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Chapter 1

Introduction

The impact polymers have on our daily lives has been so significant that people
sometimes say that after the Stone Age and the Iron Age, we entered the Poly-
mer Age. Although natural polymers like shellac, amber and caoutchouc have
been used for a long time – e.g. the ancient Mayan already processed latex to
form rubber balls for games [1] – it was not until the work of Staudinger to un-
derstand the molecular structure of those materials. In his landmark paper of
1920 [2], he suggested a structure of long chains of short repeating molecular
units linked by covalent bonds. Already in 1909 Bayer was granted a patent on
a method to fabricate artificial caoutchouc and Baekeland announced his inven-
tion of bakelite in the same year, but it was this insight of the macromolecular
nature that gave rise to an explosion of research in material science. After
initially Staudinger’s concept established itself rather slowly, in the latter half
of the 20th century Kuhn, Flory, Huggins, Stockmayer and others developed
theories describing macromolecular sizes, self-avoidance of different chain seg-
ments, polymer solutions, thermodynamics of mixing, etc. Rouse proposed a
model describing the conformational dynamics of an ideal chain that was sub-
sequently complemented and improved by Zimm. Afterwards de Gennes, des
Cloizeaux, Edwards, Khokhlov and many others greatly contributed to modern
polymer physics to make it to what it is today: a vast body of knowledge that
due to the complexity of the field still offers thrilling questions of practical and
theoretical nature.

The molecular units or monomers (from the Greek words µoνo – mono ‘one’;
and µέρoς – méros ‘part’) that, like Staudinger realised, are linked together by
covalent bonds to form polymers (from the Greek words πoλύ – poly ‘many’;
and µέρoς – méros ‘part’) can form linear chains, be branched, form rings or
even whole networks. The polymers considered here are linear chains in solu-
tion. Prominent examples of linear homopolymers are polyethylene (PE), the
most widely used plastic primarily used within packaging, polypropylen (PP),
also widely used, e.g. for packaging, textiles or lab equipment, polyvinyl chlo-
ride (PVC), e.g. used for construction, or nylon (cf. Fig. 1.1). How often a
monomer is contained in a polymer is called the degree of polymerization N .
This is a straigthforward definition if only one type of monomers is contained in
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PE:
C C

H

H H

H( )
N

PP:
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CH3

H H
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H H

Cl( )
N

Figure 1.1: The structural formulas of some common polymers.

the polymer. Only this case, the case of homopolymers, is treated in this thesis.
The more general case of heteropolymers is one of utmost importance – just
consider the huge class of biomolecules like DNA and proteins – but the param-
eter space analysed here is large enough without the additional freedom in the
monomer sequence and it is useful to reduce the complexity to concentrate on
the respective questions posed.

A long chain molecule with given covalent bonds still has many three dimen-
sional structures it can adapt, due to a certain rotational freedom of the bonds.
In fact, the number of possible conformations increases exponentially with
chain length such that many questions cannot be tackled analytically anymore
in this field. How the structure looks like on average depends on a number
of factors like the relation of its persistence length to the polymer length, its
self-interaction, if it is embedded in a good or bad solvent or a melt, or con-
finements and external fields. At low temperatures, a polymer melt exists as
a semicrystalline solid below its freezing temperature or as a polymeric glass
below its glass transition temperature. A polymer melt is the limiting case of a
polymer solution with vanishing solvent concentration. The cases of interme-
diate and high solvent fractions are called semi-dilute and dilute polymer sol-
vents, respectively. The defining assumption of dilute polymer solvents is that
individual chains do not interact with each other. For such a dilute polymer
also a freezing transition exists if the polymer is self-attracting. This freezing
is within a single chain [3] and does not involve cooperative freezing of many
chains like in the melt. It is less well studied than the freezing in the melt or
the collapse transition that takes place in dilute polymer solutions at higher
temperatures. The collapse, or Θ-transition, occurs when the solvent changes
from being ‘good’ to being ‘bad’. In a good solvent, the polymer dissolves easily
and the chain swells while in a bad solvent monomer-monomer contacts are
energetically advantageous enough to induce a collapse to increase the number
of those contacts. Because the entropy of swollen conformations is higher than
that of collapsed ones, the solvent quality can be regulated by the temperature
and the collapse induced by cooling. Directly at the Θ-transition, a polymer
scales up to logarithmic corrections as an ideal chain, i.e. a chain that is neither
self-avoiding nor self-attracting.

If an attractive substrate is near a polymer in dilute solution, its presence
strongly affects the behaviour of the polymer in its vicinity, since the monomer-
monomer attraction, being responsible for the collapse at the Θ-point, and the
surface-monomer attraction, resulting in the adsorption, compete with each
other. This competition gives rise to a variety of different conformational phases
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and the adsorption transition joins in to the freezing and the collapse transi-
tion. Numerous detailed studies have been performed to elucidate the con-
formational behaviour of homopolymers and heteropolymers near substrates.
Compared to experiments, computer simulations have the advantage that com-
binations of parameters can be varied at will. Theoretical studies have for
example been performed analytically using scaling theory [4; 5], mean-field
density functional theory [6], and series expansions [7; 8], and numerically by
employing off-lattice models such as a bead-spring model of a single polymer
chain grafted to a weakly attractive surface [9; 10] or a bead-stick model close
to a substrate of variable attraction strength [11], multiscale modelling [12],
Monte Carlo studies of lattice homopolymers [4; 9; 13; 14] and heteropoly-
mers [15; 16], molecular dynamics combined with a stretching of an adsorbed
homopolymer [17], or exact enumeration [18]. Also adsorption-desorption dy-
namics were investigated in Brownian dynamics simulations of coarse-grained
models [19]. Theoretical and numerical treatments of the adsorption of sin-
gle polymer chains are important, because they provide a complementary ap-
proach to experiments. Experimentally, it is easier to study larger samples than
to measure at the single molecule level - even tough this level has already been
reached with some methods. In simulations, small systems are easier to deal
with. The fact that experimental resolutions approach the single molecule level
increases the interest in the hybrid interface of organic and inorganic matter.
It furthermore opens new vistas for an experimental testing of theoretical pre-
dictions and presumably also gives rise to questions that will challenge the
theoreticians.

The aim of the present research is to investigate some aspects of the adsorption
of polymers in dilute solution with a focus on finite-size effects in the micro-
canonical ensemble and a systematic variation of surface attraction strength
and temperature in the presence of monomeric self-interaction. Grafted and
nongrafted adsorption at homogeneous and heterogeneous substrates are stud-
ied. The rest of the thesis is organized as follows:

• Some basic concepts in polymer physics and polymer adsorption are pro-
vided in chapter 2. In particular, the origin of the collapse transition and
some scaling properties are described.

• Chapter 3 provides detailed information about the bead-stick polymer
model and the surface model in all variants used throughout this the-
sis. Also the observables used to characterize the structural properties are
introduced here.

• In chapter 4, the ideas behind the microcanonical analysis are motivated
and explained. The microcanonical entropy, surface entropy, Gibbs hull,
microcanonical temperature and Maxwell construction are introduced
that are essential in the interpretation of some data presented in later
chapters.

• Chapter 5 presents the simulation techniques applied in this work. Ap-
plied are mainly multicanonical and parallel tempering Monte Carlo
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methods with a series of updates that preserve the bond constraints of
the coarse-grained model. The multiple histogram reweighting methods
used to combine the parallel tempering data are also carefully explained.

• An overview over the phase behaviour of a short nongrafted polymer ob-
tained via a canonical analysis is presented in chapter 6. The conforma-
tional transitions in a surface-attraction-strength and temperature plane
are explained and complemented by canonical data obtained by multi-
canonical simulations. Those results are important for the interpretation
of the data of chapter 7.

• In chapter 7, useful information is extracted from the microcanonical en-
tropy and temperature to describe the adsorption transition of the non-
grafted polymer that was already discussed canonically in chapter 6. If
the adsorption occurs above the collapse transition, a convex regime in
the microcanonical entropy arises whose behaviour with surface attrac-
tion strength, chain length and simulation box size is studied. The results
are complemented by data from exact enumeration of a lattice model.

• After recognizing the connection of the translational entropy of desorbed
polymers a certain distance away from the substrate to the convex in-
truder in the microcanonical entropy, and noticing that most studies in
the past have studied the adsorption transition of grafted polymers, a
systematic comparison of the whole phase behaviour of grafted and non-
grafted polymers is performed in chapter 8. The main differences were
found at the adsorption transition, where no convex intruder and hence
no dynamic phase coexistence arises for grafted chains for the adsorption
of extended chains. The adsorption of collapsed chains changes to the
less strongly signalled wetting in the grafted case.

• In chapter 9 finally, the homogeneously attractive substrate is left and
the phase behaviour is studied that arises if two different surface stripe
potentials of different stripe width are slowly switched on. The results
are compared to the findings of the homogeneously attractive substrate.
Additionally to the transitions found so far, a surface recognition takes
place.

• At the end, the main conclusions are summarized in chapter 10.



Chapter 2

Basis Concepts in Polymer
Physics and Polymer Adsorption

This chapter should provide a short introduction into some basic ideas of poly-
mer physics and polymer adsorption in equilibrium. For further information
refer to Refs. [20; 21; 22; 23] or related literature. The research in this field
certainly is related to the methods available in particular to the availability of
computer power and algorithmic developments. I will start with the most basic
model and successively add complications important for the current work and
shortly comment on the consequences of those complications.

2.1 Ideal Chains: Random Walk, Freely-Jointed, Worm-
Like and the Gaussian Chain

The most basic model of polymer conformations is the random walk (RW) in
space [24]. Here, the polymer chain can be viewed as a random walk ofN steps
whose only constraint is the fixed bond lengths b. The monomers sit between
the steps or bonds and do otherwise not interact with each others. All step
directions occur with the same probability and there is nothing that prevents
different monomers go get arbitralily close in space. If the polymer is constraint
to a lattice, one often calls this a “Random Walk”, while the off-lattice version
with arbitrary angles between the bonds is refered to as “Freely-Jointed Chain”.
Both are “Ideal Chains”.

If different monomer positions ~rn are joined by uncorrelated bond vectors

~bn = ~rn − ~rn−1,
〈
~bn

〉
= 0,

〈
~bm~bn

〉
= δmnb

2, (2.1)

the end-to-end distance can be expressed as

~ree = ~rN − ~r0 =
N∑
n=1

~bn. (2.2)
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(a) (b) (c) (d)
Figure 2.1: Idealised polymer models without self-interaction in two-dimensional representa-
tion. (a) The freely-jointed chain; (b) the random walk on square lattice; (c) the Gaussian
chain/bead-spring model. The harmonian springs here have a natural length of zero; (d) the
worm-like chain.

The total number of possible walks with N steps on a lattice with a connective
constant µ – that is identical to the coordination number, the number of possible
next directions at each vertex, in this case – is still analytically known (and quite
easy to obtain)

ZN =
∑
~ree

Z (~ree) = µN . (2.3)

The average of ~ree vanishes, 〈~ree〉 =
〈∑N

n=1
~bn

〉
=
∑N

n=1

〈
~bn

〉
= 0, but more

interestingly, the average of its square scales with the lengths of the polymer

〈
~r 2

ee

〉
=

〈
N∑
m=1

N∑
n=1

~bm~bn

〉
=

N∑
m=1

N∑
n=1

〈
~bm~bn

〉
=

N∑
m=1

b2 = Nb2 ∝ N. (2.4)

This also implies that the probability that an ideal chain assumes a stretched
conformation is very small. More generally, if one considers the average size
of the polymer to scale with the root mean square end-to-end distance and
introduces a scaling exponent ν, an ideal chain scales as〈

~r 2
ee

〉 1
2 ∝ Nν , with ν =

1

2
. (2.5)

This exponent is preserved if stiffer chains are considered, i.e. if succeeding
bond vectors preferentially have the same direction. Then several monomers
can be combined to an effective number of repeat units NK and the Kuhn length
lK gives a measure for the statistical segment length and hence increases with
increasing stiffness: 〈

~r 2
ee

〉
= NK l

2
K , L = NK lK = Nb. (2.6)

Since, N > NK , the effective extension of stiffer chains is, however, always
larger. And it is assumed here that NK � 1, because otherwise the polymers
would be semi-flexible or stiff, but no longer flexible. Another measure for the
stiffness of a chain is the persistence length ξp that gives the length along the
polymer over which the tangent vectors or bond vectors get decorrelated. For
ideal chains the persistence length is half the Kuhn length: ξp = lK/2. To get
a feeling for the persistence length, notice that it varies from about 0.5nm for
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long alkanes, over about 50nm for double-helix DNA, 1000-2000nm for F-actin
filaments to 1-6 106nm for the rather stiff microtubules [25].

There are other measures of the macroscopic size of a polymer, like the radius
of gyration or the hydrodynamic radius, that are, however, directly proportional
to the end-to-end radius for ideal chains. For the radius of gyration Rgyr, e.g.,
that is defined as

R2
gyr =

1

N + 1

N∑
n=0

(~rn − ~rcm)2 , with ~rcm =
1

N + 1

N∑
n=0

~rn, (2.7)

and will be discussed in more detail in chapter 3, it holds R2
gyr =

〈
~r 2

ee

〉
/6.

In the limit N → ∞, (N � 1,
〈
~r2

ee

〉 1
2 � b) the binominal distribution of the

end-to-end vector tends to a Gaussian distribution

PN (~ree) =

(
3

2πNb2

)3/2

exp

(
− 3~r 2

ee

2Nb2

)
. (2.8)

It is this property that led to the introduction of the equivalent Gaussian chain
model. The model is similar to the freely-jointed chain, but the bonds no longer
have a fixed length, but are flexible with a Gaussian distribution with a mean
of zero, p

(
~b
)

=
(
3/2πb2

)3/2
exp

[
−3~b2/2b2

]
. The distribution of the end-to-

end radius is the same. The realisation of this Gaussian behaviour turned out
essential to also understand, e.g. the linear response in rubber elasticity [20;
21]. Another popular model of an ideal chain that deserves to be mentioned
is the worm-like chain model. It is the continuous limit of the freely-jointed
chain for constant contour length, b→ 0, but with a non-vanishing persistence
lengths.

There are certainly other models of chains without long-range self-interaction
(a stiffness of the backbone is short-ranged, since only a finite fraction of neigh-
bouring monomers along the chain are affected if the polymer in long enough),
but let’s proceed to the discussion of polymers with long-ranged self-interaction
along the backbone like self-avoidance.

2.2 Real Polymers:
Self-Avoidance and Self-Attraction

Ideal chains are allowed to cross themselves which is clearly forbidden for any
kind of real atoms. This is also called the “excluded volume effect”. Hence, one
makes a mistake by modeling a polymer as ideal. Although ideal chains have
some relevance at the macroscopic scale for polymers in an ideal or Θ-solution
– as will be explained in this section – and possess the great advantage of being
analytically solvable, to model real-life polymers, the self-avoidance needs to be
introduced as was first done by Flory [26]. In order to estimate the influence
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of the self-avoidance, one has to estimate the number of monomer-monomer
contacts within a single polymer.

This can be done by a mean-field estimate by assuming that the probability of
a given monomer to overlap with another monomer is given by the overlap
volume fraction φ∗ that is the product of the volume of one monomer bd and
the number density of monomers within the volume occupied by the whole

polymer N/ |~ree|d. Hence for Gaussian chains with
〈
~r2

ee

〉 1
2 = bN

1
2 the number

of monomer-monomer contacts in any dimension d is:

1

2
Nφ∗ ∝ 1

2
Nbd

N

|~ree|d
≈ 1

2
Nbd

N

〈~r 2
ee〉

1
2
d

=
1

2
Nbd

N

(bN
1
2 )d

=
1

2
N2−d/2. (2.9)

For d = 1, the self-avoiding chain is trivially forced to a straight conformation
and for d > 4, monomer-monomer contacts get rare and linear self-avoiding
polymers behave like ideal polymers here. In the relevant cases in between,
the mathematical properties of self-avoiding walks (SAW) – the same model
as the random walk, but with the additional constraint of forbidden multiple
occupation of the same lattice site – get complex and are no longer analytically
treatable. So, for example the total number of possible walks with N steps on
a lattice with coordination number µ is no longer exactly known (cf. Eq. (2.3)),
but only the asymptotic form could be found to be

ZN ∼ µ̃NNγ−1. (2.10)

This also serves to define the effective connective constant µ̃ < µ (cf. Refs.
[27] or [28]) that depends on lattice and dimensionality. The exponent γ is
universal and only depends on the dimension. There are numerous estimates
around for µ̃ and γ [29; 30; 31] and for d = 2, γ is even known exactly. The
universality makes those studies attractive and probably also the challenge to
develop sophisticated computer code.

The average size of the polymer increases with self-avoidance, because it is
mainly the dense conformations that are forbidden now. To quantify this intu-
itive conjecture, one can use the same mean-field argument as in Eq. (2.9) and
consider the distribution of the end-to-end vector WN, real(~ree). For the ideal
chain, this number is WN, ideal(~ree) = µNPN (~ree) (cf. Eqs. (2.3) and (2.8)) and
if one estimates the probability that an ideal chain configuration is also allowed
under excluded volume condition p(~ree),

WN, real(~ree) = p(~ree)WN, ideal(~ree). (2.11)

The probability that one particular lattice element does not overlap with an-
other particular one is given by 1− bd/ |~ree|d. Consequently, the probability that
none of the N(N − 1)/2 possible overlaps occurs is

p(~ree) =

[
1− bd

|~ree|d

]N(N−1)
2

= exp

[
1

2
N (N−1) ln

(
1− bd

|~ree|d

)]
N�1≈ exp

(
− N2bd

2 |~ree|d

)
.

(2.12)
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Hence, WN, real(~ree) ∝ exp

(
− 3~r 2

ee

2Nb2
− N2bd

2 |~ree| d

)
. (2.13)

This can be used to obtain an estimation of the scaling of
〈
~r 2

ee

〉 1
2 with N by

minimizing the free energy of the real chain in a Flory approximation. The free
energy here only has entropic contributions:

βF (~ree) = − lnWN, real(~ree) =
3~r 2

ee

2Nb2
+

N2bd

2 |~ree| d
. (2.14)

Minimizing this with respect to ~ree gives〈
~r 2

ee

〉 1
2 ∼ bNν , ν =

3

d+ 2
, (2.15)

which is exact in d = 1, d = 2 and d = 4 and very close to the value obtained
from more sophisticated techniques such as renormalisation group calculations,
pertubative methods and simulations1 in d = 3. Above the upper critical dimen-
sion d = 4 the excluded volume is negligible and νd≥4 = 1

2 .

If one, additionally to excluding conformations with overlapping monomers,
assigns to each of the N2bd/(2 |ree|d) monomer-monomer contacts a contact
energy ε, the free energy reads:

βF (~ree) = E(~ree)− lnWN, real(~ree) =
3~r 2

ee

2Nb2
+ (1 + εβ)

N2bd

2 |~ree|d
. (2.16)

For positive (1 + εβ), that corresponds to effective repulsive interactions be-
tween monomers (good solvent), the scaling is like in the SAW, while for neg-
ative (1 + εβ), where a short-ranged monomer-monomer attraction overcom-
pensates the steric repulsion (bad solvent), F (~ree) gets strictly monotonically
increasing with ~ree such that the polymer never swells and ν = 1/d. The case
in between, where the polymer abruptly changes its size, (1 + εβ) = 0, is the
θ-solvent case. Here the scaling of the ideal chain is regained and a solvent
can be adjusted to the Θ-point by either changing ε or the temperature β. In
the limit N → ∞, the Θ-transition is usually theoretically identified with a
tricritical point.

If one, like was just done, adds to the self-avoidance of different monomers an
attractive potential, one has to deal with the collapsed chains that now gain
thermodynamic weight. The that way extended SAW model is called interact-
ing self-avoiding walk ISAW. The globule conformations below the Θ-transition
have little internal structure and are still quite disordered and entropy domi-
nated. Conformations close to the ground-state (and typically the ground-state
itself) are, however, rather ordered and energy dominated. Consequently, one
expects another transition at a lower temperature, an order-disorder transition,
that was indeed found: The freezing or liquid-solid transition. As such, it is ex-
pected to be of first order unlike the Θ-transition that is known to be continuous

1A value of ν = 0.588± 0.001 [32] for d = 3 seems to be well established.



10 CHAPTER 2. BASIC CONCEPTS

[33]. The freezing transition is far less well studied than the collapse transition
and also computationally much more challenging, because the relevant confor-
mations here are entropically suppressed. There has been some debate about
the stability of the intermediate globular phase, i.e. if the freezing and collapse
transition coincide in the thermodynamic limit. For both possible scenarios,
examples were found [34; 35; 36; 37] and the question seems to be settled
now by studies of the range of the attractive regime between two monomers.
If the interaction range exceeds a certain threshold, the globule regime is sta-
ble, whereas it disappears in the limit of long chains for sufficiently short range
interaction. This is qualitatively similar to results for colloidal systems [38].

2.3 Polymer Adsorption

The traditional way to study polymer adsorption concentrates on scaling prop-
erties of long self-avoiding or Θ-polymers grafted to a short-ranged attractive
substrate. To this end, typically the number of adsorbed monomers ns and the
parallel and perpendicular component of the radius of gyration to the substrate
Rgyr,‖ and Rgyr,⊥ are studied. Three limiting cases can be differentiated:

1. εs � εa

2. εs � εa

3. εs = εa.

with εs: surface attraction strength
εa: adsorption threshold

I restrict the discussion here to the adsorption of a polymer in d = 3 onto a two-
dimensional substrate. In the first case, the result is already given by the bulk
results. The influence of the substrate on the conformation should be small such
that the deformation can be neglected and both,

〈
R2

gyr,⊥

〉
and

〈
R2

gyr,‖

〉
, scale

like in the bulk. Also, apart from the grafted monomer, only a small number
of monomers that does not increase with chain length is expected to be at the
substrate. Hence, there is for the good solvent case

1. εs � εa,

〈ns〉 ∼ N0,〈
R2

gyr,⊥
〉 1

2 ∼ Nνd=3 ,〈
R2

gyr,‖

〉 1
2 ∼ Nνd=3 .

νd=3 ≈ 0.588

For very high surface attraction on the other hand, all monomers are adsorbed
such that the polymer effectively performs a two-dimensional SAW on the sub-
strate with

2. εs � εa,

〈ns〉 ∼ N1,〈
R2

gyr,⊥
〉 1

2 ∼ N0,〈
R2

gyr,‖

〉 1
2 ∼ Nνd=2 .

νd=2 = 3
4

More involved is the scaling at the adsorption threshold itself. The compo-
nents of the radius of gyration are still of the same order of magnitude like
for εs � εa, because directly at the transition the polymer fluctuates strongly
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and sometimes it is strongly desorbed and sometimes strongly adsorbed. For
the same reason, one expects for 〈ns〉 to have a scaling behaviour somewhere
in between 〈ns〉 ∼ N0 and 〈ns〉 ∼ N1. The prediction is a scaling with an
exponent ϕ, the crossover-exponent [4; 39; 40]:

2. εs = εa,

〈ns〉 ∼ Nϕ,〈
R2

gyr,⊥
〉 1

2 ∼ Nνd=3 ,〈
R2

gyr,‖

〉 1
2 ∼ Nνd=3 .

νd=2 = 3
4

While for ideal chains ϕ is mean field like (ϕ = 0.5 [8]), for good solvents
the crossover-exponent is less well established. Eisenriegler et. al. suggest ϕ =
0.58± 0.02, but several other values have also been proposed (0.41 [41], 0.67
[42], 0.53 ± 0.007 [43], or 0.496 ± 0.004 [44]). Accordingly, the adsorption
transition can be interpreted as a continuous phase transition at εs = εa in the
thermodynamic limit N →∞.

The adsorption of a single polymer in a poor solvent has also been studied in the
past, but is not yet fully understood. Typically, the polymer is again assumed to
be grafted and Johner and Joanny [45], e.g. used an expanded Flory-Huggins
approach and considered the transition as a wetting problem.

During the past two decades, the conformational phase behaviour when both
energy contributions compete simultaneously has received increasing attention
[11; 13; 14; 18; 40; 46; 47; 48]. Monomer-monomer and monomer-surface
contacts cannot be maximized at the same time. What happens in the case of
a good solvent was just sketched, but both energies only really have to com-
pete below the Θ-temperature. For grafted polymers, some relation to wetting
phenomena is expected here [48]. After a mushroom-shape grafted desorbed
and extended conformation first collapses to form a globule touching the sur-
face at the Θ-transition, at a lower temperature it deforms to “wet” the surface
at a wetting transition. Nongrafted polymers adsorb at this point in parame-
ter space [14; 11]. At an even lower temperature it freezes to a crystalline
or glassy structure, whose exact shape is also influenced by the presence of
the substrate. If the surface attraction energy dominates over the monomer-
monomer energy, there still is a collapse transition, but it is now shifted to
much lower temperatures below the adsorption transition, such that it trans-
form adsorbed “pancakes” to dense wetting layers.

At low temperatures, Krawczyk et al. found an infinite hierarchy of layering
transitions [13]. Those transitions are first-order transitions and energetically
induced.

In all those considerations, there is a strong focus on the behaviour for long
chains, the thermodynamic limit. There is certainly a good reason for this:
phases are only strictly defined in the limit of long chains and the universal-
ity of, e.g. the crossover exponent, seems to possess a strong fascination. This
prevalence also makes it interesting to compare the adsorption of long linear
polymers with the adsorption of small molecular solutes. A grafted polymer
with N →∞ is adsorbed or desorbed completely independent on the presence
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of further polymers in solution. This adsorption is a true thermodynamic phase
transition, because polymers allow for a thermodynamic limit within a single
chain. But this raises also the question if finite systems, as can be found ev-
erywhere in nature, are always qualitatively correctly described by this limiting
case.



Chapter 3

The Model

The aim of this chapter is to completely describe the model with all variants
that I investigate in this work. This includes the energy terms that can be
divided into interactions of a polymer in bulk solution and interactions with a
substrate as the main ingredients, but also the boundary conditions play a role
and are described here. Additionally, the definitions of all observables used can
be found in this chapter.

3.1 The Polymer

The polymer model used throughout this work can be regarded as an off-lattice
generalization of the three-dimensional interacting self-avoiding walk (ISAW)
model. It consists of a linear, i.e. non-branched, chain of monomers that

Figure 3.1: Schematic representation of the semi-flexible
homopolymer model. Identical monomers are arranged
along a linear chain with fixed distance between neigh-
bouring monomers along the chain. The bonding angle at
the (k + 1)th monomer is denoted by ϑk and the vector
pointing from monomer k to monomer l by ~rkl ≡ ~rl − ~rk,
with rkl = |~rkl|.

are connected by bond vec-
tors of fixed length. The
length scale is normalized by
this bond length, such that –
with the position vector of the
kth monomer being denoted
by ~rk – this reads as

|~rk+1 − ~rk| = 1 (3.1)

∀ k = 1, . . . , N−1.

Neighbouring bonds form the
bonding angle ϑk with

cosϑk= (~rk+1−~rk)·(~rk+2−~rk+1)

∀ k = 1, . . . , N−2 (3.2)

as illustrated in Fig. 3.1.
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With those definitions, the energy of the polymer in bulk solution can be ex-
pressed as

Ebulk = ELJ + Ebend (3.3)

= 4

N−2∑
k=1

N∑
l=k+2

(
1

r12
kl

− 1

r6
kl

)
+

1

4

N−2∑
k=1

(1− cosϑk) .

The Lennard-Jones potential energy ELJ (compare Fig. 3.2) contains both: the
self-avoidance of the chain at short distances and the attractive interaction of
not-nearest-neighbour monomers. These also characterize the ISAW. Addition-
ally, a weak penalty for bending Ebend (compare Fig. 3.3) is added here such
that straight bonds are energetically preferred. It is worth noting that while the
LJ-energy roughly has Nµ/2 non-negligible contributions for collapsed chains,
where µ should be of the order of the FCC-lattice value (µ ≈ 10.036 [30]),
and maybe small contributions from a second shell, the bending energy only
has N − 1 contribution, such that chains modelled in this way almost behave
like flexible polymers. The bending energy is so weak that it only has a small
quantitative effect onto the results, no qualitative. It was introduced to allow a
comparison for independently generated data of the AB-model.

The heteropolymer version of this model, the so-called AB-model, was first
suggested by F. H. Stillinger et al. as a two-dimensional toy model for protein
folding with two types of monomers (A and B) [49; 50]. Several variations of
this model have been studied that certainly also include the three-dimensional
case [51; 52; 53; 54]. Much work has been spent on studying the sequence
dependence of the folding behaviour of such a coarse-grained model, but here
I basically choose all monomers to be of type A, i.e. effectively behaving quite
hydrophobic. The advantage of this modelling is that it allows for a systematic
study of the behaviour of a generic homopolymer model without suffering from
the lattice artefacts of lattice models.

3.2 The Surface

Two types of surface potentials used in this thesis can be differentiated: Most
of the work assumes a completely smooth and structureless substrate until in
chapter 9 surface inhomogeneities in form of attractive stripes are introduced.

3.2.1 The Structureless Attractive Substrate

A structureless substrate is one whose interaction with a particular monomer
only depends on the distance to the substrate, not on the lateral po-
sition. In the literature of adsorption of coarse-grained off-lattice poly-
mers, there are two mainly used potentials: The 10-4 LJ- [55] and the
9-3 LJ-potential [56; 57] (comp. Fig. 3.4). Both are empirical potentials
that assume that every space element of the surface interacts with each
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Figure 3.2: Lennard-Jones potential between
two individual monomers with distance rkl
that are not next-neighbours along the chain.
The shadowed regime is attractive with a min-
imum at rkl,min = 6

√
2 ≈ 1.1225 that is

slightly larger than the bond length. For rkl <
1, the monomers involved are repelled by the
Pauli repulsion.

Figure 3.3: The bending energy at monomer
k. It has its minimum at ϑ = 0 (straight bond)
and its maximum at ϑ = π (maximum bend-
ing).

monomer via a 12-9 LJ-potential like the one we use for the monomer-
monomer interaction in Eq. (3.3) and that the total potential can be ob-
tained by linear superposition of all the individual potentials [58]. They

Figure 3.4: The 9-3 LJ surface potential used here is
shown in blue for εs = 1. The shadowed regime is at-
tractive with a minimum at zmin = 6

√
2/5 ≈ 0.8584 that

is a little closer than for the sometimes also used 10-4 LJ
potential that is plotted for comparison. Also given for
comparison is the shorter-ranged 12-6 LJ-potential used
for the monomoner-monomer interaction.

differ in the number of in-
teracting atoms in the wall.
While the 9-3 LJ-potential
consists of all substrate lay-
ers in the half-space z <
0, the 10-4 LJ-potential only
includes the topmost layer.
Sometimes even simpler po-
tential shapes are chosen
[59; 60]. As is, for example
argued in Ref. [4], for long
chains the exact shape of the
surface potential is not rele-
vant as long as it has a hard-
core repulsion and a short-
ranged attractive regime. For
short chains a dependence is
certainly unavoidable, but I
expect it to be only of quan-
titative nature.

The surface potential applied
here is the 9-3 LJ-potential

Esur = εs

N∑
i=1

(
2

15

1

z9
i

− 1

z3
i

)
, (3.4)
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Figure 3.5: Graphical representation of the
system of a single polymer close to an at-
tractive substrate. The system’s bound-
ary is translational invariant in x- and y-
direction, while the polymer is restricted in
z-direction by the attractive substrate that
covers the space from z = −∞, . . . , 0 and
a sterical repulsive wall at z = Lz. The z′-
values given in green are the ones used in
the integration in Eq. (3.6).

where the εs is a parameter regulating the attraction strength. To derive this
form, it is first assumed that the substrate is completely smooth and formless
with a mass density ρsur.

