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Abstract 
 

Modern high-throughput technologies such as microarrays, next generation sequencing and 

mass spectrometry provide huge amounts of data per measurement and challenge traditional 

analyses. New strategies of data processing, visualization and functional analysis are 

inevitable. This thesis presents an approach which applies a machine learning technique 

known as self organizing maps (SOMs). SOMs enable the parallel sample- and feature-

centered view of molecular phenotypes combined with strong visualization and second-level 

analysis capabilities. 

We developed a comprehensive analysis and visualization pipeline based on SOMs. The 

unsupervised SOM mapping projects the initially high number of features, such as gene 

expression profiles, to meta-feature clusters of similar and hence potentially co-regulated 

single features. This reduction of dimension is attained by the re-weighting of primary 

information and does not entail a loss of primary information in contrast to simple filtering 

approaches. The whole set of single feature profiles remains virtually ‘hidden’ in the meta-

features. The meta-data provided by the SOM algorithm is visualized in terms of intuitive 

mosaic portraits. Sample-specific and common properties shared between samples emerge as 

a handful of localized spots in the portraits collecting groups of co-regulated and co-expressed 

meta-features. This characteristic color patterns reflect the data landscape of each sample and 

promote immediate identification of (meta-)features of interest. It will be demonstrated that 

SOM portraits transform large and heterogeneous sets of molecular biological data into an 

atlas of sample-specific texture maps which can be directly compared in terms of similarities 

and dissimilarities. Importantly, SOMs preserve the information richness of the original data 

allowing detailed, multivariate explorative comparisons between meta-features and samples, 

respectively. Spot-clusters of correlated meta-features can be extracted from the SOM 

portraits in a subsequent step of aggregation. This spot-clustering effectively enables 

reduction of the dimensionality of the data to a handful of signature modules in an 

unsupervised fashion. The SOM method consequently enables compression of the original set 

of high-dimensional data in two consecutive steps: Firstly, similar profiles of single features 

are collected in the meta-feature clusters, which reduces the number of relevant features by 

about one order of magnitude in our applications. Secondly, the spot textures of the obtained 

SOM portraits are decomposed into a few (typically less than one dozen) spots of similar 

meta-features.  

Furthermore we demonstrate that analysis techniques, which are normally applied at the 

feature-level, provide enhanced resolution if applied to the meta-features. The improved 

discrimination power of meta-features in downstream analyses such as hierarchical clustering, 

independent component analysis or pairwise correlation analysis is ascribed to essentially two 

facts: Firstly, the set of meta-features better represents the diversity of patterns and modes 
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inherent in the data and secondly, it also possesses the better signal-to-noise characteristics as 

a comparable collection of single features.  

Additionally to the pattern-driven feature selection in the SOM portraits, we apply statistical 

measures to detect significantly differential features between sample classes. Implementation 

of scoring measurements, such as the shrinkage t-score, supplements the basal SOM 

algorithm. Further, two variants of functional enrichment analyses are introduced which link 

sample specific patterns of the meta-feature landscape with biological knowledge and support 

functional interpretation of the data based on the ‘guilt by association’ principle. 

Finally, case studies selected from different ‘OMIC’ realms are presented in this thesis. In 

particular, molecular phenotype data derived from expression microarrays (mRNA, miRNA), 

sequencing (DNA methylation, histone modification patterns) or mass spectrometry 

(proteome), and also genotype data (SNP-microarrays) is analyzed. It is shown that the SOM 

analysis pipeline implies strong application capabilities and covers a broad range of potential 

purposes ranging from time series and treatment-vs.-control experiments to discrimination of 

samples according to genotypic, phenotypic or taxonomic classifications. 
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1 Introduction 

1.1 General challenges in high-throughput data analysis 

In modern molecular biology, high-throughput technologies such as DNA microarrays, next 

generation sequencing or mass spectrometry allow researchers to assess up to hundreds of 

thousands of features under up to hundreds of samples or experimental conditions of interest. 

Not only the progressively increasing data throughput of these methods challenges analysis 

methods. But also the increasing availability of large data sets in public data repositories such 

as Gene Expression Omnibus1 or Array Express2 requires adequate analysis and meta-analysis 

strategies. This comprises optimal arrangement and visualization of the huge heaps of data 

preferably in combined sample- and feature-centered views to capture the global data 

structure while simultaneously presenting the specifics of each individual sample. 

Importantly, also appropriate statistics and downstream analyses have to be involved to 

extract characteristic features, to mine their functional context and to control the error level. 

Results are frequently presented in terms of tables and visualized in terms of basic images 

such as heatmaps or barplots. Such presentations are very popular because they are simple to 

understand and because they, in most cases, provide an overview about the data which is 

sufficient to identify characteristic features such as clusters of genes up- or downregulated 

under selected conditions. On the other hand, important information which is crucial for the 

understanding of systems behavior might be hidden or even undetectable due to several 

reasons: complicated multivariate data structure, high connectivity between the features, poor 

quality of the data or unfavorable presentation. Hence, tasks such as data transformation from 

measured values into calibrated features, their appropriate evaluation and weighting 

according to their importance in the biological context and suited support for extraction and 

interpretation of sought (and unsought) information becomes an extremely puzzling task in 

modern biology.  

A general aim is consequently the provision of comprehensive analysis tools which integrate 

appropriate methods, data visualization and result presentation. This thesis will present an 

approach to tackle these challenges utilizing a neural network algorithm called self-organizing 

maps (SOMs). SOMs combine data processing and dimension reduction with strong 

visualization capabilities. Especially for large and complex volumes of data, where 

conventional approaches are revealed to be insufficient, the capability of SOMs will be 

demonstrated. 

 

                                                             

1 www.ncbi.nlm.nih.gov/geo 
2 www.ebi.ac.uk/arrayexpress 
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1.2 Neuronal data perception using machine learning 

Despite exponential growth of computational power, information processing capabilities of 

the human brain are reached by no means so far. Except mathematical calculations in terms of 

straight analytical solutions and related applications, the brain can solve problems which pose 

insurmountable obstacles for any computer machine. It appears desirable to make use of the 

potential of neuronal data processing and decision making and to apply those ‘natural’ 

principles ‘in silico’, i.e. in ‘artificial’ computer programs. Especially, concepts of neuronal 

data perception and of low level processing of vast amounts of information occurs as 

promising attempt to analyze molecular-biological data obtained with new generation high 

throughput technologies. 

One particular method, so-called self-organizing maps (SOM), combines several benefits 

important in this context namely clustering, dimension reduction, multidimensional scaling 

and visualization. This machine learning algorithm based on artificial neuronal networks was 

developed by Kohonen about thirty years ago [1]. It transforms data from the original high-

dimensional ‘input’ space into a low- (usually two-) dimensional ‘map’ space. Contrary to 

linear scaling, the multivariate structure of the data is captured in map space because it uses a 

non-linear transformation. Importantly, the mapped data can be presented in terms of two-

dimensional mosaic pictures providing an individual visual identity for each sample. Such 

‘molecular portraits’ highlight relevant intrinsic substructures in the data.  

It has been demonstrated that SOM can serve as a powerful tool in large-scale data analysis [2, 

3] because, (i) the underlying image-based perception is very intuitive and clearly promotes 

the discovery of qualitative relationships between the samples in the absence of an existing 

hypothesis; (ii) it reduces the dimension of the original data and provides new, complex 

objects for next level analysis; and (iii) it preserves the information richness of the molecular 

states allowing the detailed, multivariate explorative comparison between samples.  

 

1.3 Methodical developments and applications of SOMs in 

biological data analysis 

First approaches applying SOMs to microarray gene expression data were published by 

Tamayo et al. [4] and Törönen et al. [5] in 1999, emphasizing a gene-centered perspective to 

cluster gene expression profiles in studies on stem cell and yeast, respectively. Golub et al. [6] 

published the complementary sample-centered clustering method to discriminate acute 

myeloid and lymphoblastic leukemia (AML vs. ALL). Covell et al. [7] used the same approach 

for the classification of human tissues and tumor groups. A series of subsequent microarray 

studies applied SOM-cluster analyses [8–13] in the fields of stem cell differentiation, cancer 

dysfunction (leukemia, lymphoma, adenocarcinoma, sarcoma) and toxication of human 

samples, mice, but also other organisms such as yeast and Caenorhabditis elegans. In the last 

years, applications of SOM machine learning extended to different modern fields of 
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bioanalytics beyond gene expression analysis such as proteomics and 

metabolomics/metabonomics using mass spectrometry [14–16] and NMR spectroscopy [17–

19]. Further, clustering of Tyrosine phosphorylation profiles [20] and the webatlas of murine 

genomic imprinting [21] represent first applications of self-organizing maps in epigenetics. 

Note also that SOM are frequently applied in other fields than molecular biology to mine large 

and complex data, for example to assess epidemiological factors of malaria endemic zones [22] 

or for textmining and keyword clustering [23]. Also image processing tasks can be solved 

using SOMs, e.g. to process spectral landscape maps [24].  

 

Other studies address methodical issues, e.g. to further improve the machine learning 

algorithm in applications to special data types. For instance, customized SOM algorithms such 

as ‘recursive SOM’ (RecSOM) or ‘SOM for structured data’ (SOM-SD) were developed to deal 

with strongly structured data (see, e.g., [25] for an overview): RecSOM combines the basic 

SOM learning with a recursive feedback loop, allowing to learn temporal sequences of input 

data [26]. Another approach was realized by the SOM-SD to map directed acyclic graphs using 

a recursive learning mechanism [27]. This method was further combined with a hyperbolic 

map topology as ‘SOM for sequences’ (SOM-S) [28]. The so-called ‘merge SOM’ (MSOM) 

provides a more general extension of SOM-SD without a rigid grid structure suited for the 

processing of sequence data [29]. 

Other methodical modifications of the SOM-technique aim at improving data mapping and 

enabling more flexible learning. A dynamically growing map structure was developed to avoid 

the problem of fixed - and hence potentially to small - map sizes. The ‘growing SOM’ (GSOM) 

automatically adds nodes to the map to better cover dense regions of the input data space 

[30]. Thus, GSOM automatically adapts size and shape of the SOM. This approach was further 

improved by automatically adjusting the direction of growth of the SOM (‘recursive mean 

directed growing’, RMDG) [31]. Another approach to bypass rigid grid topologies is the ‘neural 

gas’ (NG) [32]. Here, the optimal topological structure is iteratively re-determined, leading to 

versatile node ordering. The concept of NG can be linked with other concepts of SOM-

topology and learning to combine the respective advantages [29]. 

The original SOM method is an unsupervised learning algorithm. However, also supervised 

modifications were developed to train a SOM with regard to predefined classes. The ‘SOM 

discrimination index’ (SOMDI) provides a simple approach to integrate class information into 

the training data, which has been applied to classify NMR spectra of metabolites [18, 19]. 

More elaborated methods have been published in the field of mass spectrometry: The ‘fuzzy-

labeled’ SOM (FLSOM) offers a robust semi-supervised classifier, especially suited for 

uncertain data. Case studies deal with MALDI MS-spectra of bacteria and breast cancer 

samples [33]. Finally the so-called ‘Local Linear Maps’ (LLM) were developed to predict 

intensity amplitudes of peptide peaks in MALDI spectra [14, 34]. 
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A special implementation of the SOM method aims at visualizing the ‘landscapes’ of large scale 

molecular data such as ten thousands of gene expression levels in a comprehensive and 

intuitive fashion. Such data can be presented with the focus to compare the samples in terms 

of similarity measures or, alternatively, with the focus to extract single characteristic features 

which discriminate different samples. These alternative sample- and gene-centered views 

usually require different methods of analysis and visualization, e.g. principal component 

analysis (PCA [35]) for the former one and significance analysis of microarrays (SAM [36]) for 

the latter one. The SOM method allows combination of both the sample- and gene-centered 

perspectives [2, 37, 38]. This specific configuration of the SOM uses the so called component 

planes of the SOM to decode the expression pattern of the genes within a two-dimensional 

mosaic pattern. It allows the easy sample-to-sample comparison by direct visual inspection 

and the identification of single features in terms of groups of co-regulated genes. Such SOM 

portraits have been applied in studies on cell differentiation and development [39–43], 

organogenesis [44] and tumor progression and classification [3, 45, 46]. 

Several SOM-based analysis packages were developed as stand-alone or web-based tools [21, 

23, 38, 47, 48]. Especially the tool packages ‘Gene Expression Dynamics Inspector (GEDI)’ 

[38], ‘Grid Analysis of Time series Expression (GATE)’ [47] and ‘*omeSOM’ [48] provide 

extensive and, for many applications, sufficient functionalities. However, these tools are rather 

inflexible and restricted concerning the challenges of individualized analyses. Especially 

options in low-level preprocessing and the presentation of specific high-level results are 

deficient for customized applications in molecular biology. 

 

1.4 Objectives and outline 

SOM analysis is particularly suited for analysis of large-scale data due to the potent 

combination of clustering, dimension reduction, multidimensional scaling and visualization 

capabilities. Further methodical developments continuously improve the method and offer a 

variety of sophisticated applications. Presumably due to at least two reasons, SOM analyses 

are still relatively infrequently applied compared to alternative methods such as hierarchical 

clustering heatmaps or principal component analysis: Firstly, our experience shows that SOM 

seems quite unaccustomed for many researchers with background in statistics and biology due 

to the machine learning step and the partly unusual structure of transformed data. Therefore 

we believe that an improved understanding of the concept of SOM learning and mapping 

might increase the acceptance and promote application of the method. Secondly, the 

fundamental SOM algorithm needs to be supplemented with data specific statistical measures, 

tools for feature extraction and for visualization. Despite the intensive work in developing and 

applying SOM algorithms, data mining modules for extracting specific information about the 

systems studied are often missed. 

This thesis aims at bridging the gap between the potential of the SOM method and the 

problems associated with the exploration of the transformed data, and at demonstrating its 
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strength in selected case studies taken from high-throughput experiments in molecular 

biology. Under methodical aspects, the advantages of SOM will be evaluated with regard to 

high-dimensional data analysis and compared with alternative methods, special visualization 

techniques will be presented to illustrate the meta-data space provided by the SOM and 

statistical methods for feature extraction will be adapted to the SOM meta-gene structure. 

Finally, tools for functional analyses, for example enrichment of sets of genes with known 

biological implication, were applied to SOM clustered data. This thesis hence pursues an 

interdisciplinary scope: It addresses bioinformaticians and statisticians (methodological 

aspects and their implementation) as well as biologists (applications).  

 

The contents are organized as follows (see also the workflow shown in Figure 1-1): Chapter 2 

addresses primary data analysis: It provides a brief description of the SOM algorithm used 

and describes associated tasks such as data preprocessing, visualization and extraction of 

functional modules inherent in the data. Chapters 3, 4 and 5 deal with methodical aspects of 

‘secondary analysis’ of the transformed data delivered by the SOM algorithm. We focus on 

issues related to data filtering, statistical scores for feature selection and functional 

enrichment analysis. Chapter 6 presents selected case studies of our SOM analysis which 

demonstrate particular applications in different OMICs-data. Most of the examples are 

published, in press or under review. Manuscripts with relevance for this thesis can be 

downloaded from the author’s website 3  to provide details not given in the main text. 

Additionally, a software package was developed in R [49] including all analysis functionalities 

described in this thesis. It is available as R-package ‘oposSOM’ on CRAN repository4.   

 

 

 

                                                             

3 http://www.izbi.uni-leipzig.de/izbi/mitarbeiter/wirth.php 
4 http://cran.r-project.org/web/packages/oposSOM 
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Figure 1-1: SOM-analysis workflow: Raw experimental data (microarray expression data here) is 
adequately preprocessed and feed into the SOM-algorithm. It provides meta-expression profiles 
(thick curves) representing the manifold of expression states observed in the series of samples 
studied in lower dimensions. Results of the training process (i.e. meta-feature profiles, structural 
information) are then utilized for direct visualization (SOM portraits, see first row in visualization 
part) or to create supporting maps (second row) characterizing different aspects of the SOM. 
Secondary analyses (e.g. component analysis, correlation analysis or clustering) can be applied based 
on meta-features instead of original data, implying analysis on a higher level of information 
aggregation. Meta-features can further be used for statistical and functional analysis (e.g. filtering, 
feature selection, enrichment analysis), complementing the basal SOM algorithm. 
Detailed aspects of the respective analysis steps are given in the different chapters of this thesis as 
indicated in the figure. 
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2 Self-organizing maps 

2.1 Neural network models 

The human brain is very efficient in processing complex information. Consequently there are 

numerous attempts to understand and to apply principles of natural learning and knowledge 

processing to enduring tasks in computer science. First studies on artificial intelligence 

already started about 100 years ago. In 1906 the Nobel Prize was awarded to Camillo Golgi 

and Ramón y Cajal “in recognition of their work on the structure of the nervous system”5. 

Since then, methods based on artificial neural networks became an important part in the field 

of machine learning and computer science in general.  
An early approach, the so-called McCulloch-Pitts network [50], is capable to learn a requested 

output for any binary input pattern of length n, for example the Boolean functions ‘AND’, ‘OR’ 

and ‘NOT’. In general, each logical function :{0,1} {0,1}nF →  can be realized by these 

networks [51]. The Perceptron, a generalized version of this model, applies numerical weights 

to the connecting edges between neurons, allowing learning by adaption of the weight values 

[52, 53]. The weights, representing association strengths between the neurons, are assumed as 

essential ingredient for modeling natural learning by the psychologist Donald Hebb in 1949: 

"Any two cells or systems of cells that are repeatedly active at the same time will tend to 

become 'associated', so that activity in one facilitates activity in the other" [54]. 

In other words, the connection between simultaneously activated neurons is further 

strengthened by increased synaptic interaction. Hebb is considered as the discoverer of 

synaptic plasticity, the basis of learning and memory in nervous systems. The derived ‘Hebb’s 

learning rule’ for artificial neural network learning consequently describes the adaption of 

weights between two nodes according to concerted activation: 

 ij i jw a aδ η= ⋅ ⋅  (1) 

Accordingly, the weight of the edge between nodes i and j, wij, is increased by the increment 

δwij if both nodes are simultaneously active (i.e. ai>0 and aj>0). The amount of adjustment is 

controlled by the learning rate η. This update rule and its adaptations, combined with the 

Perceptron structure, provide the basis of most machine learning algorithms for artificial 

neural networks. 

Also Kohonen’s SOM structure and learning mechanism can be described in terms of a defined 

network of nodes, interconnected by weighted edges, which in turn are updated according to 

Hebb’s leaning rule [55]. The SOM model will be described more in detail later in this chapter.  

                                                             

5 http://www.nobelprize.org/nobel_prizes/medicine/laureates/1906/ 
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Figure 2-1: Relation between input data and meta-data of SOM analysis of microarray expression: 
The input data matrix consists of N rows (representing the ‘single’ gene expression profiles) and M 
columns (representing the expression states of the different tissues). Each gene expression profile 
defines a vector of dimensionality M which is illustrated as one point in the M-dimensional data 
space. The M-dimensional map space contains K<<N meta-gene expression profiles. SOM machine 
learning fits the map space to data space such that the meta-gene profiles resemble the single gene 
profiles. Due to their smaller number, each meta-gene serves as representative of a cluster of single 
genes as illustrated by the fragmentation of data space. The mapping can be described by the 
nonlinear feature mapping function Φ. 

 

2.2 Mapping of high throughput data 

High throughput screening methods in modern molecular biology such as microarrays, next-

generation sequencing, and also mass spectrometry provide a vast amount of data points per 

measurement. Experimental series on hundreds of samples thus accumulate extensive, large-

scale data sets of high-dimensions. In this thesis, SOM machine learning is applied to case 

studies involving several selected data types to illustrate the benefits and drawbacks of the 

approach. Table 1 summarizes the different data types used for SOM analysis.  

The input data for SOM analysis can be described as data matrices of dimension N x M (for 

illustration see Figure 2-1, upper panel) where N is the number of features measured per 

sample and M is the number of samples referring, e.g., to different treatments, time points or 

individuals. As a convention, each row of the matrices will be termed profile of the respective 

feature (e.g. gene expression profile along the conditions measured). The columns on the 

other hand will be termed states referring to each of the conditions studied (e.g. the 

expression state of a selected microarray sample). 
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Table 1: Different biological data and selected characteristics addressed in this thesis. 
P

ro
te

om
e 

C
ha

pt
er

 6
.4

 ; 
[W

IR
TH

2]
 

M
as

s 
sp

ec
tr

om
et

ry
, 

B
ru

ke
r 

Pe
ak

 p
os

iti
on

s 
(m

/z
  

co
or

di
na

te
) o

f p
ro

te
in

 
fr

ag
m

en
ts

 

M
S-

sp
ec

tr
a 

Sp
ec

tr
al

 c
or

re
ct

io
ns

 
(e

.g
. b

as
el

in
e 

su
bt

ra
ct

io
n)

 

D
ig

it
iz

ed
 s

pe
ct

ra
 o

f 
pe

ak
-r

eg
io

ns
 

Q
ua

nt
ile

 
no

rm
al

iz
at

io
n 

In
te

ns
it

y 
lis

ts
 o

f p
ea

ks
 

(I
) 

1,
00

0 
–

 2
,0

00
 

M
et

a-
pe

ak
 

am
pl

itu
de

s,
 Im

et
a  

20
 x

 2
0;

 N
/K

≈
2 

M
et

h
yl

om
e 

C
ha

pt
er

 6
.3

 

M
eD

IP
 s

eq
ue

nc
in

g,
 

SO
Li

D
 

M
et

hy
la

ti
on

 s
ta

te
 o

f 
th

e 
ge

no
m

ic
 lo

ci
 

R
ea

d 
co

un
ts

 

Li
br

ar
y 

m
ap

pi
ng

 to
 

re
fe

re
nc

e 
ge

no
m

e 

M
et

hy
la

ti
on

 s
ta

te
 o

f 
bi

nn
ed

 r
eg

io
ns

 
(5

00
bp

) 

Q
ua

nt
ile

 
no

rm
al

iz
at

io
n 

R
ea

ds
 p

er
 m

ill
io

n 
(R

PM
) 

10
,0

00
 –

 1
00

,0
00

 

M
et

a-
re

ad
s,

 R
PM

m
et

a  

20
 x

 2
0;

 N
/K

≈
10

0 

E
p

ig
en

om
e 

[S
TE

IN
E

R
1]

 

C
hI

P-
Se

q,
  I

llu
m

in
a 

C
hr

om
at

in
 

m
od

ifi
ca

tio
n 

st
at

e 
of

 
th

e 
ge

no
m

ic
 lo

ci
 

R
ea

d 
co

un
ts

 

Li
br

ar
y 

m
ap

pi
ng

 to
 

re
fe

re
nc

e 
ge

no
m

e 

C
hr

om
at

in
 

m
od

ifi
ca

tio
n 

in
di

ca
to

r 
of

 g
en

om
ic

 fr
ag

m
en

ts
 

(>
20

0b
p)

 

Sk
ip

pe
d;

 n
ot

 
ne

ce
ss

ar
y 

B
in

ar
y 

ep
ig

en
et

ic
 

pr
of

ile
s 

(E
P)

: 
m

od
ifi

ca
ti

on
 

ab
se

nt
 (0

) o
r 

pr
es

en
t (

1)
 

50
0,

00
0 

–
 1

,0
00

,0
00

 

M
et

a-
E

P,
 E

Pm
et

a  

40
 x

 4
0;

 N
/K

≈
50

0 

G
en

om
e 

C
ha

pt
er

 6
.2

 ; 
[B

IN
D

E
R

1]
 

SN
P 

m
ic

ro
ar

ra
ys

, 
Il

lu
m

in
a 

G
en

ot
yp

es
 o

f S
N

Ps
 

Pr
ob

e 
in

te
ns

it
ie

s 

St
an

da
rd

 g
en

ot
yp

in
g 

so
ft

w
ar

e 
(B

ea
dS

tu
di

o,
 

Il
lu

m
in

a)
 

R
el

at
iv

e 
al

le
le

 s
ig

na
ls

 
(R

A
S)

 

Sk
ip

pe
d;

 n
ot

 
ne

ce
ss

ar
y 

Te
rn

ar
y 

al
le

le
 c

od
e 

(T
A

C
):

 m
aj

or
 (0

),
 

he
te

ro
zy

go
us

 (1
),

 
m

in
or

 (2
) a

lle
le

 

10
0,

00
0 

–
 1

,0
00

,0
00

 

M
et

a-
SN

P,
 T

A
Cm

et
a  

80
 x

 8
0;

 N
/K

≈
80

 

T
ra

n
sc

ri
pt

om
e 

(m
iR

N
A

) 

[C
A

K
IR

1]
 

m
iR

N
A

 e
xp

re
ss

io
n 

m
ic

ro
ar

ra
ys

, 
LC

Sc
ie

nc
es

 

E
xp

re
ss

io
n 

le
ve

ls
 o

f 
m

iR
N

A
s 

Pr
ob

e 
in

te
ns

it
ie

s 

St
an

da
rd

 s
of

tw
ar

e 
(A

rr
ay

-P
ro

, M
ed

ia
 

C
yb

er
ne

ti
cs

) 

Lo
g 

di
ff

er
en

ti
al

 
ex

pr
es

si
on

 

Q
ua

nt
ile

 
no

rm
al

iz
at

io
n 

D
iff

er
en

ti
al

 
ex

pr
es

si
on

 r
el

at
iv

e 
to

 
av

er
ag

e 
ov

er
 a

ll 
sa

m
pl

es
 (Δ
e)

 

20
0 

- 6
00

 

M
et

a-
m

iR
N

A
 

ex
pr

es
si

on
, Δ
em

et
a  

30
 x

 3
0;

 N
/K

 ≈
0.

5 

T
ra

n
sc

ri
pt

om
e 

(m
R

N
A

) 

C
ha

pt
er

s 
2 

- 5
 a

nd
   

6.
1.

