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Abstract

We provide a systematic in-depth study of the semantics of abstract dialectical frame-
works (ADFs), a recent generalisation of Dung’s abstract argumentation frameworks. This
is done by associating with an ADF its characteristic one-step consequence operator and de-
fining various semantics for ADFs as different fixpoints of this operator. We first show that
several existing semantical notions are faithfully captured by our definition, then proceed
to define new ADF semantics and show that they are proper generalisations of existing ar-
gumentation semantics from the literature. Most remarkably, this operator-based approach
allows us to compare ADFs to related nonmonotonic formalisms like Dung argumentation
frameworks and propositional logic programs. We use polynomial, faithful and modular
translations to relate the formalisms, and our results show that both abstract argumentation
frameworks and abstract dialectical frameworks are at most as expressive as propositional
normal logic programs.

1 Introduction

In recent years, abstract argumentation frameworks (AFs) [9] have become increasingly popular
in the artificial intelligence community. An AF can be seen as a directed graph where the
nodes are arguments whose internal structure is abstracted away, and where the edges encode a
notion of attack between arguments. Part of the reason for the interest in AFs may be that in
spite of their conceptual simplicity, there exist many different semantics with different properties
in terms of characterisation, existence and uniqueness. Notwithstanding their success, it is
yet somewhat unintuitive for users to model argumentation scenarios having as only means of
expression arguments attacking each other. In legal scenarios, notions of support, joint attack
and joint support are very useful, and indeed necessary to model legal proof standards [14].

To overcome the restrictions of Dung’s AFs, Brewka and Woltran [3] introduced abstract
dialectical frameworks (ADFs), a powerful generalisation of AFs. They showed that ADFs
are at least as general as AFs and also provided a (non-modular) translation from normal logic
programs to ADFs that preserved stable models. In subsequent work [2], it was shown that ADFs
are powerful enough to express argument evaluation structures of the Carneades framework [15],
even with cyclic dependencies among arguments. However, the exact location of ADFs in the
realm of nonmonotonic knowledge representation formalisms remained unclear.

Later, Brewka et al. [4] were able to give a polynomial translation from ADFs into AFs,
suggesting on complexity-theoretical grounds that ADFs are not substantially more expressive
than AFs. However, their translation depends on the chosen ADF semantics: one does not simply
translate ADFs into AFs with a fixed translation and then gets nice correspondences between
the ADF and AF semantics (which is exactly how it works the other way around). Rather, to
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faithfully map ADFs into AFs one has to decide for a semantics beforehand and then apply a
semantics-specific translation. Furthermore, the translation introduced by Brewka et al. [4] for
the stable semantics is again not modular, so when something is added to the input ADF, one
cannot simply add the translation of the addendum, but has to retranslate the whole updated
ADF. In contrast, as we will show, there are translations from AFs and ADFs into normal logic
programs (LPs) which are modular, polynomial (in fact linear) and faithful with respect to a
whole range of semantics.

These and similar results provide us with a more fine-grained view on the location of AFs and
ADFs in the bigger picture of nonmonotonic knowledge representation languages. Technically,
we achieve this by a principled and uniform reconstruction of the semantics of abstract dialectical
frameworks by embedding them into the approximation operator framework of Denecker, Marek
and Truszczyński (henceforth DMT) [6, 7]. In seminal work, DMT developed a powerful algebraic
framework in which the semantics of logic programs, default logic and autoepistemic logic can
be treated in an entirely uniform and purely algebraic way. The approach works by defining
operators, and then their fixpoints according to an abstract and principled method. In this
paper, we extend their work by adding abstract dialectical frameworks (and by corollary abstract
argumentation frameworks) to their approach.

We do this by defining the so-called characteristic operator of an ADF and then deriving
new operators following abstract principles [6]. For the special case of a Dung argumentation
framework, for instance, the characteristic ADF operator fully captures Dung’s characteristic
function of the AF. Our investigation generalises the most important semantics known from
abstract argumentation to the case of ADFs and relates them to the respective logic programming
semantics. It will turn out that when generalising AF semantics, there are typically two different
possibilities for generalisations: a “supported” and a “stable” version of the respective semantics.
Brewka and Woltran [3] already recognised this in the case of stable extensions for argumentation
frameworks: stable AF extensions can be generalised to ADFs in two ways, namely to models
and stable models for ADFs.

In addition to our usage of operators to clarify the relation of different semantics for single
formalisms, we will employ another technique to illuminate the relationship between different
formalisms. This role will be played by investigating polynomial, faithful, modular (PFM) trans-
lations between languages as has been done by Gottlob [16] and Janhunen [18] for the relationship
between nonmonotonic logics. In our case, we even need a stronger kind of translation: “faithful”
usually refers to a translation mapping models of one specific semantics of the source formalism
to models of another specific semantics for the target formalism. In our case, faithful refers to
the translation providing a perfect alignment with respect to any fixpoint semantics or at least
a range of fixpoint semantics. Of course, this requires all of the involved semantics to be defined
for both source and target formalism, which is however the case for our operator-based approach.

The picture that emerges from our work sheds new light on the underlying connections
between the major non-monotonic knowledge representation formalisms, since we study AFs,
ADFs and logic programs all in a unified semantical framework. In particular, it shows that
Dung’s abstract argumentation frameworks can be seen as special cases of propositional normal
logic programs. Now all normal logic programs are default theories, which are in turn theories
of autoepistemic logic [7]. Thus as a byproduct, our work yields generalisations of argument-
ation semantics for a general lattice-based setting, from which the existing semantics for logic
programming and argumentation can be derived as special cases. Among the semantics gener-
alised are conflict-free and admissible sets, and stage, preferred and semi-stable semantics. As
a corollary and another new contribution, this also defines these semantics for default logic and
autoepistemic logic [7]. This is a considerable improvement upon a result by Dung [9], who
already argued for a preferred semantics for default logic, but only defined it through a transla-
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tion to infinite argumentation frameworks. We show that our generalisations of argumentation
semantics are well-defined by showing that well-known relationships between the semantics gen-
eralise accordingly: for example, any preferred ADF model is also complete.

In the last part of the paper, we instantiate the general ADF-based operator to the special case
of AFs and present new semantical correspondence results between argumentation frameworks
and their translated logic programs: preferred and semi-stable extensions correspond one-to-
one to M-stable and L-stable models [21], respectively. Additionally, we show that our lattice-
theoretical account of argumentation yields easier proofs for existing results in this area. As
our final result, we prove equivalence (in four-valued Belnap logic) of two different translations
from AFs to logic programs: a folklore translation from the literature (we call it the standard
translation) that encodes attack by negation as failure, and the original translation of Dung [9],
where attack and defeat of arguments is explicitly recorded.

Structure of the paper We next recall the necessary background, that is to say, the relevant
aspects of the DMT lattice-theoretic framework [6, 8], logic programming and argumentation – in
particular Dung-style argumentation frameworks and their generalisation to ADFs. Afterwards,
we define the characteristic operator of an abstract dialectical framework, whose fixpoints then
serve to define ADF semantics in a novel way. The operator will also be used to determine the
relationship between propositional normal logic programs and abstract dialectical frameworks:
we prove that ADFs can be faithfully and modularly mapped into LPs. We finally show the
importance of our general results by illuminating the ramifications for the special case of Dung
frameworks. Specifically, we prove several new semantical correspondence results for argumenta-
tion and logic programming, and finally prove the equivalence of two different translations from
argumentation frameworks into logic programs.

2 Background

Let us first recall some basic concepts from lattice theory. A complete lattice is a partially ordered
set (L,v) where every subset of L has a least upper and a greatest lower bound. In particular,
a complete lattice has a least and a greatest element. An operator O : L → L is monotone if
for all x v y we find O(x) v O(y); it is antimonotone if for all x v y we find O(y) v O(x).
An x ∈ L is a fixpoint of O if O(x) = x; an x ∈ L is a prefixpoint of O if O(x) v x. Due to a
fundamental result by Tarski and Knaster, for any monotone operator O on a complete lattice,
the set of its fixpoints forms a complete lattice itself [22]. In particular, its least fixpoint lfp(O)
exists; additionally, the least prefixpoint of O is also its least fixpoint.

2.1 The Algebraic Framework of Denecker et al. [6]

Building upon the fundamental result by Tarski and Knaster, Denecker et al. [6] introduce the
important concept of an approximation of an operator. In the study of semantics of nonmonotonic
knowledge representation formalisms, elements of lattices represent objects of interest. Operators
on lattices transform such objects into others according to the contents of some knowledge base.
Consequently, fixpoints of such operators are then objects that cannot be updated any more –
informally speaking, the knowledge base can neither add information to a fixpoint nor remove
information from it.

To study fixpoints of operators O, DMT study fixpoints of their approximating operators
O.1 When O operates on a set L, its approximation O operates on pairs (x, y) ∈ L2 where L2

1The approximation of an operator O is typographically indicated by a calligraphic O.
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denotes L× L. Such a pair can be seen as representing a set of lattice elements by providing a
lower bound x and an upper bound y. Consequently, the pair (x, y) approximates all z ∈ L such
that x v z v y. Of special interest are consistent pairs – those where x v y, that is, the set of
approximated elements is nonempty. A pair (x, y) with x = y is called exact – it “approximates”
a single element of the original lattice.2

There are two natural orderings on approximating pairs: first, the information ordering ≤i,
that intuitively orders pairs according to their information content. Formally, for x1, x2, y1, y2 ∈
L define (x1, y1) ≤i (x2, y2) iff x1 v x2 and y2 v y1. This ordering leads to a complete lattice
(L2,≤i), the product of L with itself, its bilattice. For example, the pair (⊥,>) consisting of
v-least ⊥ and v-greatest lattice element > approximates all lattice elements and thus contains
no information – it is the least element of the bilattice (L2,≤i); exact pairs (x, x) are those that
are maximally informative while still being consistent. The second natural ordering is the truth
ordering ≤t, which orders elements of the bilattice according to their degree of truth. Formally,
for x1, x2, y1, y2 ∈ L it is defined by (x1, y1) ≤t (x2, y2) iff x1 v x2 and y1 v y2. The pair
(⊥,⊥) is the least element of ≤t – in a truth-based setting, it assigns the truth value false to all
elements of L; the pair (>,>) consequently is the ≤t-greatest element – here, all elements of L
are assigned value true.

To define an approximation operator O : L2 → L2, one essentially has to define two functions:
a function O′ : L2 → L that yields a new lower bound (first component) for a given pair;
and a function O′′ : L2 → L that yields a new upper bound (second component) for a given
pair. Accordingly, the overall approximation is then given by O(x, y) = (O′(x, y),O′′(x, y)) for
(x, y) ∈ L2. Conversely, in case O is considered given, the notations O′(x, y) and O′′(x, y) are
read as the projection of O(x, y) to the first and second component, respectively.

Denecker et al. [6] identify an important subclass of operators on bilattices, namely those that
are symmetric, that is, for which O′(x, y) = O′′(y, x). For these, O(x, y) = (O′(x, y),O′(y, x)),
and to define O it suffices to specify O′. An operator is approximating if it is symmetric and
≤i-monotone. For an antimonotone operator O, its canonical approximation O is given by
O′(x, y) = (O(y), O(x)).

The main contribution of Denecker et al. [6] was the association of the stable operator SO to
an approximating operator O. Below, the expression O′(·, y) : L→ L denotes the operator given
by x 7→ O′(x, y) for x ∈ L.

Definition 2.1. For a complete lattice (L,v) and an approximating operator O : L2 → L2,
define the

• complete stable operator for O as cO : L→ L by cO(y) def= lfp(O′(·, y));

• stable operator for O as SO : L2 → L2 by SO(x, y) def= (cO(y), cO(x)).

This general, lattice-theoretic definition by DMT yields a uniform treatment of the standard
semantics of the major nonmonotonic knowledge representation formalisms – logic programming,
default logic and autoepistemic logic [7].

Definition 2.2. Let (L,v) be a complete lattice andO : L2 → L2 be an approximating operator.
Furthermore, let x, y ∈ L with x v y. Define the following semantical notions for O:

2Denecker et al. [6] call such pairs “complete,” we however use that term for argumentation in a different
meaning and want to avoid confusion.
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Kripke-Kleene semantics lfp(O)
three-valued supported model (x, y) O(x, y) = (x, y)
two-valued supported model (x, x) O(x, x) = (x, x)
well-founded semantics lfp(SO)
three-valued stable model (x, y) SO(x, y) = (x, y)
two-valued stable model (x, x) SO(x, x) = (x, x)

It is clear that each two-valued supported/stable model is a three-valued supported/stable
model; furthermore the Kripke-Kleene semantics of an operator is a three-valued supported model
and the well-founded semantics is a three-valued stable model. Also, each three-valued/two-
valued stable model is a three-valued/two-valued supported model, which is easily seen: if
(x, y) is a three-valued stable model, we have (x, y) = SO(x, y). Now (x, y) = SO(x, y) =
(cO(y), cO(x)) = (lfp(O′(·, y)), lfp(O′(·, x))) implies x = O′(x, y) and y = O′(y, x), whence
(x, y) = (O′(x, y),O′(y, x)) = O(x, y) and (x, y) is a three-valued supported model. This holds
in particular if x = y, and each two-valued stable model is a two-valued supported model.