If the interaction between a monomer and a surface element is of the typical
12-6 LJ form E monomer−

surface element
(r) = 4ρsurεs

(
1

r12
− 1

r6

)
, (3.5)

the interaction between a monomer with one layer of such surface elements
can be obtained by integrating over that layer. For a smooth substrate, this can
be done with the useful cylindrical coordinates d3~r = d2~s dz = ρ dρ dϕ dz:

Emonomer−
surface layer

(r) =

∫
Emonomer−

surface element
(r) d2~s (3.6)

= 4ρsurεs

∫ 2π

0
dϕ

∫ ∞
0

ρ dρ

(
1√

ρ2 + z2
12 −

1√
ρ2 + z2

6

)

= 8πρsurεs

(∫ ∞
0

dρ
ρ√

ρ2 + z2
12︸ ︷︷ ︸

1/(10z10)

−
∫ ∞

0
dρ

ρ√
ρ2 + z2

6︸ ︷︷ ︸
1/4z4

)

= 2πρsurεs

(
2

5

1

z10
− 1

z4

)
= Emonomer−

surface layer
(z).

Sometimes one stops here and takes this 10-4 LJ potential as the surface po-
tential. I will, however, go one step further and integrate over all layers from
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Figure 3.6: Almost the same system as in
Fig. 3.5, but this time attractive stripes are
added to the substrate parallel to the y-
axis. They render all three space-directions
different from each other leading to an in-
creased interest in studying shape parame-
ters of the polymer (cf. section 3.4).

z′ = z, . . . ,∞ to arrive at Eq. (3.4):

Esur(z) =

∫ ∞
z

Emonomer−
surface layer

(z′) dz′ (3.7)

= 2πρsurεs

∫ ∞
z

(
2

5

1

z10
− 1

z4

)
dz′

= 2πρsur︸ ︷︷ ︸
!
=3

εs

(
2

45

1

z9
− 1

3

1

z3

)

= εs

(
2

15

1

z9
− 1

z3

)
.

A constant factor, that is not relevant here, is set to one. Summing this over all
monomers gives the substrate attraction.

3.2.2 The Striped Attractive Substrate

Once the polymer behaviour near smooth substrates is understood, one can
study how it reacts to surface heterogeneities or patterns. A pattern might be
incorporated into the substrate either by a modified potential or by the intro-
duction of a physical “roughness”. The idea here is to use a modified poten-
tial that gets slowly switched on starting with the smooth substrate at which
I already investigated the conformational behaviour in detail. A simple but
nevertheless physically realistic disorder shape is stripes that gives a controlled
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Figure 3.7: Colour plots of different stripe potentials. In the white regime at low z, values larger
than 1 are not shown. (a) The sinoidal stripes of Eq. (3.9) with εstripe = 3; (b) Superposition
of the smooth potential of Eq. (3.7) with εs = 1 and the 10-4 LJ potential of Fig. 3.4 divided
by 1.5 and multiplied by εstripe = 3 at the stripes; (c) Superposition of the smooth potential of
Eq. (3.7) with εs = 1 and the 9-3 LJ potential of Fig. 3.4 multiplied by εstripe = 3 at the stripes.
Potential (a) and (c) are applied in this thesis.

periodic substrate heterogeneity and can, e.g. be designed with periodically
varying polar (silicon oxide) and nonpolar (gold) layers [61].

If surface stripes would consist of infinite parallel lines on the surface with
every line segment interacting with any monomer via the already employed
12-6 LJ potential, one whole stripe would attract that monomer with a 11-5
LJ-potential. For substrates made up of alternating layers in the y-z-plane it is
hence reasonable to expect a potential with basically a 10-4 LJ-potential form
for every layer even though this integration cannot be performed easily. If the
assumption that the total potential can be obtained by linear superposition of
all individual potentials is again made use of, and a monomer feels not only
the closest stripe layer, but all of them, an overall 9-3 stripe attraction might
be expected. Consequently, such stripes can approximately be modelled by an
infinite number of 10-4 LJ attractive stripes or one or a very few 9-3 LJ attractive
stripes.

In Fig. 3.7(b), the intersection of a 10-4 LJ potential around every stripe of
distance D = 5 with the smooth surface attraction of Eq. (3.7) for εs = 1 is
presented. The 10-4 LJ-potential has the form like the dashed line in Fig. 3.4,
but is divided by 1.5 for better comparison with (a) and (c) and a prefactor
εstripe = 3 for the stripe contribution is chosen in all three cases. One can see
that the potential minimum close to the stripes is somewhat kidney-shaped.
This will influence adsorbed low energy conformations considerably that will
arrange in two rows on both sides of the stripes. Using a 9-3 LJ-potential for
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the stripes to match the potential minima of the smooth substrate attraction
and to express the effective attractive potential form of infinitely many stripes
by only a few stripes only changes the situation to a small degree (compare Fig.
3.7(c)). Some simulations with this potential were performed and the results
are presented in chapter 9. Explicitly, this stripe potential used reads for a
monomer at ~r = (x, y, z) as

Esur, stripe(x, z) =

2

15

1

z9
− 1

z3
+ εstripe

n1∑
n=−n0

 2

15

∣∣∣∣∣∣
(
x
0
z

)
−

(
x
0
z

)
str,n

∣∣∣∣∣∣
−9

−

∣∣∣∣∣∣
(
x
0
z

)
−

(
x
0
z

)
str,n

∣∣∣∣∣∣
−3 .

(3.8)

In practice, only the 12 nearest stripes were considered in the energy calcula-
tion.

One way to get rid of the two minima left and right of the stripes, is to only
add the attractive van-der-Waals part of the potential at the stripes and hope
the repulsive term of the smooth potential is sufficient to take care of the Pauli
repulsion. This however leads to a minimum at the stripes that decreases non-
linearly in the prefactor εstripes and is much closer to the substrate than the
minimum of the smooth part of the attraction.

This induced me to use a simple well-behaved potential instead that is con-
tructed to possess all the desired features. It adds the stripes to the smooth
substrate potential by locally modifying it with a x-dependent cosine-function.

Esur, stripe(x, z) =
(

2
15

1
z9
− 1
z3

) [
1+εstripe cos2

(
π

(
mod

(
x+ D

2 , D
)
−D2

))]
, if

∣∣mod
(
x+ D

2 , D
)
−D2

∣∣ ≤ 1
2(

2
15

1
z9
− 1
z3

)
, else.

(3.9)

For εstripe = 3 and D = 5 – the latter is the choice used throughout this work

– the potential shape is shown in Fig. 3.7(a). To obtain the complete surface
energy, this again has to be summed over all monomers. Certainly, there exist
several interesting parameters that are worth studying, like in particular the
distance between the stripes D or the width of the stripes. Here, the main focus
is on the variation of the attraction strengths of the stripes εstripe.

3.3 Boundary Conditions

The boundary conditions applied for most of the work here are illustrated in
Figs. 3.5 and 3.6. Since the system is translationally symmetric in x- and y-
direction, no boundary conditions are necessary in those directions. To allow
for the potential introduction of additional polymers, I originally set up the
system with periodic boundary conditions in x- and y-direction using the mini-
mum image convention [62]. With it the periodic distance of two points ~p and
~q can be written as

dper (~p, ~q) = min
all boxes

|~p− ~q| . (3.10)
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For minimal performance advantages and simplicity, at some point during the
work on the microcanonical analysis in chapter 7 they are changed to free
boundary conditions. The numerical results are absolutely identical if the box
exceeds a certain size. The parallel tempering results are again mainly ob-
tained with periodic boundary conditions, just because neither results nor per-
formance are noticeably affected such that I just left them in. This is only
mentioned here, because there is one case where this careless keeping of this
part of code plays a role: a few distances of the very stretched chains on the
narrow stripes in chapter 9 are underestimated. It can, however, be shown that
this is of no consequence on the constructed phase behaviour.

Whenever I call the polymer “free” or “nongrafted”, the polymer can move
freely in the area between the attractive substrate and another parallel wall
a distance Lz away that is purely sterical and prevents the polymer from mov-
ing any further. This is necessary because no adsorption would be observed
for escaping polymers and the adsorption transition temperature Tads → 0 for
Lz →∞. As soon as Lz exceeds N , shape and energy of the polymer are hardly
affected by the exact choice of Lz (compare Ref. [63]). On the other hand,
there is an influence of Lz on the entropy that will be discussed in section 7.3.

In chapter 8, I will study the difference between the behaviour of such a free
polymer near an attractive substrate and a polymer grafted to the substrate at
one end as is popular in literature. This grafting is realised by fixing the first
monomer in the minimum of the surface attraction at (x, y, z) = (0, 0, 6

√
2/5).

In this case, of course, the steric wall that is always chosen such that Lz > N
looses its relevance.

3.4 Observables

A number of observables to describe the system’s properties can be considered.
In this section, all of the used observables apart from the ones derived from the
microcanonical entropy that are described in detail in chapter 4 are named and
explained if necessary.

Basically, the observables can be divided into energetical quantities that give
the complete energy or parts of it and into sterical quantities that describe its
shape and position. Usually, the canonical expectation values of the observables
〈O〉can (β) =

[∑
µ∈MOµe

−βEµ
]
/
[∑

µ∈M e−βEµ
]

are determined over a range
of temperatures. Very often, the change of them with temperature also is of
interest and very useful or even necessary in identifying the pseudo-transitions,
such that they are determined as well via

〈O〉can (β)

dT
=
〈OE〉 − 〈O〉 〈E〉

T 2
. (3.11)

Sometimes, the observables are additionally presented versus energy to facili-
tate and complement the interpretation of microcanonical data.
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3.4.1 The Energy and its Constituent Parts

One observable is the energy itself that is always given by E = ELJ + Ebend +
Esur, but also ELJ, Ebend and Esur individually are insightful. Since the compe-
tition between monomer-monomer contacts and substrate-monomer contacts is
one of the main driving forces of the different phases especially at low tempera-
tures where the entropy still only plays a minor part, the energetic contributions
yield important information about the nature of the transitions between those
phases.

3.4.2 The Gyration Tensor and the Derived Shape Parameters

The gyration tensor that is defined to be the tensor of the second moments of
the positions of a collection of particles – the monomers of one polymer in our
case – is the basis of several shape parameter [64; 65; 66]. It is given by

Q =
1

N

N∑
i=1

 (xi−xcm)2 (xi−xcm)(yi−ycm) (xi−xcm)(zi−zcm)
(yi−ycm)(xi−xcm) (yi−ycm)2 (yi−ycm)(zi−zcm)
(zi−zcm)(xi−xcm) (zi−zcm)(yi−ycm) (zi−zcm)2


=

1

2N2

N∑
i=1

N∑
j=1

 (xi−xj)2 (xi−xj)(yi−yj) (xi−xj)(zi−zj)
(yi−yj)(xi−xj) (yi−yj)2 (yi−yj)(zi−zj)
(zi−zj)(xi−xj) (zi−zj)(yi−yj) (zi−zj)2


=

 Qxx Qxy Qxz
Qyx Qyy Qyz
Qzx Qzy Qzz

 , (3.12)

where ~rcm = (xcm, ycm, zcm) =
∑N

j=1 ~rj/N is the centre of mass. Since Q is per
definition a symmetric tensor, it diagonalizes in the principal axis system to

Q =

 λ2
x 0 0

0 λ2
y 0

0 0 λ2
z

 . (3.13)

This principal axis system is a cartesian coordinate system that only depends
on the shape and orientation of the polymer conformation at hand and is in
general different from the coordinate system spanned by the x, y- and z-axes
that are given by the system boundaries.

The eigenvectors λ2
x, λ2

y and λ2
z can now be used to define several shape param-

eters of the polymer. In the definition of b and c given in the following, it is
always assumed that the eigenvectors are sorted such that

λ2
x ≤ λ2

y ≤ λ2
z. (3.14)

Particularly convenient are those shape parameters that are invariants of Q
such that their evaluation is possible without the need to diagonalize Q and
determine its eigenvalues explicitly.
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Q,
(
λ2
x, λ

2
y, λ

2
z

)
, b, c, S, κ2, R2

gyr Q,
(
λ2
x, λ

2
y, λ

2
z

)
, b, c, S, κ2, R2

gyr 3.457 0.594 −0.959

0.594 2.654 0.823

−0.959 0.823 2.190

,

( 1.043 , 3.265 , 3.992 ),
1.838 , 2.222 , −0.050 , 0.103, 8.301

 1.316 −0.024 0.050

−0.024 0.841 −0.035

0.050 −0.035 0.461

,

( 0.451 , 0.843 , 1.320 ),
0.673 , 0.392 , 0.008 , 0.083, 2.614 0 0 0

0 133.25 0

0 0 0

,

( 0 , 0 , 133.25 ),
133.25 , 0 , 2 , 1, 133.25

 2.005 −1.642 2.198

−1.642 2.370 −1.866

2.198 −1.866 4.185

,

( 0.423 , 1.250 , 6.887 ),
6.051 , 0.827 , 0.677 , 0.507, 8.560

Table 3.1: The gyration tensor Q, its eigenvalues λ2
x, λ2

y and λ2
z with λ2

x ≤ λ2
y ≤ λ2

z, the
asphericity b, the acylindricity c, the prolateness S, the relative shape anisotropy squared κ2 and
the radius of gyration squared R2

gyr for four exemplified polymer conformations for N = 40. The
striped substrate is added into the pictures to allow to differentiate the x-, y- and z-direction of
the simulation box. Again, the substrate lies in the xy-plane and the stripes are parallel to the
y-axis.

The first invariant of Q is the squared radius of gyration [64; 66]

R2
gyr = TrQ =

1

N

N∑
i=1

(~ri − ~rcm)2 = Qxx +Qyy +Qzz = λ2
x + λ2

y + λ2
z (3.15)

that – as the mean squared deviation from the centre of mass of the polymer –
is a measure of the size of the conformation. It is of particular importance to
identify the collapse transition1.

The shape anisotropy can now be defined to be the traceless deviatoric part of
Q [66]

Q̂ = Q− 1

3
ITrQ, (3.16)

where I is the unit vector. Since by construction TrQ̂ = 0, in the principal axis
system Q̂ can be split into two terms, each consisting of a scalar and a constant
numerical tensor

Q̂ = b

 −1/3 0 0
0 −1/3 0
0 0 2/3

+ c

 −1/2 0 0
0 1/2 0
0 0 0

 . (3.17)

1Unlike the first invariant (I1 = R2
gyr) of Q, its second and third invariant I2 and I3 are not

used as observables here, but since the relative shape anisotropy κ2 can be obtained from I1 and
I2, the invariance of I2 is made use of. The jth invariant of our tensor Q, with its eigenvalues
λ2
x, λ2

y, λ2
z, is defined as the sum of all subdeterminants of order j, i.e.,

I1 = λ2
x + λ2

y + λ2
z = TrQ,

I2 = λ2
xλ

2
y + λ2

yλ
2
z + λ2

zλ
2
x,

I3 = λ2
xλ

2
yλ

2
z = detQ.
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The constants can be defined as the asphericity

b ≡ λ2
z −

1

2
(λ2
x + λ2

y), b ≥ 0 (3.18)

and the acylindricity
c ≡ λ2

y − λ2
x, c ≥ 0. (3.19)

For shapes of tetrahedral or higher symmetry b = c = 0, which only occurs
for λ2

x = λ2
y = λ2

z, and for shapes of cylindrical symmetry c = 0, which only
occurs for λ2

y = λ2
z. Sometimes, another quantity is referred to as asphericity

in literature [64; 65] that, in accordance with Ref. [66], I will refer to as
the relative shape anisotropy here. From the shape anisotropy tensor Q̂, the
relative shape anisotropy κ2 is obtained as

κ2 =
3

2

Tr
(
Q̂2
)

(TrQ)2 =
b2+3

4c
2

R4
gyr

= 1−3
I2

I2
1

=
λ4
x+λ

4
y+λ

4
z−λ2

xλ
2
y−λ2

yλ
2
z−λ2

zλ
2
x

R4
gyr

. (3.20)

Unlike the b and c, κ2 can be expressed with the invariants I1 and I2 and is
hence an invariant itself. Its values are in the range 0 ≤ κ2 ≤ 1. So, e.g. for
a perfectly rod-like conformation like depicted in Table 3.1 at the left bottom,
κ2 attains its maximum values of one, while κ2 = 0 for tetrahedral or higher
symmetry. From the configurations in Table 3.1 the very compact one at the top
right is the one with the lowest relative shape anisotropy of κ2 ≈ 0.083. Due
to the discrete distribution of the monomers, it is unlikely that conformations
with vanishing κ2 occur.

Another invariant observable is the prolateness S

S = 27
det Q̂

(TrQ)3 =

[
λ2
x−
(
λ2
x+λ2

y+λ2
z

3

)][
λ2
y−
(
λ2
x+λ2

y+λ2
z

3

)][
λ2
z−
(
λ2
x+λ2

y+λ2
z

3

)]
(
λ2
x+λ2

y+λ2
z

3

)3

=

(
2λ2

x−λ2
y−λ2

z

) (
2λ2

y−λ2
z−λ2

x

) (
2λ2

z−λ2
x−λ2

y

)(
λ2
x+λ

2
y+λ

2
z

)3 . (3.21)

If the polymer is absolutely prolate, i.e. rodlike (λ2
x = λ2

y = 0, λz 6= 0), S attains
its maximum of two. The minimum of −1

4 is attained at minimal prolateness
and maximal oblateness for disclike conformations (λ2

x = 0, λ2
y = λ2

z) such that
−1

4 ≤ S ≤ 2. In general, S is positive for prolate ellipsoid-like conformations
(λ2
x ≈ λ2

y � λ2
z) and negative for oblate conformations (λ2

x � λ2
y ≈ λ2

z). For
flexible chains on regular lattices, it was found 〈S〉 = 0.541 ± 0.004 [64; 67]
such that the polymers in good solvent are prolate compared to the case of
λ2
x ≈ λ2

y ≈ λ2
z with S ≈ 0.

In summary, there are 14 different quantities presented here that can be used to
describe the conformational shape: the six independent tensor components of
Q, the three eigenvectors λ2

x, λ2
y, λ

2
z, the radius of gyration Rgyr, the asphericity

b, the acylindricity c, the prolateness S and the relative shape anisotropy κ2. In
large parts of this work, only R2

gyr and R2
gyr,x = Qxx, R2

gyr,y = Qyy or R2
gyr,‖ =

Qxx+Qyy andR2
gyr,⊥ = R2

gyr,z = Qzz are analysed, which is absolutely sufficient
for most purposes.
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3.4.3 Positional Measures

Distance of the Center-of-Mass of the Polymer to the Substrate

Certainly especially for nongrafted adsorption, the distance of the centre-of-
mass

zcm =
1

N

N∑
i=1

zi (3.22)

clearly differentiates between desorbed chains floating somewhere in the box
with an average position close to the centre of the box and adsorbed chains at
the substrate. Also for grafted chains, the difference of the centre-of-mass in
both phases stays of interest.

Number of Surface Contacts

Adsorption processes, but also a conformational rearrangement of already ad-
sorbed polymers that change the number of monomers in the direct neighbour-
hood of the substrate, are well described with the number of surface contacts.
Unfortunately, unlike e.g. for discrete lattice models, the continuous substrate
attraction renders a unique definition of the contacts impossible. Considering
the shape of the surface attraction (Fig. 3.4), I define the relative number of
surface contacts ns with the introduction of a cut-off zc:

ns =
Ns

N
, with Ns =

N∑
i=1

Θ(zc − zi) and zc ≡ 1.2. (3.23)

Θ(z) is the Heaviside function. At this zc the surface attraction strength has
approximately fallen to half of its minimal value. There is a small range of
useful choices of zc and if not explicitly stated otherwise I will use this choice.



Chapter 4

Non-Extensive Thermodynamics

The principle original motivation of thermodynamics was to describe steam
engines and the phase transition between water and steam. When Carnot pro-
posed what is now known as the Carnot cycle – an idealised model of a heat
engine – in 1824 [68], he still assumed the caloric theory to be valid and hence
heat to be conserved. Consequently, he did not distinguish between the energy
Q1 absorbed from a hot reservoir at higher temperature T1 during isothermal
expansion from the energy Q2 transferred from the system to the bath during
isothermal compression at a lower temperature T2. Thanks to Clausius and
Kelvin it is now known that they differ by the maximal work performed by the
engine W = Q1 − Q2 = (1 − T2/T1)Q1 and that there is a state function, i.e.
a function that only depends on the current state of the system, whose differ-
ential vanishes upon completion of a cycle that Clausius called Entropie (engl.
entropy) from the greek entropía (εντρoπíα) “a turning toward” as a measure
of disorder of a system as an analogue to the word Energie [69] and defined via
its change [70]

dS = dSexternal + dSinternal =
δQ

T
+
δQ′

T
. (4.1)

Multiplied with the reference temperature, it can be understood as the amount
of energy in a physical system that cannot do thermodynamic work. The change
with time of this extensive variable is determined by two distinct mechanisms.
dSexternal is the part of the change that merely comes from entropy flow into
or out of the defined system and hence it can be positive, negative or zero.
dSinternal is on the other hand the entropy created in the system that can only be
positive or zero: dSinternal ≥ 0, which is one way of expressing the second law
of thermodynamics. Equality only holds in a quasistatic or reversible process,
when also the Carnot cycle reaches its theoretical maximal work performance.

Since that time, several definitions of entropy have been developed. The most
famous, fundamental and simple one certainly being the one of Boltzmann [71]
for an isolated system

S = kB ln Ω, (4.2)
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where Ω is the number of possible configurations that the system can assume in
accordance with the given macrostate. Boltzmann proved that this definition is
equivalent to the Clausius entropy in the gas phase if that factor kB is included
that is now known as the Boltzmann constant. In this thesis, I choose “natural
units” that include kb ≡ 1. The Boltzmann entropy is also readily obtained
from the Gibbs entropy formula for a classical system with a discrete set of
microstates i, S = −kB

∑
i pi ln pi, with pi being the probability of occurrence

of state i, together with the fundamental postulate in statistical mechanics that
the occupation of any microstate is equally likely (pi = 1/Ω).

The beauty of Boltzmann’s formulation is the interpretation it provides. If we
only know the macrostate, Ω can be viewed as our lack of knowlegde about
the system, because the larger Ω the smaller the probability that the system is
in any given microstate. Clausius defined the entropy to be an extensive state
function. Extensitivity means that

λS(E, V,N) = S(λE, λV, λN) (4.3)

has to hold and equivalence of both formulations certainly implies it to hold
for Eq. (4.2), too. If a system with N particles, volume V and a hamiltonian
with E < H < E + ∆E can be split up into subsystems 1 and 2 with N1,2

particles and volume V1,2, whose hamiltonians satisfy E1,2 < H1,2 < E1,2 +
∆E1,2, respectively, and (here comes the crucial point)

E = E1 + E2 < H = H1 +H2 < E + ∆E, (4.4)

than the proof of extensitivity is quite straightforward and can be found in
standard textbooks [72; 73]. Even in this case, the extensitivity only holds ap-
proximately when neglecting the microscopic corrections due to energy fluctu-
ations that occur when the two systems are allowed to exchange energy. When
Eq. (4.4) is not satisfied and/or energy fluctuations do not vanish, the exten-
sitivity of the entropy (and energy) does in general not hold. In practice, Eq.
(4.4) approximately holds for large systems with short-ranged forces away from
first-order phase transitions. A force is formally defined to be short-range if it
decreases with distance faster than r−d, where d is the dimensionality of the
system.

Following the lines of D.H.E. Gross [74], I will illustrate the relation between
extensitivity and curvature of S(E).

First assume, we have an extensive system. If this N -particle system of energy
E is obtained from the combination of two systems at E1 = λ(E − ∆E) and
E2 = (1− λ)(E + λ

1−λ∆E), λ ∈ (0; 1), than for its entropy

S(E,N) ≥
[
S
(
λ (E−∆E) , λN

)
+ S

(
(1−λ)

(
E +

λ

1−λ
∆E

)
, (1−λ)N

)]
(4.5)

has to hold, because the information about the exact distribution of energies
into the subsystems (coded partially in ∆E) is lost in the process of merging
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the systems. Together with the assumption of extensitivity (Eq. (4.3)) this di-
rectly gives S(E,N) ≥ [λS(E −∆E,N) + (1 − λ)S(E + λ

1−λ∆E,N)], i.e., the
microcanonical entropy S(E) of an extensive system is necessarily concave.

For a non-extensive system, again Eq. (4.5) has to hold for the same reason
of loosing information upon merging the (sub)systems. Nevertheless, e.g. at
phase separation S(E) is necessarily convex to allow the canonical distribution
p(E) = eS(E)−βE to be bimodal. The coexisting phases are separated by an en-
ergy difference ∆E ≈ Elatent such that the fluctuations in a canonical ensemble

Figure 4.1: (a) Microcanonical entropy s(e) (up to an
unimportant constant) for a 13mer at εs = 4, the Gibbs
hull Hs(e), and the difference ∆s(e) = Hs(e) − s(e) as a
function of the energy per monomer e. The convex adsorp-
tion regime is bounded by the energies eads ≈ −2.07 and
edes ≈ −0.51 of the coexisting phases of adsorbed and des-
orbed conformations at the adsorption transition tempera-
ture Tads ≈ 3.15, as defined via the slope of Hs(e). The
maximum of ∆s(e) for e ∈ (eads, edes), called surface en-
tropy ∆ssurf , is found at esep ≈ −1.15. The latent heat ∆q
is defined as the energy being necessary to cross the transi-
tion region at the transition temperature Tads. (b) Inverse
caloric temperature β(e) = T−1(e) = ∂s(e)/de with the
Maxwell line T−1

ads, the derivative of the Gibbs construction.
The areas A− and A+ have identical size.

scale proportionally to N
and not to

√
N and do not

scale away for large system
sizes. This makes the con-
vexity a generic signal of
phase separation and first-
order phase transitions of fi-
nite systems.

If one now takes E to be the
point of maximal positive
curvature of S(E) at such a
phase separation, the con-
vexity implies S(E,N) ≤
[λS(E − ∆E,N) + (1 −
λ)S(E + λ

1−λ∆E,N)]. Such
a point is, e.g. esep in Fig.
4.1. Due to the general va-
lidity of Eq. (4.5), it also
holds

(4.6)
S
(
λ(E−∆E), λN

)
+S
(
(1−λ)(E+

λ

1−λ∆E),(1−λ)N
)

≤
S(E,N)

≤
λS(E−∆E,N)

+(1−λ)S(E+
λ

1− λ∆E,N).

Hence, even though
S(E,N) here is convex
at constant N , the unifica-
tion of pieces to a larger
system can still lead to a
larger entropy.

This allows for the con-
struction of what is known
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as the Gibbs hull or Gibbs construction as the concave hull to the convex in-
truder of s(e) = S(e = E/N)/N :

Hs(e) = s(eads) + e

(
∂s

∂e

)
e=eads

. (4.7)

It touches S(E) at two points left and right of the convex regime whose ener-
gies are associated with the coexisting phases. In the illustration in Fig. 4.1a
the coexisting phases are the phase of adsorbed polymers and the phase of des-
orbed polymers, but the description can certainly be applied to any other pair
of coexisting phases as well. The Gibbs hull Hs(E) here touches s(e) at s(eads)
and s(edes). Its inverse slope

Tads =

(
∂Hs
∂e

)−1

=

(
∂s

∂e

)−1

e=eads

=

(
∂s

∂e

)−1

e=edes

(4.8)

can be taken as the microcanonical definition of the transition temperature.
It coincides with the temperature determined in canonical simulations by the
frequently employed criterion of the two equal-height peaks in the energy dis-
tribution [75]. However, due to the convex well of s(e), the definition of a
single transition temperature is misleading; the transition rather spans a re-
gion of temperatures. If the system size is taken to be fixed, this definition can
be used to obtain a well-defined transition temperature for that system size.
However, as soon as the system size changes, also the transition temperature
obtained that way changes. Therefore, this definition certainly is not universal
in the sense that it provides information about the thermodynamic limit. Ad-
ditionally, there exist other means of defining the transition temperature, e.g.
using equal weight peaks [76; 77] or maxima in the fluctuations of canoni-
cal expectations values (that are in general different for different observables),
rendering a universal definition for finite systems impossible. Such a universal
definition only exists in the thermodynamic limit. Nevertheless, it is worth-
while to explore a description for finite systems as well, as in practice systems
are finite and for some systems like proteins, the thermodynamic limit is even
unreachable [78; 79] in principle.

Also shown in Fig. 4.1a is the difference between the microcanonical entropy
s(e) close to the convex regime and its Gibbs construction

∆s(e) = Hs(e)− s(e). (4.9)

It contains no additional information, but is very helpful in comparing the
strengths of the intruder of different systems and to read of the surface (or
interfacial) entropy

∆ssurf = max{∆s(e)|eads ≤ e ≤ edes} (4.10)

= max{λs(eads, N) + (1−λ)s(edes, N)

−s
(
λeads + (1−λ)edes, N

)
| 0 < λ < 1}

= Hs(esep)− s(esep)

≤ max{λs(eads, N) + (1−λ)s(edes, N)

−[s(λeads, λN) +s
(
(1−λ)edes,(1−λ)N

)
] | 0 < λ < 1}.
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The interfacial entropy represents the entropic barrier of the two-state transi-
tion and can be considered as an approximation to the entropic penalty the
system has to pay when it exists in static or dynamic phase coexistence com-
pared to a combination of the two subsystems each in one phase. Consequently,
for a system with N particles and short-range interaction, in the thermody-
namic limit N → ∞ the interface and with it the interfacial entropy scales as
∆Ssurf ∼ N2/3, such that ∆Ssurf/N ∼ N−1/3 goes to zero in accordance with
van Hove’s concavity condition [80] that forbids the backbending in classical
statistical mechanics in the thermodynamic limit. There exist, however, sys-
tems for which ∆Ssurf/N does not go to zero like, for example self-gravitating
systems [81].

Finally, the energetic gap between the two macrostates is the latent heat per
monomer

∆q = edes − eads = Tads [s(edes)− s(eads)]. (4.11)

It is the energy needed to transform the system from one phase to the other and
during desorption the energy per monomer that has to be procured in order to
release all surface contacts.

Now, having the microcanonical entropy one can quite easily derive the micro-
canonical (caloric) temperature for fixed particle number N and volume V as
the conjugate variable to the natural variable energy by derivation

β(e) = T−1(e) =

(
∂s

∂e

)
N,V

. (4.12)

Hence, even though the microcanonical entropy is usually only determined up
to an additive constant, the estimate of the microcanonical temperature is ab-
solute. In the thermodynamic limit, this temperature definition is equivalent
with the canonical temperature Tcan that is the temperature of an infinite heat
bath surrounding the system. For finite systems, however, due to the non-
equivalence of the ensembles, also the temperature definitions deviate1.

