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Abstract

Soot particles are important components of the atmosphere; they play a significant role in the

balance of global climate, and also contribute to adverse effects upon human health. Soot par-

ticles are usually emitted as a result of incomplete combustion of fossil fuels and biomass. The

current anthropogenic emission rates are highly uncertain, both on regional and global scale,

which can be partly attributed to different experimental methods for the quantification of soot.

This uncertainty propagates in estimations of the radiative forcing by regional models.

In the atmosphere, soot particles influence the radiation balance by absorbing visible sunlight.

It is important to note that the mass absorption coefficient, which is highly relevant for radiative

forcing calculations, is not constant but can increase during atmospheric aging processes, chang-

ing the state of mixture of soot. Current values of the mass absorption coefficient, available in

literature show a large variability. It is not clear if this variability is due to the state of mixture

of soot or different measurement devices.

In the present work, a new method for determining the mass absorption coefficient based on

successive measurements of the light absorption coefficient and soot mass concentration of atmo-

spheric samples is presented. Basically, the soot mass concentration in an atmospheric particle

sample from Multi Angle Absorption Photometer (MAAP) measurements is subsequently deter-

mined by Raman-spectroscopy. As a representative data basis, a large number of atmospheric

samples are available from different observation sites of the German Ultrafine Aerosol Net-

work (GUAN), ranging from traffic-related sites, regional background sites to mountain sites

in Central Europe. The derived mass absorption coefficients for selected samples are discussed

regarding their state of mixture using a microphysical optical model.

Based on these insights, a validation of the meso-scale Weather Research and Forecast (WRF)

model on-line coupled with a chemistry module (WRF-Chem) is performed for Europe by using

a high resolution soot emission inventory. The simulated absorption behavior is adjusted by

using measured mass absorption coefficients, in order to account for the true mixing state of

atmospheric soot particles. Based on the predictions of the WRF model for one selected episode,

new quantitative values for the radiative forcing of soot particles in the troposphere over Europe

are derived.
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Referat

Rußpartikel sind bedeutende Komponenten in der Atmosphäre. Sie spielen eine wichtige Rolle

in der globalen Strahlungsbilanz und haben negative Effekte auf die menschliche Gesundheit.

Rußpartikel werden als ein Produkt unvollständiger Verbrennung fossiler Energieträger und

Biomasse emittiert. Aktuelle globale und regionale Emissionsraten sind sehr unsicher, was teil-

weise auf unterschiedliche Messmethoden von Rußpartikeln zurückgeführt werden kann. Diese

Unsicherheiten pflanzen sich in den Berechnungen zum Strahlungsantrieb durch Modelle fort.

Die Strahlungsbilanz in der Atmosphäre wird durch die Absorption sichtbaren Sonnenlichtes

durch Rußpartikel beeinflusst. Das Absorptionsverhalten wird dabei maßgeblich durch den

Mischungszustand des Rußes mit anderen chemischen Komponenten beeinflußt. Für die Be-

rechnung ihres Strahlungsantriebes sind Massenabsorptionskoeffizienten von großer Bedeutung,

da sie vom Mischungszustand abhhängig sind. Aktuelle Literaturwerte zeigen eine große Vari-

abilität des Massenabsorptionskoeffizienten. Es ist jedoch nicht klar, ob die Variabilität durch

Veränderungen im Mischungszustand oder unterschiedliche Messmethoden für Ruß hervorgerufen

wird.

In der vorliegenden Arbeit wird eine neue Methode zur Bestimmung atmosphärischer Massen-

absorptionskoeffizienten vorgestellt. Sie beruht auf aufeinander folgende Messungen der Licht-

absorption und der Rußmassenkonzentration für ein und dieselbe atmosphärische Partikelprobe.

Zur Lichtabsorptionsmessung werden Mehrwinkelabsorptionsphotometer und zur Messung der

Rußmassenkonzentration ein Raman-Spektrometer verwendet. Eine repräsentative Basis atmo-

sphärischer Partikelproben aus verkehrsnahen, regionalen und Mittelgebirgsstationen wurden im

deutschen Messnetz für ultrafeine Partikel (engl. German Ultrafine Aerosol Network, GUAN)

gesammelt. Für ausgewählte Proben wurden Massenabsorptionskoeffizienten bestimmt und mit

einem mikrophysikalischen partikeloptischen Modell hinsichtlich des Effektes des Mischungszu-

standes diskutiert.

Basierend auf diesen Erkenntnissen wird das mesoskalige Wettermodell (engl. Weather Research

and Forecast model, WRF), welches mit einem Chemiemodul gekoppelt ist (WRF-Chem) für Eu-

ropa validiert. Für die Berechnungen werden neue und räumlich hochaufgelöste Emissionsdaten

von Rußpartikeln verwendet. Das im Modell simulierte Absorptionsverhalten wird unter Ver-

wendung der Massenabsorptionskoeffiezienten an die Messungen angepasst, um so den wahren

Mischungszustand von atmosphärischen Rußpartikeln indirekt zu berücksichtigen. Mit diesen

Berechnungen werden neue Werte des Strahlungsantriebes von Rußpartikeln in der Troposphäre

über Europa vorgestellt.
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1. Introduction

Soot particles are a product of an incomplete combustion of fossil fuels and biomass. On a global

scale, soot particles emerge predominantly from man-made processes although natural sources

exist as well. Ice core analysis taken in Greenland (McConnell et al., 2007), for example, show

that soot particles had been present in the atmosphere already long before the industrialization.

The derived concentrations showed a strong temporal variability and were attributed to biomass

burning. After 1850, the concentrations rapidly increased to their maximum around 1920, which

is associated with the combustion of fossil fuels, such as coal. After 1950, the concentrations

decreased to their current level, although the energy consumption increased. The reason for

the decrease is possibly the improvement of technological processes. Present-day emissions are

mainly due to a combination of biomass and fossil fuel burning. Largest amounts of soot from

fossil fuel burning are currently emitted in industrialized countries of the northern hemisphere

as a result of more or less controlled energy production processes. Biomass burning of savanna,

forests and agricultural waste dominate the soot emissions in Africa and South America (Bond

et al., 2004). Soot particles are chemically rather inert with particle diameters around 100 nm

being the most frequent, so that they may be transported across the globe even to the remotest

regions like the Arctic (Heintzenberg, 1982).

Soot particles are good absorbers of solar radiation. They are characterized by an ability to

absorb shortwave radiation across a broad spectral region and thereby heating their environ-

ment. Because of this absorption, soot decreases the reflectivity of the surface-atmosphere-cloud

system. Deposited on snow, it may also lower its reflectivity. On global scale, the direct ra-

diative forcing of soot is positive at top of the atmosphere and negative at the surface, leading

to an overall warming effect (Ramanathan and Carmichael, 2008). Moreover, if soot particles

are incorporated into cloud processes they may reduce cloud cover by heating their environment

(Ackerman et al., 2000), which is also designated as the semi-direct effect. The Intergovern-

mental Panel on Climate Change (IPCC, Forster et al. (2007)) summarized the positive direct

radiative forcing of soot to be in the range of Methane, but with a large uncertainty. Reported

values of the radiative forcing are 0.2± 0.15 W m−2 for soot from the combustion of fossil fuel,

0.03± 0.12 W m−2 for soot from biomass burning and 0.1± 0.1 W m−2 for soot deposited on

snow. Besides the effect on climate, soot has an effect on human health. They may influence

the cardiovascular system of the human body (Peters et al., 2000) and are carcinogenic.

Primary soot particles have a spherical shape and are decomposed of graphitic layers. Shortly

after emission, these primary particles aggregate and form fractal shaped clusters. During at-

mospheric aging processes, their corresponding optical and microphysical properties may change

as a result of internal mixture due to coagulation, condensation, or chemical reactions on the

particle surfaces. The associated change in state of mixture makes their uniform detection across

all the stages of their aging process difficult. There are many definitions for soot in literature,
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basically depending on the method of their determination. Photometric methods base on the

change in light transmittance through a particle laden filter medium. The change in transmit-

tance may be due to scattering and absorption of light by the particles. Excluding the change

due to scattering, the absorption coefficient may be derived. It can be converted to a mass

concentration of black carbon (BC), applying a mass absorption coefficient. It is obvious that

the term black carbon entirely accounts for the absorptive properties of soot. Another principle

is the photoacoustic measurement. Particles are irradiated with periodically modulated visible

light. Because of absorption by soot particles, this leads to a periodical change in heat transfer

from the particles to the carrier gas. This, in turn, leads to small pressure changes and hence

to a measurable acoustic signal (Petzold and Niessner, 1996). It is proportional to light absorp-

tion and therefore to BC mass concentrations. A relatively new technique is measuring soot

particles by laser induced incandescence. The measurement principle is based on the heating

of soot by intensive laser light until evaporation. The evaporation temperature is very high, so

that radiation in the near-infrared spectral region is emitted. The emitted radiation is, in turn,

characteristic for the composition of the analyzed particle (Schwarz et al., 2006). A common

approach measuring atmospheric soot particles is based on the heating of the sample in certain

temperature steps. In a first step, the organic carbon (OC) fraction is released in an helium

or nitrogen atmosphere. Further heating of the sample in an oxygen-containing atmosphere

leads to the pyrolysis of the elemental carbon (EC) fraction. EC is associated with BC, but not

necessarily the same.

Another method, which is sensitive to the graphitic structures in soot particles is Ramanspec-

troscopy. The species measured with this method is therefore designated as graphitic carbon

(GC). Rosen and Novakov (1977) unambiguously identified GC in atmospheric samples by Ra-

man spectroscopy based on the characteristic band structure in the spectrum. In the following

years, the application of Raman spectroscopy in atmospheric studies on GC was rare. Ivleva

et al. (2007) applied Raman microspectroscopy for the analysis of soot, humic like substances

(HULIS) and inorganic compounds in size resolved atmospheric particle samples. They found

that GC from the samples is nearly similar to diesel soot in terms of their Raman signal. In ad-

dition, they found a difference in spectral features between spring/autumn and summer/winter

samples. Signals from multiple chemical components such as sulphate, nitrate and GC in some

Raman spectra were attributed to an internal mixed state of atmospheric particles. In addition,

mineral particles could be identified by Raman spectroscopy (Batonneau et al., 2006). In several

studies it was shown that multi-wavelength Raman spectroscopy can be used to determine the

reactivity of diesel soot (Schmid et al., 2011).

Keller and Heintzenberg (1997) developed a method for the quantification of GC in atmospheric

particle samples on polycarbonate filters by near infrared Fourier-transform (NIR-FT) Raman

spectroscopy. Mertes et al. (2004) further developed this method to derive the GC content in

particle samples on quartz fiber filters by NIR-FT Raman spectroscopy. Here, a new method

is presented following these approaches. It is capable for the determination of GC on glass mi-

crofiber filters applied in a continuously operating absorption photometer (Multi Angle Absorp-

tion Photometer, MAAP). The method is calibrated for a mass determination using gravimetric

measurements of particle samples containing well characterized test soot. Since the absorption
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coefficient is measured by the MAAP, two independent measurements for individual samples

on glass microfiber filters are available. This enables a determination of the atmospheric mass

absorption coefficient concerning GC (δGC) as an important property of soot particles, since it

may be directly applied in radiative transfer calculation. The application of this method on a

broad spectrum of atmospheric particle samples with traffic to mountain characteristics from the

German Ultrafine Aerosol Network (GUAN), allows a systematic analysis of δGC . Moreover, the

continuous sampling inside the MAAP with a minimum of maintenance enables a subsequent

selection of specific episodes to be analyzed with respect to δGC . With the aid of other mea-

surements characterizing atmospheric particles concerning their size distribution in combination

with a microphysical-optical model, the reason for changes in δGC will be examined. Current val-

ues from literature show a large span depending mainly on the particle composition, especially

on the mixing state. The microphysical optical model will be used to analyze the mixing state of

soot particles. A large fraction of the observed span is may be also due to the usage of different

measurement devices for the absorption coefficient as well as the mass concentrations. Since

mass concentrations of EC are often related to the absorption coefficient in other studies, the

mass absorption coefficient concerning EC (δEC) is mostly available in literature. The relation

between δGC and δEC will be discussed throughout this study.

In this work, the Weather Research and Forecast model coupled with a chemical transport mod-

ule (WRF-Chem) will be used for estimating the radiative forcing of soot particles in Central

Europe during an episode for which values of δGC were determined with the new Raman method.

The model will first be extensively validated using aerosol measurements from the GUAN net-

work. A sensitivity study of soot mass concentrations on emissions will be carried out in order

to improve their simulations. The model values of mass absorption coefficient (δmod) will be

adjusted to measurements of δGC , in order to improve the simulations of soot light absorption

and calculate a reliable radiative forcing.
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2.1. Life-cycle of atmospheric soot particles

Soot particles are a product of incomplete combustion processes, with usually either biomass

or fossil fuel as a combustible. Their morphological structure and chemical properties depend

on the conditions (e.g. temperature) during and shortly after the combustion process and will

be explained in more detail in Section 2.3.3. According to a comprehensive inventory (Bond

et al., 2004), global emissions of BC are estimated to be 8 tg yr−1 as illustrated in Figure 2.1.

This global emission rate is, however, uncertain by a factor of 2. Open biomass burning of

savanna or forests play an important role, since it accounts for 41 % of all BC emissions. The

most important producers of anthropogenic BC emissions are industry (15 %), transport (12 %)

and domestic (26 %), which account for the combustion of coal, diesel fuel, agricultural waste

and other burnable material. Freshly emitted particles from high-temperature combustion are

aggregates of small spherical primary particles, which usually have 100 nm and less as a typical

diameter. Under favourable conditions fractal aggregates with sizes up to 1µm may form. Fresh

produced soot particles are “fluffy” and highly hydrophobic (Weingartner et al., 1997). During

atmospheric aging processes these open fractal aggregates collapse to more compact and often

nearly spherical clusters. Due to condensation of gaseous compounds or coagulation with other

non-soot particles, a fraction of this carbonaceous species may further grow and thereby be-

coming internally mixed and more hydrophilic. Usually, this change in mixing state completely

changes the particle’s chemical reactivity, its activation behaviour to cloud droplets, and the

optical properties of atmospheric soot particles. Due to a typical lifetime between 2 and 10 days

(Ogren and Charlson, 1983; Cooke and Wilson, 1996), soot particles may be transported over

long distances. An important removal process is wet deposition as evidenced from analyzing

rain water samples in tropical (Ducret and Cachier, 1992) and rural continental sites (Ogren

et al., 1984). It is not clear if this is a result of a collision of internally or externally mixed

soot particles with rain droplets below the cloud or due to activation of internally mixed soot

particles to cloud droplets. Dry deposition is of minor importance, because of particles sizes

and associated deposition velocities. Soot may also be deposited in snow, thereby accelerates

its melting and reduces the surface albedo (Clarke and Noone, 1985).

Due to their absorptive effect on incoming solar radiation, soot particles exert a positive net

direct radiative forcing at top of the atmosphere as will be defined in Section 2.4. The Intergov-

ernmental Panel on Climate Change (IPCC, Forster et al. (2007)) summarized the globally and

anually averaged fossil fuel BC radiative forcing to be 0.2± 0.15 W m−2. The radiative forcing

of BC from biomass burning is estimated to be 0.03± 0.12 W m−2. The effect of BC deposited

on snow is 0.1± 0.1 W m−2 with a low level of scientific understanding. A comparison of these

values with the radiative forcing of Methane (0.48± 0.05 W m−2) shows the strong effect of BC
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Figure 2.1.: Soot life cycle from emission (numbers taken from Bond et al. (2004)), over mod-
ifications from an external to an internal mixture to important removal processes
like wet deposition.

on the radiation balance in the atmosphere.

2.2. Particle number size distributions

Aerosols are defined as liquid or solid particles suspended in gas as a whole. Atmospheric

aerosols cover a wide range of sizes between a few nanometer and tens of micrometer. They

may be represented by their number size distribution, which is the number of particles classified

in size bins and covering the appropriate size range. To make number concentrations in bins

with a different width comparable to each other, the number in each bin is normalized by the

width. Since size distributions of atmospheric particles cover a broad size range, the bins are

often chosen, so that their width is the same on a logarithmic scale. The resulting normalized

number concentration is then designated as dN
d logDp

. The total particle number may be obtained

by the integral

N =

∫ Dp2

Dp1

dN
d logDp

dDp. (2.1)

Since in practice the number size distribution is no continuous function, the integral has to be

replaced by a sum. The total particle number is also called the zero’th moment of the number

size distribution. The total particle mass is the third moment and is calculated from

m =
ρpπ

6

∫ Dp2

Dp1

Dp
3 dN
d logDp

dDp (2.2)

with ρp being the particle density. Atmospheric particle number size distributions may be ap-

proximated by a set of overlapping log-normal functions. Log-normal distributions are calculated

using the geometric mean diameter Dpg with

logDpg =

∑
i ni log Dpi

N
(2.3)
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and the geometric standard deviation σg with

log σg =

(∑
i ni(logDpi − log Dpg)2

N − 1

) 1
2

. (2.4)

Here, ni is the number of particles in each bin. Using Dpg and σg, the number size distribution

may be approximated by a log-normal function with

dN
d logDp

=
N√

2π log σg
exp

(
−

(logDp − logDpg)2

2(log σg)2

)
. (2.5)

Different diameter definitions are commonly used. The aerodynamic diameter is the diameter a

spherical particle with unit density would have if it settles with the same velocity as the actual,

perhaps non-spherical, particle. The settling velocity, in turn, is derived from the condition that

the drag force on the particle is equal and opposite of the gravity force. The volume equivalent

diameter is the diameter of a sphere that has the same volume as the particle under consideration.

Considering the motion of a particle in an electric field, the mobility diameter can be defined.

It is the diameter of a sphere that has the same electrical mobility as the measured particle.

When measuring aerosol particles with light scattering techniques, the optical diameter is used,

which depends on the chemical composition, size and the shape of the detected particle. Since

in reality not all particles have a spherical shape, a factor has to be introduced, which relates the

properties of the non-spherical particle to that of a volume equivalent sphere. The shape factor

is defined as the ratio of the restistance force of the non-spherical particle to the restistance

force of the sphere having the same volume and settling velocity. Definitions of properties of

atmospheric particles in this section are taken from Hinds (1999).

2.3. Light scattering by atmospheric particles

This Section introduces some basic concepts to describe the interaction of atmospheric parti-

cles with solar radiation. The process of elastic1 light scattering can be seperated into three

regimes: the Rayleigh- and Mie-scattering and the geometric optics. The three regimes may be

characterised by the size parameter

x =
πDp

λ
(2.6)

of a spherical particle being illuminated by light with a wavelength λ. For x� 1, which is the

case for very small scatterers on molecular scale, the interaction of light may be described by

Rayleigh-scattering. In cases where x� 1, light incident on a particle can be subdivided in

a large number of rays. At the boundary of the particle, each ray conforms to the rules of

geometric optics, so that parts of light are transmitted and reflected at the interface between

both media. In the case of fine particles, x is in the same size range as the wavelength of the

incoming light. For these particles, Mie theory has to be applied, which will be briefly introduced

in the next section. In general, the theory of elastic scattering may predict the scattered field of

electromagnetic radiation having the same wavelength as the incident radiation. An additional

1no wavelength change between incident and scattered radiation
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process that occurs during the interaction of light with a particle is the process of inelastic

scattering. This means that some of the energy is retained in the scattering system, leading to

an emission of light of a different wavelength. This process will be described in Section 2.3.2.

2.3.1. Elastic light scattering

Important aspects of the theory of elastic light scattering are presented in this Section following

mainly the book of Bohren and Huffman (1983). An incoming electromagnetic wave on a

particle leads to oscillatory movements of electric charges and thereby a reradiation in all spatial

directions. This process is called light scattering. Some energy may be transformed to e.g

thermal energy, which is called absorption. Following the publication of Mie (1908), an exact

treatment of the problem of scattering of light by a homogeneous sphere in a non-absorbing

medium is given in Bohren and Huffman (1983). Starting with Maxwells equations for the

propagation of electromagnetic waves, the electric and magnetic fields in- and outside of a

particle may be calculated. The scattering and extinction of a particle is described by the cross

sections

Csca =
2π

k2

∞∑
n=1

(2n+ 1)(
∣∣an∣∣2 +

∣∣bn∣∣2)
Cext =

2π

k2

∞∑
n=1

(2n+ 1)Re{an + bn},
(2.7)

which are calculated using the expansion coefficients for the scattered field an and bn and the

wavenumber k of the incoming radiation. The expansion coefficients depend on the size pa-

rameter as given in Equation 2.6 and the complex refractive index of the scattering material.

The refractive index is a property of the medium in which electromagnetic waves propagate and

describes its scattering and absorption behaviour by the real and imaginary part, respectively.

The angle dependence of scattering of a spherical particle is also a solution of Mie theory. In

the Rayleigh regime, depolarized light is scattered symmetrically in forward (0 ◦) and backward

(180 ◦) direction with a minimum at a scattering angle of 90 ◦. As x increases, the angular

scattered light becomes more and more asymmetric with higher intensities in forward direction.

It shows a more complex angular pattern. The angular dependence of the scattered light may

be illustrated by the phase function, which is defined as the differential scattering cross section

(scattering into a specific direction) normalised by the total scattering cross section. It can

be interpreted as the probability that light is scattered into a specific direction. The shape

of the phase function may be characterized by the asymmetry parameter, which is negative if

backscattering is dominant and positive vice versa.

