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Abstract

A recurrent issue in MEG data analysis is the identification and elimina-

tion of unwanted interference within the recorded signal. Various strategies

exist to meet this purpose. In this thesis, two of these strategies are scru-

tinized in detail. The first is the commonly used procedure of averaging

over trials. Although being a successfully applied data reduction method,

averaging can eliminate valuable information and is only appropriate under

certain conditions. Alternative approaches aiming at single trial analysis,

however, are currently not readily available. In the first part of this disser-

tation, a compromise involving random subaveraging of trials is presented.

The principles of the new method are described and numerous examples

demonstrate its applicability in the context of source localization. As a

result, inferences about the generators of single trials can be drawn which

allows deeper insight into neuronal processes of the human brain.

The second technique examined in this thesis is a preprocessing tool

termed Signal Space Separation (SSS). The mathematical principles and

the rules for its application are investigated. It turns out that the SSS

method works reliably, even when the mathematical preconditions are not

fully obeyed. Furthermore, the utilization of the SSS method for the trans-

formation of MEG data onto the scalp surface is studied. The results are

discussed in comparison to those produced by inverse and subsequent for-

ward computation. It ensues that the latter approach yields superior results

for the intended purpose of data transformation.
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Symbols and Abbreviations

Symbols

B magnetic flux density (induction)

D electric flux density (dielectric displacement current)

dorig distance of sources to coordinate origin

dsen distance of sources to closest sensor

E electric field

H magnetic field

I electric current

J electric current dipole

L leadfield

M number of sensors

N number of sources

r sensor location

r′ source location

V scalar potential

ε electric permeability

µ magnetic permeability

ρ charge density

σ electric conductivity

φ measurement vector

φ̂ estimated measurement vector
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Abbreviations

BEM boundary element method

BOLD blood oxygenation level dependent

CSF cerebrospinal fluid

CT (X-ray) computer tomography

DC direct current

ECD equivalent current dipole

EEG electroencephalography

ERF event related field

FEM finite element method

fMRI functional magnetic resonance imaging

ISI inter-stimulus interval

MCG magnetocardiography

MEG magnetoecephalography

MMN mismatch negativity

MRS magnetic resonance spectroscopy

PET positron emission tomography

PSP post-synaptic potential

ROI region of interest

SNR signal-to-noise ratio

SPECT single photon emission computer tomography

SQUID superconducting quantum interference device

SSS Signal Space Separation

VSH vector spherical harmonics



Chapter 1

Introduction

1.1 Survey of brain imaging techniques

During the past decades, a number of brain imaging techniques has

been developed which enable the visualization of anatomical and func-

tional structures in the human brain. Quickly, they found their way into

medicine as well as cognitive neuroscience. Medical applications range over

tumor diagnostics and epilepsy surgery, for example. Especially functional

brain imaging advanced basic research on neuropsychological topics and ad-

dressed questions related to physiological and pathological brain processes.

This introduction will give a brief overview of different brain imaging

techniques in a non-exhaustive way. Summarizing the explanations pre-

sented by Jänke (2005), the working principles of the methods are outlined

shortly and advantages and drawbacks are contrasted.

As the first anatomical tool, X-ray Computed Tomography (CT) was

introduced in 1971. It was used to obtain three dimensional images by

passing highly focused X-ray beams through the brain and recording their

attenuation (Raichle, 2008).

Another means for studying brain anatomy is Magnetic Resonance

Imaging (MRI). The technique also known as Nuclear Magnetic Resonance

(NMR) had been applied mainly for research in chemistry so far. It relies

on the physical properties of protons. Their spins align in parallel when

3



4 CHAPTER 1. INTRODUCTION

exposed to a strong external magnetic field. Radio frequency pulses bring

the protons from equilibrium into an excited state. When they return to

the ground state, radiation is emitted whose intensity varies for different

tissue types. Due to its sensitivity to soft tissue, MRI produces much more

detailed images than CT.

The first methods to image brain functioning were Positron Emission

Tomography (PET) and Single Photon Emission Computer Tomography

(SPECT). Here, some radioactive molecules are administered which are

known to increase their concentration in metabolic active areas. The de-

tection of emitted gamma-radiation (i.e. photons) gives information about

metabolism processes, whereas morphology is represented only vaguely.

