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Zusammenfassung

Die Lokalisierung autonomer Fahrzeuge in dicht besiedelten städtischen Umgebun-

gen ist problematisch. Klassische Anwendungen aus den Bereichen der Robotik

und Automobilindustrie setzen auf die Verfügbarkeit von GPS Systemen, um ihre

Position zu bestimmen. Aufgrund dichter Bebauungen erlaubt der Einsatz von

GPS-Systemen keine verlässliche Lokalisierung in städtischen Umgebungen. Aus

diesem Grund müssen alternative Ansätze verfolgt werden. Im Rahmen dieser Ar-

beit werden probabilistische Ansätze untersucht, die mit Hilfe der Odometrie des

Fahrzeugs sowie einer monokularen Kamera eine Lokalisierung ermöglichen. Im

Speziellen wird ein Verfahren vorgestellt, das versucht, visuelle Merkmale der Umge-

bung wahrzunehmen. Dazu wird zunächst eine topologische Karte anhand von Ref-

erenzorten aus der Umgebung gebaut, wobei jedem Referenzort eine Menge von vi-

suellen Merkmalen zugeordnet wird. Durch die Anwendung einer Merkmalsselektion

wird sichergestellt, das ähnliche Referenzorte klarer von einander unterschieden wer-

den können. Mithilfe von Satellitenbildern und Daten aus geogra�schen Information-

ssystemen (GIS) wird die topologische Karte zu einer hybriden Umgebungsrepräsen-

tation erweitert. Die Lokalisierung wird im Sinne der Wiedererkennung bekannter

Referenzorte durchgeführt. Ein Partikel�lter wird verwendet, um wahrgenommene

visuelle Umgebungsmerkmale mit der Fahrzeugodometrie zu fusionieren. Das imple-

mentierte System wird durch verschiedene Experimente evaluiert. Diese werden in

dicht besiedelten städtischen Umgebungen, die durch hohe Dynamik und komplexe

Gebäudestrukturen geprägt sind, durchgeführt.
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Abstract

The localization of autonomous ground vehicles in dense urban environments poses

a challenge. Applications in classical outdoor robotics rely on the availability of GPS

systems in order to estimate the position. However, the presence of complex building

structures in dense urban environments hampers a reliable localization based on

GPS. Alternative approaches have to be applied In order to tackle this problem.

This thesis proposes an approach which combines observations of a single perspective

camera and odometry in a probabilistic framework. In particular, the localization

in the space of appearance is addressed. First, a topological map of reference places

in the environment is built. Each reference place is associated with a set of visual

features. A feature selection is carried out in order to obtain distinctive reference

places. The topological map is extended to a hybrid representation by the use of

metric information from Geographic Information Systems (GIS) and satellite images.

The localization is solved in terms of the recognition of reference places. A particle

�lter implementation incorporating this and the vehicle's odometry is presented.

The proposed system is evaluated based on multiple experiments in exemplary urban

environments characterized by high building structures and a multitude of dynamic

objects.
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1 Introduction

The interest in autonomous ground vehicles has signi�cantly increased in the past

years. The DARPA, an agency for the United States Department of Defence, invited

research teams from all over the world to participate in challenges for autonomous

vehicles, namely the Grand Challenges and the Urban Challenge1. These attracted

a lot of attention in several research communities, particularly in mobile robotics

and automotive as many of their research interests are fused in the development of

autonomous vehicles. Furthermore, the publicity has taken notice of this develop-

ment. Latter, however, has a ambivalent view regarding this. One group appreciates

and follows this �eld of research with interest, others rather have fears. Objectively

one could argument that the better the autonomous operation of vehicles the more

they can assist in crucial manoeuvres. In this way there have established a lot of

assistance systems supporting the driver, for instance, in keeping the lane, adapting

the speed in accordance with the tra�c density or checking the blind spot when

changing the lane. However, there is still a large need for research. One of the

major problems in the DARPA Urban Challenge was the vehicle localization. Tra-

ditionally the localization in outdoor robotics as well as automotive applications

relies on GPS in combination with a prior map. This generally enables satisfying

results in rural areas. In contrast, the operation in dense urban environments poses

a huge challenge for autonomous vehicles. The presence of complex building struc-

tures causes unreliable GPS position estimates. Thus, alternative approaches are

necessary in order to estimate the vehicle's position. This thesis addresses exactly

that problem. The localization is carried out using an onboard single camera, wheel

encoder readings as well as steering angle measurements. Due to the use of monoc-

ular vision a model working in the space of appearance is selected. Hence a prior

map including reference places of the environment is learnt. Moreover a probabilis-

tic framework capable of incorporating di�erent sensors is introduced. To be more

speci�c, a particle �lter is applied.

1More information can be found on: http://www.darpa.mil/grandchallenge/
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1 Introduction

1.1 Statement of Problem

The localization of vehicles in rural and interurban areas based on GPS works quite

reliable. That is because the �eld of view with reference to the sky is not blocked.

In those situations the use of GPS is suitable especially because of its ease and

its good incorporation with existing digital maps. However, using GPS in dense

urban environments is crucial due to the presence of so called urban canyons as

illustrated in Figure 1.2. The accuracy of the position estimate based on GPS

highly depends on the satellite constellation which is expressed as the dilution of

precision (DOP)[31]. The precision in urban canyons is degraded as the view to

the sky is signi�cantly reduced. Hence the satellites that can be perceived from the

GPS receiver are arranged very tight. The position estimate and its uncertainty

in an urban canyon is exemplarily illustrated in Figure 1.1a. This uncertainty can

even lead to a wrong position estimate on street level as an adjacent street might

be selected. The DOP can be estimated based on the current satellite constellation.

That means this uncertainty is known at each time. However, GPS measurements in

urban canyons are also subject to other sources of error. Signals from satellites are

not necessarily received on the direct path as buildings might re�ect them. Thus,

these signals travelled a further distance than expected by the receiver. This is

known as multipath error and more di�cult to estimate [31, chapter 5]. This often

leads to a "jumping" of the estimated position. A typical scenario is illustrated by

Figure 1.1b.

(a) Position uncertainty
due to satellite con-
stellation

(b) Multipath error

Figure 1.1: Position estimation errors in urban canyons
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1 Introduction

Figure 1.2: Typical urban canyon scenario

In order to achieve position estimates with higher precision other sensors have to

be used. This thesis focuses on the localization using a single camera and odometry.

Since there is no information about the depth to landmarks in the scene, we present

a localization approach working in the space of appearance. Thus, we build a map

containing visual features of di�erent places in the environment. As the distance

between places are kept small, ambiguities in the recognition of places have to be

minimized. Hence a feature selection is carried out. The topological structure of

these places is extended to a hybrid map representation by the use of local distance

measurements and ground truth information obtained from Graphical Information

Systems (GIS) and satellite images. Localization is carried out based on this map.

Generally, the localization problem can be divided into two di�erent classes. In the

�rst class, it is assumed that the initial position of the vehicle is known. The goal of

the localization is to track this position. In the other class, there is no information

about the initial position. In literature, this is referred to as global localization [27].

Latter is addressed in this thesis.

1.2 The Vehicle and Sensors

The vehicle used for our experimentation is a Ford Courier with front wheel drive

(see Figure 1.3).
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1 Introduction

Figure 1.3: Front view of the vehicle

It posses the following sensors:

� 3 SICK LMS-291 laser range �nder (two on the roof and one at the front)

� a UWB radar at the front

� Hitachi HV-F31 (monocular colour camera)

� 4 wheel encoder (part of the ABS system)

� steering angle measurement unit

� Crossbow DMU FOG IMU700CA inertial measurement unit (IMU)

� DGPS unit

Moreover the vehicle is equipped with two standard personal computers that are

located in the trunk (see Figure 1.4). The camera used in our experiments is a

Hitachi HV-F31 (see Figure 1.5). It provides images with a resolution of 1024× 768

and a frame rate up to 7.5 fps.
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1 Introduction

Figure 1.4: Trunk of the vehicle

Figure 1.5:
Experimentation camera. Hitachi

HV-F31

1.3 Structure of the Thesis

The remainder of this document is organised as follows.

Chapter 2 discusses the theoretical background.

Chapter 3 addresses the problem of map acquisition.

Chapter 4 presents the implemented localization approach.

Chapter 5 contains experimental results.

Chapter 6 concludes this thesis and motivates future work.
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2 Background

2.1 Ackerman Steering

Each vehicle has a certain drive system incorporating its speci�c physical charac-

teristics. Typical systems in mobile robotics are di�erential, tricycle and synchro

drives. As mentioned at the beginning of this thesis our work focusses on cars. Thus,

we want to introduce a drive system applied for automotive vehicles: the Ackerman

steering. When a car follows a path around a curve, its front wheels have to rotate.

If both front wheels rotate about identical angles the tires are subject to systematic

sideways slip [22]. In order to avoid this e�ect the inner front wheel has to rotate

about a slightly sharper angle than the outer wheel when turning. The geometrical

correct solution for all wheels adjusts the axles as radii of a circle with a common

centre, the Instantaneous Center of Rotation (ICR). Since the rear wheels are �xed,

the ICR lies on a line extended from the rear axle (see Fig. 2.1). Applying this

principle, a vehicle is able to move instantaneously along a circle. Thus, it satis�es

the Ackerman equation [15]:

cot θi − cot θo =
d

l
, (2.1)

θi, θo being the relative steering angles of the inner wheel and the outer wheel respec-

tively, l the longitudinal and d the lateral wheel separation. For further applications

we would like to determine the vehicle's steering angle φ being relative to the vehi-

cle's heading [15]. Thus, an imaginary center wheel is located at the point R. The

steering angle φ can be expressed using either θi or θo:

cotφ =
d

2l
+ cot θi (2.2)

cotφ = cot θo −
d

2l
. (2.3)

6



2 Background

In order to estimate a motion based on Ackerman steering, we also need the vehicle's

velocity vc at the center. As the rear axle is �xed, vc can be calculated using the

velocities vrl and vrr of the back wheel encoders [15]. The velocities vrl and vrr are

proportional to their radii to the ICR [22]. Thus, the velocity vc at the centre of

rear axle can be estimated as:

vc = (vrl + vrr)/2 (2.4)

Steering angle measurement units usually obtain the vehicle's heading direction as

angular velocity ωc instead of angular displacements as φ.