From the difference between extinction and scattering cross sections, the absorption cross section

Cap = Cext − Csca. (2.8)

may be obtained. Considering an ensemble of absorbing and non-absorbing particles of different

size and chemical composition, coefficients of extinction, scattering and absorption may be

calculated. Different chemical compounds are considered by different refractive indices. For

known volume fractions of individual compounds, the refractive index of the ensemble can be

7
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derived by applying a mixing rule. The simple volume averaging rule is often used, although

it is physically not consistent for small absorbing insoluble carbon particles mixed with other

material (Bond and Bergstrom, 2006). The average refractive index is derived from the sum

of each volume fraction multiplied by the appropriate refractive index. Another mixing rule is

called the effective medium or Maxwell Garnett approximation, which represents the ensemble as

small spherical carbon particles randomly distributed in the other material. Another possibility

is that the absorbing carbon sphere is surrounded by a shell of uniform thickness in which all

other non-absorbing compounds are mixed. This shell core configuration was first applied by

Ackerman and Toon (1981). A change in state of mixture of carbon may lead to a significant

increase in the light absorption ability (Fuller et al., 1999). Having the refractive index of the

ensemble of particles, the extinction, scattering and absorption coefficients can be calculated by

integrating the appropriate cross sections over all particles in the size range between Dp1 and

Dp2

σext;sca;ap =

∫ Dp2

Dp1

Cext;sca;ap(Dp)
dN

d logDp
dDp. (2.9)

The quotient of σsca and σext is a dimensionless number and can take values between 0 and

1. It is a measure of the reflectivity of the aerosol and is called the single scattering albedo

(SSA). Taking into account that the absorption coefficient is the difference between extinction

and scattering coefficient, it can be derived from the equation

σap = σext(1− SSA). (2.10)

Another important quantity, describing the absorption behaviour of atmospheric particles is the

mass absorption coefficient concerning GC or EC, which can be calculated by

δGC;EC =
σap

mGC;EC
. (2.11)

2.3.2. Inelastic light scattering-Raman effect

Light that is incident on a molecule or a crystal lattice may be modified, so that light of another

wavelength may result after the interaction. This process is called inelastic scattering, since some

of the photon energy may remain in the scattering system as excited vibrations or rotations after

the scattering process. In cases when the scattering system is a crystal (e.g. graphite), phonones2

may be excited. The effect of inelastic scattering was discovered by Sir Chandrasekhara Venkata

Raman in the year 1928 and is therefore named Raman effect. He focused sunlight and put 2

filters between the lens and the scattering material. With this measurement setup, no light

could be observed behind the sample. When removing one filter from the incident beam and

placing it between the sample and the observer, some light was visible. This was the proof that

a wavelength change must have been occured in the sample (Raman and Krishnan, 1928).

The Raman effect is illustrated in Figure 2.2. The incoming Photon has the energy hωi, where ωi

is the frequency and h is the Planck constant. The molecule is in the energy state Ei. After the

scattering process a photon with the energy hωs may be emitted. The energy difference h(ωi-

2Quantized oscillations in a crystal lattice
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Figure 2.2.: Illustration of the inelastic photon scattering (Raman scattering) (a), exem-
plary term diagram for Stokes scattering (b) and anti-Stokes scattering(c) (cf.
Demtröder, 1993).

ωs) may be converted to rotational or vibrational energy of the molecule (cf. Figure 2.2 (a)).

There are two possible processes that may occur in dependence on the initial energy state Ei

of the molecule. If it is in a ground state when the photon is impinging, it may be lifted to a

virtual energy state Ev. From that state, the photon with energy hωs may be emitted, while

leaving the molecule in an excited state Ef . This process is called Stokes Raman scattering (cf.

Figure 2.2 (b)). If the incoming photon interacts with a molecule that is already in an excited

state, a photon with a higher energy than the incoming photon maybe emitted. This process is

called anti Stokes scattering (cf. Figure 2.2 (c)). Both effects may be observed simultaneously,

but since more molecules are in an electronic ground state, the intensity of the Stokes radiation

is commonly higher. In the Raman spectrum, the intensity is plotted against the frequency shift

ωi-ωs (cf. Demtröder, 1993).

2.3.3. Raman effect of soot

In a single ideal graphite crystal composed of stacked layers of C-atoms (graphene) in hexagonal

arrangement, an incoming laser beam would be inelastically scattered and thereby inducing an

in-plane vibrational stretching of the atoms. This Raman active mode has an E2G symmetry

and is located at a wave number of 1580 cm−1 (Tuinstra and Koenig, 1970; Reich and Thomsen,

2004). It is designated as the G-band. In cases when the graphitic lattice contains defects,

another band appears in the Raman spectrum. It is attributed to a A1g mode of small crys-

tals or boundaries of larger crystallites with a Raman shift of 1355 cm−1 (Tuinstra and Koenig,

1970) and is designated as the D-band. The D-band position depends on the excitation energy

(Thomsen and Reich, 2000). The width of the D-band can be a proxy for the degree of disorder

in the graphite lattice (Cuesta et al., 1994; Ivleva et al., 2007). In addition, it was found by

Tuinstra and Koenig (1970) that the intensity ratio of the D and G-band is proportional to the

crystallite size. In the Raman spectrum of graphite, a shoulder at the high energy site of the

G-band can often be observed. It can be attributed to an E2G mode in bounding graphene

layers (Dresselhaus and Dresselhaus, 1981) and is designated as the D2-band, following Sadezky

et al. (2005).

Freshly emitted soot particles are aggregates of spherules containing graphene layers that are

often rolled up to onion-like structures and often occur together with other chemical compounds.

However, for atmospheric soot particles the band structure is even more complex than previously
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Figure 2.3.: Raman spectrum of an atmospheric particle sample from a regional observation
site. The spectrum is well reproduced by five Lorentzian shaped bands (G, D1, D2,
D3, D4).

described for ideal graphite crystals. The Raman signal in the wave number region between 800

and 1800 cm−1 is almost always a decomposition of 5 overlapping bands (Sadezky et al., 2005),

originating from different excitations in the soot structure. An exemplary Raman spectrum of

an atmospheric particle sample is shown in Figure 2.3. Two major bands can be seen in the

spectrum of the atmospheric sample. The G-band at around 1600 cm−1 is shifted to larger wave

numbers, which is an effect of the D2-band. The presence of D2 in atmospheric soot particles

gives evidence that there are many small graphitic domains, i.e. many small graphite crystal-

lites, whose boundaries contribute to this mode. Although the band at 1600 cm−1 might be a

composition of the G and the D2 band, it will be designated as the G-band in the following.

This position of the major band was also observed in other studies measuring the Raman spec-

trum of atmospheric particle samples (Dippel and Heintzenberg, 1999; Ivleva et al., 2007). The

second and broader signal is located at around 1300 cm−1 and is dominated by the D-band. To

be consistent with Sadezky et al. (2005), it will be designated as D1-band. The shift to this

wavenumber may be explained by the excitation wavelength dependence of this mode. Following

Thomsen and Reich (2000), the D1-band position for an excitation wavelength of 1064 nm is at

1280 cm−1. A shoulder on the lower energy side of the D1-band can be seen in Figure 2.3. This

mode can be attributed to stretching vibrations in polyene-like structures (Dippel et al., 1999)

and is designated as D4 (Sadezky et al., 2005). The high intensity between the G and D1 mode

was suggested to be caused by an amorphous carbon fraction (organic molecules, fragments and

functional groups) and is designated as the D3 band (Sadezky et al., 2005). Since the graphite

signals in the Raman spectra of atmospheric particle samples are obvious, the carbonaceous

species detected by Raman-spectroscopy is designated as graphitic carbon (GC).

2.4. Radiative forcing

The spectral distribution of solar radiation that enters the atmosphere has a maximum at

wavelengths around 0.45 and 0.5µm and follows Plank’s law for blackbody radiation at 5777 K.

This shortwave radiation is absorbed by ozone in the ultraviolet spectral region. In the near
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infrared spectral region, absorption by greenhouse gases (e.g. CO 2) and water vapour are

important. In the visible spectral region, scattering and absorption by aerosols and clouds are

substantial processes. The earth surface is also an important absorber of solar radiation. Around

70% of the incoming light are absorbed by the atmosphere and the earth’s surface.

The radiant flux density (F ) is defined as the radiant energy across a surface element and has

the unit of W m−2. It is called irradiance, when it is received on a surface. Here, the upward

flux is denoted with F+ and the downward flux with F−. The shortwave radiation absorbed

at the surface is transformed to terrestrial longwave radiation, which is emitted back into the

atmosphere. In principle, the net radiation may be expressed in terms of upward and downward

longwave (subscript l) and shortwave (subscript s) radiant fluxes as

F ∗ = F−s − F+
s + F−l − F

+
l . (2.12)

The net radiation at the surface is balanced by fluxes of sensible, latent and ground heat.

Calculating net radiation at the top of the atmosphere (TOA), F−l may be set to 0, since

no longwave radiation enters the atmosphere. In addition, F−s is the solar constant, which is

not really a constant, since it depends on the solar zenith angle and the eccentricity of the

earth’s orbit around the sun. Following the IPCC definition, the radiative forcing of the surface-

troposphere system is the change in net (down minus up) irradiance (solar plus long-wave; in

W m2) at the tropopause due to the perturbation in or the introduction of a forcing agent (e.g.

CO2). Stratospheric temperatures are allowed to readjust to radiative equilibrium, but with

surface and tropospheric temperatures and state held fixed at the unperturbed values (Forster

et al., 2007). This definition is usually applied for estimating the globally and annually averaged

radiative forcing for gases and aerosol particles. For aerosol particles the instantaneous radiative

forcing at top of the atmosphere is often calcultated, since stratospheric adjustment to radiative

equilibrium is likely to be small (Haywood and Shine, 1997). The instantaneous aerosol radiative

forcing ∆F can be calculated at the surface by

∆F = F ∗aer − F ∗0, (2.13)

which is the difference of the net irradiance for the cases that aerosol particles have a feedback

(aer) or no feedback (0) on radiation. At TOA, Equation 2.13 reduces to

∆F = (F+
s + F+

l )0 − (F+
s + F+

l )aer, (2.14)

since downward shortwave radiation is the same for both cases and no longwave radiation en-

ters the atmosphere. The net radiative forcing in the atmosphere may be calculated from the

difference of the net radiative forcing at TOA and at the surface.

For the calculation of the radiant fluxes at the surface, it is important to know what happens

with the radiation as it passes through the atmosphere. Imagine a small volume element con-

taining aerosol particles and gases. Radiant energy passing through this element along a path

may be lost due to absorption and scattering. It is also possible, that some radiant flux is

gained, because of scattering from other directions or thermal emission of the medium itself.

The conservation of energy leads to the general equation of radiative transfer, that describes the
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change in radiance along a path of propagation in a medium due to scattering, absorption and

thermal emission.

In many regional models it is sought to derive F+ and F− in different levels of the model atmo-

sphere in terms of integrated values over all directions of incidence of solar radiation. For this

purpose, so called two-stream approximations are often used. It is common to substitute the

radiance3 in the equation of radiative transfer by a linear function containing the cosine of the

scattering angle, which is called the Eddington method. The phase function, which describes the

scattering direction of light by particles in the atmosphere is also approximated. For isotropic

scattering, it can be set to one, which is the simplest but not realistic case. The phase function

may also be approximated by a second order Legendre polynomial containing the cosine of the

scattering angle and the asymmetry factor. Applying these approximations to the radiative

transfer equation leads to a system of linear differential equations for the change of F+ and F−

with a changing optical thickness of the medium. This rough description of the complicated

topic of atmospheric radiative transfer and possible solution methods is described in more detail

in several books (e.g. Thomas and Stamnes, 2002; Lenoble, 1993; Liou, 2002).

3energy flux in a solid angle and across a surface perpendicular to the direction of incidence
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3. Methods

3.1. Experimental data collection

3.1.1. The German Ultrafine Aerosol Network (GUAN)

In the present study, the data from 10 observation sites of the GUAN1 network is used. This still

growing network arose from an environmental research project aimed on the characterization

of chemical and physical properties of ultrafine aerosol particles (Birmili et al., 2009). It offers

the opportunity to measure ambient aerosol concentartions in environments as diverse as street

canyons, urban residential areas, regional background and mountain sites, using state-of-the-art

measurement devices. All instruments will be described in detail in Section 3.2. All measure-

ment sites of GUAN used in the present study are summarized in Table 3.1 and Figure 3.1.

3.1.2. GUAN measurement sites

Measurement sites at mountain locations are situated in the Alps, the black forest and in the

prealpine lands. The highest mountain, the Zugspitze, has a altitude of 2650 m. It is operated

by the Federal Envrionmental Agency (Umweltbundesamt, UBA) and by the German Meteo-

rological Service (Deutscher Wetterdienst, DWD). Due to its altitude, nearly free tropospheric

conditions may be observed especially in the winter months. In the summer months, this location

is often influenced by conditions associated by the planetary boundary layer, due to extended

vertical mixing. The other mountain sites Hohenpeißenberg and Schauinsland are at a height of

988 m and 1210 m. They are operated by the DWD and UBA, respectively.

The regional site in Bösel is part of the air quality monitoring system of Lower Saxony (Staatliches

Gewerbeaufsichtsamt, Hildesheim). It lies to the south of a village and is mostly surrounded

by large agricultural areas, but maybe also influenced by the local industry. Nearly free of such

effects is the regional measurement site in Waldhof, which is operated by the UBA. A third

regional observation site is Melpitz, which is operated by the institute for tropospheric research

(IfT). It is located to east of Leipzig and is surrounded by large areas of grassland. It is equipped

with numerous physical and chemical measurement devices.

The measurement site at the IfT can be classified as an urban station, since it is located a few

kilometer to the east of the city center, approximately 100 m from the next main road. The inlet

is at a height of 16 m on the roof of the main building of the IfT, so that urban background

conditions are measured. Another urban site is in Augsburg, which is located in the southern

part of Germany and is operated by the Helmholtz Zentrum München.

The traffic site Leipzig-Eisenbahnstraße is situated in a street canyon, which is characterized

1http://wiki.tropos.de/GUAN
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Figure 3.1.: Geographical position of the measurement sites of the German Ultrafine Aerosol
Network (GUAN).

by buildings being 20 m apart and about 23 m high. It is located near the city center, but also

not far away from the IfT. The traffic situation shows a clear diurnal cycle with around 20000

vehicles per working day (Rose et al., 2006). A second traffic dominated measurement site is

located in Dresden. This site is part of the air quality monitoring network of Saxony (LFULG).

The geographical location of each measurement site is given in Figure 3.1.

3.1.3. Overview of instrumentation in GUAN

Atmospheric particles are sampled by using either PM10 or whole air inlets. At most measure-

ment sites, a cyclone (model SCC2.229, BGI, Waltham, USA) is applied to separate the PM1

fraction, since only fine and ultrafine particles should be characterized. The aerosol is dried

before the measurement using Nafion dryer.

The measurement sites of GUAN are equipped with Multi Angle Absorption Photometers

(MAAP), which measure the BC mass concentration. It can be converted to the absorption

coefficient at 637 nm by applying the mass absorption coefficient of 6.6 m2 g−1 as will be de-

scribed in Section 3.2.1. At Augsburg, the BC concentration is measured by an Aethalometer

(Type 8100, Thermo Fisher Scientific Inc.). This was compared to the MAAP and a correction

function was found by Birmili et al. (2010), so that the Aetholemeter output could be adjusted

to the MAAP output. The aerosol number size distributions are measured using either scanning

mobility particle sizers (SMPS) or twin differential mobility particle sizers (TDMPS), which

will be described in more detail in Section 3.2.2. Discontinuous measurements of the chemical

composition are performed by sampling particles with Berner impactors for subsequent analy-

sis. The graphitic carbon (GC) content is measured for selected episodes using the new Raman

method, which will be described in detail in Section 4.1. Details of the deployment of the mea-

surement systems are given in Table 3.1.
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Observation
site

Location Altitude Operator Type Continuous
measurements

Discontinuous
measurements

Leipzig-
Eisenbahnstraße

51.34◦ N,
12.37◦ E

90 m IfT Leipzig traffic TDMPS1+TD2,
MAAP3

Berner-54,
Raman5

Dresden-Nord 51.05◦ N,
13.74◦ E

115 m LFULG
Dresden

traffic TDMPS1, MAAP3

Leipzig-IfT 51.34◦ N,
12.37◦ E

90 m IfT-Leipzig urban TDMPS1+TD2,
MAAP3

Berner-54,
Raman5

Augsburg 48.36◦ N,
10.91◦ E

484 m HMGU urban TDMPS1+TD2,
Aethalometer6

Berner-54,
Raman5

Bösel 53.00◦ N,
7.97◦ E

13 m GAA
Hildesheim

regional SMPS7+TD2,
MAAP3

Berner-54,
Raman5

Melpitz 51.54◦ N,
12.93◦ E

86 m IfT-Leipzig regional TDMPS1+TD2,
MAAP3

Berner-54,
Berner-104,
Raman5

Waldhof 52.80◦ N,
10.76◦ E

55 m UBA regional SMPS7, MAAP3

Hohenpeißenberg47.80◦ N,
11.00◦ E

988 m DWD mountain SMPS7+TD2,
MAAP3

Berner-54,
Raman5

Schauinsland 47.91◦ N,
7.91◦ E

1210 m UBA mountain SMPS7+TD2,
MAAP3

Berner-54,
Raman5

Zugspitze 47.91◦ N,
7.91◦ E

2650 m UBA and
DWD

alpine
mountain

SMPS7+TD2,
MAAP3

Raman5

1 TDMPS (Twin Differential Mobility Particle Sizer), number size distribution between 3 and 800 nm
2 TD (Thermodenuder), evaporates volatile compounds at 300 ◦C
3 MAAP (Multi Angle Absorption Photometer), absorption coefficient at a wavelength of 637 nm
4 Berner-5/10 (5/10-stage Berner impactor), particle sampling in 5/10 aerdynamic diameter classes between

0.05 and 10µm for chemical analysis
5 Raman (Raman spectrometer), mass concentration of graphitic carbon
6 Aethalometer, mass concentration of black carbon
7 SMPS (Scanning Mobility Particle Sizer), number size distribution between 10 and 800 nm

Table 3.1.: Summary of measurement sites and deployed measurement systems in the German
Ultrafine Aerosol Network (GUAN).

3.2. Experimental techniques

3.2.1. Multi angle absorption photometer

The aerosol absorption coefficient can most accurately be determined by using a combination of

extinction and scattering measurement. A more feasible approach is the photometry, where par-

ticles are collected on a filter and transmission of light through the loaded medium is measured.

Such methods are calibrated by using extinction and scattering difference as an absorption

coefficient reference (e.g. Bond et al., 1999; Virkkula et al., 2005). Problems associated with

photometric methods are mainly due to the measurement of light attenuation caused by a com-

bination of scattering and absorbing particles deposited on a scattering filter matrix. This has

to be accounted for by applying several corrections on the photometer output.

An approach avoiding problems associated with particle scattering is the polar photometry.

Moveable detectors are used to measure the scattered field of a particle laden filter medium

(Kopp et al., 1999). A more suitable device for continuous measurements of the aerosol absorp-

tion coefficient is the MAAP. The version of the MAAP applied in the present study (type 5012,

Thermo Scientific Inc.) is described in detail in Petzold et al. (2005). It measures light at a

wavelength of 637 nm transmitted and scattered back from a particle laden glass microfiber filter

medium (GF10, Whatman, Maidstone, Kent). The intensity of the transmitted light follows the
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Lambertian cosine law for diffuse radiation, which means that it is proportional to the cosine

of the scattering angle. It can therefore be measured using only one detector. In backward

direction the scattered intensity depends on the aerosol composition and is a combination of

diffusely and direct scattered radiation. Petzold and Schönlinner (2004) showed that it can be

represented by a linear combination of a Lambertian cosine law and a Gaussian type distribu-

tion. They found that 2 well positioned detectors are enough to derive the fraction of diffusely

scattered radiation. If particles are deposited on the glass microfiber filter, they only penetrate

into the uppermost layer of the medium. The combination of filter matrix and particles can

therefore be seen as a 2 layer system. To derive the absorption coefficient of the deposited

particles, the radiative transfer through this 2 layer system is calculated following the method

described in Petzold and Schönlinner (2004). From this method, the aerosol layer (embedded

in filter matrix) single scattering albedo and optical thickness are derived by iteration. Using

in addition the spot diameter and the volume of air drawn through the medium, the aerosol

absorption coefficient can be derived, since only particles and not filter fibers are responsible for

absorption. The direct output of the MAAP is mBC , which is derived by dividing the absorption

coefficient by a mass absorption coefficient of 6.6 m2 g−1 .

Inside the MAAP, a filter-spot is loaded until a certain transmission is reached, which was set

to 50 %. In addition, the MAAP was programmed so that a filter change was initiated every

day at 00:00, in order to have daily samples for later analysis. The flow rates were adjusted to

match the cut off flow rates of individual inlets at individual observation sites and were mostly

between 6 and 16 l min−1. The temporal resolution was set to 1 min. In an experiment, 5 MAAP

devices were compared for urban aerosol at Leipzig-IfT. Therefore, different flow-rate combi-

nations were used. It was found that the variability between the MAAP was lowest (3%) for

highest flow rates (14 l min-1) and for the 10 min averaged absorption coefficient. For lowest

flow-rates (6 l min−1), the variability increased to 5 %. Adjusting all MAAP devices to different

flow rates between 6 and 16 l min−1 as it is the case in the present study, a variability of around

8 % was found. In addition, the absorbing fraction of atmospheric aerosols was evaluated by a

comparison of PM1 and PM10 absorption coefficients at a regional and a traffic site. This was

done, because no homogeneous cut off diameter at all measurement sites of GUAN could be

realised. It was found, that PM1 fraction is responsible for 90 % of absorption at regional and

for 95 % at traffic sites. Correlation coefficients were around 0.98 and indicate a homogeneous

ratio of PM1 and PM10 absorption.