The major drawback of these techniques is that they are invasive, since

radioactive substances must be applied.

With functional MRI (fMRI) blood oxygenation level dependent (BOLD)

changes in metabolism can be made visible. In metabolically active brain

areas, the oxygen supply is increased. The BOLD contrast arises from the

fact that deoxygenated hemoglobin behaves like a little magnet. Owing to

the presence of iron, it is detectable by MRI. In oxygenated hemoglobin,

however, the iron is ’neutralized’, so it does not interact with the magnetic

field (Raichle, 2008). Compared to PET or SPECT, high spatial resolution

can be achieved with fMRI. However, all of these methods are based on

indirect measures of neuronal activity, implicating a temporal delay to the

observed parameters.

Studying brain processes more directly is possible with Electro- and

Magnetoencephalography (EEG/MEG). With these completely non-inva-

sive techniques, electric potentials or magnetic fields are measured, respec-

tively. They are generated by tiny currents in activated neurons and make

neuronal processes visible with millisecond time resolution. Due to method-

ological issues which will be discussed in chapter 2, the spatial resolution

is usually lower than that of PET and fMRI (Baillet et al., 2001).
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Figure 1.11 summarizes the properties of the functional brain imaging

techniques described. It relates spatial and temporal resolution and indi-

cates invasiveness by color coding.

Figure 1.1: Properties of functional brain imaging techniques described in

the text. Two additional methods are shown: Magnetic Resonance Spec-

troscopy (MRS) and invasive EEG (iEEG).

1.2 The scope of this thesis

One of the most powerful applications of MEG is the localization of

brain activity. Therefore, the neural mechanisms have to be understood

and electromagnetic processes have to be expressed mathematically. In

chapter 2, the biological basics of neuronal currents and the generation of

the magnetic signal are shortly described. An introduction to the technical

setup and operation of an MEG device is given. Furthermore, the physical

and mathematical background for modeling electric and magnetic prop-

erties of biological tissue is presented. Finally, the basic principles for the

solution of the forward and inverse electromagnetic problem are elucidated.

Since source reconstruction highly depends on the quality of the recorded

signals, the noise level is an important characteristic to describe the data.

1Modified from http://web.mit.edu/kitmitmeg/MEG Work 5.jpg (17.12.2011)
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If the signal-to-noise ratio (SNR) is too low, source localization becomes

impossible, and also moderate interference can impair correct source esti-

mation considerably. So the major concern of this thesis is the development

and evaluation of MEG data analysis methods for the separation of signal

and interference. On top of conventional filtering and averaging, different

strategies to refine and analyze the data will be developed and appraised.

Chapter 3 deals with the problems of averaging. All measured MEG

data consist of a combination of brain activity and external interference.

Elaborate filtering of raw MEG data as a first processing step usually serves

different purposes. Slow baseline drifts are removed and the frequency range

is confined to the interesting neuronal frequencies below 100 Hz (Smith et

al., 1990). In many cases only frequencies of about 1-30 Hz are considered,

which suppresses a lot of environmental interference at an early stage of

data analysis, for example 50 Hz power-line interference.

However, there is not only environmental noise in the data, but also

spontaneous brain activity which is not time-locked to any external stimu-

lation. Averaging is a strong data reduction method and an efficient way

to eliminate this ongoing activity in favor of evoked brain activity. Nev-

ertheless, there might be a great deal of information in the data that is

not phase-locked and gets lost during the averaging process. Moreover, the

brain’s responses to repeated stimuli are not identical. Induced responses

do not solely depend on the characteristics of the stimulus, but also on

the subject’s performance and psychophysiological state. The brain is al-

ways active and a stimulus can be regarded as a perturbation of ongoing

activity. So Laskaris and Ioannides (2002) point out that any possible inter-

actions between successive single trial responses, or between spontaneous

and evoked brain activity might be overlooked by averaging.

