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Abstract 
The detection of multiple outliers can be interpreted as a model selection problem. Models that can be 
selected are the null model, which indicates an outlier free set of observations, or a class of alternative 
models, which contain a set of additional bias parameters. A common way to select the right model is by 
using a statistical hypothesis test. In geodesy data snooping is most popular. Another approach arises from 
information theory. Here, the Akaike information criterion (AIC) is used to select an appropriate model for a 
given set of observations. The AIC is based on the Kullback-Leibler divergence, which describes the 
discrepancy between the model candidates. Both approaches are discussed and applied to test problems: 
the fitting of a straight line and a geodetic network. Some relationships between data snooping and 
information criteria are discussed. When compared, it turns out that the information criteria approach is 
more simple and elegant. Along with AIC there are many alternative information criteria for selecting 
different outliers, and it is not clear which one is optimal. 

Keywords 
Least squares adjustment; Outlier detection; Hypothesis test; Information criterion; Akaike information 
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Introduction 
Geodetic outlier detection is firmly based on the fundament of statistical hypotheses testing in Gauss-
Markov and Gauss-Helmert models. There are well-established and workable methods for outlier detection 
and they are also implemented in present‐time geodetic standard software. The most important toolbox for 
geodetic outlier detection is data snooping, which is based on the pioneering work of Baarda (1968). Later 
this work was continued by Pope (1976), Heck (1981) and others. Today, data snooping is the recommended 
outlier detection method in most geodetic textbooks (Teunissen 2000). Nevertheless, 
there is a continued research on the subject (Lehmann 2013a). 
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In modern geodesy, in which there are typically very large data sets, it is clear that it is not possible to rule 
out that a set of observations contains multiple outliers. However, data snooping was initially developed 
only for one outlier. It is common practice to apply data snooping consecutively, detecting one outlier after 
the other. It is also possible to set up statistical tests for the case of multiple outliers (Kok 1984; Ding and 
Coleman 1996). The subject is covered at full length by Teunissen (2000). 

Multiple outlier detection is hampered by two phenomena: 

 Swamping: If the maximum number of outliers to be detected is large then the statistical test “tends 
to declare more outliers than there are in the sample” (Beckman and Cook 1983). 

 Masking: Multiple outliers can mask each other, such that they are hardly detectable (Rousseeuw 
and Leroy 1987, p. 222). 

Baselga (2011) showed impressively that in a geodetic adjustment different numbers and patterns of 
multiple outliers yield the same residuals, which means that the information that observations are outliers is 
not fully contained in the residuals. However, any outlier detection method is based on the residuals. 
Therefore, any decision on multiple outliers is partly based on assumptions, which cannot be checked 
without extra information. 

In recent years the theory of reliability has been extended in the direction of multiple outlier detection 
(Knight et al. 2010; Teunissen and de Bakker 2013). In this theory the minimum detectable bias (MDB) is of 
fundamental importance. Although the MDB is a scalar for one outlier, it becomes a vector with a dimension 
equal to the number of suspected outliers. The full MDB vector cannot be computed without some 
knowledge of the outliers, but bounds for the maximum MDB were computed by solving eigenvalue 
problems, thus, obtaining measures of reliability also for multiple outlier tests (Knight et al. 2010). 

Yang et al. (2013) treated the outlier separability problem when multiple outliers needed to be detected. A 
serious problem in outlier detection by hypotheses testing is the choice of decision error rates, i.e., 
significance levels. This is even worse for multiple outlier detection, as will be shown by this contribution. 
Practical applications sometimes try to avoid this choice by choosing critical values instead. This approach is 
critically discussed by Lehmann (2013b). It is shown that a critical value cannot be chosen irrespective of the 
number of observations but must be increasing with this number. 

Outlier detection can be viewed as model selection: The observations can be modeled as being free of 
outliers or accounting for various specific outlier patterns with respect to number, affected observations and 
stochastic properties. The question arises: Which is the appropriate model to be selected? The hypothesis 
tests provide criteria to answer this question. 

A different approach that is less popular in geodesy arises from information theory. This field tries to 
formulate the discrepancy between the true and the candidate model in terms of the Kullback-Leibler 
divergence (Hurvich and Tsai 1989) and to estimate this discrepancy on the basis of the observations. The 
oldest and best established estimate is the Akaike information criterion (AIC). Later it was corrected for a 
bias, which arises, when the observational redundancy is small, resulting in a corrected version of AIC (AICc). 
Today, many different alternative information criteria have been proposed, the most important are Bayesian 
information criterion (BIC) and Mallows’ Cp. A comprehensive textbook on the subject of model selection by 
information criteria is Burnham and Anderson (2002). 

Although information criteria were proposed very early by Blais (1991) as a tool for model identification in 
geodesy, there are only a small number of applications available. One application is transformation model 
selection (Felus and Felus 2009; Lehmann 2014). 

Another scope of application is the auto regressive moving-average process (Klees et al. 2002) especially in 
the framework of GNSS time series analysis (Luo et al. 2011, 2012). Lehmann (2015) had proposed using 
information criteria for observation error model selection in geodetic adjustment. Recently, Lösler et al. 
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(2016) applied the AIC technique to avoid an overparametrization of the functional model of a network 
adjustment. 

Thus far, there have been no investigations aimed at detecting outliers in geodetic observations. However, in 
other branches of science there are applications of information criteria also for outlier detection: 

The suggestion to use information criteria for outlier detection came from Kitagawa (1979). At this time, AIC 
was the only information criterion considered. Nonetheless, the conclusions of this work are quite universal: 
(1) the problems of determining the number of outliers and of identifying the outlying observations inherent 
in all classical outlier detection procedures are elegantly unified, (2) various situations (single and multiple 
and one-sided and two-sided outliers) can be treated consistently, and (3) no choice of a significance level is 
required. 

This contribution inspired many other researchers: Pynnönen (1992) applied AIC and BIC to linear and 
quadratic regression problems. The elegance and simplicity of the approach is underlined. Fung (1993) 
investigated Bayesian analysis of outliers using a non-informative prior distribution for the parameters. It is 
well known that the problem with this approach is that the analysis is not invariant to the change of scale of 
the data. This is circumvented by using Akaike’s log predictive likelihood for penalizing outlier models with 
extra parameters in the quasi-Bayesian method. This approach is shown to have a good performance for 
detecting outliers in a benchmark data set. 

Atkinson and Riani (2008) effectively used AIC and Mallows‘ Cp for the analysis of outliers in ozone 
concentration data. Ueda (2009) presented a simple and efficient method to detect multiple outliers using a 
modification of the AIC, and it has been successfully applied to sample observations. Kornacki (2014) applied 
the AIC to the detection of outliers for the analysis of ash content in barley straw. The author also comes to 
the conclusion that the method has two advantages: (1) it “is an objective procedure independent of the 
assumed significance level, quantity of outliers and of whether the suspicious observations are the lowest or 
the highest” and (2) it avoids the masking effect of outlier detection. 

In this paper the detection of multiple outliers by classical geodetic data snooping is compared with this 
information criterion approach. The paper is organized as follows. A short overview is given on the Gauss-
Markov model for outlier detection. The subject of hypothesis tests for multiple outliers in the framework of 
geodetic data snooping is discussed in detail. The number of suspected outliers is not known in the case 
presented in this paper; it may as well be zero. Here, a particular problem arises when portioning the error 
rate of the multiple tests to the different individual tests. When the number of suspected outliers is not 
equal in all these tests, the portions are not necessarily the same size. For the selection of the alternative 
hypothesis, the equivalent of the decision of which observations are outliers, the p-value approach is newly 
proposed and elaborated. 

As a counterpart, the information theoretic approach for multiple outlier detection is presented. AICc is used 
as a model selection, and in this way it is also used as an outlier selection criterion. Relationships between 
both the approaches are established, and they are both applied to the problem of fitting a straight line and 
to a geodetic network. Nonetheless, both can be applied to any problem that can be formulated as a Gauss-
Markov or Gauss-Helmert model. Because a Gauss-Helmert model can be expressed as a Gauss-Markov 
model, the discussion is restricted to the common Gauss-Markov model without loss of generality. 

The paper concludes with a comparison of the pros and cons of the hypothesis test and AICc criterion for 
multiple outliers. 