3.2.2. Mobility particle size spectrometer

To measure the particle number size distribution, TDMPS and SMPS systems are applied.

These systems classify particles according to their mobility. This mobility can be transferred

to a volume equivalent sphere diameter. A TDMPS system measures the particle number size

distribution between mobility diameters of 3 and 800 nm. It consits of 2 differential mobility

analyzers (DMA), which are sensitive to different size classes. In the first size class, particles

between 20 and 800 nm are measured using a longer DMA in combination with a condensation

particle counter (CPC 3010, TSI St. Paul (MN), USA). Smaller particles between 3 and 20 nm

are detected using a short version of the DMA (UDMA) and a UCPC 3025 ((TSI St. Paul
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(MN), USA) (Birmili et al., 1999). At most observation sites, only a SMPS is applied, which

measures the particle number size distribution between 10 and 800 nm by using only 1 DMA

and CPC. The temporal resolution of the size spectrometers was 10 min.

The TDMPS and SMPS systems were partly coupled with a thermodenuder, upstream of these

size spectrometers. In this case, the size distributions with and without thermodenuder were

measured in an alternating fashion. In a thermodenuder, volatile compounds are evaporated by

thermal desorption. In the configuration described by Wehner et al. (2002) it is composed of

a heating and a cooling unit. In the heating section, the aerosol is heated up to 300 ◦C . The

cooling section is filled with activated carbon, which adsorbs evaporated gas phase compounds.

Particle losses inside this device may occur due to thermophoretic and diffusional processes. Such

a conditioning unit may be applied on the whole size distribution to get the total non-volatile

particle fraction. If particles of a certain diameter are selected upstream of the thermodenuder,

the mixing state of non-volatile particles may be measured. Such a device is called a volatile

tandem DMA (VTDMA) and is used to study the external and internal mixed fraction of

atmospheric soot particles (Rose et al., 2006). To explore the composition of the total non-

volatile volume in regional locations, Engler et al. (2007) combined volatilization temperatures,

chemical composition and thermodenuder-TDMPS measurements. The results suggest, that

the non-volatile volume consists of EC, inorganic salts of Na, Ca, K, Mg and some organic

compounds.

3.2.3. Thermographic EC/OC analysis

The following description of the thermographic method applied on Berner impactor samples is

taken from Nordmann et al. (2009). In a Berner impactor, particles are deposited on aluminium

foils in different stages. These stages are defined by an upper and lower aerodynamic diameter,

depending on the cut off in the individual stages. Particulate carbon was characterized by a

thermographic method similar to guideline VDI (1999) using a carbon analyzer (Ströhlein, C-mat

5500). In a first step, an aliquot from the Berner impactor aluminium foils was heated for eight

minutes to 650 ◦C in a nitrogen atmosphere. Carbon compounds that evaporate under these

conditions are referred to as organic carbon (OC). Evaporated OC is oxidised quantitatively

on a CuO-catalyst at 850 ◦C to CO2 and measured using an NDIR detector. In a second

step, the remaining elemental carbon (EC) was determined by heating the sample under oxygen

atmosphere at 650 ◦C for eight minutes, oxidising all carbon to CO2, the latter being detected by

infrared absorption. Foil blank values were subtracted from the results. As aluminium foils melt

at 659◦C, the operational temperature cannot be further elevated. Carbonates, notably, do not

decompose at this temperature (Petzold and Nießner, 1996). Calibration of the instrument was

performed with potassium hydrogen phthalate as an external standard. Typical measurement

uncertainties of 5.5 % for OC and 8.9 % for EC were determined for mass concentration typical for

atmospheric conditions (Neusüss et al., 2000). Numerous experimental procedures to distinguish

OC and EC have been described (Penner and Novakov, 1996). Comparisons between various

methods, including the one used in this study, during INTERCOMP2000 showed reasonable

comparability for total carbon (TC), but considerable deviations for OC and EC between the

participants (Schmid et al., 2001). It was concluded that the VDI (1999) method and its
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variations without optical charring correction2 may underestimate OC and, in turn, overestimate

EC (ten Brink et al., 2004).

3.3. Raman spectroscopy

3.3.1. Raman spectrometer

To measure the Raman-spectrum of atmospheric particles, a near infrared-Fourier transform

(NIR-FT) Spectrometer coupled with a Raman-Module FRA-106 (Bruker Daltonik, Bremen,

Germany) was applied. The monochromatic light source is a ND: YAG Laser with a wavelength

of 1064 nm. The sample to be measured is illuminated over mirror arrangement so that incoming

and Raman scattered light do not influence. The fraction of light that is directly reflected and

the Rayleigh scattered light are removed by a filter module, since their intensities are much

larger than the light from Raman scattering. To measure the Raman scattered light at different

wavelengths, an interferometer is applied. In the interferometer, the light that is scattered from

a sample is passed through a beam splitter, which redirects one part to a fixed and the other part

to a moveable mirror. After reflection, both light beams interfere, and the resulting wavelength

is proportional to the mirror shift. From the interferometer, the light is passed to a Ge-Diode

detector, which has to be cooled with liquid nitrogen to achieve highest sensitivity. Fourier

transformation is used to convert the Raman scattered intensity from a function of the mirror

shift to a function of wavenumber. This wavenumber is the so called Raman-shift. Details of

the measurement setup can be seen in Bruker (1994) and Bruker (1995).

For the measurements in the present study, the laser power was adjusted to 530 mW and the

spectral resolution was set to 8 cm−1. The samples were iluminated with a defocused beam

in order to avoid a strong heating of the samples and to measure the average spectrum of

circular area with a diameter of approximately 1 mm. This area is representativ for the whole

spot, since it was loaded homogeneously. The wavelength calibration was performed before the

measurement. Therefore, the characteristic band of a Nylon sample was used. All spectra were

recorded as averages of 2900 to 3000 single measurements.

3.3.2. Evaluation of Raman-spectra

The raw spectra, recorded by the Raman spectrometer, have to be modified in order to remove

signals stemming from background effects such as fluorescence and heating so that the undis-

turbed GC signals are remaining. The evaluation procedure is illustrated in Figure 3.2. The

spectra of a loaded and an unloaded filter differ in the GC signal that is only visible in the

spectrum of the loaded filter and in the less pronounced filter signals due to the particle loading

(Figure 3.2 (a)). As described before, the filter band between 1453 and 1530 cm−1 was chosen

for normalization of all spectra. Therefore, a vector normalization calculating the normalized

values by

ynormi =
yi − 1

n2−n1

∑n2
j=n1

yj√∑n2
j=n1

(yj − 1
n2−n1

∑n2
k=n1

yk)2
(3.1)

2Method to account for the pyrolysis of OC to EC in the nitrogen atmosphere (Johnson et al., 1981)
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is used (Bruker, 1999). Equation 3.1 is valid for a spectrum given by the intensities (y) at discrete

Raman-shifts (index i). The integers n1 and n2 are the indices corresponding to Raman-shifts

of 1453 and 1530 cm−1 . After this step, the spectra of the loaded and unloaded filter coincide

in the wavenumber region between 1453 and 1530 cm−1 (Figure 3.2 (b)). In the following step,

the filter signal is removed by subtracting the spectrum of the unloaded filter from the spectrum

of the loaded filter (Figure 3.2 (c)). On the resulting spectrum, a baseline correction between

1110 and 1790 cm−1 is applied (Figure 3.2 (d)) and afterwards the G-band is integrated in the

bounds between 1510 and 1736 cm−1 . Because of the large number of samples analyzed in this

study, the described steps were automated.
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Figure 3.2.: Evaluation of measured Raman-spectra with raw spectra of a loaded and an un-
loaded filter (a), normalized to the marked wavenumber region (b), eliminated filter
signal (c) and baseline corrected spectrum (d).

3.3.3. Calibration experiment

The main goal of the calibration experiment is to find the relationship between gravimetric

measured masses of Printex R©90 and the integral of the G-band in the Raman-spectrum of

the same particles. The experimental setup is shown in Figure 3.3. For the generation of

soot aerosols, a hydrosol of distilled water and Printex R©90 was generated and nebulized. These

aerosols were passed through a silica gel drier and a bipolar diffusion charger before they were led

into the mixing chamber. The concentration could be regulated with the nebulizer and checked

with the MAAP. With filter holders, polycarbonat (Nuclepore
TM

, Whatman, Maidstone, Kent)

filters with a pore size of 100 nm, glass microfiber (GF10, Whatman, Maidstone, Kent) and

quartz fiber (Pallflex R©, Pall, New York, USA, not shown in Figure 3.3) filter substrate were

simultaneously loaded leaving flow rates constant by using mass flow controllers. The glass

microfiber filter is the medium, which is used inside the MAAP. It should be measured by

Raman-spectroscopy after loading. For the gravimetric mass determination, polycarbonat and

quartz fiber filters were used. In contrast to the quartz fiber filters, polycarbonat filters have

a low hygroscopicity. However, they can be electrostatic charged while they are loaded. The

unloaded filters were first conditioned to a relative humidity of around 40% and a temperature of
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Figure 3.3.: Experimental setup of the calibration experiment (MFC, mass flow controller).

around 20 ◦C in the weighing chamber for several days. Subsequently, they were weighed using

a micro balance (UMT, Mettler Toledo) to determine the blank value. The polycarbonat filters

had a blank mass of around 10 mg with a standard deviation of 1µg. The quartz fiber filters had

a blank mass of 50 mg with a standard deviation of 3µg. After loading, the filters were again

conditioned in the weighing chamber and the Printex R©90 mass was subsequently derived from

the difference between the blank and the loaded masses of each filter. Every filter was weighed

at least 10 times to derive an uncertainty. By using the flow ratio between the glass microfiber

filters and the polycarbonat filters, the gravimetric mass was converted to the mass on the

microfiber filters that were not weighed. These microfiber filters were then measured with the

Raman-spectrometer and the resulting spectrum was evaluated as described in Section 3.3.2.

To avoid background effects during the Raman measurement, the flow ratio was adjusted so

that the mass on the glass microfiber filters is comparably low in contrast to the corresponding

poycarbonat filters for the weighing procedure.

3.4. Microphysical-optical model to derive the soot mixing state

An important property of atmospheric soot particles is their state of mixture with other sub-

stances. It is hard to assess, since only a few instruments exist, which are able to measure

the mixing state directly. Ma et al. (2012) developed an algorithm, which enables an indirect

estimation of the fraction of external mixed soot particles based on measurements of the par-

ticle number size distribution, information about mass size distribution of elemental carbon,

absorption coefficient and hemispheric backscattering fraction. They applied a shell-core model

(Bohren and Huffman, 1983) to simulate the backscattering fraction at three different wave-

lengths based on the measured microphysical properties. The fraction of external mixed soot

particles was varied until the deviation between measured and modeled backscattering fractions
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was minimal. Another approach deriving the external mixed soot fraction by minimizing the

deviation between model and measurement was introduced by Cheng et al. (2006). They mini-

mized the difference between modeled and measured absorption, scattering and backscattering

coefficients by using a volume averaging method and the Mie code for spherical particles (Bohren

and Huffman, 1983) without any shell.

According to Ma et al. (2012), the particle volume size distribution, which is the third moment

of the number size distribution (Equation 2.2) divided by the particle density, can be expressed

as
dV

d logDp
=

dVext,s

d logDp
+

dVint,s

d logDp
+

dVint,ns

d logDp
(3.2)

with
dVext,s

d logDp
is the externally mixed soot volume size distribution,

dVint,s

d logDp
is the internally mixed

soot volume size distribution and
dVint,ns

d logDp
is the non-soot volume size distribution. Assuming

further that external mixed soot particles are evenly distributed over the entire size distribution,

one can introduce ε with

ε =

∫ dVext,s

d logDp
dDp∫

dVs
d logDp

dDp

(3.3)

as the externally mixed soot fraction and dVs
d logDp

is the soot volume distribution. The external

mixed soot fraction can take values between 0 and 1. Here, 0 means that all soot particles are

internally mixed and 1 means that no particle is mixed with another substance in a shell-core

configuration. When applying a shell-core Mie model to derive optical properties, the diameter

of the core Dcore as a function of particle size, as well as their number concentration must be

known. Using ε, the core diameter can be calculated by

Dcore(Dp) = 3

√√√√ 6

π
·

(1− ε) · dVs
d logDp

dN
d logDp

− ε · dNs
d logDp

(3.4)

with dNs
d logDp

is the particle number concentration of soot particles.

In this study, the shift in the particle number size distribution when removing volatile com-

pounds was measured with a thermodenuder (cf. Sect. 3.2.2) for T = 300 ◦C . This size distri-

bution shows a high correlation with the aerosol absorption coefficient, as will be shown later

in Section 4.2.3, and is therefore associated with dVs
d logDp

. To derive this distribution, the mass

concentration of GC from Raman-spectroscopy is converted to a volume concentration by using

a particle density of 1.8 g cm−3 (Park et al., 2004b). From the quotient of the GC volume con-

centration and the integrated thermodenuder volume size distribution, a factor is derived that

is applied on each bin of the volume size distribution after the thermodenuder to derive dVs
d logDp

.

This method implies the assumption that the real soot particle volume size distribution has a

similar shape as the volume size distribution after the thermodenuder.

Based on this information about size distributions, the absorption coefficient at 637 nm can

be calculated by a shell-core Mie model and subsequently compared to the measured values.

Varying input variables to the model, the deviation between measurement and model can be

minimized. Following the approaches mentioned in the beginning of this section, the deviation

is minimized by varying ε using a χ2 minimization method (cf. Appendix A). The uncertainty
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of ε is estimated via a Monte-Carlo method, varying the other input parameters in the limits

given by their individual uncertainties.

The density of soot was taken to be 1.8 g cm−3 Park et al. (2004b) with an uncertainty of 17 %.

The refractive index was taken to be 1.85 + 0.71 i as the average of values summarized in Bond

and Bergstrom (2006) for the void fraction. The uncertainty was 5 % for the real part and 11 %

for the imaginary part, as given from the range of values in Bond and Bergstrom (2006). Since

changes in the refractive index of the non-absorbing aerosol components are small, the refrac-

tive index was chosen according to Wex et al. (2002); Cheng et al. (2006); Ma et al. (2012) as

1.55 + 10−7 i with an uncertainty of the real part of 1.5 %. The absolute uncertainty of the par-

ticle number concentrations with and without thermodenuder were taken to be 20 %, according

to values given in Wiedensohler et al. (2012). The error in absorption coefficient was taken from

Petzold and Schönlinner (2004) to be 12 %.

The procedure starts with calculating all relevant input parameters to the model, using random

numbers to vary them in the limits of their uncertainties as presented before. In the next step,

core diameters are calculated using Equation 3.4 with an initial guess of ε. Afterwards, the

absorption coefficient is calculated by using absorption cross sections calculated by Mie subrou-

tines for spherical and coated spherical particles provided in Bohren and Huffman (1983).The

absorption coeffcient is calculated using the discretized form of Equation 2.9 for size dependent

absorption cross sections of a combination of coated and uncoated particles. Calculated absorp-

tion coefficients are then compared to the measured values in terms of χ2. For each set of input

parameters, the best value of ε can then be found by applying the algorithm in Appendix A by

repeating the optical calculations with modified values of ε in each iteration step. In sum, 800

iterations with modified input parameters were performed for each time step, resulting in an

average ε and an uncertainty in terms of its standard deviation.

3.5. WRF-Chem model

3.5.1. General description

The Weather Research and Forecast model (WRF) is a massive parallelized state-of-the-art

numerical model designed for research. It is suitable for a broad spectrum of applications in

simulating atmospheric phenomena of horizontal extents ranging from meters to thousands of

kilometers. WRF is applicable on a variety of computing platforms for operational numerical

weather forecast, parameterized physics research and air quality modeling using the WRF-Chem

package (Grell et al., 2005).

In WRF, the compressible and non-hydrostatic Euler equations can be integrated with 2 dynam-

ical solvers: ARW (Advanced Research WRF), which was developed at NCAR (National Cen-

ter of Atmospheric Research, Boulder, Colorado, USA) and NMM (Non-hydrostatic Mesoscale

Model) which was developed at NCEP (National Center for Environmental Prediction, Camp

Springs, Maryland, USA). The prognostic variables are the u,v and w wind directions, the per-

turbation potential temperature, the perturbation geopotential, perturbation surface pressure

and several other optional scalars. All equations are transformed to the terrain following hydro-

static pressure as the vertical coordinate and are horizontally discretized on an arakawa c-grid,
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which means that velocities are staggered about a half grid length to thermodynamic variables.

WRF offers the opportunity to insert higher resolution domains into a coarser grid, a procedure

that is called nesting. The boundary conditions of the inner grid are taken from the coarse grid.

There are two possibilities for nesting. The first one is the one-way nesting, which is used if

there should be no feedback of the fine grid to the coarse grid. A two-way nesting is applied,

if variables simulated for the fine grid should influence variables on the coarse grid. Only a

horizontal nesting is implemented. A two-way nesting is applied in the present study.

WRF can account for a variety of microphysical settings, ranging from simple bulk schemes to

more sophisticated schemes allowing for mixed phase cloud resolving simulations. Planetary

boundary layer physics are suitable for turbulent kinetic energy prediction. The surface may

consist of several layers allowing for a vegetation and soil moisture representation. Also snow

cover and sea ice maybe included. The longwave and shortwave radiation field can be calculated

for a broad spectral region including clouds, gases and aerosol effects (Skamarok et al., 2008).

WRF may be on-line coupled with a chemical transport module (WRF-Chem) treating aerosol

particles and gases. On-line coupling means that aerosol particles may for example directly in-

fluence the radiative transfer in the atmosphere. Moreover, they may act as cloud condensation

nuclei and thereby changing cloud cover and radiative effects of clouds, which is also designated

as the indirect effect. Clouds, in turn, may reduce aerosol concentrations by e.g. wet scavenging

processes (Chapman et al., 2009).

Aerosol module

For representing aerosol particles in WRF-chem, the MOdel for Simulating Aerosol Interactions

and Chemistry (MOSAIC) is used. In this model, aerosol particles are treated sectional. This

means that they are represented in a specific number of bins, which are defined by their upper

and lower dry diameter so that water uptake or loss may not transfer particles between those

bins. With this model, mass and number of particles may be simulated. MOSAIC treats the

following chemical species: sulfate, methane sulfonate, nitrate, chloride, carbonate, ammonium,

sodium, calcium, black carbon, organic carbon and other inorganic mass such as silica, other

minerals and trace metals. All species are assumed to be internally mixed in each bin. A shell-

core configuration as described in Section 2.3.1 is also possible. Particle growth and shrinkage

may occur by an uptake of trace gases such as sulfuric acid, nitric acid, hydrogen chloride,

ammonia and secondary organic species. In addition particle coagulation and the formation

of new particles by nucleation of sulfuric acid and water vapor are included (Fast et al., 2006;

Zaveri et al., 2008).

Optical Particles Properties and radiative transfer

In WRF-Chem, every chemical constituent is associated with a complex index of refraction. One

possible option to determine a refractive index for a MOSAIC bin is using a volume averaging

method including aerosol water. Mie theory is then applied to find efficiency factors of extinction

and scattering as well as asymmetry factor. To calculate the extinction and scattering coeffi-

cients, the size distributions are integrated over all size bins. To accelerate the calculations, the

Mie code is called only once in the beginning of the simulation to derive scattering and extinc-
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tion cross sections for a broad range of size parameters and a range of refractive indices typical

for atmospheric aerosols. Then, the method presented in Ghan et al. (2001) and modified for

the sectional approach is applied. Expansion coefficients calculated with this method are used

to derive cross sections in each of the following time steps instead of using full Mie-theory. The

aerosol optical properties are calculated at 4 wavelengths (0.3, 0.4, 0.6 and 1µm) and are then

passed to the radiative transfer model, which is called the Goddard short-wave scheme (Chou

et al., 1998). In this model, aerosol optical properties are accounted for in 11 spectral bands

between 0.18 and 10µm in the ultraviolet, visible and near infrared wavelength region. Since

the optical properties are only calculated at 4 wavelengths, interpolation and extrapolation is

used to calculate the optical properties at the aerosol influenced spectral bands. The Goddard

short-wave scheme also accounts for ultraviolet absorption by ozone and scattering of visible

light by gases and clouds. In the infrared spectral region, contributions to absorption come from

water vapor, O2, CO2 and clouds. The transmission and reflection functions for each atmo-

spheric layer are then calculated and a 2 stream adding method is applied to derive the fluxes

in the atmosphere and at the surface (Fast et al., 2006). The changes in atmospheric radiation

fluxes due to aerosol particles may have a feedback on the atmospheric physics and the dynamics

module in the meteorology simulation.

3.5.2. Model domains and meteorological settings

The model grid was chosen to consist of 2 nested domains. The parent grid has a spatial resolu-

tion of 36 km and covers most of Europe as well as parts of Russia and Africa. This corresponds

to 125 grid cells in west-east and 86 grid cells in north-south direction. The nested domain has a

resolution of 12 km and covers whole Germany and some neighbouring countries. It has 97 grid

cells in west-east and also in south-north direction. The domains are shown in Figure 3.4. Both

domains consist of 27 layers in a terrain following coordinate system. The time period between

March 23 to April 10, 2009 was simulated using a timestep of 180 s in the parent grid and 60 s

in the nest.

The model physics schemes are listed in Table 3.2. The microphysics scheme accounts for 6

forms of water including ice, snow and graupel. The surface physics include soil temperature

and moisture in 6 layers and snow and frozen soil in multiple layers. The boundary layer is

represented by a prognostic turbulent kinetic energy scheme. Also included are schemes for

surface physics, longwave and shortwave radiation, cumulus clouds and urban physics.