Ultimate Approximations In subsequent work, Denecker et al. [8] presented a general, ab-
stract way to define the most precise approximation of a given operator O in a lattice (L,v).
Most precise here refers to a generalisation of ≤i to operators, where for O1,O2 : L2 → L2, they
define O1 ≤i O2 iff for all x v y ∈ L it holds that O1(x, y) ≤i O2(x, y). For consistent pairs (x, y)
of the bilattice (L2,≤i), they show that the most precise – called the ultimate – approximation
of O is given by UO(x, y) def= (U ′O(x, y),U ′′O (x, y)) with

U ′O(x, y) def=
l
{O(z) | x v z v y}

U ′′O (x, y) def=
⊔
{O(z) | x v z v y}

Note that the ultimate approximation works only for consistent pairs and is not symmetric. Still,
this definition is remarkable since previously, approximating operators O for lattice operators O
had to be devised by hand rather than automatically derived. We next illustrate the workings
of the operator-based framework for the case of logic programming.

2.2 Logic Programming

For technical convenience, we use definitions along the lines of Fitting [12], whose fixpoint-
theoretic approach to logic programming was extended by Denecker et al. [6]. For a nonempty
set A – the signature, or set of atoms –, define not A def= {not a | a ∈ A} and the set of literals
over A as Lit(A) def= A ∪ not A. A logic program rule over A is then of the form a←M where
a ∈ A and M ⊆ Lit(A). The rule can be read as logical consequence, “a is true if all literals in
M are true.” We denote by M+ def= M ∩A and M− def= {a ∈ A | not a ∈M} the positive and
negative body atoms, respectively. A rule is definite if M− = ∅. For singleton M = {m} we
denote the rule just by a ← m. A logic program (LP) Π over A is a set of logic program rules
over A, and it is definite if all rules in it are definite.

The perhaps most prominent example for an operator is the one-step consequence operator
TΠ associated with a definite logic program Π [12]. For a signature A, it operates on subsets of
A and assigns to a set of atoms S those atoms which are implied by S according to the rules in
Π. The underlying lattice is therefore (2A,⊆) consisting of the set of A’s subsets ordered by ⊆.

This operator was later generalised to four-valued Belnap logic [12] and can be recast in
a bilattice-based setting as follows. A pair (X,Y ) ∈ 2A × 2A can be read as a four-valued
assignment by evaluating all atoms in X ∩ Y as true, those in A \ (X ∪ Y ) as false, the ones in
Y \X as undefined and the atoms in X \ Y as inconsistent.
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Definition 2.3. For a logic program Π over A, define an (approximating) operator
TΠ : 2A × 2A → 2A × 2A as follows: for X,Y ⊆ A,

TΠ(X,Y ) def= (T ′Π(X,Y ), T ′Π(Y,X))

T ′Π(X,Y ) def=
{
a ∈ A

∣∣ a←M ∈ Π,M+ ⊆ X,M− ∩ Y = ∅
}

Roughly, to construct a new lower bound, the operator T ′Π returns all those atoms for which a
rule exists whose positive body is implied by the current lower bound and whose negative body
does not share an atom with the current upper bound. This first of all means that the operator
allows to infer an atom via a program rule if – according to the input estimate – the positive
body is true and the negative body is false. The fixpoints of TΠ are the four-valued supported
models of Π; its consistent fixpoints are the three-valued supported models of Π. The two-valued
supported models of Π are computed by the abovementioned operator TΠ, that – in this setting
– is defined by TΠ(M) = T ′Π(M,M) [6].

The abstract principles of Denecker et al. [6] outlined above also yield the corresponding
stable operator STΠ. This operator in turn immediately yields the Gelfond-Lifschitz operator
GLΠ(M) = ST ′Π(M,M) for computing two-valued stable models of Π. The stable operator STΠ
also gives rise to the well-founded model of Π, which is the least fixpoint of STΠ. Additionally,
three-valued stable models are the consistent fixpoints of STΠ. These are further refined into
two additional semantics: M-stable models are three-valued stable models (X,Y ) where X is ⊆-
maximal – M-stable is for “maximal stable” [21]; L-stable models are three-valued stable models
(X,Y ) where Y \X is ⊆-minimal – L-stable is for “least undefined” [21]. It is clear that these
same maximisation/minimisation criteria can be applied to consistent fixpoints of TΠ – the three-
valued supported models. This leads to M-supported models and L-supported models. In a table
much like the one from Definition 2.2, this looks thus:

M-supported model (X,Y ) TΠ(X,Y ) = (X,Y ) and (X,Y ) is ≤i-maximal
L-supported model (X,Y ) TΠ(X,Y ) = (X,Y ) and Y \X is ⊆-minimal
M-stable model (X,Y ) STΠ(X,Y ) = (X,Y ) and (X,Y ) is ≤i-maximal
L-stable model (X,Y ) STΠ(X,Y ) = (X,Y ) and Y \X is ⊆-minimal

It follows that each two-valued supported/stable model is an L-supported/L-stable model is an
M-supported/M-stable model is a three-valued supported/stable model.

As an example, consider the logic program π1 = {a← ∅, b← a}. It is a definite LP, thus we
can iterate its two-valued one-step consequence operator Tπ1

on the empty set, the least element
of the relevant lattice: we have Tπ1

(∅) = {a} and Tπ1
({a}) = {a, b} = Tπ1

({a, b}) as a fixpoint
and thus the least (two-valued supported) model of program π1. Now we add another rule to
this program and set π2

def= π1 ∪ {c← {b,not d}}, a logic program over A = {a, b, c, d} that is
not definite. To compute its well-founded model, we iterate the associated stable four-valued
one-step consequence operator STπ2

on the least element (∅, A) of the relevant bilattice. We
see that STπ2

(∅, A) = ({a} , {a, b, c}): intuitively, a is added to the lower bound since its body
is satisfied, d is removed from the upper bound because there is no program rule to derive d.
Applying STπ2 again leads to the pair ({a, b, c} , {a, b, c}) which is an exact fixpoint and thus the
only two-valued stable model of π2.

2.3 Abstract Argumentation

Dung [9] introduced a way to study the fundamental mechanisms that humans use in argument-
ation. His argumentation frameworks (AFs) Θ are pairs (A,R) where A is a set and R ⊆ A×A.
The intended reading of an AF Θ is that the elements of A are arguments whose internal struc-
ture is abstracted away. The only information about the arguments is given by the relation R

7



Technical Report 1 (2013) Approximating Operators and Semantics for ADFs

encoding a notion of attack: for a, b ∈ A a pair (a, b) ∈ R expresses that argument a attacks
argument b in some sense. This seemingly lightweight formalism allows for a rich semantical
theory, whose most important notions we subsequently recall.

The purpose of semantics for argumentation frameworks is to determine sets of arguments
which are acceptable according to various standards. As an intuitive example, a set of arguments
could be accepted if it is internally consistent and can defend itself against attacks from the out-
side. More formally, a set S ⊆ A of arguments is conflict-free iff there are no a, b ∈ S with (a, b) ∈
R. For an argument a ∈ A, the set of its attackers is AttackersΘ(a) def= {b ∈ A | (b, a) ∈ R}. An
AF is finitary iff AttackersΘ(a) is finite for all a ∈ A. For S ⊆ A, the set of arguments it attacks
is AttackedΘ(S) def= {b ∈ A | (a, b) ∈ R for some a ∈ S}. Finally, for S ⊆ A and a ∈ A, the set S
defends a iff AttackersΘ(a) ⊆ AttackedΘ(S), that is, all attackers of a are attacked by S.

The major semantics for argumentation frameworks can be formulated using two operators
that Dung [9] already studied. The first is the characteristic function of an AF Θ = (A,R): for
S ⊆ A, define FΘ(S) def= {a ∈ A | S defends a}. This operator FΘ is ⊆-monotone and therefore
has a least fixpoint in the lattice (2A,⊆). This least fixpoint of FΘ is defined as the grounded
extension of Θ. The second relevant operator UΘ takes as input a set S of arguments, and returns
the arguments which are not attacked by any argument in S (U· is for “unattacked”). It is an
antimonotone operator, and its fixpoints are the stable extensions of Θ. Additionally, UΘ can
characterise conflict-freeness: a set S ⊆ A is conflict-free iff S ⊆ UΘ(S). Further semantics are
defined as follows. A set E ⊆ A is a complete extension iff it is a conflict-free fixpoint of FΘ. More
generally, a set S ⊆ A is admissible iff S is conflict-free and S ⊆ FΘ(S). A set S ⊆ A is a stage
extension iff it is conflict-free and S ∪AttackedΘ(S) is ⊆-maximal. Finally, preferred extensions
are ⊆-maximal complete extensions; and semi-stable extensions are those complete extensions E
where E ∪AttackedΘ(E) is ⊆-maximal. For two argumentation frameworks Θ1 = (A1, R1) and
Θ2 = (A2, R2), their union is defined as Θ1 ∪Θ2

def= (A1 ∪A2, R1 ∪R2).
As an example, let the argumentation framework θ = (A,R) be given by A = {a, b, c, d} and

R = {(a, b), (c, d), (d, c)}. It is depicted by the following directed graph:

a b c d

Its grounded extension is the set G = {a}; it possesses two stable extensions, E1 = {a, c} and
E2 = {a, d}. The three sets G,E1, E2 form the only complete extensions of θ.

2.4 Abstract Dialectical Frameworks

Brewka and Woltran [3] introduced abstract dialectical frameworks as a powerful generalisation
of abstract argumentation frameworks that are able to capture not only attack and support, but
also more general notions such as joint attack and joint support.

Definition 2.4. An abstract dialectical framework (ADF) is a triple Ξ = (S,L,C) where

• S is a set of statements,

• L ⊆ S × S is a set of links, where par(s) def= {r ∈ S | (r, s) ∈ L}

• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {in, out}.

Intuitively, the function Cs for a statement s determines the acceptance status of s, which
naturally depends on the status of its parent nodes. Alternatively, any such function Cs can be
represented by a set Cin

s
def= {M ⊆ par(s) | Cs(M) = in}. We will use both representations in

this paper and indicate the alternative one by writing an ADF as (S,L,Cin). A third alternative
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representation of an acceptance condition Ca (also introduced by Brewka and Woltran [3]) is
a propositional formula ϕa over the vocabulary par(a). The understanding here is that Cin

a is
given by the two-valued models of ϕa, where an interpretation is identified with the set of atoms
that are evaluated to true.

Example 2.1. The following is a simple ADF: D = (S,L,Cin) with statements S = {a, b, c, d},
links L = {(a, c), (b, b), (b, c), (b, d)} and acceptance functions given by Cin

a = {∅}, Cin
b = {{b}},

Cin
c = {{a, b}} and Cin

d = {∅}. These acceptance functions can intuitively be interpreted as
follows:

• Statement a has no parents, par(a) = ∅, thus 2par(a) = {∅}. The acceptance function
specifies that ∅ 7→ in, whence a is always in.

• Statement b is its own parent. According to its acceptance function, it is in only if it is in.
Statement b is thus (cyclicly) self-supporting.

• Statement c has parents par(c) = {a, b}. They jointly support c, as is witnessed by
Cin
c = {par(c)}. Note that joint support here indeed means that the support only be-

comes effective if both parents are in.

• Statement d is attacked by its only parent b.

Brewka and Woltran [3] introduced several semantical notions for ADFs. For an ADF Ξ =
(S,L,Cin), a set M ⊆ S is conflict-free iff for all s ∈M we have M ∩par(s) ∈ Cin

s . A set M ⊆ S
is a model for Ξ iff for each s ∈ S we have s ∈M iff M ∩ par(s) ∈ Cin

s .

Example 2.1 (Continued). A conflict in a set of statements intuitively means that there is
either an attack within the set or a lack of support for some statement. The running example
ADF D has the following conflict-free sets:

∅, {a} , {b} , {d} , {a, b} , {a, d} , {a, b, c}

This is easy to understand: from all subsets of S = {a, b, c, d}, we have to remove those that
(1) contain both b and d, since b attacks d; or (2) contain c without containing both a and b,
because c depends on joint support of a and b. The remaining ones above are conflict-free.

The two models of D are {a, b, c} and {a, d}.

Some semantics were only defined for a subclass of ADFs called bipolar. Intuitively, in bipolar
ADFs (BADFs) each link is supporting or attacking (or both); that is, there is nothing such as
joint support or attack and the like. Formally, a link (r, s) ∈ L is supporting in Ξ iff for all
R ⊆ par(s), we have that R ∈ Cin

s implies R ∪ {r} ∈ Cin
s ; symmetrically, a link (r, s) ∈ L

is attacking in Ξ iff for all R ⊆ par(s), we have that R ∪ {r} ∈ Cin
s implies R ∈ Cin

s . An
ADF Ξ = (S,L,C) is bipolar iff all links in L are either supporting or attacking; we use L+ to
denote all supporting and L− to denote all attacking links of L in Ξ. A model M of a bipolar
ADF Ξ is a BW-stable model of Ξ iff it is the least model of the reduced ADF ΞM defined as
ΞM = (SM , LM , CM ) with

• SM = S ∩M (nodes are restricted to those in the model),

• LM =
{

(r, s)
∣∣ r, s ∈ SM , (r, s) ∈ L+

}
(links are restricted to supporting links among nodes

in the model) and

• for each s ∈ SM and B ⊆ SM , we set CMs (B) = in iff Cs(B) = in (likewise the acceptance
functions are restricted to the remaining parent nodes).
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Stable models then serve to define further notions; but first let us define how to remove a set R
of statements from an ADF Ξ = (S,L,Cin) as follows. Ξ−R def= (S′, L′, C ′), where

• S′ = S \R (the nodes in R are removed),

• L′ = L ∩ (S′ × S′) (links are restricted to the remaining nodes) and

• C ′ =
{{
B ∩ S′

∣∣ B ∈ Cin
s

}}
s∈S′ (likewise, acceptance conditions are restricted to the re-

maining parents).