Gauss-Markov Model for Outlier Detection 
Starting from a linear or linearized functional adjustment model (observation equations) 
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𝒍 = 𝑨𝒙 + 𝒆 (1) 

with the known 𝑛 vector of observations 𝒍, the unknown 𝑛 vector of observation errors 𝒆, the unknown 𝑢 
vector of adjustment parameters 𝒙 and the known 𝑛 × 𝑢 matrix 𝑨 (matrix of observation equations), and 
from a stochastic adjustment model for normal distributed observation errors 

𝑒~𝑁(𝟎, 𝜎²𝑷−1) (2) 

with a known positive definite symmetric weight matrix 𝑷 and the a priori variance factor 𝜎², which may be 
known or unknown, for the least squares solution of the vector of residuals 

𝒗 = −𝑸𝑣𝑣𝑷𝒍 (3) 

the multivariate normal distribution 

𝒗~𝑁(𝟎, 𝜎²𝑸𝑣𝑣) (4) 

with cofactor matrix of the residuals is found 

𝑸𝑣𝑣 = 𝑷−1 − 𝑨(𝑨𝑇𝑷𝑨)−𝑨𝑇 . (5) 

The superscript minus sign symbolizes a generalized matrix inverse. It will be requested for rank-deficient 
adjustment models (e.g., free geodetic networks). If 𝑨 and 𝑷 have full column rank, then the generalized 
matrix inverse is unique and coincides with the classical matrix inverse. This model is also known as Gauss-
Markov model of geodetic adjustment. This contribution is confined to regular models, in which no singular 
matrices occur. Singular cases can be treated in an analogous manner. 

Note this was started from a linear or linearized model, while the observation equations of many geodetic 
problems like 2D or 3D networks are inherently nonlinear. The consequences for outlier detection will be 
analyzed later.  

Alternatively, one may suspect a number of 𝑛𝑔 gross errors affecting the observations. The common 

procedure is to extend the model by a 𝑛𝑔 vector of bias parameters 𝛁, accounting for those gross errors as 

𝒍 = 𝑨𝒙 + 𝑪𝛁 + 𝒆 = (𝑨 𝑪) (
𝒙
𝛁

) + 𝒆 (6) 

where 𝑪 is the 𝑛 × 𝑛𝑔 matrix relating gross errors to observations. Typically, 𝑪 consists exclusively of 

elements with values 0 and 1, whereas 1 in row 𝑖 and column 𝑘 means that the 𝑘 th gross error affects the 
𝑖th observation by its full magnitude, such that it becomes an outlier; 0 implies that this gross error does not 
affect this observation at all (Teunissen 2000, p. 37). For the sake of simplicity, it is subsequently assumed 
that 𝑪 is of such a simple type. This type of alternative model, where 𝛁 are nonrandom bias parameters, is 
known as the mean shift model [see (Lehmann 2013a) for a synopsis of possible alternative models]. 

The alternative model [Eq. (6)] is now opposed to the null model [Eq (1)]. Note that setting up the alternative 
model (6) requires knowledge of the number of suspected outliers 𝑛𝑔 and of the subset of affected outlying 

observations, coded in matrix 𝑪. If this knowledge is not available then many alternative models in parallel 
can be set up as follows: 

𝒍 = 𝑨𝒙 + 𝑪𝑗𝛁𝑗 + 𝒆 = (𝑨 𝑪𝑗) (
𝒙
𝛁𝑗

) + 𝒆,   𝑗 = 1, … , 𝑚 (7) 

where each 𝑪𝑗 is a 𝑛 × 𝑛𝑔,𝑗 matrix; and each 𝛁𝑗 is a 𝑛𝑔,𝑗 vector. The theoretical maximum number of 

alternative models depends on the total number of observations 𝑛 and the assumed maximum number of 
suspected outliers 𝑛𝑔,𝑚𝑎𝑥, and is given by 

𝑚 = ∑ (
𝑛

𝑛𝑔
)

𝑛𝑔,𝑚𝑎𝑥

𝑛𝑔=1

 

(8) 
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For example, one may get 𝑚 = 𝑛 alternative models with one outlier (𝑛𝑔,max = 1). This approach is 

theoretically only limited by the total redundancy 𝑟 = 𝑛 − 𝑢: The total number of parameters 𝑢 + 𝑛𝑔,max of 

the alternative model must not exceed the number of observations 𝑛. Therefore, 𝑛𝑔,max < 𝑟 is required. 

From practical considerations of reliability, the maximum number of suspected outliers should be much 
smaller. There may be other practical reasons to strongly restrict the set of alternative models; e.g., there 
may be pairs of observations being either both outliers or not. 

It appears to be sufficient to specify only alternative models [Eq. (7)] with 𝑛𝑔,𝑗 = 𝑛𝑔,max because the case of 

𝑛𝑔,𝑗 < 𝑛𝑔,max is somehow contained in Eq. (7) by ∇𝑗 having some zero components. But this is not possible 

because practically one would never get an estimate of ∇𝑗 with zero components. Consequently, one would 

have to discard 𝑛𝑔,max observations, i.e., the worst case scenario would always apply. 

The problem is now to decide, which model applies to the observations: the null model [Eq. (1)], requiring 
the observations to be free of outliers, or the alternative model [Eq. (6)] or one of the alternative models 
[Eq. (7)]. A problem of such a type is often called model selection problem. 

Outlier Model Selection by Multiple Hypothesis Test 

Individual Test 
The common approach to model selection is performing a statistical hypothesis test. The standard procedure 
is listed as follows: 

1. The null hypothesis 𝐻0 supposes that the observations correspond to the null model [Eq. (1)]. 
2. The alternative hypothesis 𝐻𝐴 supposes that the observations correspond to the alternative model 

[Eq. (6) or Eq. (7)]. 
3. A test statistic 𝑇 is invoked, that is a function of the observations 𝑙, which is able to separate 

between the two hypotheses. Hopefully, it is even best able to do this, but such 𝑇 is often not 
possible to derive rigorously. Typically, if 𝐻0 is false then 𝑇 tends to assume extreme values. 

4. A probability of Type I decision error 𝛼 (probability that a true 𝐻0 is rejected) is defined, typically 
𝛼=0.10, 0.05 or 0.01. 

5. The probability distribution of 𝑇 is derived under the condition that 𝐻0 is true, and the critical value 
𝑐 is obtained as (1 − 𝛼) quantile of this distribution. 

6. The critical value 𝑐 is compared to the value of 𝑇(𝑙) computed from the actual observations 𝑙. If 𝑇(𝑙) 
exceeds 𝑐, then 𝐻0 is rejected. In this case one must assume the observations to contain outliers; 
otherwise, the null model is used to process the observations. 

For Eq. (6) the optimal test statistics were derived by Baarda (1968) and Pope (1972) as 

𝑇prio =
�̂�𝑇𝑸∇̂∇̂

−1�̂�

𝑛𝑔𝜎2
=

𝒗𝑇𝑷𝑪(𝑪𝑇𝑷𝑸𝑣𝑣𝑷𝑪)−1𝑪𝑇𝑷𝒗

𝑛𝑔𝜎2
 

 

(9a) 

 

𝑇post =
�̂�𝑇𝑸�̂��̂�

−1�̂�

𝑛𝑔�̂�′2
=

𝒗𝑇𝑷𝑪(𝑪𝑇𝑷𝑸𝑣𝑣𝑷𝑪)−1𝑪𝑇𝑷𝒗

𝑛𝑔�̂�′2
 

(9b) 

where Eqs. (9a) and (9b) correspond to the cases that the a priori variance factor 𝜎² is known and unknown, 

respectively; 𝑪 is supposed to guarantee regularity of 𝑪𝑇𝑷𝑸𝑣𝑣𝑷𝑪; �̂� denotes the least squares estimate of 𝛁 
in Model Eq. (6); 𝑸�̂��̂� is the corresponding cofactor matrix; 𝒗 and 𝑸𝑣𝑣 are computed from Eqs. (3) and (5) as 
before; and �̂�′2 denotes the external estimate of the variance factor 𝜎2, i.e., excluding the outlier-suspected 
observations (Heck 1981): 
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�̂�′2 =
�̅�𝑇𝑷�̅�

