor and zu) are stud-

ied. All of them can also be used as parts of separable verbs. The corresponding

distributional similarity scores are given in Table 16a. Most similarity scores are

not very high (except for some word type pairs), hence they will end up in differ-

ent word classes. After application of context clustering, the respective clusters

containing prepositional instances are selected manually. Afterwards, similarity

values are calculated for the extracted subclusters and as it can be seen in Table

16b, they show significantly higher similarity scores.

Unsupervisedly induced tagsets often contain a larger number of classes (ap-

prox. 300 – 500 word classes) than manually created tagsets. Incorporation of

context clustering can reduce the number of induced classes naturally (e. g.

instead of forcing the induction of at most k classes when using k-means cluster-

ing). Furthermore, the induced word classes can be labeled manually based on

characteristic prototypes for each cluster (see Lamar et al., 2010b) if the number

is not that high. This will result in semi-supervised POS tagging without huge

manual effort.
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aus mit vor zu

ab 0.763 0.662 0.651 0.428

aus - 0.953 0.821 0.587

mit - 0.810 0.603

vor - 0.513

(a) Without context clustering

aus mit vor zu

ab 0.932 0.740 0.921 0.914

aus - 0.957 0.993 0.977

mit - 0.820 0.972

vor - 0.784

(b) With context clustering

Figure 16.: Distributional similarity scores of five German prepositions

7.2.3.3 Evaluation of POS Tagging with disambiguation

Finally, the resulting tagging with disambiguation is evaluated using well es-

tablished measures (see Sec. 4.4.4). For both languages, the approach SVD2

presented in Lamar et al. (2010b) is initially trained on one million sentences ob-

tained from the Projekt Deutscher Wortschatz3 (see Biemann et al., 2004; Quasthoff

et al., 2006). Instead of putting the evaluation corpus into the training set, the

50000 most frequent words are clustered. Similar to unsuPOS, a HMM is trained

to finally tag the evaluation corpus including previously unseen words.

Afterwards, contexts of the 1000 most frequent word forms (ignoring punc-

tuation) are clustered to unveil their different syntactic functions. Re-tagging

is applied to those 1000 word types and a second evaluation run is performed.

Table 10 gives the result of both runs for English and for German data4.

As it can be seen, additional context clustering improves tagging accuracy for

both languages independently from the applied measure. Although baselines

for tagging without disambiguation are very high, proper disambiguation for

high frequency words achieves a significant error reduction.

3 http://wortschatz.uni-leipzig.de/
4 For measures VI and NVI: lower scores denote better clusterings.
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Model language M-to-1 VI V NVI

SVD2 en 0.58 3.63 0.61 0.83

SVD2 + context clustering en 0.63 3.21 0.65 0.73

SVD2 de 0.82 3.20 0.60 1.07

SVD2 + context clustering de 0.85 3.08 0.61 1.03

Table 10.: Evaluation of POS tagging without and with context clustering

7.3 pos tagging – conclusions

Although disambiguation of a word’s different syntactic functions is ignored by

most approaches to unsupervised POS tagging, it is possible to contribute to

improved POS induction.

Disambiguation was only possible for previously unseen words. Depending

on the local context, out-of-lexicon words get the most probable tag assigned

employing any kind of maximum likelihood estimation (e. g. HMMs). With the

ability of disambiguation of high frequency words, additional potentials emerge.

The accurate differentiation of a word’s functions leads to superior word class

purities. It is also possible to reduce the number of induced word classes in a

more natural way. Two possibilities exist so far: to induce a predefined number

of word classes or to use graph clustering to automatically detect the number

of classes. The latter method results in a very high number of clusters, while

the first possibility creates a dependency to manual tagset definition (in terms

of tagset size) which is not desirable for an unsupervised method.

Further processing steps benefit from improved word classes regarding the

words bearing syntactic functions. This especially holds for domain corpora as

characteristic terminology occurs more frequently than in general language data

(an example from the automotive domain: words like pump occur very often and

require proper disambiguation as it can be used as noun or as verb).
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There is still a great potential hidden in a closer incorporation of context clus-

tering with an existing approach to POS tagging. Instead of incorporating con-

text clustering as a post-processing step, it can be used to incrementally improve

a model when being incorporated in an iterated algorithm like SVD2.



8

UNSUPERV ISED CONST I TUENCY PARS ING

Syntactic parsing usually consists of two steps: grammar induction and parsing

as the task of grammar application. In supervised parsing, a machine learn-

ing algorithm is applied to a training set augmented with manually annotated

parses. Hence, all information provided by the training corpus can be learned

and reproduced during the actual parsing step. This information includes at

least structure (based on constituents or dependencies) and phrase types.

Unsupervised grammar induction does not rely on the existence of annotated

syntactic structures. Solely part-of-speech annotations are essential for most ap-

proaches. These can be induced in supervised or unsupervised manner (see

Section 7). Some approaches operate on word forms themselves (see Seginer,

2007) while most approaches use POS tags as abstraction layer and to reduce

data-sparseness to an acceptable level. Klein & Manning (2002a, 2004) state that

the extension of grammar induction methods to induce trees from words instead

of from POS tags is rather straightforward as high-accuracy unsupervised tag-

gers exist (see Bod, 2006b).

In the following, some state-of-the-art unsupervised parsers are presented. Po-

tential for improvements with special regard to RE is estimated and an approach

incorporating all of these improvements will be developed.

98
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8.1 unsupervised parsing – related work

8.1.1 Constituent-Context Model

The Constituent-Context Model (CCM) is fundamentally based on the assump-

tion that constituents appear within constituent contexts (see Klein & Manning,

2002a). This is a simplified version of classic linguistic constituency tests (see

Radford, 1988). The phenomenon being exploited is that long constituents fre-

quently have shorter equivalents or proforms occurring in similar contexts. The

CCM is designed to detect easily discoverable constituents and to encode con-

stituency directly into a sequence’s context. Sequences occurring in that context

will be parsed as constituents during the next iterations.

CCM describes contiguous subsequences including empty ones. A span α en-

closes a terminal sequence such as DT JJ NN. Each span occurs in a local context

c (e. g. ◦ – VBZ) where c is an ordered pair consisting of preceding and follow-

ing terminals1. A bracketing of a sentence can be presented as a boolean matrix

B which indicates which sequences are constituents and which are distituents.

The generative model has two phases:

probability assignment for sentences A bracketing B is chosen accord-

ing to a distribution P (B) and a sentence S is generated with:

(8.1) P (S,B) = P (B)P (S|B)

Context and terminal sequence of a span are independent of each other,

and thus:

(8.2) P (S|B) =
∏

〈i,j〉∈spans(S)
P
(
αij, xij|Bij

)
=

∏
〈i,j〉∈spans(S)

P
(
αij|Bij

)
P
(
xij|Bij

)

where P
(
αij|Bij

)
is a pair of multinomial distributions – for constituents

and distituents, Bij = c and Bij = d, respectively2.

1 ◦ denotes a sentence boundary
2 P

(
xij|Bij

)
analogously for contexts
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The probability of a sentence S is defined as the sum of all possible brack-

etings for this sentence as in:

(8.3) P (S) =
∑
B

P (B)P (S|B)

structure induction In order to run entropy maximization over this model,

all sentences S are treated as observed and the corresponding binary brack-

etings B as unobserved. The yield and context distributions P (α|b) and

P
(
xij|b

)
form the parameters Θ. During the E-Step, the completion likeli-

hoods P (B|S,Θ) are calculated for the current Θ. During the M-Step, Θ ′

will be detected, so that
∑

B P (B|S,Θ) log P (S,B|Θ ′) is maximized.

The original Constituent-Context Model has been extended by incorporation

of an additional dependency model – the Dependency Model with Valence (DMV)

(see Klein & Manning, 2004; Klein, 2005). The combination of CCM and DMV

achieves superior results.

8.1.2 Data-Oriented Parsing

A generalization of the CCM is presented by Bod (2006a,b). The all-subtrees

approach operates on a richer feature space than other models that study con-

tiguous substrings only (see van Zaanen, 2000). Data-Oriented Parsing (DOP)

originally has been presented by Bod (1998) as a supervised parsing approach

exploring the subtrees of an annotated corpus. In more recent research, this ap-

proach is generalized to be applicable to the task of unsupervised parsing. The

basic idea is to generate all possible trees for each sentence of the training corpus

and use their frequencies to estimate the probability of certain parse trees. Only

unlabeled binary trees are taken into account. A deeper study of DOP shows

that various linguistic phenomena can be learned by an all-subtree approach, e.

g. such as agreement and movement (see Bod, 2007a).

Unsupervised Data-Oriented Parsing (U-DOP) basically consists of three steps:
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assign all possible trees to a corpus All possible binary trees are gener-

ated for a given sentence’s POS sequence. An example is given in Figure

17 (see Bod, 2006b).

S

NNS

Investors

X

VBD

suffered

X

JJ

heavy

NNS

losses

(a)

S

NNS

Investors

X

X

VBD

suffered

JJ

heavy

NNS

losses

(b)

S

X

X

NNS

Investors

VBD

suffered

JJ

heavy

NNS

losses

(c)

S

X

NNS

Investors

X

VBD

suffered

JJ

heavy

NNS

losses

(d)

S

X

NNS

Investors

VBD

suffered

X

JJ

heavy

NNS

losses

(e)

Figure 17.: Possible binary trees for Investors suffered heavy losses

Internal nodes are labeled X. As the number of parse trees grows rapidly

with the length of a sentence, for sentences containing 7 or more words

only a random sample of all possible trees will generated (ranging from

60% to 7.5% of all possible trees – decreasing for longer sentences).

tree conversion All subtrees from the binary trees are employed to calculate

the most probable parse tree for a given tag sequence. Some example

subtrees for the sentence given in Fig. 17 are shown in Fig. 18.

Contrary to most other approaches, discontiguous sequences are taken into

account (e. g. Investors . . . losses in Fig. 18b). As in the original DOP ap-

proach, subtrees are combined using a leftmost node substitution operation

◦ to build parse trees out of a variety of subtrees.

compute the most likely tree for a sentence The probability of a sub-

tree t is defined as the ratio of the subtree’s frequency and the frequency

of all subtrees with the same root label (see Equ. 8.4):

(8.4) P (t) =
|t|∑

t ′:r(t ′)=r(t) |t
′|
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X
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(g)

Figure 18.: Some subtrees for Investors suffered heavy losses

The probability of a derivation is calculated as the product of its subtree’s

smoothed probabilities:

(8.5) P (t1 ◦ . . . ◦ tn) =
∏
i

P (ti)

The same parse tree can be generated with different derivations and thus,

the probability of a certain tree is the sum of the probabilities of all possible

derivations. The probability of a tree is given in Equ. 8.6 where tid denotes

the i-th subtree of derivation d.

(8.6) P (T) =
∑
d

∏
i

P (tid)

Instead of using frequencies of the subtrees for probability estimation, subtree

parameters also can be learned by entropy maximization (UML-DOP, see Bod,

2007b).

8.1.3 Common Cover Links

The approach presented by Seginer (2007) differs from the other ones in multiple

points.
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First, it does not rely on POS tags in either supervised or unsupervised form,

as the algorithm itself collects labels containing contextual information. These

labels represent sort of word classes which are directly used for parsing.

Secondly, this approach does not operate on trees directly, instead it assigns

links between words reminding of dependencies. The induced Common Cover

Links (CCL) are converted into bracketings in a subsequent step.

And thirdly – inspired by human language processing (see Crocker et al., 1999)

– it parses incrementally.

A common cover link over a sentence X is defined as a triple x
d→ y where x

and y are words and d is a non-negative integer. The word x denotes the base

of this link, y denotes the head. The depth d of the link is the depth of word

x so that d is the maximal number of brackets x ∈ X1 ⊂ . . . ⊂ Xn ⊂ B (Xi are

brackets contained in the bracketing B of a sentence). An example is given in

Fig. 19 – the constituency tree of I know the boy sleeps is given in Fig. 19a and the

equivalent common cover links representation is given in Fig. 19b:

S

NP

PRP

I

VP

VBP

know

SBAR

S

NP

DT

the

NN

boy

VP

VBZ

sleeps

(a) (b)

Figure 19.: Constituency tree and common cover link representation of I know the boy

sleeps

An incremental parser is used to compute shortest common cover links for

each sentence. Incremental parsing means that a sentence is read word by word

and the parser is only allowed to add links ending at the last word as it does

not know any further words. A non-negative lexicalized weight frunction assigns

weights to link candidates which may be added between a word from the already

known prefix 〈x1, . . . , xk−1〉 and the current word xk.
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The lexicon contains a lexical entry for each word x. Each entry consists of

adjacency points representing counts of neighboring words and a special set

of linking properties P = {Stop, In∗, In,Out}. These linking properties specify

the strength for non-attachment, inbound and outbound connections. These

properties are similar to parts-of-speech as they provide contextual information.

During each step, the best possible link is attached and the lexicon is updated

iteratively improving statistics during parsing.

8.1.4 Conclusions

The presented algorithms achieve state-of-the-art results for grammar induction.

All approaches solely induce constituency trees.

With respect to information extraction, additional knowledge is desirable:

head and modifier detection Information extraction often targets certain

entities. These entities often occur within texts as nominal expressions or

pronouns. As unsupervised POS tagging is not able to assign appropriate

tags (e. g. NN or JJ) to distinguish between attributes and entity candidates,

this could be done by a parser exploring this kind of dependency.

phrase labeling Unsupervised parsers often induce unlabeled parse trees.