1It should probably be mentioned that there is an ongoing debate as to what definition for
the microcanonical entropy (and hence temperature) to use. While autors like Gross [74] and
Kuhn [20; 24], who successfully derived the entropy model of rubber that way, use the original
more intuitive version of Boltzmann that chooses Ω in Eq. (4.2) to be the number of microstates
in accordance with a given macrostate

Ω(E)Boltzmann = c

∫
· · ·
∫

E<H(r1,...,rN ,p1,...,pN )<E+∆E

dr1 . . . drNdp1 . . . dpN , (4.13)

other authors [82; 83] prefer to use the Hertz or volume version [84] of the microcanonical
entropy

Ω(E)Hertz = c

∫
· · ·
∫

H(r1,...,rN ,p1,...,pN )<E+∆E

dr1 . . . drNdp1 . . . dpN . (4.14)

Their argument is that with this choice the equipartition theorem that is satisfied in the canonical
ensemble is recovered microcanonically [85]. I use the Boltzmann entropy in this work, because
it is more intuitive and in practice, the results concerning the questions asked here are very
similar for the two definitions.
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The derivative of the Gibbs construction gives the Maxwell line T−1
ads (cf. Eq.

(4.8)). In Fig. 4.1b, the Maxwell line forms the two areas A− = T−1
ads(esep −

eads)− [s(esep)− s(eads)] and A+ = T−1
ads(edes− esep)− [s(edes)− s(esep)] with the

inverse temperature curve. Those areas are not only identical, but also share
their value with the interfacial entropy [75]

A− = A+ = ∆ssurf . (4.15)

Obviously, a bijective mapping between microcanonical temperature T and nor-
malized energy e is only possible for T < T< and T > T>. And even here there
sometimes exists the exception of a β(e) ≤ 0, i.e. an absolute negative thermo-
dynamical temperature, which is a feature of small systems with a finite number
of states. Such systems with negative temperature are not colder than absolute
zero, but in fact hotter than infinite temperature. This quite well known be-
haviour [86; 87] vanishes for larger system sizes. Systems in thermodynamic
equilibrium do not adapt states in this regime. Whoever likes to prevent its
occurrence in the analysis, might also use the Hertz definition of entropy that
is monotonically increasing and hence excludes negative microcanonical tem-
peratures by definition. In those bijective regimes, the temperature is a useful
control parameter.

For T< < T < T>, the backbending is integrated out in the canonical ensem-
ble. Canonical expectation values that are in the focus of most thermodynamic
investigations are obtained from the microcanonical entropy via

〈O〉β =

∫
E O(E)eS(E)−βEdE∫

E e
E(E)−βEdE

=

∫
eO(e)eNs(e)−βNede∫

e e
Ns(e)−βNede

, (4.16)

such that in particular the expectation value of the energy 〈e〉 (T = β−1) is
bound to be an increasing function of temperature and the backbending disap-
pears. Consequently, the canonical specific heat

NcV =

(
∂ 〈E〉
∂T

)
V,N

= kBT
2
(〈
E2
〉
− 〈E〉2

)
(4.17)

is always positive. This is also one of the stability conditions that are derived in
most of the standard text books (e.g. in Ref. [88]). In this regime, it is useful to
do both: study the system properties canonically with the temperature as the
control parameter and analyse its behavior microcanonically with energy as the
control parameter. This means to study the observables versus energy O(e) and
the microcanonical entropy s(e) = N−1 ln Ω(e) and its derivatives additional to
the canonical expectation values that are calculated from O(e) and s(e) via Eq.
(4.16). One remarkable feature is, e.g. that the microcanonical specific heat

NcV =

(
∂E

∂T (E)

)
V,N

= −

(
∂S(E)
∂E

)2

V,N(
∂2S(E)
∂E2

)
V,N

= −

(
∂s(e)
∂e

)2

V,N(
∂2s(e)
∂e2

)
V,N

(4.18)

gets negative when s(e) is convex. That this happens is quite obvious when
noting that the associated backbending in β(e) requires the temperature to de-
crease with increasing energy e (compare Fig. 4.1 close to esep), but also from –
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assuming s(e) to be at least two times continuously differentiable – the convex-
ity condition ∂2s(e)/∂e2 > 0. Here, energy added to the system is consumed to
transform the system from one phase to the other.

In a bulk material of large size this would lead to an instability because heat
always flows from hot to cold and if a cold region gets even colder when ad-
sorbing energy, it would suck in even more heat, get colder, suck in more heat
et cetera. A finite system will leave the unstable regime if it gets in touch with
a heat bath that it can exchange energy with2. The cycle of adsorbing energy,
cooling down and adsorbing even more energy, or equivalently giving energy
away to a bath, heating up and giving even more energy away stops as soon
as the convex entropy regime is left, which does not even require much energy
transfer due to the small size of the system. This mechanism is also one way of
understanding the suppression of states with energies in the convex regime in
the canonical ensemble: as soon as such a system is put into a heat bath that
it is allowed to exchange energy with, it tends to leave this regime and prefer-
entially adapts one of the two coexisting phases. Such negative heat capacities
have, e.g. been predicted theoretically for the cluster solid to liquid transition,
where it has also been observed numerically in Ar55 clusters [89] and exper-
imentally for a cluster of 147 sodium atoms [90]. Fragmenting nuclei [91]
behave in a similar fashion and in astrophysics negative heat capacities have
long been known [92]. Many more examples can be found in literature. For a
review see Ref. [93].

In this thesis, both ensembles are used in parallel. While the simulations always
allow for energy fluctuations and are hence no microcanonical simulations, the
analysis of the data is done using the combined information of canonical ex-
pectation values and microcanonical entropy and observables versus energy.
Especially at phase separation, this complementary analysis proves to be use-
ful.

2A population of black holes, however, whose convex regime does not vanish in some ther-
modynamic limit, really is unstable: the larger ones snack on the smaller ones.



32 CHAPTER 4. NON-EXTENSIVE THERMODYNAMICS



Chapter 5

Methods

To simulate any system of certain complexity, suitable algorithms have to be
thought of. Any algorithms used in this work are Markov Chain Monte Carlo
methods based on acceptance and rejection of local or global conformational
updates of the system. Namely, the already well established multicanonical gen-
eralised ensemble method [94; 95; 96] and the parallel tempering, or replica
exchange, method [97; 98] are applied, which are described in detail in, i.a.
the given references or common textbooks [99; 100; 101; 102]. Only for
the multiple histogram reweighting a non-standard method is applied. Hence,
apart from this only the basic concepts will be summarized here with some
emphasis on aspects that are important to the problem at hand.

5.1 Markov Chain Monte Carlo

Monte Carlo techniques are applied for systems with so many degrees of free-
dom that it is impossible to solve them analytically. Instead, an approximation –
that can be very accurate – is obtained by repeated random sampling of states.
This random component inspired Nicholas Metropolis in 1949 in Los Alamos
[99] to name the method after the Monte Carlo Casino that was relatively pop-
ular among some colleagues. The idea to use random numbers for estimates
was, however, much older and for example the famous Buffon’s needle experi-
ment, that can be used to estimate π by repeatedly throwing needles on a floor
with parallel stripes, performed by the french naturalist Georges-Louis Leclerc,
Comte de Buffon, dates back to the 18th century [101]. But only with the
revolution of electronic computing, the statistical sampling became the method
of choice to simulate many physical and mathematical systems. Now, the ran-
dom events are no longer, like in Buffon’s case, generated by throwing needles
and count them manually in a tedious process, but are instead generated us-
ing pseudo random numbers [103; 104]. The random number generator used
throughout this work is the Mersenne twister algorithm by Makoto Matsumoto
and Takuji Nishimura [105].
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What one usually wants in statistical physics, is to obtain an estimate of the
canonical expectation value of some observable O at an inverse temperature
β = 1/T given by

〈O〉can (β) =

∑
µ∈MOµe

−βEµ∑
µ∈M e−βEµ

=

∑
E O(E)Ω(E)e−βE∑

E Ω(E)e−βE
. (5.1)

Here µ goes through all available microstates of the system, Ω(E) is the density
of states, and kB ≡ 1. For a continuous energy this sum transforms into an
integral, but since we have to discretize anyway on a computer, the summation
notation is kept in the following. The challenge of any smart Monte Carlo
algorithm is now to find a way to choose a subset of all states µ in such a way
as to get a good estimate of 〈O〉can (T ) in a given time. “Good” here means that
the statistical error should be small. Systematic errors are avoided by following
the rules given below.

If one would randomly generate new configurations (simple sampling) that sat-
isfy the given constraints of the model at hand, the danger of generating many
thermodynamically irrelevant high-energy conformations is high and Eq. (5.1)
would give a bad estimate. The goal is to generate an appropriate random set
according to a pre-defined probability distribution pµ (importance sampling).
In the case of canonical simulations, one typically chooses pµ = e−Eµ/T . Most
Monte Carlo methods – and all used in this thesis – rely on a Markov process
to create the states used. For this purpose, a Markov process is a mechanism
that, given a system in state µ, generates a new state ν of the system. Which
new state ν will be generated depends only on the state µ and on the transition
probability P (µ → ν), that should only depend on the states µ and ν and has
to be constant over time in order to describe a true Markov process. To really
describe a probability, also the normalization

∑
ν P (µ → ν) = 1 has to hold,

since the Markov process must generate some state ν when handed the system
µ, that might include µ itself.

Now, in order for the Markov process to eventually reach an equilibrium with
states distributed according to the probability distribution pµ, additional re-
quirements have to be met.

1. Ergodicity. With the sequence of transitions it should be possible to reach
any state of the system from any other during the simulation. If the sim-
ulation contains Ns updates, this corresponds to (∀µ, ν ∈M)

P (µ→ ν) = P (µ→ λ1)

[
Ns−1∏
i=1

P (λi → λi+1)

]
P (λNs → µ) > 0. (5.2)

2. Detailed balance. For every Markov process, the time evolution is gov-
erned by the master equation:

dPµ(t)

dt
=
∑
ν

[pν(t)P (ν → µ)− pµ(t)P (µ→ ν)] . (5.3)
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In equilibrium, all time dependence has to disappear, such that dPµ(t)
dt = 0

and hence with pµ,ν(t) = pµ,ν∑
ν

pνP (ν → µ) =
∑
ν

pµP (µ→ ν). (5.4)

But this condition alone does not guarantee that the Markov chain will
have the desired probability distribution pµ due to the probability of so-
called limit circles [99]. To avoid them one usually requests the stronger
condition of detailed balance

pνP (ν → µ) = pµP (µ→ ν) ⇔ pν
pµ

=
P (µ→ ν)

P (ν → µ)
, (5.5)

that ensures a generation of states with pµ and makes the Markov chain
to what is said to be a reversible Markov chain.

With those basic relations, transition probabilities can be derived with which a
stochastic process of any distribution pµ can be generated. To do so, a trick is
applied: The transition probability P (µ→ ν) is split into two parts,

P (µ→ ν) = s(µ→ ν)A(µ→ ν), (5.6)

the selection probability s(µ → ν), with which, given a state µ, an update gen-
erates a new state ν, and the acceptance probability A(µ → ν), with which this
new state is adopted. This leaves complete freedom to use whatever ergodic
updates one pleases to generate new states with, since detailed balance can al-
ways be satisfied with a correct choice of the acceptance probabilities. Usually,
a combination of updates is chosen for which s(µ→ ν) = s(ν → µ) or updates
in their easiest form automatically have this property. This holds throughout
most of this work, but leaving this flexible can in some cases significantly in-
crease the acceptance probability and with it the performance of the algorithm
(cf. section 5.3). With this detailed balance reads as

A(µ→ ν)

A(ν → µ)
=
s(ν → µ) pν
s(µ→ ν) pµ

. (5.7)

To decide how to choose the acceptance probabilities with a pre-defined distri-
bution of states, of course the ratio s(ν → µ)/s(µ→ ν) always has to be known.
Typically, to satisfy Eq. (5.7) and maximize the acceptance probabilities simul-
taneously – to sample as many different states as possible and hence to increase
the statistics – the larger of the two is set to 1, such that

A(µ→ ν) = min

(
1,
s(ν → µ) pν
s(µ→ ν) pµ

)
. (5.8)

Having a time series of such a Markov process with tMC time steps, the canoni-
cal expectation value at β can now generally be obtained with

〈O〉can (β) ≈
∑tMC

t=1 O(t)e−βE(t)/p(E(t))∑tMC
t=1 e

−βE(t)/p(E(t))
=

∑
E OtMC(E)HtMC(E)e−βE/p(E)∑

E HtMC(E)e−βE/p(E)
,

(5.9)
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where

HtMC(E) =

tMC∑
t=1

E−∆E
2
≤E(t)<E+ ∆E

2

1 (5.10)

and

OtMC(E) =
1

HtMC(E)

tMC∑
t=1

E−∆E
2
≤E(t)<E+ ∆E

2

O(t).

In the case of discrete energies the summation constraint simplifies to E(t) = E
and only in this case the equality in Eq. (5.9) strictly holds true, but is an
excellent approximation for suitable energy binning for continuous energies.

For this estimate of the canonical expectation value to be useful, it is essential
to have sufficient statistics in the energy regime, where the canonical distribu-
tion, pcan,β(E) = Ω(E)e−βE , is significantly larger than zero. But whenever
this is given, Eq. (5.9) gives a correct estimate of 〈O〉can (β), disregarding if
p(E) is a physically realistic distribution or not. Whenever, such an unphysical
distribution is chosen, the method falls into the class of generalised ensemble
methods.

5.2 Metropolis

The most intuitive choice of pµ if one aims at an estimate of canonical expecta-
tion values is to sample states directly with the Boltzmann weight at a certain
inverse temperature β = 1/T , pµ ∝ e−βEµ . In this case, Eq. (5.8) directly gives
the Metropolis acceptance probability (for s(µ→ ν) = s(ν → µ))

AMetropolis(µ→ ν) = min

(
1,
e−βEν

e−βEµ

)
= min

(
1, e−β∆E

)
. (5.11)

Equation (5.9) reduces to

〈O〉can (β) ≈ 1

tMC

tMC∑
t=1

O(t) =

∑
E OtMC(E)HtMC(E)∑

E HtMC(E)
. (5.12)

“Instead of choosing configurations randomly, then weighting them
with exp(−E/kT ), we choose configurations with a probability
exp(−E/kT ) and weight them evenly.”

Nicholas Metropolis [106]

This acceptance scheme is great if one is interested in 〈O〉can (β) for a fixed not
too low temperature. It has, however, its flaws if one wants to simulate systems
close to the ground state or reuse the statistics obtained at one temperature
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β at another temperature β′ not too close by. If β′ is close to β, where ‘close’
here means that their canonical energy distributions overlap to a high degree,
the time series obtained with pµ ∝ e−βEµ can also be reweighted to give the
expectation value at β′

〈O〉can
(
β′
)
≈
∑tMC

t=1 O(t)e−(β′−β)E(t)∑tMC
t=1 e

−(β′−β)E(t)
=

∑
E OtMC(E)HtMC(E)e−(β′−β)E∑

E HtMC(E)e−(β′−β)E
.

(5.13)

To use this reweighting trick for a wider range of temperatures, either more sim-
ulations at different temperatures have to be performed and combined (com-
pare section 5.4) or pµ has to be chosen in such a way as to yield a distribution
HtMC(E) that covers a wider energy regime (compare section 5.5). However,
at low temperatures the autocorrelation time increases dramatically. This is the
time in Monte Carlo steps on which the autocorrelation drops off and the sys-
tem is independent on the system at the starting time again. Hence much longer
simulations are needed to get the same effective statistics and simply perform-
ing many Metropolis simulations in parallel and combining the histograms is
not very efficient. Parallel tempering provides one way to significantly reduce
this autocorrelation.

5.3 Parallel Tempering

The idea behind the quite popular parallel tempering [107; 108; 98] also
called replica exchange Monte Carlo sampling, is to run Metropolis simulations
in parallel in several different copies of the system at different temperatures
β1 < β2 < . . . < βn, but not completely independent. Every once in a while
two copies of the system exchange their current conformations with a certain
acceptance probability. This way conformations that were stuck in a valley of
the energy landscape at low temperatures can escape those at higher tempera-
tures and, if the system eventually changes back into a system at low tempera-
ture, explore other valleys. To sample the correct equilibrium distribution, the
conformation exchanges have to be ergodic and satisfy detailed balance again.
To achieve this, the acceptance probability of Eq. (5.8) can be applied once
more. This time however, the probability of the combined system of the two
candidate systems for the exchange needs to be known. If those are the sys-
tems at temperature β and β′ and they are in state µ and ν, respectively, their
combined probability is given by

pµν =
e−βEµ

Zβ

e−β
′Eν

Zβ′
, (5.14)

where Z and Z ′ are the partition function of the canonical ensemble at temper-
ature β and β′, respectively. If one chooses the selection probabilities for the
conformation exchange updates such that s(µν → νµ) = s(νµ→ µν), Eq. (5.8)
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reads as

A(µν → νµ) = min

(
1,
e−βEνe−β

′Eµ

e−βEµe−β′Eν

)
(5.15)

= min
(

1, e−β(Eν−Eµ)e−β
′(Eµ−Eν)

)
= min

(
1, e(β−β′)(Eµ−Eν)

)
= min

(
1, e∆β∆E

)
.

This is the same result as one would obtain if not the conformations, but the
temperatures, were exchanged. In practice, it is usually conceptionally easier to
exchange the conformations, since every system stays at the same temperature
and cumulated time series belong to this temperature. But if the system size
and with it the amount of data that needs to be transferred per swap on a
parallel computer increases, it eventually is worth to invest the additional effort
of temperature bookkeeping required for temperature exchanges (compare to
Ref. [102] for example) to reduce the necessary network traffic.

It is useful to be aware of that choosing the selection probabilities for swap
moves to satisfy s(µν → νµ) = s(νµ → µν) does not have to affect the selec-
tion probabilities for the Metropolis moves for different replicas. An example
for an easy improvement of the performance is to generally select updates with
smaller energy changes in low temperature systems to increase the acceptance
probability there and allow for larger energy changes in high temperature sys-
tems, where most of the updates are usually accepted anyway at decrease the
autocorrelation time there. This can be done without giving up the choice
s(µ→ ν) = s(ν → µ) within one Metropolis run.

Equation (5.15) additionally makes clear that the acceptance probability expo-
nentially decreases with the distance of the inverse temperature. This is why
typically only replicas exchange their conformations that have neighbouring
temperatures. Although the method is not at all restricted to that choice, I used
it here. Just as with the distance of the inverse temperatures, the acceptance
probability also decreases exponentially with the difference of the energies of
the conformations chosen to be swapped. A useful criterion to satisfy is a suffi-
cient overlap of the canonical histograms involved in the swap. The overlap can
be tuned by changes in β. Here, enough replicas are used to have overlapping
energy histograms from very low temperatures (T ≈ 0.01) to high temperatures
and acceptance probabilities of roughly 50%.

The weaknesses of parallel tempering are related to the weaknesses of the un-
derlying Metropolis simulations. At low temperatures, the canonical histograms
get very narrow, such that more and more replicas are necessary to allow low
energy conformations to swap to higher temperatures. And where the system
undergoes a first-order phase transition in the thermodynamic limit, the fact
that this simulation still consists of many canonical simulations that all suffer
from the free energy barrier slows down the algorithm.

A solution can be to use generalised ensemble Monte Carlo techniques that
substitute the canonical energy distribution by another less physically realistic
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one that does not suffer from those shortcomings. Those ensembles can be
simulated on a single replica, like the Multicanonical method (cf. section 5.5)
or combined with the replica exchange idea and run on several replicas that
regularly exchange conformations.

5.4 Combining the Histograms

After having performed a parallel tempering simulation at several tempera-
tures, one is confronted with the problem of how to combine all those over-
lapping canonical histograms Hi(E), i = 1, . . . , n, to get an optimal estimate of
the canonical expectation values for the entire temperature range spanned by
the simulations. One can certainly get a better estimate with a suitable combi-
nation of all available histograms, than just choosing the one with the closest
temperature and performing a single histogram reweighting using Eq. (5.13).

To this end, it is useful to concentrate on a combined estimate of the
temperature-independent density of states Ω(E) and than use the right hand
side of Eq. (5.1) together with a version of the second part of Eq. (5.10) run
over all n time series to get the canonical expectation values. A Monte Carlo
simulation with Boltzmann importance sampling generates states with energy
E distributed according to the probability

p(E) = Ω(E)
e−βE

Zβ
≈ H(E)

tMC
. (5.16)

Here, H(E) is the energy histogram of a simulation of tMC steps. Now, having
performed n such simulations, also n different estimates of the density of states
Ω(E) can be calculated via

Ω̃i(E) =
Hi(E)

tMC,i

Zβi
e−βiE

∝ Hi(E)eβiE , i = 1, . . . , n. (5.17)

Each estimate only provides good results in an energy regime, where Hi(E)
has sufficient statistics, and very poor results elsewhere. What one really wants
now, is some kind of weighted average of those Ω̃i(E). In the following, I will
present two ways to combine those estimates, that both use an error weighted
average of the form

x =

∑
i xi/σ

2
i∑

j 1/σ2
j

(5.18)

with corresponding variance of the weighted mean

σ2
x =

1∑
i 1/σ2

i

. (5.19)

This assumes a normal distribution of errors [109], which roughly holds true
for sufficient statistics.
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5.4.1 Iterative Multiple Histogram Reweighting

The standard method is to use an iterative multihistogram reweighting scheme
first proposed by Ferrenberg and Swendsen in 1989 [110]. A popular extension
of it is the weighted histogram analysis method (WHAM) [111; 112; 113]. I
shortly sketch the principle here following the adaption of Barkema and New-
man [99], but without the assumption of independent energy measurements.
Ferrenberg and Swendsen first determined the correlation time τi of the ith
simulation, and assumed that the variance of Hi(E) is given by

σ2(Hi(E)) = giHi(E), with gi = 1 + 2τi. (5.20)

Note that the approximation here is to assume that a correlation in the time
series can directly be mapped onto a correlation in the individual histogram
entries which is a priori not clear (but also does not do much harm). Hi(E) is
the mean of infinitely many runs at βi such that

Ω(E) =
Hi(E)

tMC,i

Zβi
e−βiE

, (5.21)

as immediatelly follows from Eq. (5.17) if both sides are averaged over an
infinite number of runs. Since the error in Hi(E) is the only source of error in
Eq. (5.17),

σ2(Ω̃i(E)) = σ2(Hi(E))

(
Zβi

tMC,i e−βiE

)2

(5.20),(5.21)
= giHi(E)

(
Ω(E)

Hi(E)

)2

=
gi Ω2(E)

Hi(E)
. (5.22)

Now, with xi = Ω̃i(E) and σ2
i = σ2(Ω̃i(E)), Eq. (5.18) reads as

Ω̃(E) =

∑
i
Hi(E)
tMC,i

Zβi
e−βiE

Hi(E)
gi Ω2(E)∑

j
Hj(E)

gj Ω2(E)

(5.21)
=

∑
i g
−1
i Hi(E)∑

j tMC,j Z
−1
βj

g
−1
j e−βjE

. (5.23)

This unfortunately does not yet provide the estimate of Ω(E) aimed at, since the
partition sums Zβj are unknown. With Zβk = e−fk =

∑
E Ω(E)e−βkE , however,

they can be determined selfconsistently by solving

e−fk =
∑
E

∑
i g
−1
i Hi(E)∑

j tMC,j g
−1
j efk+(βk−βj)E

(5.24)

in an iterative process, the core of the method. The Zβk are only substituted
by fk here for the practical reason, that the partition sum tends to adopt ex-
tremely high or low values and logarithms are easier to handle in that case.
In practice, one might start with some initial guess for the fk1 and arrives at

1E.g. fk = 0, ∀k, or somewhat better fk = − ln
[∑tMC,k

t=1 e−βkEt
]
, where it is useful to know

that ln
(
el1 + el2

)
= l1 + ln

(
1 + el2+l1

)
if l1 ≥ l2.
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a better estimate using Eq. (5.24). This is repeated until the fk converge. To
prevent over- or underflow, it might also be useful to center the fk around its
mean by subtracting a constant after each recursion, which does not influence
the validity of Eq. (5.24). Having a large number n of histograms, the iteration
might have problems to converge. In this case, one can start with only two
histograms, if those fk converge, one histogram is added until also the fk of
those three converge etc.

Now, one is essentially done and can get the combined estimate of the density
of states Ω̃(E) – up to an unknown prefactor – from Eq. (5.23) with Zβk = e−fk .

5.4.2 Direct Multiple Histogram Reweighting (PunCH)

An alternative method2, that avoids the potentially tedious iteration and is a
little easier to implement, is a more direct attempt of a weighted average of the
Ω̃i(E) of Eq. (5.17). The problem remains that the constants of proportionality
Zβi/tMC,i are not known, since the partitions sums Zβi are not known. I cir-
cumvent this by instead of choosing xi = Ω̃i(E), rather concentrating on the
ratio of neighbouring histogram entries Ω̃i(E+∆E)/Ω̃i(E), where the partition
sums cancel. Now, working again with the logarithm,

xi = ln
[
Ω̃i(E + ∆E)/Ω̃i(E)

]
(5.25)

(5.17)
= ln [H(E + ∆E)]− ln [H(E)]− βi∆E
= Si(E + ∆E)− Si(E) = ∆Si(E),

with the corresponding variance, assuming σ (Hi(E + ∆E)) ∝
√
Hi(E + ∆E)

and σ (Hi(E)) ∝
√
Hi(E) like for a normal distribution of errors, and fluctua-

tions of neighbouring bins being independent of each other,

σ2
i = σ2 (∆Si(E)) = σ2 [ln(Hi(E + ∆E))− ln(Hi(E))] (5.26)

=

∣∣∣∣∂ log(Hi(E + ∆E))

∂(Hi(E + ∆E))

∣∣∣∣2√Hi(E + ∆E)
2

+

∣∣∣∣∂ log(Hi(E))

∂(Hi(E))

∣∣∣∣2√Hi(E)
2

=
1

Hi(E + ∆E)
+

1

Hi(E)
,

∆S(E) can directly be computed using Eq. (5.18). Wherever Hi(E + ∆E)
and/or Hi(E) has no entries, the weight wi(E) ∝ 1/σ2

i disappears, such that
also problems with empty histogram entries disappear. An estimate of Ω(E)
up to an unknown prefactor, or of ln(Ω(E)) up to a constant offset, is finally
obtained by fixing Ω̃(E) = c for some E, where at least one of the histograms

2If you share the passion for acronyms, you can call this method PunCH. A short name I made
up to allude to the fact that this method does something similar than the celebrated WHAM
(weighted histogram analysis method) – both translate into the german word “Schlag”, but is
faster due to the lack of iteration: Punctual Combination of Histograms.
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has sufficient statistics, and using

ln[Ω̃(E + ∆E)] = ln[Ω̃(E)] + ∆S(E) (5.27)

ln[Ω̃(E −∆E)] = ln[Ω̃(E)]−∆S(E −∆E).

It turned out, that M. K. Fenwick recently came up with a method following ex-
actly this idea and called it direct multiple histogram reweighting method [114].

PunCH only runs into problems if there are energy bins without or with very
low statistics. In the first case, Eq. (5.27) cannot be applied. In the later, a
∆S(E) with a high error might lead to jumps in ln[Ω̃(E)], that can be reduced
by choosing wider bins. Both cases should, however, not play a role for data
of high statistics parallel tempering simulations, where a sufficient overlap of
the histograms is necessary for the conformation exchanges. For such data,
this method also has the advantage of being very fast compared to the itera-
tive method. Additionally, if one is interested in a microcanonical analysis (cf.
chapter 4), it is convenient to directly sample the numerical derivative of the
microcanonical entropy (∂S(E)/∂E)N,V ≈ ∆S(E)/∆E. This is often easier
to handle and seems to give slightly better results than the usually performed
numerical derivative that suffers from the fluctuations in the data to be differ-
entiated. Smoothing, higher point formulas for differentiation [115] or larger
binning sometimes helps but may lead to systematic errors especially at sharp
peaks.

5.5 Multicanonical Sampling

This method finally leaves the physical Boltzmann distribution. Like mentioned
in the parallel tempering section 5.3, canonical sampling suffers from narrow
energy histograms at low temperatures and the free energy barrier in large but
finite systems at first-order phase transitions. In both cases, the autocorrelation
time of a single Metropolis Monte Carlo Markov-chain is high. In the former,
the system might get stuck in a local energy minimum that it has problems
to leave, and in the later, the system has to travel several times through the
suppressed transition states with exponentially increasing autocorrelation time
τ ∝ eβ∆F between more likely regions in phase space to sample an equilib-
rium distribution. While parallel tempering is rather effective in helping low
temperature threads to climb over hills to see new places, the intrinsic canoni-
cal problem at first-order phase transitions stays if more canonical simulations
are added. Although for not too large systems with not too strong free energy
barriers, parallel tempering with an increased number of temperature replicas
close to the transition in question often still yields very good results, at some
point it is more effective to sample according to an energy distribution p(E),
where those suppressed states are enhanced. The Markov-chain Monte Carlo
scheme of equations (5.8), (5.9) and (5.10) can, however, be kept.

The multicanonical sampling method [94; 95; 96] wants to enhance the prob-
ability of those suppressed energy states and at the same time allow to reweight
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the data to “multiple canonical” distributions. When first formulating this
method, Berg and Neuhaus strongly referred to the idea of performing mul-
tiple of such canonical simulations in one long simulation. What effectively is
done is the sampling of states with a flat – or almost flat – energy histogram.
This solves all the mentioned problems and enhances suppressed conformations
(for all energies, also for low ones) while still generating sufficient statistics for
a wide range of temperatures. But it also creates a new one: the necessary
acceptance probability Amuca(µ → ν) to perform such a random walk in en-
ergy space is not known a priori. In order to reach a flat energy histogram, the
multicanonical weights Wmuca(E) need to satisfy

pmuca(E) = Ω(E)Wmuca(E) ≈ const, (5.28)

which immediately leads to

Wmuca(E) ∝ Ω−1(E). (5.29)

Consequently, a multicanonical simulation consists of the three steps:

1. determine an estimate of the density of states and use its inverse as
Wmuca(E)

2. perform a long simulation with an acceptance probability according to
Eq. (5.8), with pµ = Wmuca(Eµ)

3. reweight the time series or histogram according to Eq. (5.9) to obtain the
canonical expectation values.

Since Eq. (5.9) gives correct results completely independent of the exact dis-
tribution sampled as long as enough statistics falls into the energy range of
interest and the sampling is ergodic, the estimate in the first step is allowed to
deviate from the exact density of states. Only the performance of the algorithm
would be affected. Nevertheless, due to the many orders of magnitude – easily
several hundreds or more – Ω(E) typically covers, even a rough estimate is a
challenge.

In the following, I will present the iterative method I used adapted from Ref.
[116]. Other methods can be thought of and of course, it is also possible to
work with the estimate for the density of states obtained from Wang-Landau
iterations [117]. Another idea might be to facilitate the estimate obtained
from one of the multiple histogram reweighting techniques described above.
When using the estimate to determine the acceptance probability for a long
simulation run, the choice is merely a matter of taste. In practice, however, the
performance can, e.g. be improved by a smart choice of the weight at energies
below the ones reached by the comparatively short (compared to step two)
iterative run. If they are chosen to high, if the long simulations samples such
an energy, it often is trapped there for a considerable amount of simulation
time.
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5.5.1 Multicanonical Recursion

With the microcanonical entropy S(E) = ln Ω(E) and the dimensionless, mi-
crocanonical free energy

f(E) =
F (E)

T (E)
=
U(E)− TS(E)

T (E)
= β(E)E − S(E), (5.30)

Eq. (5.29) can be rewritten as

Wmuca(E) ∝ Ω−1(E) = e−S(E) = e−β(E)E+f(E). (5.31)

But f(E) and β(E) are not independent. The definition of the microcanonical
temperature

β(E) =
∂S(E)

∂E

(5.30)
= β(E) + E

∂β(E)

∂E
− ∂f(E)

∂E
≈ S(E + ∆E)− S(E)

∆E
(5.32)

directly gives

E
∂β(E)

∂E
=
∂f(E)

∂E
, (5.33)

with the discretized version

[β(E + ∆E)− β(E)]E = f(E + ∆E)− f(E). (5.34)

Since energy binning is unavoidable for any implementation, this simplification
will be used in the following.