𝑛 − 𝑢 − 𝑛𝑔
=

𝒗𝑇𝑷𝒗 − �̂�𝑇𝑸�̂��̂�
−1�̂�

𝑛 − 𝑢 − 𝑛𝑔
 

(10) 

The advantage of this estimate is that under the condition that 𝐻0 is true, 𝑇𝑝𝑜𝑠𝑡 is known to follow an 𝐹 

distribution, in the same way as 𝑇𝑝𝑟𝑖𝑜: 

𝑇𝑝𝑟𝑖𝑜|𝐻0~𝐹𝑛𝑔,∞ (11a) 

 

𝑇post|𝐻0~𝐹𝑛𝑔,𝑛−𝑢−𝑛𝑔
 (11b) 

Here, 𝐹𝑛,𝑚 denotes the central 𝐹 distribution with 𝑛 and 𝑚 degrees of freedom. Using the common internal 

estimate of 𝜎2 in Eq. (9b) one would get the more cumbersome 𝜏-distribution (Pope 1972). Note that if one 
uses the second expressions for 𝑇prio in Eq. (9a) or 𝑇𝑝𝑜𝑠𝑡 in Eq. (9b), it is not necessary to solve Eq. (6) 

explicitly. Under the alternative hypothesis the test statistics follow a non-central 𝐹 distribution, but the 
non-centrality parameter is not known. 

In the case 𝑛𝑔 = 1 (single outlier) one must set 

𝑪 = (0 0 0 ⋯ 0 1 0 ⋯ 0 0)𝑇 (12) 

and if additionally 𝑷 is a diagonal matrix, 𝑇prio in Eq. (9a) and 𝑇post in Eq. (9b) equal the squares of the well-

known normalized and externally studentized residuals of the 𝑗 th observation, respectively, when 𝑗 is the 
index of the element 1 of 𝐶 (Teunissen 2000, p. 37): 

𝑇prio =
𝑣𝑗

2

𝜎²𝑞𝑣𝑣,𝑗
 

(13a) 

𝑇post =
𝑣𝑗

2

�̂�′2𝑞𝑣𝑣,𝑗
 

(13b) 

where 𝑞𝑣𝑣,𝑗  denotes the 𝑗 th diagonal element of 𝑄𝑣𝑣 in Eq. (5). 

Generally, 𝑇prio in Eq. (9a) and 𝑇post in Eq. (9b) are compared to the computed critical values of the tests 

𝑐prio = 𝐹𝐹
−1(1 − 𝛼, 𝑛𝑔, ∞) (14a) 

𝑐post = 𝐹𝐹
−1(1 − 𝛼, 𝑛𝑔, 𝑛 − 𝑢 − 𝑛𝑔) (14b) 

where 𝐹𝐹
−1(∙, 𝑛, 𝑚) denotes the inverse probability function (quantile function) of the 𝐹 distribution with 𝑛 

and 𝑚 degrees of freedom. 

Multiple Test 
Practically, there is often no knowledge of the number of suspected outliers 𝑛𝑔 and of the affected outlying 

observations. Consequently, one has to deal with multiple alternative hypotheses 𝐻𝐴,𝑗, 𝑗 = 1, … , 𝑚 in 

parallel. This requires a multiple hypothesis test, which, in principle, is a set of 𝑚 standard hypotheses tests 
𝐻0 vs. 𝐻𝐴,𝑗  with test statistics 𝑇𝑗 and critical values 𝑐𝑗, 𝑗 = 1, … , 𝑚. If in any of the 𝑚 tests 𝑐𝑗 is exceeded by 

𝑇𝑗, then 𝐻0 is rejected: 

Reject 𝐻0 if 𝑇1 > 𝑐1 or 𝑇2 > 𝑐2 or … or 𝑇𝑚 > 𝑐𝑚 (15) 

In this case one must assume the observations to contain outliers and reject them. Otherwise, the null 
model [Eq. (1)] is used to compute estimates of the desired quantities. 

The test statistics for the alternative models [Eq. (7)] are derived from Eqs. (9a) and (9b) as 
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𝑇prio,𝑗 =
�̂�𝑗

𝑇𝑸�̂��̂�,𝑗
−1 �̂�𝑗

𝑛𝑔,𝑗𝜎2
=

𝒗𝑇𝑷𝑪𝑗(𝑪𝑗
𝑇𝑷𝑸𝑣𝑣𝑷𝑪𝑗)−1𝑪𝑗

𝑇𝑷𝒗

𝑛𝑔,𝑗𝜎2
 

(16a) 

𝑇post,𝑗 =
�̂�𝑗

𝑇𝑸�̂��̂�,𝑗
−1 �̂�𝑗

𝑛𝑔,𝑗�̂�𝑗
′2 =

𝒗𝑇𝑷𝑪𝑗(𝑪𝑗
𝑇𝑷𝑸𝑣𝑣𝑷𝑪𝑗)−1𝑪𝑗

𝑇𝑷𝒗

𝑛𝑔,𝑗�̂�𝑗
′2  

(16b) 

𝑗 = 1, … , 𝑚  

The external estimate �̂�𝑗
′2 of 𝜎2 depends on 𝑗 via 

�̂�𝑗
′2 =

𝒗𝑇𝑷𝒗 − �̂�𝑗
𝑇𝑸�̂��̂�,𝑗

−1 �̂�𝑗

𝑛 − 𝑢 − 𝑛𝑔,𝑗
 

(17) 

Roughly speaking, the risk of rejecting a true 𝐻0 in the multiple hypothesis test is now 𝑚-fold: The undesired 
random event “reject a true 𝐻0” can occur in any of the 𝑚 tests. Let the probability of rejecting a true 𝐻0 in 
test 𝑗 be 𝛼𝑗 (the so-called experimentwise error rate) and let 𝛼𝑗 ≪ 1. Furthermore, assume the random 

events “reject a true 𝐻0 in test 𝑗” to be approximately statistically independent (see discussion below). Then 
the total probability of rejecting a true 𝐻0 in the multiple hypothesis test (the so-called familywise error rate) 
is 

𝛼 ≈ 1 − ∏(1 − 𝛼𝑗) ≈ ∑ 𝛼𝑗

𝑚

𝑗=1

𝑚

𝑗=1

 
(18) 

The common approach is to simply choose  

𝛼𝑗 ∶= 𝛼/𝑚 (19) 

which is called the Bonferroni equation (Abdi 2007). 

Unfortunately, the test statistics [Eqs. (16a) and (16b)] and consequently the random events “reject a true 
𝐻0 in test 𝑗” are statistically dependent. In the case 𝑛𝑔 = 1 (single outlier) the dependency is caused by 𝑸𝑣𝑣 

being a nondiagonal matrix. Lehmann (2012) has shown how to improve this situation by using a Monte-
Carlo type approach. In the other cases the dependency is even stronger because in contrast to Eqs. (13a) 
and (13b) the test statistics Eqs. (16a) and (16b) involve many or all residuals 𝑣𝑘 simultaneously. As a remedy 
one can propose to weaken Eq. (19) by choosing a tuning parameter 𝛼′ such that 

𝛼𝑗 ∶= 𝛼′ (20) 

which makes sense even without the required independence. By Eq. (20) the total risk of rejecting a true 𝐻0 
is portioned equally to the individual tests, although they do not exactly add up to 𝛼. Nonetheless, 𝛼′ should 
be chosen smaller for 𝑚 getting larger. Next, a method to avoid the explicit choice of 𝛼′ is proposed. 

Some discussions on correlation issues among outlier test statistics can be found in Wang et al. (2012) and 
Wang and Knight (2012). 

The critical values are now computed as 

𝑐prio,𝑗 = 𝐹𝐹
−1(1 − 𝛼′, 𝑛𝑔,𝑗, ∞) (21a) 

𝑐post,𝑗 = 𝐹𝐹
−1(1 − 𝛼′, 𝑛𝑔,𝑗, 𝑛 − 𝑢 − 𝑛𝑔,𝑗) (21b) 

𝑗 = 1, … , 𝑚  
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Note that 𝑐prio,𝑗, 𝑐post,𝑗 depend on 𝑗 only via 𝑛𝑔,𝑗. This shows that for the subset of individual tests with 

identical 𝑛𝑔,𝑗 one can also get identical critical values 𝑐𝑗 = 𝑐 in Eqs. (21a) and (21b). Thus, it is sufficient to 

compare them only with the maximum of the related test statistics within this subset 

Reject 𝐻0 if max
𝑗

𝑇𝑗 > 𝑐 (22) 

This procedure is generally recommended in geodetic outlier detection, e.g., by Knight et al. (2010).  