Figure 2.1: Ackerman Steering

2.2 Probabilistic State Estimation

In this section, we introduce a theoretical framework which allows inference in dy-

namical systems. In this way we model the dynamical system as a hidden Markov

model. Firstly, we will give a brief introduction to dynamical systems. Afterwards

the Bayesian �lter which enables us to approximate unknown states in a probabilis-

tic manner is presented. In addition to that we will deal with two implementations

of the Bayesian Filter, namely the Kalman �lter and the particle �lter. The theory

presented in this section is mainly based on Thrun et al. [27].
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2 Background

2.2.1 Dynamical Systems

A dynamical system can be considered at discrete time steps t1, ..., tn. For each

time step t, the system executes an action ut and receives an observation zt. Both

parameters are known respectively observable by the system. However, the system

is unable to observe its actual state xt. Thus, the estimation of the system state xt is

the goal in probabilistic state estimation. Actually, we approach to determine a belief

bel(xt) about the state xt. A dynamical system as described above is exemplarily

shown in Figure 2.2.

In terms of vehicle localization the state xt is the pose which contains the vehicle's

position and orientation. An action ut can be described as a motion of the vehicle

measured by onboard odometers and steering angle sensors. Readings from vehicle's

sensors, for instance laser range �nder or cameras, are observations zt. The belief

bel(xt) depends on all actions u1, ..., ut and all previous observations z1, ..., zt. Hence,

bel(xt) can be expressed in terms of a conditional probability distribution

bel(xt) := p(xt|u1:t, z1:t). (2.5)

The abbreviations u1:t, z1:t denote u1, ..., ut and z1, ..., zt respectively. This notation

will be used from now on. In order to estimate the belief distribution, we need some

a priori knowledge. To be more precisely, we have expectations of what will happen

if the vehicle performs action ut. Ideally, this could be expressed as a function,

namely a state transition function

g(xt, ut) = x′t, (2.6)

propagating the system to a new state x′t given state xt and action ut. In real-

world applications, actions often do not result in the desired state. For instance, our

vehicle's wheels might be exposed to slipping on the road. In order to incorporate

this kind of noise, we model our state transition as state transition probability,

p(xt′|xt, ut), (2.7)

which can be understood as the conditional probability distribution of our new

state x′t given state xt and action ut. With respect to vehicle localization, the state

transition probability can be referred to as motion model. In addition to the action

ut we are given an observation zt. What can we infer from zt about the system state

8



2 Background

Figure 2.2: Dynamical System

xt? Ideally, we would like to directly access the conditional probability distribution

of xt given the observation zt.

p(xt|zt) (2.8)

Obtaining this distribution directly is often impossible. This is why, the counterpart,

the probability of zt given xt is used:

p(zt|xt) (2.9)

This distribution poses the observation model of our state estimation. Providing

our state space is discrete, the observation model can be estimated by setting xt to

di�erent possible states. Afterwards we sum how often an observation is obtained

in a particular state. Thus, we can estimate the distribution p(xt|zt) based on the

observation model using Bayes' rule,

p(xt|zt) =
p(zt|xt)p(xt)∑
p(zt|x′t)p(x′t)

. (2.10)

2.2.2 Bayesian Filter

This section deals with the Bayesian Filter which poses the most general method

for state estimation. It enables the opportunity to recursively infer the belief bel(xt)

given an observation model p(zt|xt) and a state transition probability p(xt|ut, xt−1).

Firstly, the belief bel(xt) can be expressed as the probability distribution of the

state xt given all previous actions ut and observations zt (see Equation 2.5). Ap-

plying Bayes' rule we can divide the posterior belief bel(xt) into the likelihood

p(zt|xt, u1:t, z1:t−1) and the prior p(xt|u1:t, z1:t−1),

bel(xt) = η · p(zt|xt, u1:t, z1:t−1)· (xt|u1:t, z1:t−1) (2.11)

9



2 Background

with η being a normalization factor. We can assume that the observation zt is

conditionally independent of all previous observations z1:t−1 and actions u1:t given

the state xt. This is known as Markov property [27] (see also Figure 2.3). Thus, the

likelihood can be reduced as follows:

p(zt|x1:t−1, u1:t, z1:t−1) = p(zt|xt). (2.12)

Applying the law of total probability we can expand the prior p(xt|u1:t, z1:t):

p(xt|u1:t, z1:t) =

∫
p(xt|u1:t, z1:t, xt−1)p(xt−1|u1:t, z1:t)dxt−1 (2.13)

and obtain the following expression for our belief:

bel(xt) = η· (zt|xt) ·
∫
p(xt|u1:t, z1:t−1, xt−1)p(xt−1|u1:t, z1:t−1)dxt−1. (2.14)

As mentioned above, the Bayesian �lter targets a recursive structure which becomes

apparent as we include the conditional probability of xt−1. However, since the

Markov property can be applied again, the term will be reduced further. Given the

current action ut and the previous state xt−1, the state xt becomes conditionally

independent of all previous actions u1:t−1 and observations z1:t−1. Hence our belief

becomes:

bel(xt) = η · p(zt|xt) ·
∫
p(xt|ut, xt−1)p(xt−1|u1:t, z1:t−1)dxt−1. (2.15)

Moreover, the state xt−1 is independent of ut (see 2.3). This is why, the term

p(xt−1|u1:t, z1:t−1) reduces to p(xt−1|u1:t−1, z1:t−1). With regards to Equation (2.5)

we can express bel(xt−1) as follows:

bel(xt−1) = p(xt−1|u1:t−1, z1:t−1). (2.16)

Hence, we have the �nal recursive update rule of the Bayesian �lter:

bel(xt) = η· (zt|xt) ·
∫
p(xt|ut, xt−1)bel(xt−1)dxt−1. (2.17)

As it can be seen in Eq. 2.15 the estimate of bel(xt) requires the calculation of an

inde�nite integral. If we assume that xt is a state in a discrete space, the second term

can be expressed in terms of a sum instead of an integral. All discrete probabilities

sum up to one which is why the normalization step can be done afterwards. Thus

10



2 Background

the unnormalized beliefs bel′(xt) for each xt are determined as follows:

bel′(xt) = p(zt|xt) ·
∑
xt

p(xt|ut, xt−1)bel(xt−1). (2.18)

the normalization step results in our belief bel(xt):

bel(xt) =
bel′(xt)∑
x̄t
bel′(x̄t)

(2.19)

Summarizing it can be said that the Bayesian �lter enables a recursive estimate of

the belief bel(xt) which uses only the previous belief bel(xt−1). Beliefs of further

preceding steps are not considered. The principle of the Bayesian �lter is the basis

for further implementations. Typical derivates are the Kalman �lter and the particle

�lter which are presented in the following sections.

2.2.3 Extended Kalman Filter

The extended Kalman �lter (EKF) is an algorithm which is able to cope with prob-

abilistic state estimation as we discussed in preceding sections. The Kalman �lter

implements the Bayesian �lter in continuous space. This is done by modelling prob-

ability distributions by a Gaussian density function. In contrast to the initial version

of the Kalman �lter [16], the extended Kalman �lter can deal with non-linear state

transition and observation models. The belief distribution over an N-dimensional

state vector x = (x1, x2, ..., xN)T is expressed as a multivariate Gaussian N(µ,Σ)

with the probability density function fN :

fN(x, µ,Σ) = det(2πΣ)−
1
2 exp(−1

2
(x− µ)TΣ−1(x− µ)), (2.20)

with µ being an N-dimensional mean vector and Σ an N × N-dimensional covariance

matrix. We assume that the state transition probability p(x′t|xt, ut) can be expressed
as a di�erentiable transition function g:

x′t = g(ut, xt) + εg, (2.21)

where εg denotes a Gaussian noise with zero mean. This transition model is only

an approximation. When propagating from state xt to x
′
t given an action ut, the

dynamical system is exposed to uncertainty. This is the reason why the noise εg is

added. This noise can, for instance, occur due to wheel slipping during a motion

11



2 Background

t−2z

t−2u

t−1z

t−1u tu

xt

tz

x
t−2

x
t−1

Figure 2.3: Dynamical system as Hidden Markov Model

of a vehicle. Moreover, the observation model p(zt|xt) is de�ned as a di�erentiable

function h:

zt = h(xt) + εh, (2.22)

Also, the observation model is driven by a noise εh . The cycle of the EKF is shown in

Algorithm 1. At each cycle t the EKF is given an action ut, an observation zt and the

previous belief bel(xt−1) = N(µt−1,Σt−1), where Σt−1 models the system uncertainty.

Within the state prediction step, we estimate the mean µ̄t of the prediction based on

the state transition function g given the previous mean µt−1 and the action ut. The

transition function g is not directly applied to the covariance of the prediction step

Σ̄t. Instead g is approximated with a linear function at µt−1. Thus, the Jacobian

Gt can be de�ned as follows:

Gt :=
δg(·, ut)
δµt−1

. (2.23)

We multiply the Jacobian Gt on both sides of the covariance Σt−1. The matrix Rt

which poses the uncertainty in the state transition εg is added. Within the correction

step, the current observation zt is used to correct the prediction. The variable V in

line 4 characterizes the variance of the observation zt. The covariance Σ̄t estimated

in the prediction step is applied to the observation model. Therefore, we generate

an approximation of h, the Jacobian Ht:

Ht :=
δh

δµ̄t−1

. (2.24)

The variable Q denotes the uncertainty of the observation re�ected by εh. Given

the observation variance V we compute the so-called Kalman gain K in line 5. It

determines how much con�dence we have in our observation and in how far it is

incorporated to estimate our belief [27, p. 43]. The so-called innovation is com-

puted by subtracting the observation zt from the predicted measurement h(µ̄t) in

line 6. Then, we obtain the updated mean µt by adding the predicted mean µ̄t to

12
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the innovation which is weighted by the Kalman gain. Finally, the covariance Σt is

updated (line 7). The extended Kalman �lter can only represent uni-modal distribu-

tions. Thus, it is not possible to express multiple hypotheses. Also, an EKF might

be unsuitable if underlying processes are highly non-Gaussian. Nevertheless, the

EKF poses a computationally inexpensive implementation for state estimation and

is able to cope with measurement noise. In case of highly non-Gaussian processes or

multi-modal probability distributions, other implementations of the Bayesian �lter

should be considered. One possible derivate is presented in the following section.