For information extraction, it is useful to know, which phrases contain sim-

ilar information. Especially when employing unsupervised POS tagging,

there is no single word cluster containing all nouns or proper nouns - in-

stead there multiple ones containing (proper) nouns. Extraction of nominal

or prepositional phrases needs appropriately assigned phrase types which

are not supported by the presented grammar induction methods.

optional semi-supervision In real-world applications, the accuracy of re-

sults has the highest priority. Thus, a desirable feature is a convenient

possibility for manual adaptation. Thus, the parser should be easily ex-

tendable by human intervention. It should be possible to alter the induced

grammar without huge effort and to label phrases in a human-readable
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way. Complex probabilistic models operating on strings or trees do not

provide this opportunity.

8.2 evaluation of constituency parsers

Evaluation of grammar induction algorithms is a difficult task as the objective

is not as obvious as it may appear. Klein (2005) basically distinguishes between

three possible goals of grammar induction:

1. The production of a probabilistic language model,

2. the annotation of sentences to facilitate further processing, and

3. the automation of the job of a linguist.

As the objective of this thesis is not linguistically motivated, argument (3) is

out of scope. Although the question “How do humans learn language?” is of

major interest and influences research especially for unsupervised algorithms.

However, some ideas were integrated in the algorithms described in this work.

In this thesis, unsupervised parsing is used to augment textual data with syn-

tactic features for further processing like Relation Extraction. Thus, the induced

grammar itself is of minor interest (point (1)). Evaluation of parses for further

processing can be achieved in two ways (argument (2)).

First, a task-oriented evaluation directly measures the influence on the actual

approach. While different tasks rely on different prerequisites a general parser

evaluation is not able to ensure best quality for all tasks. One criterion is the

deepness of induced parses. Most state-of-the-art parsers produce deep and de-

tailed parses, but it has been shown for some tasks (such as Relation Extraction)

that shallow parses suffice (see Zelenko et al., 2003).

This leads to the second evaluation method: comparison of the produced

parse trees and an appropriate gold standard. Measuring agreement between

an induced parse tree and the corresponding gold parse can be done in a very
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convenient way (see Sec. 8.2.1). But there is at least one drawback: the depen-

dency on the gold standard. While linguists argue about the true structure of

language several treebanks were created representing the current – or at least a

widely accepted – opinion of how correct structures should look like.

Two corpora are well established for parser evaluation: the Wall Street Journal

section of the Penn Treebank (see Sec. 5.3.1) for English and the NEGRA Corpus

(see Sec. 5.3.2) for German. Even these two gold standards show substantial

differences and thus, a parser could perform well on one of them and bad on

the other just because of inconsistencies within the evaluation data.

It is noticeable that both corpora show significant disagreements of the depth

of parse trees. This effect can be observed even for high frequent constructions

like pronoun phrases:

PP

IN

for

NP

JJ

such

NNS

clues

(a) WSJ Corpus

PP

APPR

für

PIDAT

solche

NN

Hinweise

(b) NEGRA Corpus

Figure 20.: PPs in the WSJ Corpus and the NEGRA Corpus

The WSJ is annotated by much deeper structures than the NEGRA is. Fig. 21

gives an overview about average parsetree depths of the annotated sentences in

both corpora. While the parse depth of NEGRA sentences seems to converge to 7

or 8, no upper limit can be assumed by the graph for the WSJ.

8.2.1 Unlabeled Brackets Measure

Comparing induced parse trees to gold standard trees is a better understood

way than comparing grammars. Furthermore, it is possible to compare parsers

inducing different grammar types as only the resulting syntactic structure is of

interest.
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Figure 21.: Average parse tree depth

Measures based on PARSEVAL (see Black et al., 1991; Grishman et al., 1992)

are well established. They calculate precision and recall scores for brackets and

thus, reduce the tree comparison task to a simple Information Retrieval task on

bracketings. Nevertheless, several disadvantages exist (see Carroll et al., 1999)

and will be discussed later.

While PARSEVAL measures can be applied to both supervised and unsuper-

vised parsers, labels attached to phrases embody the discriminating criterion.

Supervised parses contain additional information beneath the bare tree struc-

ture which can be used for a comprehensive measure (e. g. constituent labels as

proposed by Collins (1996)). As unsupervised algorithms cannot assign phrase

labels as given in the respective gold treebank, Klein (2005) proposes the usage

of the Unlabeled Brackets Measure (UBM).

Each labeled parse tree T can be represented as set of labeled constituent brack-

ets (x : i, j), where x is the label of the corresponding node n, i is the index of

the left material dominated by n and analogous, j is the right index. All nodes
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containing exactly one leaf node are ignored. This is the case for terminal and

preterminal nodes as well as for nodes dominating only one terminal (e. g. VP as

in VP− VB− continue, see Fig. 22(a)).

An example is given by a gold sentence from the WSJ Corpus (see Fig. 22 for

the corresponding parse trees):

0 Many 1 economists 2 expect 3 the 4 weakness 5 to 6 continue 7

S

NP

JJ

Many

NNS

economists

VP

VBP

expect

S

NP

DT

the

NN

weakness

VP

TO

to

VP

VB

continue

(a) Gold Tree

S

C

C

JJ

Many

NNS

economists

VBP

expect

C

C

DT

the

NN

weakness

C

TO

to

VB

continue

(b) Predicted Tree

Figure 22.: A gold tree and a predicted tree for the sentence “Many economists expect

the weakness to continue”

All six valid brackets representing the gold tree are given in Table 11.

A set of unlabeled brackets can be derived from this labeled brackets set as

given in Equ. 8.7:

(8.7) brackets (T) = {〈i, j〉 : ∃x s. t. (x : i, j) ∈ T }
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Constituent Material Spanned

(S : 0, 7) Many economists expect the weakness to continue

(NP : 0, 2) Many economists

(VP : 2, 7) expect the weakness to continue

(S : 3, 7) the weakness to continue

(NP : 3, 5) the weakness

(VP : 5, 7) to continue

Table 11.: Labeled brackets of the gold tree in Fig. 22(a)

To compare a corpus P containing the predicted parse trees Pi against a gold

standard corpus G containg the gold trees Gi precision and recall scores need to

be defined. For unlabeled parse trees, the definition of unlabeled precision (UP)

and unlabeled recall (UR) are given in equ. 8.8 and 8.9, respectively.

(8.8) UP (P,G) =

∑
i |brackets (Pi)∩ brackets (Gi)|∑

i |brackets (Pi)|

(8.9) UR (P,G) =

∑
i |brackets (Pi)∩ brackets (Gi)|∑

i |brackets (Gi)|

The F-score (harmonic mean of UP and UR) is defined by:

(8.10) UF (P,G) =
2 ·UP (P,G) ·UR (P,G)

UP (P,G) +UR (P,G)

For the example given in Fig. 22 the predicted tree contains one incorrect bracket

(〈0, 3〉: “Many economists expect”). The bracket 〈2, 7〉 (“expect the weakness to

continue”) is missing. Hence, UP, UR and consequently UF each achieve a score

of 5
6 .

The Unlabeled Brackets Measure differs from the standard PARSEVAL in sev-

eral points: brackets of length one and multiple brackets over the same span are

ignored as well as phrase labels.
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Although having the possibility to calculate objective scores for evaluation of

parsers is very convenient, neither the Unlabeled Brackets Measure nor the orig-

inal PARSEVAL provide reliable scores due to several problems. Both measures

penalize parsers predicting to many brackets – compared to the gold standard

– even if they are correct (see Srinivas et al., 1996). Furthermore, correct phrase

boundary detection does not guarantee correct semantic reading (see Lin, 1996).

Measures based on PARSEVAL have one minor disadvantage: the parser has

to produce constituency parse trees. To circumvent this problem, produced

parses can also be transformed into constituency parses (for transformation of

dependency parses, see Xia & Palmer, 2001).

8.2.2 Constituent Chunk Score

The Constituent Chunk Score (CCS) measures the correct number of chunks ex-

tracted by a parser as in Ponvert et al. (2011). In this context chunks denote un-

labeled non-overlapping multiword constituents. The purpose of this measure

is to evaluate local constituent structures focusing on lower branches. Amongst

those lower branches are noun phrases and prepositional phrases which yield

valuable information for further tasks (e. g. Relation Extraction).

Following Ponvert et al. (2011), constituent chunks denotes the subset of gold

standard constituents containing only chunks that

• consist of more than one token (branching) and

• are non-hierarchical (do not contain subconstituents).

As for the UBM, a set of unlabeled brackets containing constituent chunks can

be defined:

(8.11)

c− chunks (T) = {〈i, j〉 : ∃x s. t. (x : i, j) ∈ T

∧ i+ 1 < j

∧ is−non− hierarchical (〈i, j〉)}
Similar to the UBM, precision CC-P, recall CC-R and f-measure CC-F can be

defined over these constituent chunks.
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8.3 how to build a parse tree?

Building parse trees is not as trivial as it may appear. Several decisions have to

be made starting with a very basic one: should we use bottom-up parsing or top-

down parsing? LL parsers (see Li, 1996) are very prominent amongst top-down

parsers. Given a grammar, LL parsers process the sentence from left to right

producing the leftmost derivation. Although this matches the opinion of many

linguists assuming that humans process language incrementally (see Crocker

et al., 1999), top-down parsing has its drawbacks. Local ambiguities force the

algorithm to backtrack even though there is no evidence that people do (see

Abney, 1989). The example in Fig. 23 shows such a case. At this point, the

parser has to expand the VP, but without further information, the parser cannot

be certain how to attach the PP correctly.

S

NP

John

VP

V

found

NP PP?

Figure 23.: Local disambiguity for PP attachment

Bottom-up parsing connects words to simple phrases and complex structures

out of those resulting phrases. Starting with words and associated part-of-speech

tags, higher-order structures are inferred as shown in Fig. 24.

For unsupervised grammar induction bottom-up parsing is the paradigm to

choose as it does not need an existing grammar. Furthermore, it is its task to

induce a grammar for a given language.

8.3.1 Greedy Learning vs. Maximum Likelihood Estimation

Basicly, two different approaches are established in the field of unsupervised

grammar induction. Several approaches apply greedy algorithms (see Seginer,
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Figure 24.: Bottom-up parse tree creation for “John hit the ball”

2007; Hänig et al., 2008; Hänig, 2010a; Ponvert et al., 2011). “A greedy algorithm

always makes the choice that looks best at the moment.” (see Cormen et al.,

2001) It makes locally optimal choices, but this does not guarantee a globally

optimal solution. For many problems, finding the locally best choice suffices

and leads to satisfying results.

With regard to the task of building a parse tree for a given sentence, greedy

algorithms suffice. Using the bottom-up approach, the most common decision

that has to be made is: which nodes should be connected to form a more complex

phrase? Obviously, these are local decisions as long as contextual knowledge

about the complete sentence can be neglected. Exceptions are non-contiguous

constructions such as nearest . . . to . . . (see Bod, 2007b) which need the inclusion

of some kind of discontiguous context into the induction algorithm.

Maximum Likelihood Estimation (MLE) has its origin in statistics and aims to

estimate the optimal parameters for a given model (see Edwards, 1972). Given

a couple of observations, MLE finds the parameters, that achieve the most likely

solution.
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The benefits of MLE algorithms are – in most cases – better solutions. On

the other side, greedy algorithms occupy fewer resources in terms of time and

hardware requirements. Additionally, greedy algorithm can produce parses on

streamed data without any knowledge about the beginning or the end of sen-

tences.

In this work, an iterated greedy algorithm for unsupervised parsing will be pre-

sented. The motivation behind iterative greedy learning is to retain the advan-

tages of greedy algorithms (fast processing) and to combine them with global

optimal solutions. Several locally optimal decisions are made for all data points

within a given data set. Those decisions are aggregated throughout the com-

plete data set and the most frequent one for a given situation is considered to

be the best one in this case. Afterwards, the newly learned solution is applied

to all corresponding data points. This process is iterated until a solution for all

situations has been learned.

8.3.2 Branching

Branching is the tendency of words or smaller grammatical units towards a cer-

tain order within a sentence. Beneath languages with free word order (e. g.

Czech or Warlpiri), two major manifestations can be observed: right branching

languages (e. g. English, Spanish, Arabic and German) and left branching lan-

guages (e. g. Japanese, Turkish and Tamil, see Haspelmath et al., 2005).

Branching can be regarded as tendency. While several languages show strictly

left or right branching, others show exceptions. English and German – although

regarded as right branching languages – place prepositions, adjectives of loca-

tions and numerals in front of nouns.

Besides the sense of tendentially orientation of grammatical units, branching

yields another meaning. In graph theory, the branching factor describes the num-

ber of children of a parent node. As constituents can (theoretically) consist of an

infinite number of words, the maximum branching factor of parse trees should

be ∞.
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Nevertheless, most approaches to unsupervised grammar induction limit the

branching factor of the produced trees to 2 in order to induce binary trees (see

Bod, 2006a,b, 2007b; Klein & Manning, 2002a, 2004). The major motivation be-

hind this is the widely accepted X-Bar Theory (see Jackendoff, 1977) which pro-

posed the consequent usage of binary trees. Another explanation is the tendency

towards dependency parsing (see Dependency Grammar, Section 4.2.4.4). De-

pendencies are binary relations between a head and a dependent which can be

transformed into a binary dependency parse tree.

For some constituents it is more convenient to allow a branching factor bigger

than two. For tasks like Entity Detection or Relation Extraction, noun phrases

and prepositional phrases are of major interest and often consist of more than

two tokens (e. g. DT JJ NN).