These considerations led to the development of a method to analyze the

data characteristics of single trials, which is described in chapter 3. With

the help of numerous simulations the range of miscellaneous applications

of the novel procedure is demonstrated.
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In chapter 4, the recently developed Signal Space Separation (SSS)

method will be investigated in detail (Taulu and Kajola, 2005). SSS is

a widely used preprocessing tool for MEG data having numerous appli-

cations, for example noise cancellation and head movement compensation

(Taulu et al., 2005). It is essentially based on a series expansion of the

measured magnetic field, which distinguishes uniquely between fields origi-

nating from neuronal sources and fields produced by external interference.

The mathematical conditions for convergence of the series expansion, as

well as the consequences of violations of these conditions will be scruti-

nized in this chapter.

In chapter 5, the SSS method will be employed for a more extended

version of data transformation. Going beyond head movement correction

and data transformation between different MEG devices, individual virtual

sensor arrays will be defined. The aim is to transform MEG data directly

onto the head surface for better comparability with EEG data, for exam-

ple. The principle of the approach and its limitations will be studied by

simulations.





Chapter 2

Theoretical fundamentals of

MEG

2.1 The physiological basis of MEG

This section is meant to give a short introduction into the neurophy-

siological mechanisms that give rise to electromagnetic signals outside the

head. It is merely an overview, a more detailed description is provided by

Hülshoff (2000) or Malmivuo and Plonsey (1995).

Each neuronal cell consists of many dendrites, the cell body, and an

axon and is connected to other neurons by synapses. Information is received

by the dendrites and relayed via the axon. Within a neuron, signals are

carried electrically, whereas information transfer between different neurons,

muscles, or sensory receptors takes place chemically. Inside a neuron at rest

there is a surplus of potassium ions (K+) and a lack of sodium ions (Na+).

Additionally, the cell has a resting potential of -70 mV compared to the

extracellular space. A schematic pyramidal cell of the human cortex is

displayed in figure 2.1.

When a signal from an axon reaches a synapse, this leads to an output

of some chemical into the synaptic cleft. This opens ion channels at the

adjacent neuronal cell and the ion flow builds up a post-synaptic potential

(PSP) across its membrane. The PSP can increase the potential difference

9
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Figure 2.1: Schematic pyramidal neuronal cell, modified from (Hämäläinen

et al., 1993).

between intracellular and extracellular space (inhibitory, hyperpolarizing),

or decrease the potential difference (excitatory, depolarizing). If an ex-

citatory PSP exceeds a certain threshold at the axon hillock, an action

potential is created in this cell and will be transported further through its

axon to other cells.

The action potential of about +30 mV activates the neuronal cell and

opens channels in the membrane to enable sodium ions to get in. A de-

polarization wave front travels along the axon. Compensation of electrical

charges is achieved through potassium ions flowing out, leading to repo-

larization. Due to the disturbed K+ - Na+ equilibrium, now potassium

ions have to be pumped into and sodium ions out of the cell. This pro-

cess of restoring the original ion distribution consumes energy and takes

some time. During this absolute refractory period no further signals can

be passed.

Both the action potential and the PSP cause intracellular current flow,

the so-called primary currents, and due to conservation of electrical charges

also extracellular secondary or volume currents can be observed. A large

number of simultaneous potentials (10.000-100.000) is needed to create an

extracranially detectable signal, because the single contributions are so

small.
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The action potentials are relatively short in time (about 1 ms), the de-

polarization and repolarization waves are traveling, and they produce two

opposite currents which can be seen as a quadrupolar current from a dis-

tance. For these reasons, the action potentials in different cells are rather

unlikely to occur synchronously. So the extracranial fields are mainly gener-

ated by the excitatory PSPs which are spatially less distributed and present

for about 10 ms. Thus, the apical dendrites of the cortical pyramidal cells

which are aligned in parallel are considered to be the principal generators

of MEG and EEG signals.

The center of these neuronal sources is modeled by an equivalent current

dipole (ECD), since the measured field patterns are similar to the field of

a current dipole, and it is a good approximation for a small source viewed

from a remote position (Sarvas, 1987). The currents flow perpendicular to

the cortical surface, so because of the convoluted structure of the cortex,

the orientations of the currents change. This is illustrated in figure 2.2.