1 
- 6

.1
.3

 ; 
[W

IR
TH

1]
, 

[W
IR

TH
3]

, [
H

O
PP

1]
 

E
xp

re
ss

io
n 

m
ic

ro
ar

ra
ys

, 
A

ff
ym

et
ri

x 

E
xp

re
ss

io
n 

le
ve

ls
 o

f 
ge

ne
s 

Pr
ob

e 
in

te
ns

it
ie

s 

H
oo

k 
ca

lib
ra

tio
n 

(a
ls

o 
ot

he
r 

m
et

ho
ds

) 

Lo
g 

di
ff

er
en

ti
al

 
ex

pr
es

si
on

 

Q
ua

nt
ile

 
no

rm
al

iz
at

io
n 

D
iff

er
en

ti
al

 
ex

pr
es

si
on

 r
el

at
iv

e 
to

 
av

er
ag

e 
ov

er
 a

ll 
sa

m
pl

es
 (Δ
e)

 

20
,0

00
 –

 5
0,

00
0 

M
et

a-
ge

ne
 

ex
pr

es
si

on
, Δ
em

et
a  

50
 x

 5
0;

 N
/K

 ≈
10

 

‘O
M

E
’ r

ea
lm

 

C
h

a
p

te
r;

 
re

fe
re

n
ce

s 

T
ec

h
n

ol
og

y
 

F
ea

tu
re

s 

R
a

w
 d

a
ta

 

C
a

li
b

ra
ti

on
 

C
a

li
b

ra
te

d
 

fe
a

tu
re

s 

N
or

m
a

li
za

ti
on

 

In
p

u
t 

d
a

ta
 fo

r 
S

O
M

 t
ra

in
in

g 

N
( 

n
u

m
b

er
 o

f 
fe

a
tu

re
s)

 

In
te

rp
re

ta
ti

on
 o

f 
th

e 
w

ei
g

h
ts

 

T
y

p
ic

al
 S

O
M

 s
iz

e;
 

co
m

p
re

ss
io

n
 (

N
/K

 
ra

ti
o)

 



2 Self-organizing maps 

18 
 

In general, the number of features can range from several thousands to millions, depending on 

the screening technique. Typically, this number largely exceeds the number of conditions 

studied, i.e. N>>M. SOM machine learning aims at reducing the number of relevant features 

by grouping the input data into clusters of appropriate size, and thus to transform the matrix 

of input data into a matrix of meta data with a reduced number of meta profiles K<<N (Figure 

2-1, bottom panel).  

 

Throughout this thesis a microarray gene expression study of a series of human tissues has 

been chosen to serve as example to describe and to illustrate the SOM method, details of the 

preprocessing of the input data and different options of downstream analysis of the mapped 

data. The series of 67 different human tissues6 is well suited as an illustrative example because 

the number of different states provides a sufficiently large and diverse data set possessing a 

relatively complex internal covariance structure [WIRTH1]. Moreover, the samples are well 

classified into distinct tissues and tissue categories allowing the clear assignment of 

expression pattern and validation of analysis results, for example in terms of functional 

enrichment or of similarity relations between the samples.  

 

2.3 Preprocessing of microarray data 

Preprocessing transforms raw data into input data for SOM training. It aims at removing 

biases of the detection technology and batch effects due to sample preparation. Preprocessing 

basically splits into two steps, calibration and normalization. The calibration step rescales the 

data from detection units (probe intensities in the special case of microarray measurements) 

into appropriate ‘molecular’ units which are directly related to the property of interest, e.g. the 

mRNA-transcript concentration or expression degree, in this application. The normalization 

step ensures mutual comparability of the series of samples and relates the calibrated data to 

an appropriate reference level. In general, the preprocessing of different data is specific for 

each technology and makes use of elaborated methods (see Table 1).  

Exemplarily, a microarray data set is considered consisting of the expression levels of N genes 

in M different samples, each measured in Rm (m=1…M) replicates. The number of genes N is 

typically in the ten thousands, the number M of experimental conditions is typically in the 

tens to a few hundreds, and the number of replicates between one and ten. Affymetrix 

GeneChip 3’-expression microarrays provide typically eleven raw probe intensities per gene 

constituting one probe set. Raw probe intensity values of each of the M x Rm chips studied are 

calibrated and summarized into one expression value E per probe set using the hook method 

[56, 57]. The expression values of all arrays are subsequently quantile-normalized [58] (see 

Figure 2-2a for illustration). 

                                                             

6 Gene Expression Omnibus, accession no. GSE7307 : 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307 
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Figure 2-2: Normalization and adjustment of microarray expression values: The different 
distributions of hook-calibrated expression values of the samples studied merge into one 
representative mean distribution after quantile normalization (panel a). Its double peaked shape is 
decomposed into two single peaked distributions due to non-specific and specific hybridizations at 
small and larger expression values, respectively (b). The fraction of the specific signal contributing to 
the total signal density (dashed curve) is used as weighting coefficient of the expression values, e= 
pc(e’)*e’, which reshapes the total signal density (c). Finally, the expression values are normalized 
with respect to the logarithmic mean expression of each gene (d). The large central peak refers to 
invariant genes under all conditions studied. 

 

The obtained distribution of expression values shows typically a bimodal shape (Figure 2-2b): 

It’s left peak at smaller expression values and its right peak values were attributed to non-

specific and specific hybridization, respectively [BINDER 3]. The peak due to non-specific 

hybridization is non-informative with respect to the target genes which are therefore called 

‘absent’ because their expression is smaller than the detection threshold of the method. The 

non-specific peak consequently characterizes the ‘chemical’ background of the measurement.  
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The distribution of expression data of each experimental series is then processed as follows: 

Firstly, the origin of the log-expression axis (log E=0) was positioned to agree with the peak 

position of the non-specific peak of the distribution. Secondly, both peaks are decomposed as 

described previously [BINDER 3] assuming mirror symmetry of the left and right flanks of the 

non-specific peak (Figure 2-2b). Thirdly, we make use of the decomposed distributions to 

estimate the probability that the specific expression of a selected gene is detected. This 

‘present-call’-parameter is set to pc=0 and pc=1 for genes with expression values outside the 

region of overlap of both peaks (see Figure 2-2c). In the range of overlap, the present call is 

calculated as the fraction of the local density of the specific signal contributing to the total 

signal distribution. The resulting value of pc roughly linearly scales between zero and one with 

increasing expression in this range (Figure 2-2c). Fourth, the log-expression of each gene is 

scaled with its present call, i.e., e= pc(e’)*e’ where lower case e’ define the logarithmic 

expression values, e’= log E. The used transformation thus considerably narrows the non-

specific peak at position e’=0 of the expression axis while leaving the specific signal virtually 

unaffected. As a consequence, the variability of the signals of absent called and thus of non-

informative probes is markedly reduced (Figure 2-2c). This transformation enables noise-

reduced conservation of the full set of available genes in the data set used for SOM analysis in 

contrast to data filtering which removes presumably uninformative probes from the data set 

prior to downstream analysis. 

Expression values of replicates of the same tissue were log-averaged and finally, the log-

expression values of each gene were transformed into differential expression values relative to 

the average expression of each particular gene in the experimental series of tissues considered 

(Figure 2-2d),  

 _all tissuese e e∆ = − < >  (2) 

 

Eq. (2) thus defines differential expression in units of the logarithmic fold change, logFC ≡ ∆e.  
 

2.4 The Kohonen model 

The Kohonen model is inspired by our assumptions about the perception of visual information 

in the brain. Accordingly, optical input stimuli are projected onto the neuronal net in the 

cortical area. Then, the connections between the neurons adapt to the visual pattern in a 

learning process [59]. This causes a self-organization of the neuronal network such that it 

better matches the activation pattern. The self-organizing maps, developed by Teuvo Kohonen 

in 1982, mimics this input-driven self-organization [1]. This ‘standard’ SOM consists of a two-

dimensional grid of K nodes, each of which is characterized by a representative weight vector 

of length M, ( )1,... ...,m Mw w w w≡


. In microarray expression analysis the weight vectors have 

the meaning of expression profiles of meta-genes. In general, the meaning of the weight 
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vectors depends on the particular SOM-applications (see Table 1). The K meta-gene profiles 

constitute the meta-data matrix of size K x M as illustrated in bottom panel of Figure 2-1. The 

rows correspond to the meta-gene expression profiles along the M samples studied, and the 

columns represent their expression meta-states. 

The relation between the map space and the data space is illustrated in Figure 2-1: The single 

and meta-gene profile vectors are shown as points in the M-dimensional data and map space, 

respectively. Each point in the data space is assigned to the closest meta-gene profile using the 

minimal Euclidean distance as criterion (see green highlighted subspace in Figure 2-1, top 

right part). Each meta-gene k serves as condensation nucleus for a cluster of nk ‘real’ genes 

with similar expression profiles. Each point in data space ge∆  is mapped to the meta-gene of 

closest distance 
meta
ke∆ , (see Figure 2-1).  

An optimal set of meta-gene profiles captures the range of all individual expression pattern 

observed in the data space. The task to find this set is accomplished by the SOM machine 

learning algorithm. It iteratively adjusts the meta-gene profiles to the data space such that 

they maximally resemble the profiles of the single genes. In general, SOM-training 

encompasses three basal steps, initialization, training and mapping, shortly described in the 

following subsections. 
 

2.4.1 Initialization 
The choice of an appropriate initialization method will affect the quality of the subsequent 

training process in terms of runtime and data space coverage. Several approaches were 

introduced to initialize the meta-gene profiles (i.e. weight vectors) of the SOM. A simple 

approach assigns random values to the meta-gene profiles [60]. This random initialization is 

suboptimal, because the lack of determinism with respect to the obtained map space after 

training potentially leads to differing and/or permutated maps [61]. Moreover, randomly 

initialized maps are prone to topological defects representing metastable states which are 

difficult to overcome and which hamper the optimal coverage of the data space (see Figure 

2-5c below). Random initialization will be applied in this context to illustrate the training 

process (see next subsection and Figure 2-4 and Figure 2-5). 

Another method, linear initialization [60, 62], is more suited for our purposes: Here, the 

initial meta-gene profiles are determined along the linear subspace spanned by the two 

eigenvectors with largest eigenvalues of the input data. This approach is similar to principal 

component analysis (PCA), covering the major variability inherent in the data. This 

initialization technique provides reproducible map topologies for similarly configured training 

runs and essentially overcomes metastability problems and topological defects. Linear 

initialization is therefore well suited to train large scale experimental data. It is used 

throughout this thesis if not stated otherwise. 
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Figure 2-3: Schematic presentation of SOM machine learning: The arrangement of SOM nodes in a 
regular lattice illustrates the mosaic used for visualization. Typically each node (i.e. meta-gene) is 
associated with a cluster of single genes of similar profiles. After initialization, the meta-gene profiles 
point into data space in a suboptimal fashion (panel a). During training, the meta-gene profiles are 
adjusted to more closely fit the single gene profiles. Training effectively minimizes the distances 
between the meta-genes and single genes by iterative adjustment of the meta-gene profiles and 
reassignment of the genes to the meta-genes in each training step as illustrated by the arrows (panel 
b). After training, the meta-gene profiles optimally cover the data space. The map becomes ‘self-
organized’ meaning that adjacent meta-genes in map space are more similar than distant meta-genes 
(panel c).  

 

2.4.2 Training 
SOM training iteratively fits the meta-genes to data space. Figure 2-3 illustrates this process: 

after initialization, the meta-gene profiles point into data space in a suboptimal fashion 

(Figure 2-3a). During training the meta-gene profiles are iteratively optimized to more closely 

fit the single gene profiles (Figure 2-3b).  

In each step, one gene profile Δeg is selected as training vector. Then, the meta-gene profile of 

closest similarity is selected using the Euclidean distance. This ‘winner’ meta-gene meets the 

condition:  

 1..( ) arg min meta
g k K g kBMU e e e=∆ = ∆ − ∆  (3) 

It is also called best matching unit (BMU) with the profile 
meta
BMUe∆ . The meta-gene profiles are 

then adjusted using to the update rule, 

 ( 1) ( ) ( , ) ( )meta meta meta
k k g ke t e t h BMU k e eη∆ + = ∆ + ⋅ ⋅ ∆ − ∆  (4) 

which is an adaptation of Hebb’s learning rule (eq. (1)). Accordingly, for any node k in the 

SOM and given training vector ge∆ , the adjustment of the meta-gene profile 
meta
ke∆  consists of 

three terms:  
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• The leaning rate η scales the incremental changes of the meta-gene vector. It decreases 

with progressive iteration to settle down the adjustment.  
 

• The neighborhood function h(BMU,k) controls the distance-dependence in the SOM 

grid with respect to the BMU (see below). 
 

• The difference term ( )meta
g ke e∆ − ∆  ensures that the meta-gene profiles (and most of 

all the BMU) are adjusted to better resemble the profile of the training gene.  

 

The amount of adaption is scaled by the neighborhood function with respect to the BMU, 

h(BMU,k) ∈ [0,1], for each meta-gene k of the SOM. Accordingly, the BMU serves as the 

central node for adaption, whereas the remaining meta-genes are decreasingly adjusted with 

increasing distance to the BMU in the node grid of the map. Two options are taken into 

account: the so-called bubble and the Gaussian neighborhood. The binary bubble 

neighborhood function equally affects all nodes within a given radius around the BMU [60]. 

In contrast, the Gaussian neighborhood continuously decays with increasing distance with 

respect to the BMU according to a Gaussian bell function. Therefore, it effectively applies to all 

nodes of the SOM [63]. 

Due to the joint adjustment of the BMU and its neighbors the algorithm ensures competition 

between the nodes to be selected as BMU in subsequent steps. It also ensures similarity of 

adjacent meta-gene profiles and thus self-organization of the whole map. 

The adaption to the gene profile selected is iteratively repeated. Convergence of meta-gene 

profiles with progressive iteration is achieved by their improved fit to the data space. In 

addition, both learning rate η and the range of the neighborhood are progressively decreased 

to avoid oscillations or instabilities (see [60] for detailed survey). One cycle of iteration steps, 

which encompasses each of the N genes, is called epoch. After a defined number of epochs the 

training process ends. The final SOM with trained meta-gene profiles is assumed to cover the 

data space in an organized and close fashion (Figure 2-3c).  

 

Figure 2-4 illustrates the progression of a typical SOM-training in two-dimensional data and 

map space: The blue dots are synthetic input data generated such that they can be divided into 

six distinct clusters (200 profiles of the type (x1, x2)). The open circles represent the 100 

meta-data of a 10x10 SOM. Adjacent nodes in the rectangular SOM-grid are connected by grey 

lines. After random initialization of the meta-data the distribution of blue and grey dots in the 

plot and thus the input- and meta-profiles largely disagree. In the course of training the 

positions of the meta-data progressively adjust to the input data with increasing number of 

training-epochs. Moreover, also the network of meta-profiles defined by the nearest neighbors 

of each SOM-node progressively disentangles and tends to adopt an ordered topology where 

similar meta-profiles are neighbors (and thus connected by lines). Finally, after 3000 epochs 
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Figure 2-4: Adjustment of meta-data (open circles) to input data (blue dots) during SOM training. 
The synthetic input data arrange into six clusters. After random initialization the meta-data 
progressively adjust to this cluster structure with increasing number of iteration-epochs. Moreover, 
the network defined by the four nearest neighbors of each meta-data ‘disentangle’ with progressive 
training and finally adopts an ordered topology (see grey lines). The icons in the top left corner of the 
plots indicate the rectangular grid topology and short-range bubble neighborhood. 

 

the meta-data arranged into a grid-like topology which well matches the cluster structure of 
the input data.  

Figure 2-5 shows the progress of training after 1000 and 3000 epochs to illustrate the 

influence of the grid topology and of the neighborhood function. The SOMs share the same 

size, learning rate and neighborhood radius parameters as the example in Figure 2-4. 

However, Gaussian (instead of bubble) neighborhood and hexagonal (instead of rectangular) 

grid topology are applied as indicated by the icons in the top left corner of each plot. The 

results can be summarized as followed (compare Figure 2-4 and Figure 2-5): 
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• The longer-range Gaussian neighborhood ensures the ‘soft’ and more ordered 

adjustment of meta- to the input data than the short-range bubble neighborhood 

(compare Figure 2-5a/b and Figure 2-4 at 1000 epochs). Moreover, the Gaussian 

neighborhood is advantageous because it accelerates convergence of the training 

algorithm [55] and it is less prone to overfitting.  
 

• Rectangular and hexagonal grid topologies provide almost similar results (see Figure 

2-5a and b). The hexagonal grid topology is reported to produce more homogeneous 

meta-data [10], whereas rectangular grids require slightly less computing and are 

simpler to visualize. Both topologies are therefore regarded as equivalent options. 
 

• The SOM configuration shown in Figure 2-5c combines random initialization, 

hexagonal grid topology and bubble neighborhood. This setting is prone to topological 

defects as indicated by the orange lines in Figure 2-5c [55, 63] reflecting metastability 

problems which are found in more than 50% of repeated independent training runs.  

In our case studies below, rectangular grid topology and a Gaussian neighborhood function 

were applied as standard. This configuration promotes fast and stable training, and an 

acceptable trade-off between non-linear but still not overfitted representation of the input 

data. 

 

2.4.3 Final mapping 
After training, each of the single gene profiles is associated to the meta-gene profile of 

minimal Euclidean distance (BMU) giving rise to the segmentation of data space into clusters 

of genes mapped to each meta-gene (see Figure 2-3c for illustration). These clusters collect 

genes with highly similar profiles. Adjacent clusters contain genes with more similar profiles 

than distant ones. 

The mapping of each gene to one specific meta-gene (referring to one node in the SOM grid) 

downscales the data from the M-dimensions of the transformed data into a two-dimensional 

coordinate system which however preserves the multivariate character of the input data and 

thus allows their direct visualization in a simple x-y-plot (see below). 
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Figure 2-5: Adjustment of meta-data (open circles) to input data (blue dots) using the same data as in 
Figure 2-4 but different grid topologies and/or neighborhood functions as indicated by the icons in 
the top left corners of the plots): a) topology/neighborhood ≙ rectangular/Gaussian; b) 
hexagonal/Gaussian; c) hexagonal/bubble. The orange lines in panel c indicate a snarled, ‘knot-like’ 
topological defect in the network of meta-data.  
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2.4.4 Summary 
The SOM approach provides a powerful combination of clustering, dimension reduction and 

multidimensional scaling: Mapping of the genes to the meta-genes partitions data space into 

clusters of genes with similar expression profiles. The meta-gene profile thereby serves as a 

representative for the respective cluster. These meta-profiles are well suited to be used in 

downstream analyses instead of utilizing the original data because they potentially provide a 

higher-level of information with reduced dimension, subsuming the profiles of a set of genes 

[WIRTH1]. Throughout this thesis, such clusters will appear in different contexts and will be 

referred to as meta-genes, meta-samples, meta-spectra, meta-genesets etc., depending on the 

particular application.  

 

2.5 Adjusting SOM size and storage capacity 

The primary feature of the SOM is extracting and storing information from the training data. 

The size of the SOM, i.e. the number of nodes and thus number of representative meta-genes, 

is the limiting parameter for the granularity of this memory. Adjusting this size is 

consequently an optimization task to obtain a sufficiently resolved map with available 

computational resources. A too small SOM is unable to capture the diversity of the data, e.g., 

to distinguish between different expression modes. On the other hand, a too big SOM requires 

excessive computational resources in terms of CPU-runtime and storage capacity. 

The number of distinguishable expression modes inherent in the data set is the crucial issue 

which governs the required size of the SOM. Preferably, the SOM is capable to locate the 

major modes in distinct regions of the map to enable their identification and mutual 

separation. Discretized artificial data sets are generated to deduce an approximate rule 

relating SOM-size to its resolution, or in other words, its ‘information-storage’ capacity. 

Particularly, we used profiles of binary or ternary data, where the former data can adopt the 

values 0 and 1 whereas the latter data divide into three possible states -1, 0 and 1. The two-

state model applies, for example, to data characterizing the presence and absence of gene 

expression and the three state model to discretized data describing under-, basal (i.e. 

unchanged) and overexpression levels with respect to a reference. 

These binary and ternary artificial data sets are generated for varying number of states M 

defining the length of the profile vectors. The maximum number of different modes, which can 

be generated in such data sets, is 2M and 3M, respectively. Table 2 lists the number of distinct 

expression modes for realizations of the binary and ternary approaches with M=2..6 as 

examples. Then, SOMs7 of different sizes were trained using each of these data sets to find the 

minimal dimension of the node grid which is capable to separate all modes inherent in the 

 

                                                             

7 Setup: linear initialization, Gaussian neighborhood, number of epochs: 1,000 
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Table 2: Characteristics and SOM size of binary and ternary artificial profiles. No minimal SOMs 
were determined for ternary data and M>3 due to large number of modes. 

 Binary Ternary 

M (states) Number of modes SOM size Number of modes SOM size 

2 4  5x5 9 5x5 

3 8 8x8 27 18x18 

4 16 9x9 81 50x50 

5 32 18x18 243 --- 

6 64 40x40 729 --- 

 

respective input profiles (see Figure 2-6). These modes are required to map to individual SOM 

nodes well separated by ‘empty’ nodes, i.e. meta-profiles without associated single profiles.  

 

Figure 2-6a shows an 8x8 SOM trained with 8 expression modes produced by M=3 binary 

states. As challenged, these 8 modes occupy 8 nodes equidistantly distributed along the edges 

of the map. This pattern is characteristic for self organization and becomes even more clearly 

visible for larger numbers of modes (Figure 2-6b).  The SOMs trained using ternary data show 

similar results (Figure 2-6c and d). Figure 2-6a and c assigns the individual meta-profiles for 

binary (8 modes, M=3) and ternary (9 modes, M=2) artificial data to the respective tiles in the 

mosaic map, respectively. The eight binary modes virtually arrange along a circle according to 

the mutual similarities of their profiles: The Hamming distance 8 between all neighboring 

profiles equals 1. For example, meta-profiles ‘A’ (“0 0 1”, see also Table 3 for assignment of 

modules and labels) and ‘B’ (“1 0 1”) solely differ in the first position of their profiles. In other 

words, passing from one mode to the next one changes exactly one value in their profiles. 

 

One of the 9 ternary modes mapped into the SOM shown in Figure 2-6c occupies the central 

position. It represents the invariant “0 0”-profile (label ‘H’). Such neutral modes usually form 

an invariant center of the map. The other modes containing at least one non-zero value in 

their profiles group around the center in a symmetric fashion where increasing profiles are 

found above the diagonal line and decreasing ones below this line. This symmetry reflects the 

fact that the SOM tends to arrange mirror-symmetric profiles into opposite regions of the 

map.  

 

                                                             

8 number of positions at which the values in the considered meta-gene profiles are different 
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Figure 2-6: SOM mapping of multimodal expression data:  Blue and white tiles in the maps indicate 
occupied and empty meta-genes, respectively. Both binary (panels a and b) and ternary (panels c and 
d) profiles are mapped to the grid. The profiles of the respective modes are shown in panel a and c 
(see also Table 3). 

 

In summary, SOM learning systematically arranges expression modes according to the 

following principles: 

• Similar profiles are mapped in close position, more different profiles are mapped more 

distantly. 
 

• Neutral, non-differential and invariant profiles tend to occupy the center of the map. 
 

• Antagonistic modes (i.e. strongly anti-correlated ones) tend to occupy mirror symmetric 

positions in opposite regions of the SOM whereas orthogonal modes (i.e. mutually 

independent ones) tend to divide the SOM into different segments each referring to one 

of the independent modes. 
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Table 3: Assignment of modes and labels given in Figure 2-6a and c for binary and ternary data sets, 
respectively. 

Binary, M=3 states Ternary, M = 2 states 

Module profile Label Module profile Label 

0 0 0 H -1 -1 G 

0 0 1 A -1  0 I 

0 1 0 G -1  1 A 

0 1 1 F  0 -1 F 

1 0 0 C  0  0 H 

1 0 1 B  0  1 B 

1 1 0 D  1 -1 E 

1 1 1 E  1  0 D 

  1  1 C 

 

The SOM mapping of artificial data has shown that the number of resolved modes roughly 

scales with the SOM size (see Table 2). Particularly for the binary profiles it was found that 

increasing the number of states M by one implies to double both the number of modes and the 

minimal SOM size. For the ternary profiles each additional state requires to triple the minimal 

SOM size.  

Note that the structure of our synthetic data is relatively simple and typically not comparable 

with real-world examples: The human tissue data set analyzed below consists of M=67 

samples. It roughly refers to about 1020 binary, or 1032 ternary expression modules. However, 

the diversity of such continuous expression profiles is potentially much larger. On the other 

hand, not all possible modes are present in the data owing to correlations between the data. 

Therefore a basic question addressed by our SOM analysis is about the effective number of 

distinct modes inherent in real data sets and the characterization of their interrelations. 

 

2.6 Visual presentation of SOM data 

2.6.1 Challenges 
The SOM algorithm captures expression modules inherent in the data by sophisticated 

sampling of the input data space resulting in transformed data given in terms of the meta-

gene profiles. Multivariate and multidimensional information is preserved in the meta-data 

after dimension reduction. This chapter demonstrates how to visualize the meta-data such 

that most relevant expression modules can be extracted in a simple and intuitive fashion. 

Established approaches, such as the ‘popular’ two-way hierarchical clustering heatmaps (e.g. 

conditions-versus-genes), are well suited to visualize relatively simple covariance structures in 

the data as illustrated in Figure 2-7a: This first example refers to four conditions (A-D) where 
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Figure 2-7: Standard two-way cluster heatmap visualization (panels a and b) and the respective SOM 
portraits (panels c and d) of an artificial data set, which contains several distinct expression clusters. 
Evaluation of the heatmap turns into a puzzling task compared with the SOM portraits for the second 
example. The SOM portraits promote identification of similar patters (‘B’ and ‘G’), for example. 

 

each is characterized by a unique cluster of overexpressed and a unique cluster of 

underexpressed genes (see red and yellow squares along the two diagonal lines, respectively). 

The second situation presented in Figure 2-7b is much more puzzling: It is virtually impossible 

to extract general relations between the 9 samples and/or about the 16 clusters of co-regulated 

genes using the heatmap presentation. This simple example illustrates that heatmaps are 

impractical when utilized to present high-dimensional data with complex intrinsic covariance 

structures. These problems are related to the ‘chessboard’-like texture of the heatmap which 

becomes confusing for visual perception if the number of clusters exceeds a certain number. 