8.4 constituent detection

The crucial step for constituency parsing is the correct detection of constituents.

Having detected as many constituents of a sentence as possible simplifies the

assignment of the correct hierarchical structure of those constituents.

Obviously, there are various linguistic features and properties that can be used

to derive knowledge about constituency. The following three qualify to a special

degree due to their possibility of precise formalization:

syntagmatic relations Words occurring within the context of each other are

considered to be syntagmatically related (see Sec. 4.2.2.2). Employing

neighborhood co-occurrences the strength of such a relation between two

words w0 and w1 can be described by the corresponding significance value

sig (w0,w1).

A high value of sig (w0,w1) implies a strong syntagmatic relation and thus,

the words w0 and w1 most likely belong to the same constituent.
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movement test As constituents can occupy different positions within a sen-

tence, two special cases can be used directly to induce knowledge about the

orientation of words within constituents: neighborhood co-occurrences of a

given word w with the beginning and the end of a sentence, sig (〈BOS〉,w)

and sig (w, 〈EOS〉), respectively.

The hypothesis can be stated as: words occurring significantly often at

the beginning of sentences prefer the first position within a constituent

and words that occur at the end of a sentence prefer the last position of

constituents.

replacement test Constituents can be replaced by constituents of the same

type or pronouns. A proper reformulation is that two word sequences

W = 〈v0, . . . , vn−1〉 and V = 〈w0, . . . ,wn−1〉 occurring in the same global

context (Context (V) = Context (W)) stand in paradigmatic relation (see

Sec. 4.2.2.3). Those constituents tend to have of the same type (see Klein &

Manning, 2002a).

8.4.1 Preferred Positions

For each word two probabilities are defined. One denotes the probability of

word w occurring at the left boundary of a constituent assuming that w occurs

on one of the boundaries (see equ. 8.12). The other one is for the right boundary

(see equ. 8.13).

(8.12) prefleft (w) =
sig (〈BOS〉,w)

sig (〈BOS〉,w) + sig (w, 〈EOS〉)

(8.13) prefright (w) =
sig (w, 〈EOS〉)

sig (〈BOS〉,w) + sig (w, 〈EOS〉)
POS tags showing strong preference towards one boundary are given for English

and German in Table 12. Those extracted tags match the ones extracted by other

approaches as in Santamaría & Araujo (2010) and Ponvert et al. (2011).
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English German

Left boundary Right boundary Left boundary Right boundary

WP$ 1.000 POS 1.000 KOUI 1.000 NNE 1.000

PDT 1.000 RP 0.989 VVIMP 1.000 VMPP 1.000

WDT 0.989 NN 0.879 VAIMP 1.000 VMINF 1.000

CC 0.982 NNS 0.841 KOUS 0.999 VAINF 0.995

WP 0.981 NNPS 0.810 PRELS 0.998 VAPP 0.990

WRB 0.975 CD 0.791 PWAV 0.994 VVIZU 0.990

DT 0.957 VB 0.734 PWS 0.993 PTKVZ 0.990

PRP$ 0.940 RBR 0.731 PTKA 0.988 VVINF 0.982

IN 0.913 UH 0.709 PRELAT 0.986 APZR 0.977

PRP 0.872 JJR 0.638 PWAT 0.979 APPO 0.967

Table 12.: Preferred positions of POS tags for English and German

A strict version of estimating the preferred position of a tag is achieved by

introduction of a threshold θ as in:

(8.14) prefθ(left|right) (w) =

⎧⎪⎪⎨
⎪⎪⎩
pref(left|right) (w) pref(left|right) (w) � θ

0 else

Incorporation of this threshold forbids induction of constituents with uncer-

tain constituent boundaries.

8.4.1.1 Words with atypical preferences

Generalization to the part-of-speech level leads to ignorance of word-specific

properties. Several words prefer none or the opposite boundary of its assigned

part-of-speech. The detection of those words is achieved in a straight forward

manner. Preferred positions are calculated on both – word forms and POS tags.

Tokens having at least a minimum support of σ are considered to occur with a
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statistically reliable frequency and thus, words showing the opposite preferred

position as its associated part-of-speech will be treated as exceptions.

8.4.2 Candidate Scoring

To induce correct phrase structures, scores have to be assigned to constituent can-

didates. These scores will be used to determine the best candidate ranking for

a greedy learning algorithm. Additionally, a normalized version of these scores

will be used as probabilities for an algorithm based on maximum likelihood

estimation.

The following propositions of a proper score cscore for a given constituent

candidate c = 〈w0, . . . ,wn−1〉 will be discussed and evaluated separately.

The first score equals the significance value of c (see equ. 8.15) following

the argumentation given for syntagmatic relations. Furthermore, evaluation in

(Hänig et al., 2008) shows sufficency of pure significance values as scoring cri-

terion. Especially during the first iterations of a greedy induction algorithm,

log-likelihood proved to yield accurate constituents.

(8.15) cscoreSig (c) = sig (〈w0, . . . ,wn−2〉, 〈w1, . . . ,wn−1〉)

Taking preferred positions of words or POS tags into account leads directly to

another simple score (see equ. 8.16). cscorePrefPos relies solely on c ′s first and

last component and the degree to which they prefer the respective boundary.

(8.16) cscorePrefPos (c) = prefleft (w0) ∗ prefright (wn−1)

An extension to the preceding score is given in equ. 8.17. cscorePrefPosContext

additionally takes the preferences of c ′s preceding (w−1) and succeeding (wn)

tokens into account.

(8.17) cscorePrefPosContext (c) = cscorePrefPos (c) ∗ prefright (w−1) ∗ prefleft (wn)

The last two scores describe combined models considering both, significance

of candidate c along with preferred positions of involved tokens. The combina-
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tion of cscoreSig and cscorePrefPos is given in Equ. 8.18. Analogously, see Equ.

8.19 for the joint model of cscoreSig and cscorePrefPosContext.

(8.18) cscoreSig+PrefPos (c) = cscoreSig (c) ∗ cscorePrefPos (c)

(8.19) cscoreSig+PrefPosContext (c) = cscoreSig (c) ∗ cscorePrefPosContext (c)

8.4.3 Candidate Selection

Besides constituent scoring functions, corpus size and maximum allowed branch-

ing factor influence the extracted candidates.

As stated by Hänig et al. (2008), cscoreSig seem to suffice although a hybrid

model achieves slightly better results. Among the proposed scoring functions,

cscoreSig+PrefPosContext achieves the best results. Although the context of con-

stituent candidates is taken into account, the induced grammar is still context-

free as created grammar rules do not use contextual information.

Contrary to other approaches, the maximum branching factor is unrestricted.

This is motivated by noun phrases and prepositional phrases which often con-

sist of more than two words. All phrases could by transformed into a binary

structure, but this would delegate structural analysis tasks to succeeding tasks.

Induction of flat phrases containing the relevant information for Relation Extrac-

tion is most desirable at this point. Furthermore, the correct structure of coor-

dinating conjunctions is an influential point for this decision. As proposed in

Hänig (2010a), symmetric constructions containing two heads seem to be more

appropriate for some languages. A restriction to binary representation forbids

those analyses.

Corpus size depends on the level of language the parsing algorithm is applied

to. Inducing structure on the part-of-speech level is much more generalized than

on words themselves. Thus, small corpora (consisting of about 100k sentences)

suffice for grammar induction on POS tags. Regarding induction on word level,
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the corpus should contain at least 10 million sentences to reduce data sparseness

to show only minimal negative effects.

8.5 phrase labeling

Syntactic trees do not only add structure to a sentence or word sequence, they

also should provide information about the type of the present phrases. This is

the case for supervised parsers which rely on annotated data providing these

details. Common phrase types for English (e. g. noun phrase (NP), prepositional

phrase (PP) or verb phrase (VP)) are attached to the root node of each phrase (see

Figure 25a). Unsupervised algorithms are not able to distinguish between dif-

ferent phrase types like NP or PP as they cannot conceive the syntactic meaning

of noun phrase defined by the name itself. Furthermore, unsupervised induction

of parts-of-speech do not yield any hint about the syntactic roles of the word

classes. As described in Section 7, the classes are labeled by numbers (see Figure

25b).

Beneath the obvious benefits of self-explanatory phrase labels, the ability to

detect similar phrase types contributes to iterative greedy induction of syntactic

structures (see evaluation in Section 8.6). Thus, three different label phrase type

assignment methods are established.

PP

IN

on

NP

DT

the

NN

table

(a)

?

1

on

?

2

the

3

table

(b)

Figure 25.: Phrase labels for on the table
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8.5.1 Enumeration of phrase types

The default method is to consecutively enumerate the induced phrase types (see

Figure 26b). This leads to individual treatment of each phrase type.

P#1 ← JJ NN

P#2 ← DT NN

P#3 ← DT NNS

P#4 ← IN P#2

(a)

P#4

IN

on

P#2

DT

the

NN

table

(b)

Figure 26.: Enumerated Phrase Types

Obviously, there are several syntactic properties which can be derived from

the given examples:

The first example given in Figure 26a shows the creation of phrase type P#1

which consists of an adjective and its dominating normal noun. This whole

construction shows the same syntactic properties as the noun itself.

(a) Pigs love tasty truffles.

(b) Pigs love truffles.

(c) Young pigs love truffles.

(d) Young pigs love tasty truffles.

All four examples (a) - (d) keep their grammaticality if adjectives are inserted

or removed in front of nouns3. This observation leads to the hypothesis that

the correct phrase type is at least similar to normal nouns. The expectation of

a parser to induce a rule like NP ← JJ NN is raised. But as mentioned before

unsupervised algorithms cannot derive phrase labels like NP. Instead, it can

3 Nevertheless, agreement between the different parts of the noun phrase is still required.
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produce the derivation NN ← JJ NN (see Section 8.5.2) retaining information

that adjectives do not change syntactic behavior of normal nouns.

Phrase types P#2 and P#3 in Figure 26a obviously are of the same type – noun

phrases. Both constructions are constituted of a determiner and a normal noun,

they only differ in grammatical number of the noun. To assign dissimilar labels

to those phrases is not wrong at all, but it entails the necessity to learn identical

grammar rules twice. Phrase P#4 stands for prepositional phrases which consist

of a preposition followed by a noun phrase. As there are different labels for

noun phrases, P#4 is not applicable to the following sequence:

?

IN

on

P#3

DT

the

NNS

tables

Thus, a methodology to detect different manifestations of a phrase type is

crucial for proper grammar induction and facilitates induction of a compact

grammar (see Section 8.5.3).

8.5.2 Detection of Endocentric Constructions

A construction that is syntactically identical to its head is called endocentric.

Those constructions contain exactly one head or several ones in symmetric coor-

dinate constructions. Additionally to the head, at least one optional subordinat-

ing element has to be contained in the construction.

On the other hand, exocentric constructions do not contain a head element

showing syntactic similarity to the whole construction. A classic example of

an exocentric construction is a sentence when traditionally divided into subject

noun phrase and predicate verb phrase (see Chomsky, 1957). Since a sentence is

neither like a NP, nor like a VP, it is exocentric.

The distinction of these two mutually exclusive construction types reaches

back to Bloomfield (1933). As all constructions in dependency structures are



8.5 phrase labeling 122

necessarily endocentric, this distinction exists only in constituency grammars

and therefore in PSG (see Osborne et al., 2011).

Following the definition of endocentricity, a phrase containing a head and an

optional element should be equally distributed – in respect to its context – as the

head. Consequentially, a phrase is considered to be endocentric, if it contains an

element showing high context similarity (see Equ. 8.20).

(8.20) endocentric (P)⇔ ∃i : sim (context (P) , context (pi)) � ϑ

The global context context (P) of a phrase or POS tag P is the sum of all

local contexts of P within the training corpus. For this task, local contexts are

constructed out of two preceding POS tags (left neighbors) and the two following

tags (right neighbors) including aforementioned markers for the beginning and

the end of a sentence for each occurrence of P. The Cosine Measure is applied

to calculate the similarity between the two contexts. If the resulting similarity

passes a defined threshold ϑ, the phrase is considered to be endocentric.

Throughout all experiments, ϑ is set to 0.9 by heuristic. Some examples of

English endocentric constructions are given in Table 13:

head body

NNS ← JJ NNS

NN ← JJ NN

NNP ← NNP CC NNP

NN ← NN CC NN

VBZ ← RB VBZ

Table 13.: Examples of endocentric constructions

8.5.2.1 Impact on grammar induction

Being able to detect heads along with their modifiers without any a priori knowl-

edge facilitates unsupervised grammar induction in multiple ways.
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The most obvious benefit is the reduction of complex structures. Without

distinction between endocentric and exocentric constructions, at least two rules

(P#1 ← JJ NN and P#2 ← JJ P#1) are necessary to parse the phrase first civil

settlement as given in Figure 27a. Regarding this example, an additional rule for

each additional adjective in front of the noun is necessary to parse the resulting

phrase properly. This phrase is not complex in a linguistic perspective, but

from a corpus linguistic point of view, its complexity grows gradually with the

number of modifiers. While adjectives in front of nouns are very common and

one of the most significant co-occurrences, multiple adjectives in front of nouns

show another behavior. Although they are still common as it can be seen in Table

144, the significances of the co-occurrences of JJ and JJ NN are not very high and

decrease with the growing number of adjectives. Thus, it is very important to

detect those constructions despite the bottle neck provided by the data.