For a bipolar ADF Ξ = (S,L,C), a set M ⊆ S is BW-admissible in Ξ iff there is some R ⊆ S
with

• L− ∩ (R×M) = ∅ (there are no attacks from R to M) and

• M is a stable model of Ξ−R.

A set M ⊆ S is a BW-preferred model of Ξ iff it is ⊆-maximal among the sets BW-admissible in Ξ.
Finally, Brewka and Woltran [3] also generalise the grounded semantics: for Ξ = (S,L,C) they
define a monotone operator ΓΞ : 2S × 2S → 2S × 2S by (X,Y ) 7→ (Γ′Ξ(X,Y ),Γ′′Ξ(X,Y )), where3

Γ′Ξ(X,Y ) def=
{
s ∈ S

∣∣ for all X ⊆ Z ⊆ Y,we have Z ∩ par(s) ∈ Cin
s

}
Γ′′Ξ(X,Y ) def=

{
s ∈ S

∣∣ there exists X ⊆ Z ⊆ Y with Z ∩ par(s) ∈ Cin
s

}
The ≤i-least fixpoint of ΓΞ gives rise to the BW-well-founded model of Ξ.

Example 2.1 (Continued). The ≤i-least fixpoint of ΓD is the pair ({a} , {a, b, c, d}), therefore
the BW-well-founded model of D is the set {a}. Intuitively, statement a is in there because
it is always in. Statement b is not contained in the BW-well-founded model since it is only
self-supporting. Statement c is not contained because it needs joint support by a and b, of which
b is missing. For d, it cannot be guaranteed that its attacker b is necessarily out , since it is still
contained in the upper bound of ΓD’s least fixpoint.

It is clear that ADFs are a generalisation of AFs: for an argumentation framework Θ = (A,R),
its associated abstract dialectical framework is Ξ(Θ) = (A,R,Cin), where Cin

a = {∅} for each
a ∈ A. But this is not just syntactical; Brewka and Woltran [3] showed that their semantical
notions for ADFs are generalisations of Dung’s respective AF notions:

Proposition 2.1. Let Θ = (A,R) be an argumentation framework and Ξ(Θ) = (A,R,Cin) its
associated abstract dialectical framework. The following are in one-to-one correspondence:

1. the grounded extension of Θ and the BW-well-founded model of Ξ(Θ);

2. conflict-free sets of Θ and conflict-free sets of Ξ(Θ);

3. stable extensions of Θ and models of Ξ(Θ);

4. stable extensions of Θ and BW-stable models of Ξ(Θ);

5. preferred extensions of Θ and BW-preferred models of Ξ(Θ).

Proof. Propositions 3, 1, 7 and 12 of [3].

It is especially notable that models and stable models coincide for AF-based ADFs, a fact
that we will illuminate further and be able to provide an intuitive explanation for.

3The representation of the operator and the lattice it operates on given by Brewka and Woltran [3] is slightly
different: both representations use pairs of sets of statements to describe the current acceptance status of state-
ments. Their pairs explicitly represent the statements that are in in the first component and the ones that are
out in the second component. Since our second component explicitly represents the statements that are not out ,
we adjusted the definition of the operator Γ′′Ξ for computing the second component.
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3 Approximating Semantics of Abstract Dialectical
Frameworks

Abstract dialectical frameworks are nonmonotonic knowledge representation formalisms. As
such, they allow to express knowledge and provide formal semantics for such expressions. In this
respect, nonmonotonic means that extending a knowledge base (that is, an ADF) may invalidate
conclusions drawn from it. One approach to define semantics for knowledge bases is the one
championed by van Emden, Kowalski and others: there, a revision operator is associated with
a knowledge base [12]. The operator revises interpretations for the knowledge base K in the
sense that the revision of an interpretation is somehow “more in accord” with the knowledge
contained in K. Extending the metaphor, fixpoints of the revision operator then correspond
to models since they exactly “hit the spot” in that they represent stationary interpretations
that cannot be revised further. In this section, we will apply this operator-based approach to
semantics to abstract dialectical frameworks.

From the definition of a model of an ADF by Brewka and Woltran [3], it is straightforward
to devise a two-valued one-step consequence operator for a given ADF: given a two-valued in-
terpretation, we evaluate the acceptance condition of each statement; the resulting evaluation
determines the revised interpretation. To generalise this to an approximating operator, we gen-
eralise the evaluation to four-valued Belnap logic.

3.1 The Characteristic Operator of an ADF

For an abstract dialectical framework Ξ = (S,L,Cin), four-valued interpretations can be repres-
ented by pairs (X,Y ) with X,Y ⊆ S. Such pairs can equivalently be interpreted as approxim-
ations to two-valued interpretations where X represents a lower bound and Y an upper bound
of the approximation. Given such an approximating pair (X,Y ) and an ADF Ξ, to revise the
pair we do the following for each statement s ∈ S: we check if there is some subset B of the
parents of s (which are exactly the statements that determine the acceptance status of s) such
that (1) all statements in B being in causes s to be in; (2) all statements in B are indeed in
according to the conservative estimate X; (3) the remaining parents of s are indeed out , that is,
not contained in the liberal estimate Y . The definition below, the most important definition of
the paper, makes this formally precise.

Definition 3.1. Let Ξ = (S,L,Cin) be an abstract dialectical framework. Define an operator
GΞ : 2S × 2S → 2S × 2S by

GΞ(X,Y ) def= (G′Ξ(X,Y ),G′Ξ(Y,X))

G′Ξ(X,Y ) def=
{
s ∈ S

∣∣ B ∈ Cin
s , B ⊆ X, (par(s) \B) ∩ Y = ∅

}
A two-valued immediate consequence operator for ADFs (the equivalent of logic programs’

two-valued van Emden-Kowalski operator TΠ) is now given by GΞ(X) def= G′Ξ(X,X). The next
lemma about this two-valued operator relates to ADF models and will prove useful on various
occasions.

Lemma 3.1. For any abstract dialectical framework Ξ = (S,L,C), s ∈ S and X ⊆ S we have
s ∈ GΞ(X) iff X ∩ par(s) ∈ Cin

s .

11
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Proof.

s ∈ GΞ(X) iff s ∈ G′Ξ(X,X)

iff X ′ ∈ Cin
s , X

′ ⊆ X, (par(s) \X ′) ∩X = ∅, X ∩ par(s) = X ′

iff X ∩ par(s) ∈ Cin
s

Our definition of the approximating operator of an ADF immediately defines quite a number
of semantics for ADFs, among them all the semantics of Definition 2.2. In the following, we
will show how some of the standard operator-based semantics coincide with existing ADF se-
mantics. Operator-based semantics without a corresponding ADF semantics accordingly define
new semantical notions for abstract dialectical frameworks, for example three-valued stable mod-
els. Similarly, there are ADF semantics which have no operator-based counterpart – BW-stable,
BW-admissible and BW-preferred –, we will provide alternative, operator-based definitions for
these semantics.

But first, we do the obviously necessary and show that GΞ is indeed an approximating operator.
From Definition 3.1 it is immediate that GΞ is symmetric. It is easy to prove that the operator
is also ≤i-monotone.

Proposition 3.2. For any ADF Ξ = (S,L,C), the operator GΞ is ≤i-monotone.

Proof. Let (X1, Y1) ≤i (X2, Y2), that is, X1 ⊆ X2 and Y2 ⊆ Y1. We have to show GΞ(X1, Y1) ≤i
GΞ(X2, Y2), that is, (1) G′Ξ(X1, Y1) ⊆ G′Ξ(X2, Y2) and (2) G′Ξ(Y2, X2) ⊆ G′Ξ(Y1, X1).

1. Let s ∈ G′Ξ(X1, Y1). Then there is an M ∈ Cin
s with M ⊆ X1 and (par(s)\M)∩Y1 = ∅. Now

M ⊆ X1 ⊆ X2; furthermore Y2 ⊆ Y1 implies (par(s) \M)∩Y2 = ∅, whence s ∈ G′Ξ(X2, Y2).

2. Analogous.

Hence the fixpoints of this operator form a complete lattice [22]. From GΞ being approximating
it follows that it maps consistent pairs to consistent pairs [6, Proposition 14]; in particular its
least fixpoint is consistent. Finally, we can construct its associated stable operator SGΞ as defined
by Denecker et al. [6]. We will now use our newly defined approximating ADF operator to
systematically reconstruct semantical notions for abstract dialectical frameworks.

3.1.1 Conflict-free sets

First of all, we find a nice characterisation of conflict-freeness: a set is conflict-free iff application
of the approximating operator leads to a pair which is at least as high up in the truth value
ordering ≤t. Informally speaking, applying the approximating operator to a conflict-free pair
keeps or increases the truth value of the pair.

Proposition 3.3. For any abstract dialectical framework Ξ = (S,L,C), a set M ⊆ S is conflict-
free for Ξ iff (M,M) ≤t GΞ(M,M).

Proof.

M is conflict-free

iff for all s ∈M we have M ∩ par(s) ∈ Cin
s

iff M ⊆
{
s ∈ S

∣∣ M ∩ par(s) ∈ Cin
s

}
iff M ⊆ G′Ξ(M,M)

iff (M,M) ≤t GΞ(M,M)
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Of course, conflict-free sets M can also be characterised by M ⊆ GΞ(M), but we chose the
(seemingly more bulky) notation above because we later want to generalise the notion “conflict-
free” to three-valued pairs.

3.1.2 Model semantics

Much in accordance with logic programming, a model of an ADF is simply a two-valued fixpoint
of its associated consequence operator:

Proposition 3.4. For any abstract dialectical framework Ξ = (S,L,C), a set M ⊆ S is a model
of Ξ iff GΞ(M,M) = (M,M).

Proof.

M is a model for Ξ

iff for each s ∈ S we have s ∈M iff M ∩ par(s) ∈ Cin
s

iff M =
{
s ∈ S

∣∣ M ∩ par(s) ∈ Cin
s

}
iff M = G′Ξ(M,M)

iff GΞ(M,M) = (M,M)

Since the correspondence with logic programming is striking, we will use the more specific
term “two-valued supported model” from now on.

3.1.3 Stable model semantics

Motivated by the same notion of logic programming, Brewka and Woltran [3] defined stable
models for bipolar ADFs. When we compare their definition to the general operator-based
notion of two-valued stable models, we have to acknowledge a slight mismatch.

Example 3.1. Consider the following (bipolar) ADF ξ = (S,L,C) with components S = {a, b},
L = {(a, a), (a, b), (b, b)} and Cin

a = {{a}} and Cin
b = {∅, {a} , {b}}. In words, a supports itself

while a and b jointly attack b. The set M = {b} is a BW-stable model of ξ: The reduct ξM

is given by the triple ({b} , ∅, {C ′b}) with C ′b = {∅}, an ADF where b is always in. (The link
(b, b) is not in the reduct because it is attacking in ξ.) However, the operator Gξ does not have a
two-valued stable model: when trying to reconstruct the upper bound {b}, we get G′ξ(∅, {b}) = ∅
since b attacks itself and thus its containment in the upper bound prevents its inclusion in the
new lower bound, as witnessed by par(b)∩{b} = {b} 6= ∅. (Interestingly, this example also shows
that M-stable models are not necessarily M-supported: ξ has the single M-stable model (∅, {b})
and the two M-supported models ({a} , {a, b}) and ({b} , {b}).)

So while there are ADFs with BW-stable models which are not two-valued stable models
of the ADF’s approximating operator, we can establish an inclusion relation for the converse
direction: any operator-based two-valued stable model of an ADF is also a BW-stable model
of the ADF. To show this, we first need a lemma that relates the operators G′ΞM and G′Ξ(·,M)
whenever M is a model of Ξ.

Lemma 3.5. Let Ξ = (S,L,C) be a bipolar ADF and (M,M) be a two-valued supported model
for Ξ. For any X ⊆ S,

G′Ξ(X,M) = X implies G′ΞM (X,X) = (X,X)

13
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Proof. Recall that the reduct of Ξ with M is defined by ΞM = (SM , LM , CM ) with SM = S∩M ,
reduced links LM =

{
(r, s)

∣∣ r, s ∈ SM , (r, s) ∈ L+
}

and for each s ∈ SM and B ⊆ SM , we have
CMs (B) = in iff Cs(B) = in. Now for each s ∈ S denote by Ps the parent nodes of s with respect
to L and for s ∈ M by PMs the parent nodes of s with respect to LM . (Note that all links in
LM are supporting and therefore all statements in PMs support s.) Let X ⊆ S.

X = G′Ξ(X,M) iff X =
{
s ∈ S

∣∣ PMs ∈ Cs, PMs ⊆ X, (Ps \ PMs ) ∩M = ∅
}

implies X =
{
s ∈M

∣∣ PMs ∈ CMs , PMs ⊆ X, (PMs \ PMs ) ∩M = ∅
}

iff X =
{
s ∈M

∣∣ PMs ⊆ X}
iff X = G′ΞM (X,X)

iff (X,X) = GΞM (X,X)

Using the lemma, it is easy to show that BW-stable models subsume operator-based two-
valued stable models.

Proposition 3.6. For any bipolar abstract dialectical framework Ξ = (S,L,C), a set M ⊆ S is
a BW-stable model of Ξ whenever SGΞ(M,M) = (M,M).