The idea is now to take some initial guess of β0(E) and f0(E) and perform a
simulation run with the corresponding Wmuca,0(E)3. The histogram obtained is
then used to calculate an improved β1(E) and f1(E) and start a new run with
them, etc. This is done recursively such thatHn(E) is used to findWmuca,n+1(E)
until the histogram eventually gets flat enough4.

The question is how to get the best Wmuca,n+1(E) from the histograms obtained
so far. Very similar to the histogram reweighting techniques of the previous
section, it makes sense to attempt an error weighted average over all iterations,
to not loose data older than Hn(E). This is done by merging the new estimate
β̃n(E) from the last simulation with βn(E):

βn+1(E) = κ(E)β̃n(E) + (1− κ(E))βn(E). (5.35)

β̃n(E) is determined considering

W̃muca,n(E) = e−S̃n(E) ∝ 1

Ω(E)
∝ Wmuca,n(E)

Hn(E)
(5.36)

3A simple choice is Wmuca,0(E) = 1, ∀E, with β0(E) = 0 and f0(E) = 0, that corresponds
to a sampling at infinite temperature in the first iteration. One can certainly do better, when
starting with a more educated guess, but the interaction sooner or later converges to the correct
Ω(E).

4As a measure of flatness, one can require the maximum and minimum histogram entry to not
deviate more than, say, 10% from the mean, but often just looking at the histograms is enough
to see this.
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and Eq. (5.32)

β̃n(E) =
S̃n(E + ∆E)− S̃n(E)

∆E
(5.37)

=
ln W̃muca,n(E)− ln W̃muca,n(E + ∆E)

∆E

=
lnHn(E+∆E)− lnHn(E)

∆E
− lnWmuca,n(E+∆E)− lnWmuca,n(E)

∆E

=
lnHn(E+∆E)− lnHn(E)

∆E
+ βn(E).

With this approach, β̃n(E) cannot be calculated for empty histogram entries.
This, however, does not pose a problem, since the weights κ(E) disappear here,
such that βn+1(E) = βn(E) in this case.

According to Eq. (5.18), κ(E) has to be inversely proportional to the variance
of β̃n(E).

σ2(β̃n(E)) =
σ2(lnHn(E+∆E)− lnHn(E))

∆E2
+ σ2(βn(E)) (5.38)

(5.26)
∝ 1

Hn(E + ∆E)
+

1

Hn(E)
.

Since βn(E) is kept fixed during each interaction, its variance vanishes. For the
remaining, one assumes like in Eq. (5.26) a normal distribution of errors and
independent fluctuations of neighbouring bins. κ(E) is the normalized inverse
of σ2(β̃n(E)). Introducing

p(E) =
Hn(E + ∆E)Hn(E)

Hn(E + ∆E) +Hn(E)
∝ 1

σ2
(
β̃n(E)

) , (5.39)

κ(E) hence reads as

κ(E) =
p(E)

p(E) + pn(E)
, (5.40)

where pn(E) is the sum of all previous p(E) and κ(E) = 0 if p(E) = 0 or/and
p(E) = pn(E) = 0.

Now, insert Eq. (5.37) into the weighted mean in Eq. (5.35) to obtain

βn+1(E) = βn(E) + κ(E)
lnHn(E + ∆E)− lnHn(E)

∆E
(5.41)

and use this together with the ratio of the weights, Rn(E) = Wmuca,n(E −
∆E)/Wmuca,n(E),

Rn(E)
(5.31)

= e
fn(E−∆E)−βn(E−∆E)(E−∆E)

fn(E)−βn(E)E (5.42)

= efn(E−∆E)−fn(E)−[βn(E−∆E)−βn(E)](E−∆E)+βn(E)∆E

(5.34)
= eβn(E)∆E
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to get the desired recursive relation in terms of the ratio of the weights:

Rn+1(E) = Rn(E)e[βn+1(E)−βn(E)]∆E

(5.41)
= Rn(E)eκ(E)[lnHn(E+∆E)−lnHn(E)]

= Rn(E)

(
Hn(E + ∆E)

Hn(E)

)κ(E)

. (5.43)

This relation finally contains everything necessary to implement the recursion,
since Rn+1(E) can be calculated from the simulated histograms and having
Rn+1(E) and arbitrarily fixing Wmuca,n+1(E) for one E, Wmuca,n+1(E) can be
calculated ∀E.

5.6 Updates

What is left to describe, is how new conformations are generated. This is done
with updates that determine the selection probabilities s(µ → ν) given in Eq.
(5.6). Those updates need to preserve the constraints like in my case the con-
straint to the box and the fixed bond lengths, and if required the grafting.
Additionally, they need to be ergodic (cf. Eq. (5.2)), i.e. in principle be able to
produce any conformation from any other in the course of one simulation, and
the ratio s(µ → ν)/s(ν → µ) needs to be calculable such that the acceptance
probabilities can be chosen such that detailed balance is satisfied. Typically,
s(µ→ ν)/s(ν → µ) = 1. Inventing such ergodic updates is usually not difficult.
Nevertheless, the performance of the simulation can considerably depend on
an efficient choice of the updates and its parameters.

If updates only slightly change the system, the autocorrelation time gets signifi-
cantly increased compared to updates that suggest changes big enough to cross
free-energy barrieres especially in the presence of such barriers. Such a cross-
ing is necessary for an ergodic sampling of phase space. On the other hand, too
large changes of the system lead to very low acceptance probabilities in partic-
ular at low temperatures and in local or global energy minima. This of course
needs to be prevented since updates are often costly in simulation time mainly
due to the applied random number generator. In practice, a compromise has
to be found that depends on the system and, e.g. the energy or temperature,
always keeping in mind that detailed balance has to hold.

The following updates are used and a sweep sequence consists of an ergodic
mixture of them.

5.6.1 Spherical Update

This update, that also is described in detail in Refs. [53], [118] and
[63], consists of picking one bond at random, rotating it and attach-
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Figure 5.1: Graphical representation of the spherical update.
One monomer is picked at random (green) and its preceeding
monomer is moved around it on the surface of a spherical sec-
tor. The change in the bonding angle ∆ϑ is usually restricted
while the change in the rotation angle ∆ϕ is not. All following
bonds keep their spacial orientation such that the following
monomers are simply translated (from the white positions to
the blue).

ing all the following
bonds with the same
orientation they had be-
fore as illustrated in Fig.
5.1. To increase the ac-
ceptance probability the
allowed spherical cap,
on which the monomer
can move, is restricted to
have an opening angle of
2∆ϑmax. Since detailed
balance needs to be satis-
fied, one chooses to rotate
this monomer in such a
way as to end up at every
point of this spherical cap dA = cosϑdϑdϕ = d(cosϑ)dϕ with equal probability.
This ensures that s(µ → ν) = s(ν → µ). Hence, cos ∆ϑ has to be evenly
chosen from the interval (cos ∆ϑmax, 1] and ∆ϕ from the interval [0, 2π) which
together with the random choice of a monomer makes three random numbers
necessary for this update. In practice, if ~r = (x, y, z)T = |r|~er is the bond vector
to be rotated, where |r| = 1 in our case, its rotated version ~r′ is given by

~r′ = cos ∆ϑ~er + sin ∆ϑ sin ∆ϕ ~eϕ + sin ∆ϑ cos ∆ϕ~eϑ. (5.44)

~eϕ and ~eϑ have to satisfy ~er ⊥ ~eϕ ⊥ ~eϑ and a useful choice that prevents numer-
ical problems for x ≈ y ≈ 0 is, for example

~eϕ =
(−y, x, 0)T√
x2 + y2

∧ ~eϑ =
(−xz,−yx, x2 + y2)T√

x2 + y2
, if x2 + y2 > 0.1

and ~eϕ =
(z, 0,−x)T√
x2 + z2

∧ ~eϑ =
(−xy, x2 + z2,−yz)T√

x2 + z2
, otherwise.(5.45)

The spherical update can of course also be done backwards in the sense of ro-
tating the bond previous to the chosen monomer and translating and attaching
the monomers on that side of the polymer. Both updates together can reach
all possible conformations and are ergodic and quite easy to implement. Es-
pecially in parallel tempering simulations, the performance of the simulation
can get increased by adapting ∆ϑmax for updates at fixed temperatures to the
temperature of the thread, i.e. in general smaller ∆ϑmax at lower temperatures.
One only needs to make sure that for swap moves both conformations are sug-
gested with the same probability.

On the other hand, in most cases the spherical update changes the position of
several monomers and is therefore a non-local update such that the acceptance
probability can get small even for small ∆ϑmax especially in globular conforma-
tions. Hence adding a more local update is useful.



48 CHAPTER 5. METHODS

5.6.2 Semi-local Pivot Update

The semi-local pivot update is the simplest conformational update, since
it only changes the position of a single monomer. This is done by

Figure 5.2: The semi-local pivot update. Here only a single
monomer position is changed by rotating the monomer by a
random angle α around the axis defined by the two neigh-
bouring monomers.

randomly picking the kth
non-end monomer with
1 < k < N and rotat-
ing it a random angle α ∈
[0, 2π) around the connec-
tion vector ~v = ~rk+1−~rk−1

(Fig. 5.2). That way, this
update only needs two
random numbers, but is
not ergodic, because the
monomers at the edge al-
ways keep their positions.

This does not pose a problem for the algorithm since s(µ → ν) = s(ν → µ)
holds and ergodicity can be regained if a combination of this and the spherical
update is used.

To perform the rotation, the rotation matrix

R (~v, α) =

 cosα+v2
1 (1−cosα) v1v2 (1−cosα)−v3 sinα v1v3 (1−cosα)+v2 sinα

v2v1 (1−cosα)+v3 sinα cosα+v2
2 (1−cosα) v2v3 (1−cosα)−v1 sinα

v3v1 (1−cosα)−v2 sinα v3v2 (1−cosα)+v1 sinα cosα+v2
3 (1−cosα)


(5.46)

is applied that rotates about the axis of rotation ~v = (v1, v2, v3) by an angle α.
The new position of the kth monomer then is given by

~r′k = R (~v, α)~r + ~rk−1 = ~r′ + ~rk−1. (5.47)

Even though only one monomer position is changed in this update, it is only
“semi-local” in the sense that the LJ-energy from this monomer to all other
monomers - apart from the direct neighbours at fixed distance of course - needs
to be calculated anew. Monomers far away along the chain can be close by in
space which makes real local updates with an energy difference calculation that
does not scale with system size hard to perform.

With those updates all conformations can be sampled. It takes, however, a
long simulation time to considerably move the center-of-mass of the polymer
that way and also rotation of the whole polymer is suppressed. But since a
frequent crossing of the simulation box and sampling of the polymer close to
the substrate in various orientations is very much wanted, the corresponding
updates are added.

5.6.3 Rotation of the whole Polymer

With the placement of the polymer into a box, the energy is not invariant under
rotation anymore. Hence, as an additional update, the polymer is rotated about
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its center of mass. Again the rotation matrix R (~v, α) (Eq. (5.46)) is applied,
this time to rotate the position of every monomer ~rk around the center of mass
~rcm to give the new position ~r′k via

~r′k = R (~v, α) (~rk − ~rcm) + ~rcm. (5.48)

~v is a randomly oriented rotation axis and α ∈ [0, 2π).

5.6.4 Translation

With the updates introduced so far it takes an extremely long time until a poly-
mer in the middle of the box comes close enough to the substrate to even feel
the attraction or for an adsorbed conformation to desorb. A simple trans-
lation perpendicular to the substrate can significantly speed this up. Hence
every sweep of Monte Carlo updates here always contains a translation with
∆z ∈ (−0.5, 0.5).
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Chapter 6

Conformational Phases of a
Nongrafted Polymer near a
Smooth Substrate

I would like to start the discussion of the obtained results with a summary
of the pseudo-phase diagram for N = 20 that forms a basis to the following.
Its construction via canonical expectation values was the basic content of my
diploma thesis and is published in Refs. [63; 11; 119]. This phase diagram
is a consequence of the competition of on the one hand side different kinds of
energies, such that the surface attraction giving rise to the adsorption transition
competes with the monomer-monomer interaction giving rise to the collapse
transition, and of the energy versus the entropy on the other hand.

¾

¾
¾

½

½

Figure 6.1: Pseudo-phase diagram of the nongrafted 20mer. The
coloured stripes separate the individual conformational phases. The
regime shaded in green is a combination of all phases of adsorbed
conformations. Along the lines of constant integer εs a microcanon-
ical analysis is performed in chapter 7. For a comparison with the
(nongrafted and grafted) 40mer see Fig. 8.1.

Multicanonical simu-
lations for 51 differ-
ent surface attraction
strengths εs ∈ [0, 5]
were performed and
the data reweighted
to the temperature
interval T ∈ (0, 3],
where most of the
structural activity
takes place. The
final pseudo-phase
diagram is shown
in Figs. 6.1 and 6.2
gives representative
conformations of
each phase. The blue
bands indicate the
approximate phase



52 CHAPTER 6. NONGRAFTED PSEUDO PHASE DIAGRAM

boundaries that have some uncertainty because the peaks of the fluctuations
of canonical expectation values do not coincide for finite systems. Those peaks
are the basis on which this pseudo-phase diagram is constructed.

Like already mentioned, phase transitions in the strict thermodynamic sense
are only defined for the infinite system size and only there different canonical
peaks fall onto the same point and the microcanonical and canonical ensem-
bles are equivalent for sufficiently short-ranged interactions. Hence, the phase
transitions of the finite system described here are not phase transitions in the
strict thermodynamic sense, are not uniquely located in the phase diagram and
indeed may differ in nature from the corresponding infinite-system phase tran-
sition. For this reason, I often refer to such transitions in finite systems as
“pseudo-phase transition”. Sometimes, I skip the “pseudo” for reasons of legi-
bility, but whenever a finite system is referred to, this has to be kept in mind.
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Figure 6.2: Representative examples of
conformations for the 20mer in the differ-
ent regions of the T −εs pseudo-phase di-
agram in Fig. 6.1. DE, DG, and DC repre-
sent desorbed “phases”. In regions AG1,
AE, AC1, AG, AC2a, and AC2b, conforma-
tions are favorably adsorbed.

Despite of this finiteness of the simulated
model, a reasonable picture of polymer ad-
sorption behaviour is obtained and most
of the phases are believed to still exist for
longer chains.

Since I only want to present the main
phase behaviour here, I will illustrate the
construction method with just three ob-
servables. More details can be found in
chapter 8, where the difference of grafted
and nongrafted adsorption is portrayed
with a deeper emphasis on the different ob-
servables.

In the profile of the specific heat in Fig.
6.3 two transitions can be identified: The
adsorption transition separating desorbed
and adsorbed conformations and the freez-
ing transition at low temperatures. For
the adsorption transition it roughly holds
that Tads ∝ εs and this transition is re-
flected in the energy and hence also in
the specific heat, since the surface con-
tacts formed here reduce the overall en-
ergy. Near T = 0.25, cV exhibits a pro-
nounced peak independently of εs. The crystalline shape of the structures be-
low this peak – some representatives can be found in Fig. 6.2 – additionally
confirms its nature as freezing transition. However, to identify different crys-
talline shapes, a closer look at the conformational quantities is needed.

Here, representative for the conformational quantities, the overall radius of
gyration (Fig. 6.4) and the temperature fluctuation of the square root of the
Qzz-component of the gyration tensor, Rgyr,⊥, (Fig. 6.5) are given to illustrate
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the collapse and the layering transition. Together with the adsorption and the
freezing transition this completes all transition types identified. For more ob-
servables see Refs. [11; 63].

The average radius of gyration 〈Rgyr〉 (εs, T ) reveals that the most compact con-
formations dominate at low T and low εs, while the most extended ones occur
in AE. It establishes the phase boundaries between DE (desorbed extended)
and DG (desorbed globular) and between AE (adsorbed extended; not flat on
the substrate) and AG (adsorbed globular) and confirms the freezing transition,
but the adsorption is not prominently signalled by 〈Rgyr〉1.
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Figure 6.3: (a) Specific heat as a func-
tion of temperature T and surface interaction
strength εs for the 20mer. Lines represent
the simulation data for fixed values of εs, the
colour code is interpolated. (b) Specific heat
curves for different values of εs.
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Figure 6.4: (a) 〈Rgyr〉 of the 20mer as a func-
tion of T and εs. (b) 〈Rgyr〉 as a function of
the temperature for various values of εs.

Also visible in 〈Rgyr〉 (εs, T ) are the layering transitions at low temperatures be-
tween regions dominated by compact adsorbed conformations arranged with
a different number of layers at the substrate. The fewer layers there are, the
higher the value of 〈Rgyr〉 gets. Even better visible are those layering transitions
in 〈Rgyr,⊥〉 that vanishes at low temperatures for εs ≥ 3.4 indicating a single
flat layer at the substrate and increases in steps with decreasing surface attrac-
tion strength until the 〈Rgyr,⊥〉-value of a maximally compact conformation is
reached. Its temperature derivative that is characterized by sharp peaks at ev-
ery layering transition is shown in Fig. 6.5. The most pronounced peak here
is the one between the regime of single layers (AC1, AG1) and double layers

1This only very weak change of the radius of gyration during adsorption supports the assump-
tion of a constant polymer volume during adsorption in the derivation of Eq. (7.7).
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(AC2b) or the other two non-two-dimensional phases adjacent to AG1 (AG and
AE). The regime of single layers or flatly adsorbed polymers is divided by the
freezing transition into the very compact energy-dominated AC1 phase where
the monomers almost arrange in a triangular lattice ordering and the less com-
pact entropy-dominated AG1 phase. When analysing those data for the 20mer,
I decided to call this phase “extended” quite a while ago, because its radius
of gyration is considerably higher than the one in the globular phases AG and
DG (cf. Refs. [11; 63; 119]). However, after having analysed longer chains by
now, it seems to be better characterized as a two-dimensional globular phase
such that the transition between AG1 and AE is related to the collapse transi-
tion. Hence I rename this phase in comparison to earlier publications although
the observables stay the same. More details on the conformational behaviour
in this phase can be found in chapter 8 for the 40mer.
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Figure 6.5: (a) d 〈Rgyr,⊥〉 /dT of the 20mer.
(b) d 〈Rgyr,⊥〉 /dT for different surface attraction
strengths εs. Maxima for the layering transitions,
the adsorption transition and for the collapse
transition of desorbed polymers can be seen.

Although for N = 20 no higher layer
structures than the double-layers in
AC2b are observed, a maximum at
εs ≈ 1.4 in d 〈Rgyr,⊥〉 /dT indi-
cates the lowest attraction strength,
where stable double-layer confor-
mations exist. What follows is a
low-temperature subphase of sur-
face attached compact conforma-
tions (AC2a). These structures occur
if the surface attraction is not strong
enough to induce the formation of
compact layers.

The structures below the freezing
transition are subject to quite strong
finite-size effects. In particular the
dependence on the maximal number
of layers on the chain length seems
quite obvious. Raising the temper-
ature above the freezing transition
starting in the AC2 regions, polymers
adopt the adsorbed, globular, but un-
structured conformations of the AG
phase. This pseudo-phase has been first conjectured from short exact enumera-
tion studies of 2D polymers in poor solvent [18], but was also found in lattice-
polymer simulation studies [13; 14]. For even higher T , two scenarios can be
distinguished depending on the relative strengths of Ebulk and Esur. For low
εs, the polymer first desorbs (from AG to DG) and extends at even higher tem-
peratures (from DG to DE). For larger εs, the polymer extends while it is still
adsorbed (from AG to AE) and desorbs at higher T (from AE2 to DE).

The remaining observables confirm the picture sketched so far. Although, like
already mentioned, in particular in the compact pseudo-phases the structural
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behaviour of the studied small chains is affected by finite-size effects, especially
at high temperatures, this pseudo-phase diagram corresponds quite well with
a similar lattice study [14] with the advantage of not suffering from lattice
artefacts. This gives reason to believe that indeed the generic features of a
hydrophobic polymer near an attractive substrate are well described.
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Chapter 7

Microcanonical Analyses of the
Adsorption Transition

When looking at the density of states for finite polymers that was always esti-
mated before the canonical expectation values could be determined from it, I
observed two remarkable features.

The first was a very pronounced maximum with a negative microcanonical tem-
perature for higher energies. The second was a convex regime at the adsorption
transition for nongrafted polymer adsorption of extended coils. Both features
vanish for longer chains and both features are already discussed in literature
[54; 74; 86; 87; 120], but had never been studied for polymer adsorption
before as we observed it such that it seemed worthwhile to attempt a more
detailed analysis and interpretation of those finite-size effects. Parts of this
chapter are published in Ref. [121].

To develop a feeling for the origin of the maximum in the density of states
Ω (E), it is useful to consider the energy of the free polymer without any sub-
strate in the case N = 3. Here the total energy of the system only depends on
a single degree of freedom – the bending angle ϑ – and reads as

E (ϑ) =
4

(2 + 2 cosϑ)3

(
1

(2 + 2 cosϑ)3 − 1

)
+

1 + cosϑ

4
. (7.1)

In Fig. 7.1 on the left, this energy as well as its contituents ELJ and Ebend

are plotted over the range of allowed values for ϑ, ϑ ∈ [0, π]. While E (ϑ)
starts rather flat, such that for 0◦ ≤ ϑ ≤ 77.31◦ the energy always falls into the
narrow energy regime (shaded in red) that accumulates to a peak in the density
of states Ω (E) shown on the right, the remaining possible bending angles cover
the whole energy regime from the ground state to infinite energy for ϑ = π and
even a small range of angles close to ϑ = 118.72◦ that also falls into the peak
regime. This clearly explains the peak in the density of states for short chains.
But what happens for longer ones?

For longer chains, more than just the next-to-nearest-neighbour interactions
come into play, such that the peak gets smeared out. Figure 7.2 shows ΩN (e)
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Figure 7.1: On the left-hand side, the energy of the 3mer is depicted dependent on the bend-
ing angle ϑ (blue). Its constituent parts Ebend (ϑ) (green) and ELJ (ϑ) (orange) are also
shown. Proportional to its probability of occurrence 2π sinϑdϑ the energy is binned accord-
ing to Ω (E) ∝ 2π

∫ π
0

Θ
[
Ẽ (ϑ)−

(
E − ∆E

2

)]
Θ
[(
E + ∆E

2

)
− Ẽ (ϑ)

]
sinϑdϑ. Almost half of the

possible conformations fall into a narrow energy range and cause a pronounced maximum.

up to an unknown constant versus normalized energy e = E/N for increasing
chain length. Already for N = 8 the ground state peak of N = 3 merged with
the just described peak into a single maximum that moves to slightly lower
energies for longer chains. This is due to the higher number of monomer-
monomer contacts per monomer for longer chains or, equivalently, the smaller
relative surface of the polymer. Accordingly, also the ground state energy de-
creases withN . In Fig. 7.3, the same data as in Fig. 7.2 are plotted, but this time
logarithmically yielding the microcanonical entropy s(e) = ln Ω(e)/N . Here,
one can additionally see how steep the decrease in available states gets if the
ground-state is approached, but also that the number of states with energies
above the maximum increases relative to the number of states at the maxi-
mum, i.e. the maximum goes away. Even though for the chain lengths shown
here, the maximum still exists, for e.g. N = 40 it has vanished. Because our
model describes a polymer in solution, it cannot be considered as a truely iso-
lated system and since it is known [87] that if one allows for heat exchange
between a system at negative and one at positive temperature, the one at neg-
ative temperature transfers heat energy to the one at positive temperature. In
that sense, a system at negative temperature is hotter than one at positive tem-
perature. Consequently, one can understand those conformations at negative
temperatures as highly suppressed in equilibrium with a heat bath (cf. chapter
4). The disappearance of the maximum can also be understood directly from
the model, when one realizes that high-energy conformations arise as soon as
only one of the possible monomer-monomer contacts gets very close. The prob-
ability of this increases exponentially with system size.

7.1 Dependence on the Surface Attraction Strength

Now, after having seen how the microcanonical entropy s (e) behaves for the
free chain, it is time to introduce the attractive substrate and study how s (e)
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Figure 7.2: The density of states ΩN (e) of
short bulk polymers that do not feel any at-
tractive substrate plotted versus energy per
monomer e. For N = 3, simulated data as
well as exact data are shown that also serve
as a test for the simulation. The data of all
other chain lengths are simulated and hence
only known up to a constant c (N).

Figure 7.3: The same data as in Fig. 7.2,
but instead of the density of states its loga-
rithm normalized to the number of monomers
sN (e) = N−1 ln ΩN (e) is presented up to an
unknown additive constant that are not cho-
sen to be identical to the ones in Fig. 7.2. s (e)
is also called the normalized microcanonical
entropy.

gets modified for increasing surface attraction strengths εs. In Fig. 7.4, this
is shown for N = 20 and εs = 0, . . . , 6. Again, s (e) is only known up to an
additive constant that is chosen in such a way as to superimpose the different
s (e) for high energies. This superposition is only possible, because for high
energies, desorbed conformations dominate and such desorbed conformations
are hardly affected by changing the value of εs (cf. section 7.3.1). For low
energies, the picture is different. The ground state gets reduced with εs and
the overall number of low-energy conformations increases significantly. In fact,
one way to identify the adsorption transition is to identify the energy at which
s (e) starts to deviate for surface attraction strength εs > 0 from its position
at εs = 0. Thus, it is useful to split the density of states into contributions of
desorbed and adsorbed conformations, Ωdes (e) and Ωads (e), respectively, such
that Ω (e) = Ωdes (e) + Ωads (e) and sdes,ads (e) = N−1 ln Ωdes,ads (e), to analyse
their behaviour separately.

In Fig. 7.5, sads (e) is plotted for εs = 1, . . . , 6. Here, a conformation is assumed
to be adsorbed if its total surface energy Esurf < −0.1εsN . This choice is rea-
sonable here, because it takes into account the different εs linearly. Certainly,
the exact form of sads (e) will depend on this choice, but for the purpose of
simply obtaining a feeling for how the density of states is roughly composed of
adsorbed and desorbed conformations, it should be sufficiently accurate. One
can see that for no εs the sads (e) gets convex in the adsorption regime close
to e ≈ −1. Instead of presenting additionally the sdes (e) for all εs, for reasons
of clarity the overall microcanonical entropy s (e) is shown for εs = 0 that re-
sembles sdes (e) a lot (and is trivially identical to it for εs = 0). Also this does
not show convex behaviour in the adsorption regime close to e ≈ −1. Com-
paring Fig. 7.4 and Fig. 7.5, it gets clear that the convex regime only arises at
the most sensitive regime, where adsorbed and desorbed conformations have
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Figure 7.4: Microcanonical entropy s (e) for
N = 20 and different surface attraction
strengths εs = 0, . . . , 6. The data are only
known up to an additive constant and shifted
in such a way as to superimpose the curves for
high energies. Whenever possible, the Gibbs
hull Hs (e) is sketched.

Figure 7.5: The logarithm of the fraction
of the density of states of adsorbed con-
formations (Esurf < −0.1εsN) sads (e) =
N−1 ln Ωads (e) for εs = 1, . . . , 6. Addition-
ally, s (e) for εs = 0 is plotted. Like in Fig. 7.4,
sads (e) and s (e) are only known up to an ad-
ditive constant and the choice of the constants
is like in Fig. 7.4.

similar entropic weight and is a consequence of the coexistence of both.

It is very worth noting that even in the complete microcanonical entropy s (e),
the convex intruder only occurs if εs exceeds a certain value that is slightly be-
low εs = 2 in this case. The conclusion has to be that below this threshold
value the adsorption is continuous and above it first-order-like for finite non-
grafted chains. Referring to the phase diagram in Fig. 6.1, the first scenario
corresponds to the docking/wetting transition from desorbed globules (DG) to
adsorbed globules (AG), while the second one corresponds to the adsorption
of extended conformations from the desorbed extended (DE) to adsorbed ex-
tended (AE2) pseudo phase.

Even clearer than in s (e), the strength of the convexity can be observed in
∆s(e) = Hs(e) − s(e). Without any convex intruder, the Gibbs hull Hs(e) can-
not be constructed such that Fig. 7.6 only displays ∆s(e) for εs = 2, . . . , 6. Not
only the surface entropy ∆ssurf , but also the latent heat ∆q increases consider-
ably with εs (compare Fig. 4.1(a)) after its emergence close to εs = 2. Since
the desorption energies per monomer edes converge very quickly to a constant
value εεs→∞des ≈ −0.35 with increasing adhesion strength, while the adsorption
energies eads still change rapidly, the latent heat per monomer, ∆q, increases
with εs. The same holds true for ∆ssurf . Hence, both, the energetic gap between
the coexisting macrostates as well as the surface-entropic barrier, increase with
εs and ∆ssurf even diverges for εs →∞.

The crossover is also reflected in T−1 (e) = β (e) = [∂s (e) /∂e]N,V (Fig. 7.7).
The T−1 (e)-curves for εs = 0, 1 do not exhibit microcanonical signatures for
a first-order-like character of the adsorption transition. This is understood for
εs = 0, where no adsorption takes place, but for εs = 1 the adsorption transition
occurs, e.g. near Tads ≈ 0.7 (see Fig. 6.1). Unlike for εs ≥ 2 no backbending oc-
curs for εs = 1 and just an inflection point at T−1

ads ≈ 1.43 indicates a continuous



7.1 Dependence on the Surface Attraction Strength 61

Figure 7.6: Deviations ∆s (e) of s (e) from
the respective Gibbs hulls Hs (e) to illustrate
the increase of the surface entropy ∆ssurf and
the latent heat ∆q with the attraction strength
εs. ∆ssurf = ∆q = 0, for εs = 0, 1.

Figure 7.7: Caloric inverse temperature
curves T−1 (e) = β (e) for εs = 0, . . . , 6 and
Maxwell lines T−1

ads for εs = 2, . . . , 6. The data
are slightly smoothed.

adsorption transition. Although not visible in Fig. 7.7, the inflection point can,
e.g. be seen for N = 40 in Fig. 8.4.

What is, however, visible although not very pronounced in Fig. 7.7 for εs = 0
and 1 is the inflection point at T−1 ≈ 0.77 (T ≈ 1.3) that reflects the coil-
globule transition that separates coil-like and globular conformations in the
bulk (DE/DG). This supports the hypothesis of a crossover from continuous
to first-order adsorption at the point where the adsorption transition and the
collapse transitions cross (εs ≈ 1.8, T ≈ 1.3). For higher εs, the inflection
point signalling the collapse transition is strongly superimposed with the back-
bending of the adsorption transition and cannot be distinguished here. In this
backbending regime, the microcanonical temperature decreases with increas-
ing energy. In Fig. 7.7, also the Maxwell lines T−1

ads are inserted that show very
clearly, how the adsorption temperature Tads increases with surface attraction
strength. Like expected, the Tads found with this construction depend roughly
linearly on εs.