Number of adjectives Frequency English Frequency German

1 55518 48723

2 5261 3527

3 303 148

4 6 5

5 1

Table 14.: Statistics of adjective use in front of nouns

Using knowledge about subordinating elements leads to induction of a single

rule (NN ← JJ NN) achieving the same parsing result (see Figure 27b). Addi-

tionally, the induced grammar circumvents some data-sparseness problems as

no rare occurrences like JJ . . . JJ NN need to be contained in the training corpus

to eventually parse those phrases.

4 The statistics are calculated on the Wall Street Journal Corpus and the TiGer Corpus for English

and German, respectively. For English, tags denoting adjectives are JJ and JJS, tags denoting

nouns are NN, NNS, NNP and NNPS. For German, tags denoting adjectives are ADJA and

ADJD, tags denoting nouns are NN and NE. See Section A for further details about the tagsets.
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This ability fulfills the compactness criterion of Minimum Description Length

(MDL) (see Rissanen, 1978) for grammar generation providing a compact repre-

sentation of the induced grammar and data. Linguistic argumentation favors

short analyses (see Chang, 2004; Klein & Manning, 2002b) and minimal gram-

mars due to analytical (see Harris, 1951) and cognitive (see Chomsky & Halle,

1968) economy.

P#2

JJ

first

P#1

JJ

civil

NN

settlement

(a)

NN

JJ

first

NN

JJ

civil

NN

settlement

(b)

NN

JJ

first

JJ

civil

NN

settlement

(c)

Figure 27.: Different structures for first civil settlement

Another aspect of using the induced knowledge about heads and modifiers

lies in further processing steps. Besides the boost for grammar induction, the

knowledge of which tags contain heads, which contain modifiers is very useful

in e. g. RE (see Section 3.4). Removing optional modifiers from the sentence

reduce complexity for subsequent analysis tasks.

This observation can be expressed in a generalized way: a transformation

function Θ (S,G,K) can be applied to a sentence S, a grammar G and the de-

rived knowledge K leading to various representations of a sentence. Different

Θ-functions can be employed in certain tasks or scenarios. Those tasks include

among other tasks:

relation extraction The task of Relation Extraction (see Section 3.4) does not

need any knowledge about modifiers at all. Thus, simplifying the structure
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of a sentence by removing dispensable words will improve the extraction

accuracy as this transformation reduces noise in the data.

transformation between different grammar theories In order to com-

pare structures that have been induced by parsers following different gram-

mar theories, a transformation is essential. Particularly when evaluating

the results of a parser to an annotated corpus, results can only be consid-

ered to be reliable if both structures follow the same grammar theory or

annotation guidelines (e. g. the inner structure of 〈JJ JJ NN〉).

8.5.3 Phrase Type Clustering

One disadvantage of unsupervised parsing is the fact that different constitutions

of phrases are not labeled the same way and thus, are not treated equally during

the parsing step. An example is given in Figure 26a, where P#2 and P#3 obvi-

ously belong to the same phrase type (NP in this example). Of course, without

a priori knowledge about language, it is not possible for the grammar induction

algorithm to label phrases NP, PP or like any other known phrase types. Nev-

ertheless, it is possible to cluster phrases into different phrase types to detect

identical ones.

The linguistic argument for the existence of phrase types is substitutability.

Phrases of the same type occur within similar contexts and can be mutually

exchanged (see Harris, 1954; Radford, 1988).

For instance, DT NN and DT NNS given in Figure 26a occur in very similar

contexts, and are both common noun phrases. Thus, the task of identifying

phrase types is very similar to clustering words into classes for POS tagging

purposes. Analogously to POS tag induction, syntactic context is used in any

form of distributional clustering to define a similarity measure between two

syntactic units (Schütze, 1995; Klein & Manning, 2002a). Given a proper measure

on the basis of left and right contexts, distinction between several phrase types
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is a much easier task than identification of phrases in the first place (Klein &

Manning, 2002a; Haghighi & Klein, 2006).

Reichart & Rappoport (2008) propose a two-step approach. First, they apply

the CCL-based algorithm Seginer (2007) to induce unlabeled bracketings. In a

second step, they use the Bayesian Model Merging of Borensztajn & Zuidema

(2007) to induce a Context-free Grammar (CFG) including labeling. Features pre-

sented in Stolcke & Omohundro (1994) and Petasis et al. (2004) where combined

in this model.

As discussed in Section 8.3.1, a greedy algorithm for grammar induction is pre-

sented in this work. Consequentially, phrase type detection should be integrable

into the induction process itself and should not be a separate post structure in-

duction step as in most related work (Borensztajn & Zuidema, 2007; Reichart &

Rappoport, 2008).

The presented algorithm for phrase type detection decides for each induced

phrase whether it is an unseen phrase type at this point during the induction

process or the constituent belongs to an already known phrase type reducing

the problem to simply binary classification task.

A distributional similarity function is analogously defined as for detection of

endocentric constructions (see Section 8.5.2) measuring the similarity between

two global contexts:

(8.21) simdistr (P,Q) = sim (context (P) , context (q))

If the similarity of phrase P (the one being tested) and Q (see most similar

one, see Equ. 8.22) exceeds a threshold ϑ, then phrase P is considered to have

the same phrase type as Q (see Equ. 8.23). In this case, P will be labeled by the

label of Q and thus, is treated like Q in all following induction steps.

(8.22) Q = arg max
q ∈ phrases

sim (context (P) , context (q))

(8.23) Type (P) = Type (Q)⇔ sim (P,Q) � ϑ
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8.5.3.1 Do covered POS sequences matter?

Besides distributional context the constituents themselves contain valuable in-

formation about their types – the POS tag sequence of the covered words. Re-

garding common noun phrases in the WSJ Corpus, approximately 79% contain

at least one noun. Regarding prepositional phrases, even 98.5% contain a word

tagged as preposition. 5

Following this observation, parts-of-speech are obviously a determining factor

for the superordinating constituent’s phrase type. Furthermore, many linguis-

tic and psycho-linguistic theories suppose some labeled hierarchical constituent

structure arguing that there is observable cognitive-psychological evidence (see

Goldberg, 2006).

(8.24) simPOS (P,Q) =

∑
p∈P

∑
q∈Q

equ (p,q)

|P| |Q|

(8.25) equexact (p,q) =

⎧⎪⎪⎨
⎪⎪⎩
1 p = q

0 else

(8.26) equfuzzy (p,q) = sim (context (p) , context (q))

Thus, two extended similarity functions are defined to incorporate contained

parts-of-speech. simPOSexact compares the POS tags directly with each other,

while simPOSfuzzy compares them measuring their respective context similarity.

This is necessary to deal with fine-grained unsupervisedly induced POS clusters.

5 The WSJ Corpus contains 432776 noun phrases (label NP*), 342319 of them contain at least one

normal noun (tag NN*) or a proper noun (tag NNP*). The rest mostly consists of empty elements

or personal pronouns. 117822 prepositional phrases (label PP*) are contained in the WSJ, 116111

containing at least one preposition (tags IN and TO).
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8.5.3.2 Evaluation of Phrase Type Clustering

In order to evaluate the proposed phrase type clustering similarity measures, an

evaluation setup similar to the one for POS tagging (see Section 7) is applied.

All phrase prototypes6 reaching a minimum frequency of 100 are extracted

from a gold standard corpus (the top 10 for English and German are given in

Table 15). The induced phrase types will be compared against the instances of

these prototypes.

English German

prototype frequency prototype frequency

DT NN 36080 ART NN 7649

NNP NNP 14543 APPR ART NN 3022

DT JJ NN 12041 ART ADJA NN 2359

JJ NNS 9716 NE NE 1888

IN DT NN 6619 APPRART NN 1774

DT NNS 6380 ADJA NN 1672

JJ NN 6127 APPR NN 1594

IN NN 5772 APPR ART ADJA NN 1037

NN NNS 5268 APPR NE 920

CD NN 5236 NN KON NN 829

Table 15.: The 10 most frequent phrase prototypes for English and German

For phrase type induction the frequencies of the POS sequences occurring

within the aforementioned phrase instances are calculated and ranked in de-

scending order. Note that for each language two evaluation runs are performed:

one with the manually annotated POS tags of the gold corpus and one with tags

induced by the unsupervised POS tagger described in Section 7.2. In the first

case, the ranked POS sequences are identical to the most frequent phrase proto-

6 POS sequences of constituents
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types. In the latter case, much more POS sequences will be necessary to cover

all phrase instances of the evaluation set.

For each pattern (in descending order), a phrase type is determined. If the

pattern shows high similarity to an already induced phrase type, this type is

attached. Otherwise, a new phrase type will be used to label this phrase proto-

type.

The accuracy is calculated denoting the portion of correctly merged phrase

prototypes into a phrase type cluster. Each proposed similarity measure for

phrase type clustering is evaluated separately. simdistr is the basic similarity

measures, the other two extensions function as a filter: if simPOS is smaller than

0.5, the similarity score is set to zero.

simdistr +simPOSexact +simPOSfuzzy

English 0.76 0.81 0.77

German 0.89 0.92 0.90

(a) Gold Corpus Tags

simdistr +simPOSexact +simPOSfuzzy

English 0.82 0.86 0.83

German 0.93 0.98 0.95

(b) Unsupervised Tags

Table 16.: Phrase type clustering evaluation results for English

The accuracy is improved in all cases. Exact POS tag matching yields the

highest accuracy gain. As for most tasks, this increase results in decreasing

the number of correctly extracted prototype pairs. As this decrease is of much

higher magnitude (> 50%) than the accuracy gain, contained POS tags are not

incorporated into the phrase labeling process.
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8.6 iterative greedy learning

The grammar induction process is realized as an iterative greedy algorithm. A

pseudo code description of the proposed process is given:

data = tagged corpus

init rules

while a new rule exists

nPhrase = find valid phrase candidate

nLabel = find label for nPhrase

nRule = create new rule from nLabel and nPhrase

add nRule to rules

apply rules to data

First, the grammar contains no rules. With each iteration, at least one rule

will be added to the grammar until the grammar induction process is complete.

As long as new rules exist, the best constituent / phrase candidate (nPhrase) is

detected. Afterwards, the proper label is defined. The current phrase candidate

could be endocentric, belong to an existing phrase type or could be the first

observed prototype of a new phrase type. After all necessary information for

the next grammar rule has been collected, the new rule will be added to the rule

set of the parser model.

During finalization of each iteration, the data will be parsed using the so far

induced grammar. This step reduces the complexity of the data and allows

detection of complex structures with tree depth of two or more. The parsed

corpus is the input of the next iteration.

The complete induction process will be demonstrated using the example sen-

tence The minimum unit is $ 100.

The initial structure is created by addition of the sentence’s words as leaves

under a common root node. During the first iteration, the best grammar rule is

added to the parser model.
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S

DT

The

JJ

minimum

NN

unit

VBZ
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$

$

CD

100

Figure 28.: Initial structure

Finalizing the first iteration, the newly induced rule is applied and syntactic

structures emerge.

S

DT

The

NN

JJ

minimum

NN

unit

VBZ

is

$

$

CD

100

Figure 29.: Resulting structure after application of rule NN← JJ NN

The induction algorithm uses the current structures during the next iteration

for co-occurrence calculations and phrase candidate extraction. During each

step, the top-most level under the root node of all sentence structures is used.

The POS sequence of this example is DT NN VBZ $ CD.

S

P#1

DT

The

NN

JJ

minimum

NN

unit

VBZ

is

$

$

CD

100

Figure 30.: Structure after application of rule P#1← DT NN

After two further rules, the final structure of the sentence has been induced

(see Fig. 32).

The learning process will be aborted if there are no valid rules left that could

be induced. The process is considered to be completed if one of the following

three conditions is met:
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Figure 31.: Structure after application of rule P#2← $ CD
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Figure 32.: Structure after application of rule P#3← VBZ P#2

the maximum number of rules has been met The algorithm induced the

previously defined maximum number of rules.

no significant rules are left No phrase candidate is considered to be sig-

nificant and thus, no further rules can be induced.

the corpus has been parsed completely All sentences of the training cor-

pus are reduced to one phrase and thus, the corpus has been parsed com-

pletely.

The induced context-free or context-sensitive grammar (depending on the ap-

plied function for candidate scoring (see Section 8.4.2) is given as a list of gram-

mar rules. Two induced example grammars for English and German are given

in the Appendix (see Sections B.1 and B.2 for English and German grammars,

respectively).

The according parsing algorithm applies the grammar rules in order of sig-

nificance to the sentence and shapes structures. As the rules are induced in

descending order of significance, the parsing of sentences is very similar to the

induction process.
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8.7 parser evaluation

The evaluation setup is the one presented in Sec. 8.2. Results are presented

for grammar induction on word strings (unsuParse (words)) and on manually

annotated POS tags provided in the evaluation data (unsuParse (POS tags)).

Comprehensive results are given for German data as the major application is

parsing the German AIM Corpus for RE. Scores for further approaches to unsuper-

vised parsing are presented for comparison:

Parsing Model UP UR UF

CCM 48.1 85.5 61.6

DMV + CCM 49.6 89.7 63.9

U-DOP 51.2 90.5 65.4

UML-DOP — — 67.0

U-DOP* — — 63.8

unsuParse (POS tags) 71.1 67.9 69.5

Common Cover Links 51.0 69.8 59.0

unsuParse (words) 63.1 60.4 61.7

Table 17.: UP, UR and UF for NEGRA10

unsuParse achieves the best results when being compared to the other ap-

proaches. It achieves the highest precision among all models. As most other

models (except for CCL) induce binary trees, this is not very surprising. Conse-

quently, recall is lower than achieved by binary trees. Regarding f-score, unsu-

Parse obtains the highest f-score for German data.