Moreover, heatmap presentations are virtually univariate, i.e. multivariate covariance 

structures become fragmented into ‘univariate pieces’.  
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Contrary, the expression meta-states generated by the SOMs can be visualized in an 

alternative fashion by transforming them into mosaic portraits of each sample showing a 

blurry, color texture as illustrated in Figure 2-7c and d. The ‘simple’ example in Figure 2-7c 

transforms into four sample-specific portraits each showing one red and one blue spot which 

contain the genes specifically over- and underexpressed in the respective sample. Hence, in 

this simple case the well-separated clusters in the heatmap transform into well-separated 

spots in the SOM portraits. Both visualizations, heatmap and SOM, are virtually equivalent in 

this respect. 

The situation however is different for the second example. The artificial data contains various 

distinct expression modules, highly expressed in one or several samples. These clusters 

emerge as red squares in the heatmap (Figure 2-7a) and as red spots the sample portraits 

(Figure 2-7b). The spot-like texture of the individual SOM portraits enables much better 

identification of analogies and differences between the samples than the ‘chessboard’-pattern 

of the heatmap. For example, the SOM clearly and immediately reveal that samples ‘B’ and ‘G’ 

are almost identical, slightly vary compared with sample ‘I’ and completely differ compared 

with, e.g., ‘E’, ‘C’ and ‘A’. Modules of high expression in multiple samples emerge as common 

red spots shared by the respective sample portraits, for example the spot in bottom left corner 

in samples ‘F’ and ‘I’ (Figure 2-7b). Sample specific clusters in turn appear as unique spots 

evident in the respective portrait only. The ‘spot-pattern-like’ visualization of the expression 

meta-states is consequently well suited to display the modularity of the data. Contrary to 

univariate heatmaps, the multivariate covariance structure of the samples translates into 

shared spots allowing evaluation of the relations between the samples.  

Additionally, SOM portraits combine sample- and gene-centered perspectives: Firstly, the 

portraits represent the expression state of each sample and thus provide a visual entity for 

each of the samples. Secondly, the SOM portraits comprise information of all meta-genes, 

which are in turn representative for the complete set of genes mapped to the SOM. In this 

sense, SOM portraits allow assessment of individual samples with high resolution that allows 

identification of specific features essential for differential expression analysis. 

 

2.6.2 SOM portraits and profiles 
SOM portraits provide the primary way to display the expression (meta-) states of the samples 

with individual resolution. These portraits directly transform the columns of the meta-data 

matrix into colored mosaic pictures (see Figure 2-8) [37]. The K meta-genes (i.e. SOM nodes) 

are arranged in a two-dimensional grid with x and y tiles  per dimension. Square SOMs with 

K=x⋅x are frequently used, without loss of generality. Thus M sample-specific SOM portraits 

are generated by color-coding each tile according to the expression value of the meta-gene 

assigned to this tile in the respective sample m, 1, , ... meta meta
m K me e∆ ∆  (k=1…K).  
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Figure 2-8: Visualization of the meta data matrix: Meta-gene expression profiles (rows) are shown as 
barplots. Expression meta-states of the samples (columns) are transformed into mosaic portraits by 
arrangement into a grid according to the SOM’s topology (here K=3x3 nodes with rectangular layout) 
and application of a suited color code. 

 

The color gradient of the map was chosen to properly visualize over- or underexpression of the 

meta-genes: Maroon codes the highest level of gene expression; red, yellow and green indicate 

intermediate levels and blue corresponds to the lowest level of gene expression. Owing to 

similarity of adjacent meta-gene profiles, the color patterns emerge as smooth textures rather 

than noisy pixels. These coherent mosaic patterns are characteristic for each sample and 

represent a fingerprint of the transcriptional activity in the corresponding expression meta-

state [5]. Individual expression modules emerge as spots of similar colored tiles (see Figure 

2-7), which correspond to clusters of co-regulated genes. Note that the assignment of genes to 

meta-genes and of meta-genes to mosaic tiles is identical in all sample portraits. So they can 

be directly compared to each other allowing immediate identification of unique or ubiquitous 

expression modules. 
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The complementary meta-gene profiles are derived from the rows of the meta-data as 

indicated in Figure 2-8. The meta-gene profiles are representatives of clusters of co-regulated 

genes. They can be interpreted as expression modules inherent in the data set. The number of 

meta-genes is markedly smaller than the number of single genes. The number of relevant 

meta-gene profiles will be further reduced by collecting them into clusters of similar ones 

using different criteria (see below). 

 

2.6.3 Expression portraits of human tissues 
To illustrate SOM visualization we generated SOM portraits and meta-gene profiles of the 

expression landscapes of 67 human tissue samples using gene expression microarray data. The 

samples are grouped into 10 different tissue categories in accordance with common 

classifications (e.g. Hornshoj et al. [64]). After preprocessing as described above, a SOM was 

trained with a resolution of K=60x60=3,600 meta-genes. The created SOM portraits are 

shown in Figure 2-9. Each tile of the portrait mosaics refers to one of the 3,600 meta-genes 

characterizing the particular expression level in this tissue. The number of co-regulated single 

genes per meta-gene typically varies from meta-gene to meta-gene (see population map 

below).  

Most of the samples within one tissue category show similar SOM portraits which are 

characterized by typical red and blue spots at specific positions due to over- and 

underexpressed meta-genes as the most evident features. For example, the portraits of 

adipose tissues (numbered 1-3, first row in Figure 2-9) might be identified by the maroon-red 

overexpression spot in the bottom right corner and those of nervous tissues (numbers 45-67, 

last three rows) by a coherent spot in the top left corner. In general, SOM profiles within a 

tissue category reveal similar pattern, whereas different tissue types show consistently 

different expression patterns. Such differences can be detected, for example, by simple visual 

inspection of the mosaic pattern of nervous, immune system and endocrine type tissues. 

Hence, comparison of the SOM-textures allows the straightforward grouping of the tissues 

into different categories based on differences of their expression patterns. 
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Figure 2-9: SOM portraits of the tissue transcriptome data set. The tissues are arranged according to 
tissue categories as indicated by the headlines, whose colors are used throughout this thesis to 
represent the tissue categories. 
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Figure 2-10: Specific spots in selected sample portraits: The SOM-pattern of tongue (panel a) shows 
two spots of overexpressed meta-genes. One of them is characteristic for mucosa type tissues (b; red 
circles) and the other one is found in muscle tissues (c, yellow circles). Pituitary gland (d) shows a 
specific spot for this particular tissue and one which is characteristic for nervous system tissues (e 
and f, blue circles) as well. 

Moreover, some tissues combine the characteristic spot pattern of different tissue categories 

(see Figure 2-10). For example, the sample portrait of tongue (panel a) shows the typical 

overexpression spot evident in the portraits of other epithelial tissues (e.g. oral mucosa, 

panel b) but also the spot typically found in muscle tissues (e.g. skeletal muscle, panel c). The 

physiology of tongue tissue as a ‘muscle covered by mucosa’ is thus reflected in the SOM 

portraits. Another example is pituitary gland (panel d), an endocrine gland located near 

hypothalamus: Its portrait shows the overexpressed spot found also in other nervous tissues 

(e.g. cerebral cortex or the adjacent hypothalamus, panel d and e, respectively) in the top left 

corner, as well as a unique spot in the bottom right area not found in the portrait of any other 

tissue. This spot obviously collects genes which are specifically overexpressed in pituitary 

gland (see below), whereas the first spot represents a common signature of nervous system 

samples. Some SOM portraits represent outliers in their tissue category: For example, small 

intestine (no. 12), classified as digestive tissue, shows the overrepresentation pattern of 

muscle type tissues. This result does not surprise because small intestine consists of a double 

layer of smooth muscle. Myometrium (no. 33), the smooth muscle of the uterus, is classified as 

muscle. Its SOM portrait however closely resembles that of endometrium (no. 26) and also of 

ovary (no. 27), reflecting the common function of these three organs in female reproduction. 
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Figure 2-11: Three-dimensional perspective plots characterize the expression landscapes of selected 
tissues. The four tissue samples show notably flat ‘plain-like’ (kidney cortex, panel a), undulating 
‘hilly’ (small intestine, b) and smoothly sloping (B-cells, c, and accumbens, d) meta-gene landscapes, 
respectively. 

The SOM portraits visualize three-dimensional information where the expression level of the 

meta-genes is appropriately color coded. In special situations, the three dimensional plot of 

the expression values further improves visual perception because it explicitly presents the 

expression landscape of a sample in terms of ‘mountains’, ‘valleys’ and ‘plains’.  

For example, the meta-gene landscape of kidney cortex (Figure 2-11a) is, except for the 

overexpression peak in top right region, remarkably flat, which indicates basal expression of 

most of the genes. Contrary small intestine (Figure 2-11b) features a multivariate landscape 

with diverse ‘hills’ (regions of overexpressed meta-genes) and ‘valleys’ (underexpressed meta-

genes). This reflects multiple modules of (meta-)genes which are over- and underexpressed in 

the respective samples in concerted fashion. Finally, B-cell and nucleus accumbens samples 
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Figure 2-12: Meta-gene profiles derived from the human tissue transcriptome SOM. The position of 
the five meta-genes in the SOM grid is indicated in the top left overexpression map (see chapter 2.7.1 
for details). The bars are arranged and colored in accordance to the different tissue categories (see 
Figure 2-9). 

 

(Figure 2-11c and d, respectively), chosen exemplarily for all immune respectively nervous 

system samples, show a steady slope along the diagonal from strong overexpression to strong 

underexpression. Two major groups of meta-genes overexpressed in nervous system (located 

in the top left corner) and underexpressed in immune system (bottom right corner, see 

immune system portraits in Figure 2-9) and vice versa form an antagonistic couple of 

expression modules. This example also confirms the previous finding that the SOM training 

algorithm tends to distribute meta-genes with anti-correlated expression profiles into opposite 

corners of the map. 

 

Complementary to the SOM portraits which characterize the expression state of all meta-

genes in one sample, we generated expression profiles of selected meta-genes, each 

characterizing the expression of one meta-gene in all samples studied. Figure 2-12 shows the 

profiles of five meta-genes selected from different regions in the SOM. The profiles are 

assigned in the small map in the figure by lower case letters a – e. For example, the profile of 

meta-gene (a) located in top left corner of the SOM clearly exhibits virtually binary activity of 

the associated genes which are strongly upregulated in nervous tissues (gray bars) and 

downregulated in almost all remaining tissues. Contrary meta-gene (b), located in top right 

corner of the SOM, is overexpressed in a variety of samples assigned to various tissue 

categories, and underexpressed in immune and nervous tissue samples. Profiles (c), (d) and 

(e) refer to genes overexpressed in endocrine, muscle and immune system tissues, 
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respectively. The meta-gene profile plots therefore give insight to the diversity of expression 

modules captured in the meta-gene clusters.  

 

In summary, the SOM portraits (given either as 2D-projections or 3D-perspective plots) 

characterize the expression landscapes of the samples in terms of intuitive color-textures, 

whereas the meta-gene profiles illustrate the expression of selected modules in the series of 

samples studied. 

 

2.6.4 Adjusting contrast in SOM portraits 
The standard SOM portraits represent differential expression in units of the logarithmic fold 

change of the meta-genes, log FC = ∆ek,mmeta. The observed spots thus reflect regions of over- 

and underexpression in the respective meta-gene profiles in logarithmic scale (Figure 2-13a). 

Alternative scales, such as the double logarithmic log log-FC and the weighted average 

difference (WAD) score, are applied to vary the contrast of the texture of the SOM portraits in 

order to highlight different aspects of the expression meta-states: 

The WAD-score is calculated for each tile k and sample m according to 
 

         

( )
( ) ( )

meta meta
k,m k,mmeta

k,m k,m k,m k,m meta meta
k,m k,m

e min e
WAD w e with w

max e min e

∆ − ∆
= ⋅∆ =

∆ − ∆
        (5) 

 

The WAD score is a fold change (FC)-based score which ‘amplifies’ large expression values 

implementing the observation that ‘strong signals are better signals’ [65, 66]. Equation (5) 

adapts the WAD score for meta-gene expression values (compare to WAD score for single 

genes in chapter 5.2.1). The visualization of the meta-gene WAD-score thus highlights peaks 

due to overexpression, leading to sharply defined spots with high contrast as shown in Figure 

2-13b.  

The log log-FC as third option rescales the original log-FC into double-logarithmic units giving 

rise to a wider distribution in the positive and negative expression ranges, respectively: 

                                      
( ), , ,loglog-FC ( ) log 1meta meta

k m k m k msign e e= ∆ ⋅ + ∆
 (6) 

This strongly enhances the discrimination between up- and downregulated meta-genes 

(Figure 2-13c). The log log-FC scale thus exhibits structured blue and red areas of 

characteristic shape which clearly emphasizes the borderline between the regions of over- and 

underexpression. These details are not or only hardly detectable in the log-FC and WAD 

scales. In contrast, the latter scales express spot-like patterns, which are mostly characteristic 

for the samples.  

The considered options of contrast variation enable accentuation of different ranges of 

differential meta-gene expression with focus on strong till moderate differential expression 
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Figure 2-13: Contrast variation of the SOM portraits using different expression scores in selected 
tissues: Differential meta-gene expression relative to the mean expression in all samples studied in 
logarithmic (panel a, Eq. (16)) and double-logarithmic scale (c, Eq. (6)) and using the WAD-score (b, 
Eq. (5)). The right part of the figure shows the frequency distribution of the scores in logarithmic 
scale. 

 

(log-FC), very strong overexpression (WAD) or weak till moderate differential expression (log 

log-FC). For example, the three adipose tissues show very similar portraits with essentially the 

same spot of overexpression in the log-FC and WAD scales, whereas the log log-FC map 

reveals subtle differences between the underexpressed blue regions of ‘adipose omental’ tissue 

and the other types of adipose tissues.  
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2.6.5 Supporting maps 
We define the following supporting maps to provide additional information about the clusters 

defined by each meta-gene and the associated real genes. These supporting maps use the same 

resolution of the two-dimensional mosaic grid as the SOM portraits and appropriate color-

scales for direct comparison. 

 

Population map 

The SOM-algorithm maps the expression profiles of the N input genes to a number of K<<N 

meta-genes. Each meta-gene thus serves as a sort of condensation nucleus for a cluster of nk 

co-regulated ‘real’ genes. As each gene is mapped to one and only one meta-gene, the sum of 
all nk amounts to N: 

1..
N k

k K
n

=

= ∑ .  

The population map (Figure 2-14a) plots the number of single genes per meta-gene in 

logarithmic scale, log nk, into the mosaic grid according to the SOM portraits. 

 

Variance map 

The variance map (Figure 2-14b) illustrates the variability of the expression profile of each 

meta-gene in the samples studied,  

( )
k

M 2meta
k,m

m 1

1var e
M 1 =

= ∆
− ∑           (7) 

This map enables identification of neutral or non-informative (i.e. invariant) meta-genes in 

the SOM portraits, as well as informative ones representing distinct expression modules. 

 

Covariance map 

The covariance map (Figure 2-14c) visualizes the degree of concordance between the 

expression profiles of the single genes and those of the respective meta-genes in each tile of 

the mosaic portrait in terms of the cross correlation coefficient, 
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where , ,k m ie∆  denotes the expression value of gene i mapped to meta-gene k under condition 

m. The measure rk consequently reflects the average correlation of gene profiles to the 

associated meta-gene profile for each meta-gene (i.e. portrait tile). 
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Figure 2-14: Supporting maps characterizing the meta-genes extracted from the human tissue data 
set: Population (panel a), variance (b, Eq.(7)), covariance (c, Eq.(8)), deviation (d, Eq.(9)), entropy 
(e, Eq.(11)) and significance (f, Eq.(12)) maps.  
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Deviation map 

The deviation map (Figure 2-14d) visualizes the degree of concordance between the expression 

profiles of the single genes in each meta-gene cluster using the quadratic mean of the 

Euclidean distances between each meta-gene and the respective single gene profiles: 
 

( )
kn M 22 2 meta

k k,i k,i k,m,i k,m
i 1 m 1k

1 1d d with d e e
n M 1= =

= = ∆ − ∆
−∑ ∑      (9) 

 

The ‘deviation’, meta-gene variance and covariance are linked according to ref. [WIRTH1]: 

             k

2
k

k
dr 1

2 var
= −                                  (10) 

Eq. (10) shows that correlation coefficients near unity are obtained for close similarity in 

terms of the deviation (dk0) and/or if the meta-gene variance largely exceeds the squared 

Euclidean distance, 
k

2
kd var . Note that the correlation coefficient vanishes for 

k

2
kd 2 var≈ . 

 

Entropy map 

The entropy map (Figure 2-14e) plots the standard entropy of each meta-gene profile,  

3

, 2 ,
1

logk k i k i
i

h ρ ρ
=

= − ⋅∑  (11) 

where ρk,i is the relative frequency of the three levels of gene expression: overexpression, 

underexpression and non-differential expression of meta-gene k. Hence meta-genes of a 

sample are assigned to one of the three levels by application of a defined threshold (here the 

25- and 75-percentile of all meta-gene expression values was used). hk is restricted to values in 

the interval [0, log2 3]. An entropy value of 0 represents a perfectly ‘ordered’ state, where all 

meta-genes are assigned to only one of the expression levels. Contrary, maximum value of log2 

3≈1.58 is reached when meta-genes uniformly distribute over the three levels. 

 

Significance map 

The shrinkage t-score links differential gene expression with variance estimates and 

transforms into a significance measure ,g mp  for each gene g in sample m (see chapter 5.2). A 

simple approach of combining significance information for meta-genes is to calculate the 

mean score log-averaged over the meta-gene members and subsequently averaged over the 

samples: 

                                                
,
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The significance map (Figure 2-14f) plots these values for each meta-gene k into the mosaic 

grid, allowing easy identification of meta-genes that gather real genes with significant 

differential expression 

 

The population, variance, covariance and deviation maps shown in Figure 2-14 provide 

information about special properties of the human tissue transcriptome SOM. The population 

map reveals that the single genes inhomogeneously distribute among the tiles of the mosaic 

grid. The tile of maximum population (nk=308, see the maroon tile slightly left from the centre 

of the map in Figure 2-14a) refers to genes with virtually invariant, mostly absent expression 

in all tissues studied. These invariant genes give rise to the dark blue spot in the central area of 

the variance map (Figure 2-14b). Against this, spots of highly variant and thus information 

containing meta-genes are mostly located along the edges of the SOM grid. 

The covariance and concordance maps show a similar but more noisy pattern than the 

variance map due to the fact that they explicitly process single gene profiles (Figure 2-14c and 

d, respectively). As the three measures variance, covariance and Euclidean distance are related 

properties (see Eq.(10)), the three maps confirm the concerted changes of real genes together 

with that of the associated meta-genes in each tile (compare Figure 2-14 b and c). The 

deviation map more accentuates meta-genes of low variance (blue areas in Figure 2-14d). 

Recall that the SOM algorithm uses the Euclidean distance between single and meta-gene 

profiles as similarity criterion to partition the single genes over the tiles of the mosaic. Close 

similarity in distance scale transforms into correlation coefficients near unity in the areas of 

relatively large meta-gene variance as predicted by Eq. (10) (see red areas in Figure 2-14 b and 

c). Contrarily, areas of relatively weak correlations largely agree with the regions of low meta-

gene variance (see blue and green areas in Figure 2-14 b and c) which, in turn, lack marked 

over- and overexpression spots. 

The entropy map (Figure 2-14e) reveals minimal entropy in the central part of the SOM, 

allocated by invariant meta-genes as shown by the variance map. The outer regions of the map 

with high variant meta-genes contrary imply higher entropy values. Notably, meta-genes of 

maximum entropy can be identified in the intermediate regions due to balanced over-, basal- 

and underexpression of the respective meta-genes across the tissues studied.  

The significance map (Figure 2-14f) virtually resembles the variance map: meta-genes of high 

variance mainly show also high significance, and vice versa. Comparison of variance, entropy 

and significance maps reveals close similarities (compare Figure 2-14 b, e and f) because those 

measures are direct functions of the differential meta-gene expression (see Eq.(7), Eq.(11) and 

Eq.(19) below). On the other hand, the entropy map shows a more diverse substructure which 

allows identification of highly changing meta-genes due to the reasons discussed above. 
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2.6.6 Supporting profiles 
Variance and entropy profiles 

In order to estimate global properties of the expression landscape of every phenotype we 

calculated the variance of meta-gene expression values in each SOM portrait, 
2

,var ( ) / ( 1)m k m m
k

e e K= ∆ − < ∆ > −∑ , and its entropy, , 2 ,logm k m k m
k

h ρ ρ= − ⋅∑  where 

,k mρ  is the relative frequency of expression as described above for the supporting maps. Here, 

the relative frequency refers to the expression state m and not to the expression profile k. This 

global entropy thus characterizes the information content of each portrait. The variance 

estimates the variability of the meta-gene expression and the entropy its information content, 

or in other words, its degree of ordering. Both, the variance and the entropy assess the 

expression landscape of phenotype m as seen by the SOM portrait and hence provide sample-

centered information, complementary to tile-based supporting maps providing the respective 

metagene-centered information.  

 

Supporting variability and entropy profiles of the expression states of human tissues are 

shown in the barplots in Figure 2-15a and b. The variability profile in Figure 2-15a shows the 

overall variance of the expression meta-state within each tissue sample. Interestingly, 

pancreas (endocrine tissues; red bar), liver (homeostasis; dark yellow), testis (sexual 

reproduction; pink) and T- and B-cells (immune system; blue) reveal large variability of the 

meta-gene states within their tissue categories. Recently, similar variability measures revealed 

likewise transitions between stages of organogenesis [44]. The meta-state entropy profile in 

Figure 2-15b also embraces such transitions from a complementary point of view. Generally, 

samples exhibit entropy values in the upper range of the potential interval [0, 1.58], indicating 

balanced distribution of meta-gene expressions to the three levels (see above). Prominent 

outliers such as pituitary gland (endocrine tissues; red bar), ovary (sexual reproduction; pink) 

or subthalamic nucleus (nervous system; gray) exhibit exceedingly high fraction of non-

differentially expressed meta-genes. The entropy profile thus highlights information-less 

samples in this application, providing complementary information to the respective variance 

profiles. 
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Figure 2-15: Supporting profiles characterizing the expression meta-states of the human tissue 
samples and the SOM portraits: Panel (a) shows the variability of expression meta-states of the 
samples, (b) the corresponding entropy, (c) the number of overexpression spots, (d) the fraction of 
overexpressed meta-genes and (e) the shape parameter of the spots. The different colors of the bars 
indicate the different tissue categories. 
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Topological measures profiles 

Three additional supporting profiles are generated to get an overview about basic topological 

properties of the SOM portraits. Firstly, the number of overexpression spots observed in a 

sample portrait is determined using the 98-percentile criterion as described below. The 

barplot in Figure 2-15c gives this spot number for each sample studied. Secondly, the relative 

number of meta-genes included in all spots observed in one portrait, 
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describes the relative amount of overexpression in each expression meta-state. It is shown in 

Figure 2-15d for all samples. Thirdly, the shape parameter, 
 

2( )

over
m

m border
m

Kshape
K

=      (14) 

 

characterizes the fuzziness of the overexpression spots observed (Figure 2-15e). Here, 
border
mK  

denotes the number of tiles along the spot borderlines with at minimum one adjacent tile 

outside and one tile inside the spot. 
over
mK  and 

border
mK  thus estimate the area occupied by the 

spots and their limiting contour length, respectively. The shape parameter hence relates the 

actual area of the spots to an idealized area which is defined by the square of their contour 

length. For a single spot the shape-value decreases if its shape progressively deviates from a 

circular one. For n non-overlapping spots of identical area and border length, the shape 

parameter inversely scales with the number of spots, i.e. ~1/n. In general, the shape-value 

decreases if the number of spots increases [HOPP1]. 

 

Figure 2-15c shows the number of overexpressed spots in the tissue SOM portraits, revealing 

most frequent occurrence of solitary spots. Also a larger number of spots in digestive tissue 

portraits (see brown bars in Figure 2-15c) is revealed, originating from sets of genes also 

overexpressed in other tissue categories such as muscle and immune system. The fractions of 

overexpressed meta-genes (Figure 2-15d) show moderate variability, whereby immune system 

samples (different T-cell samples, bone marrow; blue bars) and two epithelium samples (lung, 

endometrium; cyan) strongly surpass the remaining samples. Also the shape coefficient of 

overexpression spots (Figure 2-15d) shows intermediate values for most of the samples, with 

few outliers which feature remarkably low (e.g. lymphocyte samples; see blue bars) or high 

values (pituitary gland and dorsal root ganglion; red and gray bars, respectively). Low shape 

coefficients originate from unshapely or longish spots, whereas high values are caused by 

especially round spots. These particular spot shapes are also observable in the SOM portrait 

gallery (Figure 2-9). 

 



2 Self-organizing maps 

48 
 

2.7 Global meta-gene clusters 

The SOM algorithm arranges similar meta-gene profiles in neighbored tiles of the mosaic map 

whereas different profiles are located more distantly. Neighbored meta-genes thus tend to be 

colored similarly owing to their similar expression values. In consequence, the obtained 

mosaic portraits show typically a smooth texture with red and blue spot-like regions referring 

to sets of over- and underexpressed meta-genes, respectively. Meta-genes from the same spot 

are co-expressed in the experimental series whereas different, well-separated overexpression 

spots in the same portrait refer to meta-genes overexpressed in the particular sample but 

differently expressed in other samples due to different profiles. The sample specific ‘local’ 

spots in the SOM portraits consequently combine two characteristics: meta-gene co-regulation 

and differential expression. Contrary to the local spots, we define ‘global’ spot clusters which 

refer to all samples. Later we will present gene set enrichment analyses to assign biological 

functions to the global clusters, which can therefore be interpreted as ‘functional modules’ 

inherent in the data. Below we will also compare the SOM-based clustering approaches with 

alternative clustering methods applied on the single gene level such as non-negative matrix 

factorization (NMF, see [67–69]), hierarchical clustering (HC, see [70]) and correlated gene 

set clustering (CGS, [71, 72]). 