Figure 2.2: (a) Coronal section of the human brain. (b) Different dipole

orientations because of convoluted cortex. (c) Tangential source produces

external magnetic field. (d) Radial source does not produce external mag-

netic field. (e) Magnetic field of a tangential current dipole. Modified from

(Vrba and Robinson, 2001).

MEG can only detect magnetic fields of dipoles lying tangentially to

the skull surface because these fields leave and re-enter the head whereas

the fields of radial sources do not. They are thus called magnetically silent
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sources. In fact, radial sources exist in exact spherical symmetry only, but

also in realistically shaped head models they produce signals five to ten

times smaller than tangential sources.

2.2 Recording of MEG

The measurement of biomagnetic signals is a challenging task, since the

magnetic fields due to neuronal activity are much smaller than the fields

of the surrounding environment. Figure 2.32 illustrates the different orders

of magnitude. Obviously, neuronal magnetic fields typically range between

fT and a few pT, which is one billion or one million times weaker than the

earth’s magnetic field of 50 µT, and still at least three orders of magnitude

smaller than the fields from external noise sources.

Figure 2.3: Comparison of magnetic field strengths produced by different

sources. Neuronal sources are marked with yellow, environmental noise is

indicated with red. Biological noise is settled in between.

Hence extremely sensitive detectors and elaborate noise reduction meth-

ods are required. Here, only a brief overview of the operation principles of

MEG is given. More detailed insight is provided for example by Hämäläinen

et al. (1993) and Vrba and Robinson (2001).

2Modified from http://web.mit.edu/kitmitmeg/MEG Work 5.jpg (17.12.2011)
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Currently, for measuring the tiny neuromagnetic signals, superconduct-

ing quantum interference devices (SQUIDs) are used almost exclusively.

The SQUIDs are coupled to small conductor loops, the so-called flux trans-

formers which consist of a pick-up coil and a coupling coil. The field change

perpendicular to the face of the pick-up coil induces a voltage. Since the

whole flux transformer is superconducting, this voltage causes a loss-free

current which produces a magnetic field within the coupling coil. This

magnetic field is detected by the SQUIDs.

The employed dc SQUIDs (direct current SQUIDs) consist of a su-

perconducting ring with two insulating layers, the Josephson junctions.

Electrons tunneling through the Josephson junctions show quantum inter-

ference dependent on the strength of the magnetic field. Little changes in

the magnetic field make the junctions behave like a resistor and so enable

the measurement of such tiny changes as produced by neuronal currents.

Both the SQUIDs and the flux transformers are superconducting and

have to be operated at very low temperature. They are assembled in an

insulating dewar which is cooled with liquid helium (4.2 K). Usually, the

entire MEG system is surrounded by a magnetically shielding chamber to

minimize environmental interference.

Today’s whole head MEG systems can comprise various pick-up coil

arrangements leading to different sensor types. The most common ones

Figure 2.4: Left: Magnetometer with a single pick-up coil measuring Bz.

Middle: First order axial gradiometer with two antiparallel pick-up coils

measuring ∂Bz/∂z. Right: Planar gradiometer with two antiparallel pick-

up coils measuring ∂Bz/∂x. Modified from (Hämäläinen et al., 1993).
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are displayed in figure 2.4. A magnetometer consists of a single wire loop

and is the most basic sensor. The combination of two or more loops with

antiparallel orientation is called gradiometer. In axial gradiometers the

coils are placed above each other, in planar gradiometers they are in the

same plane.

Gradiometers measure changes of the magnetic field along their latitude.

As the magnetic field of a dipole in distance r decreases with r−2, the

gradient of this field decreases with r−3. So depending on their baseline (the

distance between the two pick-up coils) gradiometers behave like spatial

highpass filters and damp signals from distant sources.

The MEG data used in the present thesis have been acquired by the

306 channel VectorView device of Elekta Neuromag Oy (Helsinki, Finland),

comprising 102 magnetometers and 204 planar gradiometers. It is shown in

figure 2.5 (a)3. Figure 2.5 (b)4 depicts the 102 sensor chips, each containing

one magnetometer and two orthogonal gradiometers.