When being applied to more complex sentences (NEGRA40), the performance

drops. Both precision (55.3%) and recall (51.4%) score much lower than on

shorter sentences.
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Constituent-Chunk scores achieve similar results as presented by Ponvert et al.

(2011). Both approaches make similar assumptions and thus, differ only slighty.

unsuParse achieves a CC precision of 41.4% and a CC recall of 51.2% which is

marginal better than presented in Ponvert et al. (2011). The difference on the

chunk level originates in the more restrictive constituent scores of unsuParse.

The same reason explains the lower recall regarding deeper structures on which

unsuParse yields lower recall than other approaches.

Table 18 presents the most frequently over- and under-proposed phrases in-

duced on NEGRA10. Especially NPs and PPs are often over-proposed due to

the flat structures provided by the NEGRA corpus (see Sec. 5). The highest

ranked under-proposed phrase NE NE is correctly learned as phrase and classi-

fied as endocentric construction (NE ← NE NE). Due to removed punctuation

which normally separates enumerations, separated proper nouns be represented

by one flat phrase. Such effects would not occur when parsing natural language

containing punctuation.

Overproposed Underproposed

ART NN 369 NE NE 42

CARD NN 111 NN NE 35

ADV ADV 103 ART NN NE 27

ADJA NN 99 ADV ART NN 24

APPR ART NN 93 APPR PPER 23

Table 18.: Most frequently over- and under-proposed constituents

Another frequent error is the induction of verb phrases such as 〈MD VB〉.
This co-occurrence is very significant and thus, they are considered to build a

phrase. This type of error states a general problem and is also reported by Klein

& Manning (2002a).
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8.8 predicate detection

Investigating syntax of a language includes more than the induction of part-of-

speech tags and the according grammar. Using unsupervised methods leads

to difficult challenges at some points. Although, several tasks of unsupervised

learning of syntactic features of a language have been successfully dealt with,

many challenges remain unmastered. One of those challenges is the unsuper-

vised predicate argument detection.

The task of predicate argument detection can be divided in several subtasks.

predicate detection Verbs are the predicates / relations in natural language.

According to this definition, knowing the verbs of a language is essential

for predicate detection. Using supervised learning methods based on man-

ually annotated corpora bypasses this subtask as verbs can be detected by

extraction of all words tagged with an appropriate POS tag. Even informa-

tion about the number of θ-roles can be learned from language resources

for certain languages, such as the PropBank for English (see Palmer et al.,

2005).

argument detection Different syntactic entities can occupy a θ-role of a pred-

icate. Regarding relation extraction as the next step to unsupervised knowl-

edge extraction, nominal constructions are the ones to focus on. This in-

cludes noun phrases of all kinds, such as normal noun phrases, named

entities, pronouns etc. Also prepositional phrases are of interest due to

the embedded nominal expression and the additional information about

possible role types provided by the preposition itself.

predicate-argument detection The third subchallenge deals with the ac-

tual problem. Knowing the predicates and the possible arguments solely

needs to be completed by the assignment of arguments to their correspond-

ing predicate. Probabilistic models about the number or types of θ-roles

which have to be assigned by a predicate can achieve several improvements.
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Besides sophisticated relation extraction models, lexicalized grammar in-

duction can be improved using statistical models of verb argument struc-

tures.

This section deals with the first task – verb detection in a completely unsuper-

vised manner.

As stated before, verbs represent natural language relations between various

arguments. These arguments primarily are nominal or prepositional phrases

and nominal or prepositional expressions, respectively. Such phrases charac-

teristically show a shallow inner structure and their words are bond through

high-significant neighborhood co-occurrences. Consequentially, approaches to

chunking (see Skut & Brants, 1998) or shallow parsing (see Hänig et al., 2008;

Hänig, 2010a) are able to extract the aforementioned phrase types.

Since completely unsupervised approaches do not incorporate any a priori

knowledge about the language in question, it is not clear, which phrases contain

arguments for verbs. Not even if the unsupervised parser induces labeled parse

trees as in Reichart & Rappoport (2008).

The major assumption behind this approach to unsupervised verb detection is

that each sentence contains at least one subject and at least one predicate. This

relation between subjects and predicates originates in Latin and Greek grammars

and is based on term logic7.

8.8.1 Tag Sequence Alignment

The Tag Sequence Alignment (TSA) algorithm (see Hänig, 2011) employs unsu-

Parse to detect arguments. A very strict configuration for unsuParse is used to

stop grammar induction right after all phrases yielding a very high constituent

score have been induced.

7 Term logic is also known as Aristotelian logic and leads back to Aristotle.
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This leads to a crucial reduction of the sentences’ complexity. The example The

man lost his purse during the game. will demonstrate this reduction8. Its proper

syntactic tree is given in Fig. 33.

S

NP

DT

The

NN

man

VP

VBD

lost

NP

PRP$

his

NN

purse

PP

IN

during

NP

DT

the

NN

game

Figure 33.: Syntactic tree for The man lost his purse during the game.

Employing the shallow parser to reduce the complexity of this sentence leads

to the following analysis (see Fig. 34).

S

NP

The man

VP

VBD

lost

NP

his purse

PP

during the game

Figure 34.: Reduced syntactic tree for The man lost his purse during the game.

8 The punctuation mark is omitted due to focusing on the words.
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Assuming that verbs dominate the structure of sentences decisively as pro-

posed in dependency grammars, the arguments can be exchanged, moved to

different positions and even be omitted:

The man lost his purse during the game.

The woman lost her hat in the park.

The student bought a notebook.

Figure 35.: Examples for exchangeability, movement and omission of arguments.

Each of the three sentences is grammatically sound while they show high sim-

ilarity in syntactic structure. TSA exploits this property – which is very distinct

for sets of short sentences – and aligns simplified tag sequences to each other.

In a formal way, a sequence s of a sentence with length n is defined as:

(8.27) s = (s0 . . . sn−1)

An element si of such a sequence can be a either a phrase tag or a POS tag. The

corresponding sequence s for the example given in Fig. 34 is a concatenation of

the pre-terminal nodes of the syntactic tree, in particular: s = (NP VBD NP PP).

In order to get to a superordinate syntactic level, tags can be grouped. These

groups represent phrases. Each phrase of a sentence s can contain any num-

ber of tags – within the boundaries defined by s – and thus, 2n−1 possible

groupings exist for s. Between the two extremes, a grouping containing exactly

one group (e. g. ((NP VBD NP PP))) and a grouping containing n groups (e.

g. ((NP) (VBD) (NP) (PP))), several groupings can be created (e. g. (((NP)

(VBD) (NP PP))).

Formally, each grouping of a sentence can be defined by a sorted set of sepa-

ration indices I contained in the power set PI:

(8.28) PI (n) = P ({0 . . . n− 2})

Each possible grouping g (s, I) of a sentence with length n is defined as given

in Equ. 8.29:

(8.29) G (s, I) =
((

s0 . . . si0
) (

si0+1 . . . si1
)
. . .

(
si|I|−1+1 . . . sn−1

))
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Because each sentence contains at least one predicate, at least one group of

each possible grouping G for sentence s has to represent a predicate. This pred-

icate is detected by finding the best alignment of two different sentences s and t

– assuming that sentences show similar structure with regard to exchangeability,

movement and omission of arguments (see Fig. 35).

The similarity of two groupings is defined accordingly:

(8.30)

simseq (G (s, I) ,G (t, J)) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|I| �= |J| : 0

�k : G (s, I)k = G (t, J)k ∧ type (G (s, I)k) = POS : 0

else :

1
|I|

∑|I|−1
i=0 sim (G (s, I)i ,G (t, J)i)

The first case of simseq (G (s, I) ,G (t, J)) deals with the number of phrases

per sentence. The number of phrases in s and t has to be equal to hold the

condition ∀gi ∈ G (s, I) : 0 � i < |G (t, J)| which is essential for proper alignment

computation. If this condition is not met, a proper alignment cannot be ensured.

Thus, the similarity score of these alignments is 0.

The predicate can either be a single word (e. g. talk) or a compound (e. g. was

talking). As compound predicates consist of at least one simple verb form, TSA

will focus on detection of single-word predicates and deal with the detection of

multi-word predicates in a subsequent step. Case two of simseq (G (s, I) ,G (t, J))

makes sure that these requirements are met.

The last case calculates the actual similarity. It is defined as the average of

the context similarities of all conjugated group pairs of the sentences’ groupings.

Context similarity is calculated using the cosine measure.

The best alignment for two sentences s and t is the pair of indices (i, j) :

argmax
(i,j)

simseq (G (s, i) ,G (t, j)) s. th. i, j ∈ PI (|G (s, i)|).

Within the resulting two groupings, the group fulfilling criterion two of Equ.

8.30 is considered to be the best predicate candidate.
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8.8.2 Detection of verbs in a corpus

To eventual extract all parts-of-speech that tag predicates, a complete corpus

needs to be processed. First, the corpus is tagged and parsed completely. Af-

terwards, each sentence of the corpus is transformed into its corresponding se-

quence. To avoid effects from rare sequences, only sentence sequences showing

a minimum support η � 10 are taken into account. As the detection takes place

at the POS level, data-sparseness problems which could occur at the word level

can be neglected.

In descending order of frequency, all patterns occurring at least η times in the

corpus will be aligned. The most frequent pattern is treated as seed pattern and

thus, simply split into its components (e. g. ((NP) (VBD) (NP))).

Each further sequence will

(a) either be aligned to a very similar pattern, or

(b) treated as seed pattern of a new sentence pattern.

In scenario (a), the similarity simseq between the known sequence and the

new one has to pass a threshold ϑ in order to be considered being similar. If this

is the case, the most similar grouping G of the new sentence sequence will be

associated with the corresponding seed sequence (e. g. ((NP) (VBD) (NP PP))).

Scenario (b) equals the initialization at the beginning of the alignment. The new

sequence is considered to belong to a new, not yet observed type of sequences

and thus, is split into its components and creates a new possible alignment.

With each processed sentence, the resulting alignments are shaped and formed

due to the language characteristics. Each alignment has a fixed point within its

graph representation. According to the underlying hypothesis of TSA, this fixed

point contains the predicate node (e. g. in Figure 36).

The part-of-speech in the center of the graph (as VBZ in the example) is con-

sidered to occupy a central role within the sequences. Thus, all parts-of-speech

showing this hub property in any extracted alignment will be marked as verb.
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Figure 36.: Tag Sequence Alignment for three common sequences.

8.8.3 Tag List Expansion

Due to the restrictions made during the alignment process (e. g. minimum

support η, minimum sequences per alignment), it is not possible to detect all

tags containing verbs directly.

After the application of TSA, a set TP is obtained containing all tags marking

predicates. Using these tags, a set WP can be created by putting all words of a

corpus into it, that has been tagged at least once by any tag of TP.

The fact, that many words occupy different syntactic roles within a sentence

(see motivation for disambiguating POS tagging in Sec. 7), is used to detect

further tags marking predicates.

Each part-of-speech epitomizes a syntactic function or role and thus, all words

tagged by a certain part-of-speech have identical syntactic functions9. Using the

inversion of this argument, each tag marking more predicates than other words

is considered to mark predicates.

Correspondingly, the predicate coverage cov (t) is calculated for each tag t

(see Equ. 8.31).

(8.31) cov (t) =
|words annotated by t∩words ∈WP|

|words annotated by t|

All tags achieving coverage of at least 50% – which is the natural choice – are

considered to mark predicates, too. Eventually, tag set TPe denotes the extended

tag set containing TP and all tags t holding cov (t) � 0.5.

9 Assuming perfect part-of-speech tagging.
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8.8.4 Evaluation

The evaluation of predicate detection is performed on two different setups: a su-

pervised and an unsupervised one. Although TSA is a completely unsupervised

approach, it is also evaluated on unsupervised tags to provide comprehensive

results reducing the probability of tagging errors.

Evaluation is performed on two corpora, one for English and one for German.

Both corpora were created by Projekt Deutscher Wortschatz (see Quasthoff et al.

(2006)) and contain 1 million sentences each.

The supervised setup’s purpose is to eliminate erroneous influences from the

preprocessing steps and to provide high quality prerequisites.

supervised setup The supervised setup employs the Stanford POS Tagger

(see Toutanova & Manning, 2000) and the Stanford Parser (see Klein &

Manning, 2003b). Sentence patterns are created by extraction of all kinds

of prepositional phrases and noun phrases at the topmost level.

unsupervised setup In the unsupervised setup, unsupervised approaches to

POS tagging (see Section 7) and parsing (see Section 8) are applied. First,

all words of the corpus are tagged and afterwards, a model for unsuper-

vised parsing is trained using a strict significance threshold of η = 0.3.

Analogously to the supervised setup, sentence sequences are extracted

from the induced parse trees using the labels from the topmost nodes be-

neath the root nodes.

In either configuration, all sentence sequences occurring at least 10% as often

as the most frequent one, are taken into account. The similarity threshold ϑ was

set to 0.8.