In the simple case 𝑛𝑔 = 1, one gets from Eqs. (13a) and (13b) and Eq. (22) the well-known tests of the 

(square of the) normalized and studentized residuals, respectively: 

Reject 𝐻0 if max
𝑗=1,…,𝑛

𝑣𝑗
2

𝜎²𝑞𝑣𝑣,𝑗
> 𝑐𝑝𝑟𝑖𝑜 

(23a) 

Reject 𝐻0 if max
𝑗=1,…,𝑛

𝑣𝑗
2

�̂�𝑗
′2𝑞𝑣𝑣,𝑗

> 𝑐𝑝𝑜𝑠𝑡 
(23b) 

These are the standard individual tests for outliers in geodetic adjustment. 

However, if in a multiple test there are individual tests with different 𝑛𝑔,𝑗 then Eq. (20) is not mandatory and 

Eq. (22) does not apply anyway. One could argue that the risk of rejecting a true 𝐻0 should be particularly 
small when 𝑛𝑔,𝑗 is large because practically one should especially avoid running the risk of discarding a large 

number of good observations. On the other hand, if there are indeed 𝑛𝑔,𝑗 gross errors then they must be 

rather extreme to be rejected. The problem of finding a best tradeoff can be solved by Monte-Carlo based 
data snooping as suggested by Lehmann and Scheffler (2011), but this issue will not be brought up here. For 
the sake of simplicity Eq. (20) is used here instead. 

Selection of the Alternative Model: p-Value Approach 
If 𝑛𝑔 is fixed and known then Eq. (22) applies, and it is intuitively clear, which alternative model must be 

used: It is Eq. (7) with the index 𝑗 = 𝑗max, for which the maximum in Eq. (22) is attained. This makes sense 
from the following point of view. If one would decrease α’ in (20), whose value is always to some degree 
debatable, and in this way increase 𝑐𝑗 = 𝑐 in Eqs. (21a) and (21b) beyond the second largest 𝑇𝑗 in Eq. (22) 

then one would end up with 𝐻0 rejected only in test 𝑗max, e.g., if 𝑛𝑔 = 1 is known then the 𝑗max th 

observation is rejected as the single outlier in Eqs. (23a) and (23b). (Nonetheless, this apparently simple 
truism does not strictly follow from the theory of statistical hypothesis testing: one rejects 𝐻0 in favor of 𝐻𝐴, 
but this time there are multiple alternative hypotheses, and it is immediately unknown which is the 
favorable one.) 

Unfortunately, this reasonable argument applied to Eq. (22) does not carry over to the general case Eq. (15), 
in which no maximum is taken. Rather, it is an exception that in Eq. (15) 𝐻0 is rejected in exactly one test 𝑗, 
such that the observations selected by 𝑪𝑗 are clearly identified as outliers. If 𝐻0 is rejected in many tests 

then one faces the problem of which observations should be rejected as outliers. This shows that the 
detection of multiple outliers with 𝑛𝑔 unknown by a hypothesis test is not straightforward. 

It is suggested to follow the earlier line of reasoning also in Eq. (15): if required, one decreases α’ up to that 
point, where only one 𝐻0 in Eq. (15) is still rejected. This point is found as follows. To each 𝑇𝑗 one assigns the 

so-called 𝑝-value. Although not so popular in geodesy, this is a well-known statistical quantity. It denotes the 
imaginary error rate 𝛼′ = 𝑝𝑗, at which 𝑇𝑗 = 𝑐𝑗 would hold, i.e., the decision of the individual test is balancing 

on a knife’s edge. 

Hence, Eqs. (21a) and (21b) have to be solved for 𝛼′ = 𝑝𝑗  getting 

𝑝prio,𝑗 = 1 − 𝐹𝐹(𝑇prio,𝑗, 𝑛𝑔,𝑗, ∞) (24a) 
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𝑝𝑝𝑜𝑠𝑡,𝑗 = 1 − 𝐹𝐹(𝑇𝑝𝑜𝑠𝑡,𝑗, 𝑛𝑔,𝑗, 𝑛 − 𝑢 − 𝑛𝑔,𝑗) (24b) 

The significance level α’, at which exactly one 𝐻0 in Eq. (15) is rejected, is between the smallest and the 
second smallest 𝑝-value [Eqs. (24a) and (24b)], and the rejection is triggered by 𝑇𝑗 > 𝑐𝑗, with 𝑗 being the 

index of the smallest 𝑝-value. 

As a result one obtains the rule 

Reject 𝐻0 if min
𝑗=1,…,𝑚

𝑝𝑗 < 𝛼′ (25a) 

and accept 𝐻𝐴,𝑗  with 𝑗 denoting the index, at which the minimum in Eq. (25a) is attained. Hence, the 

observations selected by 𝐶𝑗 are rejected as outliers. In practice, it is recommended to exchange 𝛼′ and 𝑝𝑗  by 

their logarithmic representations to avoid numerical underflow in case of large values of 𝑇prio,𝑗 or 𝑇post,𝑗, and 

Eq. (25a) reads 

Reject 𝐻0 if min
𝑗=1,…,𝑚

log 𝑝𝑗 < log 𝛼′ (25b) 

Using a Global Model Test 
The value of the experimentwise error rate 𝛼′ in Eq. (20) decides, if 𝐻0 is rejected or not via Eq. (25a) or Eq. 
(25b). It does not decide which 𝐻𝐴,𝑗 is accepted. Since 𝛼′ should become smaller as 𝑚 gets larger, it might be 

difficult to choose a suitable value. In this respect a so-called global model test, also known as overall model 
test, is welcome. Unfortunately, this test is only possible, if 𝜎² is known. 

In data snooping it is often recommended to start the outlier detection procedure with such a global model 
test. This step is often called detection. The test statistic of this test is 

𝑇global =
𝒗𝑇𝑷𝒗

(𝑛 − 𝑢)𝜎²
 

(26) 

 Its distribution is 

𝑇global|𝐻0~𝐹𝑛−𝑢,∞ (27) 

(equivalent to a 𝜒² distribution with 𝑛 − 𝑢 degrees of freedom), which together with an error rate 𝛼 gives 
rise to a critical value 

𝑐global = 𝐹𝐹
−1(1 − 𝛼, 𝑛 − 𝑢, ∞) (28) 

The rationale of this test is that its test statistic is optimal for a large number of alternative hypotheses 𝐻𝐴,𝑗, 

namely those with 𝑛𝑔,𝑗 = 𝑛 − 𝑢 (Teunissen 2000): 

𝑇prio,𝑗 =
�̂�𝒋

𝑻𝑸�̂��̂�,𝒋
−𝟏 �̂�𝒋

𝑛𝑔,𝑗𝜎2
=

𝒗𝑇𝑷𝒗

(𝑛 − 𝑢)𝜎²
= 𝑇global = const for all 𝑗 

(29) 

If 𝑇global > 𝑐global, then 𝐻0 is rejected and it remains to identify the outliers. This second step of data 

snooping is, consequently, called identification. It is a multiple test with all possible alternative hypotheses 
as proposed earlier. 

It can be difficult to suitably adapt the error rates of the detection and the identification step such that any 
detected outliers are really identified (Hahn et al. 1989, 1991). Here it is proposed to use the 𝑝-value 
approach [Eqs. (25a) and (25b)] in such a way that one accepts 𝐻𝐴,𝑗  with 𝑗 denoting the index, at which the 

minimum in Eqs. (25a) and (25b) is attained, regardless of 𝛼′. The advantage is that there is no need to 
specify 𝛼′, but only 𝛼 in Eq. (28). The latter has a much clearer meaning: it is the familywise error rate of the 
multiple test, because if 𝐻0 holds true then it will be rejected exactly with probability 𝛼. Also, 𝛼 must not 
depend on 𝑚, like 𝛼′ does. 
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Once it has been decided by the global test that 𝐻0 must be rejected, the minimum 𝑝-value in Eqs. (25a) and 
(25b) identifies the outliers. Therefore, the number of identified outliers does not depend on 𝛼! If 𝛼 is 
chosen very large then outliers are always detected, but no larger number of them. 