The model is driven by global fields of meteorological variables. Therefore, FNL3 (final) opera-

tional global analysis data from NCEP on a 1.0◦×1.0◦ grid available every 6 hours is taken. The

sea surface temperature is updated using global satellite data from NCEP4. The informations

about the underlying surface including static fields of vegetation, terrain height, reflectivity and

so on, are also taken into account.

3http://rda.ucar.edu/datasets/ds083.2/
4http://polar.ncep.noaa.gov/sst/oper/Welcome.html
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D01

D02

Figure 3.4.: Model domains, with D01 is the coarse domain with a horizontal resolution of
36 km and D02 is the nested domain with a horizontal resolution of 12 km.

3.5.3. Emissions

For a full simulation with WRF-Chem, gridded emissions of gases and particles are needed as

a model input. Usually, PM emissions are reported as total mass concentration fluxes (PM10,

PM2.5 and compound-wise). Therefore, EC and OC emission rates are estimated by using factors

to derive them from total PM emissions (Bond et al., 2004; Streets et al., 2001). These emission

factors are then combined with fuel consumption data that is reported for different sectors and

fuel types. Often, total particulate matter is split into fine (PM1) or (PM2.5), as well as coarse

particles (PM10). From these fractions, EC emission rates in PM1, PM2.5 and PM10 are derived.

Four main data sources were used to derive the high resolution EC/OC emission inventory

developed in the framework of the European integrated project on aerosol cloud climate and air

quality interactions (EUCAARI), which is used this study:

1. GAINS model for PM emissions (Klimont et al., 2002; Kupiainen and Klimont, 2004)

2. Global BC emission inventory for 1996 (Bond et al., 2004)

3. BC emission inventory for China 1995 (Streets et al., 2001)

4. Particulate motor vehicle emissions, ehaust and non-exhaust (Schauer et al., 2006)

The EC emissions are originally gridded on a 1/8◦ x 1/16◦ longitude- latitude grid, which

corresponds to a spatial resolution of about 7 km. It covers an area over Europe from −10◦ to

60◦ in longitude and 35◦ to 70◦ in latitude. The targeting year is 2005. Sources such as power

plants are gridded as point sources, and emissions from e.g. population or traffic are gridded as

area sources. An extract of the inventory can be seen in Figure 3.5, where the emission rates of

EC in PM10 are mapped on a 4 km WRF grid. Urban areas such as Berlin in the northeast of

Germany, but also important roads and ship-tracks reflect in the EC emission rates.
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Physics Scheme Comments

microphysics Lin et al. (1983) bulk water microphysical parametrization tech-
nique for 6 forms of water (including ice, snow
and graupel)

surface RUC land surface model operational scheme with soil temperature and
moisture in 6 layers, multilayer snow and frozen
soil physics

boundary layer Mellor-Yamada-Janjic (Jan-
jic, 1994)

prognostic turbulent kinetic energy with local ver-
tical mixing

cumulus Grell 3D improvement of the Grell-Devenyi scheme (Grell
and Devenyi, 2002)

urban urban canopy model 3-category model with surface effects of roofs,
walls and streets

shortwave radiation Goddard scheme (Chou
et al., 1998)

two-stream model including clouds, gases and
aerosols

longwave radiation RRTM accounts for multiple bands, trace gases and mi-
crophysics species

Table 3.2.: Summary of of physical settings, following the description in the tutorial of WRF
v3.3.

To make use of this high spatial resolution of the EUCAARI EC/OC inventory, but also account

for possible changes in emissions since 2005, the EC emissions from the Arctic research of the

composition of the troposphere from aircraft and satellites (ARCTAS) inventory5 developed

by D. Streets and Q. Zhang with a targeting year of 2008 was used to scale the EUCAARI

emissions. This was done by calculating the EC emissions in both inventories on a 1◦ x 1◦ grid

by simply averaging the emission rates in the original grid. A scaling map was then derived by

dividing each ARCTAS emission rate in individual 1◦ grid cell by the corresponding EUCAARI

EC emission rate in the same grid cell. The resulting scaling map for the nested domain is shown

in Figure 3.6. It can be seen that there are some grid cells with very low scaling factors at this

locations, where EC emissions in EUCAARI contain point sources with very high emission rates.

This suggests the assumption that point source emissions are not included in ARCTAS. For

that reason, these very low scaling factors were not considered when multiplying the scaling map

with the original EUCAARI emissions in the last step of this scaling procedure. The emissions

of other compounds over Europe such as SO2, NOx, CO, NH3 and NH4 are originally on a

0.5◦ grid and are taken from EMEP. The targeting year is 2008. The emissions of volatile

organic compounds (VOC) are given as total emissions from the reanalysis of the troposhperic

chemical composition (RETRO) emission inventory and were splitted to compounds used in

CBMZ chemical mechanism of WRF-Chem.

Biogenic emissions from the model of emissions of gases and aerosols from nature (MEGAN)

(Guenther et al., 2006), as well as, wildfires that are detected by moderate resolution imaging

spectroradiometer (MODIS) are considered.

3.5.4. Aerosol mass absorption coefficient adjustment in WRF-Chem

For calculating optical aerosol properties using Mie theory for spheres, the particle size and

the refractive index must be known. The method of calculating volume equivalent diameters

assigned to each MOSAIC bin and the corresponding refractive indices is described in Barnard

5http://www.cgrer.uiowa.edu/arctas/emission.html
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Figure 3.5.: Emission rates of EC (ng m2 s−1) on a grid with a horizontal resolution of 4 km.

et al. (2010) and will only be briefly summarized here. In WRF-chem, the chemical masses and

number concentrations are given for each of the 4 bins and each of the 11 chemical compounds.

Taking densities for each chemical substance, the masses are converted to volumes, which are

used to derive the volume equivalent diameter by dividing the summed volume over all chemical

substances by the particle number concentration in each bin, separately. The bulk refractive

indices for each bin are derived by a mixing rule described in Bond and Bergstrom (2006). In

this method, the refractive indices are calculated by volume weighted averaging, as described in

Section 2.3.1. All these calculations are performed in a subroutine called ‘optical prep sectional’.

Since the optical properties are very sensitive to the refractive index of BC, this parameter was

chosen for the adjustment of the modeled (δmod) to the measured mass absorption coefficient

δGC values.

For this procedure, a full model run was first performed using all original settings. In the next

step, the simulated mass concentrations of all chemical constituents are read in from the model

output. Using bilinear interpolation, the model mass concentrations are calculated at the loca-

tions, where δGC measurements are available. Passing the interpolated mass concentrations of

all chemical constituents to the subroutine described above, volume equivalent diameters and

corresponding refractive indices are derived, which in turn are passed to the Mie subroutine

to calculate absorption coefficients of the modeled particle population at individual measure-

ment sites. It is important to mention that the absorption coefficients are calculated for dry

particles by setting the aerosol water content to zero before passing the mass concentrations to

’optical prep sectional’. This is done to make the modeled optical properties comparable to the

measured values, since optical properties are sensitive to the aerosol water content. Following

Equation 2.11 and dividing the modeled dry absorption coefficients by the modeled BC mass

concentrations, values of δmod are derived at each of the measurement locations. This procedure

can be summarized by the following scheme:
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Figure 3.6.: Scaling map from quotient of ARCTAS and EUCAARI EC emissions on a grid
with a horizontal resolution of 1◦ .

1. Getting mass concentrations from full model run.

2. Interpolate mass concentrations to measurement site coordinates.

3. Setting aerosol water to 0.

4. Calculate volume equivalent diameter and refractive index in subroutine ‘optical prep sectional’.

5. Calculate optical properties in subroutine ‘mieaer’.

6. Calculate δmod.

.

The deviation between δmod and δGC is calculated by using Equation A.1 with K = 5, because

values of δGC from 5 measurement sites are used. For this approach, the imaginary part of the

complex refractive index of BC is the independent variable q in Equation A.1. Repeating the

presented steps (4.) to (6.) several times with modified q according to the algorithm presented

in Appendix A, the deviation between δmod and δGC can be minimized, and a new imaginary part

of the complex refractive index can be found. If this value should be used in WRF-Chem, the

model has to be recompiled with the new imaginary part, which has to be set in the subroutine

‘optical prep sectional’.
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4. Experimental Results

4.1. Calibration of the Raman-Spectrometer

4.1.1. Reference material and filter substrate

Prior to the calibration of the Raman spectrometer for the determination of atmospheric GC

mass concentrations, the applicability of furnace soot (Printex R©90) as a calibration substance

was tested. Particles were generated as described in Section 3.3.3 and sampled on the filter

substrates. The corresponding Raman-spectra were measured for different samples. Exemplary

spectra of Printex R©90, atmospheric particles and the blank filter substrate are shown in Fig-

ure 4.1. The spectra were evaluated by applying a Levenberg-Marqardt algorithm (Press et al.,

1986) in order to fit 3 modes to the characteristic GC signal. According to Section 2.3.3 these

modes are a combination of the G and D2-band, the D3-band and the D1 band. For simplic-

ity, the D4-band was not considered. The starting values of the full width at half maximum

(FWHM), intensity and position of the modes were chosen to be the same for each spectrum.

The average position of the G-peak was found to be 1594.4 cm−1 with a standard deviation of

0.2 cm−1. For atmospheric samples, the G-band position is at 1595.9 cm−1 with a higher vari-

ability of 0.9 cm−1. Considering values that are given in literature ranging from 1571 cm−1 (pure

graphite) to 1598 cm−1 for different types of soot Sadezky et al. (2005), the differences in the

graphitic structure between Printex R©90 and atmospheric soot particles should only be small.

The properties of the other 2 fitted bands are also only slightly different. The intensity ratio

of the G- and the D1-peak was found to be inversely proportional to the size of the graphite

crystals (Tuinstra and Koenig, 1970), as mentioned in Section 2.3.3. For the analyzed samples in

this study it was 1.36± 0.03 cm−1 for Printex R©90 and 1.31± 0.02 cm−1 for atmospheric samples

and therefore again very similar for both types of soot.

A particle number size distribution of the Printex R©90 was measured with a TDMPS system

downstream of the mixing chamber. It shows a mono-modal shape with a maximum around

90 nm (Figure 4.1). Typical mobility diameters of regional and urban background soot particles

are in a similar size range (Rose et al., 2006).

As mentioned before, Raman-spectroscopy is sensitive to the graphitic structures in atmospheric

particles. Therefore, the fractions of GC in Printex R©90 and atmospheric samples were com-

pared. The GC fractions were defined by using natural (Graphite Powder Natural, Alfa Aesar)

and synthetic (Graphite puriss., Sigma Aldrich) graphite. Fractions of EC and OC in these

graphite samples were determined by using a thermographic method based on the VDI (1999)

guideline and described in Section 3.2.3. A third step was added to this procedure heating the

sample to 850 ◦C in an oxygen atmosphere and detecting the released CO2. By treating the

graphite samples with the prescribed steps, it was found that the EC and OC fractions were
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Figure 4.1.: Comparison of Raman spectra of Printex R©90, atmospheric particles and the blank
filter substrate (left) and size distribution of airborne Printex R©90 particles mea-
sured with a Twin Differential Mobility Analyzer (TDMPS) (right). Raw concen-
trations are used.

very small and nearly all carbon was pyrolized in the third step. For that reason, the carbon

that is released from either Printex R©90 or atmospheric samples during the third step is also

attributed to the GC fraction in these samples. In Figure 4.2, the fractions of EC and GC in the

total non-organic carbon for 9 atmospheric, 4 Printex R©90 and 2 graphite samples are shown.

The PM2.5 atmospheric samples were taken at the regional site in Melpitz. Problems associated

with the potential misinterpretation of carbonate carbon (e.g. CaCO3) as GC at tempera-

tures above 650 ◦C are mitigated by analyzing the PM2.5 aerosol reservoir, since the fraction

of carbonate carbon in this size range is generally low (e.g. Huang et al., 2006). While the GC

fractions in graphite samples were nearly 100%, they were smaller for atmospheric (21 %) and

Printex R©90 (20 %) samples. This indicates that the GC fraction in atmospheric soot particles

and in Printex R©90 are very similar. Uncertainties of the thermographic methods are mainly

due to charring of the OC fraction during the first step, because a correction by monitoring

the reflectance of the analyzed sample was not applied. This may result in an underestimation

of OC and an overestimation of EC (ten Brink et al., 2004). Since a notable fraction of OC

was found in the atmospheric samples in contrast to the Printex R©90 samples, the EC fraction

in atmospheric samples might be slightly overestimated, if some of the OC charred during step

1, which could not be further quantified. Nevertheless, the small differences between these 2

types of soot, regarding also size and structure, indicate the applicabilaty of Printex R©90 as a

calibration substance.

Problems that occur during the Raman-measurement are mainly due to fluorescence and heat-

ing of the sample, which are visible as high signal intensities at low (≈ 500 cm−1) and high

(≈ 3000 cm−1) Raman-shifts, respectively. To eliminate these signals in individual Raman-

spectra, it is necessary to normalize to a stable pattern that is always present in all spectra.

Therefore, it was tested if stable modes of the blank GF10 MAAP filter substrate are visible in

the Raman spectrum. For this purpose, all spectra were normalized on the band between 1453

and 1530 cm−1, and the average as well as the standard deviation was calculated (Figure 4.3).

Unsurprisingly, the standard deviation in the normalization wavenumber region is very small. It

increases towards lower and higher wavenumber shifts, but shows no local maximum in regions
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Figure 4.2.: Fraction of graphitic carbon (GC) in the non-organic total carbon concentra-
tion (EC +GC) in atmospheric (Atm), graphite (Graph, Synth. Graph) and
Printex R©90 (Printex) samples.

of other bands of the filter substrate (e.g. 2900 cm−1). This is an indicator that the relative

intensities of the bands remain constant so that the filter band between 1453 and 1530 cm−1 can

be used for normalization.

4.1.2. Results

The results of the calibration experiment presented in Section 3.3.3 are shown in Figure 4.4. A

linear relationship between the mass loading of Printex R©90 on the glass microfiber filters and

the corresponding G-band integral was found at least in the mass loading range between 0.5

and 6µg cm−2. This is a typical range of mass loadings that are reached inside the MAAP, if

the transmission is set to 50 % as it was done in the present study. The corresponding integrals

over the G-band were between 40 and 800 a.u.. Using an error weighted orthogonal regression

that assumes errors in both variables (Cantrell, 2008), the slope (0.00681) and the offset (0.332)

were calculated. The linear relationship is very good with an coefficient of determination of

0.95. Using the calibration function to derive mload, mGC can be determined by

mGC =
mloadAspot

V̇ tsamp

. (4.1)

In this equation, Aspot is the diameter of the loaded spot, V̇ is the flow rate and tsamp is the

sampling time.

The uncertainties of the integral over the G-band were estimated by repeating the Raman mea-

surements for several filters. The uncertainties may come from small inhomogeneities in the par-

ticle loading on filters or from the spectra evaluation described in the Section 3.3.2. On average,

an uncertainty of 7.5 % was found. The errors of mload were estimated by Gaussian error propa-

gation using the uncertainties of the Aspot (5 %), the flow ratio (7 %) and the Printex R©90 mass

on the weighed filter samples (6 %). On average, an error of 15 % was found for mload on the

glass microfiber filter (cf. Nordmann et al., 2009). The uncertainties of the fit function were
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Figure 4.3.: Comparison of 5 Raman-spectra of the unloaded filter medium, which is used inside
the Multi Angle Absorption Photometer (MAAP).

derived as a byproduct of the orthogonal regression procedure to be 1.4 % for the slope and

4 % in offset. The reason for this positive offset could not be identified. One possible explana-

tion refers to the procedure of gravimetric mass determination. When polycarbonat filters are

loaded, they may become electrostatically charged. This charge could not be removed prior the

weighing procedure, and may have influenced the results. Moreover, a slight dependence of the

offset on the flow ratio between weighing filter medium and the filter medium that is measured

by Raman-spectroscopy was found, whereas slopes remain nearly constant. Because of these

different flow ratios, different ratios of filtration efficiencies of the filter media may lead to this

systematic offset. Nevertheless, the usage of a non-zero offset would lead preferably to a non

zero offset when comparing absorption coefficients and mGC of individual filter samples, as will

be shown in a later section. This means, that absorption occurs although GC concentrations are

zero. For that reasons, this non zero offset is neglected when deriving mload from the integral

over the G-band in the Raman-spectrum in the following steps.

4.1.3. Evaluation of the Raman-method

The new Raman-method was evaluated using EC measurements of atmospheric particle samples

of different aerodynamic size classes, that were taken on aluminium foils using Berner impactors.

The EC masses were determined by the method described in Section 3.2.3. For the comparison

with the Raman spectroscopic measurements of mGC in samples of MAAP measurements, mEC

was summed over the first 3 of 5 impactor stages, whereas stage 3 had a cut of 1.2µm aerody-

namic particle diameter. The upper cut off for the particle samples taken inside the MAAP was

1µm. Since mEC from Berner samples represent daily averaged values, the Raman-spectroscopic

derived mGC values had to be averaged, giving different values different weights depending on

tsamp.

The resulting scatterplot is shown in Figure 4.5. The values of mEC and mGC ranged between

0.2 and 3.5µg m−3. The linear regression shows a slope of 1.05 and a negligible non-zero offset of

-0.09 with a coefficient of determination of 0.87. This indicates a very close relationship between
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Figure 4.4.: Relation between gravimetric mass of Printex R©90 and corresponding integral over
the G-band in the Raman-Spectrum. Black dots indicate the usage of a polycar-
bonate filter and red dots of a quartz filter.

mEC and mGC and that the new Raman method is comparable to the thermographic method.

4.2. Atmospheric measurements

4.2.1. Spatial and temporal variability of aerosol absorption coefficients in

Germany

Continuous measurements of the aerosol light absorption coefficient were performed in GUAN

since the beginning of 2009 using MAAPs at 10 observation sites. The time series of the smoothed

daily averaged values of σap is shown in Figure 4.6. It can be seen that the lowest values were

observed in the winter months at the high altitude site Zugspitze. Taking all other sites into

account, σap covered approximately 3 orders of magnitude during the winter season. In contrast,

only 2 orders of magnitude were covered in the summer months. The values at the mountain

sites were in the same size range as regional background σap, which was rarely observed in the

winter months. This can be attributed to the enhanced vertical exchange of polluted air masses

in the summer, induced by the enhanced incoming solar radiation. In Figure 4.6, three episodes

are marked, which will be referred to later in this chapter. These episodes were chosen for

applying the new Raman-method presented in Section 4.1, because they were characterized by

rather different meteorological conditions.

Based on half hourly measurements, relative frequency distributions were calculated to illustrate

typical value ranges of σap. The data was sorted into logarithmic equidistant classes, since at

least 3 orders of magnitude are covered. Properties of the resulting distributions were derived

by fitting logarithmic normal distributions. The most obvious differences can be seen from the

position of the maxima of the distributions in dependence on the measurement site in Figure 4.7.

In urban areas, especially at near traffic observational sites, the most frequent values of σap at

Leipzig Eisenbahnstraße and Dresden-Nord are 13.5 and 16.5 Mm−1, respectively. Typical values

at urban background locations such as Augsburg and Leipzig-IfT were around 7 and 10 Mm−1.

33



4. Experimental Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1:1linear fit
mEC = 1.05 * mGC - 0.09

R2 = 0.87

 

 

m
E

C
 / 

(µ
g 

m
-3
)

mGC / (µg m-3)

Figure 4.5.: Comparison between daily averaged mass concentrations of graphitic carbon (mGC)
from Raman-spectroscopy and corresponding mass concentrations of elemental car-
bon (mEC) from thermographic analysis of daily Berner impactor samples.

The distributions at the regional observation sites Melpitz, Bösel and Waldhof show maxima

between 2.5 and 4 Mm−1. It has to be mentioned that only data of approximately one year was

available for Waldhof. Slightly lower values were observed at mountain sites, ranging between

0.7 and 2.2 Mm−1 at Zugspitze and Hohenpeißenberg, respectively. The broadest distribution

was calculated for the Zugspitze data. It has a tendency to higher values and could therefore be

best fitted by using two modes indicating a pronounced seasonality of the absorption coefficient.

The diurnal variability of the measured σap for different measurement sites can be seen in

Figure 4.8. The calculations based on the half hourly values for weekdays (Monday-Friday)

and weekends (Saturday and Sunday) were performed separately. The weekdays diurnal cycle

at near traffic urban observation sites shows a maximum in the morning and a second broad

maximum in the afternoon, probably due to enhanced emissions during the rush hours. At

urban background locations, the diurnal cycle exhibits also a bimodal shape with a maximum in

the morning, but the second maximum is later in the evening in comparison to the traffic sites.

The diurnal cycles at regional sites are similar, but the maxima are less pronounced. At the

mountain sites, only one broad maximum at the early afternoon is visible in the diurnal cycle.

At the weekend, the highest concentrations at urban and regional sites are observed during

night, which is in contrast to the diurnal cycles during weekdays. Opposed to this, the diurnal

cycle at mountain sites is very similar during weekdays and weekend.

4.2.2. Size distributions of EC and non-volatile particles

To characterize soot particles concerning their size, measurements of mEC in different aerody-

namic diameter classes and volume size distributions of ambient and non-volatile particles were

used. The approach of measuring the number size distributions of a heated initially monodis-

perse aerosol stream was applied in other studies by using a volatile tandem differential mobility

analyzer to determine the external and internal mixed fraction of non-volatile particles (Frey

et al., 2008), which are associated with soot particles (Rose et al., 2006). In this study, a
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Figure 4.6.: Annual cycle of the absorption coefficient (σap) at 10 observation sites of the
German Ultrafine Aerosol Network (GUAN). Episodes I to III are marked because
of later reference.

simplified version was used just heating the whole polydisperse aerosol stream to 300 ◦C and

evaporating volatile compounds to measure the non-volatile size distribution as described in

Section 3.2.2. Unfortunately, it is not possible to have a closer structural insight into measured

soot particles in terms of e.g. fractal dimension, size of monomers or effective density of these

fractal agglomerates by having only this information. Fractal properties can be determined by

transmissions electron microscopy (Köylü et al., 1995; Park et al., 2004a; Wentzel et al., 2003).