 

2.7.1 Spot clusters 
For an overview about all local spots observed, two types of integral overview maps are 

created, characterizing over- and underexpression of the meta-genes in a global view. Firstly, 

the meta-gene peak maps shown in Figure 2-16a and b accentuate the maximum and 

minimum expression values of the meta-gene profiles, respectively. These maps plot the meta-

gene expression profiles into one common scale, representing their maximum and minimum 

values as color-coded tiles. They allow discrimination between subtle differences of the 

amplitudes of the maxima and minima considered by amplification of spots referring to local 

maximum/minimum values in the meta-gene expression profiles. For example, the meta-gene 

maxima map of human tissues (Figure 2-16a) features differently colored spots along the 

diagonal line which refer to maxima of different amplitude in the respective SOM portraits 

(e.g. the amplitude of spot C clearly exceeds that of spot B). 

Alternatively, ‘overlay maps’ are created, which transfer spots of either over- or 

underexpression observed in the sample portraits into one master map. These overexpression 

and underexpression spot maps are shown in Figure 2-16c and d, respectively. Here, the 

respective maximum and minimum values observed in one of the samples scale equally 

showing, for example, equally colored spots along the diagonal line in panel c of Figure 2-16 

(e.g. spots B and C are of equal amplitude). Note also that the tissue overexpression spot C 

decomposes into three subspots which however strongly differ in their amplitude in the 

original SOM portraits (compare spot C in Figure 2-16 c and a). Both types of overview maps 
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Figure 2-16: Overview maps of human tissue transcriptome set: Meta-gene maximum (a) and 
minimum (b) maps and over- (c) and underexpression (d) spot maps. Red/maroon spots mark 
overexpression/maxima, blue ones underexpression/minima. Selected spots are marked by letters 
(capital and lower case letters refer to over- and underexpression, respectively). The 
maximum/minimum maps use a unique scaling for meta-gene expression whereas the 
over/underexpression maps integrate tissue-specific spots from different scales. As a consequence 
they show a larger number of spots than the former ones. 
 

thus reflect similar properties however in a complementary fashion, either with the focus on 

their absolute amplitude in common scale or on the identification of maxima and minima in 

the SOM portraits independent of their amplitude. 
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Figure 2-17: Global overexpression spot clusters identified in the tissue SOM (panel a). The heatmap 
shows the corresponding expression profiles (panel b). Each cluster refers to one row. The 
expression scale refers to the mean meta-gene profile averaged over all meta-genes within the 
respective cluster. The tissues are grouped according to categories in horizontal direction (see the 
color bar on top of the map; the colors are assigned to the categories in agreement with Figure 2-9). 

 

Global over- (and also under-) expression spot clusters were defined by applying a simple 98-

percentile (and 2-percentile) criterion which selects the respective fraction of the meta-genes 

showing largest (or smallest) expression in the sample portraits. Figure 2-17a shows the 

overexpression spots of the human tissue SOM. In total, nine such spot clusters were detected 

and labeled using capital letters. A representative expression profile was then calculated as the 

mean over the profiles of all meta-genes of the spot. The heatmap in Figure 2-17b shows these 

spot profiles in the series of tissues studied. It allows identifying specific expression patterns 

in each tissue category. For example, spot ‘A’ is specifically overexpressed in nervous system 

samples and spot ‘B’ in the muscle tissues, whereas spot ‘G’ is more ubiquitous lacking 

category specific overexpression.  

In general, over- and underexpression spot clusters provide a simple and intuitive approach 

for definition of global meta-gene clusters. It additionally identifies the clusters in 

unsupervised fashion without necessity of previous definition of class prototypes or desired 

number of clusters. The obtained overexpression spot profiles carry prominent expression 

signatures inherent in the data set, which are characteristic for single tissues or tissue 

categories. 
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2.7.2 Correlation clusters 
Alternatively, one can apply a different metric based on the mutual correlation of the meta-

genes to cluster co-expressed meta-genes. Particularly, we apply the following algorithm to 

determine groups of correlated meta-genes :  

(i) The Pearson correlation coefficients, rijmeta (i, j= 1…K) are calculated for all pairwise 

combinations of meta-gene profiles.  

(ii) Their maximum value rIJ=max(rijmeta) defines a pair of ‘source’ meta-genes at positions 

i,j=I,J. They typically refer to neighbored tiles in the SOM. 

(iii) Then, the source meta-genes serve as condensation nucleus for the associated group of 

correlated meta-features which comprises all meta-genes meeting the condition 

min(rI,x, rJ,x) > rthreshold where the threshold value for the correlation cluster is typically 

set to rthreshold= 0.90. 

(iv) The meta-genes of this group were excluded for next iteration which starts again with 

step (ii) to determine the next group of correlated meta-genes by processing the 

remaining ones.  

 

Steps (ii) – (iv) are repeated until all meta-genes are clustered into groups of at minimum one 

member. In total 132 of such highly correlated clusters were identified in the tissue data set. 

The ten clusters of strongest correlation were then chosen in accordance with the number of 

overexpression spots discussed in the previous subsection. The correlation map in Figure 

2-18a shows the obtained correlation clusters as color-coded regions in the SOM-mosaic. The 

heatmap in Figure 2-18b illustrates the mean expression profiles of the clusters. Please note 

that also clusters without pronounced differential expression were selected by this algorithm, 

for example clusters ‘A’, ‘E’ or ‘I’. Also very similar profiles are observed, showing specific 

overexpression for one tissue category: ‘F’ and ‘G’ for immune, or ‘H’ and ‘J’ for nervous 

system.  

The clustering of correlated meta-genes represents a global approach complementary to the 

spot clusters. It groups the meta-genes according to most similar expression profiles 

independent of strong differential expression. The obtained groups form disjunct clusters in 

the respective correlation cluster map. The clusters of largest mutual correlations are mostly 

located in the region of largest meta-gene variance (compare to Figure 2-14b). Hence, SOM 

mapping based on Euclidean distance in the training provides also a characteristic pattern 

with respect to the correlation metrics.  
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Figure 2-18: Correlation module map of human tissue SOM (panel a): Each colored area represents a 
group of meta-genes which strongly correlate with each other with a correlation coefficient of r> 
rthreshold=0.90. The ten clusters of strongest intra-correlation were chosen as expression modules. The 
module expression heatmap shows the corresponding spot expression profiles (panel b). See legend 
of Figure 2-17 for details. 

 

2.7.3 K-means clusters 
As a third option, unsupervised k-means clustering was applied to select groups of co-

expressed meta-genes [73]. This approved method divides the profiles of all meta-genes into a 

predefined number of clusters using the Euclidean distance as similarity criterion. Ten k-

means clusters were generated in agreement with the spot and correlation clustering methods 

used before. Figure 2-19a shows the obtained cluster map. It segments the SOM into ten 

disjoint regions. Note that no additional meta-gene filtering was applied. Hence the k-means 

clusters cover the entire map in contrast to the overexpression spot and correlation clusters 

which cover only part of available meta-genes (compare with Figure 2-17a and Figure 2-18a). 

Figure 2-19b shows the corresponding mean expression heatmap of the k-means clusters. The 

expression profiles partly agree with that of the overexpression spots (compare Figure 2-17b 

and Figure 2-19b), however the k-means clusters are less specific (e.g. ubiquitous clusters ‘A’ 

and ‘B’) and partly redundant (e.g. clusters ‘E’ and ‘F’, or ‘G’ to ‘J’, respectively).  
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Figure 2-19: k-means cluster map of human tissue SOM (panel a) and module expression heatmap 
(panel b). See legend of Figure 2-17 for details. 
 

 

2.7.4 Alternative methods of gene clustering 
One essential feature of the SOM approach is the reduction of dimensionality of the full data 

set from ten thousands of single gene expression profiles to a few thousand meta-gene 

profiles. In a second reduction step, the dimensionality is further reduced to a handful of 

expression modules of co-expressed meta-genes. For comparison with the SOM spot-clusters 

selected alternative methods of dimension reduction were applied: non-negative matrix 

factorization (NMF, see [67–69]), hierarchical clustering (HC, see [70]) and correlated gene 

set clustering (CGS, [71, 72]). These competing clustering methods use different approaches: 

NMF decomposes each of the expression profiles in original space into an additive set of meta-

gene profiles with non-negative expression amplitudes. HC is a heuristic iterative algorithm 

that separates the original data into hierarchically structured clusters using typically 

Euclidean distance metrics. CGS uses correlation metrics in combination with stringent 

significance testing to group the original data into groups of correlated single genes. For NMF- 

and HC-clustering the R-packages ‘NMF’ [74] and the basic package ‘stats’ [49] were used, 

respectively. CGS-clusters were obtained using an in-house R-program [72]. 

The number of clusters was set to ten in correspondence with the number of overexpression 

spots detected in the SOM of human tissues. Figure 2-20 illustrates the distribution of the 

genes of the five leading clusters in the SOM map for direct comparison with the spot clusters. 

NMF generates relatively diffuse clusters which spread over wider areas of the SOM. The top 

two HC clusters also show diffuse patterns whereas the remaining ones localize in relatively 

small areas of the map. Finally, CGS also generates localized but partly redundant clusters: 

Three out of five of them occupy the top left corner of the map which is assigned to genes 

overexpressed in nervous tissues.   
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Figure 2-20: Cluster-specific population maps of the five leading clusters obtained by alternative 
methods. SOM meta-genes occupied by single genes from the respective clusters are marked by dots 
colored in blue for few to red for many single genes. 

 

 
 
Figure 2-21: Meta-gene profile heatmaps of ten expression modules obtained by the alternative 
methods. See legend of Figure 2-17 for details. 

 

The heatmaps in Figure 2-21 further confirm this observation: The genes which are 

specifically overexpressed in nervous tissues are captured by at minimum five of the ten CGS-

clusters, HC generates two to three of such ‘nervous system’-clusters. The SOM contrary 

provides only one spot which collects virtually all genes overexpressed in nervous tissues. In 

contrast, the NMF-clusters are clearly not redundant but, on the other hand, most of them are 

overexpressed in diverse tissue categories and thus unspecific for these tissue groups. 
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Particularly, NMF decomposes the gene expression patterns as an additive combination of the 

NMF modules whereas SOM, HC and CGS use a decomposition that insists mutual exclusion 

of features. In other words, NMF-meta-genes are less specific for single tissues and tissue 

categories per definition since they imply an alternative context dependency.  

 

2.7.5 Benchmarking the clustering methods 
It was demonstrated that the global expression landscape of human tissues is characterized by 

about nine- to - ten overexpression spots (see Figure 2-17a) in the SOM portraits. Additionally, 

meta-gene correlation and k-means clusters were generated. These SOM clusters are to be 

compared to the clusters obtained using NMF, HC and CGS dimension reduction with regard 

to their ability to generate tissue-specific clusters. It is estimated using the entropy [75], 
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where ec,m is the logarithmic expression of the clusters. It is calculated as mean value over the 

expression values of its member meta-genes. The entropy is calculated for each tissue sample 

m = 1...M where the sum runs over all clusters c = 1...C. It has units of bits and ranges from 

zero for tissues with only one highly expressed cluster to 1 for tissues with uniformly expressed 

clusters. 

Recall that we assumed a number of ten clusters in each of the supervised clustering methods 

in correspondence with the number of SOM spot clusters identified. Figure 2-22 shows that 

SOM overexpression spots outperform the alternative methods in terms of specificity of the 

obtained expression clusters. In other words, spots of overexpressed meta-genes represent the 

natural choice for identification of major expression modes in the data. The expression 

signatures obtained from SOM analysis thus feature highest specificity across all methods 

compared. 

 

 

2.8 SOM analysis of randomized data 

The previous subchapters relate to SOMs trained with both artificial and real world data. It 

was shown, that adjacent meta-genes feature similar expression profiles giving rise to clusters 

of co-regulated meta-genes. These clusters emerge as spot patterns in the SOM portraits and 

can be understood as disjunct regulatory modes of gene expression. Co-regulation is thereby 

often assumed to be caused by the involvement of the genes into common pathway activities 

according to the ‘guilt-by-association’-principle [76]. Alternatively, genes can be ostensibly co-

regulated also by chance, for example, in an ensemble of genes with random expression 

profiles. The probability to find such random ‘co-regulation’ patterns depends on the number 
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Figure 2-22: Expression module specificity comparing different methods. The specificity is measured 
in terms of the entropy (Eq. (15)): Small values refer to tissues which are specifically characterized by 
only one module of high expression whereas large entropy values refer to tissues with more uniform 
expression of the module clusters. The boxplot illustrates the distribution of the entropy values for 
all tissues considered in each method. 

 

of different conditions studied and on the resolution of the cluster algorithm used. The effect 

of random expression is studied for the human tissue data simply by permuting the expression 

values of each gene randomly among the samples. This way the tissue-specificity of each 

expression profile is virtually destroyed. Then, the randomized data was used to train a SOM 

utilizing the same SOM-size and grid-topology as used for the unperturbed SOM of human 

tissues. Finally, both SOMs were compared with regard to the spot clusters and meta-gene 

characteristics (Table 4).  
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Figure 2-23: Selected SOM portraits (panel a), overexpression cluster map (b) and correlation cluster 
map (c) of the ‘random SOM’ reveal dense arrangement of multitude of random pattern, resulting in 
large number of over- and underexpressed spots and correlated clusters. 

 

Figure 2-23a shows six selected sample portraits of the ‘random SOM’. They exhibit very 

diverse pattern with a clearly larger number of over- and underexpression spots compared to 

the original tissue SOM portraits (Figure 2-23b). On average, the number of overexpression 

spots increases approximately threefold after randomization (see Table 4). 

 

The observed number of spots in the ‘random SOM’ monotonously increases with increasing 

SOM-size whereas that of the ‘tissue SOM’ levels off to around 10 already for small SOMs 

(Figure 2-24). In other words, the ‘real’ expression landscape of human tissues is considerably 

less fragmented than the respective random one. Hence, the random landscape is 

characterized by more and SOM-size dependent expression modes without mutual 

correlations. These are only partly captured by the particular SOM-size used. In consequence, 

the increase of the SOM-size gives rise to an increasing number of spots. In contrast, the 

number of expression modes of the ‘tissue SOM’ asymptotically attains a stable level. 
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Table 4: Comparison of the ‘tissue SOM’ the ‘random SOM’. 

 Tissue SOM Random SOM 

#overexpressed spots a 1.4 3.2 

#correlation clusters b 121 549 

Population c: nk 4±10; max=308 5±6; max=306 

Variance d: vark 0.01±0.05; max=0.57 0.005±0.003; max=0.01 

Covariance d: rk 0.61±0.14; max=0.94 0.43±0.05; max=0.70 

Deviation d: dk 0.15±0.10; max=0.59 0.18±0.07; max=0.53 

Significance e: <pk> 0.26±0.09; min=0.02 0.47±0.05; min=0.28 

a mean number of overexpression spots per sample portrait (>98% threshold) 
b number of correlation clusters using the seed algorithm  
c median number of genes per meta-gene± standard deviation and the maximum occupancy 
observed  
d mean, standard deviation and maximum of  meta-gene variance, meta-gene - gene 
covariance and metagene - gene Euclidean distance (deviation) of all meta-gene profiles  

e mean, standard deviation and minimum of  meta-gene significance of all meta-gene profiles  

 

 

 

 

 
Figure 2-24: ‘Tissue SOM’ vs. ‘random SOM’: Total number of overexpression spots as a function of 
the SOM-size observed in the SOM portraits of human tissues before (blue curve) and after (red) 
randomization. The respective overexpression summary maps are shown for SOM-sizes 20x20 to 
60x60. 
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Figure 2-25: Supporting maps characterizing the ‘random SOM’: Population (panel a), variance (b), 
covariance (c) and significance (d) maps. 

 

The supporting maps of the ‘random SOM’ allow identification of further properties induced 

by randomized input data. The population map (Figure 2-25a) reveals clearly more uniform 

and less structured distribution of the single genes across the meta-genes compared to the 

‘tissue SOM’. Also the variance map (Figure 2-25b) shows a specific structure: The invariant 

meta-genes collect within a delimited region of the SOM. They are surrounded by meta-genes 

of almost constant variance. This homogeneity is caused by the strong overlap of the 

individual over- and underexpression spots. The covariance map resembles this structure 

(Figure 2-25c): The invariant meta-genes are characterized by very low covariance to the 

mapped genes. The remaining meta-genes however feature constantly high covariance values. 

The decrease of maximum variability of the meta-genes reflect a stronger ‘smoothing’ effect of 

the meta-gene profiles due to less concerted single gene profiles in each of the meta-gene 
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clusters. This effect becomes also obvious in the smaller covariance and increased deviation 

between the meta-gene and single gene profiles in each of the clusters. 

The strongest difference between the ‘tissue SOM’ and the ‘random SOM’ is illustrated by the 

significance map (compare Figure 2-25d and Figure 2-14f): where the ‘tissue SOM’ shows 

spot-like regions of significant meta-genes (e.g. <pk> < 0.05), the ‘random SOM’ lacks of any 

significant meta-genes. 

 

In summary, the ‘random SOM’ is characterized by more uniformly populated meta-genes of 

poor significances and weak concordance to the mapped single genes. Therefore it is clearly 

possible to distinguish between a SOM trained with structured real world data and a SOM 

trained with randomized ‘noise’. 
 

  



3.1 Comparing meta-gene and single gene based filtering 

61 
 

3 Filtering data using SOM 

The use of meta-gene instead of single gene expression data reduces the dimension of the data 

and potentially leads to an increased discriminating power in downstream analyses. In 

particular, meta-gene filtering is expected to outperform single gene filtering regarding 

representativeness and noisiness because the reduced number of meta-genes not only 

preserves the diversity of single gene profiles but also reduces noise in the expression profiles. 

In this chapter we analyze the capability of the SOM approach for data filtering and dimension 

reduction in terms of maintaining representativeness and reducing noisiness of the input data. 

Additionally, downstream analyses based on either single gene or meta-gene level are 

compared to verify the benefit of SOM dimension reduction.  

 

3.1 Comparing meta-gene and single gene based filtering 

The reduction of the size of a data set by removing genes that carry essentially no or low 

information is common practice with the intention to improve downstream analysis such as 

two-way hierarchical clustering of genes and samples. Such data reduction has been shown to 

result in cluster dendrograms which more accurately reflect relationships between the samples 

with increasing stringency of the filter applied [77]. This improvement can be attributed to the 

fact that random noise tends to disrupt similarity relations between genes and samples. On 

the other hand, also systematic errors within the data, e.g. due to batch effects, can cause 

artificial cluster relations if the bias affects subsets of genes in a concerted fashion. Hence, a 

favored filter ensures improvement of the data by removing either noisy, biased and/or weakly 

expressed genes. Nevertheless, extreme filtering is dangerous because it may eliminate 

valuable information, for example genes of relatively low and thus noisy expression but with 

important biological impact. Filtering hence is an optimization task with the claim to remove 

virtually irrelevant data while preserving all information which is important in the context of 

the particular issue studied. The former property will be further on called ‘noisiness’ of a filter 

and the latter one ‘representativeness’. Filter optimization thus aims at maximizing 

representativeness while minimizing noisiness. 

SOM analysis facilitates alternative filtering based on the meta-genes as representatives 

characterizing the expression profiles of clusters of single genes. In other words, the meta-

gene profiles themselves serve as a filtered and compressed extract of the original data. In the 

case of the human tissue data, the SOM assigns the expression profiles of N=22,277 input 

genes measured to K=3,600 meta-gene clusters. Each meta-gene therefore comprises 

N/K=<nk>=6.2 real genes on the average. Hence, complexity of transcriptome 

characterization is reduced to about one sixth by utilizing the meta-genes instead of the real 

genes. 

In fact, the local N/K-ratio considerably varies between the different meta-genes with 

minimum and maximum values of nk=0 (empty meta-genes) and nk=308 as illustrated by the 
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population map in Figure 2-14a. In consequence, the importance of transcriptome 

information is effectively reweighted by using meta-genes instead of real genes. For example, 

the meta-gene of highest population (nk= 308) collects genes of virtually invariant expression 

profiles. These essentially non-informative features comprise 1.4% (308 out of 22,277) of all 

single genes but only 0.3% (1 out of 3,600) of all meta-genes. Hence, their contribution is 

effectively down-scaled by a factor of ~1/5 when using meta-genes instead of real genes. In 

other words, the SOM algorithm itself embodies a selective compression filter, reducing the 

number of features by condensing similar single gene profiles into respective meta-gene 

profiles. 

 

To show characteristics and effects of filtering, top-list selection filters are applied either to the 

meta-genes or to the single genes. In a first approach, fold change (FC) filtering is used to 

reduce the number of single genes and meta-genes. Here, the full list of absolute FC-values of 

all genes (∆eg,m) respectively all meta-genes (∆ek,mmeta) is ranked and a certain number (e.g. 

100, 1,000 and 3,600) of topmost features is selected. Note that lists of equal numbers of 

meta-genes and of single genes are asymmetric owing to data compression in the meta-gene 

clusters. Meta-gene lists integrate information of roughly a tenfold larger number of ‘real’ 

genes in the example studied. Figure 3-1 compares the areas in the SOM mosaic preserved by 

FC-lists of different lengths if applied to either meta-genes or single genes. The shorter meta-

gene lists cover essentially the same regions of the SOM as the longer single gene lists with 

considerable overlap of the selected meta- and single genes. The large overlap demonstrates 

that the meta-gene filter is representative for the associated single genes which are mainly also 

selected if applying single gene filtering using an approximately ten-times longer list.  

Figure 3-1b illustrates that different spot areas are progressively excluded from the list of 

filtered features with increasing stringency of the filter as expected. For example, the most 

stringent FC-100 meta-gene filter excludes a few areas selected by the FC-1000 single gene 

filtering revealing a decreased representativeness. Importantly, the covered SOM regions of 

gene and meta-gene lists are approximately balanced when using gene lists which are 

approximately one order of magnitude longer than the respective meta-gene list. 

In addition to FC-filtering variance and significance (FDR) filtering were applied which select 

profiles of largest variance and of highest significance of differential expression, respectively 

(see [WIRTH1] for details). 
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Figure 3-1: Filtering meta-genes and genes by differential expression: Different numbers of meta-
genes (left panels) and single genes (right panels) are selected using the FC-1000/FC-3600 (a) and 
FC-100/FC-1000 (b) filters to account for the data compression in the meta-gene clusters. The brown 
areas in the left part show the selected meta-genes and the colored tiles in the right part the number 
of single genes in the meta-gene clusters analogous to population map in Figure 2-14a. The Venn-
diagrams illustrate the degree of overlap between the meta-genes and single genes selected by both 
filters. 

 

3.2 Meta-gene and single gene based clustering 

Hierarchical cluster analysis was applied because this method is often routinely run as a first 

step of data summarization in microarray data analysis [70]. One way hierarchical cluster 

trees obtained from single gene and meta-gene FC-lists of length 3600, 1000 and 100 reflect 

similar properties showing that clustering is relatively robust with respect to the chosen 

conditions (Figure 3-2a and b). Tissues from categories with homogenous SOM portraits, such 

as nervous system (grey labels), adipose tissues (orange) and immune system (blue, see also 

portrait gallery in Figure 2-9), robustly cluster at very low levels of Euclidean distance in the 

respective branches. Note that the blue cluster of immune system tissues however partly 

decomposes if using the shortest single gene list (FC-100) owing to the loss of 

representativeness. On the other hand, the FC-100 meta-gene list of equal length still 

produces a compact blue cluster reflecting the improved representativeness of the same 

number of meta-genes. In the case of lowest stringency, i.e. FC-3600 lists, the blue immune 
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Figure 3-2: The effect of filtering of single genes and meta-genes on the results of one-way 
hierarchical clustering trees (part a), two-way hierarchical cluster heatmaps (part b) and 
independent component analysis (part c) of the 67 human tissues studied. The samples are color-
coded according to the classification of tissues introduced in Figure 2-9. Top-list FC filters select the 
3600, 1000 and 100 (from left to right) most strongly differentially expressed genes/meta-genes in all 
samples. Note that the ICA-plots are invariant with respect to mirror and rotational symmetry 
operations. The right part shows different benchmark criteria for different lengths of the FC-lists 
ranging from FC-3600 to FC-100 (see top axis). The benchmark criteria were applied to nervous 
system, immune system and epithelium tissues. 

 

system cluster splits for both, the single gene and meta-gene filters. Obviously these lists 

became too long with worse characteristics regarding noisiness: Longer single gene lists 

reduce the quality of the observed cluster structure due to the progressive inclusion of noisy 
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genes. Meta-gene lists are contrary more representative and less noisy than single gene lists of 

equal length in downstream cluster analysis. On the other hand, the length of meta-gene lists 

is optimal in the intermediate range (e.g., the FC-1000 list in this example): shorter and 

longer lists are suboptimal in terms of representativeness and noisiness, respectively. 

 

The cluster trees based on single gene and meta-gene lists reveal another important difference 

(compare the first and second rows in Figure 3-2a): The mean length of the outmost branches 

is considerably shorter for the meta-gene based trees than for the single gene ones. For the 

innermost branches, this relation inverts. This systematic difference reflects more compact 

clusters owing to the decreased noisiness of the meta-gene data: The mean length of the 

‘outer’ branches estimates the mean relative distance between the most similar samples on the 

lowest level of clustering whereas the mean length of the ‘inner’ branches estimates the mean 

mutual distance between the largest clusters. Outer and inner branches are markedly shorter 

respectively longer for meta-gene cluster trees than for single gene trees. The observed meta-

gene clusters are thus more compact in terms of high similarity within and high difference 

between the clusters. 

In the right part of Figure 3-2a the inter-to-intra cluster ratio of the Euclidean distances 

between the samples (F-score) is shown for the three most prominent tissue categories as a 

simple measure of the compactness of their clusters. The F-score of the meta-genes 

systematically exceeds that of the single genes.  