(a) (b)

Figure 2.5: (a) Elekta Neuromag MEG system, (b) Arrangement of the

sensor chips.

3Taken from http://www.itnonline.com/sites/default/files/imagecache/node image/

photo article/meg side.jpg (17.12.2011)
4Taken from http://www.orasimedical.com/ visuals/gray meg cap.png (17.12.2011)
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2.3 Forward modeling

2.3.1 Electromagnetic laws

This section describes how an electrical current produces a magnetic

field. An extensive presentation of this can be found in the literature about

the basic concepts of electrodynamics, for example (Greiner, 1982). A short

and demonstrative introduction is given by Pfeifer and Schmiedel (1997).

The laws of electrodynamics are summarized by Maxwell’s equations.

They combine the findings of many scientists who studied the properties

of electrical charges and currents and the magnetic fields induced by these

currents.

∇D = ρ

∇B = 0

∇×E = −Ḃ

∇×H = J + Ḋ

Here, D denotes the dielectric displacement current, B the magnetic flux

density, E the electric field, and H the magnetic field. ρ is the charge

density, J is the current density, and the dot indicates time derivatives.

The relations between the fields and the flux densities are given by

D = εrε0E

B = µrµ0H,

where εx and µx are electric and magnetic permeabilities of matter (x = r)

and vacuum (x = 0). For biological tissue the magnetic susceptibility

χ = µr − 1 ≈ 10−6, thus the relative permeability µr ≈ 1 and it is

constant over the whole volume (Wolters et al., 2004). Hence, the tissue is

diamagnetic and transparent for magnetic fields (Smith et al., 1990).

Furthermore, in the case of neuronal currents, the considered frequen-

cies are below 2000 Hz. This means that the capacitive effect of tissue
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conductivity, the inductive effect, and the electromagnetic propagation ef-

fect are negligible (Wolters et al., 2004). It is appropriate to set all time-

derivatives to zero, resulting in the quasi-static approximation of Maxwell’s

equations. Only tissue resistivity is essential (Malmivuo and Plonsey, 1995):

∇×E = 0 ⇒ E = −∇V

∇×H = J ⇒ ∇×B = µ0J, (2.1)

where V is the electric potential.

Using Biot-Savart’s law (eq. (2.2)), the magnetic field of an arbitrary

stationary current density J at source location r′ can be computed. It

has been found out empirically from many detailed experiments and solves

Maxwell’s equation (2.1).

B(r) =
µ0

4π

∫
Ω

J(r′)× (r− r′)

|r− r′|3
d3r′ (2.2)

The integration volume Ω extends over the source space containing J. The

current density J consists of the primary current Jp, which reflects neuronal

activity, and the ohmic volume currents, which depend on the conducti-

vity σ.

J = Jp + σE

It has been shown that in an infinite homogeneous medium the total

current density can be replaced by the primary current density Jp, and that

σE does not contribute to the magnetic field (Sarvas, 1987).

2.3.2 Volume conduction

The Biot-Savart law cannot be applied to MEG or EEG forward model-

ing, though, because the conductivities within the head are inhomogeneous.

σ is not a constant value, but rather a tensor that depends on tissue type

and orientation. Thus, the magnetic field as well as the electric potential

are distorted by volume conduction and spread anisotropically. In order to

describe the field propagation through the head mathematically, a model
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Figure 2.6: Volume conductor models: Sphere model (left), BEM model

(middle), FEM model (right, modified from (Wolters, 2003)).

of the head as a volume conductor is necessary. The three most commonly

used models are shown in figure 2.6.

For the spherical volume conductor model, concentric spheres are fitted

to the head shape and different conductivities are assumed for brain, skull,

and skin. For MEG, mostly a single sphere with a constant brain con-

ductivity is sufficient, because the magnetic field outside the conducting

volume is independent of the conductivity profile σ = σ(r) (Sarvas, 1987).

The boundary element method (BEM) and the finite element method

(FEM) are common techniques to solve the electromagnetic forward prob-

lem with realistically shaped head models. Therefore, the various tissues

are segmented based on anatomical MR images.