Algorithm 1 The Extended Kalman Filter (EKF)

1: function ExtendedKalmanFilter((µt−1,Σt−1), ut, zt)
2: µ̄t = g(ut, µt−1) . state prediction
3: Σ̄t = Gt · Σt−1 ·GT

t +Rt

4: V = (Ht · Σ̄t ·HT
t +Qt)

5: Kt = Σ̄t ·HT
t · V −1 . Kalman gain

6: µt = µ̄t +Kt(zt − h(µ̄t)) . update
7: Σt = (I −Kt ·Ht) · Σ̄t

8: return (µt,Σt)
9: end function

2.2.4 Particle Filter

We already discussed possible ways to solve the state estimation problem in a prob-

abilistic manner. The crucial point is how to deal with the continuous probability

distributions of our state space (see Equation 2.15 ). The EKF can model continuous

probability distributions with the restriction to uni-modal Gaussian distributions,

as discussed in section 2.2.3. This section introduces to an implementation of the

Bayesian �lter which is able to cope with any probability distribution, namely the

particle �lter. The particle �lter uses a set of samples, the particles, to estimate

probability distributions. A particle k poses a state x
[k]
t and is assigned a weight

w
[k]
t

1. All particles are sampled from the state transition distribution. The weights

are assigned according to the observation model. Algorithm 2 gives a summary of

all necessary steps of the particle �lter. The set of K particles representing the

previous belief bel(xt−1), the action ut as well as the observation zt are given as

input. It can be seen that the algorithm consists of three sub cycles. Beginning

1This property is often referred to as importance factor [27].
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with the update cycle, we draw a sample x̄t
[k] from the state transition probability

distribution p(xt|ut, xt−1) (line 3). This step is the prediction of the particle �lter.

Its implementation depends on the state transition probability. Similar to the EKF,

a state transition function:

x
[k]
t = g(ut, x

[k]
t−1) + εg (2.25)

The noise εg can be individually set for each particle. The set of samples x̄
[1]
t , ..., x̄

[K]
t

re�ect the prior probability distribution. The observation is applied in line 4. Each

weight w̄
[k]
t is assigned corresponding to the probability of the observation zt given

the hypothesis x̄
[k]
t . As mentioned in 2.2.2, we know that all discrete probabilities

sum up to one. This normalization step is done in line 7. Afterwards, the weighted

particle set represents the belief bel(xt):

bel(xt) ≈
K∑
k=1

w[k]x[k]. (2.26)

The �nal step, the resampling, is the particularity of the particle �lter. The chal-

lenging point is the replacement of the weighted particle set by an unweighted set

without modi�cation of the posterior distribution bel(xt). Particles indices from

the posterior distribution are drawn (line 10). The particle x
[i]
t is drawn with the

probability re�ected by the weight w
[k]
i . A new sample with the state x̄

[i]
t is initial-

ized. As a result, particles with high weights are likely to be represented in many

samples. Lower weighted particles are represented by fewer samples in contrast.

Consequently, the particles are concentrated in regions with higher density of the

posterior distribution bel(xt). Here, the posterior bel(xt) can be multi-modal since

multiple hypotheses can be tracked. Note, that the size of the particle set highly

determines the accuracy of the state estimate. Ideally, the number of particles ap-

proaches in�nity. In this case the particle �lter operates as if it was working with

continuous probability distributions [1]. Only in this case we are able to exactly

estimate our belief bel(xt), otherwise it is an approximation as de�ned by equation

2.26. For practical considerations, the size of particle set is a trade-o� between

computational complexity and accuracy. Thus, it highly depends on the speci�c

application.
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Algorithm 2 The Particle Filter

1: function ParticleFilter({x[1]
t−1, ..., x

[K]
t−1}, ut, zt)

2: for k=1 to K do . Update
3: sample x̄

[k]
t from p(xt|ut, x[k]

t−1)

4: w̄
[k]
t := p(zt|x[k]

t )
5: end for

6: for k=1 to K do . Normalization
7: w

[k]
t := w̄t

[k]/(
∑K

i=1 w̄
[i]
t )

8: end for

9: for k=1 to K do . Resampling
10: draw i with probability ∝ w

[i]
t

11: x
[k]
t := x̄

[i]
t

12: end for

13: return {x[1]
t , ..., x

[K]
t }

14: end function

2.3 RANSAC

Let us assume, we want to �t a model to a given data set S. This data set is driven

by noise and hence contains a certain number of outliers. Outliers in this case

denote samples that cannot be �tted to our desirable model and might in�uence the

estimate in a negative manner. Fischler et. al. [11] presented the Random Sample

Consensus (RANSAC) algorithm which tackles this problem. It can robustly �t a

model even in the presence of many outliers. RANSAC suits particularly in those

cases [13]. To start with, we consider the problem of �tting a line to a number of

points in 2D (see Figure 2.4). Points must not deviate more than t units from the

�tted line to be considered as inliers. Thus, a classi�cation in terms of outliers and

inliers based on the �tted line is done as well. The parameter t denotes the threshold

which can be adjusted according to the noise. According to the RANSAC algorithm

2 points Pi and Pj are randomly selected from the data set. A line is determined

by these points. Now, those points that are located within the distance threshold t

are counted. The support of the sample PiPj is measured based on the number of

inliers for this line. This process is repeated a number of times for randomly selected

points. The sample PiPj with the highest support is considered as the robust �t. As

result we obtain a �tted line and a number of inliers that can be associated with this

model. The remaining points are classi�ed as outliers. More generally, the �tting of

a model based on RANSAC can be summarized as follows[11]:

1. A sample of s data points is randomly selected from S to instantiate the model.
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2. Estimate the set of data points Si that are located within the distance thresh-

old t. The set Si represents the inliers of S.

3. If the number of inliers is greater than a threshold T , the model is estimated

based on all points in Si and the algorithm terminates.

4. If the number of inliers falls below T repeat from step 1.

5. After N trials the sample with the highest support is selected. Based on the

inliers for this sample, estimate the model and terminate.

The number of trials N can be determined as follows[13]:

N = log(1− p)/ log(1− (1− ε)s), (2.27)

where ε denotes the proportion of outliers in the data set. The parameter p expresses

the probability that at least one of the samples of s points does not contain outliers.

The threshold T can be set according to the expected number of inliers. Assuming

n data points, T could be set: T = (1− ε)n.

Figure 2.4: A �tted line based on RANSAC
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2.4 Camera Geometry

The simplest camera model is a pinhole camera. A pinhole camera can be imagined

as a box that contains a small hole on one side and a screen respectively an image

plain on the other side. Objects that are located in front of the camera are projected

onto the screen upside-down. The image's scale depends on the distance of the hole

to the projection screen which is called the focal length F . We assume that the

image plain is placed in front of the camera. A point on the screen is called the

pixel x and expressed as x = (x, y). Thus, a pixel contains a horizontal and a

vertical coordinate. When observing a point X with the camera-centric Cartesian

coordinates X = (X, Y, Z) in the scene, it is projected onto the image plain as

follows (see also Figure 2.5a):

x̂ =

(
X · F
Y

;
Z · F
Y

)
(2.28)

This actually assumes that the origin of the screen is its centre. According to

conventions [13] , the origin (0, 0) is placed at the top left pixel (see also Figure 2.5b).

The centre of the screen is called the principal point P = (Px, Py). Theoretically,

Px could express half the screen width and Py half the screen height. However, in

practice the principal point often deviates from that. Thus, the sign of y-coordinate

is changed and the principal point is added:

x =

(
X · F
Y

+ Px;−
Z · F
Y

+ Py

)
(2.29)

(a) Slice of the camera-centric (X,Y,Z) space. Im-
age I is placed in front of the camera.

(b) Conventional denotation of image coor-
dinates

Figure 2.5: Pinhole camera model
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2.5 Two-camera Geometry

2.5.1 Epipolar Geometry

After discussing the characteristics of a single camera, we consider two camera views

in this section. The relationship of two camera views is speci�ed by the epipolar

geometry2. The application of two-view geometry does not necessarily require a

stereo camera system. The case of two images captured by a single camera from

di�erent positions is also considered.

To start with, we place two cameras in a scene, where the �rst camera centre is

at point O1 and the second camera centre at O2. The line b determined by O1 and

O2 is called the baseline. The �rst camera observes the scene point X (see Figure

2.6) at the position x in its local camera coordinate system. The exact position of

X is unknown. However, starting from the camera origin O1 we can cast a ray r

through x towards X. Thus, we know that X lies on the ray r. The epipolar plane

π is de�ned by the baseline b and the ray r. It is not possible to predict that X will

be visible at the position x′ in the second frame given the �rst frame. Nevertheless,

we know that the ray r′ from O2 through x
′ lies in π. Hence, x′ is located on the line

l′ which poses the intersection of the second camera's image plane and the epipolar

plane π. The line l′ is a projection of the ray r into the second camera's frame.

It is called the epipolar line. All epipolar lines intersect in a common point which

is called the epipole e′ [13, p. 241]. This calculation can also be done based on x′

instead of x. Thus, we obtain the epipolar line l and the epipole e in the �rst camera

frame. An algebraic representation of the epipolar geometry is discussed in the next

section.

2.5.2 Fundamental Matrix

Given two images, we can say that for each point x in the �rst image, there is a

corresponding epipolar line l′ in the second image. If the point x′ matches x, it has

to be located on the line l′. Hence each valid pair of correspondences xx′ has to

satisfy the following condition:

x′TFx = 0, (2.30)

2The theory of this section mainly bases on Hartley et al. [13]
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O1 O2

r

X?

X?
X

x x'

π

e'e
b

l'

Figure 2.6: Epipolar Geometry. The epipolar l′ for the point X is shown in the second
camera

where F denotes the fundamental matrix. Thus, each map xl′ is determined by

F. The mathematical derivation for the fundamental matrix is given in Hartley

et al. [13, p. 243 et seq.]. We give a brief overview of the estimation of the

fundamental matrix based on the eight-point algorithm. First, we need a set of N

correspondences xx′ with N ≥ 8. Points are set to x = (x, y, 1)T and x′ = (x′, y′, 1)T .

The fundamental matrix does not require normalized image coordinates in terms of

the camera's intrinsic parameters. However, as the image coordinates (x, y) can

contain values in the range of 100 - 1000, they have to be normalized, such that

x̂ = Tx and x̂′ = T ′x′, where T and T ′ denote normalizing transformations consisting

of a translation and scaling. This normalization step signi�cantly improves the

accuracy of the estimation of the fundamental matrix [13].

Next, for each pair x̂x̂′, the following can be denoted:

x̂′x̂f11 + x̂′ŷf12 + x̂′f13 + ŷ′x̂f21 + ŷ′ŷf22 + ŷ′f23 + x̂f31 + ŷf32 + f33 = 0. (2.31)

Thus, we can summarize:

A = (x̂′x̂, x̂′ŷ, x̂′, ŷ′x̂, ŷ′ŷ, ŷ′, x̂, ŷ, 1) (2.32)

A · f = 0 (2.33)
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Applying this to N correspondences, a set of linear equations is obtained:

A · f =


x̂′1x̂1 x̂′1ŷ1 x̂′1 ŷ′1x̂1 ŷ′1ŷ1 ŷ′1 x̂1 ŷ1 1

...
...

...
...

...
...

...
...