What remains to be understood, is why the finite globule adsorption is of dif-
ferent nature than the finite adsorption of extended coils. The answer can
be found in the necessary conformational rearrangement during the adsorp-
tion process. A collapsed chain prefers its internal contacts over the monomer-
substrate contacts and thus hardly changes its shape during adsorption. Thus,
also no entropically suppressed transition states have to be crossed. This is
different at the adsorption of extended coils that get deformed much stronger
during adsorption. To a certain extent this stronger deformation can be seen in
Figs. 7.4 and 7.5. For low surface attraction strengths, sads(e) has a shape that
is not much different from sdes(e). In particular the slope close to the adsorp-
tion transition is similar enough such that the superposition s(e) does not get
convex. For higher εs, more states at low energies get available that the polymer
(below the collapse transition) adapts by spreading out on the substrate. This
is reflected in the flatter sads(e)-curve and the combination with the desorbed
conformations gives the intruder.
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But next to the conformational entropy the translational entropy plays a role
at the adsorption transition. To this end, a study of the box size dependence
of the microcanonical data is very insightful, since it directly influences the
translational entropy of desorbed chains. Results of a corresponding study are
presented in section 7.3. Those data also inspired the study of the difference of
grafted and nongrafted polymer adsorption of chapter 8.

7.2 Chain Length Dependence

Since the adsorption transition between DE and AE2 is expected to be of second
order in the thermodynamic limit [8], first-order signatures found for the finite
system must disappear for the infinitely large system N → ∞. Therefore, I
investigate the chain-length dependence of the microcanonical effects in this
section.

Figure 7.8: Microcanonical entropy, its frac-
tion for adsorbed conformations sads(e) and
for desorbed conformations sdes(e) for poly-
mers with different chain lengths N =
10, 15, 20, 25, 30, 40 and fixed surface attrac-
tion strength εs = 5 in the adsorption tran-
sition regime. The maximum of s(e) and the
“convex intruder” begin to disappear with in-
creasing chain length.

Figure 7.9: Deviations ∆s(e) of s(e) from the
Gibbs construction for the data of Fig. 7.8.

Figure 7.10: Caloric inverse temperature
curves β(e) = T−1(e) and Maxwell lines T−1

ads,
parametrized by chain lengthN at εs = 5. The
chain length mainly influences β(e) for high
energies at and above the desorption.

Figure 7.8 shows the microcanonical
entropies s(e), the fraction of it for
adsorbed conformations sads(e), and
its fraction for desorbed conforma-
tions sdes(e) for chain lengths N =
10, . . . , 40. The respective slopes of
sads(e) and sdes(e) near the crossing
points converge to each other with in-
creasing chain length. This is mainly
due to the change of the slope of the
desorbed fraction as can, e.g. be nicely
seen in Fig. 7.10. Hence, the depth of the convex well is getting smaller and
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Figure 7.11: Scaling with polymer length
N : Latent heat per monomer normalized
by the surface attraction ∆q/εs vs. inverse
chain length 1/N for several surface attrac-
tion strengths εs and least-square fit curves to
∆q/εs ∼ N−κq . The data collapse to a single
straight line for not too small εs.

Figure 7.12: Scaling with polymer length N :
Surface entropy per monomer ∆ssurf vs. in-
verse chain lengths 1/N for εs = 2, . . . , 6 and
fits of the data to ∆ssurf ∼ N−κs .

with it the surface entropy (Fig. 7.9). Interestingly, the separation energies
esep ≈ −0.95 [which corresponds to the maxima of ∆s in Fig. 7.9 and approx-
imately to the location of the intersection points of sads(e) and sdes(e) in Fig.
7.8] do not depend noticeably on N . The desorption energies edes move a little,
but the adsorption energies eads shift much more rapidly towards the separation
point, i.e. the latent heat decreases with increasing chain length. Consequently,
in Fig. 7.10, the backbending of the (reciprocal) caloric temperatures is getting
weaker; the adsorption temperatures converge towards a constant. Here, one
can also nicely see how the microcanonical temperature of these finitely long
chains is negative in the high-energy region, but gets positive for longer chains.

Putting all these information together, indeed a clear tendency of the reduction
of the convexity for larger chains can be observed. The rapid decrease of latent
heat and surface entropy indicates that the adsorption transition of extended
polymers (DE to AE2) crosses over from bimodal first-order-like behaviour to-
wards a second-order phase transition in the thermodynamic limit.

Table 7.1: Scaling exponents κs and κq ex-
tracted from the fits in Fig. 7.11 and 7.12.

εs κs κq
3 1.647± 0.014 0.390± 0.004
4 1.360± 0.013 0.368± 0.004
5 1.237± 0.008 0.367± 0.003
6 1.166± 0.005 0.358± 0.004

To quantify this, in Fig. 7.11, the
chain-length dependency of the latent
heat ∆q and in Fig. 7.12 that of the
surface entropies ∆ssurf are plotted,
parametrized by the surface attraction
strength εs. The chains considered
in this study are too short for a de-
tailed finite-size analysis. However, for
εs > 2, the plots suggest a power-law
dependence of these quantities in this
regime. Since ∆q = edes − eads is the
energy required to break the surface contacts at the adsorption transition, it
should trivially (linearly) increase with εs, but also depend on the chain con-
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Figure 7.13: Behaviour of the adsorption
temperature Tads with inverse chain length.
For a better comparison of the conformational
effect, all Tads are divided by the respective
εs. The fit is performed with Eq. (7.7).

Figure 7.14: Same data as in Fig. 7.13, but
in a double logarithmic plot. The fit is again
performed with Eq. (7.7). Obviously, the data
do not fall onto a straight line disproving an
exponential scaling of Tads with N .

formation during adsorption. Hence, a simple scaling ansatz for the surface
entropy is ∆ssurf ∼ N−κs , while for the latent heat I choose ∆q/εs ∼ N−κq .
The least-square fits to the data yield κs = 1.65(1.36, 1.24, 1.17) and κq =
0.39(0.37, 0.37, 0.36) for εs = 3(4, 5, 6) (cf. Table 7.1). The fit curves are also
inserted into Figs. 7.11 and 7.12. The fit results for the exponents depend on
εs, but seem to converge to constant positive values for εs → ∞. Since it is
not clear if in our model the system volume is best identified with the polymer
lengths, its radius of gyration or the simulation box size, it is hard to compare
the scaling. Additionally, those values have to be taken with caution, because
the exact values of ∆q and ∆ssurf strongly depend on the simulation box size
as will be shown below.

However, that our data suggest limN→∞∆q = 0 is support for the second-order
nature of the adsorption transition. This is consistent with results discussed in
Ref. [4]. The surface entropy vanishes in the thermodynamic limit indepen-
dently of the transition characteristics (for short-ranged interaction).

In Figs. 7.13 and 7.14 the adsorption temperature Tads versus inverse chain
lengths 1/N is plotted. The double-logarithmic scale in Fig. 7.14 reveals that
the adsorption temperature Tads does not scale exponentially with N and sug-
gests a finite adsorption temperature for infinite chain length.

The fit was done with a simple mean-field lattice argument: Assume an inter-
acting self-avoiding walk on a lattice with an effective coordination number for
adsorbed chains µads and an effective coordination number for desorbed chains
µdes. In the adsorbed state all monomers are adsorbed to a substrate with a
short-ranged attractive potential and the polymer energy is

Eads = −εsns − εmnm. (7.2)

They thereby occupy a two-dimensional volume Vp that does not change while
the polymer desorbs to a three-dimensional conformation with energy

Edes = −εmnm. (7.3)
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ns and εs are the number and strength of monomer-surface contacts and nm
and εm are the same quantities for monomer-monomer contacts very similar to
the notation used in Ref. [14]. Such a change of the effective contact num-
ber during adsorption occurs in the case of a conformational rearrangement
like from 3D conformations in bulk to roughly 2D conformations at the sub-
strate as has indeed been observed if the adsorption temperature exceeds the
θ-temperature [10; 11]. In the simulated model, this is the case for εs ' 2 and
single layer conformations are stable for εs ' 3.2 as can be seen in Fig. 6.1. Ad-
mittedly, the assumption of constant volume Vp fails if adsorption and collapse
transition fall together and if the adsorption takes place at a lower temperature
than the collapse, the number of substrate contacts below the adsorption does
not linearly scale with N , since the globular shape is preserved. For εs ' 2,
however, the assumptions are approximately valid.

The probability that one particular lattice site in Vp is occupied is φ = N/Vp
resulting in

nm ≈
µads,desNφ

2
=
µads,desN

2

2Vp
. (7.4)

With Lx, Ly and Lz being the simulation box dimensions, the free energy in
each case is

Fads = −εsN − εm
µadsN

2

2Vp
− T (N − 1) lnµads − T ln(LxLy) (7.5)

and

Fdes = −εm
µdesN

2

2Vp
− T (N − 1) lnµdes − T ln(LxLyLz). (7.6)

Equating both with Vp = cN3ν finally yields

Tads(N) =
εsN − εmN2−3ν (µdes − µads) /2

(N − 1) ln
(
µdes
µads

+ lnLz

) . (7.7)

Table 7.2: Fit parameters ν and c from Eq. (7.7)
for µads = z2D = 4.15096[29] and µdes = z3D =
10.036[30] chosen to be the literature values on the
triangular and the fcc-lattice to the data in Figs. 7.13
and 7.14.

εs ν c

2 0.635± 0.022 0.960± 0.147

3 0.594± 0.013 1.404± 0.136

4 0.560± 0.010 1.705± 0.125

5 0.542± 0.009 2.045± 0.133

6 0.531± 0.008 2.420± 0.133

Here it is important that Lx and
Ly cancel, because the adsorp-
tion behaviour should not de-
pend on those translational in-
variant directions. One can now
get rid of some of the free pa-
rameters by inserting εm, N and
Lz known from the simulation
parameters. In this section, for
the simulation box size always
Lz = 3N is chosen. µads and
µdes are a priori unknown, but
should be similar to the connec-
tive constant of the self-avoiding
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Table 7.3: Fit parameters ν, c, µads, and µdes from Eq. (7.7) to the data in Figs. 7.13 and 7.14 if
all four parameters were free.

εs ν c µads µdes

2 0.36± 0.02 0.57± 0.05 5.63 ± 0.17 9.26 ± 0.09

3 0.39± 0.03 0.89± 0.09 5.24 ± 0.39 9.48 ± 0.22

4 0.39± 0.03 1.26± 0.10 5.31 ± 0.45 9.47 ± 0.24

5 0.38± 0.02 1.69± 0.35 5.48 ± 0.49 9.40 ± 0.20

6 0.38± 0.02 2.10± 0.36 5.51 ± 0.49 9.39 ± 0.17

walk on the triangular (4.15096 [29]) and the fcc lattice (10.036 [30]),
resp. Fixing those values leaves only c and ν to fit. Table 7.2 gives the
values of c and ν if those literature values are taken to be the connective
constants. Additionally, the values for a fit with the four free parameters
ν, c, µads, and µdes are given in Table 7.3. Certainly, a four parameter fit
should not be taken too seriously, but it is very reassuring, that the three
physically most meaningful parameters ν, µads and µdes are quite close to
the assumed ones and stable for different εs. The fit to the data in Figs.
7.13 and 7.14 is done by taking the average of the connective constants µads

and µdes for εs = 3, . . . , 6 from Table 7.3, fixing them and performing a
two-parameter fit for ν and c. The result of that fit is given in Table 7.4.

Table 7.4: Fit parameters ν and c from Eq. (7.7) for
µads = 5.386485 and µdes = 9.43471 obtained from
an average of the values for εs = 3, . . . , 6 of the four-
parameter fit of Table 7.3 to the data in Figs. 7.13 and
7.14. Those values are used for the fit curves in Figs.
7.13 and 7.14.

εs ν c

2 0.377± 0.0010 0.527± 0.004

3 0.384± 0.0008 0.907± 0.006

4 0.384± 0.0006 1.279± 0.007

5 0.384± 0.0006 1.656± 0.008

6 0.384± 0.0006 2.043± 0.010

In bulk there seem to be a few
contacts less than on an fcc
lattice, while in the adsorbed
regime, there is a slight increase
in the connective constant com-
pared to the triangular lattice, re-
flecting the not immediate rear-
rangement of the polymer into
two dimensions upon adsorp-
tion. Some monomers on top of
a rather flat polymer allow for
more monomer-monomer con-
tacts. Eq. (7.7) also allows for
an estimate of the adsorption
temperature in the limit of long
chains

Tads
N→∞−→ εs

ln(µdes/µads)
. (7.8)

For the connective constants for the triangular and fcc lattice, this would give
Tads ≈ 1.13271εs, while the best fit suggests a somewhat higher value of Tads ≈
1.784εs. Considering the simplicity of the model that neglects, e.g. the fact, that
our potential is continuous and a different scaling in two and three dimensions,
this model gives a good qualitative picture of what happens.
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Figure 7.15: Microcanonical entropies and
its fractions for adsorbed and desorbed con-
formations, sads(e) and sdes(e), for increasing
simulation box size Lz = 20, . . . , 150. The
shape of both fractions stays unchanged for
different box sizes. Only the amount of des-
orbed conformations increases relative to ad-
sorbed ones for larger boxes.

Figure 7.16: Deviations from the respec-
tive Gibbs hulls ∆s(e). An increased sdes(e)
induces an increase of the surface entropy
∆ssurf and slightly also of the latent heat ∆q.

In the large-N limit, the expansion of Eq. (7.7) yields

T∞ads−Tads(N)=a1
1

N3ν−1
+a2

lnN

N
+a3

1

N
+O
(

lnN

N3ν

)
,with a1=c

µdes−µads

2εs
,(7.9)

which is positive for all µdes > µads. First, it shows that the adsorption temper-
ature T∞ads is necessarily finite only for ν > 1/3 (globular chains have ν = 1/3)
and that the adsorption temperatures Tads(N) for the finite systems converge
from below, Tads(N) < T∞ads. In the range 1/3 < ν < 2/3, the leading order of
the finite-size correction is 1/N3ν−1. Since ν falls into this range for the adsorp-
tion of extended polymers, this might approximately give the correct scaling.
Unfortunately, a better estimate of the scaling requires data of Tads for longer
chains. This is hard to obtain from the Gibbs hull, because not only does the
simulation time scale strongly with N , but also the intruder gets smaller and
soon deceeds the fluctuation of the data.

Apart from its capability of extrapolating the adsorption temperature to longer
chains and its prediction of a finite adsorption temperature in the thermody-
namic limit, Eq. (7.7) explicitly contains the simulation box size dependence
that will be the subject of the following section.

7.3 Dependence on the Simulation Box Size

After noticing that there is a considerable influence of the simulation box size
on the microcanonical properties of the adsorption transition, it seems natural
to study this influence is some more detail. To this end, simulations with εs = 5
for a fixed chain length (N = 20) were performed for different distances Lz
of the steric wall to the attractive substrate. Note that fixing the chain length
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N , but changing Lz will also change the density. Hence, the limit of Lz → ∞
considered in the following does not correspond to the thermodynamic limit.
Analogously to the Figs. 7.4-7.10, the corresponding microcanonical results are
displayed in Figs. 7.15-7.17. Because the number for adsorbed conformations
cannot depend on the amount of space available far away from the substrate,
the unknown additive constants to s(e), sads(e), and sdes(e) are chosen in such
a way that sads(e) coincides for all Lz in Fig. 7.15. It is also possible to overlap
all sdes(e) via a suitable additive constant. Hence, the conformational entropy
does not depend on the simulation box size as long as the simulation box size
exceeds the chain size. This should not be surprising, since once all possible
conformations can be adopted, there is nothing more to gain.

Figure 7.17: Caloric inverse tempera-
ture curves T−1(e) and Maxwell lines T−1

ads

parametrized by the distance between attrac-
tive and steric wall Lz.

All what should happen is a gain of
translational entropy proportional to
the logarithm of the simulation box
size for desorbed conformations. This
is exactly what the data confirm. In
Fig. 7.16 the consequence of this on
∆s(e) is shown. Both, the surface en-
tropy ∆ssurf and the latent heat ∆q in-
crease with Lz. It is a significant qual-
itative difference compared to the pre-
vious analysis of the limit N →∞ that
the latent heat remains finite for large
box sizes, i.e., limLz→∞∆q 6= 0. In
fact, ∆q increases with Lz for the pre-
sented box sizes, but cannot diverge
due to the finite energy difference per monomer of the coexisting phases. Thus,
the adsorption transition of the finite polymer preserves its first-order-like char-
acter in this limit. The entropic barrier can grow arbitrarily large for large sim-
ulation box sizes since the part of the phase space in proximity of the attractive
substrate gets arbitrarily small.

The resultant caloric inverse temperature curves T−1(e) in Fig. 7.17 only differ
in the energy regime, where both entropic contributions, sads(e) and sdes(e), are
of the same order of magnitude – the coexistence region. Once again, the effect
of the intruder gets enhanced with Lz and only in this regime T (e) changes
with Lz. Also the Maxwell lines representing the adsorption temperatures are
shown.

Although already Eq. (7.7) suggests that the dependence of the adsorption tem-
perature Tads is of the form

Tads =
c1

c2 + lnLz
, (7.10)

where c1 and c2 are constants, I will present here a short alternative to obtain
this form1. In contrast to the derivation of Eq. (7.7), here the chain length is

1The idea to this approach arose during a private discussion with Michael Bachmann.
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assumed to be constant, but apart from that hardly any further assumptions
are necessary. The knowledge of the behaviour of sads(e) and sdes(e) is used to
obtain the estimate of Tads via the Gibbs construction. In the adsorbed phase,
the contact point of the Gibbs hull is independent of Lz,

s(eads) = strans,‖︸ ︷︷ ︸
translational entropy
parallel to the substrate,
strans,‖ = N−1 ln(LxLy)

+ sconf(eads)︸ ︷︷ ︸
conformational entropy
at e = eads

, (7.11)

while the other contact point

s(edes, Lz) = strans,‖ + strans,⊥(Lz)︸ ︷︷ ︸
translational entropy
perpendicular to the
substrate,
strans,⊥ = N−1 ln(Lz)

+ sconf(edes)︸ ︷︷ ︸
conformational entropy
at e = edes

, (7.12)

corresponding to the entropy in the desorption phase, is Lz-dependent due to
its contribution from the translational entropy perpendicular to the substrate.
The adsorption temperature is now obtained as the inverse slope of the Gibbs
hull:

Tads =
edes − eads

s(edes, Lz)− s(eads)
=

∆q

sconf(edes)− sconf(eads) +N−1 ln(Lz)
. (7.13)

Note, that a slight approximation is hidden here in the neglected Lz-depen-
dence of eads and edes. This should, however, be a minor effect (cf. Fig. 7.16).

For practical purposes, the simple relation Eq. (7.13) allows one to restrict one-
self to perform a single simulation within a sufficiently large and finite box,
and one only has to keep in mind the simple lnLz-dependence on the simula-
tion box size.

7.3.1 Exact Data from a Short Self-Interacting Self-Avoiding Walk
(N = 15)

Considering the equivalent lattice model of our model on the simple cubic lat-
tice (3D) has for a study of the Lz-dependence of the microcanonical data the
major advantages of possessing a clear definition of monomer-surface contacts
and exact data for short chains and arbitrary Lz are easily obtained. The In-
teracting Self-Avoiding Walk (ISAW) (cf. chapter 2) is the self-avoiding walk
on a lattice, where one counts the number of non-bonded nearest neighbour
contacts nm and assigns an energy E(nm) = εmnm. One can add a confinement
to the system in form of two parallel planes a distance Lz apart (cf. Fig. 7.18).
The polymer is not allowed to move outside of this confinement. Additionally,
one of the substrates attracts the polymer such that the total energy now reads

E(nm, ns) = εmnm + εsns, (7.14)

where ns denotes the number of surface contacts to the attractive surface [15].
Without loss of generality, we choose εm = εs = −1 and N = 15.



70 CHAPTER 7. ADSORPTION TRANSITION MICROCANONICALLY

Figure 7.18: Sketch of the Interacting Self-
Avoiding Walk model between two substrates.
One substrate, the lower one in this sketch, is
attractive and every one of the ns monomer-
substrate contacts to this substrate contributes
with εs to the total energy. The other substrate
is purely sterical and prevents the polymer
from escaping. Also indicated are the bound-
ary regimes of thickness L0 at the attractive
substrate and thickness L1 at the sterical one.
If the position of the first monomer is some-
where in L0 < z < Lz − L1, the polymer feels
no influence from any substrate. Even though
this is a 2D sketch, the discussion in the text
holds also for 3D and the data shown are 3D
data.

Assuming Lz > 2N , one can obtain
the density of states Ω(e) as follows.
A routine that exactly enumerates the
number of conformations with ns sur-
face and nm monomer-monomer con-
tacts for a fixed position of the first
monomer z, g(ns, nm, z), has to be
written first. This is a standard prob-
lem and a lot of literature can be
found (see e.g. Ref. [122] and refer-
ences therein) with algorithm sugges-
tions. The favourite algorithmic choice
needs to be adapted in such a way
that the surfaces are included and the
“contact map” g(ns, nm, z) can be ob-
tained for all 0 < z ≤ Lz. The density
of states is then obtained via summa-
tion (or the equivalent integration for
a continuous model)

Ω(E=eN) =

Lz∑
z=1

N∑
ns=0

nm,max∑
nm=0

E(nm,ns)=E

g(ns, nm, z).

(7.15)
This would require Lz independent ex-
act enumerations. One can do bet-
ter when noticing that outside of the
boundary regimes z ≤ L0 and z ≥
Lz − L1 the contact map does not de-
pend on z anymore, g(ns, nm, z) =
δns0 gbulk(nm). For this model, the min-
imal boundary regimes are L0 = L1 =
N , but the math is correct as long as
Lz > L0 +L1. Without loss of general-
ity, I assume L0 = L1 = N to be mini-
mal here. With this it suffices to deter-
mine the contact maps g(ns, nm, z) for
z = 1, . . . , N + 1, where g(ns, nm, L +
1) = δns0 gbulk(nm). The density of
states can now be divided into

ΩLz(E=eN) =

L0∑
z=1

N∑
ns=0

nm,max∑
nm=0

E(nm,ns)=E

g(ns, nm, z) + (Lz−L0−L1)

nm,max∑
nm=0

E(nm,ns=0)=E

gbulk(nm)

Lz∑
z=Lz−L1

N∑
ns=0

nm,max∑
nm=0

E(nm,ns)=E

g(ns, nm, z)

= Ωads (E) + (Lz−L0−L1) Ωbulk (E) + Ωsteric wall (E) . (7.16)
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Figure 7.19: Microcanonical entropies for
various wall distances Lz for N = 15 and
εs = εm = −1 for the ISAW of Fig. 7.18 and
Eq. (7.14). The grafted case is also included.
This plot can be compared to Fig. 7.15.

Figure 7.20: Deviations from the respective
Gibbs hulls ∆s(e) of the microcanonical en-
tropies in Fig. 7.19. An increased Lz increases
the slope of the Gibbs hull and with it de-
creases the adsorption temperature Tads such
that here for Lz = 100 000 the adsorption
even takes place at a lower temperature than
the energetic exitation at e ≈ −1.4. This plot
can be compared to Fig. 7.16.

Due to symmetry reasons, g (ns, nm, z) = g (ns, nm, Lz − z), where one has to
set εs = 0 in the L1 regime. Hence, with the fixed number (N + 1) of exact
enumerations, the density of states ΩLz(E) for arbitrary Lz > L0 + L1 can be
obtained.

On the other hand, if one does not have individual data for the three different
regimes, one can invert this equation in order to obtain, for example the bulk
contribution from the (simulated) total density of states for different Lz

Ωbulk(e) =
ΩLz=A(e)− ΩLz=B(e)

A−B
. (7.17)

Usually, the density of states obtained from simulations are only known up to
a constant factor. Equation (7.17) is still applicable as long as ΩLz=A(e) and
ΩLz=B(e) are known up to the same factor, which can be achieved by superim-
posing the adsorbed low-energy tail. Then the obtained Ωbulk(e) is obtained up
to the same unknown constant.

With this, the analysis of the Lz-dependence of the off-lattice model in section
7.3 can be repeated for exact data. In Figs. 7.19 and 7.20, s(e) = ln Ω(e) and
∆s(e) are displayed equivalently to Figs. 7.15 and 7.16. Apart from discontinu-
ous jumps due to the discrete model and the finite size and the much larger Lz,
the behaviour is related. But one can see that the approximation of fixed eads

and edes fails for large Lz although edes − eads changes not dramatically. Also
the inverse microcanonical temperature β(e) = T−1(e) is plotted in Fig. 7.21.
Despite of the clearly visible discretization jumps of this finite lattice model, the
basic behaviour is the same as in Fig. 7.17 and the backbending at the adsorp-
tion transition gets enhanced with Lz and might get arbitrarily large for large
Lz. One might consider this maximum that corresponds to the jump in s(e)



72 CHAPTER 7. ADSORPTION TRANSITION MICROCANONICALLY

Figure 7.21: The numerical derivatives of the
microcanonical entropies β(e) = T−1(e) =
(s(e)− s(e− 1/N)) / (1/N) of Fig. 7.19 and
the Maxwell lines T−1

ads. This plot can be com-
pared to Fig. 7.17.

Figure 7.22: The logarithms of the individ-
ual contributions of ΩLz (e) of Eq. (7.16),
Ωsteric wall(e), Ωads(e) and Ωbulk(e). L0 and
L1 are chosen to be minimal (L0 = L1 = N)
here.

between e = −0.8 = −12/15 and e = −0.73 = −11/15 as one way to define the
energy of the adsorption transition.

The best way to understand what happens at this energy if one has the ex-
act data, is probably to regard the individual contributions of Eq. (7.16) that
are plotted in Fig. 7.22. Only those configurations whose first monomer starts
within L0 (Ωads(e)) contribute to the low energy regime below the jump in
s(e) at an expense of higher energy conformations. So, Ωads(e = −1/15) <

Figure 7.23: ∆Ωsterical wall(e) and
∆Ωattractive wall(e) for the N = 15 ISAW and
εs = −1 for the attractive wall. Since a steric wall
only forbids conformations at all energies and does
not allow for new ones, ∆Ωsterical wall(e) is always
negative or zero. ∆Ωattractive wall(e) might be posi-
tive or negative, but

∑∞
E=−∞∆Ωattractive wall(E) =∑∞

E=−∞∆Ωsterical wall(E).

Ωsteric wall(e) < NΩbulk(e).
Ωsteric wall(e) and Ωbulk(e) share
the same lowest energy that –
not surprisingly considering the
way to construct ΩLz(e) in Eq.
(7.16) – is identical to the energy
of the jump in s(e). It is also
noteworthy that ln (Ωbulk (e)) and
ln (Ωsteric wall (e)) almost have the
same “shape” in the sense that
they can almost be superimposed
with an additive constant.

This “almost” superposition raises
the question of how much the
presence of the substrate really
modifies the density of states of
the system compared to the system
without walls (periodic boundary
conditions). A measure of the in-
fluence of the purely sterical wall
can simply be half of the difference
of the density of states of the sys-
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tem with both walls being purely sterical ΩLz ,εs=0(e) and the density of states of
the corresponding system with the same Lz and periodic boundary conditions2

∆Ωsterical wall(e) =
1

2
[ΩLz ,εs=0(e)− LzΩbulk (e)] . (7.18)

With this the influence of the attractive wall on the density of states can be
measured along the same spirit as

∆Ωattractive wall(e) = ΩLz(e)− LzΩbulk (e)−∆Ωsterical wall(e). (7.19)

Figure 7.23 shows both quantities for the ISAW with a wall with εs = −1. The
plot reveals that more high energy states are forbidden than low energy states,
but this might simply result from the fact that there exist more high energy
states. This holds true for both kinds of walls. Since a steric wall only forbids
conformations at all energies and does not allow for new ones, ∆Ωsterical wall(e)
is always negative or zero. Actually, in this model, the conformations allowed
at a steric wall are identical to those at an attractive wall such that

∞∑
E=−∞

∆Ωattractive wall(E) =

∞∑
E=−∞

∆Ωsterical wall(E). (7.20)

The difference is the energy attributed to different conformations. So the at-
tractive surface interaction assigns lower energies to conformations with sur-
face contacts and increases the number of low energy conformations that way
at the expense of higher energy conformations.

When comparing this approach in terms of the density of states in different
regimes of the box to the approach in terms of translational and conformational
entropy in Eqs. (7.11)-(7.13), the influence of Lz on the translational entropy
perpendicular to the substrate is directly reflected in the linear increase of the
weight of Ωbulk(e) in ΩLz(e) with Lz. The translational entropy parallel to the
substrate, that is actually a divergent quantity for free boundary conditions (no
boundary at all), can be treated as a constant because it does not depend on
any of the parameters of interest and cancels in the determination of canonical
averages. This constant is disregarded (set to zero) in this subsection. Finally,
the conformational entropy at different e is given by ln Ωads(e) for the adsorbed
case and a combination of Ωbulk(e) and Ωsterical wall(e) for the desorbed case.
Equation (7.12) neglects the boundary effects quantified by ∆Ωsterical wall(e)
and ∆Ωattractive wall(e) which is, however, a reasonable approximation for large
Lz.

In this chapter, the focus was on the adsorption transition and on how to de-
scribe its dependence on surface attraction strengths, chain length dependence
and simulation box size with the microcanonical entropy and temperature. For
short polymers, my analysis revealed that at the adsorption transition tempera-
ture, which is here defined by a Maxwell construction, adsorbed and desorbed

2The introduction of those measures is a suggestion of R. H. Swendsen. He also inspired the
introduction of the boundary regimes L0 and L1 for the general (non-lattice) case in absorbing
discussions and unpublished notes that I would like to acknowledge.
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conformations coexist. This suggests a first-order like character of this tran-
sition for short polymers. The energetic separation of these conformational
phases is an estimate for the latent heat which is, in principle, measurable in ex-
periments and should be related to an occurring hysteresis effect. Thus, beside
the systematic qualitative investigations of the nature of the conformational
transition, the microcanonical analysis also enables quantitative predictions.

It turned out that the stronger the polymer is attracted by the substrate, the
larger is the separation of the adsorption and desorption phases and the higher
is the surface-entropic barrier, i.e., the first-order character of the adsorption
transition strengthens. This is also found if the accessible volume is increased,
in which case primarily the translational entropy perpendicular to the substrate
controls the surface entropy. However, if the monomer density is kept fixed,
but the chain length is increased, surface entropy and latent heat vanish and
the transition crosses over into a continuous phase transition in the thermo-
dynamic limit, as expected. I performed scaling analyses for the decrease of
these quantities and found them to decay slower for larger surface attraction
strengths.

In conclusion, the microcanonical analysis turned out to be useful for the ad-
sorption transition. But how does it relate to the canonical data? And why
should one restrict oneself to the microcanonical entropy and temperature, in-
stead of also observing the dependence of other observables on energy addi-
tional to their canonical expectation values? A whole toolbox to describe the
system arises here even though not every tool is really of much use for the
question at hand.

The data of the current chapter that are published in Ref. [121] were obtained
via the microcanonical recursion that only gives an estimate of the density of
states. In the following, the time series of parallel tempering simulations give
more quantities to analyse – a goal that could certainly also be reached with
a long multicanonical simulation run. The question tackled also arose during
the work on this chapter: If the simulation box size has such a strong influence
on the adsorption transition, what is the effect of grafting on the adsorption
transition and the phase diagram compared nongrafted adsorption? This is
of particular interest since many studies on polymer adsorption were done for
grafted polymers.



Chapter 8

Comparison of the Adsorption
Transition for Grafted and
Nongrafted Polymers

In this chapter, the thermodynamic behaviour of a finite single free polymer
near an attractive substrate is compared with that of a polymer grafted to that
substrate. The idea to this study arose from the observation in chapter 7 that
the adsorption transition exhibits a phase coexistence for short extended non-
grafted chains and that the corresponding surface entropy depends strongly on
the available translational entropy of the desorbed conformations.