To estimate effective densities, tandem measurements selecting particles with a specific mobility

diameter and subsequently classify these monomobile particles according to their aerodynamic

size (Kelly and McMurry, 1992; Park et al., 2003).

Average mass size distribution from at least 45 Berner impactor samples from each measurement

site collected in 2009 and 2010 were compared. A homogeneous distribution of available samples

over typical air masses and over all seasons was aspired, to be as representative as possible for a

time period of 2 years. The mass size distributions were derived by dividing the average masses

in each of the 5 size classes by the width of each size bin and subsequently fitting log-normal

functions to the distributions. In addition, the volume size distributions of non-volatile particles

are shown as an average for the years 2009 and 2010. It has to be mentioned that the mass

size distributions from Berner sampling refer to the the aerodynamic diameter of EC, whereas

non-volatile volume distribution are based on the mobility diameter.

The results are shown in Figure 4.9. In general, the maximum of the EC mass size distributions

shifts to larger diameters, when going from urban to mountain sites. This behaviour can not

be seen in the non-volatile volume size distributions. Going more into detail, the maximum of

the mass size distribution of EC is around 400 nm at the traffic site Leipzig-Eisenbahnstraße.

The maximum of the non-volatile volume size distribution is slightly shifted to smaller diame-

35



4. Experimental Results

traffic: Dresden-Nord Leipzig-Eisenbahnstraße
urban background: Augsburg Leipzig-IfT

regional background: Melpitz Bösel Waldhof
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Figure 4.7.: Statistics on 2 year absorption coefficient (σap) measurements at 10 observation
sites in the German Ultrafine Aerosol Network (GUAN). Gray lines represent
fitted log-normal functions.

ters around 300 nm. For urban and regional background locations, particles with diameters of

around 550 nm dominated the EC mass concentrations. In contrast, the non-volatile volume size

distribution shows a maximum around 250 nm. At mountain observation sites the difference is

even larger with a maximum of the mass sizes distributions around 800 nm and again between

200 and 300 nm for the non-volatile volume distribution.

One plausible explanation for the observed difference is based on the mixing state of atmospheric

soot particles. In previous studies it was found by using electron microscopy that a significant

fraction of soot particles exist internally mixed at regional sites in contrast to urban locations

(e.g. Hasegawa and Ohta, 2002). Assuming that the ambient soot particles carried a volatile

shell especially at mountain sites, it would evaporate in the thermodenuder leading to a particle

shrinking. This particle would be classified in a higher diameter class if it is unconditioned,

which is the case for the mass size distributions. In contrast, freshly emitted soot particles at

traffic locations do not carry a shell, which could evaporate in the thermodenuder. This is in

agreement with the measurements of non-volatile particle volume size distributions and mass

size distributions of EC. It has to be mentioned that a comparison of these distributions from

different measurement devices is highly uncertain, since they are based on different diameter

definitions and not necessarily the same aerosol reservoir.

4.2.3. Correlation of absorption coefficient with non-volatile particles

To get further information about the size of the particles that are responsible for light absorption,

the particle ambient and thermodenuder number size distributions measured in 2009 and 2010

were compared to measured values of σap in terms of the coefficient of determination (R2).
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Figure 4.8.: Diurnal cycle of absorption coefficients (σap), for (a) from Monday to Friday and
(b) from Saturday to Sunday.

Therefore, the time series for each size bin for 2009 and 2010 was compared to the time series

of the absorption coefficient, in each case for a temporal resolution of 30 minutes. The results

are shown in Figure 4.10. In general, σap is much better correlated with the non-volatile than

with the ambient particle number size distributions. The maxima of R2 range between 0.7 and

0.9 for thermodenuder distributions. The position of the maximum is between 100 and 200 nm

at all observation sites. A tendency to a bimodal shape can be seen, especially for the mid-level

mountain sites. As indicated by the width of the curves of R2, the absorbing particles seem to be

relatively homogeneously distributed over a broad diameter range of the non-volatile particles.

The values of R2 are almost entirely above 0.6 in a diameter range between 80 and 500 nm.

They decrease rapidly below and above this range.

For ambient particles, highest values of R2 are between 0.5 and 0.8. Except for the traffic site

Leipzig-Eisenbahnstraße and the urban background site Augsburg, the curves of R2 exhibit a

more or less pronounced bimodal shape. The first maximum is located at around 100 nm at

all sites and therefore matches the aforementioned position of the maxima of the R2 curves

for non-volatile particles. This is especially visible for the traffic site, where freshly emitted

absorbing soot particles are measured. These particles are mostly externally mixed and should

therefore maintain there size after passing the thermodenuder. The position of the second and

more distinct maximum varies between 250 and 500 nm at non-urban observation sites and is

even more pronounced than the first maximum. Assuming a large fraction of internally mixed

soot particles at rural and mountain locations, this behavior could be explained by a volatile

shell surrounding the soot particles and evaporating in the thermodenuder. Taking the difference

between the position of the maximum in the R2 curves for ambient and non-volatile particles as

a rough estimation of the diameter shrinking of light absorbing particles, values between 20 and

70% can be derived. The lowest value is estimated for the urban background site Leipzig-IfT.
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Figure 4.9.: Characteristic size distributions from 2009 and 2010 for (a) mass concentration
of EC in 5-stage Berner impactor samples (logarithmic normal distributions are
fitted to each data set), and (b) non-volatile particle volume from SMPS/TDMPS-
thermodenuder measurements.

4.3. Experimental mass absorption coefficients for atmospheric soot

particles

4.3.1. Meteorological characterization of measurement periods

For the application of the Raman-method to determine mGC and δGC of atmospheric soot parti-

cles, 3 distinct time periods in 2009 and 2010 were chosen. The meteorological conditions during

these time periods are presented in this section. To illustrate relevant meteorological fields, WRF

runs were performed in the domains presented in Section 3.5.2. The general weather situation

in Central Europe is generally characterized by a change of more or less persistent pressure

patterns at the surface. These changes occur due to long waves in the upper troposphere, which

can be seen in the field of the geopotential height of the 500 hPa surface. This height is in close

relation to the temperature of the air mass, which means that cold air masses are characterized

by a low geopotential, in contrast to warm air masses. However, these long waves show troughs

(i.e. regions with low geopotential) as well as ridges. Air masses were classified and labeled

according to their source regions and transformations described in Geb (1981). Source regions

were identified using 72 h backward trajectories calculated with the HYSPLIT model (Draxler

and Hess, 1997). Following the method of Geb (1981), every air mass is characterized by an

annual cycle of the pseudopotential temperature. Therefore, fields of the pseudopotential tem-

perature1 were taken into account and compared to tabulated values in Geb (1981).

The first episode (Episode I) of interest was from March 25 to April 10, 2009. In the beginning,

the general weather situation was characterized by a trough situated over Central Europe, re-

1http://www.wetter3.de/Archiv/
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Figure 4.10.: Coefficient of determination (R2) between absorption coefficient (σap) and vol-

ume size distributions of 2009 and 2010 for (a) ambient aerosol measurements
and (b) non-volatile particles after thermodenuder.

sulting in mostly maritime subpolar air masses (mP), which influenced large areas of Germany.

Some shorter waves that moved along the frontal zone led to incorporations of warmed mar-

itime subpolar air masses (mPs). The air masses mP and mPs dominated the meteorological

situation from the beginning of Episode I to March 31, 2009. With the shift of the trough to

eastern directions, the circulation pattern changed. The following ridge can be seen in the field

of the geopotential height of the 500 hPa layer, shown in Figure 4.11. Corresponding to this

situation in higher altitudes, the temperature in 850 hPa increased because of the transport of

warm air masses from southeastern directions. At the surface, a high pressure area was centered

over Bulgaria, leading to a transport of warm continental air masses to Germany. Trajectories

indicate that the dominant air masses between 01 April to 10 April, 2009 were aged maritime

(xSp) and continental (cSp) air (Figure 4.12). The second episode (Episode II) of interest was

from May 29 to June 20, 2009. In this period, Central Europe was influenced by a persistent

trough, as can be seen from the exemplary field of the 500 hPa geopotential height in Figure 4.13.

Corresponding trajectories are shown in Figure 4.14. The temperature in the 850 hPa level was

only around 0 ◦C , especially in the northern part of Germany, which is lower in comparison to

the long-term average. Corresponding to this persistent trough, several low pressure systems

with their fronts influenced the weather in Germany. In the beginning of this time period, large

areas of Germany were situated downstream of the trough leading to a meridional transport

of maritime subpolar air (mP). Subsequently, air masses of the type mP were transported to

the north of Spain, so that Germany was situated upstream of the trough and maritime air of

the mid-latitudes (mSp) could establish. A change between mostly these 2 types of air masses

repeated until the end of Episode II, but with a tendency to mSp in the southern and mP in

the northern part of Germany.
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Figure 4.11.: Typical meteorological situation during Episode I: Geopotential of the 500 hPa
atmospheric level, wind vectors at the 850 hPa level colored in dependence of the
850 hPa temperature and the pressure at sea level (white contour lines) calculated
with Weather Research and Forecast model (WRF v3.2.1) for April 03, 2009 at
12:00.

mP/mPs xSp/cSp

Figure 4.12.: Backward trajectories during Episode I, calculated for 72 h using HYSPLIT model
(Draxler and Hess, 1997). This episode could be separated into 2 parts. Between
March 25 and March 31, 2009 a maritime warmed subpolar air mass (mPs) dom-
inated the meteorological situation. Between April 01 and April 10, 2009 mostly
aged martime (xSp) and continental (cSp) air masses influenced Germany.

The general weather situation during the winter episode between January 24 and January 31,

2010 (Episode III) was characterized by a high pressure system in the northeastern part of Eu-

rope. Due to the very cold air in this region, the 500 hPa geopotential was very low, as can

be seen from Figure 4.15. Especially the eastern part of Germany was influenced by this cold

continental air mass with a temperature of −12 ◦C in the 850 hPa level. Low temperature

with humid air and a noticeable wind from eastern and northeastern directions was situated

in large areas over Germany. The vertical stratification showed a temperature inversion with

slightly colder air at the surface and warmer air with a relative humidity of 20% reside over it,

as can be seen from Figure 4.16. The air mass can be classified as almost entirely continental

subpolar (cP) until January 27, 2010, as can be seen from the trajectories in Figure 4.17. With

a new trough establishing in Central Europe from north-western directions, cP was forced back

to eastern Europe after January 27, 2010, and maritime air masses from polar (mP) and arctic

(mA) origins established in Germany until the end of Episode III.

Following the air mass classification described above, Episode I will be splitted into 2 parts, the
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Figure 4.13.: Typical meteorological situation during Episode II: Geopotential of the 500 hPa
atmospheric level, wind vectors at the 850 hPa level colored in dependence of the
850 hPa temperature and the pressure at sea level (white contour lines) calculated
with Weather Research and Forecast model (WRF v3.2.1) for June 03, 2009 at
12:00.

mP/mSp

Figure 4.14.: Backward trajectories during Episode II, calculated for 72 h using HYSPLIT
model (Draxler and Hess, 1997). This episode was dominated by maritime sub-
polar air (mP) and martime air of the mid-latitudes (mSp).

more maritime Episode I - m and the more continental Episode I - c. Since Episode II was almost

entirely influenced by maritime air masses, it is designated as Episode II - m in the following

steps of data evaluation. The winter Episode III can also be clearly separated into 2 parts,

which will be designated as Episode III - c and Episode III - m.

4.3.2. Determining experimental mass absorption coefficients

Theoretical studies based on Mie-calculations for simple spherical particles as well as more com-

plicated algorithms for the calculation of optical properties of fractal aggregates suggest that the

mass absorption coefficient of soot particles from the combustion of diesel fuel will most often

not exceed 7 m2 g−1 at a wavelength of 550 nm (Fuller et al., 1999). Assuming a soot particle

that is freshly emitted, its structure exhibits branches of small spherical primary particles. As its

fractal dimension increases from values around 1.5 to values greater than 2, the particle appears

more compact with a less open structure. This often occurs during atmospheric aging processes.

Such a particle would have a decreased mass absorption coefficient in comparison to an open

structured soot particle with a same number of primaries (Liu et al., 2005). The opposite occurs
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Figure 4.15.: Typical meteorological situation during Episode III: Geopotential of the 500 hPa
atmospheric level, wind vectors at the 850 hPa level colored in dependence of the
850 hPa temperature and the pressure at sea level (white contour lines) calculated
with Weather Research and Forecast model (WRF v3.2.1) for January 26, 2010
at 12:00.

Figure 4.16.: Cross section along 52.2 ◦N with temperature shown in colored contour levels
and relative humidity in white contour lines calculated with Weather Research
and Forecast model (WRF v3.2.1) for January 26, 2010 at 12:00. The vertical
temperature profile measured in Lindenberg (52.2 ◦N , 14.1 ◦E ) is shown in color-
filled circles.

if the particles are getting internally mixed with other non-absorbing substances during atmo-

spheric aging processes. This leads to an enhancement of the mass absorption coefficient, with

values that could be greater than 10 m2 g−1 at a wavelength of 550 nm (Fuller et al., 1999).

In this work, particle samples were analyzed by means of Raman-spectroscopy stemming from

near traffic, urban background, regional and mountain observational sites in 3 episodes and

therefore cover a broad range of the state of soot from freshly emitted to aged particles. As

described in the section before, the 3 episodes are separated into 5 distinct prevailing air masses.

All values of mGC were calculated by using Equation 4.1. The mass absorption coefficient of

graphitic carbon (δGC) can then be calculated from the quotient of σap and mGC , as given in

Equation 2.11. Characteristic values were obtained from the slopes of orthogonal regression

lines for each site and each air mass (cf. Table 4.1). The uncertainties of each single value of

δGC were derived by Gaussian error propagation, using the uncertainties from MAAP measure-

ments of 12% (Petzold and Schönlinner, 2004) and the errors of mGC . Errors of mGC , in turn,

were determined by Gaussian error propagation. Therefore, the errors of the integral over the
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cP mA/mP

Figure 4.17.: Backward trajectories during Episode III, calculated for 72 h using HYSPLIT
model (Draxler and Hess, 1997). This episode could be separated into 2 parts.
Between January 24 and January 28, 2010 a continental subpolar air mass (cP)
dominated the meteorological situation. Between January 29 and January 31,
2010 a mostly maritime arctic (mA) and maritime subpolar (mP) air mass was
situated over Germany.

G-band in the Raman-spectrum of atmospheric particle samples on the MAAP filter medium

were determined by repeated measurements of individual samples to be 14%. The measurements

were partly repeated with a time delay of several months, leading to a larger difference. This

may explain the difference to the uncertainty that was presented in Section 4.1.2 for laboratory

generated Printex R©90 particles. The calibration constant, that is used to convert the integral

over the G-band into a mass loading on the filter medium, has an uncertainty of 1.4%. Addi-

tional errors of mGC are introduced by Aspot (5%), V̇ (3 - 7%) and tsamp (around 1%). These

errors propagate to an uncertainty of mGC of 15 -17%. Altogether, this leads to an uncertainty

of single values of δGC of 19 - 21%, depending on the flow rate that is used inside the MAAP at

individual measurement sites.

Episode I

In association with the meteorological situation in Episode I - m, mGC ranged between 0.1µg m−3

at mountain locations to 4µg m−3 at near traffic observation sites as can be seen in Figure 4.18.

Corresponding absorption coefficients for each sample from MAAP measurements showed also

relatively low values between 0.2 Mm−1 and 18 Mm−1 at mountain and traffic sites, respectively.

As the meteorological situation changed in Episode I - c, mGC increased to values between 0.5

and 15µg m−3 with corresponding values of σap between 2 and 55 Mm−1. This more polluted

continental air mass established later at the observation sites in the southern part of Germany

with the largest delay at the alpine site Mt. Zugspitze. For both air masses, the time series of

mGC and σap show a very similar temporal behavior, indicating a high degree of correlation and

the dominance of GC as absorbing species in the measured particle populations.

At the traffic observation site, δGC exhibited a slight decrease as the air mass changed from

Episode I - m to Episode I - c. The variability over the whole time period was comparably large

with single values between 2.5 and 7.5 m2g−1. This also reflects in the large scatter of the data

points in a mGC - σap plot, as can be seen in Figure 4.21. Orthogonal regressions yielded charac-
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Figure 4.18.: Determining aerosol mass absorption coefficients (δGC) during Episode I: Time
series of the mass concentration of graphitic carbon (mGC), absorption coeffi-
cient (σap) and δGC at 6 observation sites in the German Ultrafine Aerosol Net-
work (GUAN). A change from mostly maritime (m) to mostly continental (c)
air masses is indicated by a vertical line.

teristic values of 4.6 m2 g−1 for Episode I - m and Episode I - c but with a poorer correlation for

the more continental air mass. At the urban background site, the temporal variability of δGC was

not so pronounced as at the traffic site. A characteristic value of 5.1 m2 g−1 was determined for

Episode I - m and Episode I - c, respectively. At the regional background site in the northwestern

part of Germany, the variation of individual single values of δGC was between 2.6 and 6.7 m2g−1,

with a short time period in the beginning of Episode I - c showing decreased values. The slopes of

the regression lines are 5.5 m2 g−1 for the more maritime and 5.2 m2 g−1 for the more continental

air mass. At the mid-level mountain Hohenpeißenberg in the southern part of Germany, the

observed values of δGC ranged between 3.8 and 7.7 m2g−1. From the regression, values of δGC of

4.4 m2 g−1 for Episode I - m and 4.6 m2 g−1 for Episode I - c were calculated. Results for the other

mid level mountain site Schauinsland show lower values of δGC but, unfortunately, only about

50% of data was available because of a failure of the measurement system. However, the samples

are only from Episode I - cfor which a value of δGC of 4.2 m2 g−1 was determined by regression.

The time series of δGC for the alpine mountain site Zugspitze shows a weak maximum between

March 27 and April 06, 2009 with highest values around 6.3 m2g−1. The lowest values observed

in the whole time period were around 3.7 m2g−1. From regression, values of δGC of 5.8 m2 g−1 for
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Episode I - m and 4.8 m2 g−1 for Episode I - c were calculated. In summary and as can be seen

in Figure 4.21, individual single values of δGC were almost entirely between 2 and 8 m2g−1. The

correlations between mGC and σap are at least good at individual observation sites.

Episode I Episode II Episode III Berner
m c m c m
slope R2 slope R2 slope R2 slope R2 slope R2 slope R2

Leipzig-Eisenbahnstraße 4.60 0.86 4.62 0.75 - - - - - 6.75 0.65
Leipzig-IfT 5.07 0.99 5.11 0.86 4.21 0.73 6.58 0.68 4.23 0.96 6.34 0.77
Augsburg - - - - - - - - - - 6.59 0.66

Bösel 5.50 0.90 5.21 0.93 5.00 0.84 6.42 0.53 5.99 0.97 4.57 0.84
Melpitz - - - - - - 7.39 0.63 5.45 0.98 4.43 0.84

Hohenpeißenberg 4.43 0.97 4.58 0.85 5.11 0.77 6.11 0.86 5.24 0.99 4.32 0.75
Schauinsland - - 4.21 0.87 4.29 0.81 4.29 0.94 5.82 0.97 6.41 0.48
Zugspitze 5.81 0.98 4.79 0.81 3.97 0.96 4.91 0.99 3.85 0.98 - -

Table 4.1.: Results of orthogonal regressions with slope (characteristic value of δGC in m2g−1)
and coefficient of determination (R2) between mass concentration of graphitic car-
bon (mGC) and absorption coefficient (σap) for 3 episodes divided into 5 different
air masses (m=maritime, c=continental, cf. Section 4.3.1) and Berner samples of
2009 and 2010.

Episode II

Additional filter samples stemming from Episode II - m were selected for a subsequent Ra-

man spectroscopic analysis. Observed values of mGC ranged between 0.1µg m−3 at mountain

sites and 2.9µg m−3 at the urban site, respectively. The variability at individual measurement

sites is small in comparison to Episode I. Corresponding values of σap were expectably highest

(9.4 Mm−1) at the urban site and with lowest (0.4 Mm−1) at mountain sites. As already ob-

served for Episode I, a very similar temporal behavior of mGC and σap can be seen in Figure 4.19,

identifying again GC as the dominant absorber of solar radiation at a wavelength of 637 nm.

The variability of δGC during this time period at the urban background site was smaller with

values between 3.2 and 5.5 m2g−1. Applying again the method of orthogonal regression, a typical

value of 4.2 m2 g−1 was calculated. Regional background values of δGC ranged between 2.4 and

6.5 m2g−1. The lowest value of this range was measured for a very short sampling period and,

therefore, possesses larger uncertainties mainly due to lower filter loadings. When considering

this fact, the lower bound would be 3.9 m2g−1. A value of 5 m2 g−1 was characteristic for the

regional site during Episode II - m. Regarding the increased uncertainty for very short sampling

periods, the range of δGC at the mid-level mountain site Hohenpeißenberg is 4.2 - 6.2 m2 g−1 with

a characteristic value of 5.1 m2g−1. At the other 2 mountain sites, the ranges of δGC were 3.5 -

6.6 m2 g−1 at Schauinsland and 3.6 - 5.7 m2 g−1 at Zugspitze. From regression, values of δGC of

4.3 m2 g−1 for Schauinsland and 4.0 m2 g−1 for Zugspitze were derived. In summary, the value

range of δGC is narrower in comparison to Episode I. The majority of values was between 4 and

6 m2g−1, as can be seen in Figure 4.21.
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Figure 4.19.: Determining aerosol mass absorption coefficients (δGC) during Episode II: Time
series of the mass concentration of graphitic carbon (mGC), absorption coefficient
(σap) and δGC at 6 observation sites in the German Ultrafine Aerosol Network
(GUAN). This episode was dominated by maritime air masses (m).