...

x̂′N x̂N x̂′N ŷN x̂′N ŷ′N x̂N ŷ′N ŷN ŷ′N x̂N ŷN 1

 · f = 0. (2.34)

Using this set of homogenous equations, f can be determined up to scale using

Singular Value Decomposition (SVD) with SV DA = UDV T . The fundamental

matrix F̂ is determined by the smallest singular value of A and is of rank 2. The

solution as described above does not necessarily satisfy this requirement. In order

to correct this, the matrix F̂ is replaced by the matrix F̂ ′ which minimizes the

Frobenius norm ‖F̂ − F̂ ′‖ with the condition detF̂ ′ = 0. Again, SVD is used to solve

this. In the �nal step, F ′ is denormalized to ensure that it corresponds to the input

points xx′. Thus, the the fundamental matrix F is obtained as follows:

F = T ′T F̂ ′T (2.35)

A more detailed explanation for the estimation of a fundamental matrix based on

the eight-point algorithm can be found in Hartley et al. [13, chapter 11]. The eight

point algorithm is the most basic implementation for the estimation of a funda-

mental matrix. Other algorithms require fewer correspondences while taking higher

computational requirements into account. Nister [21] proposed an algorithm that

enables the estimation based on �ve correspondences. When assuming planar mo-

tion the fundamental matrix can be calculated using only two correspondences [4].

Scaramuzza et al. [23] involved constraints for nonholonomic vehicles as cars to

reduce the number of correspondences to one.

2.5.3 Fitting a Fundamental Matrix using RANSAC

In the previous section, the estimation of a fundamental matrix based on the eight-

point algorithm was discussed. Based on that, we present an approach that �ts

a fundamental matrix given a number of correspondence points coming from two

images. In this way, the RANSAC algorithm as discussed in Section 2.3 is applied.

This approach is mainly inspired by Hartley et al. [13, p. 290 et seq.]. Restating

the RANSAC algorithm, a distance measurement is required to distinguish inliers

and outliers based on the sampled model. In terms of the estimation of a fundamen-

tal matrix, we have to measure how well two correspondences satisfy the epipolar
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constraint x′TFx = 0. Thus, we de�ne a cost function based on a Sampson approx-

imation: ∑
i

(x′Ti Fxi)
2

(Fxi)2
1 + (Fxi)2

2 + (F Tx′i)
2
1 + (F Tx′i)

2
2

, (2.36)

where (Fxi)
2
j denotes the square of the j-th entry of Fxi. Equation 2.36 is a �rst-

order approximation to the geometric error. The derivation of this cost function is

given by Hartley et al. [13, p. 287 et. seq].

The RANSAC based �tting of a fundamental matrix can be summarized as follows:

1. Interest points are computed in each image.

2. Correspondences are searched based on the similiarity of interest points.

3. RANSAC robust �tting

a) A random sample of 8 correspondences is selected. A fundamental matrix

F is estimated based on these points using the eight-point algorithm (see

2.5.2).

b) The distances d of putative matches based on Equation 2.36 are calcu-

lated.

c) The inliers consistent with the current fundamental matrix are estimated

based on the number of correspondences satisfying the condition: d < t

pixels.

d) If the number of inliers is greater than the threshold T , the currently

estimated F is selected and the �tting procedure terminates. Otherwise

we continue with step 3a

According to Hartley et al. [13] a �nal non-linear re-estimation for F based

on all correspondences classi�ed as inliers should be carried out. The Levenberg-

Marquardt algorithm is recommended for this [13, section 11.6]. Note, that this

step is only necessary if the fundamental matrix is used for further processing. As

mentioned in section 2.3, a further reason for using RANSAC is the classi�cation of

outliers based on a �tted model.

2.6 Visual Features

An Image captured from a camera can be described as a high-dimensional matrix.

In this section we will focus on how one can extract relevant information from im-
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ages. To be more speci�c, we will deal with the extraction of relevant points of an

image. We will refer to these points as visual features which usually consist of two

components: an interest point and a descriptor. Feature detectors extract interest

points with special characteristics as, for instance, high contrast. The characteris-

tics of interest points are determined by their speci�c type of detector. In classical

computer vision we distinguish between edge, corner respectively blob detectors.

Once a keypoint is detected, the feature detector creates a descriptor characteriz-

ing its surrounding area. The descriptor vectors are compared to recognize features

across multiple images. In addition to classical feature detectors there have estab-

lished algorithms extracting highly distinctive features. Highly distinctive in this

case denotes that given a set of features of an object or a scene we want to �nd cor-

responding features across a high dimensional database. For example, we capture

images of di�erent locations L of a city. For each location l ∈ L we save a set of

features. Having completed this training process a new image I around k (k ∈ L) is
captured and extracted features from I are compared to features of all locations of

L. As a result we should be able to determine that I was taken around k. Current

state-of-the-art feature detectors enabling this are: Scale Invariant Invariant Feature

Transform (SIFT) [18] and Speeded Up Robust Features (SURF) [2]. Those feature

detectors have o�ered novel opportunities, for example, in object recognition, image

retrieval systems and mobile robot localization. As SIFT is applied in the remainder

of this thesis it is explained in detail in the following section.

2.6.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) detects features having the following

characteristics:

� invariance to scale and rotation

� partially invariance to 3D viewpoint changes and illumination

� robust to a�ne distortion

The algorithm can be summarized in the following major steps:

1. Scale-space extrema detection: A scale space using a Di�erence of Gaus-

sian (DoG) is searched to detect potential keypoints.

2. Keypoint localization: Location and scale of each candidate point are as-

signed. Keypoints are selected based on their stability.
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3. Orientation assignment: Each keypoint is assigned an orientation based on

its local gradient. In case a keypoint has multiple local gradients, multiple

instances of this keypoint are created with each having one orientation.

4. Keypoint descriptor generation: A descriptor is created based on local

gradient information for each keypoint.

Interest points respectively keypoints detected by SIFT are local extrema in a scale-

space [18]. Given an input image I(x, y) and a scale σ the scale space can be de�ned

as a function, L(x, y, σ):

L(x, y, σ) = G(x, y, σ)⊗ I(x, y), (2.37)

⊗ being the convolution operation (see Appendix A.1) in x and y, and G(x, y, σ)

the Gaussian function:

G(x, y, σ) =
1

2πσ2
e
−(x2+y2)

2σ2 (2.38)

By successively convolving I using G(x, y, σ) of di�erent scales σ a pyramid of

Gaussian-blurred images is built (see Figure 2.7). This pyramid is divided into

octaves. Each octave contains a �xed number of Gaussian images which di�er by

a constant scale factor k. Within each octave, adjacent Gaussian images are sub-

tracted in order to get Di�erence of Gaussian (DoG) images. The scale space of

a DoG image with scale σ and input image I(x, y) can be de�ned as a function,
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D(x, y, σ):

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ))⊗ I(x, y)

= L(x, y, kσ)− L(x, y, σ). (2.39)

Having completed octave Oi, the Gaussian Image of Oi with a variance of 2σ is sub-

sampled. In this way every second pixel in each row and column is kept for the initial

Gaussian image of octave Oi+1. Summarizing we can say that reducing the image

size by an arbitrary scale factor is problematic. Thus, the image is scaled smoothly

by convolving it with a Gaussian. In the next step, the 3-dimensional space of

DoG images is searched for local extrema. A pixel only quali�es as local extremum

if all adjacent pixel values are greater (local minimum) respectively smaller (local

maximum). In the space of DoG images, each pixel has 26 neighbors, 8 in the

current scale and 9 for the scale below as well as the scale above (see Figure 2.8).

As a result a set of potential keypoints in the image is obtained. In the next step we

determine a sub-pixel and sub-scale position (x, y, σ) by the interpolated location

of the extrema. Keypoints having extrema with low magnitudes, and hence a low

contrast, are rejected. Now, we determine the dominant orientation θdom of each

keypoint. Using the keypoint's scale the Gaussian image, L, with the closest scale σ

is selected. Then, gradients in a speci�c region around the keypoint are computed.

For each candidate L(x,y,σ) of the selected scale σ we determine the magnitude,

|∇I(x, y)|, and orientation, θ(x, y), of the gradient:

Ix(x, y) = L(x+ 1, y)− L(x− 1, y) (2.40)

Iy(x, y) = L(x, y + 1)− L(x, y − 1) (2.41)

|∇I(x, y)| =
√
Ix(x, y)2 + Iy(x, y)2 (2.42)

θ(x, y) = arctan

(
Iy(x, y)

Ix(x, y)

)
(2.43)

An orientation histogram is built from gradient orientations and magnitudes of

an area around the keypoint location. The gradient magnitudes are weighted by a

Gaussian centered around the keypoint location (see Figure 2.9). The signi�cant

peak in the histogram poses the dominant orientation θdom of the keypoint. If

more than one major peak can be found, multiple instances of the keypoint having

di�erent dominant orientations θdom are created. Finally, each keypoint is assigned

a descriptor. A SIFT descriptor is built based on local orientation histograms.
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Figure 2.9: SIFT descriptor. A gradient is computed for each pixel. The magnitudes
of the gradients are weighted by a Gaussian. Afterwards, 16 orientation
histograms are built out of 16 subregions.

At the keypoint center we place a window which is divided into subregions. The

magnitudes of the gradients are weighted by a Gaussian around the keypoint. Thus,

gradient magnitudes being further away from the center are considered less to avoid

sudden changes of the descriptor. The further away the gradient from the center

the more likely it might be subject to misregistration errors [18]. An orientation

histogram for each subregionis is built and placed in its center. In order to avoid

boundary e�ects each gradient votes for an orientation in its adjacent histograms.

The vote is weighted by 1 − d, with d being the distance to the histogram. One

of SIFT's characteristics is its rotation invariance. This is achieved by adapting

the orientation histograms to the keypoint's dominant orientation θdom. Typical

SIFT implementations use a window of 4 × 4 = 16 subregions, with each having

an 8-bin orientation histogram. Hence, we get a 128-dimensional descriptor vector.

One of SIFT's advantages is its partial invariance to change in illumination. This

is obtained by the following steps. Fistly, the descriptor vector is normalized to

unit length. In case of global changes in image contrast all pixels are multiplied

by a constant factor. This e�ect can be avoided using vector normalization. If

an image is subject to a global change in brightness, a constant is added to each

pixel. As SIFT consideres local gradients, it is not a�ected by this. Both scenarios

discussed assume linear changes in illumination. SIFT also considers non-linear

changes, though incorporating those is more complex. These e�ects often occur due

to constellations of shades irregularly in�uencing local gradients. Thus, magnitudes

of gradients are changed by di�erent amounts, orientations are typically in�uenced
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much less. SIFT attempts to minimize these e�ects by thresholding the values of the

feature vector. In this way the in�uence of large gradients magnitudes is reduced

while simultaneously increasing the in�uence of the orientations' distribution.