 

Figure 3-2b shows two-way hierarchical cluster heatmaps for meta-gene and single gene FC-

filter lists. This representation visualizes similarity relations between the samples in 

horizontal direction (colored bars indicate tissue categories) and between the filtered 

(meta-)genes in vertical direction. Clearly observable, the contrast of the heatmaps increases 

with shorter lists (i.e. from left to right) because more stringent filters certainly select features 

with strongest over- (red) and underexpression (blue). The heatmaps provide detailed 

information about the amount of features differentially expressed in the various tissues. This 

cluster size is explicitly shown in the diagrams in the right part of Figure 3-2b. For example, 

the percentage of single genes which are overexpressed in nervous system samples and 

underexpressed in the other tissue categories (see also the green/red areas associated with the 

grey bars on top of the heatmaps) increases from less than 50% (FC-3600) to a dominating 

amount of more than 90% (FC-100) whereas the percentage of genes overexpressed in other 

tissue categories vanishes almost completely. The use of meta-genes instead of single genes 

effectively re-weights the contribution of tissue-specific genes. Particularly, the percentage of 

meta-genes which are specific for nervous tissues is markedly smaller in the meta-gene list 

giving rise to a more balanced distribution of features and enhanced resolution of non-

nervous tissue samples. 
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3.3 Meta-gene and single gene based independent component 

analysis 

Hierarchical clustering does not represent the multivariate structure of the data. Such aspects 

are emphasized by projection of the data onto subspaces of lower dimension spanned by e.g. 

components of minimum mutual statistical dependence. Independent component analysis 

(ICA) provides a visual plot in the space spanned by these independent components which are 

shown to point along the directions of maximum information content in the data [78]. ICA is 

applied to single gene and meta-gene lists to compare separation among the various tissue 

groups for these competing data sets. 

The ICA-plots of the two leading independent components shown in Figure 3-2c reveal the 

degree of similarity between the samples as a function of the selected filters. With exception to 

the stringent FC-100 single gene list, all filters provide three major clusters, nervous (grey 

circles) and immune system (blue), and the remaining tissues. The FC-100 single gene filter 

merges the latter two clusters due to its small representativeness with respect to non-nervous 

tissues (see also the respective heatmap in Figure 3-2b). The relative dimension of the three 

clusters in the ICA-plot and thus their intrinsic resolution changes from filter to filter, 

reflecting the subtle interplay between the length of the list and its representativeness and/or 

noisiness which might overweight one tissue category and underweight another one. For 

example, the specifics of epithelium tissues (cyan circles) are relatively well resolved using the 

FC-100 meta-gene or, alternatively, the FC-1000 single gene lists. The diagrams in the right 

part of Figure 3-2c compare the relative size of the three major clusters in terms of the fraction 

of encompassed coordinate range. The meta-gene based clusters are less depending on the 

chosen length of the list and more balanced especially for short lists. 

The ICA plots in Figure 3-2c reveal another interesting property inherent in the meta-gene 

expression states: The points of nervous (grey) and immune systems (blue), but also of 

epithelium tissues (light blue) form chain-like clusters roughly in parallel with the coordinate 

axes. This pattern reflects the fact that the transcriptional activity of nervous tissues on one 

hand and immune system and epithelium tissues on the other hand is defined by different and 

mutually independent groups of genes. However, this property of the data is partly lost after 

most stringent single gene filtering (FC-100) whereas essentially all meta-gene lists well 

reflect the independence of the expression pattern of the different tissue categories. 

 

3.4 Meta-gene and single gene based correlation analyses 

In addition to cluster and component analyses, pairwise correlation maps (PCM) are 

generated featuring Pearson correlation coefficients for all mutual combinations of tissue 

samples. The PCM-heatmaps shown in Figure 3-3a are obtained using the FC-1000 (single 

genes, left part) and FC-100 (meta-genes, right part) filters representing roughly the same 

number of genes as discussed above. The meta-genes clearly provide PCM-patterns of higher 
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Figure 3-3: Single gene (left panels) and meta-gene (right panels) based correlation analysis of 
human tissues using the 1000/100 most strongly regulated genes/meta-genes: (a) Pairwise 
Correlation Map (PCM); (b) Frequency distributions of correlation coefficients for all intra- and 
inter-tissue category pairings. 

 

contrast, reflected in clusters of particularly high (maroon areas) and low (blue areas) 

correlation coefficients along and offside the diagonal, respectively. They refer to tissue 

pairings with highly correlated or anti-correlated expression states. The expression states of 

nervous tissues for example are strongly anti-correlated with essentially all the other tissue 

categories, i.e. a gene overexpressed in nervous tissues is usually underexpressed in non-

nervous tissues and vice versa. The SOM portraits in turn reflect this property in the 

characteristic spot in the top left corner (see Figure 2-9). Hence, the diagonal and off-diagonal 

clusters in the meta-gene PCM can be related to spots in the SOM portraits characteristic for 

different tissue categories. 

To illustrate the origin of the contrast differences between the single gene and meta-gene 

PCM, frequency distributions of the correlation coefficients are shown in Figure 3-3b either 

for pairings between tissues of one category or between tissues of different categories. Intra-

category correlation coefficients are expected to be close to unity because samples of the same 

categories usually feature similar expression states. Confirming this, meta-gene correlation 

coefficients are close to unity as expected whereas the respective single gene correlations 
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however show a markedly broader distribution resulting in smaller correlation values on the 

average. Inter-category pairings of single genes show a broad distribution centered around 

zero with a strong component of anti-correlation close to -0.5 reflecting that single genes of 

different tissue types are either not or anti-correlated. The meta-genes provide a more 

resolved trimodal distribution with strong components of correlated, anti-correlated and 

uncorrelated meta-genes near 1.0, -0.7 and 0.0, respectively. The component peaks are clearly 

sharper and the whole distribution covers a broader range of correlation values. Hence, the 

meta-genes obviously improve resolution of different subcomponents caused by different 

tissue types. 

 

3.5 Summary 

The use of meta-gene data instead of single-gene profiles enhances the discrimination power 

in downstream analyses such as hierarchical clustering or independent component analysis 

owing to essentially two facts: Firstly, the set of meta-genes better represents the diversity of 

expression pattern inherent in the data and secondly, it also possesses the better signal-to-

noise characteristics as a comparable collection of single genes. Due to the better 

representativeness, meta-gene lists are less sensitive to filtering than lists of single genes. 

Additionally, the meta-genes represent a compression of the feature list by about one order of 

magnitude, without loss of information.  

Single gene and meta-gene based correlation analysis confirmed this improvement in 

resolution power when using meta-gene expression data. The meta-gene patterns serve as an 

adequate data filter which appropriately selects representative features characterizing the 

expression properties of the system studied. Additionally, the findings of Guo et al. [3] were 

confirmed, who stated that SOM based meta-genes well recapitulate gene expression profiles 

of the entire gene dataset and capture the real similarity relationships among samples with a 

high fidelity.  
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4 Discovering similarities between the samples 

Sample similarity analysis aims at establishing mutual relations between the phenotypes 

studied, e.g., to extract a hierarchy of similarities or to estimate mutual distances between the 

expression states. In our context, similarity analysis compares the expression meta-states as 

provided by the SOM algorithm. It consequently uses meta-genes instead of single genes as 

the basal data, which has the advantage of improving the representativeness and resolution of 

the results as discussed above. We apply multiple approaches additionally to the prior 

introduced hierarchical clustering, independent component analysis and pairwise correlation 

maps: 

 

4.1 Second level SOM 

The second level SOM analysis was proposed by Guo et al. [3] to visualize the similarity 

relations between the SOM portraits. This SOM maps the sample meta-states and not the 

genes as in first level SOM analysis. Each node of the second level SOM consequently 

characterizes the expression state of a representative meta-sample defined by K meta-gene 

expression values.  

The M samples are represented using a SOM grid of size K2SOM>M. The meta-samples serve as 

condensation nuclei of the associated cluster of real samples with similar SOM portraits. The 

mutual distances between the samples in the map are related to the degree of similarity of 

their expression meta-states in terms of Euclidean distance. The number of meta-samples 

usually exceeds the number of real samples. A considerable fraction of tiles of the second level 

SOM are consequently empty with no sample assigned. Figure 4-1a shows the second level 

SOM of the human tissue data set with a resolution of K2SOM =40x40=1,600 nodes. 

 

4.2 Neighbor-joining tree 

Phylogenetic tree reconstruction is an important tool in e.g. evolutionary biology. We apply 

the neighbor-joining algorithm (NJ) to represent similarity relations based on the Euclidean 

distances between the samples in terms of similarity trees [79]. The distances between pairs of 

samples in the tree refer to a common scale. In contrast to other representations, the 

phylogenetic tree allows to identify ‘bush-like’ clusters of similar samples and to estimate the 

degree of mutual dissimilarity between them (see Figure 4-1b). 
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Figure 4-1: Sample similarity analysis based on expression meta-states: Second level SOM (panel a), 
neighbor-joining tree (b), correlation spanning tree (c) and correlation net (d). Each tissue is colored 
according to its tissue category as shown in the legend in panel a. 

 

4.3 Correlation spanning tree 

Contrary to the previous approaches, the correlation spanning tree (CST, Figure 4-1c) uses the 

pairwise sample correlation as basis. The algorithm interprets the correlation matrix as a 

complete graph in which the edge weights correspond to the distances (here: inverse 

correlation). The CST is the spanning tree that connects all vertices of that graph with the 

smallest sum of edge weights. It thus represents effectively the ‘shortest’ distance between two 

nodes in the graph. Spanning trees have recently been shown to be useful for clustering and 

classification of cancer subtypes using microarray data [80]. A major disadvantage of this 
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method is the lack of ancestral states (inner nodes) in a CST, as opposed to the neighbor-

joining or hierarchical clustering trees. On the other hand, CST rigorously converts the multi-

dimensional clustering problem to a tree partitioning problem which simplifies the 

interrelationship between the data without essential loss of information [81].  

 

4.4 Correlation cluster net 

A second correlation based representation is supplied by the correlation cluster net (CN, 

Figure 4-1d). This unweighted graph is constructed by connecting the nodes (i.e. the samples), 

whose pairwise correlation coefficient exceeds a given threshold (here rthreshold=0.5). This 

graph supplements the sparse CST with a more detailed and network-like overview about the 

sample correlation structure. It implies more connections as the CST and thus considers also 

weaker mutual correlations.  

 

4.5 Similarities between the human tissue samples 

Figure 4-1 shows the introduced sample similarity analyses for the 67 human tissues studied. 

The colors represent the tissue categories and are assigned in the legend in Figure 4-1a. 

Tissues from the same category are mostly consistently grouped in all approaches. Three 

major clusters are evident in second level SOM and CN: Nervous tissues (grey color), immune 

system tissues (blue) and the remaining ones. NJ and CST accordingly arrange nervous and 

immune system tissues into homogeneous groups at opposite branches. This rough 

classification agrees with the results discussed above. 

Outliers with respect to the initial classification of the tissues become directly evident: For 

example, small intestine (no. 12, brown color), assigned to the category of digestive tissues, 

shows the same overexpressed meta-genes as the muscle tissues (see Figure 2-9). As a 

consequence it is located closely to the muscle cluster (green) throughout the four approaches 

shown. Another outlier may be identified in pituitary gland (no. 5, red color), interfering the 

dense clusters respectively branches of nervous tissues. However this relation originates from 

physical location in human brain as well as functional involvement in nervous system of this 

gland.  

Notably, also subtle variations can be observed in the different approaches. For example, the 

non-linear scale of the second level SOM projects the immune and nervous system categories 

with a higher resolution relative to the remaining tissues. Consequently, samples belonging to 

the latter group are only insufficiently resolved in the second level SOM. Another example is 

the testis sample (no. 28, pink color), which is virtually disparate to all other samples. In NJ 

and CST, this sample is yet appended to the nervous and immune system branches, 

respectively. Also in second level SOM, this prominent expression state is not clear. CN 

provides the most realistic approach in this case, as it arranges the testis sample isolated from 

all the other ones.  
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4.6 Summary 

We presented several methods that are capable to give an overview about structures within a 

data set and reveal relations in a sample centered view. Second level SOM provides a two-

dimensional map presenting sample similarity in non-linear scale allowing separation of even 

very similar samples as well as investigation of more coarse similarity structures. CST and NJ 

represent the samples in virtually one-dimensional and hierarchical structures, respectively. 

These algorithms are therefore especially suited for data in the context of evolutionary 

processes, cell development or disease progression. CN provides a network representation 

directly showing sample clusters of strong correlation. Hence, although very similar, the 

sample similarity analyses visualize partly complementary aspects of the data which can be 

assessed more in detail using the spot-texture of the individual SOM portraits of the samples 

studied. 
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5 Selecting differential features and mining the 

functional context 

5.1 Challenges 

SOM machine learning alone is insufficient for extraction of differential features from the 

data. The SOM algorithm must therefore be supplemented with appropriate algorithms to 

assess significance of the features selected. The basal fold-change (FC)-score for example does 

not provide explicit information about statistical significance for the observed expression 

changes. The definition of a suited significance measure is closely related to the gene ranking 

and filtering tasks, which arrange features according to a designated score or remove 

irrelevant features completely from analysis, respectively. We apply significance analysis using 

three alternative test statistics based either on FC-measures or on regularized Students t-

statistics with special emphasis on the error characteristics of microarray expression data. 

Local, spot cluster-related lists of genes are expected to improve identification of sample-

specific features with a common functional impact. For this purpose we apply methods of gene 

set enrichment analysis under special consideration of the meta-gene clusters generated by 

SOM machine learning. These methods essentially assess the enrichment of a list of 

differentially expressed genes compared with the total reservoir of genes studied. The 

members of the set are defined a priori by biological commonality for certain phenotypes. The 

main advantage of such methods is the direct link between the ranked gene list and biological 

knowledge. Therefore they provide better functional insight into the cause of the phenotypic 

differences under study. 

 

5.2 Differential expression analysis 

5.2.1 Scores 
Our method transforms expression values in logarithmic scale (e ≡ log10 E) into differential 

expression values relative to the mean expression of the particular gene in the experimental 

series of samples considered,  

, ,g m g m ge e e∆ = − < >
 

(16) 

where eg,m denotes expression of gene g in sample m, and <e>g the average expression of g in 

all samples. Eq. (16) thus defines differential expression in units of the logarithmic fold 

change, logFC ≡ ∆e. Please note that the fold change referring to the pooled mean is equivalent 

to a fold change referring to a control group [82, 83]. 
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Two alternative scores are defined to estimate the differential expression of individual genes: 

 

1. The weighted average difference (WAD)-score, 
 

( )
( ) ( )

g,m g,m
g,m g,m g,m g,m

g,m g,m

e min e
WAD w e with w

max e min e

∆ − ∆
= ⋅∆ =

∆ − ∆
   (17) 

 

is a fold change (FC)-based score which accentuates large expression values [65, 66]. The 

main idea of the WAD method is based on the observation that potential marker genes often 

tend to have high expression levels. Moreover, it intuitively considers the fact that the 

experimental error of expression values typically inflates at small expression levels in 

logarithmic scale [84, 85]. Hence, the basic assumption for the WAD-approach is that ‘strong 

signals are better signals’ in the gene ranking problem [86–88]. The WAD score therefore 

‘amplifies’ large expression values and ‘represses’ low ones. It is especially suited for small 

sample sizes and it partially outperforms popular standard methods for determining 

differentially expressed genes when sensitivity and specificity are considered simultaneously 

[65, 66]. Note that the weighting factor in Eq. (17) can be transformed into a function of the 

absolute expression values as in the original paper of Kadota et al. [65], 
 

( )
( ) ( )
g,m g,m

g,m
g,m g,m
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w

max e min e

−
=

−
 (18) 

 showing that the weighting factor linearly scales with the expression level of the gene. 
 

2. The shrinkage t-score, 
 

g,m
g,m m shr

g,m

e
t R

σ
∆

=      (19) 

 

integrates the standard error of gene expression values in replicated measurements. The 

shrinkage statistic in Eq. (19) was defined in analogy with previous approaches [36, 89, 90]. 

Here ,
shr
g mσ  denotes the standard deviation of differential expression of gene g measured 

under condition m. It is estimated using the shrinkage approach which considers two 

components: firstly, the individual standard deviation of the expression values is calculated 

using the Rm available replicates, ( )2

g,m r,g,m g,m
r

e eσ ≡ − . Secondly, the locally pooled error 

(LPE) robustly estimates the mean standard deviation as a function of the expression, 

σLPE(eg,m). To obtain this LPE function the values of individual standard deviation σg,m are 

plotted for each sample as a function of the logarithmic expression, eg,m, and locally pooled 

over a moving average window of a few hundred neighboring values. Figure 5-1 shows these 
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plots for selected tissue examples, where dots represent individual genes with coordinates eg,m 

and σg,m. The green curves indicate the respective LPE function.  

Finally, the individual standard deviation and LPE measure of each gene are combined to 

provide the shrinkage error estimate used in Eq. (19): 
 

   (20) 

 

The parameter λ (0≤ λ≤ 1) scales the degree of shrinking g,mσ  towards LPEσ .  

The shrinkage t-statistics was developed in the framework of James-Stein analytic shrinkage 

and applied in different modifications in gene expression analysis (see [89] and references 

cited therein). The basic idea behind Eq. (20) implies that the error estimate based on σg,m 

alone might be very imprecise, e.g. if only few replicates are available. The resulting large 

‘error of the error’ leads to highly uncertain naive t-scores associated with large false positives 

rates. Additionally, it has been previously suggested that estimates of the variance for 

individual genes is questionable [91, 92]. Yet accurate estimation of variability of gene 

expression is essential for correct identification of differentially expressed genes. Additional 

information may be gained by involving variance estimates across all or part of the 

experiment. Such information borrowing methods that exploit this information are able to 

improve the results [87, 91]. Particularly, local-pooled-error (LPE) estimates for evaluating 

significance of each gene’s differential expression have been shown to effectively identify 

significant differential expression patterns with a small number of replicated arrays [92]. 

Eq. (20) therefore realizes the shrinkage approach, combining the pooled and the gene-

specific error to consider both, individual and common factors. Shrinkage t-score consistently 

leads to an accurate gene ranking which might outperform simple t-statistics or FC-scores 

[89].  

shr 2 2
g,m g,m LPE g,m(1 ) (e )σ λ σ λ σ= ⋅ + − ⋅
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Figure 5-1: Error and significance characteristics of selected tissue examples: The first and third row 
of figures show error distributions (dots) and locally pooled estimates (green curves) as a function of 
the logarithmic expression, e. The LPE-curves are calculated as moving average over 500 single 
probe values under the condition of non-positive slope which ensures that the LPE is maximal at 
small expression values. The second and fourth rows of figures show the respective p-value density 
distributions (bar histograms) together with the local FDR (dotted curves) and tail area-based FDR 
(dashed curves) obtained from the shrinkage t-statistics (see Eqs. (19) and (23)). The density-levels of 
null-genes, η0, are indicated by fine horizontal lines. The examples shown are ordered with fraction 
of differentially expressed genes %DE (Eq. (22)). 
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5.2.2 p-values and false discovery rate 
p-values can be derived from the shrinkage t-statistics (Eq. (19)) to characterize the 

significance of differential expression for each gene assuming Student’s t-distribution. The 

obtained density distribution for the p-values of all genes in one sample, ρ(p), meets the 

normalization condition 
1

0

( ) 1p dpρ ⋅ =∫ . P-value distributions are shown for selected tissues 

of different mean error level in Figure 5-1. Under the null hypothesis a uniform distribution 

ρ0(p) = 1 is expected, whereas the alternative hypothesis will produce a skewed distribution, 

ρDE(p), decaying with increasing p because differentially expressed genes tend to gather close 

to p=0 [93]. In general, the observed distribution can be interpreted as the superposition of 

two components due to differentially and not-differentially expressed genes,  

( ) ( ) ( )DE 0 0 0p p  (1 ) pρ ρ η ρ η= − +  (21) 

where η0 is the fraction of non-informative ‘null’-genes among all genes considered [93, 94]. It 

was derived using “fdrtool” [95] under the assumption of vanishing differential expression at 

p=1: ρDE(1) = 0, giving rise to ρ(1) = η0 [96]. 

The total fraction of differentially expressed and thus informative genes per sample can be 

estimated using the background level of the p-value distribution, η0: 

0% 1DE η= −  (22) 

“fdrtool” was further used to calculate false discovery rates (FDR) to control the number of 

false discoveries: 

      

0 0
p

0

pfdr(p) and Fdr(p)
(p) (p) dp

η η
ρ ρ

⋅
= =

⋅∫
   (23) 

 

Here fdr and FDR denote the local and tail area-based FDR estimates, respectively. The 

Fdr(p)-values provide a cumulative estimate of FDR referring to all genes on top of a list with 

p-values p’≤p whereas fdr(p) estimates the FDR of a selected gene with p’=p [97]. For a 

monotonically decaying total density ρ(p) both, fdr(p) and Fdr(p), are increasing functions 

which well correlate in the intermediate p range. The local FDR-estimate thereby 

systematically exceeds the tail-based one, fdr(p)≥ Fdr(p) (see the examples shown in Figure 

5-1). Their limiting values at p=0 and 1 are given by the equations Fdr(0)= fdr(0), Fdr(1)= η0 

and fdr(1)= 1, respectively. 
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Figure 5-2: SOM portrait of nucleus accumbens (standard FC-portrait, panel a) and the average-rank 
maps for FC, WAD and shrinkage t-score statistic (b-d). White areas indicate empty meta-genes. 

 

5.2.3 Rank maps 
The SOM approach processes information about differential gene expression (∆eg,m , see 

above) and features this information in a compressed fashion in terms of meta-gene 

expression values (∆ek,mmeta, k and m denote a particular meta-gene and sample, respectively). 

SOM portraits consequently visualize differential (fold change) expression pattern. 

Alternatively one can map other measures onto the SOM grid, such as the rank of the genes 

taken from their ranked list of differential expression. 

Figure 5-2 shows the SOM portrait of one particular tissue example, nucleus accumbens, 

taken from the category of nervous system in log FC units (panel a), together with the 

respective average-rank maps for the three different scores defined: FC-, WAD- and shrinkage 
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t-score (panels b-d, respectively). The rankings of genes refer to the total gene lists which 

contain all genes studied. The maps color-code the mean rank for each meta-gene, calculated 

as the arithmetic average over the individual ranks of the associated single genes in the total 

list. 

The three alternative scores provide very similar pattern, however with subtle differences: The 

contrast, i.e. the gradient between areas of under- and overexpression is largest for the WAD-

ranking and similar for FC-ranking and t-shrinkage. In general, genes on top of the three score 

rankings accumulate in the red overexpression spot of the standard SOM portrait. 

Additionally, the rank maps reveal hidden details within the SOM spots such as the chain-like 

cluster of meta-genes of small rank within the overexpression spot (compare panel a with b-d 

in Figure 5-2). The analysis of such fine-structures might help to refine the subsequent 

selection of relevant genes and meta-genes within the spots. 

Summarizing, standard fold change based SOM portraits provide reliable characterization of 

the samples in terms of particular over- and underexpressed meta-genes. To this, rank maps 

reveal details potentially important in particular problems. 

 

5.3 Mining the functional context: Gene set enrichment analysis 

The SOM assigns meta-gene clusters of single genes with similar, mostly highly correlated 

expression profiles. The correlation and thus coexpression of the single gene profiles can be 

utilized with regard to putative gene function because biological processes are usually 

governed by coordinated modules of interacting molecules [98].  This ‘guilt-by-association’ 

principle assumes, that co-expressed genes are likely to be co-regulated and thus functionally 

associated [76, 99]. 

Gene set analysis requires knowledge of predefined gene sets and the corresponding biological 

meanings to study their enrichment in gene lists obtained from independent differential 

expression analysis (see [100] for a critical review and references cited therein). For example, 

a large and diverse collection of such sets can be downloaded from the ‘gene-set-enrichment-

analysis’-website9. Particularly, 1454 gene sets were included into our analysis according to 

the GO terms ‘biological process’ (825 sets), ‘molecular function’ (396 sets) and ‘cellular 

component’ (233 sets). These sets may partly overlap in component genes, and some gene sets 

are subsets of others due to the hierarchical nature of the GO-systematics [101]. To maximize 

the functional annotation conveyed by the gene sets, all these sets are considered.  

Previous SOM analyses have shown that functionally related genes indeed cluster in the SOM 

portraits [10]. Here, three potential approaches are described combining the meta-gene 

concept and gene set enrichment analysis: 

                                                             

9 http://www.broadinstitute.org/gsea 
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1. Meta-gene as clusters of single genes are individually analyzed for overrepresentation 

of genes defined in a certain gene set. 

2. Spots of (e.g. simultaneous overexpressed) meta-genes are identified in the 

overexpression maps and associated genes evaluated in terms of overrepresentation. 

3. Spots of meta-genes are identified in the samples’ SOM portraits, giving rise to 

inclusion of the sample specific expression values. This enables combined 

overrepresentation and overexpression analysis. 

The term overrepresentation is hereby used to assign the probability to find members of a set 

in a given gene list, compared with their random appearance. This method is therefore 

independent of the respective gene expression values or scores. Contrarily, overexpression 

terms deviation between the mean expression score taken from all set-members in a list, 

compared with the mean score of all list members. The term enrichment will be finally used 

for estimates which combine overrepresentation and overexpression. 

 

5.3.1 Gene set overrepresentation maps 
Gene set overrepresentation analysis classifies each gene studied according to two 

memberships leading to a 2×2 contingency table for further testing (Table 5): firstly, its 

membership in the particular set of functionally annotated genes of length Nset and, secondly, 

its membership in the respective list of selected genes of length Nlist. The intersection of the 

‘set’ and the ‘list’ defines the number of ‘positive’ genes, N+. Then, overrepresentation of these 

positive genes is estimated using the hypergeometric distribution. It allows to estimate the 

cumulative probability that there is more overlap between the ‘list’ and the ‘set’ than would be 

expected by chance [102–104], 

 (24) 

The gene set overrepresentation approach thus considers the joint membership of a gene in a 

gene set and an independent list of genes, without taking into account the particular 

expression values or scores of the genes in the list. For example, it ignores whether a ‘positive’ 

features strong or weak differential expression.  
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Table 5: 2x2 contingency table specifying the numbers of genes in different classes concerning gene 
set overrepresentation in a list of selected genes 

# of genes in list  not in list total 

in set N+ Nset- N+ Nset 

not in set Nlist- N+ N- (Nlist+ Nset)+ N+ N- Nset 

total Nlist N- Nlist N 

 

For each of the clusters defined by the meta-genes the degree of overrepresentation is 

estimated with respect to each pre-defined gene sets using the hypergeometric (HG-) test. It 

provides a p-value for each meta-gene and each gene set considered. The p-values of a certain 

gene set are visualized using a two-dimensional mosaic analogous to the SOM portraits and 

appropriate color-coding. These overrepresentation maps allow identification of meta-genes 

containing a considerable fraction of genes for a selected gene set, e.g. by simple visual 

inspection. Note that these maps apply to the SOM itself rather than to individual samples, 

because mapping of the genes to the meta-gene clusters is a property of the whole series of 

samples studied. 