Grafted polymers on substrates are of manifold practical importance. Ultrathin
end-grafted polymer layers play a major role in adhesion, colloidal stabilization
[123; 124; 125], chromatography [126], lubrication, microelectronics and
biocompatibility of artificial organs. To achieve the grafting, typically “grafting
from”, “grafting through” or “grafting onto” polymerization techniques are used
[127; 128; 129] or diblock copolymers are physisorbed to the substrate [130].

Many studies on polymer adsorption in the past have been performed for
grafted polymers [4; 7; 9; 13; 39; 131; 132]. The grafting strongly reduces
the translational entropy, but also has an influence on the conformational en-
tropy compared to the free polymer. Next to the practical importance, one
reason for the dominance of grafted polymers in the literature is also the fact
that they are computationally easier to handle since the phase space lacks po-
tentially desorbed conformations some distance away from the substrate. Addi-
tionally, one avoids the introduction of the sterical wall parallel to the substrate
that is necessary to prevent the polymer from escaping, but introduces a further
parameter that might not always be of interest. Without it, one would have to
deal with a divergent translational entropy that would result in an adsorption
temperature Tads = 0 (compare Eq. (7.13)).

The adsorption of free polymers has been studied [15; 133] as well, but usu-
ally those works have been performed on different models which hamper the



76 CHAPTER 8. GRAFTED VS. NONGRAFTED ADSORPTION

Figure 8.1: The pseudo-phase diagram in the canonical plane, parametrized by temperature T
and adsorption strength εs, for the 40mer. The purple transition regions have a broadness that
reflects the difference of the corresponding peaks of the fluctuations of canonical expectation
values. Phases with an ‘A/D’ are adsorbed/desorbed. ‘E’, ‘G’ and ‘C’ denote phases with increas-
ing order: extended, globular and compact/crystalline, where the compact phase occurs with
different numbers of layers. The AG phase is divided into a phase of planar globular confor-
mations for high surface attraction strength (AG1) and one with a significantly higher extension
perpendicular to the substrate (AG). The main difference between grafted and free chains occurs
at the adsorption transition. For a comparison with the (nongrafted) 20mer see Fig. 6.1.

extraction of the influence of grafting from such results by comparison.

Here, this apparent gap will be filled and the influence of end-grafting will not
only be studied for the adsorption transition that is affected the strongest, but
for the whole phase diagram for N = 40 with an otherwise identical model.
For the nongrafted case, Lz = 60 is fixed. All data presented in this chapter are
obtained from parallel tempering Monte Carlo data and the direct histogram
reweighting method.

All transitions – apart from model dependent solid-solid transitions at very low
T that are not of interest here – are contained in the phase diagram in Fig.
8.1. The basic structure is very similar to the one in Fig. 6.1, but here – besides
of the longer chain – the grafted case is considered as well. While the other
transitions remain more or less unaffected, a strong difference is observed at
the adsorption transition. The key aspect is how much the grafting affects both
phases involved in any of the transitions at hand.

8.1 Effect on the Energy

A good starting point is regarding how the canonical expectation value of the
energy per monomer 〈e〉 (T ) is influenced by the grafting. For εs = 0, 2, 4,
〈e〉 (T ) is given in Fig. 8.2. The inverted curves of the microcanonical temper-
ature Tmicro(e) are included for comparison and exemplified errors are given
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for εs = 2. Certainly, 〈e〉 (T ) decreases with εs since an increase in εs directly
reduces the attractive surface potential. For εs = 0, the grafting has hardly an
effect on the energy such that the corresponding curves almost coincide. For

Figure 8.2: Canonical expectation values of the energy
〈e〉 (T ) versus temperature T for three exemplified εs. For
low temperatures, grafted and free chains are adsorbed for
εs = 2, 4, such that the 〈e〉 (T )-curves are very similar here.
For high temperatures, 〈e〉 (T ) tends to the common en-
ergy of conformations away from the influence of the sub-
strate for free chains while remaining lower for grafted poly-
mers. For convenience also the corresponding microcanoni-
cal quantities are shown (dashed).

larger values of εs, a
crossover occurs from low
temperatures, where the
polymer is adsorbed and
the energy of free and
grafted polymers is very
similar, to high tempera-
tures, where the energy
of free polymers tends to
the εs-independent values
of polymers in bulk solu-
tion while that of grafted
polymers is always reduced
due to the proximity to the
attractive substrate.

Also visible is the freezing
transition as an inflection
point close to T ≈ 0.3
that does not differ much
for grafted and free chains.
The collapse cannot be eas-
ily seen in the energy. Fig-
ure 8.2 is also supposed to serve as an orientation to compare observables plot-
ted versus normalized energy e = E/N with canonical expectation values plot-
ted versus temperature T .

The influence of this shape of 〈e〉 (T ) onto its temperature derivative cV (T ) =
d 〈e〉 (T )/dT is directly visible in Figs. 8.3 and 8.4. Most remarkable in both
profiles is the quite pronounced freezing transition. It is hardly affected by the
grafting and looks very similar for grafted and nongrafted adsorption. The posi-

Figure 8.3: Specific heat profile, cV (T, εs),
dependent on surface attraction strength εs
and temperature T for the nongrafted poly-
mer. Most prominently signalled are the
freezing and the adsorption transition.

Figure 8.4: The specific heat profile,
cV (T, εs), like in Fig. 8.3, but for the grafted
polymer. Compared to the nongrafted case,
the adsorption transition is hardly visible and
the corresponding maximum disappears.
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tion of the layering transition from single- to double-layers at the substrate can
be distinguished by a small kink. Hardly any similarity, on the other hand, exists
for the adsorption transition. While a maximum along Tads ∝ εs is clearly visible
for the nongrafted polymer, this maximum reduces to a shoulder or completely
vanishes for the grafted chain. This, however, comes as no surprise knowing
the behaviour of 〈e〉 (T ) just discussed. The change for nongrafted chains from
strong surface interaction in the adsorbed regime to the almost perfect lack of
surface interaction in the desorbed phase gives rise to this maximum in cV (T ).
Grafted polymers still interact considerably with the substrate even if desorbed,
such that a corresponding maximum in cV (T ) is suppressed here.

This surface interaction of grafted desorbed chains is a major difference in the
adsorption behaviour compared to the desorbed free chains. Another one is the
different translational and conformational entropy.

8.2 Effect on the Translational and Conformational En-
tropy

While for εs = 0, the energy is hardly influenced by the grafting, the same
does not hold true for the entropy. Figure 8.5 shows that the microcanonical
entropy s(e) is not noticeably influenced by the grafting at low energies where

Figure 8.5: The microcanonical entropy s(e) = ln Ω(e)/N
for e ∈ [−6.5, 0.5] for the 40mer. Since Ω(e) spans many
orders of magnitude at low energies, the ordinate is divided
into two different regimes. The offset for high energies be-
tween grafted and free chains roughly corresponds to the
translational entropy perpendicular to the substrate (cf. Fig.
7.15).

– disregarding εs = 0 –
the chains are adsorbed.
Again, s(e) is only known
up to a constant. This con-
stant is chosen in such a
way as to overlap s(e) for
fixed εs at low e. The
number of states of the
grafted polymer should in
general be smaller than for
the free one, since all con-
formations where the first
monomer is not exactly in
the potential minimum are
excluded. But close to the
ground state, the difference
of the shape of both en-
tropies gets small such that
this choice is reasonable. In
Fig. 8.5, s(e) for free and grafted chains separates until above the adsorp-
tion transition at T ≈ −0.8 they are separated by a fixed distance given by
the additional translational entropy of the free chain proportional to the log-
arithm of the box size. This is the same box size dependence as already dis-
cussed in section 7.3 for the free chain. The energy regime over which the
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s(e) separate is the energy regime where the polymer desorbs such that this
transition is most severely affected by the grafting. For εs > 2, the increase
in s(e) during the desorption of free polymers gets large enough to induce
a convex regime in s(e). Hence, the adsorption of extended free chains is
first-order like for short chains, while grafted adsorption always stays con-
tinuous. This is also reflected in the backbending in β(e) = T−1

micro(e) in Fig.
8.6 for the free chain and the bijectivity for the grafted chain, respectively.

Figure 8.6: The microcanonical inverse temperature β(e) =
T−1(e) = [∂s(e)/∂T ]V,N using the same data as shown in
Fig. 8.5 in the same energy range. Unlike free polymers,
grafted polymers do not undergo a backbending during ad-
sorption.

But even most continuous
pseudo-transitions are sig-
nalled in β(e), namely by
inflection points.

Those inflection points in
Fig. 8.6 can be better seen,
when going one derivative
further (Fig. 8.7). The
collapse transition, e.g. is
only weakly signalled in
s(e) and β(e) due to its con-
tinuous nature. For εs =
0, it can be identified with
an inflection point in β(e)
that directly corresponds to
a maximum in dβ(e)/de in
Fig. 8.7 close to e = −1.

Figure 8.7: Curvature of the microcanonical entropy s(e) in
Fig. 8.5 and derivative of the inverse microcanonical tem-
perature β(e) in Fig. 8.6 [∂β(e)/∂e]N,V =

[
∂2s(e)/∂e2

]
N,V

.
The ordinate is divided into two different regimes. Positive
values indicate a phase coexistence regime.

Like it has to be, at the
same normalized energy
the squared radius of gy-
ration R2

gyr(e) in Fig. 8.8
starts to rapidly increase
with e. For stronger sur-
face attraction, the situa-
tion gets more complicated
since adsorption and col-
lapse overlap in Fig. 8.7.
For εs = 1 one can at least
identify a small adsorption
peak for the free chain at
e ≈ −1.95 that clearly dif-
fers from the collapse peak,
but for εs = 2 and larger the collapse peak disappears and becomes a shoulder
at lower e (for εs = 5 at e ≈ −4.75). Again the positions of the shoulders fall
into a regime where the R2

gyr strongly increase with e. Also canonical data of
d 〈Rgyr〉 /dT (Figs. 8.11 and 8.12) confirm that this is indeed the collapse tran-
sition, because the inverse for the value of β(e) for those e gives values close to
the collapse peak.

The curvature of the microcanonical entropy dβ(e)/de is also an interesting
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Figure 8.8: Radius of gyration squared versus energy
R2

gyr(e). It illustrates the deformation at and above the ad-
sorption transition of grafted polymers compared to non-
grafted ones which decreases the necessary conformational
rearrangement during grafted adsorption.

quantity, because it gets
positive whenever s(e) is
convex (assuming a two
times continuously differ-
entiable s(e)).

Concerning the conforma-
tional entropy, it is very
worthwhile to point out
the difference of R2

gyr(e)
for grafted and free chains
at and above the adsorp-
tion transition in Fig. 8.8.
The grafting not just forces
the polymer to the sub-
strate and significantly re-
duces the translational en-
tropy that way, but also has
an influence on the confor-
mation. Below the collapse transition the radius of gyration and the overall
shape of the polymer is almost unaffected. Independent of the fact if the poly-
mer is grafted or not, a compact shape is attained here with a deformation
determined by the strength of the surface potential.
Now, for energies above the collapse transition the squared radius of gyration
in Fig. 8.8 for grafted polymers always exceeds that of the free polymers. This
effect gets the strongest at the adsorption transition for strong surface attrac-
tion. For εs = 3, 4, 5 at e ≈ −0.8, the free chain gets more compact after
desorption. Just before it desorbs, it lies quite extended and preferentially flat
on the substrate in the AE phase. As soon as it leaves the influence of the sur-
face field, this surface-induced deformation vanishes and the on average more
spherical bulk-shape with a lower radius of gyration is adapted. A grafted poly-
mer cannot leave the surface field and the deformation persists often with a

Figure 8.9: Profile of the canonical expec-
tation value of the squared radius of gyra-
tion

〈
R2

gyr

〉
(T, εs) for the nongrafted polymer

over a range of temperatures T and surface
attraction strengths εs. One can clearly dis-
tinguish compact and globular regimes from
extended ones.

Figure 8.10: Profile of the canonical expec-
tation value of the squared radius of gyra-
tion

〈
R2

gyr

〉
(T, εs) like in Fig. 8.9, but for the

grafted 40mer. The influence of the grafting
on the overall extension of the polymer at a
given temperature is obviously only small.
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Figure 8.11: Fluctuation of the squared ra-
dius of gyration d

〈
R2

gyr

〉
/dT for the non-

grafted polymer. The reduction of the col-
lapse transition temperature with increasing
surface attraction strengths εs can be nicely
seen.

Figure 8.12: Fluctuation of the squared ra-
dius of gyration d

〈
R2

gyr

〉
/dT like in Fig. 8.11,

but for the grafted polymer. Apart from the
less sharp crossover from the 3D collapse
above the adsorption transition to the more
2D collapse below it, both profiles are similar.

Figure 8.13: Fluctuation of the tensor com-
ponent of the radius of gyration perpendicu-
lar to the substrate, d

〈
R2

gyr,⊥
〉
/dT , for the

nongrafted polymer. Visible are the layering
transitions, the collapse transition as long as
it occurs at higher temperatures than the ad-
sorption and the adsorption transition down
to very low surface attraction strength εs.

Figure 8.14: Fluctuation of the tensor com-
ponent of the radius of gyration perpendic-
ular to the substrate, d

〈
R2

gyr,⊥
〉
/dT , like in

Fig. 8.13, but for the grafted polymer. The
maximum of the adsorption transition gets
strongly damped compared to the adsorption
of the free chain for extended chains and dis-
appears for collapsed ones.

depletion regime [59] at the substrate. It is very likely that this deformation is
related to the first-order like behaviour of finite extended conformations at the
adsorption transition. The decreasing R2

gyr(e) in Fig. 8.8 at the adsorption tran-
sition fit to the positive values of dβ(e)/de in Fig. 8.7 that directly reflect the
convex regime in s(e). Neither grafted extended nor grafted or free collapsed
polymers get that significantly deformed during the adsorption process and in
all those cases already the adsorption process of finite polymers is continuous.
Hence, during phase coexistence the coexisting adsorbed and desorbed phases
are separated by a conformational rearrangement.

While the radius of gyration R2
gyr(e) experiences this significant influence of

grafting microcanonically as a function of energy in the phase coexistence
regime, the canonical expectation values

〈
R2

gyr

〉
(T ) of the radius of gyration

in Figs. 8.9 and 8.10 are hardly affected. This is because the conformations
with energies in the phase coexistence regime that differ the most in shape, are
suppressed in the canonical ensemble.
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8.3 Globule Adsorption versus Wetting

Figure 8.15: Fluctuations of canonical expectation
values for weak surface attraction, εs = 0.7, where
the adsorption occurs at a lower temperature than
the collapse. (a) specific heat cV , (b) the fluctuation
of the gyration tensor component perpendicular to
the substrate d

〈
R2

gyr,⊥
〉

(T )/dT , and (c) the fluctua-
tion of the number of monomers in contact with the
substrate d 〈ns〉 /dT . While for the free polymer the
adsorption is signalled in all three observables, for
a grafted one only an activity in (c) is visible, indi-
cating a change from the adsorption into the wetting
transition.

As can, e.g. be seen in Fig.
8.13, for globular chains it is
nontrivial to identify an adsorp-
tion transition if the polymer is
grafted. A globular chain at-
tached to a substrate always has
several surface contacts such that
a ‘desorbed globule’ stops to be
a well defined description here.
One might, however, identify the
transition from attached globules
that only have a few contacts,
because the monomer-monomer
interaction exceeds the surface-
monomer interaction, to docked
conformations for stronger sur-
face attraction strengths with the
wetting transition [10]. This
roughly coincides with the posi-
tion of the adsorption transition
for the free chain between DG
and AG in the phase diagram.

For N = 40, this wetting is not
signalled in a pronounced way in
my data, but is visible. Figures
8.13 and 8.14 show the temper-
ature fluctuations of the gyration
tensor component perpendicular
to the substrate d

〈
R2

gyr,⊥

〉
/dT

for the free and the grafted chain.
While in the free case a maximum
along the whole line εs ∝ T ,
with a constant of proportional-
ity close to one, is visible, the ac-
tivity at the adsorption transition
is strongly reduced in the grafted
case and below the collapse tran-
sition, no maximum is visible. In
Fig. 8.15, some canonical expec-
tation values for a surface attrac-
tion in this regime (εs = 0.7) are presented. While for the free polymer the
adsorption is signalled in the specific heat cV (T ) (a), the fluctuation of the gy-
ration tensor component perpendicular to the substrate d

〈
R2

gyr,⊥

〉
/dT (b), and



8.4 Freezing Transition 83

the fluctuation of the number of monomers d 〈ns〉 (T )/dT (c), for the grafted
polymer only the peak of d 〈ns〉 (T )/dT is left. This peak indicates the wet-
ting transition and the missing other signals show the difference to adsorption.
Wetting is a conformational rearrangement with almost no influence on the
position of the polymer.

It should be mentioned here that for a free polymer the exact definition of a
“surface contact” has hardly any influence on the peak position of d 〈ns〉 /dT ,
but for the grafted polymer the influence can be quite strong. In Fig. 8.15, a
monomer i was chosen to be in contact to the substrate if zi < 1.5.

8.4 Freezing Transition

Although little affected by the grafting, it is instructive to have a closer look at
the freezing transition – sometimes also called liquid-solid transition – as well.
Freezing occurs at a transition energy, below which the number of available
states is significantly reduced. Here, for a reduction in energy the system has

Figure 8.16: Inverse microcanonical temperature
β(e) for different small N at εs = 3, nongrafted. The
grey shaded area is the temperature regime 0.15 ≤
T ≤ 0.4, into which all observed canonical specific
heat peaks associated with the freezing fall. Visi-
ble is a slight trend in this regime that the crossover
from the extreme steep decrease of β(e) close to the
ground state and the almost constant value at, e.g.
e ≈ −2 falls into an increasingly narrower e-regime
for increasing N . So for N = 80 a “knee” around
e ≈ −5 followed by a regime of reduced curvature
at e ≈ −4.8 can be identified that might evolve into
a backbending regime for somewhat longer chains,
but in the limit N → ∞ β(e) has to be a monotonic
function of e.

to pay with a considerable loss
of entropy and ‘freezes’ into the
few remaining conformations. In
Fig. 8.5, one can see that for
all εs there exists an energetic
transition point, where s(e) =
ln Ω(e)/N strongly decreases for
a small reduction in e.

There is a certain similarity be-
tween the freezing transition of
a finite single polymer and the
freezing of, e.g. a finite metal
cluster. The latter can be con-
sidered as a liquid-solid phase
separation process with dynamic
phase coexistence. This means
it fluctuates between being en-
tirely liquid and entirely solid at
this transition for small systems
[134]. This is in contrast to
large systems where the phase
coexistence between the ordered
(solid) and disordered (liquid)
phase becomes what is called a
static phase coexistence, i.e., the
two phases coexist in contact with each other with a phase boundary between
them. In this limit of large systems, the melting of an ordered crystal into a
disordered liquid is known to be a first-order symmetry-breaking phase transi-



84 CHAPTER 8. GRAFTED VS. NONGRAFTED ADSORPTION

Figure 8.17: Some conformations of the 80mer around the freezing transition. The “knee” for
N = 80 in the inverse microcanonical temperature β(e) in Fig. 8.16 that should be an indication
that the freezing transition is positioned around e ≈ −5. Here, the observed conformations
display a clear order-disorder transition confirming the freezing – a glassy state, e.g., would still
be disordered. The presented conformations are typical canonical equilibrium conformations for
T ≈ 0.01, 0.3, 0.4, resp. The freezing peak of the specific heat is at about T ≈ 0.4 (e ≈ −4.8).

tion – unlike the continuous Θ- and the continuous adsorption transition. For
small clusters, at the corresponding energy of the dynamic phase coexistence a
negative heat capacity can be observed [90; 134]. Like discussed in chapter 4,
this corresponds to a backbending in β(e) in the transition regime. As soon as a
certain system size is reached (e.g. Al+25 for aluminium clusters), the backbend-
ing can be observed for metal clusters. The corresponding melting temperature
is typically subject to large finite-size fluctuations. For smaller sizes the com-
pact ground state is reached in a continuous fashion. In the infinite system, this
backbending is forbidden by Van Hove’s theorem and vanishes (cf. also the dis-
cussion in Refs. [70; 135]). This only leaves a certain intermediate N -window,
where the backbending can indeed be observed.

Similar observations have been made for a standard model for flexible, elas-
tic polymers, where nonbonded monomers interact via a truncated-shifted
Lennard-Jones potential and adjacent monomers are connected by finitely ex-
tensible nonlinear elastic (FENE) anharmonic bonds [136]. In that work, data
for a range of chain lengths from N = 13 to N = 309 were presented that
show a backbending in the microcanonical temperature curves in many cases,
in particular for “magic lengths” with a more stable ground state. The main dif-
ference of this model to the model I investigate is the ability of adjacent bonds
to change their length and adapt more crystalline solid states.

The idea of Fig. 8.16 was to reproduce the backbending in β(e) found in metal
clusters, the FENE polymer model and also for LJ-clusters in simulations [137]
for a polymer with stiff bonds. To this end, β(e) was simulated for a number
of chain lengths N . Although the statistics was quite high such that above the
freezing transition the error is of the order of the line width, no backbending
can be seen. What can be seen, however, is that the crossover regime between
the very steep decrease of β(e) close to the ground state energy and the flat-
ter behaviour at, e.g. e ≈ −2 falls into an increasingly narrower e-regime for
increasing N . For N = 40 and N = 80 one can see a “knee” with a seemingly
higher curvature than at the neighbouring energies. One can argue that the
freezing transition is mainly driven by the pairwise interactions between the
atoms/monomers. In the systems where the backbending was observed (the
metal clusters, the FENE polymer model and the LJ-clusters and certainly there
exist more examples) the monomer-monomer bonds can simultaneously attain
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their optimal or close-to-optimal value. If adjacent monomers have a fixed
bond length that does not match the minimum monomer-monomer potential
of non-adjacent monomers, this is no longer possible and a certain structure
distortion is present that is probably responsible for the absence of the back-
bending. Anyway, the occurrence of the backbending at the freezing transition
for finite polymers is model and chain-length dependent. For long chains, how-
ever, the transition is first-order like and the backbending vanishes in all cases,
but the latent heat remains.

An ergodic sampling of phase space shows that the freezing transition of a
single polymer is a clear order-disorder transition. Figure 8.17 displays three
conformations of the 80mer. The freezing peak of the canonical specific heat is
at about T ≈ 0.4 that corresponds to e ≈ −4.8. The left conformation is close
to the ground state and highly ordered, the next conformation has a somewhat
higher energy but is still below the freezing transition and still displays a con-
siderable amount of order. The conformation on the right has an energy very
slightly above the freezing transition and its order is indeed strongly reduced
compared to that of the conformations below the freezing transition.
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Chapter 9

Striped Patterned Substrates

Up to now, I only investigated the adsorption of homopolymers onto homoge-
neous substrates. In this chapter, it is studied how the picture changes under
the influence of heterogeneities on the substrates.

Specific interaction between a polymer and a solid substrate is a key ingredi-
ent of the problem of how the polymer can recognize a target surface with a
specific pattern. In that sense, this chapter can be understood as a small step
into the direction of pattern recognition. Pattern recognition or specific adsorp-
tion of polymers or peptides is ubiquitous in particular in biological processes
like enzyme-substrate binding, protein-receptor or antigen-antibody binding.
One of the main motivations for studying the pattern recognition mechanism
is certainly also related to the design of new polymers – typically copolymers –
with a target pattern in their sequence with a specific surface recognition ability
[138].

These processes involve usually very complex systems. Modelling such a spe-
cific system with many details forces one to restrict to a specific system and for-
bids a systematic variation of parameters that are simply computationally too
costly. Apart from tackling some open questions concerning the principal in-
fluence of heterogeneities on the substrate onto the homopolymer adsorption,
I like to build upon the results presented so far, such that the coarse-grained
approach and the homopolymer model is maintained. The questions posed
are: How is the phase diagram affected if a substrate-heterogeneity is slowly
switched on? How does the recognition transition – if it can be identified –
relate to the transitions found so far?

These questions are tackled by means of periodically striped substrates as they
provide not only a simple starting point, but this kind of surface patterning is
quite common on real substrates and in experiments [139; 140; 141; 142].

In the case of random heteropolymer adsorption on random surfaces [143;
144] and also in the case of a diblock or multiblock copolymer on stripe-
patterned substrates [145; 146] and stiff polymer adsorption onto a stripe-
patterned substrate of variable width [147], a two stage process of adsorption
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and recognition has been established, where in a first step the polymer adsorbs
to the substrate, and at a lower temperature undergoes a conformational re-
arrangement to match the surface pattern, the recognition transition. Hence, I
strongly expect a similar behaviour in the case of a flexible homopolymer on
a stripe-patterned substrate. In those works, however, polymer models with-
out any attractive monomer-monomer interaction were applied and therefore
the results are restricted to the good solvent limit. The presence of such a
monomer-monomer attraction induces the collapse transition that competes
with both, the adsorption and the recognition transition, such that a much
richer picture can be expected. Also the fact that the important functioning of
globular proteins depends on their characterizing features of being (1) globular
and (2) soluble in an aqueous medium perspectively motivates the additional
study of globular conformations next to a structured interface.

I started with a surface potential that is a superposition of the homogeneous
surface potential used so far (cf. Eq. (3.7)) with εs = 1 and a LJ interaction of
the same kind between every monomer and a number of closed stripes at the
substrate (cf. Eq. (3.8))
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(9.1)

The results of this study are presented in section 9.1.

During the interpretation of those results, it became clear that the shape of such
a potential induces an arrangement of the monomers into two parallel lines
along a stripe which is clearly a behaviour strongly dependent on the width of
the stripe. Additionally, the idea arose to include the asphericity and the acylin-
dricity defined in Eqs. (3.18) and (3.19) into the analysis. Unfortunately, until
that point only the time series of the diagonal elements of the tensor matrix
were recorded such that an a posteriori determination of the eigenvalues of
the gyration tensor without the off-diagonal matrix elements was not possible.
Hence, subsequently the much narrower stripe potential (cf. Eq. (3.9))
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is simulated and the analysed observables are complemented by the eigenvalues
of the gyration tensor (cf. Eq. (3.12)). Those results are presented in section
9.2. For both surface parametrisations the polymer is nongrafted and the stripe
distance is chosen to be D = 5.

9.1 Lennard-Jones Attractive Stripes

The final pseudo-phase diagram for the Lennard-Jones attractive stripes of Eq.
(9.1) discussed in this section is displayed in Fig. 9.1 and typical conformations
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Figure 9.1: (top) The canonical pseudo-phase diagram for
the stripe potential of Eq. (9.1) for the nongrafted 40mer.
εstripe is increased from 0 to 6 such that the line with
εstripe = 0 here corresponds to the line with εs = 1 in
Fig. 8.1. For adsorbed extended (AE) conformations and
even more for low temperatures and εstripe & 3.3, dramatic
differences to the adsorption on homogeneous substrates
occur since the polymer is forced to adapt a conformation
matching the stripes. Exemplified conformations are in-
cluded and in the case of adsorbed conformations, the stripe
positions are indicated by lines.

Figure 9.2: (right) Typical conformations of the 40mer at
different temperatures at εstripe = 3.9.

at various temperatures at the fixed surface attrac-
tion strength εstripe = 3.9 can be found in Fig. 9.2.

9.1.1 Overview over the Energy Compo-
nents

To construct the pseudo-phase diagram, let us first
look at the main energy contributions. In Fig.
9.3, the energy and its contributions from monomer-monomer and monomer-
surface interaction and their temperature derivatives are presented. They al-
ready provide a very good overview over how the stripes modify the adsorption.
So, 〈eLJ〉 is the smallest for low temperatures and εstripe . 3.3. For those εstripe,
the stripe strength has hardly an influence on the monomer-monomer inter-
action. This is already familiar from the homogeneous substrate, where weak
surface interaction also had hardly an influence on for example the radius of
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(a) 〈e〉 (b) cV =
d〈e〉
dT

(c) 〈esur,stripe〉 (d) d〈esur〉dT

(e) 〈eLJ〉 (f)
d〈eLJ〉
dT

Figure 9.3: The canonical expectation values of (a) the total energy e and (b) the specific
heat cV of the polymer-substrate system for the stripe potential of Eq. (9.1) parametrized by
temperature T and εstripe. (c)-(f) display the surface energy 〈esur,stripe〉 and the LJ monomer-
monomer attraction 〈eLJ〉 per monomer and their temperature derivatives, respectively.

gyration. For larger εstripe, the situation dramatically changes and 〈eLJ〉 is sig-
nificantly increased at low temperatures with a maximum slightly above the
freezing transition. Although, at extremely high temperatures, it might attain
similar values, in the temperature interval T ∈ [0, 5] it does not. Consequently,
in this regime (εstripe & 3.3) the striped potential is strong enough to force the
polymer to give up monomer-monomer bonds in favour of an alignment along
the stripes. This is also confirmed by the surface interaction energy that expe-
riences a significant reduction for εstripe & 3.3. The derivatives of the energy
components display a pronounced peak at this crossover for low temperatures
at εstripe ≈ 3.3 that gets broader at higher temperatures and higher εstripe.

This behaviour reminds at the single-double layering transition observed for
the homogeneous substrate. Indeed, it occurs at almost the same position,
when remembering that directly at a stripe, the potential strength is approx-
imatelly shifted by one compared to the phase diagram of a polymer near a
homogeneous substrate in Fig. 8.1 (εstripe =̂ 1 + εs). And, when looking at the
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conformations, also at this transition they change from double layers to single
layers. The single layer conformations, however, are no longer compact in two
dimensions but align along the stripes in an optimal fashion which is in two
parallel lines for the present choice of the potential (cf. Fig. 9.2).

In the temperature derivatives of the energy components the freezing transi-
tion is visible as a positive peak. Adding them up to obtain the specific heat
results in an even stronger freezing peak at T ≈ 0.2 − 0.3. Interestingly, the
peaks indicating the crossover from the dominance of different energy compo-
nents almost cancel each other when adding the temperature derivatives of Fig.
9.3(d) and (f) such that in the specific heat in Fig. 9.3 (b) only a shoulder is
left. Next to the freezing transition, also the adsorption transition is signalled
in the energy, most notably in d 〈esur〉/dT .

9.1.2 Recognition versus Energy Reordering (at εstripe = 3.9)

To describe the situation in more detail, let us have a closer look at what hap-
pens at a fixed surface parametrization. I choose εstripe = 3.9, because it falls
into the interesting regime, where the transition at which the surface energy
〈esur〉 gains weight at the expense of the monomer-monomer interaction 〈eLJ〉
and the transition associated to the recognition of the surface pattern are distin-
guishable (cf. Fig. 9.1) or, stated more carefully, two distinct transition signals
can be identified for this εstripe between the freezing and the adsorption tran-
sition. For higher stripe attraction, both transitions approach each other and
are no longer clearly distinguishable at some point. Let us investigate what the
nature of those two distinct peaks really is.

Figure 9.2 displays a number of conformations for εstripe = 3.9 at different
temperatures and in Figure 9.4 all observables that are analysed canonically
and its temperature derivatives are displayed. The positions of the peaks of the
temperature derivatives are used to determine the approximate temperature
regimes of the different transitions that are indicated in a blueish gray.