2.6.2 Matching of Feature Descriptors

We are given two sets of SIFT features, a and b, that are extracted from di�erent

images. In order to �nd correspondences, the descriptors of those features have

to be compared. This is done by computing the nearest neighbours based on the

Euclidian distances of the 128-dimensional descriptors. For each descriptor ai of

the �rst set, we calculate the distance d(ai, bj) to each descriptors bj of the second

feature set. Each feature has only one correspondence in the other set. Whether two

features match, is determined by the distance ratio of the nearest neighbour bj and

the second nearest neighbour bk. Thus, the following condition has to be satis�ed:

d(ai, bj) < τ · d(ai, bk), (2.44)

where τ denotes the threshold. Adjusting this threshold often poses a problem

as lower values might reject positive matches whereas higher values might accept

more false positive correspondences. This threshold can be set more optimistically

if the descriptor comparison is followed by geometric consistency checks based on

the correspondences' locations in the image coordinate system. As result of the

matching procedure we obtain a set of N corresponding features based on their

similarity. For the remainder of the thesis we refer to the matching described above

as the function match:

N = match(a, b) (2.45)

Note that this is the basic procedure for matching descriptors. For larger

databases of descriptors it is recommended to use, for instance, kd-trees. E�cient

algorithms as Best Bin First could be applied to this. An extensive study about this

is given by Schindler et al. [24].
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This chapter deals with the generation of maps. In particular, the environment

representations, needed for the localization methods in the following chapter, are

presented.

As mentioned at the beginning of the thesis, our work focuses on localization and

mapping using vision sensors, more precisely monocular vision. Our vehicle is also

equipped with two dimensional laser range �nders. However, employing those in

dense urban environments in order to build a map is crucial as parking vehicles and

other dynamic obstacles signi�cantly block rays to building structures. Fortunately,

this problem does not apply to a camera. The mapping in very dynamic urban

environments poses a challenge though. Especially, the di�erentiation of dynamic

and static objects in the environment is a di�cult task. Often, one has to take into

account that the map contains, for instance, parking vehicles. Alternatively, those

objects could potentially be removed by a time-consuming post-processing step.

3.1 From Topological to Hybrid Map

Representations

Using images of speci�c places, we build a map m of an urban environment. We can

start o� with a simpli�ed case. While driving through an urban environment, images

are continuously taken. Afterwards images of speci�c places could be selected. As

the sequence of those images is known, a topology of reference places can be built.

The topology can be closed if we see a reference place mi, that has already been

visited before. Providing this loop closure was carried out and also detected, we

obtain a topological map1. An example of this is shown in Figure 3.1a. Each node

of the topological map poses one selected reference place mi of our trajectory. The

1An e�cient algorithm for detecting loop closures in the space of appearance was proposed by
Cummins et al. [9]
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edge e(mi,mi+1) represents the two adjacent places mi and mi+1. Next, we could

recognize our place with regards to our topological map, whenever we return to one of

the reference places. One important advantage of topological maps is their compact

representation. It can directly conduce to high level tasks as path planning. In

addition to that it is close to the way how humans map environments [12]. However,

using pure topological environment representations also implies distinct drawbacks.

It assumes that places are clear distinctive. When travelling through very similar

places, the missing metric information makes it hard to distinguish between these

places. This could lead to unreliable position estimates with regards to the topology

[20]. This is one of the main reasons for incorporating metric information.

(a) Simple
topology
closed at
red node.

(b) Map is extended
by street courses.

Figure 3.1: Topological maps

So far, we only considered the fact that images for reference places were con-

tinuously taken throughout our trajectory. Based on that, adjacency relations of

reference places are expressed in form of edges. Now, this can be extended using

a map of the urban environment which obtains further sparse information in form

of streets. By comparing the trajectory to this street map, we can assign reference

places an origin reference street. Streets can be divided into street segments whose

ends are de�ned by two intersections. Thus, each reference place mi is assigned a

corresponding street segment. A map like this is illustrated by Figure 3.1b.

We still have the problem of di�ering two similar places. In addition to that, it

is impossible to get position estimates, when remaining between two places. After

leaving one reference place, we are uncertain about our whereabouts until we rec-

ognize the next reference place. In order to bridge this gap, metric information is
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included in our map. First, satellite images2 of our trajectory are used to manually

extract street courses as well as intersection markings (see Figure 3.2).

Figure 3.2: Satellite image of an urban environment

There are inner and outer intersection markings on Australian streets. We used

the outer intersection markings as boundaries for street segments. Roads in dense

urban environments typically have a straight course, whereas curved roads are very

rare. This is also the case in our experimental course in the Central Business District

of Sydney, Australia. Thus, we assume that each course of a street segment follows

a �xed heading direction. This assumption is used for the remainder of the mapping

process. The lengths of street segments that are manually extracted from satellite

images often do not exactly correspond exactly to the ground truth. As each street

segment is bordered by two intersection lines, they can be scaled if the distance

between both lines is available. A geographical information system (GIS) is used

in order to get these distance measurements which are provided by the New South

Wales Road Transportation Agency. They can be considered as very accurate as they

are obtained by total stations. We only incorporate the distances of two intersections

lines, the width of the streets are not considered. Thus, streets have a �xed width.

In the next step, reference places of our trajectory are associated with this map.

Hence, the entire image sequence is subdivided according to the street segments,

where the �rst image of each segment is directly at the beginning intersection line

(see also Figure 3.3a).

2Source of the satellite images is GoogleMaps: http://maps.google.com.au
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(a) Approaching intersection line while moving straight.

(b) Approaching intersection line while turning

Figure 3.3: Vehicle approaching intersection lines

Starting from this image Im, the distance to the following image Im+n is estimated

based on odometry. The distance d(Im, Im+n) travelled between Im and Im+1 is

calculated as follows:

d(Im, Im+n) =

∫ tIm+n

tIm

vc(t) dt, (3.1)

where tIm and tIm+n are time steps of Im and Im+n respectively. As the vehicle's

velocity vc is sampled at discrete time steps t, we interpolate between wheel encoder
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time stamps and camera time stamps using cubic splines3. In this way distances

between two reference places are estimated. Reference places correspond to a speci�c

image. Based on the distance measurements and heading direction the reference

places are assigned a location on the map with reference to the beginning intersection

line. Note that the vehicle's heading direction is not taken into account. This is due

to the fact that we assume that street segments have �xed heading directions. Using

the odometry for distance estimates is crucial as errors in distance measurements

accumulate. Thus, the error of the pose estimate based on odometry inde�nitely

increases over time [8]. This uncertainty must not be underestimated, even though

only the translational component of the vehicle's motion is used. It increases with

distance travelled along one street segment. However, errors are not accumulated

through the entire map. As we begin from each street segment's intersection line

which references directly to the map.

The reference place's location is also subject to another source of error. That is

the selection of images that are closest to the intersection line. As the camera's

frame rate is limited it is not always possible to select the frame which is exactly

at the intersection line. This is even more crucial when the vehicle is turning into a

street segment. This problem is illustrated in Figure 3.3b. Even though the distance

measurements using odometry and the selection of corresponding image frames are

subject to error, they obtain metric information for our map.

Based on the method described above, reference places for each street segment

are selected every τ metres, where τ de�nes a minimum distance. This value should

be chosen appropriately to avoid too high similarities of reference places. In our

experiments this distance was typically set to τ = 10m or τ = 20m.

Finally, non-street components of the satellite image are removed. Thus, we

receive a map as it is illustrated by Figure 3.4.

Figure 3.4: Map based on GIS containing streets (white), intersection lines (black).

3For more information about cubic splines, one might refer to [5, p. 43 et seq.].
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3.2 Feature Extraction and Selection

In this section, we describe, how features are extracted and selected from images for

reference places. Thus, we assume at this point that we are given a map m which

is built as described in the previous section and contains the M reference places

m1, ...mM . In addition to that we are given the images I that describe speci�c

reference places.

Why do we need to select features? This is an important question. Many ap-

proaches [9, 24] that tackle the problem of localization in the space of appearance

do not rely on feature selection. Actually, we could simply save all features of an im-

age that represents a reference place. As we discussed in the previous section, dense

urban environments are often characterized by long, straight street segments. In

addition to that, there are a lot of high building structures present. This is the rea-

son why one can observe similar structures from di�erent places along a street even

though they are far apart from each other. Hence, when extracting features from

those places, there will be many features in common due to high building structures

in the background. This makes it very hard to distinguish between places. Thus,

we want to keep only those local features that are most descriptive for a place.

Moreover, we try to remove features describing dynamic objects. Apart from the

advantages mentioned, it is also important to store only features that are necessary

to recognize a place. Thus, the requirements in terms of memory are reduced by a

feature selection.

Our feature extraction and selection procedure can be divided into the following

steps:

� extraction of local features

� outlier detection using RANSAC

� selection of close by features

The steps are explained in detail in the following.

Feature Extraction

At �rst, the image Ia, which describes the reference place mi, is searched for visual

features. Therefore, we apply Scale Invariant Feature Transform (SIFT) [18] as

feature detector. As mentioned in section 2.6.1, each SIFT feature is described by
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the quadruple 〈(x, y), σ, θdom, f〉, where (x, y) is the sub-pixel location, σ the scale,

θdom the orientation and f the descriptor vector. For further processing steps, we

also extract SIFT features from the previous image Ia−1.

The use of local features for the mapping in urban environments is advantageous.

Global techniques like colour similarities as proposed by [12] are highly disturbed

by the dynamics in urban street scenes. Local features in contrast can be detected

even though the scene structure changed due to the presence of dynamic objects. By

considering local gradients, descriptors are still quite distinctive even though scenes

are very similar.

As features are extracted from the entire images, we have to reject those that are

associated with the vehicle itself. Therefore, a binary mask is applied which de�nes

the vehicle related region and the remaining part. The coordinates of all SIFT

keypoints are compared to this mask. Those features that are within the vehicle's

region are rejected. The mask is set once the camera is �xed to the vehicle's roof.

In order to incorporate vibrations during the operation the vehicle's region of the

mask is set slightly greater than actually necessary.

Outlier detection using RANSAC

In the next step, we look for correspondences in the feature sets extracted from Ia and

Ia−1. According to the procedure explained in Section 2.6.2, the feature descriptors

of Ia and Ia−1 are matched. The number of matches Na is obtained as result. By

simply matching features across two images, the �rst feature selection is applied.

That is, features that are detected more often are potentially more stable. Next,

the feature correspondences from Ia and Ia−1 are checked for geometric consistency.