8.8.4.1 Part-of-speech tagsets

The evaluation can be performed straight forward. Each part-of-speech tag t out

of the extracted set TP or TPe either marks verbs or not. In order to be able to
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decide, each of used tag sets will be introduced shortly. Basicly, a distinction

between supervised and unsupervised annotation with POS tags can be made.

supervised annotation Supervised POS tagger are trained on manually or

semi-supervised annotated data and thus, replicate the tags observed in

the training data. For most languages, for which language resources exist,

an established tagset is used. For the present evaluation, two tagsets are

of special interest: the Penn Tree Tagset (see Santorini (1990)) for English

and the Stuttgart-Tübingen Tagset (see Thielen et al. (1999)) for German

respectively.

Table 19 gives a brief overview over the tags marking verbs10. Addition-

ally to the 7 English verb tags and the 12 German verb tags, their relative

frequency (compared to all verbs in the respective corpora) is given. These

frequencies are used to calculate the coverage of the extracted tag sets TP

and TPe.

unsupervised annotation Unsupervised part-of-speech taggers do not label

word classes in a classical, human-readable way. Word clusters are enumer-

ated instead. Hence, the short overview about word clusters containing

verbs contains additionally to cluster number and relative frequency some

members of this class to describe the cluster appropriately (see Table 20 for

English and Table 21 for German). As there are numerous word clusters,

only the most frequent ones are shown at this point.

8.8.4.2 Results

We calculated precision and recall scores for the extracted verb classes (see Tables

22 and 23), the corresponding tag sets are given in Tables 24 and 25.

For both the supervised and unsupervised data sets a precision of 100% is

achieved as all extracted tags denote verbs. Regarding supervised data sets for

English and German, TSA extracts 55.3% and 78.9% of all verbs. Expanding the

extracted tag sets yields a significant improvement for English (increasing recall

10 A comprehensive overview over all tags of both tagsets is given in Appendix A.
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Penn Tree Tagset STTS

Tag Rel. Frequency Tag Rel. Frequency

MD 6.05% VAFIN 24.74%

VB 18.21% VAIMP 0.00%

VBD 26.81% VAINF 2.67%

VBG 10.51% VAPP 1.17%

VBN 15.99% VMFIN 7.81%

VBP 9.48% VMINF 0.18%

VBZ 12.95% VMPP 0.01%

VVFIN 34.04%

VVIMP 0.06%

VVINF 12.27%

VVIZU 0.98%

VVPP 16.07%

Table 19.: Established verb tags for English and German

to 89.4%), while the benefit on German data is marginal. This effect originates

in the morphological richness of German.

The results on unsupervised data achieved perfect precision, too. Tag list

expansion does not have a measurable impact on these results (about 0.02%)

and can be neglected. However, expansion adds some classes including some

incorrect ones11. The inferior recall results from a larger number of different

word classes induced by unsupervised POS taggers.

11 Incorrect classes are presented by italic font in Table 24 and Table 25
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Tag Description Relative frequency

6 classify, let, sustain 20.82%

15 navigating, expending 8.75%

18 elaborates, transports 6.29%

26 underlined, subdivided 34.85%

185 may, will, might 5.27%

342 can, could, should 2.66%

445 be 5.27%

478 are 2.90%

479 is 6.26%

Table 20.: unsuPOS classes for English verbs

8.9 unsupervised parsing – conclusions

In this section, an approach to unsupervised parsing is presented. Evaluation

proves that it achieves competitive results.

Although no a priori knowledge describing the language in question is taken

into account, this approach generates parses and fulfills the previously desired

features. It detects heads and modifiers and induces intelligent phrase labels.

Different prototypes of the same phrase type are labeled by the same label and

thus, the information about syntactic similarity is retained for further processing.

Due to its greedy approach relying on simple syntactic rules, it is possible to eas-

ily alter induced grammars without huge effort. This enables semi-supervised

grammar induction for new languages or data sources ensuring high quality

analyses.

To facilitate tasks like RE, verbs are automatically detected which is a huge

step towards fully unsupervised predicate-argument detection.

There is still potential space for improvements. First, deeper investigations

into lexicalization can improve handling of exceptions in the sense of atypical
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Tag Description Relative frequency

9 fragten, beteten 7.88%

10 spürte, ahnte, haste 5.77%

22 distanzierte, vertritt 3.88%

37 erfüllt, verringert, 16.03%

42 zugucken, dauern, 28.37%

200 hat, hatte, will, macht 4.98%

253 wird, wurde, erscheint 3.24%

334 ist, war, wäre 7.43%

380 sind, waren, seien 2.97%

Table 21.: unsuPOS classes for German verbs

Setup Precision Recall F-Measure

supervised TSA 1.000 0.553 0.712

supervised TSA + TLE 1.000 0.894 0.944

unsupervised TSA 1.000 0.440 0.611

unsupervised TSA + TLE - - -

Table 22.: Predicate detection results for English

Setup Precision Recall F-Measure

supervised TSA 1.000 0.789 0.882

supervised TSA + TLE 1.000 0.816 0.899

unsupervised TSA 1.000 0.627 0.771

unsupervised TSA + TLE - - -

Table 23.: Predicate detection results for German
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Supervision TSA TLE

supervised VBD VBP VBZ MD VBN VB

unsupervised 26 478 479 112 126 336 350

Table 24.: Extracted POS tags for English

Supervision TSA TLE

supervised VVFIN VVINF VAFIN VMFIN VAINF VVIMP

unsupervised 9 37 42 334 380 135 142 166 175 230 . . .

Table 25.: Extracted POS tags for German

structures. In order to induce deeper structures, a hybrid approach seems to be

the best way. A combined model based on unsuParse and CCM could benefit from

both advantages: high precision and deep structures obtained through induction

of binary parses.

Regarding unsupervised verb detection, incorporation of dependency parses

could improve the overall performance as DGs are based on a similar assumption

attesting verbs a special function within sentences. Additionally, morphological

analysis can facilitate the extraction through TSA on morphologically rich lan-

guages.



9

SYNTACT IC RELAT ION EXTRACT ION

Syntactic relation extraction solely relies on syntactic annotations like POS tags

and parsetrees which can be annotated in an unsupervised manner. Contrary to

most other approaches to relation extraction, the syntactic approach presented

in this thesis does not need any training samples. Instead, it exploits language

statistics about structure.

An approach for syntactic RE has been presented previously by Hänig &

Schierle (2009) with partially the same objective – extract automotive relations

from repair order data. This originally approach achieved remarkable results.

Nevertheless, two major advancements of this approach will be presented in

this section.

First, the dependency to manually created relation definitions is removed. Those

predefined heuristic rules define:

• two category types of the involved entities,

• a preferred direction to resolve ties between two relation candidates exploit-

ing the linear order of the entities within the sentence,

• the maximum distance for this relation, and

• a flag marking whether this relation may be part of a complex relation

(beyond binary relations).

In order to complete this task, statistics about entity distributions are thoroughly

studied.

148
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The second advancement is the application of syntactic RE to data gathered

in internet fora discussing automotive topics. Beneath significantly different lan-

guage properties, an additional entity type will be explored: polar utterances.

The employed sentiment analysis extracts polar utterances on the phrase level

resulting in manifold entities regarding to their syntactic properties (e. g. differ-

ent phrase types) and thus, heterogeneous distribution within the data.

9.1 semantic tagging

As described in Section 6 parsing is a difficult task for this kind of data. Fur-

thermore, as many terms consist of more than one token, parsing splits entities

making it infeasible to determine the correct position of an affected entity within

a parse tree.

Hänig & Schierle (2009) propose a combination of syntactic and semantic tag-

ging to circumvent this problem. Before training a POS tagger, all relevant terms

are replaced by their respective category label.

Basically, two classes of entity types can be distinguished:

thesaurus concepts Concepts contained in a domain-specific thesaurus (see

Sect. 5.5) are replaced by the name of their category (e. g. combustion engine

will be replaced by component ).

special tokens Tokens containing numerical values (e. g. numbers, mileage

values, monetary values), temporal expressions (e. g. time and data values)

and mixed tokens (e. g. codes for spare parts and corrective actions) are

replaced by an appropriate label.

Example: all concepts of the sentence

customer states left marker lamp warning light comes on when

driving

will be replaced and the sentence is converted into:
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customer states location component symptom condition

An unsupervised POS tagger (see Sec. 7) is trained on the converted corpus.

Words contained in a class induced by an unsupervised POS tagger occur in

syntactically similar contexts and show semantically similar properties. This is

a beneficial side effect as clusters that contain a certain concept category often

contain words belonging to this category which are not covered by the thesaurus

yet.

An example of replaced concepts and annotated word clusters1 is given in Fig.

37:

S

23

customer

54

states

location

left

component

marker lamp warning light

symptom

comes on

condition

when driving

Figure 37.: Example for replaced automotive concepts

In order to induce parse trees for the corpus, all sentences are tagged and

grammar induction as described in Sec. 8 is applied. A resulting parse tree is

shown in Fig. 38:

S

P#1

23

customer

54

states

component

location

left

component

marker lamp warning light

P#2

symptom

comes on

condition

when driving

Figure 38.: Example for semantically tagged and parsed sentence

9.2 syntactic features

Given a sentence and its parse tree, two different syntactic measures are defined:

1 Word clusters containing a category are denoted by this category instead of the corresponding

number for better readability.
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token distance The token distance dtoken (e1, e2) between two entities e1 and

e2 is defined as the number of tokens between those two entities. For this

purpose, the entity layer provides an abstraction from the word level. Many

entities consist of more than one word (e. g. component marker lamp warn-

ing light) although they represent one semantic and syntactic unit. Thus,

all entities are treated as a single token for calculation of dtoken. Regarding

the example of Fig. 38, dtoken(location left, condition when driving) is 2

as there are two units between these entities.

tree distance The tree distance dtree (e1, e2) is defined as the length of the

path between the two entities’ nodes in the syntactic tree. The motivation

for this measure originates in long sentences of the AIM Corpus. Entities

often show huge token distances caused by subordinate clauses, enumera-

tions or further reasons. The tree distance dtoken(location left, condition

when driving) of the example given in Fig. 38 is 4 as four connections have

to be passed.

9.3 lexicalization

Models for RE can be defined at two different ways regarding levels of language

– in a lexicalized and unlexicalized fashion. Parsers are often distinguished be-

tween those two possibilities. The model of lexicalized parsers is defined on

words themselves while unlexicalized ones employ an abstracting layer, such as

POS tags. In terms of RE between entities is kind of unlexicalized per se as an-

notated entities abstract from words. Feature selection still uses words directly

(see Rosenfeld & Feldman, 2006a).

In terms of RE between hierarchically structured entities, an additional possi-

bility of abstraction exists. Theoretically, an abstraction can be made with each

level of the entity hierarchy. In the following, two different abstraction levels
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are studied: the concept level (the lowest one) and the category level (the most

generic one).

Figure 39.: Concept hierarchy: noise

The example noise given in Fig. 39 (see Schierle & Trabold, 2008) will demon-

strate the two different levels of interest. The concept level describes the lan-

guage dependent part of the hierarchy, meaning Squeak, Whine, Hum and Growl.

Comparing concepts automatically deals with inflections and synonyms. The

category level is the highest concept given in this example (Symptom). It can be

used to generalize and aggregate statistics on a less detailed level.

9.4 distribution of entity pairs

In order to build a probabilistic model certain corpus statistics have to be calcu-

lated with respect to relations between entities. As no suitable annotated training

corpus exists2 choosing a strategy to pick training data states the first challenge.

Without any supervision throughout the process of training set generation,

two heuristics can be employed.

2 The evaluation corpora contain appropriate annotations, but cannot be used for calculation of

reliable statistics due to its limited size.
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The intuitive one is to select all sentences S containing exactly two entities

e1 and e2. Under the assumption that these two entities are related to each

other (given the condition that no further automotive entity exists), each sentence

s ∈ S is considered to be a training instance for the relation between type (e1)

and type (e2). type (e) thereby denotes the concept or category of the instance,

depending on the chosen granularity. Although it is very probably, no guarantee

exists that both entities are related to each other. With growing token and tree

distances, the probability for being related decreases. It would be possible to

extract only those sentences containing exactly two entities occurring within a

defined maximum distance, but this discards valid relation instances and thus,

biases statistics towards narrow relations.

Another disadvantage of this heuristic is data sparseness. It can be observed

for rare relations (such as symptom - condition ) which barely occur in the

training set due to the restriction of sentences containing exactly two entities.

Especially sentences contained in the QUIS Corpus barely contain only two entities.

Calculation on concept level increases data sparseness problems.

The other heuristic is to use all sentences S containing at least two entities.

The approach to take all possibilities into account when it is not clear which are

the correct ones has proven to be successful for other NLP tasks (i. e. for parsing,

see Bod, 2006a). The resulting training set tset (S) is defined as:

(9.1) tset (S) =
⋃
s∈S

{(e1, e2) ∈ Es × Es ∧ e1 �= e2}

where Es denotes the entities contained in sentence s. This heuristic ensures

that all possible relations are covered despite their arbitrariness. Furthermore,

the available data is represented comprehensively and thus, probabilistic models

defined on such a large data set yields superior results than on a sparse data set.

In this section, the distribution of entity pairs is explored unveiling differences

between different relations and corpora. Based on these observations, a proba-

bilistic model is motivated and defined so that the observed characteristics are

covered by this model.
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9.4.1 Preferred Order of Entity Pairs

As stated by Hänig & Schierle (2009), different automotive relations show varia-

tions regarding the preferred order of involved entities. This can be confirmed

empirically. Fig. 40 shows the token distributions (calculated on the QUIS Corpus)

of two relations component - symptom and component - location , respec-

tively. The graph of the distribution for relation component - symptom reveals

the preference of the linear order component followed by symptom 3. The con-

trary observation can be made for the relation component - location , in which

location precedes component in most cases.