If one starts at low temperatures to discuss all transitions at εstripe = 3.9 via
Figs. 9.2 and 9.4, one starts off in the very ordered surface-potential-dominated
phase. Regarding the applied potential (cf. Fig. 3.7), it is not surprising to find
the monomers to be arranged in two parallel lines along a stripe that fit into
the width of the stripe attraction. That way not only the surface energy term
〈esur,stripe〉 gets minimal here, but also the monomer-monomer interaction 〈eLJ〉
is reduced relative to its values at temperatures right above the freezing transi-
tion. The role of the monomer-monomer interaction is very important for the
existence of the freezing transition at T ≈ 0.3 − 0.5 that is visible in almost
all temperature derivatives in Fig. 9.4. During the melting process, the highly
ordered structure is relaxed (cf. Fig. 9.2) without immediately giving up the
arrangement into two lines. This leads to an effective stretching of the polymer
along the stripe until right above the freezing transition. At higher tempera-
tures, the squared radius of gyration

〈
R2

gyr

〉
and in particular its component
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.4: Canonical expectation values of a number of observables at εstripe = 3.9 andN = 40.
Continued on the next page.
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(i) (j)

(k) Figure 9.4 (cont.): Continuation of the pre-
vious figure. The canonical expectation val-
ues of: (a) the energy per monomer 〈e〉 and
its three components 〈esur〉, 〈ebend〉 and 〈eLJ〉;
(c) the squared radius of gyration

〈
R2

gyr

〉
and

the diagonal elements of the gyration ten-
sor

〈
R2

gyr,x

〉
,
〈
R2

gyr,y

〉
and

〈
R2

gyr,z

〉
; (e) the

distance of the center of mass of the poly-
mer to the substrate 〈zcm〉 and the number of
monomers in contact with the substrate 〈ns〉;
(g) quantities related to the asphericity along
a fixed direction in space for the x-, y-, and z-
direction; (i) the difference between two com-
ponents of the gyration tensor, which is re-

lated to the acylindricity along the third direction; (b), (d), (f), (h) and (j) display the temper-
ature derivatives of (a), (c), (e), (g) and (i), respectively. (k) shows two parameters related to
the relative shape anisotropy κ2 that I refer to as κ∗2 and κ̃∗2 here (cf. Eqs. 9.5 and 9.6)). The
temperature derivatives of both are also shown. An attempt of a more direct comparison of κ2,
κ̃2, κ∗2, and κ̃∗2 will be done in section 9.2.
Four transition regimes are indicated in gray. Those are – with increasing temperature – the
freezing transition, an energy reordering, the recognition of the stripe/going to a single stripe
and the adsorption transition. Jackknife errors are included.

along the stripe
〈
R2

gyr,y

〉
decrease strongly. At T ≈ 0.6 − 0.75, d 〈eLJ〉 /dT ,

d
〈
R2

gyr

〉
/dT and d 〈ns〉 /dT get extremal such that another transition has to

occur here. It is the temperature at which the relative weight of the different
energy contributions changes strongly as was already discussed via Fig. 9.3.
Surface-monomer contacts are given up here in favour of an increased number
of monomer-monomer contacts without leaving the single stripe. This transi-
tion corresponds to the single-double layering transition at the homogeneous
substrate.

That this transition is distinct from a transition where the polymer on av-
erage leaves the alignment along the stripe at slightly higher temperatures
(T ≈ 0.95−1.25) gets clear when observing that the temperature derivatives of
some observables have two distinct peaks in both temperature regimes. I will
call this transition, where the polymer leaves the stripe, recognition transition.
It is most clearly signalled by

〈
R2

gyr,x

〉
,
〈
R2

gyr,y

〉
and the composed quantities of〈

R2
gyr,x

〉
,
〈
R2

gyr,y

〉
and

〈
R2

gyr,z

〉
presented in Fig. 9.4(g)-(k). In particularly, the

acylindricity along the stripes,
〈
R2

gyr,x

〉
−
〈
R2

gyr,z

〉
, that is also presented for all
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(a)
〈
R2

gyr,x

〉
(b)

d
〈
R2

gyr,x

〉
dT

(c)
〈
R2

gyr,y

〉
(d)

d
〈
R2

gyr,y

〉
dT

(e)
〈
R2

gyr,z

〉
(f)

d
〈
R2

gyr,z

〉
dT

(g)
〈
R2

gyr

〉
(h)

d
〈
R2

gyr

〉
dT

(i)
〈
R2

gyr,x

〉
−
〈
R2

gyr,z

〉
(j)

d
(〈
R2

gyr,x

〉
−
〈
R2

gyr,z

〉)
dT

Figure 9.5: (a)-(f) The canonical expectation values of the diagonal elements of the gyration
tensor and its temperature derivatives, (g)+(h) the radius of gyration squared and its temper-
ature derivative, (i)+(j) the acylindricity along the direction of the stripes and its temperature
derivative for the stripe potential of Eq. (9.1) parametrized by temperature T and εstripe.
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(a) 〈zcm〉 (b) d〈zcm〉dT

(c) 〈ns〉 (d) d〈ns〉dT

Figure 9.6: (a)+(b) The canonical expectation values of the distance of the center-of-mass of the
polymer to the substrate 〈zcm〉 and its temperature derivative and (c)+(d) the same quantities
for the number of surface contacts 〈ns〉 again for the stripe potential of Eq. (9.1) parametrized
by temperature T and stripe attraction strength εstripe.

εstripe of interest in Fig. 9.5, clearly distinguishes the phase below the recog-
nition transition from the one above the recognition transition and below the
desorption transition, because it attains higher values in the latter phase (AE).
And indeed, this is the regime where the exemplified conformations in Fig. 9.2
leave the position at a single stripe in favour of a more arbitrary arrangement
on the substrate with possibly contacts to several attractive stripes. Since at the
same time the polymer is still adsorbed and the extension in z-direction limited,〈
R2

gyr,x

〉
−
〈
R2

gyr,z

〉
gets maximal in AE.

Before defining the alternative relative shape anisotropies κ∗2 and κ̃∗2, the def-
inition of the relative shape anisotropy κ2 (Eq. (3.20)) shall be repeated here
for convenience:

κ2 =
3

2

Tr
(
Q̂2
)

(TrQ)2 =
b2+ 3

4c
2

R4
gyr

=
λ4
x+λ4

y+λ4
z−λ2

xλ
2
y−λ2

yλ
2
z−λ2

zλ
2
x(

λ2
x + λ2

y + λ2
z

)2 . (9.3)

Additionally, κ̃2 shall be given by a combination of canonical expectation values
of the individual eigenvalues:

κ̃2 =

〈
λ2
x

〉2
+
〈
λ2
y

〉2
+
〈
λ2
z

〉2 −
〈
λ2
x

〉 〈
λ2
y

〉
−
〈
λ2
y

〉 〈
λ2
z

〉
−
〈
λ2
z

〉 〈
λ2
x

〉(
〈λ2
x〉+

〈
λ2
y

〉
+ 〈λ2

z〉
)2 . (9.4)

The alternative relative shape anisotropies κ∗2 and κ̃∗2 are now defined analo-
gously by substituting λ2

x, λ2
y and λ2

z by the diagonal elements of the gyration
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tensor in Eq. (3.12), Qxx, Qyy, Qzz, respectively:

κ∗2 =
Q2

xx +Q2
yy +Q2

zz −QxxQyy −QyyQzz −QzzQxx

(Qxx +Qyy +Qzz)
2 (9.5)

and

κ̃∗2 =
〈Qxx〉2 + 〈Qyy〉2 + 〈Qzz〉2 − 〈Qxx〉 〈Qyy〉 − 〈Qyy〉 〈Qzz〉 − 〈Qzz〉 〈Qxx〉

(〈Qxx〉+ 〈Qyy〉+ 〈Qzz〉)2 ,

(9.6)
where the denumerator is always the same quantity for an individual confor-
mation. It can be interpreted as the relative shape anisotropy in the lab frame
(the simulation box) instead of the coordinate system spanned by the eigenvec-
tors of each individual conformation. This distinct quantity is a well defined
measure of the anisotropy of the average conformation which is meaningful
in this anisotropic system and is invariant under permutations of Qxx, Qyy and
Qzz. The temperature derivatives of both alternative relative shape anisotropies
d
〈
κ∗2
〉
/dT and dκ̃∗2/dT , peak at quite different temperatures in Fig. 9.4. This

effect is worth noting, since it is not only the expected slight difference due to
the difference in taking the canonical averages. This difference in taking the
canonical averages leads d

〈
κ∗2
〉
/dT to peak at the energy-reordering transi-

tion, while dκ̃∗2/dT has its minimum at the recognition transition. Like dis-
cussed, both transitions are accompanied by a conformational rearrangement
of a different kind.

Finally, at T ≈ 3.25 − 3.75 the polymer desorbs, as clearly indicated by peaks,
e.g. in d 〈zcm〉 /dT and d 〈ns〉 /dT (Fig. 9.4(e)+(f) and Fig. 9.6). Compared
to the adsorption transition onto the homogeneously attractive substrate of an
attraction strength corresponding to the one directly at the stripes, the adsorp-
tion takes place at a lower temperature. This can be read off the fact that the
slope Tads/εs ≈ 5/4 in Fig. 8.1, while Tads/(εs + εstripe) ≈ 5/7 (for fixed εs = 1)
in Fig. 9.1. The explanation is quite clear. εstripe is proportional to the attrac-
tion strength directly at the stripe that not the whole polymer can access but
just the fraction of monomers very close to the stripe potential minimum. This
decreases the adsorption temperature compared to a homogeneous substrate
of an attraction strength equal to the maximal attraction at the stripes but in-
creases the adsorption temperature compared to a homogeneous substrate of
an attraction strength equal to the minimal attraction between the stripes. It
usually also increases the adsorption temperature compared to a homogeneous
substrate of an attraction strength that corresponds to the average of the attrac-
tion of the patterned substrate, since the polymer is free to preferentially go to
the more attractive regimes. The amount of the effect of the stripes or surface
inhomogeneities on the adsorption transition temperature depends on the ratio
of the radius of gyration of the polymer to the characteristic size of the surface
inhomogeneity as was already observed in Ref. [148]. This ratio determines
what fraction of the monomers can easily fit into the more attractive structures
on the substrates or the stripes in the case at hand.
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Figure 9.7: Inverse microcanonical temperature β(e) for the stripe potential of Eq. (9.1) and
the nongrafted 40mer for a range of different stripe attraction strengths εstripe = 0, . . . , 6. Two
things are noteworthy here: (1) The only backbending occuring is at the adsorption transition
for high surface attraction strength as already found in chapter 7. All other transitions display
no phase coexistence. (2) The distance between the β(e)-curves at low energies changes for low
energies e at εstripe ≈ 3.5, where collapse, energy reordering and freezing transition meet. That
at higher εstripe all monomers are in the potential minimum of a stripe at low energies, while at
lower εstripe the polymer is rather compact and only a fraction of the monomers places itself into
that potential minimum explains that the value of the minimal energy conformation changes
more slowly with εstripe.

9.1.3 Microcanonical Results

With the canonical expectation values presented so far, the equilibrium be-
haviour of a single polymer near a stripe-attractive substrate, with a stripe
width that can occupy two monomers in parallel, as a function of stripe attrac-
tion strength εstripe and temperature T could be well described. Nevertheless,
it is useful to complement and confirm those results again by microcanonical
data. In Fig. 9.7, e.g. the inverse microcanonical temperature β(e) is presented
for a wide range of energies for all εstripe = 0, 0.1, . . . , 6. It does not differ
much from the shape already found for the homogeneous substrate (cf. Fig.
8.6). Nevertheless, it is worth noting that the only backbending that can be
seen here is the same backbending at the adsorption transition for sufficiently
attractive substrates that was already observed in chapter 7. The recognition
transition – that is related to the collapse of the adsorbed conformations – and
the energy reordering transition – that in turn can be seen as being related to
the extension of the single-double layering transition to temperatures above
the freezing temperature, both show no backbending in the microcanonical
temperature. Hence, the polymer continuously passes from one phase to the
other here even though the corresponding canonical signals are rather sharp.

The εstripe, where energy reordering, collapse and freezing meet, can be identi-
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Figure 9.8: Some observables versus energy per
monomer e at εstripe = 3.9. (a) The (numerical) deriva-
tives of the energy components desur/de and deLJ/de as
well as the ratio esur/eLJ(e), divided by 2 to fit it bet-
ter into the plot, and d (esur/eLJ) /de; (b) the gyration
tensor components R2

gyr,x, R2
gyr,y and R2

gyr,z, the total
radius of gyration squared R2

gyr, and the acylindricity
along the z-direction R2

gyr,y −R2
gyr,x; (c) the numerical

derivatives with respect to e of the quantities plotted in
(b).

(a)

(b)

(c)

fied via Fig. 9.7, too. At
the corresponding energy and
εstripe (εstripe ≈ 3.5) the differ-
ent inverse temperature curves
of neighbouring εstripe deviate
from each other and they are
closer to each other at lower
εstripe and further apart for
higher εstripe. This can be
understood when remember-
ing that at low energies for
higher εstripe all monomers are
at the stripe and consequently a
change in εstripe has a maximal
effect onto the total energy. For
smaller εstripe the monomer-
monomer interaction is strong
enough to induce a more com-
pact low energy conformation
with only a fraction of the
monomers being directly at the
stripe. An increase in εstripe can
only be partially transferred to
the total energy in this case.

Figure 9.8 again presents ob-
servables for the fixed surface
parametrization εstripe = 3.9,
but this time versus energy. Al-
though Fig. 9.8 is plotted from
the identical statistical data as
Fig. 9.4, the statistical errors
(given here by Jackknife er-
rors) are much higher in the
microcanonical case. The rea-
son for this is the nonapplica-
bility of two “standard-tricks”
of the canonical analysis. Those
are the reweighting of data
to neighbouring temperatures
and the calculation of temper-
ature derivatives of an observ-
able O via Eq. (3.11). Ev-
ery data point can only be
used within its energy bin and
derivatives with respect to en-
ergy have to be determined nu-
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merically. Hence, in a way the sum or integral involved in the Laplace transfor-
mation from the microcanonical to the canonical ensemble is boom and bane at
the same time since, although obscuring effects like the microcanonical back-
bending, it also makes the numerical analysis easier.

Most clearly signalled in Fig. 9.8(a) are the energy reordering transition at
e ≈ −4.3 and the adsorption transition at e ≈ −1. At the energy reorder-
ing transition the surface energy esur decreases compared to the monomer-
monomer energy term eLJ such that desur/de has a small maximum here,
deLJ/de a small minimum and d (esur/eLJ) /de a pronounced minimum. This
nicely confirms the findings of the canonical data. Maxima and minima of the
same type but much weaker seem to be present for those observables at the
recognition transition at e ≈ −3.8 as well, but since the effect is of the order of
the statistical error, this is not significant. Nevertheless, some activity is present
here. Finally, at the adsorption transition esur vanishes and with it esur/eLJ such
that the energy derivative of both quantities gets extremal here. Away from
the deforming influence of the substrate, the number of monomer-monomer
contacts on the other hand increases such that deLJ/de has a minimum here.

The main information of Fig. 9.8(b) is the crossover from the absolute domi-
nance of the squared radius of gyration R2

gyr at low energies by its component
along the stripe R2

gyr,y to equal values of R2
gyr,x, R2

gyr,y and R2
gyr,z above the

desorption. Again the transition regimes match the canonical findings as can
also be seen in the energy derivatives of those quantities in Fig. 9.8(c). Clearly,
there are two distinct peaks at the energy reordering transition and the recog-
nition transition. The peak at the recognition transition is strongly visible in
dR2

gyr,x/de matching the interpretation of the polymer leaving the stripe here.
dR2

gyr,y/de has a double-peak at the energy-reordering and recognition transi-
tion, just like combinations of dR2

gyr,x/de, dR
2
gyr,y/de and dR2

gyr,z/de confirming
that both transitions are also well separated in the microcanonical ensemble at
εstripe = 3.9.

9.2 Narrower Attractive Stripes

Let us now turn the focus to the statistical behaviour of the same polymer model
near another stripe-attractive substrate. In contrast to the stripe potential of
section 9.1 (cf. Eq. (9.1)), the stripe potential utilized here is much narrower
and instead of providing the width to occupy the monomers in two rows next
to each other, now only a single row of monomers can be placed on a stripe.
Again, stripes have a distance of D = 5 and the polymer is nongrafted. The
potential form is given by Eq. (9.2).

To ease the comparison with the wider stripes, the structure of section 9.1 shall
be adapted here to some extent. The pseudo-phase diagram for those narrower
stripes is displayed in Fig. 9.9 and illustrated by typical conformations at sev-
eral points in the diagram. Figure 9.10 presents conformations at increasing
temperature for the fixed stripe attraction εstripe = 4.7.
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Figure 9.9: (top) The canonical pseudo-phase diagram for
the stripe potential of Eq. (9.2) for the nongrafted 40mer.
εstripe is increased from 0 to 7 such that the line with
εstripe = 0 here again corresponds to the line with εs = 1
in Fig. 8.1. Like in Fig. 9.1, the collapse and the adsorp-
tion transition approach each other with increasing εstripe

but they intersect at a considerably higher value of εstripe

(εstripe ≈ 4−5). At similar values of εstripe but at lower tem-
peratures, the recognition transition occurs. In the dotted
regime of the onset of pattern recognition, several confor-
mations that are fully or partially aligned along the stripe
coexist. For higher values of εstripe, the polymer arranges
into a single line at a stripe – in the ‘Aline’ phase.
Every regime in the phase diagram is illustrated with a typ-
ical conformation. Those illustrations in adsorbed regimes
also contain parts of lines that indicate the positions of the
stripes at the substrate.

Figure 9.10: (right) Typical conformations of the 40mer at
different temperatures at εstripe = 4.7.

9.2.1 Energy Contributions

To describe the phase behaviour, one can again start with looking at the main
energy contributions (Fig. 9.11). Here, 〈eLJ〉 is the smallest for low tempera-
tures and εstripe . 4.5, a much higher value compared to εstripe . 3.3 for the
wider stripes. Below this stripe attraction strength, the stripe hardly deforms
the polymer conformations and has little impact on the energy. What follows is
a strong transition at higher εstripe that not only is much more pronounced in the
sense of a narrower and much stronger peak in the temperature derivatives but
its appearance at around εstripe = 4.5 is different. The “energy-reordering” does
not emerge at low temperatures but appears above the temperature, where typ-
ically the freezing transition occurs at around this εstripe with some activity at
lower temperatures. At somewhat higher εstripe the freezing transition com-
pletely vanishes in clear contrast to the behaviour at wider stripes. Here, the
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(a) 〈e〉 (b) cV =
d〈e〉
dT

(c) 〈esur,stripe〉 (d) d〈esur〉dT

(e) 〈eLJ〉 (f)
d〈eLJ〉
dT

Figure 9.11: The canonical expectation values of (a) the total energy e and (b) the specific heat
cV of the polymer-substrate system for the stripe potential of Eq. (9.2) in the same fashion as
in Fig. 9.3. (c)-(f) give the surface energy 〈esur,stripe〉 and the monomer self-interaction energy
〈eLJ〉 per monomer and their temperature derivatives, respectively.

stripe attraction is strong enough to force the polymer into one row and pre-
venting the monomer-monomer interaction – I will call this phase ‘Aline’ phase
alluding to the shape of the polymer. On the other hand, when viewing the
freezing transition as a disorder-order transition upon cooling, the energy re-
ordering transition that occurs at higher temperatures for higher εstripe can also
be interpreted as a freezing transition, but of a somewhat different kind since
the corresponding ordered state does not maximize monomer-monomer, but
monomer-surface contacts. Hence, the energy-reordering transition replaces or
suppresses the freezing transition as it exists at lower εstripe. And it is also sig-
nalled by a clear peak in the specific heat cV as would be expected for a freezing
transition. This is in contrast to the wider stripes where the energy reordering
only was visible as a shoulder in the specific heat.

Exemplified profile plots for the energy terms shown in Fig. 9.11 are presented
in Fig. 9.12 for εstripe = 1, 4, 7. This allows for a more direct comparison of
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(a) εstripe = 1 (b) εstripe = 1

(c) εstripe = 4 (d) εstripe = 4

(e) εstripe = 7 (f) εstripe = 7

Figure 9.12: The canonical expectation values of the energy 〈e〉 and its main components 〈esur〉
and 〈eLJ〉 and their temperature derivatives, respectively, for the three stripe attraction strengths
εstripe = 1, 4, 7 for the stripe potential of Eq. (9.2).

the different energy terms. While at εstripe = 1 and 4, 〈eLJ〉 dominates over
〈esur〉 for all energies resulting in the 〈eLJ〉-driven freezing transition at around
T ≈ 0.2, at εstripe = 7 〈esur〉 dominates at low temperatures and 〈eLJ〉 sinks into
insignificance there. With it the freezing transition at T ≈ 0.2 vanishes and the
energy-reordering transition occurs instead at T ≈ 1.5.

Noteworthy is also the slight double-peak at the energy-reordering or recogni-
tion transition at εstripe = 7 that in general seems to fall together to a single
transition at this surface parametrization. Nevertheless, dependent on the ob-
servable one looks at, there is in some cases a small second peak or a shoulder
visible, but not significant enough to clearly separate both transitions.
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9.2.2 Shape Parameters

The little extra effort during the simulation to also extract the off-diagonal el-
ements of the gyration tensor and its sorted eigenvalues now pays off with
several additional shape parameters that information can be extracted from.
The diagonal elements of the gyration tensor (cf. Figs. 9.13 and 9.14) provide
information about the average extension into the three lab frame directions x,
y, and z and with it information about the orientation in space. The orientation
in space is on the other hand totally disregarded by the eigenvalues of the gyra-
tion tensor (cf. Figs. 9.16 and 9.17) that measure the extensions in the principle
axis system complementing the picture.

The diagonal elements
〈
R2

gyr,x

〉
,
〈
R2

gyr,y

〉
,
〈
R2

gyr,z

〉
, the squared radius of gyra-

tion
〈
R2

gyr

〉
and the acylindricity along the y-direction

〈
R2

gyr,x

〉
−
〈
R2

gyr,z

〉
in Fig.

9.13 demonstrate the extreme domination of the phase behaviour by the recog-
nition transition. This transition is signalled by the most pronounced peak with
a weak shoulder at the low-temperature side. The shoulder is better visible in
the contour plots at εstripe = 7 in Fig. 9.14(f) and in the specific heat in Fig.
9.12(f). A closer look at conformations in the neighbourhood of this shoulder
reveals that between the ‘Aline’ phase and the AE phase with adsorbed extended
random coils, at a small band below the recognition transition, conformations
that are mainly elongated along the stripe but deform from the perfect straight
conformation to form monomer-monomer contacts are dominant. This might
be a finite-size effect and for longer chains the temperature regime where those
conformations (like the green/middle one in Fig. 9.15) dominate, is likely to
get smaller.

When looking at the values for
〈
R2

gyr,y

〉
in Fig. 9.14(e) and

〈
λ2
z

〉
in Fig. 9.17(f)

at low temperatures and comparing them with the expected value for straight
conformations in Table 3.1 (λ2

z = R2
gyr = R2

gyr,y = 133.25), one might (and
really should) wonder why they systematically stay lower and do not exceed
λ2
z = 120.875. The reason is just as simple as in principle avoidable: The pe-

riodic boundary conditions in x- and y-direction have been a part of the im-
plemented program from the very beginning and after they were changed to
free boundary conditions in some later versions of the implementation of the
multicanonical algorithm, they were included again in the parallel tempering
implementation since they had no influence on the results so far, hardly re-
quired simulation time and allowed for a future easy addition of further chains.
Here, it is chosen to be equal to Lz = 60 like already in chapter 8. This
choice was a little careless since it only exceeds the chain lengths by a fac-
tor of 1.5, but was perfectly fine for all the other cases studied so far. It leads
to too short monomer-monomer distances by the minimum image convention
if the monomer-monomer distance along x- or y-direction exceeds half the box
size, which is 30 in this case. Fortunately, this virtually never occurred out-
side the ‘Aline’ phase so far and did not affect any results outside the phase
‘Aline’. This, however, changes now for polymers that are extremely extended
in the y-direction as is demonstrated in Fig. 9.15. As a consequence, the cor-
responding element of the gyration tensor Qyy = R2

gyr,y gets underestimated in
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(a)
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Figure 9.13: (a)-(f) The canonical expectation values of the diagonal elements of the gyration
tensor, (g)+(h) the radius of gyration, (i)+(j) the acylindricity along the direction of the stripes
for the stripe potential of Eq. (9.2) and the temperature derivatives of all quantities parametrized
by temperature T and εstripe. In white regimes, data near the dominating recognition peak are
left out in order to see the signals of the collapse transition.
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(a) εstripe = 1 (b) εstripe = 1

(c) εstripe = 4 (d) εstripe = 4

(e) εstripe = 7 (f) εstripe = 7

Figure 9.14: Depicted are the radius of gyration squared
〈
R2

gyr

〉
as well as the diagonal elements

of the gyration tensor that constitute the radius of gyration, 〈Qxx〉 =
〈
R2

gyr,x

〉
, 〈Qyy〉 =

〈
R2

gyr,y

〉
,

〈Qzz〉 =
〈
R2

gyr,z

〉
, as well as its temperature derivatives for the three stripe attraction strengths

εstripe = 1, 4, 7 for the stripe potential of Eq. (9.2).

the ‘Aline’ phase, which also affects the derived quantities from Qyy. This un-
derestimation gets maximal for the completely linear polymer that would have
Qyy = 133.25 and gets assigned Qyy = 120.875 for this choice of the boundary
conditions. Quantities not derived from Qyy and everything outside of ‘Aline’
are not affected such that the phase structure of Fig. 9.9 also is not. Because
of this and the quite considerable effort of a new simulation, I will discuss the
results obtained with the minimum image convention here.

To observe the conformational activity in other regions in phase space than at
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Figure 9.15: The number of monomer-monomer distances in y-direction (along the stripe) for
three conformations with above-average extension in y-direction. Conformations with monomer-
monomer distances yij > 30 only occur in the ‘Aline’ phase.

the recognition transition, in Fig. 9.13(b) and (h) and in Fig. 9.16(h) the recog-
nition peaks are cropped. Now, the weak and quite broad maximum of the
collapse transition on the substrate between AG and AE in d

〈
R2

gyr,x

〉
/dT gets

visible that is also there in d
〈
R2

gyr,y

〉
/dT in principle and has a visible influence

on the acylindricity 〈c〉. This collapse is similar in nature to the corresponding
collapse of adsorbed chains for the homogeneous substrates or the one with
wider stripes, but when one compares Fig. 9.13 with Fig. 8.9 some striking dif-
ferences get clear. The maximum of d

〈
R2

gyr,x

〉
/dT discontinuously changes its

position at the adsorption transition from T ≈ 2 for desorbed chains to T ≈ 1.4
for εstripe = 4. For the homogeneous substrate, this reduction of the collapse
temperature is almost continuous. The general reason for the reduction of
the collapse transition temperature with surface attraction is the deformation
of the rather spherical globules at weak surface influence to more spread out
conformations with more surface contacts, but less monomer-monomer con-
tacts for increasingly attractive substrates. The resulting reduced number of
monomer-monomer contacts below the collapse of adsorbed conformations re-
duces the energetical advantage of collapsing and consequently the collapse
temperature between AE and AG. This striped substrate and the homogeneous
substrate, however, deform the polymer differently upon adsorption. To form
the most energetically favoured monomer-stripe contacts the polymer has to
extend much more in x- as well as in y-direction. Below the ‘collapse’ along
the stripe, the extension along the y-direction is hardly reduced and even less
monomer-monomer contacts are formed than in the case of a homogeneous
substrate. This reduced energetical advantage of collapsing results in the lower
collapse transition temperature. Another mayor difference is, that the collapse
transition of an adsorbed polymer is signalled in the temperature derivative of
the total radius of gyration

〈
R2

gyr

〉
/dT only by a very weak shoulder (cf. Fig.
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Figure 9.16: (a)-(f) The canonical expectation values of the eigenvalues of the gyration tensor,〈
λ2
x

〉
,
〈
λ2
y

〉
,
〈
λ2
z

〉
, and its temperature derivatives; (g)+(h) the acylindricity 〈c〉 =

〈
λ2
y − λ2

x

〉
and its temperature derivatives for the stripe potential of Eq. (9.2) parametrized by temperature
T and surface attraction strengths εstripe. In (h) some data in the white regime are left out to
focus on less pronounced signals than the recognition transition like the transition from AG to
AE.

9.14(d)). For this reason, the name ‘collapse’ has to be read here with a certain
care. For εstripe = 4, both collapses occur: The very clear collapse of desorbed
chains happens at only a very little higher temperature than the adsorption. In
fact, both transitions almost fall together. At slightly lower temperatures, the
polymer collapses further into the AG phase. This further collapse can also be
viewed in terms of the number of different stripes occupied. Below this tran-
sition, the polymer is too compact to reach over to a second stripe. In the AE
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(a) εstripe = 1 (b) εstripe = 1

(c) εstripe = 4 (d) εstripe = 4

(e) εstripe = 7 (f) εstripe = 7

Figure 9.17: The canonical expectation values of the eigenvalues of the gyration tensor,
〈
λ2
x

〉
,〈

λ2
y

〉
,
〈
λ2
z

〉
, and its temperature derivatives for the stripe potential of Eq. (9.2) for the three

stripe attraction strengths εstripe = 1, 4, 7.

phase this is different and many conformations covering different stripes can
be found.

This is also reflected in the acylindricity along the y-direction (Fig. 9.13(i)) and
the acylindricity 〈c〉 (cf. Fig. 9.16(g)). Both are increased here and quite clearly
distinguish the AG from the AE phase.
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Relative Shape Anisotropy

Let us now turn towards the anisotropy measures that were not yet available in
section 9.1 due to the lack of the off-diagonal elements of the gyration tensor
in the time series written out. In Fig. 9.18

〈
κ2
〉
, κ̃2,

〈
κ∗2
〉

and κ̃∗2 are presented
for the three stripe attraction strength εstripe = 1, 4, 7. They are defined by Eqs.
(9.3), (9.4), (9.5), and (9.6), and κ2 was first introduced in Eq. (3.20). The
differences are quite striking in particular for high temperatures. Since

〈
κ2
〉

and κ̃2 behave very similarly, I will only discuss the behaviour of the expectation
value of the “real” relative shape anisotropy

〈
κ2
〉

here in contrast to the other
two variants.〈
κ2
〉

takes on a maximum value of one for a completely stretched rodlike con-
formation and equals to zero for a perfect sphere and generally obeys the
inequality 0 ≤

〈
κ2
〉
≤ 1. It was found to be

〈
κ2
〉

= 0.431 ± 0.002 for
flexible polymer chains on regular lattices [67]. This agrees with the val-
ues of

〈
κ2
〉

I found for high temperatures, where it seems to approach 0.431.
For high temperatures, the influence of the attractive monomer-monomer and
substrate interaction decreases such that the polymer behaves like a flexi-
ble polymer.