Using RANSAC we �t a fundamental matrix F to the given correspondences, as

described in detail in section 2.5.3. The number of matches Na reduces to Ña with

Ña ≤ Na. Thus, outlier in terms of false matching SIFT descriptors are rejected. In

addition to that, feature correspondences originated from close by dynamic objects

can be detected and rejected. Other vehicles or pedestrians crossing our vehicle's

path are robustly detected as outliers, providing there are enough inliers, such as

features around static objects, present. The detection of dynamic obstacles using

RANSAC works well if those are close by. However, the feature correspondences

of further away objects might lie close to the epipolar lines and hence threatened

as inliers. Non moving objects, such as parking vehicles, cannot be distinguished

from other features such as those around buildings in this way. However, there is
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a possibility to learn places over longer periods. Given an image of the same place

at a completely di�erent time, one could estimate feature correspondences based on

those. This would signi�cantly improve the place recognition since it is unlikelier

that a dynamic object appears at the same place again.

Selection of close by features

The �nal step is the approach to select those features that are close by and hence

describe the local area around a reference place mi best. In order to do that we

make use of the fact that features being further away move less than close by ones

in the image coordinate system when considering an image sequence. Thus, we

consider the optical �ow for all feature correspondences based on the images Ia and

Ia−1. A vector is estimated from the locations of the features in the �rst frame to

the one in the second frame. This vector has a magnitude d and a direction φ.

Comparing the magnitudes of all correspondences, the relative distances to features

with respect to our vehicles motion are obtained. This holds well for the straight

motion along a street in urban canyons. Reference places are not picked during

turns as, for instance, at intersections. However, there are problems involved. First,

if the vehicle is not driving exactly in the middle of two building structures, the

optical �ow of the closer side is higher. That means it is likely that more features

are selected from the closer side. Second, the scenario explained above only holds

for features around static objects. Moving objects, such as other vehicles, cause a

di�erent optical �ow in the image depending on their velocities with respect to the

velocity of our vehicle.

As the result of this step, we obtain Ñ feature correspondences sorted by the

distance travelled over two images. Thus, we can choose the �rst N̂ features of this

set, where N̂ denotes a constant number.

Examples

Figure 3.5a shows an example for the feature selection process described above. The

features are assigned colours corresponding to their selection status. Remaining

features after the matching with the previous image are plotted as red crosses.

Features that successfully passed the geometric consistency check by RANSAC are

plotted in yellow. Finally, the green crosses are the features saved for this reference

place. Figure 3.5b illustrates another example. Here it is obvious that features
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around the bicyclist were detected as outliers. On the other hand, features around

the parking bus are kept.

(a) Example 1

(b) Example 2

Figure 3.5: Examples for the applied feature extraction and selection. Features re-
maining after matching are red, after RANSAC yellow. Green features
are stored.
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3.3 Practical Considerations and Limitations

In this section the limitations of the proposed mapping procedure are summarized.

In addition to that, details for practical applications are given.

As mentioned above, the position estimate based on odometry increases over time

without reference measurements. In order to minimize the error in the distance

measurement, it is important to calibrate the odometry before the mapping process.

There are several sources of error for automotive platforms which can signi�cantly

deteriorate the precision of the odometry, as for example:

� tire in�ation pressure

� varying load balance

� tire temperature di�erences

� tire slipping.

The �rst two examples can be addressed by the calibration. The others, in contrast,

cannot be resolved by the calibration. It is highly demanding to account for this

kind of errors. The calibration can be done by driving the vehicle a few times along

a straight track whose distance is known. The conversion factor κ which translates

wheel encoder pulses to wheel displacement and a standard deviation σκ can be

estimated based on that.

The next problem addresses the �exibility of the map which is built as described

previously. The places associated by SIFT features are only valid for the direction

that the vehicle drove during the mapping process. If we drive along the same route

but in the opposite direction, it is rather unlikely that places can be recognized. This

is due to the fact that SIFT features are only partly invariant to a�ne distortions.

The SIFT features usually do not match in case of major a�ne projections. However,

this is not a general limitation. Morel et al. [19] proposed ASIFT as SIFT derivate

which is fully invariant to a�ne distortions. The algorithm is computationally more

expensive as a set of sample views of the initial image is simulated.

A further challenge is posed by the detection and rejection of features that describe

dynamic objects. The RANSAC based approach is able to reject a multitude of

these features, especially those that are close by. However, there might still be some

undetected ones. The strategy of selecting close by features as introduced above

might even impair since it privileges those with a higher magnitude in terms of their

optical �ow over two images. A vehicle on the opposite lane, for instance, moves
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towards our vehicle. Hence its optical �ow is greater than those around static objects

in the environment. A dense optical �ow analysis could improve this. In addition

to our approach the heading direction φ would be involved as well. In this way

features could be tracked over multiple images using optical �ow implementations

as proposed by Kanade et al. [28] and Shi et al. [25]. An application to vehicle

detection is given by Choi [7].

Another issue that is not covered by our feature selection regards the detection of

features on the road surface as shown in Figure 3.5a. By the use of image processing

algorithms like watershed4 one could try to segment the road from the remainder of

the image. Rejecting features detected on the road surface might seem obvious as

lane markings are present throughout the entire environment. However, SIFT fea-

tures base on local gradients, as explained in Section 2.6.1. Thus, lane markings can

still possess distinctive features in their local appearance. For instance, Levinson et

al. [17] build a map based on features extracted from road surfaces in urban envi-

ronments. They demonstrated accurate localization based on that map. Although

they apply di�erent feature extraction techniques based on infrared images instead

of SIFT, it still motivates to keep road surface features in our map.

Last, we will deal with the number of features that are kept. As mentioned

previously, a �xed number of features N̂ are stored for each reference place. This

is done due to the selection of close by features. Distances to features are only

estimated on a relative scale with respect to the vehicle's motion. The magnitudes

depend on the actual distances and orientations of the features in the scene as well

as the vehicle's velocity. Thus, we cannot simply take all features having travelled

more than n pixels. In this way it might still happen that far away features are

selected due to the fact that either less feature were observed or many were rejected

before. If the minimum number of features N̂ is not reached, the following images

are considered until a maximum distance τmax is exceeded and the map building

process terminates with an error. This case is rather unlikely.

4More information about the watershed algorithm can be found in [29]
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In this chapter, we present an approach for the localization of a vehicle using onboard

odometry, more precisely wheel encoders and steering angle measurements, and a

single perspective camera. Our localization system is given a feature map m, as

discussed in chapter 3. As mentioned in the introduction, we address the problem of

global localization. Thus, the system has to be able to estimate its position without

an initial pose. This is the reason why we cannot use an extended Kalman �lter as

uni-modal probability distributions are not suitable for the global pose estimation

[27, p. 194]. Instead we implement a particle �lter which will be explained in

the following. In section 2.2.1, we came up with a so-called motion model and

an observation model. We referred to the motion model as the state transition

probability p(x′t|xt, ut) propagating our system to state x′t given the previous state

xt and the action, in this case a motion, ut. Furthermore, the observation model

is expressed as the likelihood p(zt|xt) in terms of the estimation of the state belief

bel(xt) (section 2.2.2). How both models are incorporated with a particle �lter is

described in section 2.2.4. The next sections deal with the implementation of both

models. In addition to that, we will outline the applied resampling algorithm.

4.1 Motion Model

The location and orientation of the vehicle at a discrete time step t can be expressed

as the pose xt
1:

xt = (x, y, θ)T (4.1)

At time step t, the motion ut is carried out. It can be expressed as:

ut = (v ω)T (4.2)

1We only consider motion in 2D
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The underlying drive train is the Ackerman steering, as described in section 2.1.

Thus, we are given v = vc and ω = ωc for each motion ut. The state transition from

the previous state xt−1 to the state x′t is de�ned as follow: x′

y′

θ′

 =

 x+ v∆tcos(θ + ω∆t)

y + v∆tsin(θ + ω∆t)

θ + ω∆t

 (4.3)

The Equation 4.3 describes the exact motion after ∆t units of time. However,

the odometry is subject to noise which can occur due to a variety of sources as,

for instance, wheel slipping on the ground, varying in�ation pressures and the load

balance of the vehicle. Also, the measurement of the steering angle is driven by noise.

In order to incorporate this uncertainty in our motion model, we add Gaussian noise

to the velocity v and the angular velocity ω. Thus, we can express the following:(
v̂′

ω̂′

)
=

(
v + εα1|v|+α2|ω|

ω + εα3|v|+α4|ω|

)
. (4.4)

The variable εσ is the zero mean Gaussian noise with standard deviation σ. We set

the standard deviation of the error according to the input velocity respectively an-

gular velocity as proposed in [27, chapter 5]. The parameters α1, ..., α4 are platform

speci�c and have to be set appropriately. For instance, the noise of the steering anle

measurement of our vehicle can be signi�cant. This is incorporated by adjusting

the corresponding noise parameters α2 and α4. Thus, our �nal motion model can

be de�ned as:  x′

y′

θ′

 =

 x+ v̂∆t cos(θ + ω̂∆t)

y + v̂∆t sin(θ + ω̂∆t)

θ + ω̂∆t

 (4.5)

4.2 Observation Model

An observation zt is made at the discrete time step t. This observation is applied

to our probabilistic state estimation in form of the observation likelihood p(zt|xt).
As we are given a feature map m, this likelihood is extended to p(zt|m,xt). In

other words, this term expresses the probability of making the observation zt given

our current state xt and the map m. To be more speci�c, observations in our

case are camera images which are searched for visual features. We apply Scale

Invariant Feature Transform (SIFT) as feature detector [18]. Thus, we observe a
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set of L features z
[1]
t , ..., z

[L]
t at the time step t. In addition to that, each reference

place of our map m contains a set of P local features. Thus, we try to associate

observed features zt with those stored for the reference places. This is the crux of

our observation model and poses the basis for the assignment of the importance

factor w
[k]
t for the particle x

[k]
t because of the following relationship:

w
[k]
t ∝ p(zt|m,x[k]

t ) (4.6)

Di�erent implementations in order to estimate the particles' weights are introduced

in the following sections.

4.2.1 Simple Matching

In this section, we present an implementation for the observation model that works

solely on similarity of SIFT descriptors. In this way, we compare all SIFT descrip-

tors of the reference place mi to the observed features zt based on their Euclidian

distances. Restating our matching function match(mi, zt) of section 2.6.2, we get

Ni as the number of corresponding features. Thus, we can say how likely it is that

we make the observation zt given we are at the reference place mi. We model the

likelihood p(zt|mi) as a Gaussian:

p(zt|mi) = e
−(Ni−µ)

2

σ2z , (4.7)

whereas σ2
z denotes the variance measured on testing data sets and µ the �xed

number of features for mi as described in 3. In addition to that, we need a function

expressing a distance metric between the particle x
[k]
t and the reference place mi.