Figure 40.: Token Distribution of component - symptom compared with component -

location

Statistics like this graph empirically validate the existence of preferred entity

orders within automotive relations. Consequently, incorporation of a feature for

linear order of the involved entities similar to a preferred direction is highly

desirable for any model.

3 The x-axis of the graph shows the token distance of component in relation to symptom and

location , respectively. Negative numbers represent in front of (abbreviated by −), positive

numbers denote succeeding (abbreviated by +).
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9.4.2 Maximum distance between involved entities

A strict threshold for relatedness regarding token and tree distance is proposed

in Hänig & Schierle (2009). Such a threshold is valuable to filter relation candi-

dates. According to new insights to the relation distributions, these thresholds

can be defined based on statistical measures. Furthermore, a distinction between

the two orders regarding both entities is essential to properly consider the ob-

servable distributions.

The threshold maxdist+/− (t1, t2) for two entity types t1 and t2 and a given

linear order + or − is defined as the sum of the arithmetic mean distance be-

tween these two types and the standard deviation of the corresponding entity

distribution:

(9.2) maxdist
+/−
token/tree

(t1, t2) = d+/− (t1, t2) + σ+/− (t1, t2)

(9.3) maxdist (e1, e2) =

⎧⎪⎪⎨
⎪⎪⎩
maxdist+ (t1, t2) type (e1) = t1 ∧ type (e2) = t2

maxdist− (t1, t2) else

The influence of the automatically derived maximum distance is discussed

within the evaluation part.

9.4.3 Differences between Repair Order and Internet Data

As stated before, both QUIS Corpus and AIM Corpus show significant differences in

language use. These differences result in smaller impacts on entity distributions.

One effect originating in diverse language use as well as longer and more com-

plex sentences is that entities are distributed more uniformly (see Fig. 41). Due

to free word-order in German, the preferred entity order cannot be observed

with such a distinction as in repair order data. This effect can especially be ob-

served on near-distance relation instances which are significantly more common

in repair orders than in internet data.
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Figure 41.: Token Distributions of component - symptom in two different corpora

Furthermore, while repair order data is relatively predictable, even completely

inverse relation properties can be observed analyzing internet data. Regarding

the relation component - symptom , the preferred linear order of the entities is

reversed as in the other corpus (see Fig. 41).

9.5 probabilistic model

Given these observations in distributional form, several probabilities can be de-

fined to build a probabilistic model for syntactic relation extraction. The first

equation (see Equ. 9.4) gives the probability of two entities e1 and e2 occurring

in a token or tree distance of d.

(9.4) Ptoken/tree (e1, e2,d) =

∣∣⋃
s∈S {(e1, e2) ∈ Es × Es|dtoken/tree (e1, e2) = d}

∣∣∣∣⋃
s∈S {(e1, e2) ∈ Es × Es}

∣∣
In order to consider the distance distributions regarding maximum distances,

a probability is defined which is 0 for distances greater than the corresponding

maximum distance:

(9.5)
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Pstrict
token/tree (e1, e2,d) =

⎧⎪⎪⎨
⎪⎪⎩
0 d > maxdisttoken/tree (e1, e2)

Ptoken/tree (e1, e2,d) else

The resulting probability takes both token and tree distances of both involved

entities into account and thus, is defined as:

(9.6) P (e1, e2,dtoken,dtree) = Ptoken (e1, e2,dtoken) · Ptree (e1, e2,dtree)

Pstrict (e1, e2,dtoken,dtree) is analogously defined using the strict probability def-

initions.

Based on these probability scores, three possible strategies for RE are defined.

All of them are grounded on the assumption that each entity e of the sentence’s

entities E is related to at least one further entity of this sentence. This premise

is empirically grounded based on observations of the data. This premise may

not hold for all or other domains, but the presented extraction strategies can

be adapted to characteristics of other text types or domains. This point will be

discussed in the conclusions.

complete extraction (ce) This extraction strategy extracts all entity pairs oc-

curring within the respective maximum distance. Formally, a relation can-

didate (e1, e2) is considered to be a relation, if Pstrict (e1, e2,dtoken,dtree) >

0. The probability value is not of interest for extracting relations using this

strategy. Hence, it is similar to the approach presented in Hänig & Schierle

(2009) where all entity pairs occurring within a maximum distance are con-

sidered to be related.

CE is suitable for extraction of multiple relations per entity, which both

following strategies are not.

local probability maximization (lpm) LPM is an iterative greedy process of

successively picking the locally best candidate until no candidates remain.

In detail, the steps are:

(a) Initialize the candidate set C = {(e1, e2) ∈ E× E|e1 �= e2}
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(b) Pick the candidate cr obtaining the highest probability, so that

cr = argmax
c∈C

P (e1, e2,dtoken (e1, e2) ,dtree (e1, e2)) and put it into the

result set. The strict version can also be applied.

(c) Remove all candidates c from C containing any element involved in

the relation cr.

(d) Repeat steps (b) and (c) until C is empty or no candidate c achieves a

zero probability.

The advantage of LPM over CE is the performance on dense entity clusters.

While CE would extract multiple relations containing many incorrect ones

LPM only picks the most probable candidates. The consequential disad-

vantage is that only one relation per entity can be extracted lowering recall

when entity instances are involved in multiple relations.

global probability maximization (gpm) Similarly to LPM only one relation

per entity is allowed when using GPM. Instead of picking the best local

candidate, global candidate sets are evaluated. First, all possible subsets

cset of C are generated. Possible means that at most one entity out of E

may be missing in cset (in order to fulfill the initial assumption). Entities

for which no relation candidate c obtaining a non-zero probability score

exist, are ignored during this generation step. All elements contained in

the candidate set cset with the highest combined probability are considered

to be relations.

The combined probability of such a candidate set is defined as:

(9.7) P (cset) =
∏

(e1,e2)∈cset
P (e1, e2,dtoken (e1, e2) ,dtree (e1, e2))

The properties of this extraction strategy are identical to the properties of

LPM. The only difference is that it produces solutions yielding the globally

maximum probability instead of locally maximum probabilities.
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9.6 evaluation

All three extraction strategies are evaluated on both QUIS Corpus and AIM Corpus.

The results are compared to the results of current state-of-the-art algorithms (see

Sec. 6.6) and incorrect classifications including over- and underpropositions are

deeply analyzed. Errors originating from entity detection are ignored to solely

evaluate the performance of Syntactic Relation Extraction.

9.6.1 Results

The results of the experiments are given in Table 26 for application on repair

order data, and in Table 27 for internet data. The results presented in Hänig &

Schierle (2009) are provided for comparison with manually defined extraction

rules (MR).

This analysis shows that extraction based on manually generated rules per-

forms superior than automatically created relation statistics. Nevertheless, creat-

ing highly sophisticated rules needs time and huge efforts in studying the data.

The three unsupervised strategies do not need any supervision (except for the

Entity Recognition step which has to be done independently from RE) and still

yield reasonable results.

Complete Extraction scores slightly better regarding recall for all evaluated re-

lation types. This observation is grounded in maxdist which is greater than the

manually defined distances. Consequently, more relations are extracted lower-

ing the precision as more incorrect candidates are considered relations.

Both probability-based strategies extracted inferior amounts of relations. Re-

stricting each entity to participate in at most one relation forbids several correct

relations. Especially components often are related to locations, symptoms and

corrections and in many cases, although the component is mentioned only once

(e. g. location driver side component window symptom broken). Such construc-

tions cannot be easily modeled by a probabilistic model due to the available
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Relation Strategy Precision Recall F-Score

component – correction MR 0.958 0.960 0.959

component – correction CE 0.932 0.968 0.950

component – correction LPM 0.881 0.873 0.877

component – correction GPM 0.887 0.889 0.888

component – symptom MR 0.910 0.941 0.925

component – symptom CE 0.896 0.949 0.922

component – symptom LPM 0.840 0.882 0.860

component – symptom GPM 0.817 0.866 0.841

component – location MR 0.964 0.954 0.959

component – location CE 0.929 0.972 0.950

component – location LPM 0.904 0.968 0.935

component – location GPM 0.899 0.956 0.927

negation – symptom / condition MR 0.924 0.922 0.923

negation – symptom / condition CE 0.908 0.926 0.917

negation – symptom / condition LPM 0.798 0.861 0.828

negation – symptom / condition GPM 0.805 0.872 0.837

Table 26.: Relation Extraction results on QUIS Corpus data

data. Appropriate probability values could be defined if sentences in the cor-

pora would consist of such constructions only. Sentences of the QUIS Corpus do

actually consist of three concatenated sentences (complaint, cause, correction)

without any punctuation or other marks providing the possibility to split these

parts again. Hence, statistics about with how many different entities a compo-

nent normally occurs are skewed.

LPM and GPM do extract a higher portion of incorrect relations than both

other strategies do. A probability threshold can be defined to improve extraction
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accuracy, but this leads to a tradeoff between precision and recall while the

overall performance does not change significantly. The results given in both

tables are obtained without any special threshold. All probabilities must only

be greater than 0 (P (e1, e2,dtoken (e1, e2) ,dtree (e1, e2)) and P (cset) for LPM and

GPM, respectively).

It can also be observed that no probability-based strategy consequentially out-

performs the other one. Both show superior results on some of the studied

relations and inferior on some others.

The conclusion regarding evaluation results on automotive repair order data

is that simple extraction rules show superior performance. Although manu-

ally created rules outperform the identical approach with statistically grounded

maximum distances on English data, Complete Extraction provides a reasonable

strategy for application on repair order data of different languages without high

losses in accuracy.

The results achieved on automotive internet data are generally inferior. This is

grounded on much more complex language as presented in Sec. 5.2, especially

for one of the most interesting relations component – symptom . The argumen-

tation is similar to the one for repair order data. Additionally, the strict con-

centration on relevant information cannot be observed in internet data. While

the technician only records technical aspects, authors discussing technical prob-

lems do not focus in such a magnitude. Often, several ideas or assumptions are

stated and thus, a lot of noise exists. Overall, LPM seem to outperform the other

strategies (ignoring the tie for the relation component - correction ).

Internet data contains a lot of additional information – including polar ut-

terances reflecting the sentiment of authors regarding a certain topic. These

utterances are annotated on phrase level leading to an inhomogeneous distribu-

tions as different phrase types are distributed differently. A separate experiment

shows, that LPM can detect the correct opinion holder out of several possible

targets (e. g. models, components, automobile manufacturers). The evaluation

data contains 150 forum entries discussing several topics. Each of the sentences

contains at least one polar phrase and multiple possible opinion targets. LPM is
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Relation Strategy Precision Recall F-Score

component – correction CE 0.387 0.812 0.524

component – correction LPM 0.439 0.783 0.563

component – correction GPM 0.439 0.783 0.563

component – symptom CE 0.155 0.557 0.243

component – symptom LPM 0.219 0.500 0.305

component – symptom GPM 0.200 0.429 0.273

component – location CE 0.573 0.931 0.709

component – location LPM 0.607 0.895 0.723

component – location GPM 0.586 0.895 0.708

Table 27.: Relation Extraction results on AIM Corpus data

employed to detect the correct opinion target on this data achieving an accuracy

of 69.8%.

9.7 relation extraction – conclusions

Syntactic relation extraction achieves reasonable results on both corpora and out-

performs current state-of-the-art approaches (pattern-based and kernel-based)

easily for automotive relations on this data.

Depending on language characteristics, different accuracy levels are achieved.

Repair order data is written using restricted language, consists almost exclu-

sively of automotive terminology and shows a very large number of relations.

Complete Extraction in its original form employing manually defined extrac-

tion rules achieves the best results. The same strategy performs slightly inferior

when statistically grounded maximum distances are applied instead of manu-

ally defined ones. This is important for extension to new languages for which
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no sufficient language skills are available. In this use case, only the thesaurus

needs to be augmented with translations to support the new language. All fur-

ther processing including part-of-speech tagging, syntactic parsing and relation

extraction then can be applied in an unsupervised manner.

The application on repair order data shows excellent results in the range of

80% to 95%. This level of accuracy is not achieved on automotive internet data.

Local Probability Maximization achieves the best results. But still, the scores are

significantly lower than achieved on repair order data. Especially precision val-

ues of about 20% for the important relation component – symptom is not good

enough to constitute a basis for data mining on the extracted relation data. Nev-

ertheless, one part of the original motivation to incorporate internet data was to

explore the mood and sentiment of the customers. Empirical studies proved that

LPM is able to assign polar phrases to the corresponding opinion target scoring

an accuracy of about 70%. This precision is high enough to detect tendencies

and clues in the data using large scale statistics. The extracted documents then

can be analyzed by an appropriate engineer who does not need to go through

the complete data using this extraction mechanism as prior filtering step.

Improvements are possible especially regarding adaptation to other domains

for which the premises do not hold. The evaluation results on internet data

show that obviously a fair amount of entities exist that are not related to another

automotive entity. Consequently, LPM which extracts less relations than CE per-

forms better. An appropriate estimation of the ratios between all possible entity

type pairs and the derivable probabilities could improve a probabilistic model.

As argued before, such estimation is not possible due to the data’s nature.

Kernel-based methods can be improved in several points to match the criteria

demanded by RE on dirty and domain-specific data. First, kernels for RE should

incorporate more knowledge about relations themselves. A relation basically

consists of two entities of two types (which may be identical, e. g. company

mergers). It is only possible that a sentence contains a relation instance if it

contains at least two entities of the required types. The multiplication of two

kernel functions still is a kernel function. This leads to the usage of an entity
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type filter kernel Kfilter (T1, T2) in addition to the actual kernel function K (T1, T2).