Proof. By Lemma 3.5 above, we know that (X,X) is the least exact fixpoint of GΞM whenever
X is the least fixpoint of G′Ξ(·,M). The equivalences below follow.

M is a BW-stable model of Ξ

iff M is a model of Ξ and the least model of ΞM

iff GΞ(M,M) = (M,M) is the least exact fixpoint of GΞM

if M is the least fixpoint of G′Ξ(·,M)

iff M = lfp(G′Ξ(·,M)) = cGΞ(M)

iff SGΞ(M,M) = (M,M)

The mismatch noticed in Example 3.1 does not depend on our definition of the four-valued
approximating operator: the ADF presented there also does not allow for ultimate two-valued
stable models, although the model notion of Brewka and Woltran [3] is perfectly captured by the
two-valued one-step ADF consequence operator, which also gives rise to ADF’s ultimate family
of semantics. Put another way, if we take the model notion from Brewka and Woltran [3] and
apply to it the transformations of Denecker et al. [8], we arrive at an ultimate stable model
semantics which is demonstrably different from BW-stable models.

Thus at the current point, we have two different stable model semantics at our disposal –
operator-based two-valued stable models and BW-stable models. The following example shows
that the BW-stable semantics admits too many models, since there are ADFs which admit for
BW-stable models where one is a proper subset of another.

Example 3.2. Consider the following (bipolar) ADF ξ = (S,L,C) with components S = {a, b},
L = {(a, b), (b, b)} and Cin

a = {∅} and Cin
b = {∅, {b} , {a, b}}. In words, a is always in and

attacks b, which however can support itself. The ADF ξ has two BW-stable models, M1 = {a}
and M2 = {a, b}: The reduct of ξ with M1 is given by ξM1 = ({a} , ∅, CM1) with CM1

a = {∅},
thus its least model is {a} = M1. For the second stable model M2 = {a, b}, the reduct of ξ
with M2 is given by ξM2 = (S, {(b, b)} , CM2) with CM2

a = {∅} and CM2

b = {∅, {b}}. (Note that
the link (b, b) is both supporting and attacking, thus the ADF is not bipolar.) It is easy to see
that {a, b} = M2 is the least model of this ADF. In contrast, the approximating operator Gξ
associated with ξ admits only the single two-valued stable model ({a} , {a}).
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The problem with this example is that it marks a departure from the usual nomenclature of
nonmonotonic reasoning formalisms: in logic programming, two distinct stable models cannot
be in a subset-relationship; likewise in Reiter’s default logic, two distinct extensions of a default
theory cannot be in a subset-relationship. With our operator-based definition of two-valued
stable models for ADFs, this property comes for free:

Proposition 3.7. Let (L,v) be a complete lattice and O an approximating operator on the
bilattice (L2,≤i). For any x, y ∈ L with SO(x, x) = (x, x) and SO(y, y) = (y, y), we have that
x v y implies x = y.

Proof. Let x, y ∈ L with SO(x, x) = (x, x), SO(y, y) = (y, y) and x v y. Since O is antimonotone
in the second component, we have O(x, y) v O(x, x) = x and x is a prefixpoint of O(·, y). Now
y is the least prefixpoint of O(·, y) and thus y v x.

Together with Example 3.2, this result means that there is no approximating operator for
which Definition 2.1 can reconstruct BW-stable models.

Finally, our operator-based definition of two-valued stable models easily gives rise to an
equivalent reduct-based definition of the same concept: in operator terms, M is a two-valued
stable model of GΞ iff M is the least fixpoint of the operator G′Ξ(·,M). To define a reduct, we
have to find the ADF associated to this consequence operator defined for X ⊆ S by

G′Ξ(X,M) =
{
s ∈ S

∣∣ B ∈ Cin
s , B ⊆ X, (par(s) \B) ∩M = ∅

}
Our new operator-inspired reduct now just has to mimic the way the operator enforces the upper
bound M . This is achieved by the definition below, which notably works for all ADFs, bipolar
or not.

Definition 3.2. Let Ξ = (S,L,Cin) be an abstract dialectical framework. A set M ⊆ S is a
stable model of Ξ iff it is the unique least model of the reduced ADF ΞM = (S,L,Cin

M ) with

B ∈ Cin
M,s iff B ∈ Cin

s , (par(s) \B) ∩M = ∅

Intuitively, the reduct only changes the acceptance functions of statements such that accepting
parent configurations that rely on some statement from M being out are discarded (since the
statements in M are by virtue in). If the reduced ADF has a unique least model, and this least
model coincides with M , then M is a stable model of the original ADF. It is easy to show that
this new reduct-based definition of a stable model coincides with our operator-based definition
of two-valued stable models.

Proposition 3.8. Let Ξ = (S,L,Cin) be an abstract dialectical framework and M ⊆ S. (M,M)
is a two-valued stable model of GΞ iff M is a stable model of Ξ.

Proof. First observe that we find the two-valued consequence operator of the reduct ΞM given
for any X ⊆ S by

GΞM
(X) = {s ∈ S | B ∈ Cin

s , (par(s) \B) ∩M = ∅,
B ⊆ X, (par(s) \B) ∩X = ∅}

Hence X ⊆M implies GΞM
(X) = G′Ξ(X,M) and the two operators GΞM

and G′Ξ(·,M) coincide
for all subsets of M . In particular, M is the least fixpoint of G′Ξ(·,M) iff M is the least fixpoint
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of GΞM
. (The least fixpoint of G′Ξ(·,M) always exists since the operator is monotone in (2S ,⊆).)

Now

(M,M) is a two-valued stable model of GΞ
iff M is the least fixpoint of G′Ξ(·,M)

iff M is the least fixpoint of GΞM

iff M is the least model of ΞM

iff M is a stable model of Ξ

Example 3.3. Let us reconsider the problematic ADF from Example 3.2, ξ = (S,L,C) with
components S = {a, b}, L = {(a, b), (b, b)} and Cin

a = {∅} and Cin
b = {∅, {b} , {a, b}}.

The (new) reduct of ξ with M1 = {a, b} is given by ξM1 = (S,L,CM1) with Cin
M1,a

= {∅} and

Cin
M1,b

= {{a, b}}. It is easy to see that {a} 6= M1 is the least model of this ADF and M1 is not
a stable model of ξ.

The (new) reduct of ξ with M2 = {a} is given by ξM2 = (S,L,Cin
M2

) with Cin
M2,a

= {∅} and

Cin
M2,b

= {{a, b}}. Its least model is {a} = M2 and M2 is thus a stable model of ξ, just as
expected.

3.1.4 Admissible sets

For the generalisation of admissibility provided by Brewka and Woltran [3], the picture is not
quite as clear. Firstly, for the special case of Dung argumentation frameworks, any stable ex-
tension of an AF is admissible. So we should naturally expect that all ADF generalisations of
stable AF extensions are also (the ADF generalisation of) admissible; more specifically, since
for AF-based ADFs we have that stable extensions coincide with two-valued supported models
of the ADF, for an ADF generalisation of admissibility we should expect that all two-valued
supported models of the ADF are also admissible. But this is not the case for the generalisation
of admissibility of Brewka and Woltran [3]. Recall that a set M is BW-admissible iff there exists
an R ⊆ S such that M is a stable model of Ξ−R.

Example 3.4. Consider the simplest ADF with a self-supporting cycle between two arguments,
ξ = (S,L,C) with S = {a, b}, L = {(a, b), (b, a)} and Cin

a = {{b}}, Cin
b = {{a}}. In other words,

the links between a and b are both supporting. Hence the set {a, b} is a (two-valued supported)
model of ξ, but it is not BW-admissible: {a, b} is not a stable model of ξ or any subframework
of ξ.

It might seem that BW-admissibility is just too restrictive and could be fixed by weakening
the definition. One possibility may be to replace “stable” in the definition of BW-admissibility by
“supported.” But, as the following example shows, already the current, stable-based definition
of BW-admissibility considers too many sets to be admissible.

Example 3.5. Consider the (bipolar) ADF ξ = (S,L,C) with statements S = {a, b, c, d}, links
L = {(b, a), (c, a), (d, c)} and acceptance conditions Cin

a = {∅, {b} , {c}}, Cin
b = {∅}, Cin

c = {{d}}
and Cin

d = {∅}. In words, there is a joint attack of b and c on a – a is out if both b and c are in,
and a is in otherwise. Statements b and d are always in, and c is in if d is. This ADF ξ has the
BW-admissible set M = {a, b}: Taking R = {d}, we see that there are no attacks from R to M .
Furthermore, the ADF ξ − R = ξ′ = (S′, L′, C ′) is given by S′ = {a, b, c}, L′ = {(b, a), (c, a)}
and C ′a = {∅, {b} , {c}}, C ′b = {∅} and C ′c = {}. This ADF ξ′ has the stable model {a, b}, which
is easily verified when looking at the reduct ξ′M = ({a, b} , ∅, C ′M ) where C ′Ma = C ′Mb = {∅}.
So in a sense, the set {a, b} being admissible depends on the removal of {d}, in which case the
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only support of c is removed and the joint attack on a cannot happen. But d is by definition
of its acceptance condition always in, so no reasonable semantics could ever label it out , and
consequently the condition upon which BW-admissibility of {a, b} hinges can never become true.4

There is an alternative characterisation of admissibility which satisfies all of our abovemen-
tioned criteria. That is, all two-valued supported models of an ADF are admissible in our new
sense; and for the ADF from Example 3.5, the undesired BW-admissible set from above is not
admissible according to this new definition. As a much more important property, it is defined
for all ADFs and not only bipolar ones. It is also a generalisation of AF admissibility, as will
be shown in Section 4. The following definition of admissible requires the pair in question to be
consistent, three-valued conflict-free and the Ξ-revision of the pair should be at least as precise
as the pair itself.

Definition 3.3. For any ADF Ξ = (S,L,C), a consistent pair (M,N) is admissible in Ξ iff
(M,N) ≤t GΞ(M,N) and (M,N) ≤i GΞ(M,N).

It is clear that all two-valued admissible pairs are conflict-free. Since for any two-valued
supported model M we have (M,M) = GΞ(M,M) it is also immediate that all two-valued
supported models of an ADF are (three-valued supported models and in turn) admissible pairs.

Example 2.1 (Continued). Our running example ADF D has the following admissible pairs:

(∅, {a, b, c, d}) ({a} , {a, b, c, d}) ({b} , {a, b, c}) ({a, d} , {a, d})
(∅, {a, d}) ({a} , {a, d}) ({a, b} , {a, b, c}) ({a, b, c} , {a, b, c})

These pairs include all three-valued supported models, in particular all two-valued supported
models and also, as we will see later, the Kripke-Kleene semantics of D.

3.1.5 Preferred semantics

In principle, there could be different ways to define the preferred semantics for ADFs: (1)
the argumentation way of taking all model candidates that are maximally admissible; (2) the
logic-programming way of maximising over three-valued supported models. It is clear that any
preferred pair derived according to (2) is also preferred in the sense of (1) since any three-valued
supported model is admissible. But – as we will show next – the converse also holds, so it is
inessential which of these two definitions we pick. This even holds for any approximating operator
on a complete lattice, as is shown by the theorem below; in AF-speak, it expresses the operator
generalisation of “all preferred extensions are complete.”

Theorem 3.9. Let (L,v) be a complete lattice and O be an approximating operator on (L2,≤i).
Any ≤i-maximal admissible pair for O is a three-valued supported model for O.

Proof. Let (x, y) be an ≤i-maximal admissible pair, that is, (x, y) ≤t O(x, y) as well as
(x, y) ≤i O(x, y) and there is no admissible pair (x̂, ŷ) with (x, y) <i (x̂, ŷ). By admissibility
of (x, y), we get x v O′(x, y) and O′(y, x) = y. By x v y and O′ being monotone in the first and
antimonotone in the second component, we obtain the following picture.

v O′(x, x) v
x v O′(x, y) O′(y, x) = y

v O′(y, y) v

4Incidentally, {a, b} is also a BW-preferred model which does not contain the BW-well-founded model {b, c, d}.
Since the grounded AF extension is always contained in any preferred AF extension, Example 3.5 also hints at
another unexpected (non-)relation between the generalised ADF semantics of Brewka and Woltran [3].
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Assume to the contrary of what we have to show that (x, y) 6= O(x, y). Since x v O′(x, y)
and O′(y, x) = y, this means O′(x, y) 6v x. We construct an admissible pair (x̂, ŷ) with
(x, y) <i (x̂, ŷ). First, set x̂ = x t O′(x, y). Now O′(x, y) v y and thus x̂ v y. This
means that ({z | x̂ v z v y} ,v) is a complete lattice. We will show next that O′(·, x̂) is an
operator on this lattice: let x̂ v z v y, we show x̂ v O′(z, x̂) v y. As a start, x v O′(x, y)
and the definition of x̂ yields x̂ v O′(x, y). Now x v x̂ v y means (x, y) ≤i (x̂, x̂) and thus
O′(x, y) v O′(x̂, x̂). Next, from x̂ v z v y it follows that O′(x̂, x̂) v O′(z, x̂) v O′(y, x̂).
Finally, x v x̂ and antimonotonicity yield O′(y, x̂) v O′(y, x) = y. In combination, we get:
x̂ v O′(x, y) v O′(x̂, x̂) v O′(z, x̂) v O′(y, x̂) v y. Hence O′(·, x̂) is a v-monotone operator
on the lattice ({z | x̂ v z v y} ,v) and thus has a least fixpoint. Define ŷ def= lfp(O′(·, x̂)). We
now show that (x̂, ŷ) is admissible. First, x̂ v ŷ v y is immediate from the lattice in which ŷ is
defined. By monotonicity of O′ we get x̂ v O′(x, y) v O′(x̂, y) v O′(x̂, ŷ). Finally, O′(ŷ, x̂) = ŷ
by definition. Hence (x̂, ŷ) is admissible and by x v x̂, x̂ v O′(x, y) 6v x and ŷ v y we have
(x, y) <i (x̂, ŷ). Contradiction.