Example: Fit of a Straight Line 
It is useful to illustrate the theoretical considerations with a simple practical example. The straight line fit 
with 𝑛 equidistant data points was chosen. This model is used in various fields of engineering sciences by 

 Extracting a linear trend from a time series; 

 Fitting a linear calibration function for calibration of measuring devices; and 

 Surveying points on a spatial straight line, which deviate from a straight line caused by observation 
errors. 

Nonetheless, it is used here merely for illustration of the theory. A truly practical application is given later. 

With error-free abscissae 1, … , 𝑛 the observations in Eq. (1) read 

𝑙𝑖 = 𝑥1 + 𝑖 ∙ 𝑥2 + 𝑒𝑖, 𝑖 = 1, … , 𝑛 

One can see that 𝑢 = 2. Let 𝑛 = 10, 𝑷 = 𝑰. Furthermore, let 𝛼 = 0.01 and 𝜎² be known. From practical 
considerations let 𝑛𝑔,max = 3. 

Start with a global test. If 

𝑇global =
𝑣1

2 + ⋯ + 𝑣10
2

(10 − 2)𝜎²
> 𝐹𝐹

−1(1 − 𝛼, 10 − 2, ∞) = 2.51 
(30) 

holds then outliers are detected und must be identified by the multiple test as follows: 

1. Test of 𝑛𝑔 = 1 (single outlier in unknown place): Here one can simply identify the outlier by Eq. (23a), i.e., 

by the index, where the maximum in 

𝑇1 =
1

𝜎²
max (

𝑣1
2

0.655
,

𝑣2
2

0.752
,

𝑣3
2

0.824
,

𝑣4
2

0.873
,

𝑣5
2

0.897
,

𝑣6
2

0.897
, … ,

𝑣10
2

0.655
) 

(31) 

is attained. In the denominators of Eq. (31) the diagonal elements of 𝑄𝑣𝑣 are found in Eq. (5). 

Outer residuals 𝑣1, 𝑣10 do not need to be so large in magnitude to be identified as an outlier. The rational of 
this is that a gross error in the outer observation would result in a residual of only a smaller size caused by 
the leverage effect. An observation of such a kind is called leverage observation (Rousseeuw and Leroy 
1987).  

2. Test of 𝑛𝑔 = 2 (pair of outliers in unknown place): (
10
2

) = 45 pairs of observations can be built. The more 

general form [Eq. (22)] of the multiple test is used: The index, where 

𝑇2 =
1

2𝜎²
max ((

𝑣1

𝑣2
)

𝑇

(
0.655 −0.291

−0.291 0.752
)

−1

(
𝑣1

𝑣2
) , … , (

𝑣9

𝑣10
)

𝑇

(
0.752 −0.291

−0.291 0.655
)

−1

(
𝑣9

𝑣10
)) 

(32) 

is attained, identifies the pair of outliers. The 2 × 2 matrices in Eq. (32) are submatrices of 𝑸𝑣𝑣 in Eq. (5). 

3. Test of 𝑛𝑔 = 3 (triplet of outliers in unknown place): (
10
3

) = 120 triplets of observations can be built. The 

identification is by 

𝑇3 =
1

3𝜎²
max ((

𝑣1

𝑣2

𝑣3

)

𝑇

(
0.655 −0.291 −0.236

−0.291 0.752 −0.206
−0.236 −0.206 0.824

)

−1

(

𝑣1

𝑣2

𝑣3

) , … ) 

(33) 
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4. Test of 𝑛𝑔,max = 3 (single outlier or pair or triplet of outliers in unknown place): 𝑚 = 10 + 45 + 120 =

175. The 𝑝-value approach from Eqs. (25a) and (25b) is used 

𝑝1 = 1 − 𝐹𝐹(𝑇1, 1, ∞) 

𝑝2 = 1 − 𝐹𝐹(𝑇2, 2, ∞) 

𝑝3 = 1 − 𝐹𝐹(𝑇3, 3, ∞) 

(34) 

The index, where 

min(𝑝1, 𝑝2, 𝑝3) (35) 

is attained, identifies the number of outliers. 

For a numerical example, let 𝒍 = (−5,0,0,0,0,0,0,0,3,5)𝑇𝜎. The residuals become 𝒗 =
(2.27, −2.05, −1.38, −0.71, −0.04, 0.64, 1.31, 1.98, −0.35, −1.67)𝑇𝜎. 

The global test [Eq. (30)] detects outliers with 𝑇global = 2.60. 

1. The first observation is identified as the detected outlier by Eq. (31) with 𝑇1 = 7.89. 

2. The first and the tenth observation are identified as a pair of outliers by Eq. (32) with 𝑇2 = 7.76. 

3. The first, ninth and tenth observation are identified as a triplet of outliers by Eq. (33) with 𝑇3 = 6.92. 

4. The 𝑝-values 

𝑝1 = 1 − 𝐹𝐹(7.89,1, ∞) = 0.00497 

𝑝2 = 1 − 𝐹𝐹(7.76,2, ∞) = 0.00043 

𝑝3 = 1 − 𝐹𝐹(6.92,3, ∞) = 0.00012 

attain their minimum at 𝑛𝑔,𝑗 = 3. Therefore, the first, ninth, and tenth observation are finally identified as a 

triplet of outliers by Eq. (35). 

Outlier Model Selection by Consecutive Hypothesis Tests 
The easiest and also most common way of applying data snooping to the detection of multiple outliers is 
consecutive detection, identification and rejection of single outliers. Here an iterative procedure is executed, 
assuming 𝑛𝑔 = 1 in each iteration step and continuing until no further outlier is detected. If in Eq. (23a) or 

Eq. (23b) the maximum is attained at index 𝑗 and exceeds 𝑐prio or 𝑐post then the 𝑗 th observation is rejected 

as a single outlier. Then one would go on with a test of the rest of the observations for a further single 
outlier. From a rigorous point of view this approach is invalid because in the previous test it has been 
assumed that 𝑛𝑔 = 1! One should not both discard this assumption and retain the result of the test based on 

it. 

However, as shown below, also the proposed multiple test has weaknesses, and it could turn out that they 
are practically more severe. 

Nonetheless, the test in each iteration also is a multiple test with 𝑚 = 𝑛 alternative hypotheses. But they 
are stochastically less dependent, such that in each iteration Eq. (18) is often a good approximation.  

Unlike in the 𝑝-value approach, the number of outliers finally detected here depends on the choice of the 
error rate 𝛼: A large 𝛼 means that many outliers are detected, perhaps spuriously, and vice versa. 
Fortunately, there are some reports of long experiences with the choice of 𝛼, e.g., in Mierlo (1983). A global 
test is not required, but often used if 𝜎² is known. 
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Example: Fit of a Straight Line, Consecutive Test 
After discarding the observation, where the maximum in Eq. (31) is attained, the procedure is repeated with 
𝑛: = 𝑛 − 1, starting with a global test. In the previous numerical example the first observation has been 
identified as the detected single outlier by Eq. (31). Repeating the global test with the remaining nine 
observations, again with 𝛼 = 0.01, does not reject 𝐻0. Therefore, no further outlier is detected. (If the 
individual tests are done, nonetheless, the tenth observation would be identified as the next outlier.) 

This disagreement with the earlier result shows the dilemma of the multiple hypothesis tests. 

Outlier Model Selection by Information Criteria 

AICc 
Among all 𝑚 + 1 models [Eqs. (1) and (7)] under consideration the multiple hypotheses test privileges the 
null model [Eq. (1)] in such a way that it is tested against each alternative model [Eq. (7)]. This is done 
because for each alternative model a different test statistic [Eq. (16a) or Eq. (16b)] is optimal. The 
distribution of the test statistic must be known, and this is only fulfilled for the null model. (For the 
alternative models the test statistic follows a non-central 𝐹 distribution, but the non-centrality parameter is 
not known.) 

From information theory there are different approaches of model selection based on information criteria. 
The oldest and best known is the AIC (Akaike 1974): 

𝐴𝐼𝐶 = 2𝑘 − 2 log 𝐿(�̂�;  𝒍) (36) 

where 𝐿 denotes the likelihood function of the model, which is maximized by the maximum likelihood 

estimate �̂� of the 𝑘 vector of parameters 𝜽 with respect to the 𝑛 vector of observations 𝒍. The AIC states: 
among all models under consideration the one with the least AIC is to be selected. It has high likelihood and 
at the same time few 𝑘 parameters. If different models give AIC values very close to the minimum, it is 
generally recommended to avoid the selection, if possible. 