Figure 5-3 shows global overrepresentation patterns in the SOM of human tissues for selected 

gene sets. Overexpression is observed in different regions of the map, for example in the 

bottom right and top left corner for genes related to ‘immune response’ and to ‘nervous system 

development’, respectively (see red circles in Figure 5-3). The examples also show that 

overrepresentation is either strongly localized in one region of the map (e.g. for ‘nervous 

system’ or, to a less degree, for ‘RNA repair’ and ‘immune system process’) or it spreads over 

different and disjunct regions of the SOM (e.g. for ‘apoptosis’). 

 

5.3.2 Spot-related overrepresentation 
Overrepresentation analysis is not restricted to single meta-genes. It is applied to spots of 

over- (or under-) expressed meta-genes detected in the SOM portraits. Such spots of 

co-expressed meta-genes are potentially co-regulated and thus they might carry important 

functional information. This approach links overrepresentation with overexpression by 

combining spot selection with overrepresentation analysis using the HG-test, as described 

above.  
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Figure 5-3: Overrepresentation maps of six selected gene sets containing between Nset= 157 and 472 
genes. Overrepresentation in each tile of the mosaic is calculated in units of log(p) using the 
hypergeometric distribution. Red circles indicate areas of strongest enrichment, white tiles indicate 
meta-genes not containing genes from the respective set. 

 

Nine essential overexpression spots are identified in the SOM of human tissues, using the 98-

percentile criterion of maximum expression (see Figure 2-17a). Figure 5-4a shows the nine 

spots of strongly overexpressed meta-genes, along with a legend assigning the two leading 

overrepresented gene sets for each of the spots to get a first idea about their possible biological 

context. For example, spot ‘A’ in the top left corner of the map is clearly related to molecular 

processes in nervous tissues according to the leading gene sets obtained.  

The overexpression spot heatmap in Figure 5-4b provides a direct link between HG- 

overrepresentation and overexpression in a tissue- and spot-specific way. It visualizes the 

average meta-gene expression in each of the spots in the series of tissues. This representation 

reveals that nervous, muscle and homeostasis tissues are characterized by essentially only one 

overexpression spot (spot ‘A’, ‘B’ and ‘C1’, respectively) with clearly assigned molecular 

function. Some of the tissue-specific spots are also overexpressed in other tissues. For 

example, the muscle-specific spot ‘B’ shows overexpression also in tongue and small intestine: 

Both organs partly contain also muscle tissues. 

 

The enriched areas in the overrepresentation maps of the gene sets ‘nervous system 

development’ and ‘immune response’ (see Figure 5-3) largely agree with the overexpression 

spots in the SOM portraits of nervous and immune system tissues, respectively. A non- 
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Figure 5-4: The spot map (panel a) shows nine spots which are identified as strongly overexpressed in 
different tissues. Overrepresentation of a collection of 1454 gene sets is estimated for each spot using 
the HG-test. The right legend assigns tissue categories and the two most significantly 
overrepresented gene sets to the respective spots. Overexpression spot heatmap (panel b) directly 
links gene set HG-analysis and expression values: Each spot refers to one row, containing meta-gene 
expressions averaged over the respective spot for each sample. 
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negligible number of genes from these sets are however located in other regions of the map 

which are assigned to alternative molecular functions. For example, genes from the gene set 

‘immune response’ also accumulate in spot ‘D’ (top right corner of the overrepresentation map 

in Figure 5-3a), which is however assigned to ‘tissue development’. This spot is overexpressed 

in a larger number of tissues such as epithelium and adipose tissues which are not explicitly 

assigned to the category immune system tissues. Moreover, subgroups of genes from the gene 

sets shown are located in the central area of the map which accumulates virtually invariant 

and weakly expressed genes (compare with variance map in Figure 2-14b). Possibly part of the 

genes in these sets are incorrectly specified and/or possess a more complex activation pattern 

‘beyond’ the input patterns used to train the SOM. Hence, combination of gene set 

overrepresentation analysis with SOM-expression profiling allows verification and further 

refinement of existing gene sets. 

In summary, gene set overrepresentation maps link selected gene sets and different regions of 

the SOM portraits with single-tile resolution. Regions of the SOM, in turn, can be grouped into 

over- or underexpression spots in different tissues. Overrepresentation analysis then provides 

lists of significantly overrepresented gene sets which characterize the respective spot in a 

functional context.  

Both, the meta-gene-wise overrepresentation maps and the spot-wise overrepresentation 

analysis constitute a link between characteristic expression pattern and concepts of molecular 

function for the associated genes. These orthogonal views complement each other: The former 

one judges the homogeneity of a selected set with respect to different meta-gene expression 

profiles. The latter one assigns selected expression profiles to their tentative molecular 

function.  

 

5.3.3 Gene set enrichment score 
The hypergeometric test applies a binary ‘included – or - not included’ criterion to assess the 

positive membership of the genes from a gene set in a selected list, e.g. taken from meta-gene 

clusters or spots as described above. Contrary, the so-called gene set overexpression approach 

compares the gene set statistics with the null hypothesis given by the ensemble of all genes 

studied (see refs. [100] and [105] for a review). In this case however no overrepresentation of 

a set in a sub-ensemble of a gene list is taken into account. 

The gene-set-Z (GSZ)-score provides a combination of overrepresentation and overexpression 

which explicitly considers the individual expression values of the genes included in the list 

[105]: The GSZ measure estimates enrichment of a gene set in a list using its score statistics, 

for example Sg = tg,m utilizing shrinkage t-score of gene g in sample m. It is designed in such a 

way that top-ranked members of the gene list with high scores more intensively contribute to 

the GSZ than members with lower values down the list. In a first step, the total sum of the 

score function over the complete gene list is decomposed into two components, containing 

members and non-members of the set,  
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Secondly, the regularized Z-score of the differential score, list list listS S S+ −∆ = − is defined as  
 

list list
2 2

list 0

S E( S )GSZ
var( S ) (1 ) varλ λ

∆ − ∆
=

⋅ ∆ + − ⋅     

(26) 

(see [WIRTH3] and [105] for details). 

 

Here, E(ΔSlist) and var(ΔSlist) denote the expected mean and the variance of ∆Slist, respectively. 

var0 and λ denote the regularization constant and a scaling factor (0 ≤λ ≤1) which were chosen 

to stabilize the variance in the denominator of Eq. (26) especially for short lists [WIRTH3]. 

The differential score ΔSlist reflects the summarized score of the members in the list compared 

to the non-members integral score. This implies strong effect of the numbers of these two 

fractions, which is considered in the expectancy value E(ΔSlist): 
 

( )list list HG HG
E( S ) S N N+ −∆ = ⋅ −

    
(27)  

 

where list listlist
S S / N=  describes the mean value of the expression score in the gene list. 

Additionally, the second factor in eq. (27) reflects the difference of expected number of 

members and non-members of the set, given by expectancy value of the hypergeometric 

distribution: 

     
list

set listHG HG HG

NN N and N N N
N+ − += = −       (28) 

 

The variance of ΔSlist  is calculated according to 
 

( )( ) 22 list
list listHG HG list

list

var(S )var( S ) 4 N N N var(N ) S var(N )
N 1 + + + +

 
∆ = ⋅ − − + ⋅ − 

    (29) 

 

which combines the variance of the score statistics,  ( )2

list g list
g listlist

1var(S ) S S
N ∈

= −∑ , and the 

variance of the hypergeometric distribution set list
HG

N N Nvar(N ) N 1
N N 1+ +

−  = ⋅ −  −  
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Finally, the obtained GSZ-values were transformed into p-values using a permutation 

approach which generates the respective null distribution by random rearrangement of genes 

in the collection of predefined gene sets. One and two tailed tests were applied to assess over- 

or underexpression and differential expression (i.e., under- and overexpression), respectively. 
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Two special cases of the GSZ-score can be derived referring to overexpression and 

overrepresentation, respectively. Firstly, the GSZ-score can be calculated for the whole gene 

list, i.e. Nlist=N. For this special case, differential score can be rewritten as 

( )
list

list setN N listlist
S 2 S N S N+

=
∆ = ⋅ − ⋅  where list setlist

S S / N+ +=  is the mean expression score 

averaged over all members of the gene set, and the according expectancy value as 
( )

list
list setN N list

E( S ) S 2 N N
=

∆ = ⋅ ⋅ − . Combined with the error estimator

N Nlist

2
list set listSE( S ) 4 N var(S )

=

∆ ≈ ⋅ ⋅  , eq. (26) provides the GSZ-score of the full gene list 

list

list list
N N

list set

S S
GSZ

var(S ) / N

+

=

−
=     (30) 

assuming λ=1 without loss of generality. It represents a Z-statistics estimating the 

overexpression averaged over the gene set compared to average expression of the total gene 

list. The standard error here is estimated using the variance of S for sample size Nset. This 

approach is used to obtain a GSZ-score for the total list of gene expression scores of a sample, 

reflecting the global tendencies of functional involvement of a sample. 

 

The second special case assumes an identical value of the expression score for all genes, Sg=1, 

after ranking. The difference score thus simply counts the difference of members and non-

members of the set in the list, list S 1
S N N+ −=

∆ = − . The expected mean and the variance of the 

difference score are given by <S>list=1 and var(S list) =0, respectively. Insertion into Eq. (26) 

provides the GSZ-score for λ=1 

( )HG
S 1

N N
GSZ

var(N )
+ +

=
+

−
=     (31) 

It represents a Z-statistics estimating the overrepresentation in terms of the deviation of the 

actual number of positive members from the expected mean according to the hypergeometric 

distribution and the respective variance. 

Equations (30) and (31) illustrate that the GSZ-score in its general formulation in Eq. (26) 

estimates enrichment in terms of a combination of overexpression and overrepresentation Z-

scores. It has been shown in ref. [105] that the GSZ-score is related to alternative scores, 

namely the Random Sets [106] and the max-mean gene set statistics [107] representing a 

unification between these relevant scoring functions. Another comparative study on different 

gene set enrichment methods showed that removing incoherent pathways prior to analysis 

improves specificity [108]. The GSZ-score implicitly accounts for coherency because 

inconsistent genes with positive and negative contributions to the sum in Eq. (25) virtually 

compensate each other.  
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Figure 5-5: One-way hierarchical clustering heatmaps of significantly enriched gene sets (rows) 
versus tissues (columns) using the HG- (panel a) and the GSZ- (panel b) statistics. The three-top gene 
sets per overexpression spot are selected to contribute to the according map. The heatmap color-
codes the p-values of the respective score in log-scale (see the legends in the figure). The tissue 
categories are color-coded in the bar above the heatmap according to assignment in Figure 2-9. The 
capital letters approximately assign clusters of enriched gene sets in correspondence with the spots 
selected in integral overexpression map (see Figure 5-4). 

 

5.3.4 Spot-related GSZ-analysis 
The algorithm of spot-based GSZ-enrichment analysis is mainly identical with that of spot-

related HG-overrepresentation analysis introduced above. Tissue specific spots of 

overexpressed meta-genes are identified in the SOM portraits using, for example, the 98-

percentile criterion. The obtained list of associated genes together with respective expression 

scores in the sample are then analyzed for gene set enrichment using the GSZ-score.  

To compare GSZ- and HG-analysis, both statistics are applied to overexpression spots 

identified in the sample’s SOM portraits, either with (GSZ) or without (HG) explicit 

consideration of the expression values. The top-three gene sets per spot in each tissue are 

selected and collected in a list of most enriched gene sets in all spots. This comprehensive list 

was used to generate heatmaps, visualizing the sample specific enrichment in terms of GSZ- 

and HG-based p-values (Figure 5-5). Additionally, hierarchical clustering was applied to group 

similarly expressed gene sets in vertical direction. The HG-heatmap in Figure 5-5a reveals five 

to six clusters of gene sets, which can be clearly assigned to respective spots of overexpression 

(see spot labels in Figure 5-5 and Figure 5-4): a group of about six gene sets associated with 

the nervous tissues represents overexpression spot ‘A’ in a tissue-specific fashion. Other 

groups of enriched gene sets can be associated with immune systems tissues (‘F’), muscle 

tissues (‘B’), epithelial (‘D’) and homeostasis tissues (‘C1’). Figure 5-5b shows the respective 

GSZ-enrichment heatmap, featuring essentially the same clusters of gene sets as its HG 

counterpart. Table 6 lists the HG- and GSZ-enriched gene sets associated with the 
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overexpression spots. The obtained number of 64 gene sets however exceeds the 48 gene sets 

in the HG-enrichment map indicating the increased diversity of the GSZ approach. 

The standard algorithm applies the ‘top-three’ criterion, i.e. it selects the three top gene sets of 

each local spot list, to characterize the functional context of gene expression in the different 

samples. This approach equally weights each spot in terms of the number of selected gene sets 

and thus ensures that each spot is equally represented in the heatmap. Alternatively, gene sets 

are selected according to their significance of enrichment in each of the tissues. The obtained 

enrichment lists are very similar compared with those obtained using the ‘top-three’ selection 

criterion [WIRTH3]. In summary, HG- and GSZ-enrichment maps based on the ‘top-three’ 

selection criterion provide a suited overview of the gene sets most important in the 

experimental series studied. For a more detailed analysis, full lists of gene sets for each spot 

are generated, whereas enrichment heatmaps provide information in summarized fashion. 

 

Table 6: Molecular characteristics of selected overexpression spots as obtained by HG- and GSZ-
enrichment analysis a  

spot GSZ HG 

A Synaptic Transmission 

Transmission of Nerve Impulse 

Central Nervous System Development 

Nervous System Development 

Regulation of Action Potential 

Cell-Cell Signaling 

Neurological System Process 

Synaptic Transmission 

Transmission of Nerve Impulse 

Nervous System Development 

B Muscle Development 

Myoblast Differentiation  

Regulation of Muscle Contraction 

Regulation of Heart Contraction 

Striated Muscle Contraction 

Striated Muscle Contraction 

System Process 

C1 Carboxylic Acid Metabolic Process 

Organic Acid Metabolic Process 

Excretion 

Calcium Independent Cell-Cell Adhesion 

Excretion 

Response to Steroid Hormone Stimulus 

D Epidermis Development 

Ectodermis Development 

Keratinocyte Differentiation  

Epithelial Cell Differentiation 

Morphogenesis of an Epithelium  

Tissue Development  

Epidermis Development 

Ectodermis Development 

 

F Regulation of Apoptosis 

T-Cell Activation 

Humoral Immune Resonse 

Immune System Process 

Immune Response 

Defense Response 

Cellular Defense Response 

Defense Response  

Immune System Process 

Immune Response 

a Gene sets enriched in both approaches are printed in bold letters.  
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5.3.5 Gene set SOM 
A complementary approach of sample profiling is provided by the so-called gene set SOM 

which relates expression measures to gene sets instead of single genes. So-far, single gene 

expression data was used as input for the SOM. In an additional step of aggregation, these 

single features can be pooled prior to SOM training according to a higher level of information. 

For that it is necessary to access previously defined sets of usually functionally related 

features, for example GO gene sets as discussed above. 

For illustration we use the GSZ overexpression scores of NGS=1,454 GO sets in the 67 human 

tissue samples to train a 60x60 SOM which can be directly compared with the original ‘single-

gene’ SOM. More concretely: The gene-level expression profiles of N single genes measured in 

M samples were substituted by the GSZ-expression profiles of the set=1…NGS gene sets. In this 

case the GSZ-scores refer to the full gene lists, i.e. to the special case Nlist=N given in Eq. (30) 

with S=∆e, 

 
g,m g,mg set g N

set,m
g,m g set set

e e
GSZ

var( e ) / N
∈ ∈

∈

∆ − ∆
=

∆
 (32) 

The SOM is then trained with the GSZ profiles. It consequently provides K meta-gene set 

profiles. The resulting occupancy of the meta-genesets is less than one individual gene set per 

node (<nk>=1,454/3,600=0.4). In this particular application, the SOM algorithm clusters 

gene sets of similar profiles together using the Euclidean distance as similarity measure. Gene 

sets of related functionality are likely to behave similarly in terms of their GSZ-scores and thus 

they are expected to be mapped to the same or neighbored meta-genesets.  

Figure 5-6 shows the gene set SOM portraits of 42 samples selected from the human tissue 

data. First inspection of these portraits reveals consistent pattern for most of the categories, 

agreeing with the original ‘single gene’ SOM portraits (compare with Figure 2-9). However, 

the spots of overexpressed meta-genesets appear better resolved with less overlapping regions 

in most cases. Most samples show one category-specific spot. In addition to these 

characteristic spots, individual samples show further spots which are either unique for the 

respective tissue, or emerge in other samples too. For example, CD4+ T-cells (no.36) shows, 

beside the immune-specific spot in the top left corner, a unique spot in the center of the left 

edge. Bone marrow and thymus (no. 40 and 43, respectively) share a common spot on the left 

edge with ovary and testis sample (no. 27 and 28, see discussion below). 

On the other hand, regions of underexpressed meta-genesets are widespread and mostly 

without pronounced spot-like structure. Consequently, gene set based SOM portraits well 

characterize the human tissue data in terms of gene sets, which are overexpressed in specific 

tissue samples, but poorly in terms of underexpressed gene sets.  
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Figure 5-6: Gene set SOM profiles of 42 human tissues selected from the tissue data set. Instead of 
single gene expression values, GSZ overexpression scores of 1,454 GO sets were used as input data. 
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Figure 5-7a shows the overexpression summary map of the gene set SOM. It collects nine 

spots which were identified using the 98-percentile criterion. The legend on the right hand 

side of Figure 5-7 lists the top-five overexpressed gene sets in each of the spots together with 

tissues and categories showing this spot. As mentioned above, thymus, bone marrow, testis 

and ovary, classified as immune system and sexual reproduction samples, respectively, share 

one particular spot at the left edge (spot ‘F’ in Figure 5-7). Gene sets located in this spot are 

almost exclusively related to replication of cells, which in turn is the major physiological ‘task’ 

of these tissues: Leucocytes proliferate in thymus and bone marrow, spermatozoa and 

ovocytes in testis and ovary, respectively. Spots with consistent functional annotation can be 

also found for epithelium (spot ‘C’), muscle (‘D’), immune (‘G’) and nervous system (‘H’).  

The spot heatmap shown in Figure 5-7b exhibits well defined overexpression patterns across 

the samples: For example spots ‘G’ and ‘H’ are exclusively overexpressed in immune and 

nervous system, respectively. Also non-specific spots without clear overexpression pattern are 

evident in the GSZ spot heatmap, for example spots ‘A’ and ‘I’. These spots can be observed in 

only a few samples.  

Next, we compare the gene sets overrepresented in the spots of the original gene-based SOM 

and the gene sets accumulated in the spots of the gene set SOM. Recall that these gene sets are 

determined by the hypergeometric test in the former case (see Figure 5-4 and Table 6). In the 

latter case however they are determined by the respective gene set clusters within the 

overexpression spots (Figure 5-7). The top-most gene sets in corresponding spots well agree 

for most categories. Solely the spot expressed in the testis sample reveals a difference between 

the two SOM approaches: On the one hand, the spot in the original SOM is associated with 

reproduction and related processes. In the gene set SOM, these sets are located in the two 

marginal spots on left side of the bottom edge as observed in the SOM portrait of testis (Figure 

5-6). Spot ‘F’ in the gene set SOM on the other hand relates to cell differentiation and is 

expressed also by thymus, bone marrow and ovary samples as discussed above. In this sense, 

the testis sample is characterized by a spot (‘F’) assigning functions as differentiation, and 

additional specific spots containing special functions related to reproduction and 

spermatogenesis, for example. 
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Figure 5-7: The overexpression summary map (panel a) shows spots of overexpressed meta-genesets. 
Nine spots were identified using the 98-percentile criterion. Average GSZ scores of these spots for 
each sample are shown in the spot heatmap (panel b). The legend on the right assigns corresponding 
samples or categories to the spots. Additionally, the top-five overexpressed gene sets are given for 
each spot. 
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Figure 5-8: The spot-abundance bar plots for gene set SOM (panel a) and single gene SOM (panel b) 
show the fraction of samples of each tissue category which exhibit a given spot. The total length of the 
horizontal bars characterizes the total abundance of the spots and the length of each colored region 
of the bars the abundance of this spot in one of the categories (see the legend for assignment). 

 

These findings indicate that the gene set SOM tends to generate more spots in each sample 

portrait than the respective gene based SOM.  

The abundance bar plots in Figure 5-8 supports this observation. They visualize the relative 

frequency of appearance of each spot s=’A’, ’B’,… in the samples of each tissue category 

c=’adipose’, ’endocrine’,...: 

 sc
sc

c

nx
N

=  (33) 

where the numerator and denominator define the number of sample portraits ncs showing a 

particular spot and the total number of samples per tissue category Nc, respectively.  

The stacked bar plots in Figure 5-8 give a first impression about the distribution of spot 

abundances. In both, gene set and single gene SOM, one spot is exhibited by all the tissue 

categories (spot ‘B’ and ‘E’, respectively). Also strongly category-associated spots are present, 

for example the nervous system spot ‘H’ and ‘A’, respectively. The individual spots in the gene 

set SOM are observed, however, in more tissue categories (see Table 7). For example, the 

immune system related spot ‘G’ is present in samples of 5 different categories in the gene set 

SOM, but only in 3 categories in the original SOM. In turn, also the number of different spots 

observed in the sample portraits of a particular tissue category is larger in many cases (Table 

7): Epithelium samples for instance express six spots in gene set SOM (‘B’, ’C’, ’D’, ’E’, ’F’ and 

’G’, compare Figure 5-8), but only 4 in the original one (‘B’, ‘E’, ‘G’, ‘I’). 

In summary, the gene set SOM exhibits a similar number of spots as the original gene based 

SOM. The spots in the gene set SOM are however more widespread, occurring in more 
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Table 7: Spot and category abundances in gene set SOM and single gene SOM, respectively. 

 Gene set SOM Single gene SOM 
Nervous system a 2 spots 2 spots 

Muscle 2 spots 2 spots 

Epithelium 6 spots 4 spots 

Testis 3 spots 1 spot 

Immune system 4 spots 3 spots 

Average spot 

occupancy b 
3.8 categories per spot 2.7 categories spot 

a Number of different spots observed in the respective SOM portraits. 
b Average number of stacked segments per bar in Figure 5-8. 

 

 

categories, each of them characterized by more individual spots. This potentially represents a 

sort of additive functional description of the samples, rather than the orthogonal expression 

modules identified in the gene based SOM (see chapter 2.7.1). 

 

We generated the second level SOM of the gene set SOM to evaluate its discrimination power. 

This projection of the samples onto the two-dimensional SOM grid is shown in Figure 5-9. It 

well separates not only the tissue categories immune and nervous system, but also adipose 

tissues in the top left corner, and digestion and epithelium in the more central part of the map. 

Direct comparison with the original gene-based second level SOM (Figure 4-1a) reveals that 

the gene set-based second level SOM provides essentially the same discrimination with 

respect to the different tissue categories. The samples however cover a broader range in the 

map, leading to improved resolution of the formerly dense clusters. 

 

In general, set-wise aggregation of single gene expression data into GSZ-scores summarizes 

expression values of functionally related genes. This supervised filtering step effectively 

removes genes without functional annotation. The gene set SOM thus provides enhanced 

classification capability compared to SOM based on single gene expressions. On the other 

hand, loss of information caused by the removal of not annotated genes might bias analysis 

results. 

The principle of the gene set SOM approach can be transferred to other types of data while 

maintaining the discussed advantages. For example, sets of related features can be built 

according to chromosomal location and applied to transcriptome studies as well as next-

generation sequencing data. Likewise, aggregation of proteins according to classes (e.g. 

hormones, toxins, enzymes) is another possibility in the context of proteome data. 
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Figure 5-9: Second level SOM of the meta-geneset expression states of all 67 samples with a 
resolution of 40x40 nodes. 

 

5.3.6 Summary 
To extract the functional context of spot and meta-gene related lists of single genes we applied 

overrepresentation- and overexpression analysis, and a combination of both with respect to 

pre-defined gene sets of basically known functional impact. The mapping of 

overrepresentation of a selected gene set to the SOM mosaic provides a ‘functional’ map 

showing areas which are potentially relevant for this function. Alternatively, one can screen 

the degree of overrepresentation of a large number of gene sets in a selected meta-gene spot to 

discover its potential functional context. Both views provide a link between the tiles and/or 

spots of the SOM mosaic and their potential molecular function. Notably, they apply to all 

samples of the study due to the fixed mapping of single genes to the meta-genes. The gene set 
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enrichment approach combines both overrepresentation and overexpression analysis. It was 

applied to discover the functional context of the meta-gene overexpression spots in a sample 

specific fashion. 

The tissue related spots of the SOM portraits typically contain enriched populations of gene 

sets corresponding to molecular processes in the respective tissues in most cases. This result 

supports the ‘guilt-by-association’ principle which states that co-expressed genes are likely to 

be functionally associated. It, in turn, implies the ability to define either new gene sets using 

selected SOM spots, or to verify and refine existing ones [WIRTH3]. 

The gene set SOM finally provides a complementary option to gene-based SOM analysis. 

Especially the use of GO sets entails the need for algorithms to handle the redundancy of the 

gene sets [109]. Both, high number of annotated sets, as well as strongly overlapping members 

are implied by the hierarchical structure of this ontology. The gene set SOM here represents 

an appropriate tool to deal with these difficulties and rearranges the gene sets for 

straightforward interpretation and for detection of overlapping functional themes.  
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6 Case studies 

In this chapter, we present SOM analyses for different types of molecular biological data in 

form of case studies to illustrate strengths of the method in the respective applications. The 

examples are selected from different ‘OMIC’ realms, such as transcriptome, genome, 

methylome and proteome, to show the broad and flexible range of applications of machine 

learning in this context. Importantly, our SOM based analyses divide into method-specific and 

virtually method-unspecific tasks. The latter task comprises machine learning and, partly, 

clustering and similarity analysis which can be applied usually without special emphasis on 

the data type used. In contrast, the former method-specific tasks include data preprocessing 

and downstream analysis in terms of feature selection and functional analysis. Particularly, 

preprocessing requires special consideration of the particular method of measurement (e.g. 

mass spectrometry, microarray probe intensities or next-generation sequencing library 

preparation) to minimize the associated systematic biases in the data. The downstream 

analysis tasks address first of all functional interpretation of the observed single features and 

clusters of meta-features. Our examples were also selected with special emphasis to different 

and more general issues such as time series, class characterization and discrimination tasks. 