As an immediate consequence, we have the result that all maximal admissible ADF models
are three-valued supported (as we will see, “complete”) models.

Corollary 3.10. Let Ξ be an abstract dialectical framework. Any ≤i-maximal admissible pair
is a three-valued supported model.

This leads to the generalisation of AF preferred semantics for abstract dialectical frameworks
(including non-bipolar ones): they are simply M-supported models of GΞ, that is, ≤i-maximal
fixpoints of GΞ. Since supported and stable semantics coincide for argumentation frameworks,
another suitable candidate for generalising preferred semantics is the M-stable semantics for
ADFs, that is, ≤i-maximal fixpoints of SGΞ.

Well-founded semantics In order to generalise the grounded semantics from AFs to ADFs,
Brewka and Woltran [3] introduced – for an ADF Ξ = (S,L,C) – the operator ΓΞ on the bilattice
(2S × 2S ,≤i). Motivated by naming conventions from logic programming, they decided to call
(the lower bound of) the least fixpoint of ΓΞ the “well-founded model” of an ADF. As our next
result shows, their intuition of defining the operator was on the spot – they defined the most
precise approximation of the two-valued ADF immediate consequence operator GΞ.

Lemma 3.11. For any ADF Ξ, the operator ΓΞ is the ultimate approximation of GΞ.

Proof. Recall that for Ξ = (S,L,C) the operator ΓΞ : 2S × 2S → 2S × 2S is given by (X,Y ) 7→
(Γ′Ξ(X,Y ),Γ′′Ξ(X,Y )), where

Γ′Ξ(X,Y ) =
{
s ∈ S

∣∣ for all X ⊆ Z ⊆ Y,we have Z ∩ par(s) ∈ Cin
s

}
Γ′′Ξ(X,Y ) =

{
s ∈ S

∣∣ there exists X ⊆ Z ⊆ Y with Z ∩ par(s) ∈ Cin
s

}
Now by [8, Theorem 5.6], for X ⊆ Y ⊆ S, the ultimate approximation UΞ of the operator GΞ is
characterised by UΞ(X,Y ) = (U ′Ξ(X,Y ),U ′′Ξ (X,Y )) with

U ′Ξ(X,Y ) =
⋂
{GΞ(Z) | X ⊆ Z ⊆ Y }

U ′′Ξ (X,Y ) =
⋃
{GΞ(Z) | X ⊆ Z ⊆ Y }
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By Lemma 3.1, we know that for any s ∈ S and Z ⊆ S we find Z ∩ par(s) ∈ Cin
s iff s ∈ GΞ(Z),

which leads to the equalities

U ′Ξ(X,Y ) =
⋂
{GΞ(Z) | X ⊆ Z ⊆ Y }

= {s ∈ S | for all X ⊆ Z ⊆ Y,we have s ∈ GΞ(Z)}
=
{
s ∈ S

∣∣ for all X ⊆ Z ⊆ Y,we have Z ∩ par(s) ∈ Cin
s

}
= Γ′Ξ(X,Y )

and, likewise for the upper bound,

U ′′Ξ (X,Y ) =
⋃
{GΞ(Z) | X ⊆ Z ⊆ Y }

= {s ∈ S | there exists X ⊆ Z ⊆ Y with s ∈ GΞ(Z)}
=
{
s ∈ S

∣∣ there exists X ⊆ Z ⊆ Y with Z ∩ par(s) ∈ Cin
s

}
= Γ′′Ξ(X,Y )

which proves the claim.

This lemma immediately entails that what Brewka and Woltran [3] called “well-founded” is
what DMT call the ultimate Kripke-Kleene semantics.

Corollary 3.12. For any ADF Ξ, its BW-well-founded semantics coincides with its ultimate
Kripke-Kleene semantics.

The well-founded semantics of Ξ in the usual sense (the least fixpoint of the stable operator
SGΞ) hence may differ from the BW-well-founded semantics.

Example 2.1 (Continued). Recall that the ultimate Kripke-Kleene semantics of D is given by
the pair ({a} , {a, b, c, d}) (the least model of the operator UD = ΓD). The well-founded semantics
of D in the logic-programming sense is given by the pair ({a, d} , {a, d}). Since this pair is exact,
it also represents the unique two-valued stable model of D.

We have seen how the characteristic operator of an ADF can be used to redefine several
existing ADF semantics. The remaining operator-based semantics that we did not yet talk about
therefore present new semantics for ADFs. Among them, we generalised complete AF extensions
to ADFs (three-valued supported/stable models) which will be explored in more detail in the
AF section.

3.2 From ADFs to Logic Programs

We now use the four-valued one-step ADF consequence operator to determine the relationship
between ADFs and logic programs. As it turns out, there is a straightforward polynomial and
modular translation from ADFs to logic programs which is additionally faithful with respect to
all operator-based semantics. The translation creates a logic program rule for each statement of
a given ADF Ξ. The rule body for statement s is satisfied whenever for some M ⊆ par(s), the
statements in M are in and the remaining parents are out .

Definition 3.4. Let Ξ = (S,L,Cin) be an ADF. Define its standard logic program as follows.

Π(Ξ) def=
{
s← (M ∪ not (par(s) \M))

∣∣ s ∈ S,M ∈ Cin
s

}
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Example 2.1 (Continued). The standard logic program Π(D) of our running example ADF D
is given by

a← ∅ b← b c← {a, b} d← not b

As another illustrative example, we look at the ADF where we observed a mismatch between
BW-stable models and operator-based two-valued stable models.

Example 3.6. The ADF ξ from Example 3.1 is translated into the logic program consisting of
the following rules:

a← a b← {not a,not b} b← {a,not b} b← {b,not a}

This somewhat obviates why there is no two-valued stable model for ξ: the only candidate for
deriving b in some reduct program is the last rule, which however circularly requires b itself.

The next lemma shows that the term “standard logic program” is well-chosen, since the
translation is faithful with respect to all operator-based semantics: the associated approximating
operators of an ADF and its standard logic program are identical. The term B below denotes
the complement of B with respect to the parents of s, that is, B = par(s) \B.

Lemma 3.13. For any ADF Ξ = (S,L,Cin), we find that GΞ = TΠ(Ξ).

Proof. Let X,Y ⊆ S. We show G′Ξ(X,Y ) = T ′Π(Ξ)(X,Y ).

G′Ξ(X,Y ) =
{
s ∈ S

∣∣ B ∈ Cin
s , B ⊆ X,B ∩ Y = ∅

}
=
{
s ∈ S

∣∣ s← (B ∪ not B) ∈ Π(Ξ), B ⊆ X,B ∩ Y = ∅
}

=
{
s ∈ S

∣∣ s←M ∈ Π(Ξ), B = M+ ⊆ X,B = M−,M− ∩ Y = ∅
}

= T ′Π(Ξ)(X,Y )

This result yields immediate correspondence of all operator-based semantics of an ADF Ξ
with the respective semantics of its standard logic program Π(Ξ).

Theorem 3.14. Let Ξ = (S,L,Cin) be an abstract dialectical framework and Π(Ξ) its stand-
ard logic program. Then Ξ and Π(Ξ) coincide on all semantics based on their approximation
operators.

In particular, GΞ = TΠ(Ξ) and an ADF and its standard logic program also agree on all
semantics derived from the ultimate approximation of their two-valued operators. These results
obviate that propositional normal logic programs are at least as expressive as abstract dialectical
frameworks in a very strong sense: there exists a single translation that preserves models in a
whole type of semantics. Furthermore, the translation can be computed in polynomial time and
is modular with respect to statements.

More precisely, let Ξ1 = (S1, L1, C
in
1 ) and Ξ2 = (S2, L2, C

in
2 ) be ADFs such that S1 ∩S2 = ∅.

Then the union of the two ADFs is defined as Ξ1 ∪Ξ2
def= (S1 ∪S2, L1 ∪L2, C

in
1 ∪Cin

2 ). For such
pairs of ADFs we indeed observe that the translation is modular: Π(Ξ1 ∪ Ξ2) = Π(Ξ1) ∪Π(Ξ2).

But it is not straightforward to define the union of two ADFs when they share statements:

Example 3.7. Consider the ADFs ξ1 = (S1, L1, C
in
1 ) with S1 = {a, b}, L1 = {(b, a)}, Cin

1,a =

{{b}} and Cin
1,b = {∅} (in words, b is always in and supports a); and ξ2 = (S2, L2, C

in
2 ) with

S2 = {a, c}, L2 = {(c, a)}, Cin
2,a = {{c}} and Cin

2,c = {∅} (in words, c is always in and supports
a). In both frameworks, the common statement a is supported by a statement which is always
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in. Consequently, a is always in for every model of every semantics in both ADFs. However, the
union of the acceptance functions’ characteristic sets is Cin

1,a ∪Cin
2,a = {{b} , {c}}, and thus in the

union ADF, statement a is always out since both parents are always in. The undesired result
in this case is that a is always accepted in the two constituent ADFs but not accepted in their
union, although this union should be expected to exhibit some kind of disjunctive acceptance
with respect to its constituents. (For comparison, note that Π(ξ1) = {a← b, b← ∅} and Π(ξ2) =
{a← c, c← ∅}, whence a is contained in the single (two-valued) stable model {a, b, c} of Π(ξ1)∪
Π(ξ2).)

Of course, the example above would work if we represented acceptance conditions by formulas
ϕ1,a = b and ϕ2,a = c: then in the union of the two ADFs the acceptance formula is given by the
disjunction ϕ1,a ∨ ϕ2,a = b ∨ c which has the desired set of models {{b} , {c} , {b, c}}. However,
this is dependent on the specific chosen representation of acceptance conditions, namely propos-
itional formulas. For the general case of overlapping sets of statements and an abstract stance
with regard to the representation of acceptance conditions, it seems that a more sophisticated
procedure for ADF merging is required. This makes it hard to assess a more general type of
modularity concerning translations from ADF into logic programs.

3.3 From Logic Programs to ADFs

To translate ADFs into logic programs, we essentially had to take the acceptance formulas,
transform them into disjunctive normal form and write an LP rule for each disjunct. To translate
logic programs into ADFs, this process is reversed: to devise an acceptance function for statement
s, we take the disjunction of all bodies (read as conjunctions of literals) of rules with head s.

Definition 3.5 (Brewka and Woltran [3]). Let Π be a normal logic program over a set A of
atoms. Define an ADF Ξ(Π) = (A,L,Cin) as follows.

• L def= {(b, a) | a←M ∈ Π, b ∈M+ ∪M−}

• For a ∈ A, set Cin
a

def= {B ⊆ par(a) | a←M ∈ Π,M+ ⊆ B,M− ∩B = ∅}.

Alternatively, we could define the acceptance condition of each a ∈ A by

ϕa
def=

∨
a←M∈Π

( ∧
m∈M+

m ∧
∧

m∈M−
¬m

)

Although straightforward, the translation is obviously not modular, since all logic program
rules with head a are needed to devise the acceptance condition for statement a. Furthermore, the
translation is not faithful with respect to three-valued semantics defined by the approximating
operator GΞ.

Example 3.8 (Lost in Translation). Consider the following two logic programs over the signature
A = {a, b, c} that have a common subprogram π = {c← ∅, b← not b}:

1. π1 = π ∪ {a← b, a← c}

2. π2 = π ∪ {a← {b,not c}, a← {c,not b}, a← {b, c}}

The ADF translations of the two programs are identical: we have Ξ(π1) = Ξ(π2) = (A,L,Cin)
with the obvious links from body atoms to head atoms, L = {(b, b), (b, a), (c, a)}, statement b
being self-attacking, Cin

b = {∅}, statement c being in by default, Cin
c = {∅} and statement a

being in if b is in, c is in, or both, Cin
a = {{b} , {c} , {b, c}}. However, the original logic programs
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π1 and π2 do not have the same three-valued models: While the only (three-valued supported)
model of π1 is ({a, c} , {a, b, c}), the only (three-valued supported) model of π2 is ({c} , {a, b, c}).
That is, when we force the truth values of c to be true and b to be undefined (in the common
subprogram π), the result is that a is true in π1 (the disjunction b ∨ c evaluates to true) but
undefined in π2 (all the conjuncts b ∧ ¬c, c ∧ ¬b and b ∧ c evaluate to undefined).

However, the translation is faithful for two-valued supported semantics, as we will show next.
Technically, this is proved by establishing a correspondence between the two-valued one-step
consequence operators TΠ for a logic program Π and GΞ(Π) for the logic program’s ADF Ξ(Π) in
the following lemma.

Lemma 3.15. For any normal logic program Π, we have TΠ = GΞ(Π).

Proof. Abbreviate Ξ(Π) = Ξ, let A be the signature of Π and let X,Y ⊆ A. We show something
slightly more general than GΞ(X) = G′Ξ(X,X) = T ′Π(X,X) = TΠ(X).