A corrected version of AIC is 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

(37) 

which is supposed to work better for small sample sizes. If 𝑛 is small or 𝑘 is large then AICc is strongly 
recommended rather than AIC. Because AICc converges to AIC as 𝑛 gets large, AICc generally should be used 
regardless (Burnham and Anderson 2004). Note that 𝜽 should comprise all parameters, i.e., not only those in 
𝑥, ∇, but also 𝜎², if it is unknown. 

For Eq. (1) in combination with Eq. (2) the AICc assumes the form 

𝐴𝐼𝐶𝑐prio,0 = 2𝑢 +
2𝑢(𝑢 + 1)

𝑛 − 𝑢 − 1
+

𝒗𝑇𝑷𝒗

𝜎2
+ 𝐶prio 

(38a) 

𝐴𝐼𝐶𝑐post,0 = 2(𝑢 + 1) +
2(𝑢 + 1)(𝑢 + 2)

𝑛 − 𝑢 − 2
+ 𝑛 ∙ log (

𝒗𝑇𝑷𝒗

𝑛
) + 𝐶post 

(38b) 

for known and unknown variance factor σ2, respectively. 𝐶prio and 𝐶post denote constant terms, neither 

depending on 𝑢, nor on 𝑣, such that they are of no interest when selecting the minimum. A derivation of Eq. 
(38b) is given in the Appendix. Here, 𝐴𝐼𝐶𝑐 measures fit of the data via the third term and penalizes models 
with too many parameters via the first and second terms. Via the third term in Eq. (38a) there is a 
relationship between 𝐴𝐼𝐶𝑐prio,0 and 𝑇global in Eq. (26) 



13 Postprint of J.Surv.Eng. 142(4), November 2016, DOI 10.1061/(ASCE)SU.1943-5428.0000189 

 

𝐴𝐼𝐶𝑐prio,0 = 2𝑢 +
2𝑢(𝑢 + 1)

𝑛 − 𝑢 − 1
+ (𝑛 − 𝑢)𝑇global + 𝐶prio 

(38c) 

From this equation it can be concluded that, if the global test is positive then AICc (and also AIC) for the null 
model is small. This makes it likely that this model is selected, such that the observations are declared free of 
outliers. 

Analogously, for Eq. (7) 

𝐴𝐼𝐶𝑐prio,𝑗 = 2(𝑢 + 𝑛𝑔,𝑗) +
2(𝑢 + 𝑛𝑔,𝑗)(𝑢 + 𝑛𝑔,𝑗 + 1)

𝑛 − 𝑢 − 𝑛𝑔,𝑗 − 1
+

𝒗𝑇𝑷𝒗 − �̂�𝒋
𝑻𝑸�̂��̂�,𝒋

−𝟏 �̂�𝒋

𝜎²
+ 𝐶prio 

(39a) 

𝐴𝐼𝐶𝑐post,𝑗 = 2(𝑢 + 𝑛𝑔,𝑗 + 1) +
2(𝑢 + 𝑛𝑔,𝑗 + 1)(𝑢 + 𝑛𝑔,𝑗 + 2)

𝑛 − 𝑢 − 𝑛𝑔,𝑗 − 2
+ 𝑛 ∙ log (

𝒗𝑇𝑷𝒗 − �̂�𝒋
𝑻𝑸�̂��̂�,𝒋

−𝟏 �̂�𝒋

𝑛
)

+ 𝐶post 

(39b) 

Comparing Eqs. (38a) and (39a) 

𝐴𝐼𝐶𝑐prio,𝑗 = 𝐴𝐼𝐶𝑐prio,0 + terms(𝑛𝑔,𝑗) − 𝑛𝑔,𝑗𝑇prio,𝑗 (40) 

Therefore, in the set of alternative models [Eq. (7)] having the same 𝑛𝑔,𝑗, the one with maximum 𝑇𝑝𝑟𝑖𝑜,𝑗 has 

minimum 𝐴𝐼𝐶𝑐prio,𝑗. This proves that for fixed 𝑛𝑔,𝑗  the model selection by 𝑇prio,𝑗 and 𝐴𝐼𝐶𝑐prio,𝑗 yields 

identical results. Only the preference of more or less outliers is different. In contrast, the model selection by 
𝑇post,𝑗 and 𝐴𝐼𝐶𝑐post,𝑗 can be different even for fixed 𝑛𝑔,𝑗.  

Example: Fit of a Straight Line Continued 
The computation of the straight line fit is resumed. As before, it is restricted to the case of known variance 
factor 𝜎2. From Eq. (38a) 

𝐴𝐼𝐶𝑐0 − 𝐶prio = 4 +
12

7
+

𝒗𝑇𝒗

𝜎2
= 5.7 + (𝑛 − 𝑢)𝑇global = 26.5 

When alternative models are considered, Eq. (39a) needs to be evaluated 

1. Test of 𝑛𝑔 = 1 (single outlier in unknown place): The candidate model is the one that identifies the first 

observation as an outlier 

𝐴𝐼𝐶𝑐1 − 𝐶prio = 6 +
24

6
+

𝒗𝑇𝒗 −
𝑣1

2

0.655
𝜎2

= 𝐴𝐼𝐶𝑐0 − 𝐶prio + 4.3 − 𝑇1 = 22.9 

2. Test of 𝑛𝑔 = 2 (pair of outliers in unknown place): The candidate model is the one that identifies the first 

and the tenth observation as outliers 

𝐴𝐼𝐶𝑐2 − 𝐶prio = 8 +
40

5
+

1

𝜎2
(𝒗𝑇𝒗 − (

𝑣1

𝑣10
)

𝑇

(
0.655 0.145
0.145 0.655

)
−1

(
𝑣1

𝑣10
)) 

= 𝐴𝐼𝐶𝑐0 − 𝐶prio + 10.3 − 2𝑇2 = 21.2 

3. Test of 𝑛𝑔 = 3 (triplet of outliers in unknown place): The candidate model is the one that identifies the 

first, ninth, and tenth observations as outliers 

𝐴𝐼𝐶𝑐3 − 𝐶prio = 10 +
60

4
+

1

𝜎2 (𝒗𝑇𝒗 − (

𝑣1

𝑣9

𝑣10

)

𝑇

(
0.655 0.091 0.145
0.091 0.752 −0.291
0.145 −0.291 0.655

)

−1

(

𝑣1

𝑣9

𝑣10

)) 
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= 𝐴𝐼𝐶𝑐0 − 𝐶prio + 19.3 − 3𝑇3 = 25.0 

4. Test of 𝑛𝑔,max = 3 (single outlier or pair or triplet of outliers in unknown place): The minimum of AICc is 

attained at 𝑛𝑔 = 2. Consequently, the first and the tenth observation are identified as a pair of outliers. 

For the sake of completeness one mentions that 𝐴𝐼𝐶𝑐4 − 𝐶prio = 40 and the minimum of AIC without 

correction is attained at 𝑛𝑔 = 3, which would indicate that the ninth observation is also an outlier. 

Using the Alternative Models with Suspected Outliers Discarded 
It is well known that one can benefit from the special structure of 𝐶 by computing the solution of Eq. (7) in 
such a way that the outliers and the extra bias parameters ∇ are discarded and standard least squares 
estimation with the remaining observations is done. Neither the redundancy of the Eq. (7), nor the test 
statistics [Eqs. (16a), (16b) and (26)] or their distributions would change in any way. Therefore, when doing 
outlier detection by hypothesis tests in the framework of data snooping, this approach is practically 
equivalent.  

Surprisingly, this is not so with AIC and AICc. In Eqs. (39a) and (39b) it is obvious that AICc depends on the 
number of observations and parameters not only via the redundancy, as the test statistics [Eqs. (16a), (16b) 
and (26)] do. This is a peculiar phenomenon not yet investigated in the literature. As shown in Table 1, in the 
example of the straight line fit, there may even be a different optimal model: with extra bias parameters ∇ 
the first and the tenth observation were identified as a pair of outliers, but with suspected outliers 
discarded, the first, ninth, and tenth observation are identified as a triplet of outliers (Table 1). 