Thus, we de�ne the following function:

fdist(d) =

{
exp(− (d−µd)2

σd
) (d > µd)

1 (d ≤ µd)
(4.8)

where µd and σd are empirically set according to the minimum distance of two

reference places of m. The parameter d is the Euclidian distance of particle x
[k]
t to

the reference place mi. This function returns rather optimistic values for particles

being close to a reference place. This is �rstly because we cannot properly estimate

the distance to the reference place as we are only working in the space of appearance.

That means a lower likelihood p(zt|mi) for the place mi does not necessarily occur
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due to a greater distance of the position where zt was made and the reference place

mi. The reason for this can be occlusions or signi�cant changes in illumination. As

a result we observe less matching features and get a lower likelihood p(zt|mi). In

addition to that, we have an uncertainty about the actual position of the reference

place mi due to the map acquisition, as described in chapter 3. Using the likelihood

p(zt|mi) and the distance weighting function fdist(d), the observation likelihood for

particle x
[k]
t can be expressed as:

p(zt|m,x[k]
t ) =

M∑
i=1

p(zt|mi) · fdist(‖x[k]
t −Xmi‖) (4.9)

The weight w
[k]
t is assigned proportional to this likelihood. The normalization of

the weights is carried out accordingly. Note, that even though the particle's state

actually expresses a pose, only the location in (x, y) is used for the calculation of the

Euclidian distance to the reference place mi with the location Xmi . As a result, we

obtain the observation likelihood for the particle x
[k]
t as the sum of the likelihoods

of all M reference places weighted by their distances. Estimating the observation

likelihood in this way, surely obtains high con�dence as the entire state space is

considered for each particle. Using this estimate, however, is computationally very

expensive as a lot of features with high-dimensional descriptor vectors are considered.

Especially in the case, when the particle �lter converged around the true posterior,

the consideration of reference places being far away from the belief bel(xt), is not

necessary. Thus, the estimate of the observation likelihood is simpli�ed as follow:

M̃ = {mi ∈M |β > ‖x[k]
t −Xmi‖} (4.10)

p(zt|m,x[k]
t ) =

∑
mi∈M̃

p(zt|mi) · fdist(‖x[k]
t −Xmi‖). (4.11)

We use M̃ in order to express a set of all locations having a distance less than β

to the particle x
[k]
t . In this way, the computational requirements are signi�cantly

reduced while the result is not deteriorated, providing β is set appropriately.

4.2.2 Histogram based Approach

So far, we discussed an implementation for the observation model using the classical

approach of matching SIFT descriptors. The crucial point poses the determination

of the threshold. Even though the use of further geometric constraints allows to in-
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crease this threshold, the matching simply says whether a descriptor correspondence

is valid based on their similarity. However, there is no information given about the

strength of similarity besides the fact whether it falls below the threshold or not.

Thus, we want to introduce a probabilistic approach to this problem which is mo-

tivated by Bennewitz et al. [3]. The basic idea is to replace the matching function

used so far. In this way we de�ne f 1
i , ..., f

P
i as the set of descriptor vectors associ-

ated with the features stored for the reference place mi. Furthermore, the descriptor

vectors associated with zt are de�ned as f ′1t , ..., f
′L
t . The likelihood that the vectors

f
[p]
i and f ′

[l]
t describe the same feature is estimated as:

p(f
[p]
i ≡ f ′

[l]
t ) = exp(−‖f

[p]
i − f ′

[l]
t ‖

2 · σ2
1

), (4.12)

where σ1 denotes the variance of the Gaussian. For each feature of the place mi the

similarity likelihoods to all features observed are estimated according to Equation

4.12. Thus, P × L likelihoods are obtained. Next, we select for each feature f
[p]
i of

the reference place the maximum similarity likelihoodmax(p(f
[p]
i ≡ f ′

[1]
t ), ..., p(f

[p]
i ≡

f ′
[L]
t )). We denote the combination of the stored feature f

[p]
i with its most similar

observed feature f ′
[l]
t as (f

[p]
i , f ′

[l]
t ). The set C contains all P combinations. These

combinations are used in order to estimate the observation likelihoods for the par-

ticles.

As we are using monocular vision the depth to observed features is unknown.

Hence only the bearings can be used. In this way one could compare the pixel

displacements of stored features and observed features. However, calculating the

Euclidian distances is crucial as the magnitudes are signi�cantly in�uenced by the

vertical displacements. This becomes apparent when a vehicle just drives in a dif-

ferent lane than during the mapping process. This magnitude would be quite large

even though the vehicle is almost at the same position if we consider the street

as a one-dimensional line. The magnitude could be the same for a vehicle being

further away but driving in the same lane as during the mapping process. Thus,

only the horizontal pixel displacements are considered to compute the observation

likelihoods. To be more precisely, a distribution over the horizontal pixel displace-

ments of the features stored for the reference place mi and the observed features is

estimated. Therefore, a histogram is computed with each bin representing a range

of displacements. For each feature f
[p]
i of the reference place mi we have a likelihood

and a pixel displacement with its associated most similar observed feature. The sim-

ilarity likelihoods are added to the bin with the corresponding pixel displacement.
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Hence each bin b contains a sum h(b) and is bordered by the displacement values

α−(b) and α+(b). The value h(b) of bin b can be de�ned as

h(b) =
∑

{(f [p]i ,f ′
[l]
t )∈C|α−(b)≤‖α(f

[p]
i )−α(f ′

[l]
t )‖<α+(b)}

p(f
[p]
i ≡ f ′

[l]
t ). (4.13)

Here the function α(·) expresses the horizontal pixel coordinate of a feature. Conse-
quently, we obtain the distribution about the displacements. The �nal value should

rather depend on the similarities of features. However, the closer a bin to zero, the

closer are the pixel displacements of its associated feature combinations. The den-

sity extracted from that distribution depends on the similarity of stored features and

observed features. However, a high similarity should be weighted less if the pixel

displacement is high. First, this minimizes the in�uence of wrong matches since

the positions of the associated features often deviate signi�cantly. Wrong matches

in this case means feature correspondences that are assigned a high likelihood due

to their similarity. However, they belong to di�erent features. Second, it roughly

evaluates the relative distance of the stored features and observed features. Let us

imagine we are approaching a place which poses a reference place in our map. The

closer we get to the original position the less the horizontal pixel displacement of

corresponding features. However, one cannot relate this to an actual metric saying

the vehicle has a speci�c distance to a reference place because the stored features

have di�erent positions in the scene.

In order to estimate the observation likelihood a density has to be extracted from

the distribution determined above. The value of each bin is weighted by a zero

mean Gaussian according to the pixel displacements expressed by its boundaries

α+(b) and α−(b). This can be expressed as:

p(zt|mi) =
∑
b

h(b) · exp

(
− 1

2σ2
2

·
[
α+(b) + α−(b)

2

]2)
(4.14)

The observation likelihood p(zt|mi, x
[k]
t ) for the particle x

[k]
t is assigned according

to Equation 4.9. The simpli�cation expressed by 4.10 also holds for this observation

model.
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4 Localization

Figure 4.1: Low variance sampling

4.3 Resampling

The resampling step poses one of the most crucial steps in a particle �lter framework.

The main goal is to achieve a higher probability density in areas of high interest

which is determined by the particles' weights. However, due to the random sampling

nature of the particle �lter, we have to deal with the variability of the samples.

This is called the sampling variance [27]. For instance, if exactly the same action

is carried out simultaneously on two platforms with equal properties, we get two

di�erent kernel densities. The variance in these densities decreases with the number

of particles representing the state space. Each resampling step normally reduces

the variance of the particle set itself, but in contrast the variance of the particle

set in terms of the estimation of true belief increases [27]. This becomes apparent,

when, for example, a vehicle stops in front of a tra�c light. If we keep applying

observations and resampling, one particle would possess the entire probability mass

after a while. The diversity of the particle �lter is lost. Thus, the resampling is

deferred when the vehicle is not moving. Also, the observations during this time are

rejected. Bennewitz et al. [3], for example, estimate a number of e�ective particles

and perform a resampling only when this number drops below a certain threshold.

However, we could not observe an advantage by applying this.

Another way of reducing the e�ect explained above is to apply low variance sam-

pling [27]. In contrast to the resampling strategy introduced in Section 2.2.4, we use

only one random number r and select the remaining samples based on this. Algo-

rithm 3 shows the low variance resampling which is explained in the following using

the example illustrated by Figure 4.1. Each box of Figure 4.1 denotes a weight wi

with a value as shown on top of it. Before the resampling step, the set of the size

M = 6 contains the particles i = {1, 2, 3, 4, 5, 6}. Firstly, a random number within

the interval [0;M−1] is chosen (line 3). The variable c is initialized with the �rst

particle's weight, the index i is set to one. U is initialized with the random number

r which points to our �rst weight. As U is less than 0.28, the �rst particle is added
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4 Localization

to the new set. U is incremented by M−1 and still points on w1. Hence, the �rst

particle is added again to the new particle set. Next, U is incremented by M−1 ,

thus c drops below U . Consequently, c points to the end of w2 now. As U is still

greater than c, c is shifted to the end of w3 and i = 3. Now, U is less than c and the

particle 3 is added to the new particle set. At the end of this procedure, we obtain

the set i = 1, 1, 3, 4, 5, 6.

The advantages of low variance sampling are obvious. First, it works more sys-

tematically as it cycles through all particles. In addition to that it has a complexity

of O(M) [27]. There is a variety of other resampling algorithms which can be found,

for instance, in [27, chapter 4] and [10].

Algorithm 3 Low Variance Sampling

1: function LowVarianceSampling({x[1]
t , ..., x

[K]
t }, {w

[1]
t , ..., w

[K]
t })

2: r = rand(0;M−1) . Initialization

3: c = w
[1]
t

4: i = 1
5: for k=1 to K do

6: U = r + (m− 1) ·M−1

7: while U > c do
8: i = i+ 1
9: c = c+ w

[i]
t

10: end while

11: x
[k]
t := x̄

[i]
t . add particle with index i

12: end for

13: return {x̄[1]
t , ..., x̄

[K]
t }

14: end function
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5 Experimentation

In order to evaluate our system, experiments on real roads were carried out. The ma-

jority of the algorithms are implemented in Matlab and not optimised for real-time

application. Thus, the sensor data was logged during the experiment and processed

afterwards. As testing environment a loop in a dense urban environment of the

Central Business District of Sydney, Australia was selected. In this area there are

many high building structures present. The streets are mostly very narrow. The

operation of GPS in this area is unreliable as the perceptible satellites are arranged

very tight. Only a few street segments and intersections provide a wider �eld and

hence a better satellite constellation. In addition to that, the experimentation en-

vironment is characterized by a lot of dynamic objects as pedestrians and other

vehicles. The vehicle is driven in a way that is typical of humans. That means that

the vehicle was not purposely driven at slower speeds. In the following the mapping

as well as the localization implementations as explained in the previous chapters are

presented. First, it is shown how the map was built. Afterwards, the localization

based on that map is carried out in two di�erent experiments. Here, the focus is

the general evaluation as well as the comparison of di�erent implementations.