Table 8 provides an overview of the data sets studied. 

 

 

6.1 Transcriptome data 

6.1.1 Time series experiments: mining the yeast metabolic cycle 
The yeast metabolic cycle (YMC) is one of the best studied model systems to discover basal 

rules of genomic regulation. Taking advantage of this knowledge, the YMC transcriptome is 

utilized to evaluate the SOM method with regard to extraction of information about dynamics 

of gene expression in time series experiments. Microarray data was obtained from Gene 

Expression Omnibus, accession number GSE9302. This dataset consists of 48 samples 

assessed with the Affymetrix Yeast Genome 2.0 arrays, measuring the expression of 5,900 

genes of Saccharomyces cerevisiae (budding yeast). The data set comprises 48 measurements 

taken in intervals of 4 minutes (see [110] for details). This sampling covers four complete 

periods of the ~40-min continuous respiratory-reductive synchrony cycle of budding yeast. 

Our examination includes two independent analyses based on either the subset of the control 

cycle, consisting of the first 11 samples, or on the complete set of 48 samples covering four 

cycles: one control cycle and three subsequent cycles after treatment with phenelzine. This 

oxidase inhibitor is known to double the reductive phase of the YMC whereas the length of the 

oxidative phase is unchanged. It was chosen to study the regulatory mechanisms which lead to 

the increased period of the circadian clock [110]. 
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Table 8: Summary of data and SOM properties for the case studies presented. 
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Raw microarray data of the YMC was preprocessed as described for the human tissue data set 

(see chapter 2.3). The machine learning algorithm then assigns the 5,900 single genes to 

30x30 = 900 meta-genes. Figure 6-1a shows the SOM portraits of the first 11 samples 

illustrating one 40min oscillation in YMC. The portraits are arranged in a circular way 

corresponding to the fashion of a metabolic cycle: the state of transcriptional activity is 

expected to be very similar in first (‘t 1’) and eleventh sample (‘t 11’). Each of the portraits 

shows spots of overexpressed meta-genes revealing close relations of consecutive samples: 

The transition of overexpressed meta-genes is reflected in the trace of the red spots in the 

SOM portraits along the edges in counter clockwise direction. For example, the first sample 

‘t 1’ features three overexpressed spots with the predominant one located in the top left corner. 

Meta-genes, and thus associated single genes, located in this region reach their expression 

maximum in the first sample. This spot is also featured by the adjacent samples ‘t 11’ and ‘t 2’, 

but in less pronounced manner. The other two overexpressed spots are located in the top right 

and bottom left corner. The former is the residue of the larger red spot in sample ‘t 11’ and 

disappears in ‘t 2’, whereas the latter one is not present in ‘t 11’ but grows to a major spot in 

‘t 2’. In general, spots of overexpression shift along the edges and mostly take about three 

subsequent samples to emerge, reach the maximum and then disappear. Such sequential 

patterns reveal the intersection of gene expression modes, whereas the counter clockwise 

manner of transitions reflects the cyclic nature of gene expression in the YMC. 

Inspection of all four cycles reveals an increased period in the oscillation after perturbation by 

phenelzine (Figure 6-1b-d): The first samples of the respective new cycle are clearly identified 

in ‘t 1’, ‘t 12’, ‘t 23’, ‘t 35’ and ‘t 48’, showing virtually identical portraits. In original literature, 

the latter sample ‘t 48’ is assigned to the fourth cycle [110]. The respective SOM portrait 

suggests a fifth cycle with this sample as starting point. However, the fourth cycle covers 3 

(original literature: 4) samples more than the control cycle, implying elongation of the cycle 

after treatment. 

 

The spot heatmap in Figure 6-2 shows the mean expression level of the six major spots 

identified for each time point in the control cycle. It shows the transition of (meta-) gene 

expression modes from the perspective of spot pattern: each spot features increased 

expression levels for at least five time points comprising increasing, maximum and decreasing 

parts of profiles. Furthermore each spot disappears with time and is followed by a new spot 

characteristic for a set of subsequent samples. The sequence of neighbored spots well agrees 

with their chronological order of appearance.  
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Figure 6-1: SOM portraits of the YMC. The portraits of the control cycle (panel a) are arranged in 
circular grid according to reductive phase (samples ‘t 1’ to ‘t 7’) and oxidative phase (samples ‘t 8’ to 
‘t 11’). Portraits of treatment cycles (panels b-d) are arranged chronologically and labeled as 
reductive and oxidative phases by green and red bars, respectively. The spots of overexpressed meta-
genes shift in counter clockwise fashion along the edges of the portraits as indicated by the blue 
arrow at the first sample in panel a.  
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Figure 6-2: Overexpression spot heatmap of selected spots. Each column refers to one sample of the 
control cycle. Spots are depicted by small mosaics in the left, and associated with overrepresented 
gene sets in the right legend. 

 

The genes associated with each spot shown in Figure 6-2 are separately analyzed for 

overrepresentation using the HG-test. The top-three overrepresented gene sets are given in 

the right legend in Figure 6-2. In accordance with Tu et al. [111], we found gene sets 

characteristic for the reductive phase: ‘peroxisome’, ‘response to temperature stimulus’ (spot 

‘B’), as well as gene sets related to transport of sugars (spot ‘B’), metabolic process, 

chromosome (spot ‘C’), and cell wall, wall assembly and membrane (spot ‘D’). For the 

oxidative phase we found the gene sets ribosome (spot ‘E’), sulfate assimilation (spot ‘F’), and 

amino acid biosynthesis / metabolism and related sets (spots ‘F’ and ‘A’). Note the specificity 

of spot ‘E’ for targeting RNA cleavage, maturation and processing. 

 

The oscillatory character of the YMC data set is not only reflected in cyclic meta-gene 

expression profiles as described above. A complementary view is provided by overexpression 

analysis of selected gene sets, known to be activated in the reductive (Figure 6-3, panel a) and 

oxidative phases (panel b). The GSZ scores were calculated using total lists of differential gene 

expression in the samples. Obviously, activation and deactivation of gene sets and thus the 

related biological functions, do not follow an abrupt ON/OFF-switching process but rather a 

smooth transition passing cyclic increase, maximum and decrease of the respective GSZ-

scores. For example, genes associated to ‘peroxisome’ reach their maximum of activity in 

sample ‘t 2’ and the minimum in ‘t 8’. Intermediate time points of measurement reflect a 
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Figure 6-3: Profile of GSZ scores for gene sets reported to be activated in reductive (panel a) and 
oxidative phase (panel b) [111]. The inserted curves show the expression profiles of the top-three 
meta-genes with strongest enrichment of the respective gene set. 

 

series of smooth transition states between the two extremes. Further, also a shift of the 

maximum position of the GSZ score is observed for the eight gene sets examined where the 

phase shift covers the complete oscillation cycle.  

Taking together, the oscillating characteristics of the YMC expression data could be easily 

verified with special regard to either meta-genes, spots of meta-genes or functional gene sets. 

 

For a sample centered view we generated second level SOMs for the control cycle and all four 

cycles, respectively. Figure 6-4a shows the second level SOM of the first 11 samples of YMC 

with a resolution of 7x7 nodes. In analogy to the circular patterns in the SOM portraits, second 

level SOM arranges the samples along a circle in clockwise direction. Second level SOM of the 
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Figure 6-4: Second level SOM of the meta-gene expression states: samples of the first control cycle 
(panel a) arrange in circular order analogous to Figure 6-1a. Mapping of all 48 samples (panel b) 
shows arrangement of the four cycles along concentric circles as indicated by the arrows. 

 

complete set of four cycles studied (Figure 6-4b, 30x30 nodes) reveals a series of concentric 

circles, in agreement with SOM portraits as discussed above. Further, elongation of YMC 

period transforms into slightly increased diameters of the circles especially in the third and 

fourth cycle. This sample representation provides an elegant way to visualize sample 

development in terms of trajectories in time series or cell development experiments in 

general. 

 

6.1.2 Discovering time and dose effects: gene expression after exposure 
to toxins 

Simultaneous evaluation of dose-dependent treatments in parallel time series experiments is a 

popular experimental design. In the present study, effect of toxication of murine hepatocytes 

was analyzed at four time points, 2h, 4h, 12h and 24h after exposure to dimethyl sulfoxide 

(DMSO) and benzo-a-pyrene (BaP). The cytotoxin BaP was applied in relatively high (5µM) 

and low (0.05µM) concentrations. This cyclic compound is an environmental contaminant, 

mainly arising from combustion of organic substances. It is found, e.g., in cigarette smoke or 

motor vehicle emissions, but it can also be detected in grilled foods. BaP is known to act with 

high toxic, mutagenic and carcinogenic activity [112]. It has been studied recently [113, 114]. 

Varying phenotypic responses of the cells are observed after treatment with BaP and DMSO 

[112, 115, 116]. Whereas DMSO causes small phenotypic effects, BaP treated cells observably 

suffer from toxication. Whereas cells regenerate after treatment with low BaP dose, high BaP 

dose causes death of most of the treated cells. To evaluate effects of exposure to BaP on 

transcriptional level, the samples were assessed using Affymetrix Mouse 1.0 ST arrays, 
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Figure 6-5: SOM portraits of the ‘DMSO-’, ‘BaP high’- and ‘BaP low’-series, arranged according to 
treatment and elapsed time (panel a). Spots identified in the integral overexpression map (panel b) 
can be divided into three major groups comprising meta-genes specific for early toxication, late 
toxication (‘BaP low’ and ‘DMSO’), and ‘BaP high’, respectively.  
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measuring expression levels of 21,799 genes. This data set was preprocessed using RMA 

summarization and normalization [117] and subsequently transformed into logFC expression 

values as described above.  These data are used to generate a SOM with resolution of 40x40 

nodes. The obtained SOM portraits are shown in Figure 6-5a. At the first point of 

measurement, all portraits of the three treatments share one common overexpression spot in 

the top left corner, indicating a joint treatment independent mechanism. The portraits 

referring to BaP-treatment show additional spots, one in shared manner. SOM portraits of 

‘DMSO’ and ‘BaP high’ samples slightly changed 4h after treatment, whereas the ‘BaP low-

portrait’ shows a larger spot overexpressed in this sample. In the late stage of toxication after 

12h and 24h, SOM portraits diverge in a dose-dependent fashion. Note that the ‘BaP low’ 

portrait shares similarities with ‘DMSO’ 12h and 24h after treatment. 

Figure 6-5b shows the overexpression spot map displaying spots after applying the 98-

percentile criterion. The overexpression spots can be roughly classified into three major 

groups: spots observed in 2h- and 4h-portraits in top left range, spots of the ‘DMSO’ and ‘BaP 

low’ portraits in the top right range and spots associated with the ‘BaP high’ portraits along 

bottom edge. 

Two spots highlighted in Figure 6-5b are of major importance to understand molecular 

mechanisms caused by BaP: the ‘BaP low 4h’ specific spots in upper left part of the SOM, as 

well as the spot in bottom right corner, overexpressed in ‘BaP high’ at 12h and 24h after 

treatment. Genes associated to the latter one are supposed to support the necrosis in a direct 

or indirect way. The cells typically die off in the respective stages. Contrarily, genes associated 

to the former spot putatively cause an answer to BaP low dose treatment and initiate 

regeneration of the cells. The time point 4h after exposure seems crucial for regeneration of 

the cells in the ‘BaP low’ series. Note that cells from ‘BaP high’ series start to die at this time 

point. 

 

Another interesting observation can be extracted from the variance data of the expression 

meta-states shown in Figure 6-6a. The four ‘DMSO’ samples are the less variant among the 

different treatments. ‘BaP high’ reveals strongly increased variance of the expression states at 

12h and 24h whereas ‘BaP low’ shows a maximum at 4h’. The variability of the expression 

states seems to be related to necrosis and regeneration processes in the cells, respectively. 

 

The second level SOM in Figure 6-6b shows the trajectories of the time series in the two-

dimensional map. Early time points (2h and 4h) mainly gather in the center of the map. ‘BaP 

low’ reveals a specific short-time response (4h) before this trajectory turns into the same 

direction as DMSO, presumably due to regeneration of the cells. In contrast, ‘BaP high’ seems 

to respond with a longer delay but then turns into another direction compared with ‘BaP low’ 

and ‘DMSO’. The mutually orthogonal direction of these trajectories suggests independently 

regulated sets of genes: Genes activated to regenerate the cells from low and moderate 
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Figure 6-6: Meta-gene state based analyses of the BaP study: Variance plot (panel a) reveals 
augmented activity in ‘BaP low 4h’ and ‘BaP high 12h/24h’. The second level SOM (panel b) illustrates 
trajectories of the treatment progressions. Different treatment series are highlighted using arrows 
and according pictograms.   



6.1 Transcriptome data 

107 
 

Table 9: Enriched GO gene sets in ‘Bap low 4h’ and ‘BaP high 12h/24h’ samples. The gene sets are 
arranged according to different functional groups. Key processes are indicated with bold letters. 

BaP low 4h BaP high 12h/24h 

DNA repair Response to organic cyclic compound, 

activation of cyclase  

Cell cycle, cell division, mitosis,  

DNA replication, nucleotide binding,   

chromatin modification 

Glutathione metabolic process, 

glutathione transferase, dopamine binding, 

response to cAMP, response to cytokine stimulus 

Protein binding, ATP binding, metal ion binding Response to calcium ion, sodium ion transport, 

response to stimulus 

 

 

toxication levels (‘DMSO’ and ‘BaP low’), and genes activated (or repressed) in necrosis. 

Hence, the second level SOM supports previous findings: Firstly, it confirms the crucial role of 

the ‘BaP 4h’ sample, representing a sort of turning point from pollution to regeneration. 

Secondly, it reflects the irreversible effect of cells after contamination in the ‘BaP high’ 

treatment series. 

 

In a final analysis step, the functional context of the observed expression changes is evaluated 

using GSZ-statistic. Gene set enrichment analysis was applied utilizing a collection of 1,933 

GO gene sets10. It turned out that hepatocytes treated with low BaP dose exhibit activation of 

‘DNA repair pathway’ accompanied by intensive proliferation (‘cell cycle’, ‘cell division’, 

‘mitosis’ etc., see Table 9) which reflect  regeneration of the liver cells. Contrarily, in late stage 

of ‘BaP high’ treatment, oxidative stress (glutathione related processes) in combination with 

strongly activated metabolism (‘response to stimulus’ and related pathways) accompany cell 

death. Additionally, pathways ‘response to cyclic compound’ and ‘activation of cyclase’ reflect 

the attempt to degrade BaP in the cells. These findings directly link the transcriptional activity 

to observable phenotypic effects, namely regeneration and cell death in ‘BaP low’ and ‘BaP 

high’ samples, respectively. 

In summary, the SOM method provides a suited framework for analysis of time series data 

under varying treatment. In a first step, SOM portraits of the toxication study allow to identify 

samples (and spots) with major impact for the behavior of the cells. These finding are verified 

and further supported in secondary similarity and functional analyses. 

  

                                                             

10 GO annotation derived from Ensembl data base [137] 
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6.1.3 Disentangling and characterizing subtypes of human cancer 
In the last years, large-scale studies were undertaken with the intention to extract reliable 

molecular profiles of cancer cells and to derive underlying regulatory mechanisms. This 

ambition is hampered by the large biological variability of the tumor cells, but also by 

ambiguous and partly unknown subclasses of the cancer types. Here one can take advantage of 

the SOM [HOPP1], which enables characterization of the expression landscapes on the 

individual level of patient samples. In this subchapter we demonstrate the application of the 

SOM pipeline to characterize cancer subtypes. It will be shown, that each of the obtained 

expression modules can be interpreted in terms of distinct biological processes, either utilizing 

the GO annotation to derive functional context of the subtypes, or utilizing sets of genes 

published in recent assessments of cancer samples. Three publicly available data sets were 

chosen as examples: 

 

B-cell lymphoma (BL): Microarray data are available under GEO accession number GSE4475 

(220 Affymetrix HG-U133 arrays). This study used biopsy specimens of mature aggressive B-

cell lymphoma in which at least 70 percent of all cells were tumor cells. The classification of 

lymphoma subtypes and sample assignments are used as given in Hummel et al. [118]: Of all 

220 lymphomas, 44 were assigned to the mBL (molecular Burkitt’s lymphoma) signature and 

128 to non-mBL signature. 48 cases form an intermediate group, representing the transition 

zone between the mBL and non-mBL groups.  

 

Glioblastoma multiforme (GBM): Raw intensity data were downloaded from ‘The Cancer 

Genome Atlas (TCGA)’ portal11. The study comprises 153 tumor and 11 normal brain tissue 

specimen hybridized on Affymetrix HT-HG-U133A arrays. The samples were assigned to the 

GBM-subtypes ‘mesenchymal’ (MES, 50 samples), ‘proneural’ (PN, 45), ‘neural’ (NL, 26) and 

‘classical’ (CL, 32) according to Verhaak et al. [119], and to normal healthy brain (N, 11 

samples) for comparison. The latter specimens were taken from adjacent brain tissue of 

glioblastoma patients. 

 

Prostate cancer progression (PCP): Microarray data are available under GEO accession 

number GSE 6099 (84 non-commercial spotted Chinnaiyan Human 20K Hs6 arrays). The 

original evaluation by Tomlins et al. [120] addresses the molecular mechanisms associated 

with gene expression changes in the course of prostate cancer progression using laser-capture 

microdissection of 84 specific cell populations taken from 44 individuals. Five stages of cancer 

progression are captured in this study, ranging from benign prostatic hyperplasia (BPH, 22 

samples) and prostatic interepithelial neoplasia (PIN, 13) to low-grade (PCA_low, Gleason 

                                                             

11 http://tcga-data.nci.nih.gov 
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score 3, 12 samples), high-grade (PCA_high; Gleason score 4-5, 20 samples) and metastatic 

(MET, 17 samples) prostate cancer.  

 

Raw probe intensity values of Affymetrix arrays (BL and GBM) were calibrated and 

summarized into one expression value per probe set using the hook method [56, 57]. For the 

customized arrays (PCP), preprocessed expression data were downloaded. Subsequent 

preprocessing was performed as described for the human tissue study in chapter 2.3, 

comprising quantile normalization, transformation into log10-scale and centering with respect 

to the mean expression level of each gene (differential expression). A SOM was then generated 

for each cancer data set in independent training runs. The SOMs for BL and GBM consist of 

K=50x50 = 2,500 meta-genes, for prostate cancer K=40x40=1,600 meta-genes. 

Panel a of Figure 6-7 to Figure 6-9 portray the meta-gene expression landscape of lymphoma 

(BL), glioblastoma multiforme (GBM) and of prostate cancer (PCP), respectively. The shown 

mean SOM portraits of each class are calculated by averaging the expression values of each 

meta-gene over all class members. This averaging cancels out individual, highly fluctuating 

features on one hand. On the other hand, it amplifies consistent and class-specific features. 

The SOM portraits are arranged according to the previously published classifications into 

subtypes or progression stages [118–120] and shown in log-FC and loglog-FC color scale. 

The expression portraits in log-FC scale reveal a handful of over- and underexpression spots 

which mostly characterize different cancer subtypes and stages in specific fashion. For 

example, the mBL and non-mBL subtypes (Figure 6-7a) are characterized by two spots in 

opposite corners of the map where one is overexpressed and the other one is underexpressed 

in mBL and vice versa in non-mBL subtype. These subtype-specific spots collect highly 

populated, variable and resolved meta-genes (see [HOPP1]). The mean SOM portraits of the 

four glioblastoma-subtypes (Figure 6-8a) are however more diverse: Only the portraits of the 

MES-subtype and of the N-reference show one specific overexpression spot whereas the PN-, 

CL- and NL-subtypes are characterized by two or three specific spots per subtype. The stage-

related portraits of prostate cancer progression (Figure 6-9a) show analogous properties. 

Parts of the spots are observed in more than one PCP-stage. As a rule of thumb the spots of 

subsequent stages and also of the final MET- and of the initial BHP-stages tend to overlap. In 

consequence, the stage-specific spot pattern ‘rotates’ along the border of the map in clockwise 

direction with progressing cancer. 

The loglog-FC-scale portraits feature more detailed information, enabling to identify finer, 

more subtle differences between the subtypes. For, example the mean loglog-FC maps of the 

MES- and PN-subtypes of GBM resemble each other like film positives and negatives, i.e. 

overexpressed red regions in the MES-portrait largely convert into underexpressed blue 

regions in the PN-portrait indicating a strongly anti-correlated expression pattern in both 

subtypes. 
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Figure 6-7: SOM gallery of Burkitt’s lymphoma: Representative SOM portraits of the three subtypes 
are calculated as mean meta-gene states averaged over all samples of each class and shown in 
standard log-FC and smooth log log-FC scale (panel a). The overexpression map (panel b) links 
opposite spots at bottom left and top right corners to the non-mBL and mBL subclasses, respectively. 
Individual spots are defined by the 98-percentile criterion and assigned by capital letters (panel c). 
The blue rectangles include highly correlated spots (r>0.7). The blue and red dashed lines connect 
correlated (0.4< r<0.7) and anti-correlated (r<-0.6) spots, respectively.  
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Figure 6-8: SOM gallery of Glioblastoma multiforme. See legend of Figure 6-7 for details. 
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Figure 6-9: SOM gallery of prostate cancer. See legend of Figure 6-7 for details. 
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A global analysis of sample- or subtype-similarities might miss subtle effects due to individual 

properties of small groups of genes. Since such details are captured in the SOM portrait 

patterns, especially spots of overexpressed meta-genes are capable to resolve both cancer 

subtypes (see spot assignments in panel b of Figure 6-7 to Figure 6-9) but also effects in 

individual samples (see [HOPP1] for detailed spot discussions).  

Panels c of Figure 6-7 to Figure 6-9 visualize the pairwise correlation strengths between the 

individual spots detected. Highly correlated spots are included into dotted rectangles or 

connected by blue dotted lines whereas red dotted lines indicate anti-correlation. For example, 

overexpression spots ‘H’, ‘K’, ‘L’ and ‘M’ are typical for the mBL subtype and feature strongly 

correlated expression profiles (Figure 6-7c). Those spots however are strongly anti-correlated 

to spot ‘O’, located in opposite corner and characteristic for the antagonistic non-mBL 

subtype. A similar correlation structure can be observed for the GBM-SOM (Figure 6-8c). The 

spots in the SOM of PCP shown in Figure 6-9c feature the most pronounced and unambiguous 

correlation pattern. The four corners of the map are occupied by each strongly correlated 

groups of spots, which in turn are strongly mutually anti-correlated.  

Analogous analysis of spot assignment and correlations was also performed for 

underexpression spots with similar results [HOPP1]. Position and size of most of the detected 

underexpression spots agree with the position and size of the overexpression spots, indicating 

overexpression of the respective meta-genes in part of the samples changes into 

underexpression in other samples. 

 

Gene set overrepresentation analysis was performed to evaluate enrichment of GO gene sets in 

the overexpression spots. Based on the functional context of the overrepresented sets 

obtained, a short notation was assigned to each of the spots (see left part of Figure 6-10). 

Selected spots the cancer SOMs are related to processes generally associated with cancer 

physiology such as inflammation (BL spot ’O’; GBM spot ‘F’) and cell division (BL: ‘K’; GBM: 

‘N’).  The right part of Figure 6-10 depicts the GSZ-profiles and the overrepresentation maps 

of the two gene sets ‘inflammatory response’ and ‘cell division’. The profiles clearly reflect the 

fact that the respective processes are selectively activated and de-activated in a subtype-

specific fashion. For example, inflammatory response is activated in the non-mBL and MES-

GBM subtypes. The respective gene set population maps reveal that the associated genes 

accumulate in the regions of spots overexpressed in the different subtypes. 

‘Inflammatory response’ and ‘cell division’ are not among the leading gene sets of any of the 

spots in PCP (Figure 6-10c). The respective GSZ-profiles however show that ‘inflammatory 

response’ is selectively activated in the BHP- and MET-stages whereas ‘cell division’-genes are 

overexpressed in MET-samples only. The overrepresentation maps of these sets indicate that 

the respective genes accumulate in the regions of multiple spots.  
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Figure 6-10: Gene set enrichment analysis of BL, GBM and PCP (panels a, b and c, respectively). Left 
part: The overexpression map assigns the functional context of the most abundant spots, the 
subtypes are labeled beside specific spots. Right part: GSZ-profile and overrepresentation map of the 
gene sets ‘inflammatory response’ and ‘cell division’. The red dotted ellipses in the maps indicate 
strongest enrichment. 
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Special sets of genes reported to be regulated in designated subtypes or stages are evaluated 

for coincidence with the overexpression spots. Published signature gene sets of the subtypes 

can thus be directly compared with the spots of the cancer SOMs. In particular, sets of genes 

up- and downregulated in mBL were taken from Hummel et al. [118], four GBM subtype 

specific sets from Verhaak et al. [119] and four PCP stage related sets from Tomlins et al. 

[120]. For these gene sets, GSZ-profiles and overrepresentation maps were generated. Figure 

6-11a shows the ‘mBL up’ and ‘mBL down’ sets, which clearly show a bimodal behavior in the 

mBL and non-mBL types. The intermediate BL subtype however remains unresolved. Notably 

the mapping of ‘mBL up’ and ‘mBL down’ genes in the SOM resembles the overexpression 

spot patterns of the mean mBL- and non-mBL-portraits. 

The signature sets of GBM subtypes (Figure 6-11b) also confirm specific overexpression in the 

respective subtype and underexpression in the remaining three subtypes of GBM. The NL-

specific signature shows overexpression also in the healthy brain tissue which was not taken 

into account while extracting specific signature genes [119]. Again, overrepresentation maps of 

the signature sets reveal that genes of each of the sets accumulate in the spots of subtype-

specific overexpression identified in the mean SOM portraits. The signature genes of the PN- 

and CL-subtypes yet distribute over more than one overexpression spot. They obviously 

belong to different functional modules of co-expressed genes. 