1. G′Ξ(X,Y ) ⊆ T ′Π(X,Y ): Let a ∈ G′Ξ(X,Y ). Then there is a B ∈ Cin
a with B ⊆ X and

B ∩ Y = ∅. By definition of Ξ(Π), there is a B ⊆ par(a) and a rule a ← M ∈ Π with
M+ ⊆ B and M− ∩ B = ∅. We have to show that M+ ⊆ X (this is immediate) and
M− ∩ Y = ∅. Assume to the contrary that there is a b ∈ M− ∩ Y . Then M− ∩ B = ∅
implies b /∈ B. Similarly, B ∩ Y = ∅ implies that b /∈ B. Thus b /∈ B ∪ B = par(a), which
is a contradiction to b ∈M−, a←M ∈ Π and the definition of Ξ(Π).

2. T ′Π(X,X) ⊆ G′Ξ(X,X): Let a ∈ T ′Π(X,X). Then there is a rule a←M ∈ Π with M+ ⊆ X
andM−∩X = ∅. Define B def= par(a)∩X. We have to show that B ∈ Cin

a , B ⊆ X (obvious)
and B ∩X = ∅. For the last item, we have that B = par(a) \B = par(a) \ (par(a)∩X) =
par(a) \ X, whence B ∩ X = ∅. Finally, a ← M ∈ Π means M+ ⊆ par(a) and together
with M+ ⊆ X we get M+ ⊆ B = par(a) ∩X. Since B ⊆ X, we have M− ∩ B = ∅. By
definition B ⊆ par(a) and thus B ∈ Cin

a .

As an immediate consequence, we get correspondence of two-valued supported models.

Corollary 3.16. Let Π be a normal logic program over a set A of atoms and Ξ = Ξ(Π) be its
associated abstract dialectical framework. For any set X ⊆ A, GΞ(X,X) = (X,X) iff TΠ(X,X) =
(X,X).

As another consequence of the proof of Lemma 3.15, we can also show that LP-based ADFs
are sound with respect to two-valued stable models of the LP, that is, any stable model of Ξ(Π)
is a stable model of Π.

Lemma 3.17. Let Π be a normal logic program over a set A of atoms and Ξ = Ξ(Π)
be its associated abstract dialectical framework. For any set X ⊆ A, SGΞ(X,X) =
(X,X) implies STΠ(X,X) = (X,X).

Proof. Let SGΞ(X,X) = (X,X). Then X is the least fixpoint of G′Ξ(·, X) and in particular
G′Ξ(X,X) = X. Now by Lemma 3.15 above, we get T ′Π(X,X) = X and X is a fixpoint of T ′Π(·, X).
It remains to show that X is the least fixpoint of T ′Π(·, X). Let Y be a prefixpoint of T ′Π(·, X), that
is, T ′Π(Y,X) ⊆ Y . By Item 1 in the proof of Lemma 3.15 we have G′Ξ(Y,X) ⊆ T ′Π(Y,X), whence
G′Ξ(Y,X) ⊆ Y and Y is a prefixpoint of G′Ξ(·, X). Since X is the least fixpoint of G′Ξ(·, X) and
thus also its least prefixpoint, we get X ⊆ Y and thus X is the least (pre)fixpoint of T ′Π(·, X).

The converse of the lemma does not hold:
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Example 3.9. Let π = {a← ∅, a← a}. This program has the two-valued stable model {a}. Its
resulting ADF is ξ = Ξ(π) = ({a} , {(a, a)} ,

{
Cin
a

}
) with Cin

a = {∅, {a}}. Interestingly, the link
(a, a) is both supporting and attacking. When trying to reconstruct the (LP) stable model {a},
we observe that G′ξ(∅, {a}) = ∅ and {a} is not a (ADF) stable model for ξ.

As much more interesting consequence of Lemma 3.15, it follows that the ultimate approx-
imations of TΠ and GΞ(Π) are identical, thus Π and Ξ(Π) also coincide on all ultimate semantics,
including ultimate stable models. This means that whatever “goes missing” in the translation
from Π to Ξ(Π) can be recovered by the construction of the ultimate approximation. This should
however be taken with a grain of salt, since the ultimate versions of approximation semantics
are generally accompanied by higher computational costs [8]. So while information thrown away
through translation can be recovered, it seems much more economic to keep the information
during translation instead of paying for a subsequent reconstruction.

4 A Special Case: Argumentation Frameworks

In this section we look at the subset of ADFs which corresponds to AFs. Recall that for AFs,
the original lattice of interest (2A,⊆) considers sets of arguments and the subset relation. The
corresponding bilattice (2A × 2A,≤i) is concerned with pairs of sets of arguments and ordered
by the information ordering. The elements of this bilattice generalise three-valued labellings [5]
to the four-valued case: for a pair (S, P ), the arguments in S ∩ P are in, those in S ∪ P are out,
those in P \ S are undecided and those in S \ P get the new label inconsistent. Consistent pairs
(those (S, P ) with S ⊆ P ) obviously are three-valued labellings, where exactly all arguments in
S are in.

As our first observation, we note that the approximating operator that Definition 3.1 assigns
to the ADF of an AF Θ is also a special case of an operator: it is the canonical approximation
of UΘ, the operator assigning to a set S of arguments all the arguments from A which are not
attacked by S.

Proposition 4.1. For any argumentation framework Θ = (A,R) and sets X,Y ⊆ A, we have
GΞ(Θ)(X,Y ) = (UΘ(Y ), UΘ(X)).

Proof. We have to show G′Ξ(Θ)(X,Y ) = UΘ(Y ). Recall that Ξ(Θ) = (A,R,Cin), where Cin
a = {∅}

for each a ∈ A. Thus for any argument a ∈ A, we find that par(a) = AttackersΘ(a). Now

a ∈ G′Ξ(Θ)(X,Y ) iff B ∈ Cin
a , B ⊆ X, (par(a) \B) ∩ Y = ∅

iff B = ∅, B ⊆ X, (par(a) \B) ∩ Y = ∅
iff par(a) ∩ Y = ∅
iff AttackersΘ(a) ∩ Y = ∅
iff a ∈ UΘ(Y )

In the remainder, we will denote the four-valued approximation operator of an argument-
ation framework Θ by FΘ; we formally define F ′Θ def= G′Ξ(Θ). It follows by definition that the
characteristic operator FΘ of an AF is its own stable operator:

Lemma 4.2. For any argumentation framework Θ, we have SFΘ = FΘ.

Proof. Let Θ = (A,R) and X,Y ⊆ A. We have to show SF ′Θ(X,Y ) = F ′Θ(X,Y ). Now
SF ′Θ(X,Y ) = lfp(F ′Θ(·, Y )) = lfp(UΘ(Y )) = UΘ(Y ) = F ′Θ(X,Y ).
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This means informally that (in a sense) there are fewer semantics for Dung frameworks than
there are for ADFs, logic programming, default logic and autoepistemic logic. Translated into
logic programming language, we have that in Dung-style argumentation, supported and stable
models coincide, and well-founded semantics equals Kripke-Kleene semantics. Put in different
terms of default and autoepistemic logics: for argumentation frameworks, Moore expansions and
Reiter extensions coincide!

In principle, this collapsing picture could be due to a mistake in our definition of the char-
acteristic operator. In the following section, it will become clear that this is not the case and
the characteristic operator of an argumentation framework is well-designed: we show next how
the major semantics of argumentation frameworks can be redefined in terms of fixpoints of the
characteristic operator.

4.1 Fixpoint Semantics for Abstract Argumentation Frameworks

As a first illustration of universality of the characteristic operator of an AF, we recapitulate a
result that is well-known in the argumentation community: the operator UΘ (which is at the
heart of FΘ) can emulate the characteristic function FΘ of an argumentation framework.

Lemma 4.3 ([9, Lemma 45]). For any AF Θ, we have FΘ = U2
Θ.

For our operator FΘ, this means that for any X,Y ⊆ A we have

F2
Θ(X,Y ) = FΘ(UΘ(Y ), UΘ(X)) = (U2

Θ(X), U2
Θ(Y )) = (FΘ(X), FΘ(Y ))

There are several works in the literature that redefine argumentation semantics in terms
of (pre-/post-)fixpoints of the two operators FΘ and UΘ [1, 17]. Since the two operators are
closely related and the characteristic approximating operator FΘ can express them both, we can
reconstruct argumentation semantics based entirely on this single operator.

We begin with the simplest semantics: recall that for Θ = (A,R) a set E of arguments is a
stable extension iff E = UΘ(E), so the following is immediate.

Proposition 4.4. Let Θ = (A,R) be an argumentation framework and E ⊆ A. Then E is a
stable extension of Θ iff FΘ(E,E) = (E,E).

It is almost as easy to characterise the class of complete extensions:

Proposition 4.5. Let Θ = (A,R) be an argumentation framework and E ⊆ A. Then E is a
complete extension of Θ iff for some E′ ⊆ A the pair (E,E′) is a consistent fixpoint of FΘ.

Proof.

There is an E′ ⊆ A with E ⊆ E′ and FΘ(E,E′) = (E,E′)

iff E ⊆ E′ and E′ = UΘ(E) and E = UΘ(E′)

iff E ⊆ UΘ(E) and E = U2
Θ(E)

iff E is conflict-free and E = FΘ(E)

iff E is a complete extension.

As an easy corollary, we get the grounded semantics as the ≤i-least fixpoint of the charac-
teristic operator. This fixpoint exists since FΘ is ≤i-monotone.

Corollary 4.6. Let Θ = (A,R) be an argumentation framework and E ⊆ A. Then E is the
grounded extension of Θ iff for some E′ ⊆ A the pair (E,E′) is the ≤i-least fixpoint of FΘ.
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In the sequel, we use the term “complete extension” for the set E and the pair (E,E′)
interchangeably. It follows by definition that preferred extensions are exactly those consistent
fixpoints where E is ⊆-maximal – the M-supported models of FΘ.

Proposition 4.7. Let Θ = (A,R) be an argumentation framework and E ⊆ A. Then E is a
preferred extension of Θ iff for some E′ ⊆ A the pair (E,E′) is a consistent fixpoint of FΘ where
E is ⊆-maximal.

Alternatively, we can say that for a consistent pair (E,E′) the lower bound E is a preferred
extension if and only if the pair is M-supported/M-stable for FΘ. This immediately yields a
“preferred” semantics for default logic, which is an improvement upon a result by Dung [9,
Theorem 43], who defined preferred semantics for default logic only through a translation to
infinite AFs.

Semi-stable extensions are those complete ones where the set of arguments in the upper but
not in the lower bound (the undecided arguments) is minimal – L-supported/L-stable models.

Proposition 4.8. Let Θ = (A,R) be an argumentation framework and E ⊆ A. Then E is a
semi-stable extension of Θ iff for some E′ ⊆ A the pair (E,E′) is a consistent fixpoint of FΘ

where E′ \ E is ⊆-minimal.

Proof. E∪AttackedΘ(E) is ⊆-maximal iff E∪E′ is ⊆-maximal iff E ∪ E′ is ⊆-minimal iff E∩E′
is ⊆-minimal iff E′ \ E is ⊆-minimal.

Finally, we show that the ADF versions of “admissible” (Definition 3.3) and “conflict-free”
[3, Definition 2] are proper generalisations of the respective AF notions. This is easily shown
using their respective associated approximating operators.

Proposition 4.9. Let Θ = (A,R) be an argumentation framework and X ⊆ A. Then X is an
admissible set for Θ iff (X,UΘ(X)) is an admissible pair for FΘ.

Proof. Abbreviate Y def= UΘ(X). We have the following equivalences:

X is an admissible set for Θ

iff X is conflict-free and X ⊆ FΘ(X)

iff X ⊆ UΘ(X) and X ⊆ U2
Θ(X)

iff X ⊆ Y and X ⊆ UΘ(Y ) and Y ⊆ UΘ(X) and UΘ(X) ⊆ Y
iff X ⊆ Y, (X,Y ) ≤t (UΘ(Y ), UΘ(X)) and (X,Y ) ≤i (UΘ(Y ), UΘ(X))

iff (X,Y ) is consistent, (X,Y ) ≤t FΘ(X,Y ) and (X,Y ) ≤i FΘ(X,Y )

iff (X,Y ) is an admissible pair for FΘ

It works equally easily in the case of conflict-freeness:

Proposition 4.10. Let Θ = (A,R) be an argumentation framework and X ⊆ A. Then X is
conflict-free in Θ iff for some Y with X ⊆ Y ⊆ UΘ(X) we have (X,Y ) ≤t FΘ(X,Y ).
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Proof.

X is conflict-free in Θ iff X ⊆ UΘ(X)

iff X ⊆ Y ⊆ UΘ(X) for some Y

iff X ⊆ UΘ(Y ) ⊆ UΘ(X) and Y ⊆ UΘ(X)

iff X ⊆ F ′Θ(X,Y ) ⊆ F ′′Θ (X,Y ) and Y ⊆ F ′′Θ (X,Y )

iff X ⊆ F ′Θ(X,Y ) and Y ⊆ F ′′Θ (X,Y )

iff (X,Y ) ≤t FΘ(X,Y )

We have seen how all of the semantical notions for AFs considered in this paper can be recast
in terms of the approximating operator of an AF, as fixpoints, or post- and prefixpoints with
respect to the information ordering ≤i and/or the truth ordering ≤t. This tells us that operators
associated with an argumentation framework are useful tools to study the semantics of the AF.
This technique of associating operators with a knowledge base and then studying the operators
to study the knowledge base is successfully and widely used in logic programming. In the next
section, we will see that this enables us to elegantly build a bridge from abstract argumentation
to logic programming via the approximation operators associated with the respective objects of
study.