 

Table 1. Model Selection by AICc for the Example of the Straight Line Fit 

 With extra bias parameters ∇  With suspected outliers discarded 

𝑛𝑔 𝑘 𝑛 𝐴𝐼𝐶𝑐𝑛𝑔
− 𝐶prio  𝑘 𝑛 𝐴𝐼𝐶𝑐𝑛𝑔

− 𝐶prio 

0 2 10 26.5  2 10 26.5 

1 3 10 22.9  2 9 18.9 

2 4 10 Min = 21.3  2 8 11.6 

3 5 10 25.0  2 7 Min = 7.0 

4 6 10 40  2 6 8.0 

Note: Bold numbers indicate minima of AICc. 

Advanced Aspects 

Linearization Errors 
This paper started from a linear or linearized Gauss-Markov model, whereas the observation equations of 
many geodetic problems like 2D or 3D geodetic networks are inherently nonlinear. This has two 
consequences:  

1. The test statistics [Eqs. (9a) and (9b)] and all derived forms like Eqs. (16a) and (16b) are so-called 
likelihood ratios and as such take advantage of being the uniformly most powerful invariant (UMPI) test 
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statistics, but only in linear models (Kargoll 2007). In a nonlinear model there could be more powerful test 
statistics, but it is not possible to derive them. It is even very complicated to prove this property because the 
statistical power of such a test statistic would involve a multidimensional integral, which can generally only 
be solved numerically. Lacking results of such a computation, one can only hope that the linearization error 
does not spoil the UMPI property, such that Eqs. (9a) and (9b) are also reasonable test statistics in a 
nonlinear model. A different perspective of the same problem shows that only for linear models the matrix 
𝑨 in Eq. (1) is constant. Otherwise it is computed from the observations, also from those that are, perhaps, 
outliers.  

2. The distributional results like Eqs. (11a) and (11b) are exactly valid only in linear models. Otherwise, the 
distribution would differ slightly from an 𝐹-distribution. The critical values cannot exactly be taken from a 
statistical lookup table or computed by a standard statistical library function. A rigorous computation would 
require a multidimensional numerical integration. The necessary procedure has been worked out by 
Lehmann (2012), but is used to study a different aspect: the neglected statistical dependencies between the 
test statistics in the multiple test. If an 𝐹-distribution is used, nonetheless, the outlier detection is performed 
with an incorrect significance level. The extend, to which this lack of rigor spoils the result, depends on the 
degree of nonlinearity of the problem. In some cases it can be drastic. Consider Lehmann (2014), in which it 
is tried to detect a sinusoidal oscillation of unknown frequency in a time series, which is a seriously nonlinear 
problem. A likelihood ratio test also is applied there, but to the original nonlinear problem. Then the 
distribution of the test statistic is investigated by Monte Carlo integration. It was shown that the test statistic 
is not even approximately 𝐹-distributed. For outlier tests in geodetic networks no similar investigations exist, 
but from investigations of the parameter estimation it is known that the degree of nonlinearity increases 
with the size of the network. Now look at the information criteria. Here AICc in Eq. (37) is used as a pure 

definition. If the likelihood function 𝐿(�̂�;  𝒍) in Eq. (36), which is referred to the nonlinear model, is 
maximized by iteration, and the iteration converges to the global maximum, information criteria in Eq. (38a) 
or Eq. (38b) are computed without any linearization errors (see also the Appendix). The question would be 
whether Eq. (36) is a sufficient definition for both the linear and the nonlinear models. In the literature the 
series critics yet go in a different direction: The question is whether the balance between model complexity 
and goodness of fit is optimal both for small and large sets of observations. In summary, linearization is a 
subject insufficiently investigated for both multiple and single outlier detection. 

Computational Costs 
It became obvious that for multiple outlier detection both the multiple hypothesis tests and the information 
criteria approach are computationally expensive. The hypothesis tests involve the computation of a large 

number of test statistics [Eq. (16a) or Eq. (16b)]. The expensive step is the inversion of 𝑪𝒋
𝑻𝑷𝑸𝑣𝑣𝑷𝑪𝑗, a 

symmetric 𝑛𝑔 × 𝑛𝑔 matrix, which is sometimes not sparse. The computational complexity of such an 

operation is of the order 𝑂(𝑛𝑔
3). Compared with the 𝑢 × 𝑢 matrix to be inverted in Eq. (5), such a matrix is of 

relatively small size. However, if 𝑛𝑔,max is increasing, there is a rapidly increasing number of such matrices of 

increasing maximal dimension. For example, for 𝑛 = 100 observations, which may contain up to five 
outliers, there are 100 matrices of dimension 1 × 1; 4,950 matrices of dimension 2 × 2; 161,700 matrices of 
dimension 3 × 3; 3.9∙106 matrices of dimension 4 × 4 and 75∙106 matrices of dimension 5 × 5. If 𝑸𝒗𝒗 is not 
sparse, this would require about 1010 floating point operations, but there are great opportunities for 

improvement: Note that all 𝑛𝑔 × 𝑛𝑔 matrices are partially identical to a previous (𝑛𝑔 − 1) × (𝑛𝑔 − 1) 

matrix, except an added row and an added column, with one being the transposition of the other. This 
allows one to profit by fast block matrix inversion (Koch 1999, p. 33). The essential operation is now only a 
matrix vector multiplication of the existing inverse with the extending column vector. This reduces the 
computational costs immensely, because the computational complexity of such an operation is only of the 
order 𝑂(𝑛𝑔

2). 
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From Eq. (40) the computation of the 𝐴𝐼𝐶𝑐prio,𝑗 of an alternative model essentially requires the computation 

of the 𝐴𝐼𝐶𝑐prio,0 of the null model, which must be done only once, and the computation of 𝑇prio,𝑗. However, 

the latter is the same operation required for the multiple hypothesis tests. For 𝐴𝐼𝐶𝑐post,𝑗 only an additional 

logarithm is needed, which is not costly. This shows that the computational costs of multiple hypothesis 
tests and the information criteria are basically the same. A further opportunity of cost reduction is that not 
all possible hypotheses are tested; e.g., if two observations have very small normalized residuals [Eq. (13a)] 
or externally studentized residuals [Eq. (13b)], it is not likely that they form a pair of outliers with 𝑛𝑔 = 2. 

This allows one to skip the computation of the related test statistic. Following this line of argument allows 
the computation of only a small subset of test statistics [Eq. (16a) or Eq. (16b)]. The same argumentation is 
valid for information criteria. It would be interesting to investigate, how much the computational costs can 
be reduced, without the risk to miss the true outliers. This investigation is planned for the future. Finally, 
computer technology is recently making breathtaking progress, which will enable the detection of multiple 
outliers even more extensively. 

Geodetic Network for Monitoring of the Reference Point of a Radio Telescope 
As a truly practical application, a geodetic network is chosen. The network under consideration was 
measured in 2012 for monitoring the reference point of a radio telescope at the Geodetic Observatory 
Wettzell, Germany (Lösler et al. 2013). The instrument used was a total station TS30 from Leica Geosystems 
AG (St. Gallen, Switzerland). The observations are not simulated, but the real distances and angles measured 
are used in this monitoring campaign; therefore, it is not known for sure, which are the outliers. 

To estimate the 2D coordinates of the 10 survey pillars and the three additional tripod positions, 𝑛 = 118 
observations were selected from the campaign. The adjustment is performed as a free network adjustment. 
Three additional restrictions are introduced to compensate the resulting rank deficiency of the matrix of 
observation equations 𝑨 (Kotsakis 2012). The redundancy of the network is 77. All computations are 
performed with the variance factor known from long-standing experiences with this measurement 
technology. 

The global test [Eq. (26)] is not rejected at the 𝛼 = 0.01 level 

𝑇global =
82.735

77
= 1.07 < 𝐹𝐹

−1(1 − 𝛼, 77, ∞) = 1.41 
(41) 

This is not surprising in the light of Eq. (29), because this kind of test gets blunt, if the redundancy becomes 
large and the number of outliers and their absolute values are small. To ensure that no outliers exist, it is 
indispensable to specify an appropriate alternative model. The number of outliers 𝑛𝑔 is generally unknown. 