Finally, PCP signature are associated with different functional concepts such as ‘glutathione 

metabolism’ (specifically overexpressed in BHP), ‘androgen signaling’ (overexpressed in PIN 

and PCA_low), ‘protein biosynthesis’ (overexpressed in PIN and PCA) and ‘cell cycle’ 

(overexpressed in MET) [120]. Genes from these sets feature the expected GSZ-profiles and 

accumulate within the subtype-specific overexpression spots.  

 

Summarizing, self-organizing maps were used to process expression data of B-cell lymphoma, 

glioblastoma multiforme and prostate cancer. The cancer subtypes were characterized in 

terms of about a dozen of overexpression spots, which can be easily assigned to their 

functional context using gene set enrichment analyses. This enables data driven generation of 

hypotheses, but also validation of subtype classifications and corresponding signature gene 

sets. In the cases presented, GSZ-profiles and gene set maps confirm the class-specific over- 

and underexpression modules defined by independent statistical analyses in the original 

papers. 
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Figure 6-11: Subtype specific genes of BL, GBM and PCP (panels a, b and c, respectively) taken from 
literature. Each gene set is depicted as GSZ-expression profile and population map. Additionally, 
mean SOM portraits of the corresponding subtypes are shown. 
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6.2 SNP arrays: Atlas of human genome diversity 

Human genetic diversity is shaped by both demographic and biological factors and has 

fundamental implications for understanding the genetic basis of diseases. Array-based 

genome-wide scans have been applied to worldwide populations, resulting in new insights into 

the genetic structure and relationships of human populations. Genotype data is available for 

nearly thousand individuals from the Human Genome Diversity Project, measuring 

approximately 660,000 SNPs (single polynucleotide polymorphisms) with Illumina 650Y 

arrays  [121]. In particular, 1,043 individuals were analyzed, covering 57 ethnic groups 

assigned to 7 geographical regions. 

Preprocessed data was downloaded from Human Genome Diversity Project. It contains 

genotype calls of both DNA strands for each loci and individual. For SOM analysis, these calls 

had to be transformed into numerical values. Therefore, each allele is classified as major (most 

frequent) homozygous allele, heterozygous allele or minor homozygous allele for each loci 

considered. Ternary values are used to encode these classes: ‘0’ represents major allele, ‘1’ 

heterozygous and ‘2’ minor allele. 

We selected the 50,000 most variant alleles among all individuals in the data. Note that 

normalization and standardization, as applied for gene expression data, is not necessary in 

this application. This data was used to train a SOM with resolution of 80x80 nodes, 

aggregating the 50,000 single alleles to 6,400 meta-alleles. The corresponding SNP meta-

states of the samples are visualized in terms of SOM portraits. Figure 6-12 shows a gallery of 

48 individuals selected out of 16 ethnicities. According to the ternary allelic code, blue and red 

colors in the SOM portraits refer to major and minor alleles, respectively. Green color 

represents heterozygous alleles. The portraits reveal a high diversity of patterns reflecting 

areas of major-, heterozygous- and minor-allelic genotypes. The SOM portraits are typically 

very similar for individuals from the same geographic region. For individuals originating from 

different regions, the portraits however progressively diverge with increasing geographic 

distance in most cases. In general, minor- and major-allelic regions in the portraits feature 

clockwise rotation in accordance with increasing migration distance from presumed human 

origin in Africa. For example, portraits of African individuals exhibit major homozygous 

alleles along top edge (see blue region in respective portraits), shifting to right edge in Middle-

East and Europe, and further to bottom edge in Asia and particularly to bottom left corner in 

portraits of individuals from east Asia. This smooth conversion of the portraits indicates 

steady modifications in the genome due to early human migration. It also promotes the 

alleged route from Africa to Middle East (and Europe), further to Central Asia and via East 

Asia to America. The portraits of Oceanic individuals show a more speckle-like structures with 

spots arranged along all four edges. These individuals thus share allele characteristics with all 

the other regions, especially those of African and East Asian peoples. Possibly, this supports 

the theory of parallel human expansion across continents and via seafaring to Oceania, 
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Figure 6-12: Worldwide SNP-genotype portraits of human peoples: SOM portraits of 48 individuals 
selected from different regions of the world. Red, green and blue regions refer to minor-homozygous, 
heterozygous and major-homozygous allelic genotypes, respectively. 
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Figure 6-13: The correlation spanning tree based on the meta-alleles illustrates similarity relations 
between the 1,043 individuals. The shown SOM portraits refer to average SNP characteristics of each 
region.12  

 

conserving genomic patterns of ancient African people, which are subsequently merged with 

those of neighboring East Asian ethnicities. 

Notably, the SNP-SOM portraits of a few individuals are easy to identify as outliers in their 

ethnic group. For example, selected Makrani and Sindhi people are found to exhibit very 

similar portraits compared to the African group (see blue framing in Figure 6-12). Makrani are 

descendants of black Africans brought as slaves to Balochistan in medieval times. The 

portraits not only intuitively reflect this fact but also the circumstance that Makrani 

individuals feature close similarity to other groups from this region, such as Brahui or Sindhi, 

due to intermixing between the different ethnic groups. Also the SNP-portrait of one of the 

Bedouin individuals shows clearly the characteristics of black Africans, indicating ancestors 

from this region. The SNP-portraits of Hazara, another group from central Asia, reveal 

considerable similarity with the East Asian population presumably due to its partly Mongolian 

ancestry as descents of Mongolian military forces entering this region 500-700 years ago.  

 

We generated a correlation spanning tree to analyze the similarity relations between the 1,043 

individuals studied (Figure 6-13). Interestingly, the tree roughly resembles the geographic 

 

                                                             

12 Background picture: http://en.wikipedia.org/wiki/File:Spreading_homo_sapiens.jpg 
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distribution of the populations, which, in turn, reflects the migration history among 

geographic regions. Hence, the tree reflects the fact that the mutual similarities between the 

SNP meta-states decreases with increasing ‘decoupling’ between the respective populations 

(see ref. [121–124] for a detailed discussion). Note that Principal Component Analysis (PCA) 

represents a widespread tool in population genetics for producing maps to summarize human 

genetic variation across continental regions since nearly 30 years [125]. However, the behavior 

of PCA for genetic data showing continuous spatial variation shows gradients and waves 

representing sinusoidal mathematical artifacts. Those arise generally when PCA is applied to 

spatial data, implying that the patterns do not necessarily reflect specific migration events 

[126].  

Our examples illustrate the capability of SOM machine learning to map a large number of 

genotypes with individual resolution, and to judge relationships between populations and 

individuals in a simple and intuitive fashion. The question whether SOM mapping better 

reflects geographic migration than PCA-analysis requires further attempts presently under 

way. 

 

 

6.3 Clustering of methylome Seq-data of prostate cancer 

In this case study we demonstrate the capabilities of our SOM pipeline to analysze sequencing 

data of DNA-methylation’s epigenetic modifications. The data was supplied by an 

immunoprecipitation-based approach combined with next generation sequencing (MeDIP-

Seq). This technique allows to detect changes in the DNA-methylation state. It is often applied 

in research of cancer development, where cytosine DNA methylation is one of the initial 

processes on molecular level [127]. Cancer epigenomes are reported to be hypomethylated 

with specific hypermethylations [128]. 

The study was performed to survey the difference between healthy and prostate cancer tissue. 

It compares 53 control and 51 tumor samples [BÖRNO1]. Prostate cancer is one of the most 

common causes of male cancer deaths but however a curable disease when diagnosed at early 

stage. Reliable identification of tumor samples is therefore of great importance.  

The data was preprocessed as follows: After preparation according to MeDIP assay and SOLiD 

sequencing, reads were mapped to the human genome HG19 using Applied Biosystems 

Bioscope software13. The reference genome was then split into bins of length 500bp, and the 

number of reads per bin was counted. Subsequently, obtained read number data was quantile-

normalized, implying normalization of the total read count for each patient and ensuring 

                                                             

13 http://www.appliedbiosystems.com 
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Figure 6-14: Methylation SOM portraits of normal (panel a) and tumor (panel b) samples. The left 
panels show the mean portraits of the 53 normal or 51 tumor samples, respectively. The small 
portraits on the right show individual SOM portraits selected representatively. Portrait of patient ‘74’ 
can be easily identified as outlier in the tumor sample class. 

 

comparability between the patients. Finally, the read counts were transformed into differential 

count values relative to the mean count of the particular loci. This is analogous to the 

transformation of gene expression values to differential expression and provides the data set 

with regard to differential methylation.  

Out of 368,647 loci matched, most variant 20,000 were used as input for the SOM machine 

learning. It assigns the differential read count profiles of the input loci to K=20x20=400 

meta-loci profiles. The corresponding SOM portraits directly represent the differential 

methylation in the samples as blue (hypomethylation) and red (hypermethylation) areas in the 

mosaic portraits. The left panels in Figure 6-14 show the mean methylation SOM portraits of 

the 53 normal and 51 tumor samples, respectively. These two classes feature virtually inverse 

portraits: Meta-loci located in top left corner of the SOM reveal hypermethylation in normal 

samples (see red colored regions in Figure 6-14) and hypomethylation in tumor samples (blue 

regions). Meta-loci in the bottom left corner show the opposite characteristics. On average, the 
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Figure 6-15: Second level SOM of the meta-loci states separates normal and tumor samples (cyan and 
red points, respectively). Outlier tumor sample ‘74’ clearly belongs to the cluster of normal samples. 

 

tumor SOM portraits exhibit a broad range of hypomethylated and only few hypermethylated 

meta-loci. This proportion agrees with previous findings, that prostate cancer epigenome is 

predominantly hypomethylated with few promoter-specific hypermethylations [128]. 

Right part of Figure 6-14 shows selected methylation SOM portraits of six normal and six 

tumor patient samples. Notice that sample ‘74’, labeled as tumor tissue, reveals a methylation 

pattern which clearly resembles that of the normal samples. 

 

To gain a more comprehensive overview about the relations between the samples, the meta-

loci data was used to train a second level SOM with a resolution of 20x20 nodes. It is shown in 

Figure 6-15 and underlines the strong class structure, differentiating between normal samples 

in the left and tumor samples in the right part of the map. According to its ‘normal-like’ SOM 
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portrait, Sample ‘74’ occurs as obvious outlier from the tumor tissue categorie. Reevaluation of 

sample ‘74’ revealed insufficient tumor cell content  and it was consequently removed from 

further analysis. After that, 7 specific loci could be identified as strongly differentially 

methylated. They provide a classifier that enables 100% correct classification of normal and 

tumor samples [BÖRNO1]. 

In this case study, capability of the SOM pipeline in context of next generation sequencing 

data was evaluated. SOM portraits here allow simple visual inspection of the quality of 

samples, including detection of misclassified or corrupt samples. Secondary analysis methods 

as second level SOM and classification algorithms are applied on meta-loci level and provide 

reliable differentiation between the tumor and the control samples. 

 

6.4 MALDI-typing of infectious algae of the genus Prototheca 

Beside microarrays and high-throughput sequencing, mass spectrometry is another emerging 

technique in molecular biology and led to an enormous increase in high content data in the 

fields of metabolomics and proteomics. A widely used approach is the combination of ‘matrix-

assisted laser desorption/ionization’ and ‘time-of-flight mass spectrometry’ (MALDI-ToF MS). 

One unique feature of MALDI-ToF is the parallel assessment of all masses in a wide mass 

range. Thereby it inherently provides information of a wide range of proteins which can be 

used for protein identification by ‘peptide mass fingerprinting’ (PMF). The so-called 

MALDI-typing however employs the entire spectra to classify samples on proteome level 

without the need for detailed knowledge of the composition of single proteins. This method 

was developed for the rapid identification of bacterial samples [129] and subsequently 

extended to diverse phyla, ranging from microorganisms as bacteria [130] towards small 

invertebrates [131] and vertebrates [132]. We applied MALDI-typing to extracts of green algae 

from the genus Prototheca which are often overseen or mistaken for yeast in clinical diagnosis 

[vBERGEN1]. These algae from the Chlorella family are the only known plants that cause 

infections in humans and animals. To promote identification of those pathogens, the SOM-

method was applied for fast and reliable distinction of Prototheca species [WIRTH2]. 

The study comprises 324 Prototheca samples referring to five species with one of them 

differentiated into two genotypes. They were extracted and prepared using a standard protocol 

[133]. The mass spectra were then recorded in MALDI-ToF-MS with a mass range from about 

2,000 to 20,000Da. Peaks were detected from the raw mass spectra after baseline subtraction 

using the centroid algorithm implemented in the standard Bruker Daltonics software 14 . 

Subsequently, the MS-Screener 1.0.1 software extracts discrete supporting points along the 

m/z-axis which meet the condition of non-zero intensity amplitude in at minimum one sample 

spectrum of the series [134]. Those supporting points characterize the continuous spectra in 

                                                             

14 FlexAnalysis 2.4 (Bruker Daltonics, Bremen, Germany) 
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Figure 6-16: SOM portraits of 114 selected Prototheca samples. The portraits are arranged according 
to their taxonomic categories.  

 

terms of designated positions along the m/z-axis of the spectra and will be further on referred 

as peaklist. The peaklist derived from Prototheca spectra contains 1,406 intensity amplitudes 

and covers the range from 4,135 to 16,954Da [vBERGEN1]. The peaklists were quantile-

normalized to ensure comparability between the samples. Notably standardization to the 

mean value does not apply to the peak intensities. We used a SOM to map the 1,406 peak 

intensity profiles to K=20x20=400 meta-peak clusters (see [WIRTH2] for details). 

The respective SOM portraits are shown in Figure 6-16, reflecting the underlying MS-pattern. 

Each of those exhibits characteristic spatial and color patterns, serving as MS-fingerprint of 

the Prototheca samples studied: the portraits typically feature one characteristic red spot, 

referring to peaks of high amplitude. The position of these spots varies in a species-specific 

fashion. Each species is characterized by a set of peaks showing high amplitudes only for this 

particular species, and small amplitudes for all other ones. Comparison of the portrait-

textures therefore enables the straightforward classification of the samples according to their 

taxonomic membership. 
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Figure 6-17: MALDI-ToF spectra of different Prototheca species. Peaks indicated by cyan, blue or 
magenta dots refer to the respective red ‘high-amplitude’ spots in SOM portraits of P. wickerhamii, 
P. zopfii GT1 or P. zopfii GT2, respectively.  

 

Each tile of the mosaic portraits refers to one of 400 meta-peak profiles, serving as 

representatives for clusters of similar single peak profiles. Figure 6-17 links representative 

mass spectra of all species studied with meta-peaks marked in the SOM portraits of 

P. wickerhamii and the two P. zopfii genotypes. Peaks of the spectra colored in cyan, blue and 

magenta are associated to the meta-peaks of high amplitude in the P. wickerhamii, P.zopfii 
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Figure 6-18: Phylogenetic trees based on original spectral data (panel a) feature less discrimination 
power than the meta-spectra based tree (panel b). SOM portraits are shown for selected branches in 
panel b. 

 

GT1 and GT2 portraits, respectively. This representation clearly shows that the selected peaks 

form a characteristic set with high amplitudes in the spectra of one of the species sole.  

To verify the improvement of secondary analysis methods in the context of MS data, 

phylogenetic cluster trees were generated using the neighbor-joining algorithm [79]. Figure 

6-18 shows those trees based on either single peak or meta-peak data. Here, the leaves 

represent the samples and the lengths of the branches are directly related to the distances 

between them. Both trees cluster the different Prototheca species into different branches 

reflecting strong classification power of both data sets. The single peak based tree in Figure 

6-18a is however more compact than the meta-peak based one in Figure 6-18b. Detailed 

evaluation reveals that the increased compactness of the former tree results from the small 

distances between the branches of different species. This consequently reveals enhanced 

separation of the different species in the meta-peak based tree. Additionally, subtle 

substructures not clearly evident in the single peak tree are resolved: For example, the P. 

zopfii GT1 (blue color) sample ‘SAG23610’ is characterized by slight, but systematic 

differences in the SOM portraits compared to those of the other portraits of P. zopfii GT1. On 

the other hand, sample ‘POT2’ protrudes as outlier among the P. zopfii GT2 samples (magenta 

color) in the single peak tree primarily due to an extraordinarily strong intensity of the MS-

peaks at 4234.2 and 4237.2Da. They are however are averaged out in the meta-peak profiles. 

As consequence, the ‘POT2’ sample is clearly better integrated in the cluster of P. zopfii GT2 

samples in the meta-peak tree. 

In summary, SOM portraits reflect characteristic pattern for each of the Prototheca species, 

but also allows identification and examination of outliers. Furthermore, improvement of 

downstream analysis was verified using phylogenetic trees as example. 
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6.5 Comparison of SOM analyses customized for different ‘OMEs’ 

SOM was applied to microarray-, sequencing- and MS-data sets. An overview was given about 

capabilities of SOM based analysis regarding multiple tasks as comparison of different 

treatments, data monitoring and classification. Table 8 outlines key aspects of the case studies 

presented here. Application of the SOM pipeline splits into data-specific and common tasks. 

Preprocessing of the raw data is naturally specific and typically varies from study to study (see 

Table 8). Mostly quantile normalization is applied to improve the comparability of the 

samples by assuming identical distributions of the data for each sample. Note that quantile 

normalization is not applicable in case of SNP-array data, where values represent ternary 

allelic states.  

Using appropriately preprocessed data allows utilization of SOM machine learning. This 

common task is virtually independent of original data source. SOM then extracts major effects 

(e.g. expression modes) inherent in the data set, where the resolution depends on dimension 

of the node grid. Comparison of data dimension and utilized SOM size (see Table 8) reveals 

heterogeneous requirements: on the one hand, large cancer transcriptome and SNP data sets 

(M=221; N=22,283 and M=1,034; N=50,000, respectively) require large SOMs for the 

purpose of a widespread overview of the samples with individual resolution (50x50 and 80x80 

nodes, respectively). On the other hand, smaller data sets (e.g. YMC transcriptome with M=11 

and N=5,900) are sufficiently captured even in smaller SOMs. Also separation of disjunct 

classes (e.g. in the prostate cancer methylome or Prototheca proteome studies) is adequately 

supplied by small 20x20 node SOMs. Please note that SOM size in combination with 

dimension of input data set determines the processing time of the SOM training. It ranges 

from few minutes for small data sets and SOMs to several days for high-dimensional data and 

high-resolution SOMs (see Table 8 for details). However the SOM learning algorithm can be 

parallelized (e.g. [135]), taking advance of high-performing multi-core computers which 

significantly reduces the processing time. Also memory requirements can be reduced by 

application of batch algorithms. They divide the data to disjoint batches and perform SOM 

analysis on those dimension-reduced subsets [60, 136]. 

 

According to individual character of the considered data type, the SOM portraits require 

OME-specific interpretations. The common color gradient was chosen for sake of optimal 

visual perception of different value levels. Red and blue colored tiles refer to over- and 

underexpressed meta-genes in transcriptome applications, whereas intermediate colors 

indicate invariant or information-less meta-genes. In case of sequencing data, red and blue 

refers to particularly high and low read numbers (e.g. hyper- and hypomethylation) of the 

meta-loci. SNP-array data uses a digitized coding of the alleles, resulting in principally ternary 

SOM portraits encoding minor, heterozygous and major alleles in red, green and blue, 

respectively. Finally, SOM portraits derived from MS-spectra exhibit an asymmetric character, 

as red tiles imply meta-peaks of high intensity, which are of exclusive interest. Blue (low 
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intensity) meta-peaks carry essentially no information. Proper interpretation of the SOM 

portraits therefore requires consideration of the specifics of the data. 

 

Second level analyses apply to all data types in the same fashion and take advantage of better 

representativeness and reduced noisiness of the meta-features. Selection of appropriate 

methods is thereby again data-specific. For example, studies in the field of evolutionary 

biology prefer hierarchical structures as represented by cluster dendrograms, phylogenetic 

trees or correlation spanning trees. Those methods are able to capture incremental transitions 

and to depict progressive developments. On the other hand, studies with complex sample 

structures require second level analyses that do not force the sample relations into a 

hierarchical or mutually correlated structure. For such studies second level SOMs and 

correlation networks provide efficient tools to capture and visualize the multivariate sample 

similarity structure. 

 

Additionally to the examples presented in this thesis, the SOM pipeline was applied to several 

further data sets, for example stem cell development, comparison of human and chimp 

organs, MS-based proteome of Drosophila and miRNA surveys of murine and human tissues. 

The SOM pipeline provides excellent results for all these applications. 
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7 Summary 

We developed and presented a SOM-based analysis workflow for high-dimensional molecular-

biological data which splits into a series of modular tasks. The first task is data preprocessing 

and normalization to transform the raw data into appropriate input data for SOM training. 

These high-dimensional data are afterwards processed in the SOM machine learning 

algorithm. It condenses the full data information into meta-feature clusters of similar and 

hence potentially co-regulated single features. Importantly, this dimension reduction does not 

entail a loss of primary information in contrast to simple filtering approaches which 

irretrievably remove parts of the data. Instead, the reduction of dimension is attained by the 

re-weighting of primary information in the aggregation step. The whole set of single feature 

profiles remains virtually ‘hidden’ in the meta-features. The meta-data provided by the SOM 

algorithm is then visualized in terms of sample specific mosaic portraits. They provide an 

intuitive way of visualization with strong capabilities in immediate identification of 

(meta-)features of interest.  

The case studies demonstrated that SOM portraits transform large and heterogeneous sets of 

molecular biological data into an atlas of sample-specific texture maps which can be directly 

compared in terms of similarities and dissimilarities. The use of SOM portraits as primary 

visualization method is therefore straightforward. A number of supporting maps, supporting 

profiles and summary maps characterize selected properties of the meta-data.  

Spot-clusters of correlated meta-features are extracted from the SOM portraits in a 

subsequent step of aggregation. This spot-clustering effectively enables reduction of the 

dimensionality of the data to a handful of signature modules in an unsupervised fashion. The 

SOM method consequently compresses the original set of high-dimensional data in two 

consecutive steps: Firstly, similar profiles of single features are collected in the meta-feature 

clusters, which reduces the number of relevant features by about one order of magnitude in 

our applications. Secondly, the spot textures of the obtained SOM portraits are decomposed 

into a few (typically less than one dozen) spots of similar meta-features. This ‘double 

compression’ sequentially applies global (similar profiles) and local (e.g. over-

/underexpression in part of the samples) criteria.  

An optional filtering step is applied to remove noisy or non-informative meta-features after 

SOM training. Recall that these features were involved in the training process, which is 

necessary to obtain a holistic characterization of the data set represented by the meta-features. 

Utilization of variance and significance based filters reveal similar filtering characteristics, 

whereas single feature lists are expected to be one order of magnitude longer than the 

comparable meta-feature lists. Different levels of feature and meta-feature filtering were 

applied and assessed in terms of maintaining representativeness and reducing noisiness of the 

data in downstream hierarchical clustering, independent component analysis and pairwise 

correlation analysis. The improved discrimination power of meta-features in such analyses 
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can be ascribed to essentially two facts: Firstly, the set of meta-features better represents the 

diversity of patterns and modes inherent in the data and secondly, it also possesses the better 

signal-to-noise characteristics as a comparable collection of single features. Due to the better 

representativeness, meta-feature lists are less sensitive to downstream filtering than lists of 

single feature. Meta-features can thus be seen as a natural choice to detect context-dependent 

patterns in complex data sets. 

 

Additionally to the pattern-driven feature selection in the SOM portraits, statistical measures 

are applied to detect significantly differential features between sample classes. 

Implementation of scoring measurements, such as the shrinkage t-score, supplements the 

SOM analysis. Further, two variants of functional enrichment analyses were introduced, 

linking meta-features and spot-clusters with biological knowledge and support functional 

interpretation of the data based on the ‘guilt by association’ principle. They provide efficient 

tools for functional interpretation of the meta-features and of sample-specific patterns. 

 

Selected case studies were presented in this thesis. In particular, molecular phenotype data 

derived from expression microarrays (mRNA, miRNA), sequencing (DNA methylation, 

histone modification patterns) or mass spectrometry (proteome), and also genotype data 

(SNP-microarrays) was analyzed. It was shown that the SOM analysis pipeline implies strong 

application capabilities and covers a broad range of potential purposes ranging from time 

series and treatment-vs.-control experiments to discrimination of samples according to 

genotypic, phenotypic or taxonomic classifications. 

 

All analyses described in this work were carried out by our homemade software package. It 

was implemented in the common R-language [49] and published as open-source CRAN 

package ‘oposSOM’15. To account for the challenges given by the diverse studies, the software 

provides a variety of visualizations, report sheets, downstream analyses and, for detailed and 

accurate descriptions, the complete statistical assessment summarized in spreadsheets.  

 

  

                                                             

15 http://cran.r-project.org/web/packages/oposSOM 
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8 Conclusion  

The methods presented in this thesis aimed at bridging the gap between the potency of SOM-

based machine learning on the one hand and its relatively infrequent application in molecular 

biology on the other hand. Methodical aspects of the SOM framework were presented, aiming 

at disentangling large-scale data sets by clustering of related features. It was shown that the 

SOM algorithm is especially suited for application in large and high-dimensional data sets due 

to the combination of clustering, dimension reduction, multidimensional scaling and strong 

visualization capabilities. Alternative methods usually facilitate one of these components sole. 

It was shown that the SOM approach outperforms pure clustering approaches in terms of 

extraction of characteristic expression modules. Additionally, individual sample visualization 

as mosaic portraits is highly sophisticated and surpasses competing approaches such as 

heatmaps. The SOM portraits serve as unmistakable fingerprints of the molecular phenotypes. 

Together with the supporting maps and profiles, they help to understand the structure of the 

transformed data and hence to convey SOM application to a broader field of researchers. 

Additional software modules provide measures for differential expression and functional 

enrichment. They complement the SOM machine learning with statistical components which 

the basal algorithm lacks of. It was shown that the comprehensive analysis package is capable 

to meet all the challenges of the different applications presented. 
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