4.2 From Argumentation Frameworks to Logic Programs

There are different translations from AFs into LPs in the literature: the one we call the standard
translation, and the one devised by Dung [9] to demonstrate how logic programs could be used
to implement abstract argumentation. We consider each of the translations in turn and lastly
show that they produce equivalent logic programs.

4.2.1 Standard Translation

The translation we refine below was introduced as “well-known” in Gabbay and d’Avila Garcez
[13, Example 1.2]. They do not provide a definition or motivation for that translation, but our
subsequent results will show that the intuition behind it is sound and the name “standard
translation” is justified. The standard logic program resulting from an AF uses the set of
arguments as its underlying signature. A rule is created for each argument a, and the rule
basically says “a is accepted if none of its attackers is accepted.”

Since AFs are in particular ADFs, the standard logic program of an AF Θ is given by Π(Ξ(Θ)),
that is, translating the AF Θ into an ADF Ξ(Θ) and that further into the standard LP of the
ADF. For AFs Θ = (A,R), the definition of its standard logic program can be simplified to the
following:

Π(Θ) def= {a← not AttackersΘ(a) | a ∈ A}

Note that the positive body is empty in general since there is no notion of support in classical
Dung-style AFs. Also, the negative bodies of the rules are finite if and only if the framework is
finitary.

It should be noted that the standard translation from AFs to LPs is not modular, since the
LP rule for an atom a depends on all attackers of a. This might seem paradoxical at first, since
the standard translation from ADFs to LPs is modular with respect to statements. But recall
that the union of two ADFs is defined whenever the two have disjoint statements, so for AFs with
disjoint sets of arguments the standard translation is again modular with respect to arguments.
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It is immediate from Lemma 3.13 that the associated operators of AFs Θ and their translated
logic program Π(Θ) are the same.

Corollary 4.11. For any argumentation framework Θ, we have FΘ = TΠ(Θ).

Now we know from Lemma 4.2 that the approximation operator of any AF Θ is its own
stable operator – in symbols FΘ = SFΘ. Combining these two results about FΘ leads to the
following lemma, which nicely pictures the special role of argumentation frameworks in the
realm of nonmonotonic reasoning formalisms.

Lemma 4.12. For any AF Θ, we have TΠ(Θ) = FΘ = SFΘ = STΠ(Θ).

Since the consequence operator of a logic program yields its Kripke-Kleene and well-founded
models as well as its two-valued and three-valued supported and stable models, this lemma
immediately gives rise to several important coincidence results, accumulated in the first main
result of this section below. Its first and last items are obvious. The second item contains the
conclusion of Wu et al. [24, Theorem 17] (they did not look at supported semantics), while the
third and fourth items imply new results that solve open problems posed there.

Theorem 4.13. Let Θ be an AF. The following are identical:

1. the grounded extension of Θ, the Kripke-Kleene model of Π(Θ) and the well-founded model
of Π(Θ);

2. complete extensions of Θ, three-valued supported models of Π(Θ) and three-valued stable
models of Π(Θ);

3. preferred extensions of Θ, M-supported models of Π(Θ) and M-stable models of Π(Θ);

4. semi-stable extensions of Θ, L-supported models of Π(Θ) and L-stable models of Π(Θ);

5. stable extensions of Θ, two-valued supported models of Π(Θ) and two-valued stable models
of Π(Θ).

Proof. The first item is obvious, since they are the least fixpoint of the same operator; the rest
follows from Lemma 4.12 and Propositions 4.5, 4.7, 4.8 and 4.4.

As witnessed by Lemma 3.13, for the standard translation the correspondence between AFs
and LPs is immediate. We will next consider a different translation where this correspondence
is less obvious, albeit still present. Most importantly, that translation will be modular for all
argumentation frameworks.

4.2.2 Dung’s Translation

Dung duplicates the arguments, thereby explicitly keeping track of their being in or out : for
a ∈ A, a new propositional variable -a expresses defeat of a by some counterargument. Note
that this translation is modular with respect to both arguments and attacks, and furthermore
rule bodies are always finite.5

Definition 4.1. Let Θ = (A,R) be an argumentation framework. Define -A def= {-a | a ∈ A},
A± def= A ∪ -A and a logic program over A± as follows.

ΠD(Θ) def= {a← not -a | a ∈ A} ∪ {-a← b | (b, a) ∈ R}
5Dung’s original translation is slightly different; he uses a first-order signature and logic program atoms with

variables [9]. Definition 4.1 above is merely a syntactical variant that already incorporates ground instantiation.
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Intuitively, an argument a is accepted (signified by atom a) unless it is defeated (signified by
atom -a). An argument is defeated if it is attacked by an accepted argument.

We show next that the four-valued one-step consequence operator for the logic program
resulting from Dung’s translation essentially does the same as the characteristic operator of the
original argumentation framework. It only needs twice as many steps due to the syntactical
duplication of arguments.

To show this result, we need the technical notion of coherence: in words, a pair is coherent if
it respects the intuition of -a for a ∈ A, in the sense that a is true iff -a is false and vice versa.
A pair (S, P ) of sets of arguments can be extended to matching pairs (S∗, P ∗) of logic program
atoms over A± in a straightforward way.

Definition 4.2. Let A be a set of arguments and S∗, P ∗ ⊆ A±. The pair (S∗, P ∗) is coherent
iff for all a ∈ A, we find a ∈ S∗ iff -a /∈ P ∗ and a ∈ P ∗ iff -a /∈ S∗. For S, P ⊆ A, define
co(S, P ) def= (S ∪ -P , P ∪ -S).6

Observe that -X = {-a | a /∈ X}, so it is clear that the pair co(S, P ) is coherent. What the
function does, intuitively, is simple: if a is not in the upper bound P , that is, cannot become
true any more, then it can be considered false, which is expressed by adding -a to the lower
bound; likewise, if a is not in the lower bound S, that is, is not yet considered true, then its
falsity must be considered an option, which leads to -a being added to the upper bound. These
manipulations are entirely syntactic and do not mention attacks.

We are now ready to show that for an AF Θ = (A,R), its standard translation Π(Θ) and
Dung translation ΠD(Θ) have the same four-valued supported models with respect to the original
signature A. Technically, we show that the fixpoints of their four-valued one-step consequence
operators coincide.

Theorem 4.14. Let Θ = (A,R) be an argumentation framework with standard translation Π
and Dung-translation ΠD and let S, P ⊆ A.

TΠ(S, P ) = (S, P ) iff TΠD
(co(S, P )) = co(S, P )

Proof. We first observe that for any X,Y ⊆ A and a ∈ A, by definition of ΠD we have a ∈
T ′ΠD

(X,Y ) iff -a /∈ Y and -a ∈ T ′ΠD
(X,Y ) iff a /∈ UΘ(X), whence T ′ΠD

(X,Y ) = {a | -a /∈ Y } ∪
-UΘ(X) and T ′ΠD

(X, -Y ) = Y ∪ -UΘ(X). Now

TΠ(S, P ) = (S, P )

iff FΘ(S, P ) = (S, P )

iff (UΘ(P ), UΘ(S)) = (S, P )

iff S = UΘ(P ) and P = UΘ(S)

iff S = UΘ(P ) and P = UΘ(S) and -UΘ(P ) = -S and -UΘ(S) = -P

iff S ∪ -UΘ(S) = S ∪ -P and P ∪ -UΘ(P ) = P ∪ -S

iff (S ∪ -UΘ(S), P ∪ -UΘ(P )) = (S ∪ -P , P ∪ -S)

iff (T ′ΠD
(S, -S), T ′ΠD

(P, -P )) = (S ∪ -P , P ∪ -S)

iff (T ′ΠD
(S ∪ -P , P ∪ -S), T ′ΠD

(P ∪ -S, S ∪ -P )) = (S ∪ -P , P ∪ -S)

iff TΠD
(S ∪ -P , P ∪ -S) = (S ∪ -P , P ∪ -S)

iff TΠD
(co(S, P )) = co(S, P )

6The notation is entirely unambiguous since for any S ⊆ A we have -S = -S.
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Furthermore, coherent pairs are also the only fixpoints of TΠD
.

Proposition 4.15. Let Θ = (A,R) be an AF, ΠD be its Dung translation over A± and let
S∗, P ∗ ⊆ A±. If TΠD

(S∗, P ∗) = (S∗, P ∗), then (S∗, P ∗) is coherent.

Proof. Let TΠD
(S∗, P ∗) = (S∗, P ∗). Now S∗ = {a | -a /∈ P ∗}∪-UΘ(S∗) and P ∗ = {a | -a /∈ S∗}∪

-UΘ(P ∗). For a ∈ A, it immediately follows that a ∈ S∗ iff -a /∈ P ∗ and a ∈ P ∗ iff -a /∈ S∗, thus
(S∗, P ∗) is coherent.

Hence for any semantics derived from the operator TΠD
which is only “interested” in atoms

from A, the choice between standard translation and Dung translation is semantically inessential.
We remark that Dung’s translation has the advantage of producing a logic program where each
rule has a finite body.

Theorem 4.14 and Proposition 4.15 immediately yield the same nice correspondence picture
from the standard translation (Theorem 4.13) for Dung’s translation. The first and last items
below are again obvious for our setting, parts of them were also proved by Dung [9, Theorem 62].
Correspondence results 2, 3 and 4 are completely new.

Theorem 4.16. Let Θ = (A,R) be an argumentation framework. The following are in one-to-
one correspondence:

1. the grounded extension of Θ, the Kripke-Kleene model of ΠD(Θ) and the well-founded model
of ΠD(Θ);

2. complete extensions of Θ, three-valued supported models of ΠD(Θ) and three-valued stable
models of ΠD(Θ);

3. preferred extensions of Θ, M-supported models of ΠD(Θ) and M-stable models of ΠD(Θ);

4. semi-stable extensions of Θ, L-supported models of ΠD(Θ) and L-stable models of ΠD(Θ);

5. stable extensions of Θ, two-valued supported models of ΠD(Θ) and two-valued stable models
of ΠD(Θ).

Proof. Follows from Theorem 4.14, Proposition 4.15 and Propositions 4.5, 4.7, 4.8 and 4.4.

This theorem conclusively shows that Dung’s modular translation from AFs to LPs is faithful
with respect to all operator-based semantics. We infer that propositional normal logic programs
are at least as expressive as abstract argumentation frameworks.

4.3 From Logic Programs to Argumentation Frameworks

For ADFs, we have seen how the standard translation into logic programs could straightforwardly
be reversed into a translation from normal logic programs to ADFs that was sound with respect
to both two-valued supported and stable model semantics. In the case of AFs, however, things
are different. The standard logic programs obtained from Dung argumentation frameworks are
of a very specific form: there is one rule for each atom, and there are no positive atoms in
rule bodies. For logic programs from this class, it is of course clear how to transform them into
argumentation frameworks. For programs outside of this class, however, the standard translation
does not give us any clues on how to proceed.

Although it is certainly possible to devise semantics-dependent translations from logic pro-
grams into argumentation frameworks (as a start, consider translating a logic program into an
ADF to which in turn the translation from Brewka et al. [4] is applied), we consider it unlikely
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that any such translation is polynomial, faithful and modular. In particular, it is highly unlikely
that a polynomial and modular translation is faithful with respect to both supported and stable
semantics, as these two semantics are not equal in general but coincide for abstract argumenta-
tion frameworks. A more extensive investigation of this subject would certainly be interesting,
but also involve general considerations about argumentation semantics and fall beyond the scope
of this paper.

5 General Semantics for Approximating Operators

We have seen how the characteristic operator of an ADF can be used to redefine the existing
ADF semantics. In addition, this introduced the admissible, preferred and stable semantics for
all ADFs – they were previously only defined for bipolar ADFs. We have also seen that an ADF Ξ
and its standard logic program Π(Ξ) correspond on all semantics which are defined for both ADFs
and LPs. Finally, we have seen how the characteristic operator of Dung-style argumentation
frameworks (given by AF-based ADFs) allows to redefine AF semantics for operators. This
allows us to easily transfer definitions of semantics from abstract argumentation to abstract
dialectical frameworks, logic programming and beyond – to the general case of approximating
operators.

5.1 Conflict-free

In classical abstract argumentation, a set of arguments is conflict-free if there are no attacks
amongst its members. For abstract dialectical frameworks, a set of statements is conflict-free if
each statement – informally speaking – has a reason to be in the set. This reason for one entails
absence of any attackers as well as presence of supporters in case the statement’s acceptance
conditions so requires. In operator terms, we have seen that conflict-freeness can be cast as
being a postfixpoint of an operator with respect to the truth value ordering ≤t. This is the
four-valued generalisation of the hitherto two-valued notion of conflict-freeness.

Definition 5.1. Let (L,v) be a complete lattice and O an approximating operator on the
bilattice (L2,≤i). A consistent pair (x, y) ∈ L2 is conflict-free for O iff (x, y) ≤t O(x, y).

Note that conflict-freeness requires consistency. Intuitively, an approximation (x, y) is
conflict-free if it is consistent (i.e. approximates at least one element) and applying the ap-
proximation operator will lead to a pair (x̂, ŷ) where the new bounds are comparable to the old
ones and never decrease, i.e. x v x̂ and y v ŷ. Since O is approximating, the pair (x̂, ŷ) will
again be consistent.

5.2 Admissible

In Dung argumentation frameworks, a set of arguments is admissible if it is conflict-free and
defends itself against all attacks. For abstract dialectical frameworks, we have seen in Defini-
tion 3.3 and Proposition 4.9 that a suitable ADF generalisation of AF admissibility is given by
the above notion of conflict-freeness and a property that DMT call “reliability with respect to an
operator” [8]. In operator-based language, an admissible pair could also be called a consistent,
conflict-free pair that is a postfixpoint with respect to the information ordering ≤i. For the sake
of completeness we have included the following formal definition.