The filter kernel ensures that both trees agree at least on two different entities’

type or the similarity of both trees is considered zero. This proposition (see

Equ. 9.8) is a more consequential approach regarding exploitation of relation

characteristics than the matching function proposed by Zelenko et al. (2003).

(9.8) Kfilter (T1, T2) =

⎧⎪⎪⎨
⎪⎪⎩
K (T1, T2) agree_on_types (T1, T2)

0 else

Filtering all instance pairs which do not agree on at least two entities’ types will

increase precision significantly without influencing recall.

The accuracy of kernel-based approaches can be further improved through

concentration on relevant parts of the sentence and parsetree. Training and ex-

traction should be restricted to the lowest subtree in the constituent hierarchy

containing both involved entities. This will reduce extraction of incorrect rela-

tion instances due to similar constructions in the context of the instance and

not of the instance itself. Especially forum entries contain long sentences with

multiple statements which often leads to overpropositions.

Unsupervised methods are essential to provide a flexible workflow which is

crucial for fast extension to new text types, languages or domains. All pre-

sented kernel methods (see Sec. 4.6) rely on supervised preprocessing. Some

researchers argue that supervised part-of-speech tagging can be easily replaced

by unsupervised approaches (see Bod, 2006b). This may be true for grammar in-

duction, but for the task of kernel-based relation extraction, some restrictions to

this statement are necessary. Kernels exploit the syntactic structure of a sentence

and tests for common tree fragments. Common tree fragments are detected by

comparison of phrase types, POS tags and further properties (e. g. word types,

entity annotations). Applying a comparison of POS tags and phrase types which

were induced in an unsupervised manner does not yield the same results as on

supervisedly annotated features as they are much more fine-grained. Hence,

comparing those syntactic properties should be performed based on distribu-

tional representations of POS tags and phrase types to achieve similar results.
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CONCLUS IONS

The last part of this thesis summarizes the results achieved in the previous chap-

ters. The impact of the developed algorithms to real world applications of the

automotive domain is outlined. Finally, possible directions for further research

are presented.

10.1 summary

This thesis aims to develop a relation extraction algorithm to extract knowledge

out of automotive data. While most approaches to RE are only evaluated on

newspaper data dealing with general relations from the business world their

applicability to other data sets is not well studied.

Part I of this thesis deals with theoretical foundations of information extraction

algorithms. Text mining cannot be seen as the simple application of data mining

methods to textual data. Instead, sophisticated methods have to be employed to

accurately extract knowledge from text which then can be mined using statisti-

cal methods from the field of data mining. Information extraction itself can be

divided into two subtasks: entity detection and relation extraction. The detec-

tion of entities is very domain-dependent due to terminology, abbreviations and

general language use within the given domain. Thus, this task has to be solved

for each domain employing thesauri or another type of lexicon. Supervised ap-

166
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proaches to Named Entity Recognition will not achieve reasonable results unless

they have been trained for the given type of data.

The task of Relation Extraction can be basically approached by pattern-based

and kernel-based algorithms. The latter achieve state-of-the-art results on news-

paper data and point out the importance of linguistic features. In order to an-

alyze relations contained in textual data, syntactic features like part-of-speech

tags and syntactic parses are essential. Chapter 4 presents machine learning ap-

proaches and linguistic foundations being essential for syntactic annotation of

textual data and relation extraction. Chapter 6 analyzes the performance of state-

of-the-art algorithms of POS tagging, syntactic parsing and relation extraction on

automotive data. The findings are: supervised methods trained on newspaper

corpora do not achieve accurate results when being applied on automotive data.

In order to achieve acceptable results, algorithms have to be trained directly on

this kind of data. As the manual annotation of data for each language and data

type is too costly and inflexible, unsupervised methods are the ones to rely on.

Part II deals with the development of dedicated algorithms for all three tasks.

Unsupervised POS tagging (see Chapter 7) is a well-studied task and algorithms

achieving accurate tagging exist. All of them do not disambiguate high fre-

quency words, only out-of-lexicon words are disambiguated. Most high fre-

quency words bear syntactic information and thus, it is very important to differ-

entiate between their different functions. Especially domain languages contain

ambiguous high frequency words bearing semantic information (e. g. pump). In

order to improve POS tagging, an algorithm for disambiguation is developed

and used to enhance an existing state-of-the-art tagger. Evaluation shows that

tagging accuracy is raised significantly. An approach to unsupervised syntactic

parsing (see Chapter 8) is developed in order to suffice the requirements of re-

lation extraction. These requirements include high precision results on nominal

and prepositional phrases as they contain the entities being relevant for relation

extraction. Furthermore, accurate shallow parsing is more desirable than deep

binary parsing as it facilitates relation extraction more than deep parsing. Endo-

centric and exocentric constructions can be distinguished and improve proper
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phrase labeling. unsuParse fulfills all demanded criteria and achieves compet-

itive results on standard evaluation setups. Syntactic Relation Extraction (see

Chapter 9) is an approach exploiting syntactic statistics and text characteristics

to extract relations between previously annotated entities. Evaluation on two dif-

ferent languages and two different text types of the automotive domain shows

that it achieves accurate results on repair order data. Results are less accurate

on internet data, but the task of sentiment analysis and extraction of the opinion

target can be mastered. Thus, the incorporation of internet data is possible and

important as it provides useful insight into the customer’s thoughts.

To conclude, this thesis presents a complete unsupervised workflow for rela-

tion extraction – except for the highly domain-dependent entity detection task –

improving performance of each of the involved subtasks. Furthermore, this work

applies NLP methods and RE approaches to real world data unveiling challenges

that do not occur in high quality newspaper corpora.

10.2 application of this work

The Relation Extraction algorithm presented in Section 9 is integrated into qual-

ity assurance processes of an international car manufacturer. It is part of the

daily data processing workflow for three years in the US and Germany. Espe-

cially in the US, a repeat repair detection mechanism based on the extracted

relations (see Hänig et al., 2010, 2011) is used to improve fraud detection and

the online appointment system. Statistics about which repair actions reveal the

repair approach yielding the best success and influence the spare part ordering

process before the customer actually comes in for the repair.

The presented approaches are evaluated in terms of what information can be

extracted in an automatic way from the growing amount of textual data available

in automotive internet fora. In this use case, the sentiment analysis is of special

interest as it unveils the opinions of the customers regarding all manufacturers

(see Bank & Hänig, 2011).
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10.3 potential for further research

Regarding all three tasks – POS tagging, syntactic parsing and relation extraction

– several improvements are possible are extensively discussed in the respective

sections. Thus, only a short comprehension is given at this point.

For POS tagging, the most promising improvements are a more sophisticated

integration of part-of-speech disambiguation and the inclusion of morphology.

Possibilities for unlexicalized unsupervised syntactic parsing are nearly com-

pletely exhausted. The task of phrase labeling can be further improved by better

exploitation of the parts-of-speech contained in a phrase. Apart from that, partly

lexicalization of models should be explored as full lexicalization is not possible

due to data-sparseness problems.

Relation Extraction on arbitrary relation types is a young research field as most

approaches only target simple semantic relations. Ideas from syntactic relation

extraction presented in this thesis should be combined with kernel methods (or

encoded as kernel function) to improve relation extraction results on arbitrary

logical relations.
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A

PART-OF-SPEECH TAGSETS

a.1 penn tree tagset

Tag Description

$ dollar

“ opening quotation mark

” closing quotation mark

( opening parenthesis

) closing parenthesis

, comma

– dash

. sentence terminator

: colon or ellipsis

CC conjunction, coordinating

CD numeral, cardinal

DT determiner

EX existential there

FW foreign word

IN preposition or conjunction, subordinating

199
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Tag Description

JJ adjective or numeral, ordinal

JJR adjective, comparative

JJS adjective, superlative

LS list item marker

MD modal auxiliary

NN noun, common, singular or mass

NNP noun, proper, singular

NNPS noun, proper, plural

NNS noun, common, plural

PDT pre-determiner

POS genitive marker

PRP pronoun, personal

PRP$ pronoun, possessive

RB adverb

RBR adverb, comparative

RBS adverb, superlative

RP particle

SYM symbol

TO ‘to’ as preposition or infinitive marker

UH interjection

VB verb, base form

VBD verb, past tense

VBG verb, present participle or gerund

VBN verb, past participle

VBP verb, present tense, not 3rd person singular
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Tag Description

VBZ verb, present tense, 3rd person singular

WDT WH-determiner

WP WH-pronoun

WP$ WH-pronoun, possessive

WRB Wh-adverb

Table 28.: Penn Tree Tagset

a.2 stuttgart-tübingen tagset

Tag Description

ADJA attributive adjective

ADJD adverbial or predicative adjective

ADV adverb

APPR preposition, left part of circumposition

APPRART preposition with article folded in

APPO postposition

APZR right part of circumposition

ART definite or indefinite article

CARD cardinal number

FM foreign word

ITJ interjection

KOUI subordinating conjunction with “zu” and infinitive

KOUS subordinating conjunction with sentence

KON coordinating conjunction

KOKOM comparative conjunction
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Tag Description

NN common noun

NE proper noun

PDS demonstrative pronoun that substitutes

PDAT demonstrative pronoun that adds an attribute

PIS indefinite pronoun that substitutes

PIAT indefinite pronoun that adds an attribute, no article

PIDAT indefinite pronoun that adds an attribute, with article

PPER non-reflexive personal pronoun

PPOSS substituting possessive pronoun

PPOSAT attribute adding posessive pronoun

PRELS substituting relative pronoun

PRELAT attribute adding relative pronoun

PRF reflexive personal pronoun

PWS substituting interrogative pronoun

PWAT attribute adding interrogative pronoun

PWAV adverbial interrogative or relative pronoun

PAV pronominal adverb

PTKZU “zu” before infinitive

PTKNEG negation particle

PTKVZ particle part of separable verb

PTKANT answer particle

PTKA particle associated with adverb or adjective

TRUNC first member of compound noun

VVFIN full finite verb

VVIMP full imperative
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Tag Description

VVINF full infinitive

VVIZU full infinitive with “zu”

VVPP full past participle

VAFIN auxilliary finite verb

VAIMP auxilliary imperative

VAINF auxilliary infinitive

VAPP auxilliary past participle

VMFIN modal finite verb

VMINF modal infinitive

VMPP modal past participle

XY non word with special characters

$, comma

$. sentence ending punctuation

$( other sentence signs, sentence internal

Table 29.: Stuttgart-Tübingen Tagset



B

INDUCED GRAMMAR RULES

b.1 english grammar

Score Context Head Body

74270.63177582319 0 P#1 DT JJ NN

88061.77848216216 0 P#1 DT NN

54369.84806897123 0 P#2 TO VB

46920.47910752379 0 P#3 $ CD

37468.83221512519 0 P#4 MD VB

19711.39645199556 0 P#5 IN JJ NNS

19219.0273942361 0 NNP NNP NNP

17637.317918311677 0 P#1 DT NNP NN

18531.742363575035 0 P#5 IN P#1

15969.104090173903 0 P#5 IN JJ NN

13975.020436707462 0 P#5 IN P#3 CD

13128.592962014069 0 P#6 IN NNP

10612.805772946822 0 P#5 IN DT NNS

9553.013073822713 0 P#5 IN PRP$ NN

9318.700320753913 0 P#7 IN DT NNP

204
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Score Context Head Body

8499.264192814693 0 NNS JJ NNS

10500.654740832344 0 NN JJ NN

11157.89577141539 0 P#5 IN NN

10841.842572036125 0 P#5 IN NNS

9156.91268208367 0 P#8 IN CD

7196.4602971582 0 P#9 NNP POS NN

6117.317345499176 0 P#5 IN PRP$ NNS

6489.379111706673 0 P#1 PRP$ NN

6046.867614410518 0 P#10 IN DT JJ

5852.413112390717 0 P#1 DT NNS

Table 30.: Excerpt from an induced English Grammar

b.2 german grammar

Score Context Head Body

85301.30911785517 0 P#1 ART ADJA NN

117015.77655234578 0 P#1 ART NN

49261.27327078488 0 NN ADJA NN

29667.353413361485 0 P#2 APPRART NN

26686.12227771866 0 VVINF PTKZU VVINF

15291.533424746702 0 P#2 APPR P#1

17384.356347418347 0 P#2 APPR NN

13754.112343966988 0 P#1 PPOSAT NN

11708.314692074633 0 P#2 APPR NE
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Score Context Head Body

11077.22866653416 0 P#1 PIAT NN

9319.870809583754 0 P#2 APPR CARD NN

6310.341614290629 0 P#2 KON NN

6089.243463766439 0 ART APPR ART

6023.08848350878 0 ART ART ADJA

5070.9184982035895 0 P#3 PDAT NN

4600.599859217811 0 P#4 CARD NN

4044.144153528813 0 NE NE NE

4980.356560655746 0 NE ART NE

2604.3767780827943 0 NE NE KON NE

2528.081738180467 0 P#1 P#1 P#2 P#2

2324.175121909172 0 P#5 APPR CARD

2273.6115896895276 0 VVPP P#1 VVPP VAFIN

2093.972408353057 0 NN NN P#2

2128.1470676202857 0 P#1 APPR P#3

2045.8557943292808 0 P#1 P#1 KON P#1

Table 31.: Excerpt from an induced German Grammar
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