Episode III

To determine the range of δGC in Central Europe during winter months, additional samples

from Episode III were measured. The time series of σap, mGC and δGC are shown in Figure 4.20.

Especially at the measurement sites in the northern part of Germany, very high values of mGC

occurred in association with the meteorological situation during Episode III - c. The maxima

of mGC in this continental air mass ranged between 0.2µg m−3 at the alpine mountain site and

20µg m−3 at the urban site. Corresponding values of σap were in the range between 1.2 and

104 Mm−1. These high values indicate a very polluted conditions, which are likely to be caused

by high emissions because of low temperatures in combination with an inversion layer at the

surface, as shown in Section 4.3.1. Such a situation was not often observed in the years 2009

and 2010, as can be seen from the time series of absorption coefficients in Figure 4.6. A steep

decrease in mGC and σap occurred at the beginning of Episode III - m. Observed values ranged

between 0.07 - 2.4µg m−3 and 0.4 - 10 Mm−1, respectively. The temporal behavior of mGC and

σap is very similar for both very different air masses. In contrast to Episode I and Episode II,

a clear change in individual single values of δGC during Episode III can be seen at the regional

and urban observation sites in the northern part of Germany. At the urban background site

in Leipzig, δGC had its maximum of 8.3 m2 g−1 in the continental air mass. The lowest values
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down to 4 m2 g−1 were observed in the marine air mass. Typical values from regression were

6.6 m2 g−1 for Episode III - c and 4.2 m2 g−1 for Episode III - m. A similar temporal behavior

was found for the regional background sites Bösel and Melpitz, with maximum values up to

10 m2 g−1 and minimum values of 4.3 m2g−1. One implausible value of δGC measured for Bösel

was not considered. For Episode III - c, the slopes of regression lines are 6.4 m2 g−1 for Bösel and

7.4 m2 g−1 for Melpitz. In contrast, for Episode III - m they are smaller with values of δGC of

6.0 m2 g−1 for Bösel and 5.5 m2 g−1 for Melpitz. It has to be mentioned that the correlations at

these 3 sites are only moderate for Episode III - cwith coefficients of determination between 0.53

and 0.68. In addition, the regression lines show a systematic positive offset. At mountain sites,

δGC was relatively constant, although signals of this continental air mass are visible in the time

series of mGC and σap. At the mid-level mountain sites Hohenpeißenberg and Schauinsland, the

ranges of values are 4.4 - 7.1 m2 g−1 and 3.6 - 6.8 m2g−1, respectively. Characteristic values of

δGC during Episode III - c were 6.1 m2 g−1 at Hohenpeißenberg and 5.2 m2 g−1 at Schauinsland.

In Episode III - m, values slightly changed to 5.2 and 5.8 m2g−1, respectively. Nearly no change

was observed at the alpine mountain site with a range of values of δGC between 4.6 and 6.2 m2g−1.

Characteristic values were 4.9 and 3.9 m2 g−1 during Episode III - c and Episode III - m, respec-

tively.

4.3.3. Discussion of mass absorption coefficients

Variability

Summarizing the results presented in the previous section, the highest values during Episode I

were measured at Zugspitze and Bösel and the lowest at Schauinsland. The range of values

of δGC from orthogonal regression is between 4.2 and 5.8 m2g−1. In Episode II the range of

characteristic values is similar, with δGC between 4.0 and 5.1 m2g−1. In contrast, a broader

range of characteristic values was determined for the winter Episode III, with δGC between 3.9

and 7.4 m2g−1. A tendency to higher values in winter season can be observed, since δGC for

Episode III - m is also mostly higher than δGC in maritime air masses in the summer. Cozic

et al. (2008) found an opposite behavior on the high alpine mountain site Jungfraujoch and

suggested that higher summer values are due to enhanced coatings of soot particles with organic

materials because of a higher photochemical activity.

The observed variability in δGC may result from a significant fraction of particles, which are

not GC but contributed to σap. For example, organic aerosol particles may contribute to light

absorption coefficients (Andreae and Gelencsér, 2006). Adapt this on the current study using

MAAP and Raman-spectrometer to determine δGC it turns out that possible contributions of

organic aerosols to σap are rather small at a wavelength of 637 nm, as can be seen from the steep

decrease in absorption spectra towards this wavelength (Sun et al., 2007). Favez et al. (2009)

found a contribution of biomass burning aerosols of not more than 8 % at this wavelength. An

additional absorber of radiation is mineral dust. Since its absorption is correlated with the par-

ticle number concentration greater than 1 µm (Müller et al., 2009) at least near source regions,

there should be a negligible influence on PM1 absorption even if significant amounts of this

species would be present. In addition, absorption coefficients of mineral dust decrease strongly
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Figure 4.20.: Determining aerosol mass absorption coefficients (δGC) during Episode III:Time
series of the mass concentration of graphitic carbon (mGC), absorption coefficient
(σap) and δGC at 6 observation sites in the German Ultrafine Aerosol Network
(GUAN). A change from mostly continental (c) to mostly maritime (m) air
masses is indicated by a vertical line.

with increasing wavelength (Petzold et al., 2009).

More likely, the variability in δGC is due to changes in the state of mixture. In several studies

listed in Table 4.2, laboratory generated as well as ambient soot particles were analyzed con-

cerning the effect of a coating on their mass absorption coefficient. In all studies it was found

that the mass absorption coefficient increases if particles are getting coated with non-absorbing

material. Reported changes in the mass absorption coefficient from laboratory measurement

using a single particle soot photometer (Shiraiwa et al., 2010) are for example 50 % as shell vol-

ume fraction is 88 %. Using transmission electron microscopy before and after removing water

soluble material from the particle samples, Naoe et al. (2009) determined a change of 25 % in

the mass absorption coefficient as shell volume fraction is around 50 %.

Regarding the measurement sites of the present work, a larger fraction of coated soot particles

can be expected at mountain sites in comparison to near source locations in the urban environ-

ment, due to aging processes. This could generally not be confirmed by measurements of δGC ,

since the highest values were not measured at mountain sites such as the Zugspitze.

The difference in δGC between prevailing air masses was systematically analyzed by averaging

individual single values of mGC and σap for each site and each of the 5 air masses. The resulting

scatterplot of average σap and mGC is shown in Figure 4.22. Characteristic values of δGC were
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Figure 4.21.: Scatterplot between mass concentration of graphitic carbon (mGC) and absorption
coefficient (σap) for every sample of the 3 episodes. Lines with slopes of 2, 4, 6,
8 and 10 m2 g−1 are added as gray lines for a rough orientation.

derived from orthogonal regression. Despite particle samples were taken in completely different

air masses, the variation of δGC from regression analysis is only about 17%. The maximum value

of 6.3 m2 g−1 was determined for the continental air mass during Episode III - c. The lowest

value of δGC was observed during the clean maritime air mass. Regarding the air mass effect,

δGC should be highest in an air mass containing a large fraction of internally mixed (coated)

soot particles. The concentrations but also the fraction of internally mixed soot particles should

be increased in aged air masses with only a few or even no precipitation events in the last days,

since the dominant removal process of soot particles is wet deposition. This should be mostly the

case during stable high pressure weather conditions. Adding additional freshly emitted soot par-

ticles, the overall state of mixture should not change significantly. In contrast, aged air masses

from maritime origins and frequent precipitation processes in the near past should contain lower

concentrations but also a high fraction of internally mixed soot particles. Assuming that such

an air mass passes over continental areas with fresh soot emissions, an externallyl mixed soot

fraction would be added. Depending on the initial concentrations of internally mixed soot par-

ticles, the introduced externally mixed fraction may be dominant and, therefore, changing the

overall mixing state. This could explain the findings that δGC is highest in the aged continental

air mass during Episode III - c but lowest in the maritime air mass Episode II - m.
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σ

µ

Figure 4.22.: Scatterplot between mass concentration of graphitic carbon (mGC) and absorp-
tion coefficient (σap) for prevailing air masses during Episode I, Episode II and
Episode III. Lines with slopes of 2, 4, 6, 8 and 10 m2 g−1 are added as gray lines
for a rough orientation.

Comparison with mass absorption coefficients concerning EC

As previously shown in Section 4.1.3, there is a good agreement between mGC from Raman

measurement and mEC from thermographic analysis of Berner impactor samples, at least for the

regional observation site in Bösel. Additional Berner samples were taken at traffic, urban and

mountain locations. They were compared with the daily averaged absorption coefficients from

MAAP in Figure 4.23. Resulting slopes and coefficients of determination are summarized in

Table 4.1. The slopes again represent a characteristic mass absorption coefficient designated as

δEC because it is based on EC mass concentrations. Individual single values of δEC were mostly

between 2 and 10 m2g−1, except some higher values measured at urban and traffic observation

sites. The slopes of the regression lines indicate higher values of δEC at urban and traffic

sites in comparison to regional and mountain sites. Values obtained, ranged between 6.6 and

6.8 m2 g−1 and 4.3 and 4.6 m2g−1, respectively. The value of δEC determined for Schauinsland

has a higher uncertainty, since the correlation is poor with R2 of 0.48 and the regression line

has a larger positive offset. The reason for the difference between urban and regional sites

is unclear but is assumed to have a methodological origin. As mentioned in Section 3.2.3,

no charring correction was performed during the thermographic analysis. Assuming 2 particle

samples with a constant amount of EC but different amounts of OC, the thermographic analysis

would give different concentrations of EC, since different amounts of OC charred during the

procedure. Taking this into account, the difference in δEC between urban and regional sites

could be explained by a difference in the average OC/EC ratio, which must have been higher

at urban sites. Comparing these findings to δEC values derived by Petzold and Schönlinner

(2004), a nearly similar difference between urban and rural location was found as can be seen

in Table 4.2. It is worth mention, that Petzold and Schönlinner used a similar combination of

measurement devices. In summary, the ranges of δGC and δEC fit very well. The tendency to

higher values at urban locations as observed for δEC can, indeed, not be seen in δGC .
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Figure 4.23.: Scatterplot between mass concentration of elemental carbon (mEC) and absorp-
tion coefficient (σap) for every Berner sample taken in 2009 and 2010. Lines with
slopes of 2, 4, 6, 8 and 10 m2 g−1 are added as gray lines for a rough orientation.

Comparison with previous studies

Before comparing the values of δGC to values in the open literature it has to be mentioned

that, in general, mass absorption coefficients of soot may be determined by a combination of

various methods for mass concentration and absorption coefficient determination. It has to be

considered that different methods of mass determination are not necessarily sensitive to the

same properties of soot particles. Depending on the calibration standard used for individual

methods, different masses may be measured when analyzing the same soot sample. In addi-

tion, the absorption coefficient may introduce uncertainties. Even the unit to unit variability

of several photometers such as the particle soot absorption photometer (PSAP) may be up to

30% (Müller et al., 2011). However, the absolute value of δGC was compared to values of mass

absorption coefficients measured in other studies and summarized in Table 4.2. When referring

to the listed literature values, the mass absorption coefficient is also designated as δEC , since for

nearly every value soot mass concentration were determined by a thermographic method. For

that reason, the observed span of δEC in Table 4.2 may be due to a difference of soot properties

such as size or state of mixture but also due to different measurement methods. However, the

values of δEC range between 3.58 and 18.3 m2 g−1 for regional, mountain and urban sites in a

wavelength range of 550 to 870 nm. In order to compare them, all values were adjusted to the

wavelength of the MAAP using an Angström exponent of -1, which is typical for soot. The

values measured in the present study are at the lower bound of the cited values of δEC . Going

more into detail, an average value of 11.3 m2 g−1 can be derived for mountain sites, which is more

than a factor of 2 higher than δGC found in this study. For regional locations, a slightly lower
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average value of 9.4 m2 g−1 can be calculated from Table 4.2, considering only δEC for untreated

samples. This is again a factor of 2 higher than the values of δGC observed during Episode I

and Episode II. For urban sites, a value of 9.8 m2 g−1 can be derived. In summary, there is a

similar tendency to higher values of δEC at regional location, as it was found in the present

study. In order to eliminate the uncertainty introduced by different absorption measurement

devices, only studies using the MAAP were considered in the following. In this case, again,

highest values are derived for mountain sites with δEC of 9.3 m2g−1. The values of regional and

urban sites are 4.7 and 6.2 m2g−1, respectively. They are much closer to δGC from the present

study. Calculating an average of all values of δEC determined using the MAAP and adjusting

this average value to the PSAP wavelength of 550 nm assuming again an Angström exponent of

-1, a value of 7.8 m2 g−1 can be derived. This is about 40% smaller than the average value of

all PSAP measurements, which cannot be explained by a wrong assumption of the Angström

exponent. In comparison to the PSAP, the MAAP has a much smaller unit to unit variability

between than 3 and 8% as shown in Section 3.2.1 and in Müller et al. (2011). More likely, large

parts of this discrepancy are therefore due to the uncertainty of PSAP measurements. The

reason for the uncertainty of the PSAP is mainly attributed to uncertainties in flow and spot

size measurement (Müller et al., 2011). In addition, the conventional correction of PSAP data

using the Bond-correction (Bond et al., 1999) is inadequate, when a large fraction of particles

is non-absorbing (Müller et al., 2011).

4.3.4. Effects of the mixing state on the mass absorption coefficient

For the estimation of the soot mixing state and its effect on δGC , the microphysical optical

model described in Section 3.4 was used. With this method, Episode III was more precisely

investigated, since δGC showed the largest variability in this time period. To run this model,

additional information about ambient and non-volatile particle number size distributions were

used. In general, volatility measurements can be used to determine the fraction of low and high

volatile particles (Wehner et al., 2009) as a function of their size and estimate the shell and core

diameters, respectively (Cheng et al., 2009). Because a simplified version of such a measurement

system was used in the present study, heating just the whole particle number size distribution,

some assumptions had to be made. As a result of this model, the fraction of external mixed

soot particles can be derived.

The time series of the external mixed fraction for three observation sites are shown in Figure

4.24. In addition, simulated values of σap are shown for a completely internal and completely

external mixed case. The measured absorption coefficient is almost entirely in the range whose

lower and upper bounds are defined by the external and internal case, respectively. The external

mixed soot fraction showed values around 60% at the urban site and around 50% at the regional

sites in the polluted air mass (Episode III - c). After the air mass change in Episode III - m,

the external mixed soot fraction increased to values around 90% at all 3 observation sites. In

Figure 4.25, δGC in dependence on the external mixed soot fraction is shown. As can be seen,

the highest mass absorption coefficients were observed when the external mixed soot fraction

was lowest. Higher values of δGC in combination with a higher internal mixed soot fraction are
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in agreement with theory and experimental findings, as mentioned in Section 4.3.3.
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Figure 4.24.: Comparison between time series of measured and calculated absorption coeffi-
cients (σap) and model derived external mixed soot fraction (ε) for Leipzig-IfT,
Melpitz and Bösel during Episode III.

urban background: Leipzig-IfT

regional background: Bösel Melpitz

mid-level+alpine mountain: Hohenpeißenberg Schauinsland
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Figure 4.25.: Comparison between measured daily averaged mass absorption coefficients (δGC)
and calculated external mixed soot fractions (ε).
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5. Regional Modeling

5.1. Model validation against observations

In this section, the results of three model runs with slightly different settings and EC emission

rates are considered, in order to perform a sensitivity study, especially on the simulation of BC.

The settings for the first model run, designated as R1, are described in Section 3.5. The results

of this initial run validation are summarized in Table 5.2. In the second simulation, designated

as R2, the module that reads in the emission rates was slightly modified, so that all fine mode

EC emissions could be read in. In addition the scaled EUCAARI EC emission inventory was

used, as described in Section 3.5.3. The third model run, which is designated as R3 in the

following, is designed as an emission sensitivity run, where the original EUCAARI EC emission

inventory used in R1 was simply multiplied by a factor of 2, since global emissions estimates

of EC may also vary by a factor of 0.5 - 2 (Vignati et al., 2010; Ramanathan and Carmichael,

2008) and a factor of 2 - 5 on regional scale (Ramanathan and Carmichael, 2008). Furthermore,

the optical properties, especially the simulated absorption coefficient, will be validated. The

ratio between BC mass and absorption is analyzed from a comparison of δmod and measured

δGC during Episode I. The goodness of simulation of different model variables are evaluated in

terms of mean bias (MB, Equation B.1), the mean normalized bias (MNB, Equation B.3) , the

root mean square error (RMSE, Equation B.2) and the correlation coefficient (R, Equation B.4).

5.1.1. Meteorology

For the simulation of aerosol processing in the atmosphere it is essential that the meteorologi-

cal conditions in terms of temperature, relative humidity and wind are well represented by the

model. As a first step in model validation, the 4-dimensional meteorological variables calcu-

lated with R1 for the nested domain were compared to measurements from vertical soundings

of the atmosphere, provided by the University of Wyoming1. The vertical profiles of 9 locations

in Germany were extracted from model output of R1. They were compared to corresponding

soundings in terms of parameters described in Appendix B.

In Figure 5.1, exemplary scatter plots between modeled and measured temperature, relative

humidity and horizontal wind components at a height of 500 m a.s.l. at Lindenberg observation

site are shown. The modeled and measured temperature is well correlated, but slightly under-

estimated by the model. From humidity comparison, it can be seen, that the model slightly

overestimates the water vapor content in the 500 m model level with a moderate correlation

of 0.67. The simulation of meridional and zonal wind components is good in comparison to

1http://weather.uwyo.edu/upperair/sounding.html
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Figure 5.1.: Comparison between measured and modeled temperature (T ), relative humidity
(RH) and wind x-y-components (U and V ) for 500 m a.s.l at Lindenberg obser-
vation site (S10393) in the time period between March 24 to April 09, 2009.

measurements, as can be seen from the regression lines. The average values of the validation

metrics over all 9 sounding sites for different levels of the nested model domain are shown in

Figure 5.2 and in Table 5.1. From the plot of the mean model bias it can be concluded that

the simulated temperature is too low by around 1 ◦C in the lowest layers with increasing bias

towards higher altitudes, whereas the correlations are getting better towards higher atmospheric

levels. As mentioned before and confirmed by the comparison with other sites, the simulated

humidity is too high below 1 km. Between 1 and 3 km, the humidity is too low. The correlations

between model and measurements are only moderate at all levels under consideration. The

zonal and meridional wind components are simulated too high in the lowest atmospheric levels,

but especially the meridional component shows only a negligible deviation from measurements

above 500 m. The correlations are mostly good and increase towards the free troposphere.

The aerosol dispersion in the atmosphere strongly depends on the stability conditions. An

unstable atmosphere in the lowest layers leads to a well mixed planetary boundary layer, which

is the case when solar insolation is highest. To analyze the stability of the atmosphere, the

virtual potential temperature can be used. The potential temperature without humidity effects

is defined as the temperature an air parcel would take on if it is led dry adiabatic from a specific

level characterized by its pressure to a reference pressure. It makes temperatures in different

atmospheric heights comparable to each other. When considering humidity effects, the virtual

potential temperature can be defined as the dry potential temperature an air parcel has to take

on, to have the same density as moist air. For saturated air it can be calculated following Stull

(1988) and using potential temperature, water vapor saturation mixing ratio and liquid water
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Figure 5.2.: Mean Bias (MB) in temperature (T ), relative humidity (RH) and wind x-y-
components (U and V ) as a function of height a.s.l. as average values over 9
sounding sites in the time period between March 24 to April 09, 2009.

Level T RH U V
R RMSE R RMSE R RMSE R RMSE

0 0.89 2.28 0.60 17.03 0.84 3.06 0.79 2.64
500 0.94 2.02 0.59 18.80 0.92 2.60 0.88 2.54
800 0.95 1.85 0.58 18.56 0.94 2.51 0.89 2.59
1000 0.96 1.73 0.61 18.06 0.93 2.63 0.91 2.40
2000 0.98 1.46 0.70 21.30 0.95 2.37 0.93 2.28
3000 0.98 1.90 0.72 21.38 0.94 2.64 0.94 2.47
5000 0.99 3.45 0.73 18.16 0.96 2.78 0.95 3.02

Table 5.1.: Root mean square error (RMSE) and correlation coefficient (R) between model
and measurement for temperature (T ), relative humidity (RH) and wind x-y-
components. RMSE and R are average values over all sounding sites in the time
period between 24.03.2009 - 09.04.2009.

mixing ratio. If the air is unsaturated, the liquid water mixing ratio becomes zero and only

the water vapor mixing ratio is considered in the calculation. The vertical profile of the virtual

potential temperature can be used to derive the stability in the atmosphere. If this quantity

is decreasing with height, the atmosphere is locally unstable in this region. If it is constant,

the atmosphere is stratified neutral in the appropriate region. An increasing virtual potential

temperature is equivalent to a stable atmosphere. In Figure 5.3, the profiles of the vertical

gradient of the virtual potential temperature (lapse rate) from model and soundings are shown.