〈
κ∗2
〉

and κ̃∗2 attain considerably smaller values. Above the
adsorption transition κ̃∗2 even goes to zero. This vanishing of κ̃∗2 is un-
derstandable when considering the numerator of its definition in Eq. (9.6),
〈Qxx〉2 + 〈Qyy〉2 + 〈Qzz〉2 − 〈Qxx〉 〈Qyy〉 − 〈Qyy〉 〈Qzz〉 − 〈Qzz〉 〈Qxx〉, that van-
ishes in the case of 〈Qxx〉 = 〈Qyy〉 = 〈Qzz〉. For this reason, κ̃∗2 is a rather
useless observable in the case of free polymers but here gives a reliable mea-
sure of the degree of possible rotation in space and the difference of the average
extension in the three space directions. At the adsorption transition, κ̃∗2 attains
finite values and increases with decreasing temperature until at the freezing
transition – for εstripe being small enough that the freezing transition still ex-
ists – and at the recognition transition otherwise it attains values very close
to those attained by

〈
κ2
〉
. Since both transitions are order-disorder transitions

with an ordered phase whose orientation is predefined by the system, the dif-
ferent relative anisotropies that are defined in the lab frame (

〈
κ∗2
〉
, κ̃∗2) and

the principal axes system of the polymer (
〈
κ2
〉
, κ̃2) obtain similar values if the

principle axes system of the polymer is forced to roughly align along the lab
frame. For even lower temperature, κ̃∗2 decreases again below the freezing
transition as do the other relative shape anisotropy measures. This reflects the
overall increased compactness of the conformations upon freezing. The values
of the relative shape anisotropies at low temperatures increase with εstripe. Cer-
tainly, stronger stripe attraction leads to a larger conformational deformation.
This is most drastically so at the recognition transition, where all κ-values jump
to one. But also within the AG and AC3 phase the relative shape anisotropy
changes continuously and the κ-values more than double from εstripe = 1 to
εstripe = 4.

For weak surface attraction strength and temperatures above the freezing tran-
sition the relative shape anisotropy

〈
κ2
〉

behaves quite differently than κ̃∗2: it
increases with temperature. This is in particularly true at the collapse tran-



110 CHAPTER 9. STRIPED PATTERNED SUBSTRATES

(a) εstripe = 1 (b) εstripe = 1

(c) εstripe = 4 (d) εstripe = 4

(e) εstripe = 7 (f) εstripe = 7

Figure 9.18: The canonical expectation values of the relative shape anisotropy
〈
κ2
〉

and the
related quantities κ̃2, obtained by taking the canonical average of every eigenvalue first, and〈
κ∗2
〉

and κ̃∗2 defined in Eqs. (9.5) and (9.6) for the stripe potential of Eq. (9.2) for the three
stripe attraction strengths εstripe = 1, 4, 7. The temperature derivatives are given on the right.

sitions, such that next to the quite clear maximum in d
〈
κ2
〉
/dT at the bulk

collapse transition also a weak maximum at the collapse/going to more stripes
on the substrate is visible. The latter is even more pronounced for dκ̃∗2/dT .
Hence, even though the ensemble average of many desorbed conformations
looks very spherical, the indidual conformation is rather anisotropic. Depen-
dent on the stripe attraction strength the picture changes at low temperatures.
At low εstripe, the polymer collapses and adsorbs and while the individual chain
is more spherical here than in the extended phase, the anisotropy introduced by
the substrate for the adsorbed conformations prevents the free rotation of the
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(a) εstripe = 1 (b) εstripe = 1

(c) εstripe = 4 (d) εstripe = 4

(e) εstripe = 7 (f) εstripe = 7

Figure 9.19: The asphericity 〈b〉, the acylindricity 〈c〉, the prolateness 〈S〉 and their temperature
derivatives for εstripe = 1, 4, 7.

adsorbed chain and κ̃∗2 no longer vanishes. For strong stripe attraction, below
the recognition transition a rod-like conformation is dominant that results in
values of one for all four choices of the relative shape anisotropy measure.

Left to discuss to describe the shape of individual polymer conformations are
the asphericity 〈b〉, the acylindricity 〈c〉 and the prolateness 〈S〉 (cf. Fig. 9.19).
While 〈b〉 and 〈c〉 are defined to be larger or equal to zero, the prolateness is
bounded by the interval −1/4 < 〈S〉 < 2 [64]. Negative values of S describe
oblate shapes and positive ones prolate shapes of the polymer. Only for low
temperatures and weak surface stripe attractivity, 〈S〉 gets negative and weakly
oblate configurations dominate. Those are conformations like the AC3 example
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(a) 〈zcm〉 (b) d〈zcm〉dT

(c) 〈ns〉 (d) d〈ns〉dT

Figure 9.20: (a)+(b) The canonical expectation values of the distance of the centre-of-mass of
the polymer to the substrate 〈zcm〉 and its temperature derivative and (c)+(d) the same quan-
tities for the number of surface contacts 〈ns〉 for the stripe potential of Eq. (9.2) parametrized
by temperature T and stripe attraction strengths εstripe. Both quantities indicate that the de-
pendence of the adsorption temperature Tads on the stripe attraction εstripe is slightly different
above and below the collapse transition.

in Fig. 9.9: compact conformations slightly flattened by the substrate. Every-
where else in phase space the overall conformation is clearly prolate. Since the
polymer as a chain has an intrinsic geometry that is much longer than wide and
thick the prolateness of extended conformations is intuitive and was found by
field theoretic renormalization group methods to be for flexible polymer chains
on regular lattices 〈S〉 = 0.541± 0.004 [67]. This is in agreement with the data
obtained here for the continuum model.

For εstripe = 1 and 4, above the freezing transition 〈b〉, 〈c〉 and 〈S〉 all increase
with temperature. Hence, the conformation here gets less spherical, less cylin-
drical and more prolate upon heating. For εstripe = 7, where one starts in
the maximal aspherical, but perfect cylindrical and prolate state, this is cer-
tainly different. The asphericity 〈b〉 decreases until the polymer desorbs. Then
increases again a little, but not at all to the extent it had along the stripes.
The prolateness 〈S〉 behaves the same. Only the acylindricity increases at the
recognition transition to attain a maximum in the AE phase. At the adsorption
transition is decreases again a little but increases at higher temperatures. This
maximal acylindricity was already facilitated to differentiate the AG phase from
the AE phase.
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Polymer Position

Finally, let us have a look at the adsorption transition via the observables in-
dicating it most clearly: the z-component of the centre-of-mass of the polymer
〈zcm〉 and the number of adsorbed monomers 〈ns〉. Figure 9.20 reveals some-
thing new compared to homogeneous and wider stripes: The dependence of the
maxima of d 〈zcm〉 /dT and the minima of d 〈ns〉 /dT that gives an estimate of
the adsorption transition temperature Tads of finite chains is not linear in εstripe

anymore. Rather the slope m in Tads = mεstripe + C increases from m ≈ 0.131
near εstripe = 0 to m ≈ 0.232 near εstripe = 7. Compared to that, for the ho-
mogeneous substrate in Fig. 8.1, the slope m in Tads = mεs is m ≈ 1.25 and
hence significantly higher. Some insight on this matter can be gained when con-

Figure 9.21: Two conformations just below the adsorp-
tion transition.

sidering how much a polymer
directly at/below the adsorp-
tion transition is influenced by
an increase in εstripe. For small
values of εstripe the stripe at-
traction is not strong enough to
force the polymer to sit centred
on top of the stripe and does
not deform it considerably (cf.
Fig. 9.21). Hence, only a small
fraction of monomers really would feel an increase in εstripe. For higher stripe
attraction above the collapse transition, conformations are typically extended
before desorbing and at least partially aligned along the stripes that are now
strong enough to considerably deform the polymer to lie on top of the stripes.
Consequently, an increase in εstripe has a larger effect if εstripe already is quite
large since it is “felt” by more monomers. For homogeneous substrates the
slope m in Tads = mεs is certainly larger, since an increase in εs affects every
monomer in the vicinity of the substrate.

This argument certainly also is valid for the surface potential of section 9.1, but
since the stripe potential was wider it was less clearly visible in the data and
the overall effect less pronounced.

9.2.3 Onset of the Recognition Microcanonically

Like already in Fig. 9.7, the microcanonical inverse temperature curves β(e)
are determined and presented in Fig. 9.23. Although the general shape looks
very much the same, in the interval 4.5 . εstripe . 4.9 violent differences oc-
cur. While for the wider attractive stripes the onset of the energy reordering
was only visible as a mild bending apart of the β(e)-curve, here a number of
very pronounced peaks arise that disappear again if the recognition takes place
outside the dotted regime in the diagram (Fig. 9.9). To understand the origin
of those peaks, one of the β(e)-curves (εstripe = 4.9) is isolated and shown in
Fig. 9.24 with insets giving exemplified conformations at several energies. The
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(a) εstripe = 1 (b) εstripe = 1

(c) εstripe = 4 (d) εstripe = 4

(e) εstripe = 7 (f) εstripe = 7

Figure 9.22: The canonical expectation values of the distance of the centre-of-mass of the poly-
mer to the substrate 〈zcm〉 and its temperature derivative and the same quantities for the num-
ber of surface contacts 〈ns〉 for the stripe potential of Eq. (9.2) for the three stripe attraction
strengths εstripe = 1, 4, 7.

left branch until e ≈ −5.4 is only matched by straight polymers with minor un-
dulations. Then a number of pronounced positive peaks occurs. The precision
of the peaks depends on the chosen energy binning (here: ∆e = 0.00485) and
the statistics. I will not attempt here to identify every single peak because this
would not only require higher statistics and finer binning and a lot of care, but
would also deliver very model dependent results. I rather describe the general
physical basis of the peaks.

At the positions of the peaks, the density of states Ω(e) exhibits positive jumps,
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Figure 9.23: Inverse microcanonical temperature β(e) for the stripe potential of Eq. (9.2) and
the nongrafted 40mer for a range of different stripe attraction strengths εstripe = 0, . . . , 7. In
contrast to the equivalent curves for wider stripes in Fig. 9.7, here several strong peaks appear
at the onset of the recognition transition.

i.e. at the energies of the peaks/jumps conformations become available that
were energetically forbidden for lower energies. The low energies below the
lowest-energy peak are only possible if every monomer is placed properly
within the stripe potential minimum. Conformations with a deviation like
the example configuration at e ≈ −5.15 that has one monomer leaving the
stripe potential minimum in order to allow its neighbours to form a monomer-
monomer contact are only allowed after the first strong peak. That this increase
in Ω(e) happens in such a discontinuous manner is due to the symmetry of the
system. The influence of a monomer leaving its position in the linear poten-
tial minimum is almost identical for every monomer. Thus, if deviations from
the straight alignment in the stripe potential get energetically allowed, they get
allowed for all monomers at once. This leads to a series of jumps until the
deformation from the straight conformation reaches a high enough degree to
allow for a continuous increase in energy.

For lower stripe attraction εstripe, the attractive strength is not yet sufficient
to induce the energy reordering transition at an expense of the monomer-
monomer energy. For higher εstripe on the other hand, it is so strong that
the energy-reordering happens at a considerably higher temperature close to
or at the recognition transition and close to the collapse transition of ad-
sorbed conformations such that there is no energy-dominated competition be-
tween monomer-monomer and monomer-stripe interaction anymore. For wider
stripes, it was possible that all monomers adapted positions in the surface po-
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Figure 9.24: Inverse microcanonical temperature β(e) for the stripe potential of Eq. (9.2) and
εstripe = 4.9 from the previous figure. Conformations of several energies are shown and illustrate
that the peaks are related to small deviations from the straight line conformation. The exact
positions of the peaks is just approximate here and depend on the histogram binning (here:
∆e = 0.00485).

tential minima and formed monomer-monomer contacts at the same time such
that the competition did not take place in such a discontinuous manner.

9.3 Similarities and Differences of Polymer Adsorption
onto Stripe Attractive Substrates of Different Stripe
Widths

A coarse-grained self-interacting homopolymer with 40 monomers was simu-
lated for two periodic stripe potentials of different stripe widths. The influence
of a quasi-continuous activation of the stripes on an initially weakly homoge-
neously attractive substrate onto the conformational behaviour was studied up
to strongly dominant stripe attraction for a range of temperatures and com-
pared with a homogeneously attractive substrate of varying attraction strength:

The overall phase behaviour in all three cases is comparable, but some differ-
ences occur that will be summarized here transition by transition (cf. Fig. 9.25).

• Adsorption Transition. For the adsorption transition temperature at the
homogeneously attractive substrate, Tads ∝ εs holds within the simulated
accuracy. For N = 40, the slope ∆Tads/∆εs ≈ 1.25 was found. This
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Figure 9.25: An overview over the phase diagrams of the 40mer near (from top to bottom) the
homogeneous attractive substrate (cf. Fig. 8.1), the wider LJ stripes of section 9.1 (cf. Fig. 9.2),
and the narrow sine-shaped stripe-potential of section 9.2 (cf. Fig. 9.9).
Inserted on the left are colour plots of the respective surface potentials. Those include the smooth
potential of Eq. (3.4) with εs = 1 on the top, the LJ stripes of Eq. (9.1) with εstripe = 3 in the
centre and the sine-shaped stripes of Eq. (9.2) with εstripe = 3 at the bottom.

does not seem to change much in nature for the wide LJ stripes, where
Tads = mεstripe + C holds within the measured accuracy. The constant
C is due to the homogeneous fixed background potential. Here, m =
∆Tads/∆εs ≈ 0.81 is the measured slope that is reduced in comparison
with the homogeneously attractive substrate to about 65% – considerably
more than the fraction of the substrate covered by the stripe potential.
The reason can be found in the fraction of monomers that on average
are placed on a stripe at the adsorption transition. Since the stripes can
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easily accommodate two monomers next to each other and the polymer
always moves to the stripes, this fraction stays considerably larger than
the fraction of the substrate covered by the stripe potential as long as the
gyration radius does not exceed the stripe width too much. Hence, the
adsorption transition depends on this ratio of gyration radius and stripe
width.

For the narrow attractive stripes, Tads = mεstripe + C is no longer valid
with fixed slope m. Rather, m increases from m ≈ 0.13 to m ≈ 0.23 from
εstripe = 0 to εstripe = 7, i.e., from 13% to 18.5% of the slope for the homo-
geneously attractive substrate. The reason for this overall reduced slope
is the small ratio of stripe thickness to gyration radius/polymer extension.
The change in the slope is moreover due to differences of the adsorption
of collapsed and extended coils (cf. Fig. 9.21). In collapsed coils only a
small fraction of monomers sits on top of a stripe at/below the adsorption
transition. The stripes are not strong enough here to always center the
polymer at a stripe and more importantly not strong enough to align it
along the stripes in a way to form more contacts with it. Both is what
happens at the adsorption of extended polymers resulting in an increased
slope there.

The first-order like adsorption for short extended chains found in chapter
7 is also confirmed for striped surfaces.

• Freezing Transition. The freezing transition is induced by the monomer-
monomer interaction and not influenced strongly by a striped surface po-
tential as long as the stripes do not suppress monomer-monomer interac-
tion at low temperatures. For the wider stripes, the freezing transition is
hardly affected for εstripe too weak to induce the energy reordering. The
freezing transition below the energy reordering is subsequently shifted
to slightly higher temperatures. This sounds counterintuitive when con-
sidering the reduced number of monomer-monomer contacts below the
energy reordering transition. The freezing here, however, is also a freez-
ing into the positions on top of the stripe that due to its high energy value
happens at an increased temperature compared to the freezing at low
εstripe.

For the narrow stripes, in principle the same happens. For small values of
εstripe, the freezing transition is hardly influenced. Below the recognition
transition/energy reordering, that fall together, the monomer-monomer
contacts get reduced and the monomer-stripe contacts increased. This,
however, gets extreme in the sense that monomer-monomer contacts get
reduced to zero and the freezing transition as it was before ceases to exist.
The “freezing” of the monomers onto the stripes at an increased temper-
ature exists and is either identical to the recognition/energy reordering
transition or signalled in a weak shoulder at the low-temperature side of
the transition. In that sense and in its nature as order-disorder transition
it can be interpreted as a freezing transition. In the current parametriza-
tion, it cannot clearly be separated from the recognition/energy reorder-
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ing transition and both transitions might merge completely for longer
chains.

• Collapse Transition. When a polymer is anisotropically spread out on
the substrate, the notion of a collapse gets a little difficult to handle.
While at the collapse of desorbed chains the diagonal elements of the
gyration tensor and its trace, the squared radius of gyration, all collapse
at the same temperature in the same manner, close to and at the substrate
they all behave differently. At the homogeneously attractive substrate,
despite of the different behaviour of 〈Qxx〉 = 〈Qyy〉 and 〈Qzz〉, a maximum
of d

〈
R2

gyr

〉
/dT exists and its T -position decreases with εs such that one

can conclude that the collapse temperature decreases due to the reduced
number of monomer-monomer contacts for adsorbed globules compared
to free ones.

For the wider stripes, apart from 〈Qxx〉 6= 〈Qyy〉 6= 〈Qzz〉 the same holds
true until the recognition transition occurs. For the narrow stripes even
outside the recognition transition the deformation by the surface is so
strong that the maximum in d

〈
R2

gyr

〉
/dT vanishes and the remaining col-

lapse signal is only visible in the fluctuations of 〈Qxx〉 and 〈Qyy〉. Also,
the deformation is so strong, that the collapse at the substrate discontin-
uously jumps to lower temperatures compared to the bulk collapse. For
both stripe potentials, the collapse usually restricts the polymer to one
stripe whereas it was able to stretch over to neighbouring stripes in the
extended phase.

Eventually, the collapse transition meets the energy reorder-
ing/recognition transition for stripe attractive substrates, where it ends.

• Layering Transitions. In a way the layering transitions are related to
the energy-reordering transition – the single-double layering transition
anyway. With increasing homogeneous surface attractiveness the energy
minimum shifts to less and less layers starting at a maximum of 4 layers
for N = 40. Whenever the number of layers is reduced by one, a transi-
tion is visible. The last transition to a single layer is the most pronounced
one. The single layer is the perfect “pattern matching” conformation for
the homogeneously attractive substrate and still exists above the freez-
ing transition. The striped substrates do not stabilize conformations of
intermediate layer numbers as well. At wider stripes, a layering transi-
tion into a deformed 2-layer conformation exists and the single-double
layering transition corresponds to the energy-reordering transition here
with the single layer conformation being elongated along the stripe. For
the narrower stripe, double-layer conformations never are stable and in
a transition regime where half-globular half-linear polymers exist, triple
layer conformations directly transform into “single-layer” linear confor-
mations.

• Recognition/Energy-Reordering Transition. Where for a homoge-
neously attractive substrate the single-double layering transition oc-
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curred, the energy-reordering occurs for the stripe-attractive substrate.
The narrower the stripes, the higher is the εs + εstripe value (assuming
εs = 1) here compared to the εs value of the homogeneous substrate.
For wider stripes the energy-reordering and the recognition transition,
where the polymer arranges onto a single stripe, are distinguishable for
stripe attraction strengths close to the onset of both transitions, but seem
to tend to a single process once the stripe-attraction is large compared
to the monomer-monomer attraction. For narrow stripes, both are not
clearly distinguishable anymore. In both cases, the recognition of the sur-
face pattern happens at clearly lower temperatures than the adsorption
transition. Noteworthy is also the onset of the energy-reordering at low
temperatures: For wider stripes this is a strong abrupt transition starting
like the single-double layering transition below the freezing transition.
For the narrow stripes, it occurs above the freezing transition with a co-
existence regime at lower temperatures where the polymer is partially
linear and partially compact. In a way, the energy-reordering transition
at the narrow stripes can also be related to a freezing since it is an order-
disorder transition with a corresponding maximum in the specific heat. It
substitutes the monomer-monomer interaction induced freezing at high
stripe attraction strength.



Chapter 10

Summary & Outlook

10.1 Summary

This thesis is concerned with the equilibrium conformational behaviour of a
single finite polymer in dilute solution near an attractive rigid substrate. The
system is modelled on a coarse-grained level, but with continuous degrees of
freedom without underlying lattice and data are obtained by Monte Carlo com-
puter simulations. Since my focus in interest is on generic properties, the ne-
glect of atomic details leaves a relatively small number of free parameters which
is what makes it possible to vary some of them in a systematic manner.

More precisely, the polymer is described by a chain of point particles that have a
fixed distance along the chain and next to a weak bending stiffness, a Lennard-
Jones potential between non-neighbouring monomers. The simulations cover
good and bad solvent conditions by temperature variation. The surface poten-
tial is first chosen to be completely homogeneous with a short-range attraction
that only depends on the distance to the substrate and subsequently two dif-
ferent stripe potentials are considered. Whenever the polymer is not grafted
with one end to the substrate, a steric wall some distance Lz away from the
attractive one constrains it.

Nongrafted Pseudo Phase Diagram. The discussion of the results starts with
the introduction of the pseudophase diagram of different conformations adapted
by a nongrafted polymer near a homogeneously attractive substrate. The pa-
rameters in the phase diagram are the surface attraction strength and the tem-
perature. I use the expression “pseudophase” here, because the system is of
finite size (N = 20 in this case) and hence phases in the strict thermodynamic
sense do not exist yet. Nevertheless, the parameter space can be divided into
qualitatively different regimes that are separated by more or less sharp transi-
tions. The diagram was constructed by analysing the canonical expectation val-
ues of a number of energetical and structural quantities and their temperature
derivatives. They had to be sampled over the whole range of surface attraction
strengths and temperatures of interest – a task requiring considerable amounts
of computer time and dedicated algorithms. Used are mainly the generalised
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ensemble methods of multicanonical sampling and parallel tempering. That the
pseudophase diagram found confirms in its main features results obtained with
a lattice model, supports the validity of the coarse-grained approach.

Microcanonical Analysis of the Adsorption Transition. With this conforma-
tional diagram in mind, a systematic microcanonical analysis of the adsorption
transition of the same system was performed. This was conveniently done for
the first time using parallel tempering data in combination with a multiple his-
togram reweighting method that directly gives an estimate of the microcanon-
ical inverse temperature. This inverse temperature displays a remarkable fea-
ture at first-order like phase transitions of finite systems with phase coexistence:
it is no longer a monotonously decreasing function of energy here, but ‘bends
back’ or increases with energy. This is equivalent to a convex energy regime
in its primitive integral, the microcanonical entropy. Such a backbending was
found at the adsorption transition of short extended conformations. Hence, ad-
sorbed and desorbed conformations have to coexist over the energy regime in
which the adsorption takes place. In analogy to a similar microcanonical be-
haviour found for the melting of metal clusters and since a polymer cannot be
adsorbed and desorbed at the same time, this phase coexistence is a dynamical
one connected to a latent heat necessary to convert one phase into the other.
The energy barrier of the latent heat also makes the presence of a hysteresis in
the corresponding dynamical process plausible. Interestingly, the adsorption of
collapsed chains is not signalled by such first-order transition-like features such
that they always adsorb continuously. The reason can be found in the higher
conformational and rotational rearrangement necessary for extended chains to
form surface contacts. On the other hand, extended chains also tend to form
more such contacts right below the adsorption. The strength of the convex in-
truder was studied systematically for varying surface attraction strength, chain
length and simulation box size. For long chains, the first-order like signals van-
ish and the known continuous nature of the adsorption transition is recovered.
Due to the logarithmic dependence of the entropy of desorbed chains on the
simulation box size, the backbending intensity quite severely depends on Lz.
This dependence is explicitly studied with the off-lattice model as well as with
exact enumeration data of a lattice model.

Grafted vs. Nongrafted. Those findings inspired a comparative analysis of
grafted and nongrafted polymers near substrates. This seems to fill a gap, be-
cause many studies on polymer adsorption have been performed for grafted
polymers, i.e. polymers permanently attached to the substrate at one end. Next
to the practical importance of grafted polymers, one reason for their dominance
in literature on polymer adsorption is certainly the fact that they are computa-
tionally and analytically easier to handle. This is because the phase space lacks
potentially desorbed conformations and the extra parameter of the distance of
the attractive to a constraining sterical wall does not need to be introduced.
Also some work on nongrafted polymers is around, but the work at hand seems
to be the only one that points out the quite distinct differences of both cases.
To this end, the microcanonical analysis that proved useful for the adsorption
transition of the nongrafted chain as well as the better established canonical
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analysis were applied over a wide parameter range to a polymer of twice the
length than before (N = 40) to get information for the collapse, the freez-
ing as well as the adsorption transition. The data for the two methods were
obtained from the same simulations, such that such a complementary analysis
seems to be a natural and useful thing to do. Yet, it is surprisingly rarely done in
literature. It turned out that qualitative differences only occurred at the adsorp-
tion transition. Once again, one has to distinguish the adsorption of extended
polymers from that of globular ones. In the microcanonical entropy of grafted
extended chains, no convex intruder is visible at the adsorption. Here even des-
orbed conformations are forced to stay close to the substrate and are deformed
by it in comparison to bulk polymers such that the necessary conformational
rearrangement upon adsorption is reduced. This also reduces the intensity of
the canonical signals at the adsorption transition of grafted extended chains.
Hence, already the adsorption of short extended grafted polymers is continu-
ous in nature in contrast to nongrafted polymers. While globular chains adsorb
continuously if they are nongrafted, no adsorption signals were found if they
are grafted. Certainly, the difference of the conformations on both sides of a
grafted globule adsorption cannot be large: the polymer is globular and pinned
to the substrate on either side. Nevertheless, a weak minimum in the fluctu-
ation of the number of surface contacts reveals that instead of an adsorption,
the polymer undergoes a wetting transition here. Another interesting result is
that this polymer model displays no backbending at the freezing transition de-
spite of its known first-order nature in the limit of long chains, but just a mild
shoulder. This was checked for a range of chain lengths. For LJ cluster or a
FENE polymer model where low-energy states can adopt a higher order, such
a backbending is known to occur for not too small system sizes. This transi-
tion changes its nature from apparently continuous for small sizes to first-order
in the thermodynamic limit, just the other way round as the adsorption of ex-
tended nongrafted polymers.

Patterned Substrates. This well described conformational behaviour can be
used as a basis to study how chemical patterns on substrates influence the poly-
mer adsorption. This study on surfaces with a very controlled structure can be
seen as a step towards a less idealised model, but mainly should be considered
as a study of pattern recognition. The patterns chosen here are two different
stripe attractive potentials of different widths that are superimposed with the
weakly homogeneously attractive surface potential studied before and succes-
sively increased in intensity. That way, the parameter regulating the attraction
strength of the overall substrate used to far gets now replaced by a parameter
regulating the stripe portion of the surface potential. There are already studies
present in the literature considering, e.g. the case of a single polymer in good
solvent adsorbing onto a stripe-attractive substrate, where – like in the present
study – the recognition transition is clearly separated from the adsorption tran-
sition. However, again the presence of the attractive monomeric self-interaction
leading to collapse and freezing makes the picture much richer and the direct
comparison with the conformational behaviour near a homogeneous substrate
allows for some instructive observations. Remarkable is the disappearance of
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the freezing transition below the recognition transition if the stripes are nar-
row enough to only accommodate a single row of monomers. For wider stripes
the freezing persists because monomer-monomer contacts can still be formed.
Another result that deepens the understanding of pattern recognition of a self-
interacting macromolecule in the presence of a heterogeneously attractive sub-
strate is the fundamental distinction between an energy-reordering transition,
where monomer-monomer and monomer-surface energies exchange their role
as dominant and subordinate energy contributions, and the recognition transi-
tion, where the surface energy gets strong enough to overcome entropy. For
the homogeneous substrate, the energy-reordering transition is identical to the
single-double layering transition. The conformations of single layers at the sub-
strate are here the “pattern matched” conformations to the strongly attractive
substrate. Slightly above the temperature of the energy-reordering transition,
the polymer leaves its position at the pattern to increase its entropy – the recog-
nition transition. But both transitions are only distinguishable close to the min-
imal surface pattern attraction strength that is strong enough to induce the
energy-reordering. If the surface/pattern attraction increases compared to the
monomer self-interaction, the signals of both transitions fall together. Interest-
ing also is that for the narrow stripes the onset of the energy-reordering tran-
sition is distinct from its onset for wider stripes in the sense that the crossover
from freezing to energy-reordering is accompanied by several energetical tran-
sitions in a coexistence regime. Several more observations were made in this
study. The introduction of shape parameters for instance allowed for a descrip-
tion of the relative shape anisotropy, prolateness, asphericity or acylindricity in
the principle axis system of the polymer and were compared with the corre-
sponding quantities in the simulation box frame. That way an improved char-
acterisation of the phases got feasible.

To conclude, I was able to fully characterise the conformational phase be-
haviour of a finite homopolymer near or grafted to a homogeneous or heteroge-
neous substrate over a range of temperatures and surface attraction strengths.
This was done with a canonical as well as a microcanonical analysis. Despite of
the huge amount of simulational data obtained for the different cases consid-
ered and the richness of transitions, an inherently consistent physical picture
was obtained. Such an understanding should be most valuable for all kinds of
experimental or theoretical work concerned with single polymer adsorption.

10.2 Outlook

Although the cases mentioned were rather completely discussed, during the
time span of a dissertation, usually with every answered question two new
ones arise. Possible and natural generalizations are an increase of the bending
stiffness that was only given a value here that condemns it to insignificance,
the introduction of more polymers that would add aggregation phenomena,
studying heteropolymers instead of the homopolymer and there are more pos-
sibilities. Also salt effects have been neglected here.
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All those generalizations that come into mind, however, involve the introduc-
tion of additional complications into the model that certainly might bring the
system closer to some real system one has in mind, but obscure a physical un-
derstanding of the competition of a few influences aimed at here.

The systematic approach and the microcanonical analysis of finite-size signals
restricted me to rather short chains. One might want to perform similar studies
for longer chains in some future work, but I expect the qualitative behaviour
presented here to be recovered. Apart from that, in a world of finite objects a
study of finite systems should be intrinsically interesting.
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Referat:

Untersuchungen zum statistischen Verhalten von Polymerketten auf anziehen-
den Oberflächen stellen ein spannendes Forschungsgebiet dar aufgrund des
Wechselspiels zwischen dem Entropiegewinn bei Ablösung von der ein-
schränkenden Oberfläche und dem Energiegewinn bei der Bildung von Ober-
flächenkontakten. Für gute und Θ-Lösungen und lange Ketten ist dieses Gebiet
recht alt und gut verstanden, doch gibt es immer noch eine Reihe von offe-
nen Fragen, insbesondere zu endlich langen Polymeren, die gerade im Zeitalter
zunehmender Miniaturisierung und experimenteller Auflösung Klärung bedür-
fen, aber nicht zuletzt auch von prinzipiellem Interesse sind.

Die vorliegende Arbeit beschäftigt sich mit dem Gleichgewichtsverhalten einer
endlich langen Polymerkette in Lösung in der Nähe einer anziehenden Ober-
fläche. Die Anziehungsstärke wird dabei systematisch variiert und der Einfluss
auf die Konformation des Homopolymers studiert. Dies geschieht im kanoni-
schen und im mikrokanonischen Ensemble, die im betrachteten endlichen Sys-
tem nicht identisch sind. Da die Lösungsmittelstärke des selbstwechselwirk-
enden Polymers durch die Temperatur variiert werden kann, gelang so eine
systematische Studie einer Reihe von Konformationsübergängen. Ob das Poly-
mer an einem Ende irreversibel mit der Oberfläche verbunden ist oder sich
zu einem gewissen Grad von ihr entfernen kann, spielt für insbesondere den
Adsorptionsübergang eine Rolle, die untersucht wird. Anschließend wurde
der Einfluss nicht homogener Oberflächenanziehung in Form von attraktiven
Streifenpotentialen auf der Oberfläche auf die zuvor beschriebenen Konforma-
tionsübergänge studiert. Die Natur der so forcierten Mustererkennung konnte
unter anderem abhängig von Streifenbreite und -stärke detailliert beleuchtet
und mit dem Verhalten an homogenen Oberflächen in Bezug gesetzt werden.

Sämtliche Daten wurden mit Monte-Carlo-Computersimulationen in general-
isierten Ensemblen und einem Polymermodell, das atomare Details vernachläs-
sigt, gewonnen.
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