Definition 5.2. Let (L,v) be a complete lattice and O an approximating operator on the
bilattice (L2,≤i). A consistent pair (x, y) ∈ L2 is admissible for O iff (x, y) ≤t O(x, y) and
(x, y) ≤i O(x, y).
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Alternatively, we could say that a consistent pair (x, y) is admissible iff x v O′(x, y) and
O′′(x, y) = y. The definition we chose makes it obvious that an admissible pair is always conflict-
free. Additionally, any pair that is admissible for O is also O-reliable [8]. DMT point out that
O-reliable pairs – consistent pairs whose O-revisions are at least as accurate – are especially
useful for studying fixpoints of O, the original operator that O approximates. In particular, the
≤i-least element (⊥,>) is O-reliable; iterating O on it leads to the Kripke-Kleene semantics,
which provides a more precise approximation of all fixpoints of the approximated operator O.

5.3 Semi-stable

Theorem 4.13 and Proposition 4.8 immediately yield a definition of L-stable/semi-stable se-
mantics for default and autoepistemic logics. Complete semantics for the two are given by
consistent fixpoints (those (x, y) with x v y) of an approximating operator. To generalise semi-
stable to operators we simply have to generalise the minimality criterion of L-stable models for
logic programming. Since this involves algebraic operations on lattice elements, we have to make
some more restricting assumptions on the underlying lattice.

In the sequel, for a complete lattice (L,v) with join t and meet u, we assume the existence
of a function ·−1 : L→ L such that for any x, y ∈ L,

• (x−1)
−1

= x (·−1 is involutive)

• (x t y)
−1

= x−1 u y−1 and

• (x u y)
−1

= x−1 t y−1 (de Morgan’s laws)

In the special cases we have seen so far, the role of this “negation” is played by set complement
with respect to the underlying vocabulary.

Definition 5.3. Let (L,v) be a complete lattice and O an approximating operator on its
corresponding bilattice (L2,≤i). A consistent pair (x, y) is L-supported iff it is a fixpoint of O
and yux−1 is v-minimal. A consistent pair (x, y) is L-stable iff it is a fixpoint of SO and yux−1

is v-minimal.

For the special case of argumentation, these general definitions of L-supported and L-stable
reduce to a consistent fixpoint (S, P ) of FΘ = SFΘ such that P ∩S = P \S (the set of undecided
arguments) is ⊆-minimal – a semi-stable extension.

5.4 Stage

We now turn to a semantics that is not based on admissibility, but only on conflict-freeness: stage
extensions. Recall that a set S ⊆ A is a stage extension of Θ = (A,R) iff it is conflict-free and has
maximal range, that is, the set S∪AttackedΘ(S) is⊆-maximal [23]. Alternatively, stage semantics
can be seen as a less restrictive version of semi-stable semantics where “admissible” is replaced
by “conflict-free.” This characterisation, in effect, will lead to our operator generalisation of
stage semantics.

Definition 5.4. Let Ξ = (S,L,C) be an abstract dialectical framework and X ⊆ Y ⊆ S. The
consistent pair (X,Y ) is a stage pair of Ξ iff (X,Y ) is conflict-free and Y \X is ⊆-minimal.

We next prove that this definition of stage extensions is indeed a generalisation of the notion
for AFs.
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Proposition 5.1. Let Θ = (A,R) be an AF and Ξ = Ξ(Θ) be its associated ADF. A set X ⊆ A
is a stage extension of Θ iff the pair (X,UΘ(X)) is a stage pair of Ξ.

Proof. Abbreviate Y def= UΘ(X). We have the following equivalences:

X is a stage extension for Θ

iff X is conflict-free and X ∪AttackedΘ(X) is ⊆ -maximal

iff X is conflict-free and X ∪ UΘ(X) is ⊆ -maximal

iff X ⊆ UΘ(X) and X ∩ UΘ(X) is ⊆ -minimal

iff X ⊆ Y and Y \X is ⊆ -minimal

iff X ⊆ UΘ(Y ) ⊆ UΘ(X) = Y ⊆ UΘ(X) and Y \X is ⊆ -minimal

iff X ⊆ F ′Θ(X,Y ) and Y ⊆ F ′′Θ (X,Y ) and Y \X is ⊆ -minimal

iff (X,Y ) ≤t FΘ(X,Y ) and Y \X is ⊆ -minimal

iff (X,Y ) ≤t GΞ(X,Y ) and Y \X is ⊆ -minimal

iff (X,Y ) is a stage pair of Ξ

As usual, Definition 5.4 straightforwardly yields stage models for logic programming and
stage extensions/expansions for default and autoepistemic logics, defined through stage pairs of
an approximating operator O in a bilattice.

Definition 5.5. Let (L,v) be a complete lattice and O an approximating operator on its
corresponding bilattice (L2,≤i). A consistent pair (x, y) ∈ L2 is a stage pair for O iff (x, y) ≤t
O(x, y) and y u x−1 is v-minimal.

6 Conclusion

We embedded abstract dialectical frameworks into Denecker et al.’s lattice-theoretical formalism
for the abstract study of nonmonotonic logical languages. This provides useful insights into
the relationship of abstract argumentation frameworks and abstract dialectical frameworks with
other nonmonotonic knowledge representation formalisms.

In this last section, we will provide a concise overview over the results of our investigation.
First, for reference and as a completion of the table in Definition 2.2, we review the definitions
of operator-based semantics in Table 1.

Figure 1 then depicts the relationship between the different semantical notions explored in
this paper. If a semantics σ is seen as a function assigning to a knowledge base κ over vocabulary
A a set of pairs (X,Y ) with X,Y ⊆ A, then a partial order on semantics is given by σ1 ≤ σ2 iff
σ1(κ) ⊆ σ2(κ) for all κ. In the figure, an arrow from σ1 to σ2 expresses σ1 ≤ σ2 – in words, all
σ1-models are also σ2-models.

Next, Table 2 shows the correspondences between different argumentation semantics and
operator-based semantics. The operator-based semantics lead to new semantics for default logic
and autoepistemic logics via their respective consequence operators [7]. A discussion of these
semantics is however out of the scope of this paper.

Finally, Figure 2 on page 34 shows the location of abstract dialectical frameworks with respect
to different approaches in the area of nonmonotonic reasoning. We use a very strong notion
of one formalism being at least as expressive as another: the existence of a polynomial and
modular translation that is faithful with respect to all operator-based semantics. Such results
existed previously for the translation from logic programs into default theories of Marek and
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conflict-free pair (x, y) (x, y) ≤t O(x, y)
stage pair (x, y) (x, y) ≤t O(x, y) and y u x−1 is v-minimal
admissible pair (x, y) (x, y) ≤t O(x, y) and (x, y) ≤i O(x, y)
Kripke-Kleene semantics lfp(O)
three-valued supported model (x, y) O(x, y) = (x, y)
M-supported model (x, y) O(x, y) = (x, y) and (x, y) is ≤i-maximal
L-supported model (x, y) O(x, y) = (x, y) and y u x−1 is v-minimal
two-valued supported model (x, x) O(x, x) = (x, x)
well-founded semantics lfp(SO)
three-valued stable model (x, y) SO(x, y) = (x, y)
M-stable model (x, y) SO(x, y) = (x, y) and (x, y) is ≤i-maximal
L-stable model (x, y) SO(x, y) = (x, y) and y u x−1 is v-minimal
two-valued stable model (x, x) SO(x, x) = (x, x)

Table 1: Operator-based semantical notions. All of them are defined for x, y ∈ L with x v y for
complete lattices (L,v) and approximating operators O on their corresponding bilattice, in some
cases (stage, L-supported, L-stable) with additional restrictions on join, meet and involution
operations on the lattice.

two-valued stable
(stable)

L-stable
(semi-stable)

M-stable
(preferred)

three-valued stable
(complete)

well-founded
(grounded)

two-valued supported
(stable)

L-supported
(semi-stable)

M-supported
(preferred)

three-valued supported
(complete)

Kripke-Kleene
(grounded)

admissible

conflict-free

stage

Figure 1: Inclusion relations between operator-based semantics. Nodes depict semantical notions
for elements of a bilattice, where the names in parentheses are argumentation versions of these
notions. Directed edges indicate subset relationships between the sets of all bilattice elements
which satisfy the respective semantical notion. For example, the arrow from admissible to conflict-
free means that all admissible pairs are conflict-free.

Truszczyński [20], and the translation from default logic into autoepistemic logic of Konolige
[19] – for details see Denecker et al. [6]. In this paper, we added argumentation frameworks and
abstract dialectical frameworks to the picture.

Related work. The several new correspondence results for AFs and logic programs we proved
extended results of Wu et al. [24], who showed correspondence of complete extensions and three-
valued stable models. While the results of Wu et al. [24] use the translation of Gabbay and
d’Avila Garcez [13], they do not motivate the use of this – we call it standard – translation nor
provide a comparison to the much older Dung translation. In this paper we showed that using
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Operator AF ADF
conflict-free pair conflict-free set conflict-free set/pair
stage pair stage extension stage pair
admissible pair admissible set admissible pair
Kripke-Kleene semantics grounded extension Kripke-Kleene semantics
ultimate Kripke-Kleene semantics grounded extension BW-well-founded model
three-valued supported model complete extension three-valued supported model
M-supported model preferred extension M-supported model
L-supported model semi-stable extension L-supported model
two-valued supported model stable extension (two-valued supported) model
well-founded semantics grounded extension well-founded semantics
three-valued stable model complete extension three-valued stable model
M-stable model preferred extension M-stable model
L-stable model semi-stable extension L-stable model
two-valued stable model stable extension two-valued stable model

Table 2: Overview over semantics for approximating operators, argumentation frameworks and
abstract dialectical frameworks. Semantics newly defined in this paper are written in bold font.
All extension semantics for AFs have at least two generalisations, a supported and a stable one.
While most argumentation semantics already had a corresponding operator semantics, we found
that conflict-free and admissible sets and stage extensions lead to new semantical notions for
approximating operators. The operator-based versions of argumentation semantics then directly
lead to the ADF generalisations of these semantics, most of which are newly defined in this paper.
M/L-stable/supported models for operators are straightforwardly generalised notions from logic
programming. Operator-based semantics then immediately lead to semantics for default logic and
autoepistemic logic (not included in this presentation).

AFs

ADFs

LPs

DL

AEL

Theorem 4.16

Theorem 3.14

Denecker et al. [6]

Denecker et al. [6]

Brewka and Woltran [3]

Brewka et al. [4]

Figure 2: Relative expressiveness of NMR formalisms. Nodes depict nonmonotonic knowledge
representation formalisms; argumentation frameworks (AFs), abstract dialectical frameworks
(ADFs), logic programs (LPs), default logic (DL) and autoepistemic logic (AEL), respectively.
A solid directed edge expresses that there exists a polynomial, faithful and modular translation
from source to target formalism, where faithful means the exact correspondence of associated ap-
proximating operators. Dotted edges denote non-modular translations which are polynomial, but
only faithful with respect to two-valued (BW-)stable semantics.
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the standard translation is justified; what is more, we even proved that the standard translation
and Dung’s translation produce equivalent programs.

Concerning translations from AFs into LPs, related work has also been done by Egly et al. [10]
– they however have a different goal: they want to efficiently implement different argumentation
semantics using the stable model semantics for logic programming. Furthermore they employ
meta-programming and answer set programming with variables to allow for modular translations.
Besnard and Doutre [1] redefined argumentation semantics in terms of fixpoints, but they do not
look at grounded or semi-stable semantics and do not use their insights to embed argumentation
frameworks into the larger picture. Very recently, Grossi [17] investigated fixpoint-based defini-
tions of argumentation semantics to study the connection between argumentation and dynamic
epistemic logic. Ellmauthaler and Wallner [11] most recently provided an implementation of
ADFs which is based on answer set programming.

In general, we are not aware of any works that address the relationship of abstract dialectical
frameworks with other nonmonotonic knowledge representation formalisms, attempt a principled
reconstruction of ADF semantics or generalise argumentation semantics to an abstract operator-
based setting.

Future work. As we observed in Example 3.7, it is not immediately clear how to define the
union of two ADFs that share statements. For specific representations of acceptance conditions,
such a union should be straightforward to define; for example when using acceptance formulas, a
statement’s acceptance formula in the union is simply the disjunction of the acceptance formulas
in the constituents. We want to devote some future work into abstracting from such specific
representations and develop a general method for combining ADFs.

Corollary 3.12 has shown that Brewka and Woltran [3] defined not only the notion of an
ADF model, but also the ultimate approximation of this notion. Denecker et al. [8] study several
other ultimate semantics. It is an important aspect of future work to investigate these ultimate
semantics in detail and to compare them with the ones investigated here.

We remarked on several occasions throughout the paper that we defined new semantics for
default and autoepistemic logics (admissible, preferred, semi-stable, stage). We plan to study
these semantics in greater detail, especially their strengths and weaknesses in comparison to the
standard semantics of these two nonmonotonic knowledge representation formalisms.

Acknowledgements. The author wishes to thank Gerhard Brewka, Stefan Ellmauthaler and
Johannes Peter Wallner for useful discussions and providing (counter-)examples. He is also
grateful to several anonymous reviewers for providing valuable feedback on earlier versions of
(parts of) this document.
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