The lapse rate is negative in an unstable and positive in a stable atmosphere. It can be seen

from Figure 5.3(a) that in the lowest levels up to 300 m the atmosphere is unstable to neutral

at noon, and that the model correlates well with the measurement. It seems that the instability

is slightly underestimated by the model. Above 300 m, the atmosphere is stable, and an over-

estimation of stability from model can be seen. At midnight (Figure 5.3(b)), the atmosphere

becomes very stable below 300 m. Again, the model and the measurement correlate well. Only

small changes in profiles can be seen above 300 m in comparison to the noon profiles. These

results suggest that the vertical mixing of particles due to instability of the atmosphere could

be somewhat underestimated by the model in lower atmospheric levels.
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(a) At noon. (b) At midnight.

Figure 5.3.: Vertical profiles of lapse rates of the virtual potential temperature Θv as an average
of model and sounding values at 9 observation sites in the time period between
March 24 to April 09, 2009.

5.1.2. Aerosol particles and gases

In a first validation step regarding aerosol particles, the simulated PM10 mass concentrations

were compared to measurements using the initial run (R1) results for the time period under

consideration. For this purpose, daily averaged PM10 mass concentrations measured by the

UBA at 392 sites were considered. The observation sites are of various types with traffic to

regional background characteristics. The results of this comparison in terms of MNB and R

are shown in Figure 5.4. The values of MNB show a pattern in Germany, with an overestima-

tion of PM10 in the western and northeastern part and an underestimation in the eastern and

southeastern part. The range of MNB is between 1.33 and -0.52, which represents a maximum

overestimation of 133% and a minimum underestimation of 52%. The reason for this pattern

is unclear, but it suggests that there is possible over and underestimation of the emission rates

of particulate matter, respectively. Since there was a significant air mass change from mostly

marine to continentally influenced in this time period as described in Section 4.3.1, uncertainties

in emission numbers in neighboring countries are also possible. Overall, the model slightly un-

derestimates PM10 in Germany in the time period under consideration with MB of -6.1µg m−3,

which corresponds to a value of MNB of -9%. The correlation coefficients between model and

measurement are mostly good with R between 0.6 and 0.95 and show no such pattern. This

confirms, in agreement with the previous section, that the meteorological conditions are simu-

lated correctly in the whole modeled time period. When summarizing all pairs of modeled and

measured PM10 concentrations, a correlation coefficient of 0.77 was found for Germany, as can

be seen in Table 5.2.

The column integrated aerosol mass was qualitatively validated by a comparison of the column
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(a) Mean normalised bias. (b) Correlation coefficient.

Figure 5.4.: Comparison between modeled and measured daily PM10 mass concentrations in the
time period between 24.03.2009 and 09.04.2009. Measurements performed by the
German Federal Environmental Agency.

integrated aerosol optical thickness AOT from model and measurements. This can be done

since, beside particle chemical composition and number size distribution, AOT is a function of

the column integrated aerosol mass concentration (Kaufman and Fraser, 1983). The Moderate

Resolution Imaging Spectroradiometer (MODIS) is an instrument that measures the spectral

radiance in 36 channels aboard Aqua and Terra satellites. The reflectance data in three channels

(0.47 ,0.66 and 2.12µm) is used to derive the total spectral AOT (Levy et al., 2007). This data

product was validated with Aerosol Robotic Network (AERONET) sun photometer measure-

ments (Holben et al., 1998) in several studies, and it was found that MODIS AOT is often

positively biased by up to 50 % (Schaap et al., 2008) and 48 % Remer et al. (2005) over the

European land surface. This bias was attributed to uncertainties in land surface reflectance in

the MODIS AOT retrieval and possible cloud contamination (Schaap et al., 2008).

In Figure 5.5 (a), the quotient between model AOT from summation over all model levels and

MODIS AOT at 550 nm is shown. Since WRF calculates aerosol optical properties at only

four wavelengths, as described in Section 3.5.1, linear interpolation between AOT at 400 and

at 600 nm was used to derive the AOT at 550 nm. Because MODIS data is only available at

specific times, AOT from WRF was only calculated for time periods when MODIS data was

available. Average values are shown in Figure 5.5 (a). Most of the measurements are from the

continental influenced air mass, because cloud free cases occurred more frequently during that

time in Central Europe. Over most regions in Germany MNB is between -0.4 to 0.4. A positive

Bias can be seen in the northeastern and southwestern part of Germany. When looking at MNB

in PM10 in Figure 5.4, it becomes obvious that the largest values of MNB in Germany were also

determined for the region in the southwestern part. Since this effect can not only be seen in the

column but also at the surface, it is likely that this is due to uncertainties in emissions, which

are maybe too high in this region. In eastern regions shown in Figure 5.5 (a), MNB in AOT is
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(a) Quotient between modeled and measured (MODIS)
AOT (dimensionless).

(b) Time series of AOT measured with a sun photometer at Munich and Leipzig-IfT and
corresponding model values.

Figure 5.5.: Comparison between modeled and measured aerosol optical thickness (AOT ). Sim-
ulated values of AOT were considered for times and locations with available
MODIS data.

around -40 to -80%. In addition, the time series of modeled AOT was compared to AERONET

sunphotometer measurements performed at two observation sites in Germany. The extracted

MODIS AOT data at those locations is also shown (Figure 5.5 (b)). In spite there are only a few

simultaneous measurements of MODIS and sunphotometer in the considered time period, AOT

of both devices is nearly the same and shows a good correlation. This suggests that the MODIS

data is unbiased concerning possible uncertainties in surface reflectance. Regarding only AOT

of those two AERONET sites for comparison with model values, MNB was found to be 15%

and the correlation is moderate with R= 0.68 (cf. Table 5.2). Nevertheless, there are large

regions in the modeling domain D02, where AOT is not simulated correctly.

The modeled values of mBC were compared to the values of mGC measured by Raman spec-

troscopy and shown in Section 4.3.2. Measured mass concentrations were averaged to the max-

imum length of the sampling interval of 1 day, using weighting based on sampling time. For

this comparison, the traffic site Leipzig-Eisenbahnstraße was not considered, since the model is
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urban background: Leipzig-IfT
regional background: Bösel

mid-level+alpine mountain: Hohenpeißenberg Schauinsland
Zugspitze
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Figure 5.6.: Comparison between measured and modeled soot mass concentrations.

not capable to simulate such small-scale variability observed in this street canyon. The time

series of 5 observation sites and corresponding model values are shown in Figure 5.6. The spatial

distribution of MNB and R are shown in Figure 5.7. At the urban background site Leipzig-IfT,

mGC increased from 1 to a maximum of 4µg m−3 during this time period. This behavior can

also be seen in the modeled values of mBC for R1, but on a lower level. On average, the model

underestimates mBC by about 80% and the correlation is moderate (R=0.55). At the regional

site, the temporal behavior as well as the magnitude of mBC are much better reproduced by the

model with R around 0.7 and MNB around -30%. At the mid-level mountain sites, modeled

mBC again correlates good with measurements at least at Mt. Hohenpeißenberg, but is also

negatively biased with MNB between -50% and -80% . Even at the alpine mountain site, mBC

is well correlated, but also shows a substantial negative bias. Calculating the overall deviation

of the model, mBC is about 0.71µg m−3 to low, which corresponds to MNB of -53 % and R is

0.59. In a recently published modeling study by Tuccella et al. (2012) applying WRF-chem over

Europe, it was found that the carbonaceous aerosol fraction contributes most to the error in

PM2.5 simulation. They found, that modeled mBC is negatively biased by about 51%, compar-

ing model values with chemical mEC measurements at 4 stations from EMEP from the whole

year 2007. This value is close to our findings, although only a comparable short time period,

another determination method for soot and a different EC/OC emission inventory was used.

Because of this large negative bias found for the simulation mBC , the model performance re-
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(a) Mean normalised Bias, run
with EUCAARI EC emissions
(R1).

(b) Correlation Coeffcient, run
with EUCAARI EC emissions
(R1).

Figure 5.7.: Comparison between modeled and measured soot mass concentrations at GUAN
sites Leipzig-IfT (If), Bösel (Bo), Hohenpeißenberg (Hp), Schauinsland (Si) and
Zugspitze (Zu). Model values of BC mass concentration are compared to measure-
ments of GC mass concentrations.

garding gaseous combustion products was checked. Therefore, the volume mixing ratios of SO2

and CO from hourly measurements of the UBA network were compared to corresponding R1

model values. The resulting time series are shown in Figure 5.8. In general, an increase of the

SO2 volume mixing ratio can be seen when the continental air mass was established in Central

Europe as previously found for mGC . This can be seen especially for the values measured at the

regional site in Melpitz. When comparing with model values, the SO2 volume mixing ratios show

a very similar temporal behavior. During some events with higher values, the model seems to

overestimate the SO2 volume mixing ratio. At the mountain site Schauinsland the correlation is

not good. Nevertheless, the measured and modeled values have the same magnitude, except for

some shorter time periods. Summarizing all measurements and corresponding model values, the

MNB shows an overestimation of around 83% with a poor correlation of R= 0.40. Comparing

this to findings by Tuccella et al. (2012), they found a nearly double positive model bias of about

166%, but included much more observation sites in their analysis.

The CO mixing ratios show a less pronounced increase in the continental air mass at both

stations under consideration (e.g. Figure 5.8 (b)). At both, the regional and the mountain ob-

servation site, modeled and measured values show a similar temporal behavior with an overall

correlation coefficient of 0.60. A substantial negative bias of 61% is obvious at both stations,

which is very similar to the bias found for mBC and therefore suggests that emissions from com-

bustion processes may be underestimated. All values of MNB and R, mentioned above, are

shown in Table 5.2.

In summary, it can be stated, that the overall simulation of PM10 is good, although the values

are too low in the eastern part and too high in the southwestern part of Germany. This somehow

reflects to a certain extent in the simulation of AOT , which is also too low, especially in the

regions to the east of Germany. BC is substantially underestimated by the model, which is also

true for the gaseous combustion product CO.
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(a) SO2 volume mixing ratios at Melpitz and Schauinsland.

(b) CO volume mixing ratios at Neuglobsow and Schauinsland.

Figure 5.8.: Time series of modeled and measured volume mixing ratios of atmospheric gases.

5.1.3. Absorption coefficient

Aerosol optical properties such as extinction coefficient, single scattering albedo and asymmetry

factor are determined in WRF using the Mie-theory as described in Sections 3.5.1 and 3.5.4.

Using output variables of σext and SSA at 600 and 1000 nm and Equation 2.10, the absorption

coefficient at 637 nm can be derived from the model output by using linear interpolation. The

absorption coefficient at this wavelength is desired since the MAAP, which is applied in this

study, uses this wavelength as described in 3.2.1. All measurements were performed for dry

aerosols, which is a problem when comparing with the modeled absorption coefficient, since

simulated values are derived for wet particles. In several studies it was shown that soot, in-

ternally mixed with hydrophilic substances, (e.g. sulfate) is able to take up water, which then

amplifies the absorption of solar radiation (Fuller et al., 1999; Nessler et al., 2005; Mikhailov

et al., 2006). For that reason, the optical properties were calculated again, after the R1 model

run was finished, using an offline version of the module ‘optical averaging’ in WRF-Chem and

the simulated concentrations of the chemical constituents as described in Section 3.5.4. For this

offline run of the optical module, the aerosol water content was removed.

In Figure 5.9, the modeled and measured hourly values of the dry σap are shown for 7 obser-

vation sites with urban, regional and mountain characteristics. An increase of σap occurred in

association with an increase in BC mass concentration during this episode, as shown before in

Section 4.3.1. Regarding the urban sites, the increase is clearly visible in model values, at least

for Leipzig-IfT. The model underestimates σap, especially for the station in Augsburg. MNB is

between -30% and -70% with values of R between 0.4 and 0.5. At the regional sites, the model

simulates the absorption coefficient well, so that even some peak values are reflected in the model

output. In addition, the correlation is better than at urban sites with values of R between 0.55

and 0.65, but in the entire period the model is positively biased with MNB around 60%. At the

mid-level mountain sites the model is again on the level of measured σap, except some shorter

time periods in the beginning of April at Mt. Hohenpeißenberg. The values of MNB are be-

tween -30% and 30% with correlation coefficients between 0.2 and 0.6. Surprisingly, the best
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urban background: Leipzig-IfT Augsburg
regional background: Bösel Melpitz

mid-level+alpine mountain: Hohenpeißenberg Schauinsland
Zugspitze
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Figure 5.9.: Comparison between measured and modeled absorption coeffcient (σap ).

correlation between model and measurement is found for the alpine mountain site Zugspitze,

with R= 0.7 and a small positive bias around 45%. In summary, a value of MNB= 20% was

found as an average over all sites (cf. Table 5.2). The overall correlation coefficient was 0.43. If

the water is not eliminated before the optical calculation, as it is usually the case, the MNB is

nearly doubled (34%) , whereas the correlation remains unchanged.

Summarizing the findings of this section and the section before, simulated mBC is too low and

σap is overall too high. Calculating the quotient of both following Equation 2.11, the dry mod-

eled mass absorption coefficient at 637 nm designated as δmod can be derived. It can, in turn, be

compared to the values presented for Episode I in Section 4.3.2. In Figure 5.11 the time series of

daily averaged δmod for the R1 model run and the measurements of δGC are shown for 5 stations.

As determined from measurements, δGC shows only little variation during this time period with

values between 3 and 6 m2g−1, which is on the same level at all observation sites ranging from

urban to mountain characteristics. When looking at the model values a similar behavior can
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(a) Mean fractional Bias, run
with double EC emissions.

(b) Correlation Coeffcient, run
with double EC emissions.

Figure 5.10.: Comparison between modeled and measured absorption coefficients at GUAN
sites Leipzig-IfT (If), Bösel (Bo), Hohenpeißenberg (Hp), Schauinsland (Si) and
Zugspitze (Zu).

be seen. It has to be pointed out, that δmod is higher with values around 9 and 12 m2g−1. The

overall MNB is 111%, which is equivalent to a mean bias of 5.34 m2g−1. Regarding humidified

particles, MNB is even higher (133%) (cf. Table 5.2). This means that the model error in the

simulation of mBC is (over)compensated by a too large δmod, so that the simulated absorption

behavior of particles is nearly right or even too pronounced. It must be mentioned, that inter-

estingly the range of modeled values is close to the range of δEC given in Table 4.2 from the

studies using the PSAP.

5.2. Sensitivity study on BC and optical adjustment

The simulated BC mass concentration strongly depends on the emissions of this species, because

BC is a primary pollutant which has no secondary source. Once emitted into the atmosphere,

it can be long-range transported because of its mostly hydrophobic nature, which impedes an

incorporation into cloud droplets and subsequent rapid removal due to wet deposition (Heintzen-

berg, 1989). Nevertheless, the ability to uptake water and therefore the possible incorporation

into cloud processes, may change due to coagulation or collision processes with more hygroscopic

particles such as sulfuric acid (Ogren and Charlson, 1983). At the current state of the WRF

development, the model is not capable to simulate the state of mixture of BC, and thus it is

assumed that all chemical constituents are internally mixed (Chapman et al., 2009) in each bin.

It may lead to an overestimation of the hygroscopic growth in the model and therefore an over-

estimation of the simulated dry and wet deposition as important removal processes(Ducret and

Cachier, 1992), especially in near source regions. Since precipitation processes were of minor

importance in the simulated period, especially during Episode I - c as shown in Section 4.3.1, it

is assumed that the simulated mBC is most sensitive to changes in EC emission rates.

Simulations were repeated with modified EC emission inventories. In order to match the simu-

lated BC mass concentrations, 2 additional runs with modified emission rates (R2 and R3) were

performed. According to Sections 3.5.3, original EUCAARI emissions from 2005 (used in R1)
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urban background: Leipzig-IfT
regional background: Bösel
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Figure 5.11.: Comparison between measured (δGC) and modeled (δmod) mass absorption coeff-
cients.

were scaled to ARCTAS emissions from 2008 to account for the emission migration since 2005.

For R3, EUCAARI emission rates were simply doubled. The simulated aerosol microphysical

and optical properties were again compared to measurements in terms of MB, MNB, RMSE

and R. The resulting time series of mBC for R2 and R3 are shown in Figure 5.6 and validation

metrics are summarized in Table 5.3. In general, an increase of simulated mBC towards the

measured values can be seen at all observation sites and for both additional runs. At the urban

background site in the eastern part of the modeling domain, the simulation of BC shows only

a minor change for R2 in comparison to R1. If doubled EC emissions are used, a considerable

improvement could be achieved. The difference between BC from R1 and R2 at the regional

site is more pronounced, where the modeled values of R2 are on the same level as the measure-

ments and the correlations are still very good. However, using R3 BC mass concentrations are

overestimated. For the mid-level mountain sites mBC from R2 and R3 is nearly the same but

still too low especially at Mt. Hohenpeißenberg. For Mt. Zugspitze, using R2 leads to lower

values of mBC than for R3, but for both runs the simulated values are too low. Summarizing the

results of this comparison, the simulation of BC is improved with MNB -36% for R2 and -6%

for R3, whereas the simulation of the pattern remains nearly unchanged with R= 0.59 for R2

and R= 0.61 for R3. In addition, increasing the EC emissions, leads to a slight improvement of

the PM10 simulation with MNB changed to 7% and -6%, respectively. Also the column aerosol

mass seems to be improved, since the deviation between modeled and measured AOT is smaller

for both, MODIS and sunphotometer comparison.

For adjusting the modeled to the measured absorption behavior, the imaginary part of the BC
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Class Model variable Number of sites MB MNB RMSE R

Meteorology T 9 -1.271 -0.06 2.391 0.99
U 9 0.162 0.37 2.922 0.96
V 9 0.132 0.32 2.842 0.95
RH 9 4.833 0.6 17.813 0.85

Gases SO2 5 0.104 0.83 0.864 0.40
CO 2 -0.105 -0.61 0.115 0.60

Aerosol PM10 392 -6.106 -0.09 14.676 0.77
BC 5 -0.716 -0.53 1.076 0.59

Aerosol optics AOT 7 2/2 -0.02/0.158 -0.04/0.13 0.03/0.518 0.78/0.68
σap−wet 7 -1.079 0.34 37.639 0.41
σap−dry 7 -1.579 0.2 36.739 0.43
δmod−wet 5 6.4210 01.33 42.5410 -0.10
δmod−dry 5 5.3410 01.11 30.3510 -0.11

1 Unit of temperature T is ˚C
2 Unit of wind speed is m s−1

3 Unit of relative humidity is %
4 Unit of volume mixing ratio is ppbv
5 Unit of volume mixing ratio is ppmv
6 Unit of mass concentration is µg m−3

7 Measasurements from MODIS/Sunphotometer
8 dimensionless
9 Unit of absorption coefficient is Mm−1

10 Unit of mass absorption coefficient is m2 g−1

Table 5.2.: Summary of values of mean bias (MB), mean normalised bias (MNB), root mean
square error (RMSE) and correlation coefficient (R) derived from a comparison of
different measurements and corresponding model values simulated in the base run
(R1).

complex refractive index was varied, as described in Section 3.5.4. δmod was chosen because,

as an intensive property, it is independent of the aerosol mass. In addition, it accounts for the

mixing state information, as already discussed in Section 4.3.4. The method was applied using

the simulated mass concentrations of all chemical constituents of the base run R1. The derived

time series of the adjusted imaginary part is shown in Figure 5.12. The imaginary part shows

only small variations, indicating that the constancy of δmod is well represented by the model as

already shown in the section before. Therefore, an average value of 0.26 was derived, which is

much smaller than the commonly used value from Bond and Bergstrom (2006) of 0.71. In this

review paper, refractive indices from many other studies are summarized. They found that most

of them lie on a line in a plot, where the real part of the refractive index of atmospheric soot

is on the x-axis and the imaginary part is on the y-axis. They argued that soot has a single

refractive index, and this variation is due to a change in the void fraction in the soot particles.

The value found by the adjustment procedure is outside the range given by Bond and Bergstrom

(2006) for atmospheric soot particles.

To further examine the possible reason for the discrepancy between the adjusted and commonly

used imaginary part of BC refractive index, a simplified procedure in comparison to WRF for

estimating aerosol absorption coefficient by Mie-theory was applied. The first simplification is

the usage of only two chemical constituents, i.e. BC and the non absorbing part of atmospheric

aerosols. Both constituents are characterized by there complex refractive index of 1.85+0.71i

for BC and around 1.55+1E-7i as a typical value for the non-absorbing part of atmospheric par-
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ticles. The particle number size-distributions are assumed to be a decomposition of log-normal

functions, given in Equation 2.5. Soot is assumed to have an average geometric diameter of

100 nm and a geometric standard deviation of 1.9. Non-absorbing particles are represented by

a log-normal distribution with a geometric diameter of 200 nm and a geometric standard de-

viation of 2. This means that the aerosols are distributed almost entirely in the Aitken and

Accumulation size range. When using the particle volume of both constituents in each bin,

the refractive index of the effective medium as a function of the particle size can be derived by

volume averaging as described in Section 2.3.1. This mixing rule is also applied in the particle

optics module in WRF-chem. Passing this information to the Mie-code for spheres provided by

Bohren and Huffman (1983), the efficiency factors for absorption can be derived. Integrating

them over the sum of all particles using Equation 2.9, the absorption coefficient can be derived.

Using further the density of 1.8 g cm−3, as it is used in WRF, δmod can be derived. For the

settings described above, a value of 11.2 m2 g−1 was calculated, which is in the range of values

that are typical for the base run (R1) as can be seen from Figure 5.11. When the imaginary part

of complex refractive index is changed to 0.26, which is the value derived from the adjustment

procedure, a value of 4.4 m2 g−1 is calculated. This is in the range of measured values as well as

values derived for the simulations R2 and R3, where the adjusted imaginary part is also used as

can be seen from Figure 5.11. Assuming that none of the log-normally distributed BC particles

are mixed with a non-absorbing particle and taking the original imaginary part of 0.71, a value

of 3.8 m2 g−1 is calculated. This value is even lower than the measured values, although the

imaginary part was used that led to values of δmod being more than 50% larger as in the internal

mixed case. This strongly suggests that the low imaginary part of the BC refractive index from

adjustment compensates for the missing consideration of the BC mixing state in the model. In

contrast to the model assumption of a completely internal mixture, most of the BC should be

externally mixed during Episode I. Nevertheless, this value was chosen since its usage leads to

the smallest deviation between modeled and measured mass absorption coefficients.