Furthermore, the number of alternative models [Eq. (8)] strongly depends on 𝑛 and 𝑛𝑔, e.g., (
118

6
) ≈ 3.3 ∙

109. To restrict the number of permutations, the 𝑝-value approach is used as a simple indicator, which 
selects the alternative model with min log 𝑝𝑛𝑔

. Moreover, 𝐴𝐼𝐶𝑐𝑛𝑔
 is derived for comparison as given in Eq. 

(38a). Table 2 summarizes the results of the 𝑝-value approach and 𝐴𝐼𝐶𝑐, respectively, listing the maximum 
and minimum values of all models with the same 𝑛𝑔 in agreement with the notation introduced previously. 

The strategy of Eq. (15) yields ambiguous results, because in most cases 𝑇𝑛𝑔
 exceeds the critical value 𝑐𝑛𝑔

. 

On the other hand, the 𝑝-value approach as well as the 𝐴𝐼𝐶𝑐 become minimal for 𝑛𝑔 = 3 and select the 

same alternative model; the 𝑝-value approach and the 𝐴𝐼𝐶𝑐 reject the same observations as outliers. 
Remember that they are not simulated, such that the ground truth is not known. As pointed out, the number 
of alternative models [Eq. (8)] increases dramatically. Thus, the computational costs become large due to the 
number of suspected outliers 𝑛𝑔. Moreover, the results confirm the failure of the global test in Eq. (41). 

Already for 𝑛𝑔 = 1, 𝑇1 significantly exceeds the critical value for any reasonable value for 𝛼′. This may 

motivate consecutive hypothesis tests assuming 𝑛𝑔 = 1 in each iteration 𝑖 as described earlier. The critical 

values of the test is given by Eq. (14a) and reads 
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𝑐prio = 𝐹𝐹
−1(1 − 0.01, 𝑛𝑔, ∞) = 6.635 (42) 

The results of the consecutive tests are presented in Table 3. The test statistic 𝑇1 does not exceed the critical 
value [Eq. (42)] after the third iteration and corroborates the same three dubious observations. The 
computational costs are comparatively low. 

 

Table 2. Comparison of p-Value Approach and AICc 

𝑛𝑔 (
𝑛

𝑛𝑔
) 𝑐𝑛𝑔

 𝑇𝑛𝑔
 log 𝑝𝑛𝑔

 𝐴𝐼𝐶𝑐𝑛𝑔
− 𝐶prio 

0 0 - - - 210.050 

1 118 6.635 15.013  -9.145 199.882 

2 6,903 4.605 14.698 -14.698 190.474 

3 266,916 3.782 14.178 -19.594 182.448 

4 7,673,835 3.319 11.272 -19.385 185.146 

5 174,963,438 3.017 9.5147 -19.255 188.062 

6 3,295,144,749 2.802 8.372 -19.283 190.958 

77 9.6 ∙ 1031 1.413 1.074 -1.1811 - 

Note: bold numbers indicate minima of 𝑝 value and AICc. 

 

Table 3. Results of the i Consecutive Hypothesis Tests Assuming ng = 1 

𝑖 𝑛 max 𝑇1,𝑖 

1 118 15.013 

2 117 14.382 

3 116 13.139 

4 115 2.555 

Conclusions 
The authors have discussed and applied three different approaches to multiple outlier detection: (1) the 
multiple test with 𝑝-value approach, (2) the consecutive test and (3) the information criteria approach. 
Based on the numerical examples it is not justified to conclude, which approach detects the outliers best, 
but it is demonstrated that they behave differently and sometimes even produce different results. To find 
the best approach in some practical sense, more experiences must be gained. 

The multiple test with 𝑝-value approach suffers from the presence of statistical dependencies between test 
statistics. These dependencies are amplified as the maximum number of suspected outliers increases. 
Moreover, there are implications from linearization errors also known from single outlier detection. A 
rigorous computation of critical values in multiple tests would require a Monte Carlo method following the 
line of Lehmann (2012). If such dependencies and nonlinearities are disregarded then critical values are only 
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coarse approximations and the test decisions do not have the desired low error rates. From the model 
selection point of view it is not justified that the null model plays a special role. It is tested against any 
alternative model, because only under the null hypothesis does the test statistic have a known probability 
distribution. (Under the alternative hypothesis the test statistics follow a noncentral 𝐹 distribution, but the 
noncentrality parameter is not known.) Finally, the computational costs can be extremely high, as the 
maximum number of suspected outliers increases. In the paper how to exploit numerical advantages has 
been shown such that the increase of those costs is manageable. 

On the other hand, if a global model test can be put in front, then the choice of a Type I error rate 𝛼 is 
straightforward and transparent because of the 𝑝-value approach proposed here. A tuning of error rates 
between global and individual tests can be sidestepped. 

The consecutive test is practically approved and implemented in geodetic standard software. A major 
advantage is the comparatively low computational costs. However, it is theoretically disputable, because the 
assumption of the first test (that only one outlier is present in the set of observations) is later dropped, but 
the result of the test (discarded observation) is retained. Thus, the approach has some heuristic property. 

There is the problem of computation of critical values in the presence of statistical dependencies, but not as 
severe as in the multiple test with 𝑝-value approach. Furthermore, the number of detected outliers depends 
on the choice of the Type I error rate 𝛼: a larger 𝛼 means more detected outliers, perhaps spuriously. 
Masking may cause that no single outlier is detected, although there are multiple outliers present, masking 
each other. Again, the null model plays a special role without good reason. 

In the information criteria approach there is no problem with any statistical dependencies or nonlinearities 
or choices of any error rate. The null model does not play any special role in the set of selectable models. 
The approach is easily extendable to cases not yet considered, e.g., other types of alternative models like 
variance inflation models or nonstandard adjustment models with more unknown variance components. 
However, there is a diversity of information criteria giving different results in terms of detected outliers. It is 
not always clear, which criterion suits best for a particular purpose, e.g., when dealing with GNSS time series 
analysis, Luo et al. (2011) are in favor of the combined information criterion (CIC). It was discovered that 
different equivalent formulations of the outlier detection model lead to different values of the information 
criterion and possibly also to different decisions in model selection. This phenomenon should be further 
studied. Moreover, several almost identical least AIC values leave the outlier detection undecided or hardly 
decidable. And finally, the computational costs are about as high as for the multiple test. 

Via Eqs. (38c) and (40) it has been established that a relationship between test statistics and information 
criteria exists: If the number of outliers is fixed and the variance factor is known, then data snooping and AIC 
as well as AICc identify the same outliers. Generally, the results do not always coincide. 

In summary, the authors can recommend using the information criteria approach to geodetic outlier 
detection, not least because of its great simplicity and flexibility. 

Appendix. Derivation of the Formula for AICc in the Case of an Unknown Variance 
Factor 

Eq. (38b) is derived assuming normal distributed observations, such as Eq. (2), the likelihood function reads 

𝐿(�̂�;  𝒍) =
1

(2𝜋�̂�2)𝑛/2
exp (−

𝒗𝑇𝑷𝒗

2�̂�²
) 

(43) 

or equivalently 

log 𝐿(�̂�;  𝒍) = −
𝑛

2
log 2𝜋 −

𝑛

2
log �̂�2 −

𝒗𝑇𝑷𝒗

2�̂�²
 

(44) 
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with the maximum likelihood estimator �̂�² of the unknown variance factor 𝜎² (Koch 1999, p. 162f) 

�̂�² =
𝒗𝑇𝑷𝒗

𝑛
. 

(45) 

By substituting Eq. (45) into Eq. (44), the likelihood function becomes  

log 𝐿(𝜃;  𝑙) = −
𝑛

2
log 2𝜋 −

𝑛

2
log

𝒗𝑇𝑷𝒗

𝑛
−

𝑛

2
. 

(46) 

Taking the unknown variance factor 𝜎² as additional (unknown) parameter 𝑘 = 𝑢 + 1 in Eq. (37) into 
account, the AICc is given by 

𝐴𝐼𝐶𝑐post,0 = 2(𝑢 + 1) − 2 log 𝐿(�̂�;  𝒍) +
2(𝑢 + 1)(𝑢 + 2)

𝑛 − 𝑢 − 2
 

(47) 

which completes the derivation of Eq. (38b). 
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