5.1 Map building

As the precision of the odometry is of high importance for the mapping process,

a calibration was carried out beforehand. Afterwards the vehicle was driven one

loop on the speci�ed route. The map of the environment was built as explained

in Chapter 3. Street segments were de�ned based on intersection lines. Every 10

metres, the closest frame based on time stamps was selected as reference frame and

hence a reference place was de�ned based on this. The minimum distance between

reference places was set to 10 metres and the maximum distance to 20 metres. For

each reference place we stored 250 SIFT features.
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5 Experimentation

5.2 Experiment 1

The �rst experiment for the localization was carried out right after the mapping

process. That means the sensor data of the �rst loop was used to build the map,

the following one for the localization. This poses the best preconditions in terms

of similarity as illumination has not perceptibly changed in the meantime. Both

implementations for the observation model discussed in Section 4.2 are applied. The

ground truth is given in terms of start and end of the trajectory and the directions

(see Figure 5.1a). It is not based on measurements and hence manually set.

(a) Experiment 1 (b) Experiment 2/3

Figure 5.1: Ground truth trajectories

The loop start and end are determined similarly to the mapping process. Those

images that are captured exactly at intersection lines are manually associated with

corresponding reference places. A set of K = 500 particles was used to estimate

the position. The vehicle's pose xbel is estimated as the weighted mean over the

particles:

xbel =
K∑
k=1

w[k]x[k] (5.1)
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5 Experimentation

The uncertainty in the estimate is given in terms of the variance over the particles

weighted mean:

V ar(xbel) =
K∑
k=1

w̄[k](x[k])2 −
( K∑

k=1

w[k]x[k]

)2

. (5.2)

The results for both implementations are shown in Figure 5.2 In addition to that

the uncertainties are shown.

5.3 Experiment 2

A second experiment was carried out. Basis for the localization was the same map

as in the previous experiment. Hence localization and mapping base on data sets of

completely di�erent times as about two months had elapsed in-between. In this way,

it is highly unlikely that objects as parking vehicles, whose appearances were saved

for reference places, are recognized at the same location. In addition to that, we

have slightly di�erent lightning conditions. Again, a set of 500 particles was used.

The ground truth is shown in Figure 5.1b results are shown in Figure 5.3.

5.4 Experiment 3

The goal of the �nal experiment is the evaluation of the feature selection as discussed

in Section 3.2. Hence we apply the simple matching approach using the map with

selected features as for the previous experiments. Second, we apply the same ap-

proach, but using all features associated with the reference places. The observation

model as de�ned in Equation 4.7 is slightly changed as the number of features for

each reference place varies:

p(zt|mi) = e
−(Ni−Pi)

2

σ2z , (5.3)

where Pi denotes the number of features of the reference place mi. The underlying

data set is the same as in the second experiment (see Section 5.3). Thus, ground

truth is given by Figure 5.1b as well. The results are shown in Figure 5.4.
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5 Experimentation

5.5 Summary

The results of the experiments can be summarized as follows. First, it can be

said that the global localization using a single camera, odometry and a prior map

is possible. The second experiment proved that the localization also worked at a

completely di�erent time. Nevertheless the experimental results vary from the ex-

pectations. The histogram and the matching based derivates performed similarly in

both experiments. Due to the change in illumination in the second experiment the

histogram based implementation was expected to perform better than the match-

ing based derivate as latter might reject many correspondences that fall above the

threshold. However, this could not be observed. Both implementations perform

similiarly in these experiments. The histogram approach shows some minor drifts.

An uncertainty at intersections especially when turning becomes apparent for both

derivates, particularly at the lower intersections on the map. This is because these

intersections provide a wider �eld of view in contrast to the others. Thus, the

similarities of reference places close to these intersections is higher.

The third experiment dealed with the comparison of the localization based on a

map built using feature selection and the same map but using all features that were

observed at a reference place. The trajectories as well as the uncertainties do not

show signi�cant di�erences. However, a major increase in the processing time was

recorded because there are typically about 2000 features for each reference place.

The case that, for instance, a dynamic object was mapped at one reference place and

appeared at a di�erent one might not have occurred. In addition to that, dynamic

objects probably confuse rather in the initialization step respectively during phases

of higher uncertainties. Once the particle �lter converged close to the true position,

the in�uence of these observations is minimized. All in all, apart from processing

time there were no particular advantages of the feature selection in combination

with the particle �lter in this experiment.
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Figure 5.2: Results of experiment 1
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Figure 5.3: Results of experiment 2
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Figure 5.4: Results of experiment 3
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6 Discussion

6.1 Conclusion

In this thesis, we presented an approach for the localization of autonomous ground

vehicles in dense urban environments using monocular vision and odometry. It

was explained how a hybrid map containing reference places of the environment as

well as metric information can be built. In particular, we used satellite images to

obtain information about intersections and courses of street segments. The map

was supplemented with GIS data which enabled an appropriate scaling. Based on

odometry and camera images we de�ned reference places on this map. Approaches

for a feature selection in order to obtain distinctive reference places and a compact

map representation were shown.

The global localization was addressed in terms of a place recognition problem

using a probabilistic framework. A particle �lter was implemented to estimate the

vehicle's pose given motions based on odometry and observations in form of SIFT

features. Observed features were associated with those stored for reference places

of our map. We presented two di�erent approaches implementing this in respect of

the observation model. One evaluates the similarity of observed and stored features

by a distance threshold. The other one tackles the similarity measurement in a

probabilistic manner while simultaneously incorporating geometric constraints.

The presented experimental results show that our appearance based approach can

successfully localize a vehicle given a map with reference places.

6.2 Limitation

Even though the localization based on the presented approach is possible there are

limitations. As we are working in the space of appearance a high precision estimate

on a centimetre scale is not possible. However, it enables a reliable localization on
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street level. The position estimate is highly reliant on the accuracy of the map,

particularly the locations of the reference places. Moreover, it is in�uenced by the

distance between reference places.

Second, SIFT features are only invariant to a certain amount of illumination

change. Thus, the localization throughout completely di�erent times of day, such

as day and night, is crucial. Nevertheless one could build maps containing reference

places and associated features for a variety of illumination conditions.

6.3 Future work

Instead of assigning locations to reference places based on odometry distance mea-

surements, a Simultaneous Localization and Mapping (SLAM) approach should be

applied. This would decrease the uncertainty of these locations. Our experimental

trajectories were about 1.5 km which poses a challenge to visual SLAM algorithms

as the complexity is high due to the number of features. Thus, an algorithm as

proposed by Huang et al. [14] working with local sub-maps that are connected to a

global map is advantageous. Only features in the boundaries of two local sub-maps

are kept for data association. We applied this algorithm using the same data set as

for our second experiment (see Section 5.3). Due to the scale ambiguity of monocu-

lar vision, the �nal trajectory is up to one global scale. The scaling was carried out

using odometry between two close-by poses. The result is shown in Figure 6.1. It is

apparent that there is a major drift in the upper part of the trajectory. This might

have occurred due to the presence of a multitude of dynamic objects as particularly

this region is very busy. Further investigation in the rejection of features around

dynamic objects could potentially help. Alternatively the consideration of smaller

trajectories might help.

Next, there are possible extensions for our approach regarding the representation

of reference places. Instead of saving high-dimensional SIFT descriptors visual vo-

cabulary trees could be applied. The basic idea is to represent features as visual

words. A vocabulary tree is built based on the visual words. First, a query word

is compared to the leaf nodes. From the closest leaf node the tree is recursively

traversed until the closest visual words is found. This node can, for instance, link

to a speci�c reference place. This is similar to text recognition algorithms and

well suited for a large number of reference places. An approach for large city scale

location recognition is given by Schindler et al. [24].
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Figure 6.1: Scaled SLAM trajectory plotted on a prior map

Even if visual vocabulary approaches are applied, it makes sense to use the GPS

signal as prior for the initialization of the particle �lter. In this way particles are

only initialized in the region covered by the uncertainty of the GPS instead of the

entire state space. In order to recover from localization errors, it is recommended

to continuously sample a set of particles with random states [26]. However, this

involves further changes as the belief cannot be estimated as the weighted mean

over all particles as presented in this thesis. More complex strategies as kernel

density estimation or density trees could be implemented [27, p. 104 et seq.].

The next extension addresses the odometry. As it became apparent in the experi-

ments, the vehicle's steering angle measurement is subject to greater noise, particu-

larly when turning at intersections. Further investigation in the use of the onboard

available inertial measurement unit in order to achieve a better prediction for the

localization is intended.

Finally, the localization approach should be optimised for the application in real-

time. This is possible by the use of vocabulary trees supported by the GPS prior

information during the initialization as mentioned above. Also, the extraction of

SIFT features can be carried out in real-time by the use of parallel hardware archi-
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tectures. Wu et al. [30] proposed a SIFT implementation based on graphic processor

units (GPU) which enables the operation at about 15 Hz for images with a resolution

of 1024× 768 pixels. Chang et al. [6] presented an approach for the implementation

of SIFT on Field Programmable Gate Arrays (FPGA) which signi�cantly accelerates

the feature extraction while simultaneously working more economically in terms of

power consumption compared to graphic processor units.
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A Appendix

A.1 Discrete Convolution in 2D

Providing f and g are two functions from (X, Y ) ⊂ Z2 to R, the convolution of f

and g is de�ned as follows [26]:

(f ⊗ g)(x, y) :=
∑
u∈X

∑
v ∈ Y f(u, v) · g(x− u, y − v) (A.1)

Convolutions are also used if the domains of the functions are dissimilar. The

functions are extended with zeros in this case.
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A.2 Particle Filter Implementation

(a) Initialization (b) Particle �lter converged

Figure A.1: Screenshots of the particle �lter implementation with particles (red) and
estimated belief (green cross)
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A.3 Theses

1. The vehicle localization in dense urban environments can be realized using

approaches that work with the appearance of visual features.

2. SIFT features are well suited for the vision based global localization.

3. Feature selection helps distinguishing places with high similarity in place recog-

nition systems and enables a more compact representation.

4. A RANSAC based approach to the detection of outliers can reject a multitude

of dynamic objects during the map acquisition.

5. A feature selection for place representations in combination with a particle

�lter could not proved to be bene�cial.

6. The probabilistic approach to the observation model using sparse geometric

constraints did not show advantages compared to the simple matching.
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