As mentioned before for the runs R2 and R3, the adjusted imaginary part of BC refractive

index was used. From Figure 5.9 it can be seen that this leads to a slight decrease of modeled

absorption coefficients at all 7 sites under consideration. Especially for R3, the overall MNB

is improved with a value of -2% as can be seen from Table 5.3. The overall pattern remains

almost the same since the correlation coefficient only slightly increased from 0.43 to 0.47 for R2

and 0.45 for R3, respectively. Summarizing the effects of mass improvement and adjustment of

the absorption behavior on the comparison between model and measurements, it can be stated

that the smallest deviation between model and measurement concerning most of the variables

mentioned before, are derived by using R3.

5.3. Radiative forcing of soot particles

The effect of BC on the radiation balance at the surface and at TOA was examined by comparing

the net irradiances from R3 and an additional unperturbed model run with no anthropogenic and

natural EC emissions. The radiative forcing at the surface can be calculated using Equation 2.13.

At TOA, the radiative forcing was also evaluated using Equation 2.14. These calculations were

repeated for R3, but using the unmodified imaginary part of BC refractive index, in order
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Figure 5.12.: Times series of adjusted imaginary part of model complex refractive index of BC
(k).

Class Model vari-
able

Number of
sites

MB MNB RMSE R

Aerosol PM10 392 / 392 -2.4 / -5.35 0.07 / -0.06 13.71 / 14.24 0.76 / 0.78
BC 5 / 5 -0.56 / -0.3 -0.36 / -0.06 0.83 / 0.54 0.59 / 0.61

Aerosol
optics

AOTMODIS 2 / 2 -0.03 / -0.03 -0.03 / -0.01 0.03 / 0.02 0.75 / 0.74

AOTSunph 2 / 2 0.10 / 0.11 0.04 / 0.07 0.32 / 0.43 0.71 / 0.67
σap−dry 7 / 7 -3.23 / -2.51 -0.23 / -0.04 40.89 / 38.61 0.47 / 0.45
δmod−dry 5 / 5 -0.15 / -0.87 -0.01 / 0.16 0.58 / 1.39 -0.03 / -0.07

Table 5.3.: Summary of values of mean bias (MB), mean normalised bias (MNB), root mean
square error (RMSE) and correlation coefficient (R) derived from a comparison of
different measurements and corresponding model values simulated in the runs R2 /
R3.

to estimate the effect of the adjusted absorption behavior on the radiative forcing. For the

evaluation of the radiative forcing, grid cells containing cloud ice or water were not considered.

In Figure 5.13, the temporal evolution of the vertical cross section of the cloud-fraction as well

as the modeled and measured incoming solar radiation at the surface is shown. As can be seen,

there are two days in the beginning of April, which were simulated almost completely cloud

free. Comparing the modeled and measured incoming solar radiations, an undisturbed diurnal

cycle can be seen in both days. The temporal evolution of the radiative forcing at the surface

and at TOA for April 03, 2009 in the nested model domain is shown in Figure 5.14 for both

model runs. In general, the BC radiative forcing is negative at the surface and positive at TOA.

The absolute value is higher at the surface than at TOA, which is in agreement with previous

studies (Haywood and Shine, 1997; Ramanathan and Carmichael, 2008). For R3 it can be seen

that the BC radiative forcing at the surface is mostly between -2 and -10 W m−2 in large parts

of the model domain. For the same concentrations the radiative forcing at the surface using

the unmodified imaginary part of BC refractive index is higher with values between -4 and -

16 W m−2. In some grid cells the values may be even higher especially when large point sources

are situated in immediate vicinity as can be seen for example in combination with Figure 3.5 in

the northwestern part of the Czech Republic. The radiative forcing for R3 at TOA is comparably

small with values mostly between 0 and 4 W m−2. Using the unmodified BC refractive index,

values between 2 and 6 W m−2 were determined. In comparison to the globally and annually

averaged values at TOA as summarized by the ICCP, the regional radiative forcing in Europe
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Figure 5.13.: Time series in days since January 01, 2008 of measured and modelled incoming
solar radiation (F−) and vertical cross section of cloud fractions for Melpitz.

may be considerably larger.

The local radiative forcing extracted from Figure 5.14 for 2 GUAN measurement sites is shown

in Figure 5.15. In addition, the reduction in forcing at the surface and at TOA, when using

the adjusted imaginary part of BC refractive index in comparison to the unmodified value is

shown. In Waldhof for example, the maximum radiative forcing at the surface is -7 W m-2 for

the unmodified imaginary part and around -3.5 W m-2 for the new settings. This corresponds

to a lowering in radiative forcing of around 50%. At TOA the radiative forcing is even more

decreased with values around 65 %. Taking also the values for Leipzig-IfT into account, the

decrease in radiative forcing at TOA and the surface is mostly between 30 and 70 %.

The starting point for the modeling study presented in this chapter, were measurements of

the absorption coefficient and the subsequently determined GC mass concentrations applying

the new Raman-method for different measurement sites of the GUAN network. Using these

measurements, reliable values of the mass absorption coefficient were experimentally determined

as described in Sections 4.3.2. This offered the opportunity to validate WRF-Chem concerning

the simulation of BC mass concentrations and the corresponding light absorption coefficients

for a certain episode (cf. Episode I, Section 4.3.1). It was found that the model in average

underestimates the BC mass concentrations, but slightly overestimates the absorption coefficient.

Comparing measured and modeled mass absorption coefficients, a model bias of 111 % was found.

However, after reasonable adjustment of the simulated BC to measured GC mass concentrations

by modifying emission rates, the simulation could be improved. The results of the present work

strongly suggest that conventional emission inventories of BC need to be up-scaled. This finding

is emphasized by the results presented in Tuccella et al. (2012), that BC from their model

calculations was similarly biased.

The simulation of the absorption coefficient could be improved by adjusting the modeled to

the measured mass absorption coefficients, modifying the imaginary part of the BC refractive

index. The very low value of 0.26 that was found by the adjustment procedure, can be explained
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as a compensation for the missing treatment of the BC mixing state in the model. Jacobson

(2001) pointed out, that the BC radiative forcing strongly depends on its mixing state, by

explicitely simulating the aging of BC due to processes like coagulation and condensation. The

calculations confirmed that due to aging a certain fraction of the BC particles become internally

mixed. In this case the forcing is much higher as for the case when all BC particles are treated

externally mixed. In the present study it was shown with the aid of real measurements of δGC

as an indirect measure for the mixing state, that treating all particles internally mixed as it is

done in the current version of WRF-Chem leads to an overestimation of the radiative forcing

at the surface and at TOA between 30 and 70 %. Lowering the absorption of solar radiation by

soot particles leads to a decrease in emission of thermal radiation after the absorption process

and thereby reduces the heating of their environment. Consequently, adjusting the absorption

behaviour to real measurements leads to a significantly lower effect of soot particles on the

radiation balance and further reduces their semi-direct effect at least on regional scale. The

results clearly show that the BC mixing state has to be accounted for in regional models, so that

an externally mixed fraction of BC may coexist. Recent attempts simulate the mixing state by

using a 2 dimensional representation of particle size distributions in box models (Oshima et al.,

2009). In this 2 dimensional representation, particles of one size class may have varying mass

fractions of BC. Condensation and evaporation processes lead to a growth or a shrinkage and

therefore to a shift of the particles between the size classes and BC mass fractions. A more

realistic but computational expensive approach was presented by Riemer et al. (2009), explicitly

simulating the state of mixture of individual particles in a moving volume along a trajectory.

The size of individual particles may change by condensation and evaporation. Particles may be

added or removed by emission and coagulation, respectively.
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April 03, 2009 12:00 April 03, 2009 13:00 April 03, 2009 14:00 April 03, 2009 15:00

(a) Surface

(b) TOA

-16     -12         -8        -4         0          4          8        12        16  

Figure 5.14.: Direct radiative forcing in W m−2 (time period: April 03, 2009 12:00 - 15:00)
of BC at (a) the surface and (b) the top of the atmosphere, derived from the
comparison of the runs with and without EC emissions. In (a) and (b) the upper
panels refer to the run R3 using the unmodified imaginary part of BC in each
case, whereas for the lower panels the adjusted value of 0.26 was used.
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Figure 5.15.: Local direct radiative forcing and ratio between radiative forcings for the runs
with adjusted imaginary part of BC refractive index (R3) and the run with the
unmodified value (R3 (prev)). All values are from the cloud-free time period
between April 03 and April 04, 2009.
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6. Conclusion

An atmospheric observation data set including 2 years of optical, microphysical and chemical

aerosol properties in Central Europe was analyzed with regard to the absorptive characteristics

and radiative forcing associated with soot particles. In this integrated approach, important as-

pects of soot particles regarding the concentration of black carbon (BC), graphitic carbon (GC)

and elemental carbon (EC) were investigated. The term BC basically accounts for absorptive

components of soot particles, which are particularly small graphitic domains also designated as

GC. This refractory fraction of atmospheric soot particles evolves at a high temperature. Taking

these conditions as fixed, the term EC can be defined. The relation between BC, GC and EC

is not necessarily constant and depends predominantly on the conditions during the production

of soot particles and their stage of aging in the atmosphere. The measurements were performed

in the German Ultrafine Aerosol Network (GUAN), incorporating observations at mountain,

regional, urban and traffic locations. The combination of measurement devices enabled a deter-

mination of the soot mass absorption coefficient as a very important quantity, since it accounts

for the change in absorption of solar radiation per unit soot mass during atmospheric aging

processes. This quantity is widely used in modeling studies to estimate the radiative forcing of

soot particles. In the present work, the measured mass absorption coefficients were utilized to

adjust the absorption behavior simulated by a regional model (Weather Research and Forecast

model coupled with a chemical transport module, WRF-Chem) to real measurements and to

finally improve the estimation of the radiative forcing of atmospheric soot particles.

Aerosol light absorption coefficients at a wavelength of 637 nm were measured by Multi Angle

Absorption Photometers (MAAP), which sample particles on glass microfiber filter tape dur-

ing measurement. In the first step, a new method was developed to subsequently analyze soot

particles on these samples by Raman-spectroscopy, determining (GC) mass concentrations. A

laboratory calibration established a solid relationship between the Raman-signal and the mass

of GC in individual particle samples collected on MAAP glass microfiber filters. The reference

material Printex R©90 was intensively characterized in terms of size, structure and GC fraction in

comparison to atmospheric soot particles, and deemed suitable for calibration. In the calibration

experiment, the mass of Printex R©90 on the calibration samples was determined gravimetrically,

while corresponding Raman-signals of GC were recorded by a Raman-spectrometer. A linear

relationship between gravimetric masses and corresponding GC Raman-signal was found. The

absorption coefficient from MAAP can be combined with the mass concentration to derive a

mass absorption coefficient concerning GC (δGC).

In the next step, a carefully selected set of particle filter samples covering 3 distinct episodes

and of 6 different measurement sites were analyzed by applying the new Raman-method for δGC .

The particular weather situations were selected according to the back trajectories and the heat

content of the air masses. The samples could be further grouped into 5 distinct episodes for
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which δGC was quantified by orthogonal regression analysis. The samples from two maritime

and one continental influenced summer period and one maritime and one continental influenced

winter period were measured. Using the new Raman-method for measuring the GC content in

selected particle samples, a unique data set of δGC was achieved. Interestingly, no systematic

trend of δGC at different observational sites was found. For example, the values at the alpine

mountain site Zugspitze ranged between 3.9 and 5.8 m2g−1, while they were only slightly differ-

ent at the urban background site Leipzig-IfT, exhibiting values between 4.2 and 6.6 m2g−1. The

average effect of individual air masses on δGC was also analyzed. It was found that δGC was rela-

tively constant during the 2 maritime and the continental summer episodes with average values

between 4 and 5 m2 g−1 . The most enhanced values of δGC were found for the aged continental

air mass in winter with values between 5.5 and 6.5 m2g−1.

Values of δGC were compared to mass absorption coefficients concerning EC from a thermo-

graphic method (δEC). The values of δEC and δGC were found to be very similar at regional

observation sites, but at a poorer correlation. Systematic, but slightly higher values of δEC were

observed at urban observational sites, which could be attributed to a missing charring correction

during the thermographic analysis.

The level of δGC were also compared to literature values, concluding that the δGC of the present

study is at the lower bound of a broad range (3.6 - 18.3 m2g−1) of mass absorption coefficients

measured in several previous studies in literature. However, it has to be mentioned, that in other

studies absorption coefficients were mostly related to mass concentrations of EC. Nevertheless,

the comparison within these literature values remains uncertain since different temperature pro-

grams for the EC mass determination and different methods for measuring absorption coefficients

were used by researchers. It is an interesting observation that systematically higher values were

determined if particle soot absorption photometers (PSAP) were used. The values of δEC from

literature were, however, within the range of δEC and δGC of the present study if also MAAPs

were applied. This suggests that the broad range is, to some extent, due to uncertainties in

PSAP measurements (Müller et al., 2011), which were not used in this work. It can be sum-

marized that conventionally used mass absorption coefficients might be too high and that an

average value of 5 m2 g−1 at 637 nm is more realistic.

The reason for enhanced values of δGC in the continental winter episode was explored by applying

a Mie shell-core model using conditioned and unconditioned particle number size distributions,

GC mass concentrations and absorption coefficients. It was found for maritime and continental

air masses, that the measured absorption coefficients were almost entirely between the bounds

given by simulated absorption coefficient assuming a completely external mixture and internal

mixture, respectively. The difference between modeled and measured values could be iteratively

minimized by introducing the fraction of external mixed soot particles. The time series of this

variable suggests that a larger fraction of externally mixed soot particles occurred in the mar-

itime winter air mass. In addition, lower mass absorption coefficients were found to be associated

with higher externally mixed fractions from the microphysical optical model.

To finally estimate the radiative forcing caused by BC in the Central European troposphere,

WRF-Chem was applied for the 2 week summer period 2009 containing the transition from

the maritime to the continental episode. Before the calculation of radiative forcing, the model
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was validated concerning the simulation of meteorological variables, aerosol mass concentrations

and aerosol absorption coefficient. It was found that the model predicts temperatures too low,

humidities too high and horizontal wind components slightly too high. Vertical stability condi-

tions, however, were usually well reproduced, even in the planetary boundary layer. Particulate

matter (PM10) was overall well simulated with a mean normalized bias of -9 %. The aerosol col-

umn was relatively well represented, except some regions in southwestern Germany, which was

explored by measurements of the aerosol optical thickness (AOT ). However, the predicted BC

mass concentrations were biased by -50 %. Despite the negative bias in BC mass concentrations,

the dry absorption coefficient was slightly positively biased by 20 %. It has to be mentioned

that the dry model absorption coefficients were used, since measurements were performed also

on dried particles. In addition, the modeled mass absorption coefficients were scrutinized, be-

cause of the finding, that too high absorption coefficients were simulated in association with

too low BC mass concentrations. It was found that modeled mass absorption coefficients were

positively biased by about 110 % in comparison to δGC from measurements. The modeled values

showed only little variation in the 2 week period and at all observational sites, as it was also

found from measurements.

By a small sensitivity study of BC on the emission of this species, the simulation of BC could be

improved by scaling the high resolution EUCAARI emission inventory. This was done by scal-

ing it to a more suitable inventory from 2008, which is justified by the fact that the EUCAARI

inventory represents the emission situation in 2005, whereas the simulated period was in 2009.

In a second scaling procedure each grid cell was multiplied by a factor of 2, since BC emission

estimates may vary by a factor of 2 - 5 on regional scale (Ramanathan and Carmichael, 2008).

The simulation of BC could be significantly improved by using the inventory, which was scaled

by the factor of 2. The modeled mass absorption coefficient was adjusted to measurements of

δGC by varying the imaginary part of BC refractive index in the model. The resulting imaginary

part was very low, which could be explained as a compensation for a missing external mixed

particle fraction.

In the final step the radiative forcing of soot particles in Central Europe was determined from the

model output. The maximum radiative forcing at the surface reached values up to -10W m−2

for the adjusted model run. At the top of the atmosphere, the radiative forcing is positive with

values up to 4W m−2. These results show that the regional radiative forcing of BC and therefore

its effect on regional scale maybe significantly higher than globally and annually averaged values

as reported by the Intergovernmental Panel on Climate Change (IPCC, Forster et al. (2007)). It

was also found that the forcing is lowered by around between 30 % and 70 % using the adjusted

in comparison to the previous model settings.

The procedure of adjusting the modeled mass absorption coefficients to the measured values of

δGC can be seen as a first approach to indirectly account for the real mixing state, at least in the

optics module of a regional model, since the mass absorption coefficient and the BC mixing state

are in a close relationship. The modeling results for the radiative forcing of BC at the surface

and top of the atmosphere based on experimental values of δGC showed, that conventional model

settings concerning the soot mixing state lead to an overestimation of the radiative forcing by

around a factor of 2, as a result of treating BC as completely internally mixed instead of explic-
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itly calculating the mixing state of this species. As a result, the direct and semi-direct effect of

BC tends to be overestimated. The results of this work strongly suggest that the mixing state

of soot has to be considered when calculating the aerosol optical properties in radiative transfer

modules of regional models in future studies. Some approaches exist to explicitly simulate the

mixing state of BC in a Box model (Oshima et al., 2009; Riemer et al., 2009). It has to be

mentioned that implementing such an approach would further increase the computational time

of regional aerosol models. Moreover, the present work showed the importance of directly mea-

suring the mixing state atmospheric soot particles. Current techniques base on the principle of

laser induced incandescence (Schwarz et al., 2006) or the volatile tandem differential mobility

analyzer (VTDMA) technique as described in Wehner et al. (2009). Furthermore, the applica-

tion of a VTDMA would allow for a determination of a 2 dimensional aerosol representation

by measuring the particle number concentration as a function of the particle diameter and the

non-volatile fraction, which is associated with soot (Rose et al., 2006). Such a two dimensional

representation is also used in the box model of Oshima et al. (2009) for simulating the evolution

of the soot mixing state. Nevertheless, the VTDMA technique for measuring the soot mixing

state has still some uncertainties, since the non-volatile volume is not entirely decomposed of

soot Engler et al. (2007). Further research is needed to explore the chemical composition of the

non-volatile volume.

This work clearly showed that the soot mass absorption coefficient shows only little variation,

even for a broad spectrum of atmospheric conditions. Additionally, the assumption of a com-

pletely internal mixture of soot particles in models deemed not suitable. The results rather

suggest that a large fraction of soot particles exists in an external mixed state in the Central

European troposphere, which has to be considered in future modeling studies. Taking this into

account, the direct radiative forcing of soot particles may be significantly lower in comparison

to the completely internal mixed case.
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A. Chi-square minimization

If the deviation between a measured and a modeled quantity should be determined one approach

is the minimization of χ2 with

χ2(q) =
K∑
i=1

∣∣smod
i (q)− smeas

i

smeas
i

∣∣2 (A.1)

with smeas
i is the value of the i-th of K measurements and smod

i is the corresponding modeled

value. When applying a model the result depends on several input parameters. For simplicity

we assume that the model result depends only on one parameter q. The deviation between

model and measurement is minimal if the derivative of χ2(q) with respect to q is 0.

χ2′(q) =
dχ2(q)

dq
= 0 (A.2)

Often the relation between q and smod
i is no simple function, so that equation A.2 can not be

calculated directly. If this is the case an iterative method has to be used. A popular root finding

algorithm is the Newton-Raphson method (Press et al., 1986). Following this algorithm, the

root of the derivative can be found by repeating the procedure of calculating

∆q = − χ
2′(q)

χ2′′(q)

qnew = q + ∆q

(A.3)

until qnew converges to a certain value. Calculating the derivatives numerically by central dif-

ferences, equation A.3 can be rewritten as

∆q =
(χ2(q + q′)− χ2(q − q′)) · q′

2 · (χ2(q − q′)− 2 · χ2(q) + χ2(q + q′))
(A.4)

with the prime denotes a small change in q.
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B. Model validation metrics

For the validation of a regional air quality model regarding e.g. simulated concentrations of

chemical constituents different metrics can be used following definitions in Boylan and Russell

(2006). The Mean Bias (MB) with

MB =
1

K

K∑
i=1

(Cmi − Coi) (B.1)

can be regarded as the mean deviation between model Cm and observed Co values over N time

steps. In addition the Root Mean Error (RMSE) can be used which is defined as the square

root of the mean squared error with

RMSE =

√√√√ 1

K

K∑
i=1

(Cmi − Coi)
2 (B.2)

Since these metrics give the deviation in terms of an absolute value (e.g. in µg m−3 ), a com-

parison of MB or RMSE between locations with different concentration levels is not possible.

To account for this the Mean Normalised Bias (MNB) with

MNB =
1

K

K∑
i=1

(Cmi − Coi)

Coi

(B.3)

can be used which is the average observation-normalised deviation between model and obser-

vation. To quantify the model performance concerning e.g. the temporal behaviour of the

concentration of a chemical constituent the Pearson Correlation Coefficient R with

R =

∑K
i=1(Cmi − Cm)(Coi − Co)∑K

i=1(Cmi − Cm)2
∑K

i=1(Coi − Co)2
(B.4)

can be used.
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