In the BEM approach, the interfaces between regions of different con-

ductivities are represented by meshes. On the nodes, the fields are calcu-

lated in terms of basic solutions and form secondary sources. For MEG

and also for most applications of EEG, BEM models have turned out to

be sufficiently accurate (Gencer et al., 1998). Again, for MEG usually one

layer is enough, whereas for EEG at least three BEM layers are needed

because of the highly different conductivity values of brain, skull, and skin.

As a consequence, forward modeling is computationally less expensive and

source localization usually more accurate with MEG than with EEG.

For FEM modeling, the volume of interest is divided into volume ele-
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ments, and for each element a linear equation system is derived to calcu-

late local node potentials. The distinct conductivities of skin, skull, cere-

brospinal fluid (CSF), gray matter, and white matter can be taken into

account. In addition, it facilitates modeling of conductivity inhomogeneity

and anisotropy. So FEM modeling is particularly important in the presence

of tumors or holes in the skull after brain surgery.

Although it was a time-consuming procedure in the past, new algo-

rithms have been developed recently, which are able to speed up the com-

putations by a factor of more than 100 (Wolters et al., 2004). Furthermore,

with N being the number of nodes in the mesh, the computational com-

plexity of FEM scales linearly (O(N)), whereas the cost of computing the

BEM coefficient matrix is quadratic (O(N2)) (Gencer et al., 1998). This

makes FEM more appropriate when realistic volume conductor models with

high resolution are needed.

2.3.3 MEG forward equation

When taking into account volume conduction effects, in general, the

resulting differential equations do not have an analytical solution, and they

have to be solved numerically by iteration. Only for the highly simplified

case of spherical symmetry, an analytical formula of the magnetic field can

be given. An extended derivation is provided in (Sarvas, 1987), here only

the results will be summarized.

Assuming a single primary current dipole Jp at r′ with dipole moment

Q, it can be written with Dirac’s delta distribution as Jp = δ(r − r′)Q.

Using this, Biot-Savart’s law in equation (2.2) reduces to

B(r) =
µ0

4π
Q× r− r′

|r− r′|3
.

Incorporating volume conduction, the magnetic field outside a spheri-
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cally symmetric volume conductor is given by equation (2.3)

a = r− r′

F = a2r
(

1 +
a · r
a · r

)
B(r) =

µ0

4πF 2
(FQ× r′ − Q× r′ · r · ∇F ), (2.3)

where a = |a|, r = |r|, and the gradient of F is computed by the following

equation, (Grunwald, 1996).

α =
a2

r
+ 2a+ 2r +

ar

a

β = a+ 2r +
ar

a

∇F = αr− βr′

Equation (2.3) computes the magnetic field of a single dipolar source

at sensor position r. The total field of many sources is obtained by super-

position, so it can also be written in form of a matrix equation. Let N be

the number of sources within the volume Ω, and M the number of sensors.

Then


φ1

φ2

...

φM

 =


L11 L12 . . . L1N

L21
. . .

...
...

. . .
...

LM1 . . . . . . LMN

 ·

J1

J2

...

JN

 (2.4)

where the vector J contains the dipole amplitudes of N sources located

at fixed positions with given orientations. L denotes the leadfield matrix.

It involves information about the assumed volume conductor model, the

source configuration, and sensor geometry. The entries of L are scalar,

resulting from the projection of the magnetic field vector onto the sensor

normals. The n-th column of L reflects the field that would be measured

at the M sensor locations if only the n-th source was active. φ is the

measurement vector of the N superimposed sources.
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2.4 The inverse problem

In the previous section, the issue of evaluating the magnetic field of a

given source configuration has been discussed. This issue, known as the

electromagnetic forward problem, has a unique solution.

Now the inverse problem of finding the underlying sources of a mea-

sured magnetic field will be tackled. This is a fairly demanding question

since the inverse problem is inherently ill-posed. Even if the electric and

the magnetic field everywhere outside the head were known, a unique solu-

tion for the current dipoles would not exist (Hämäläinen, 1992). A source

model incorporating prior knowledge about the generators of the data, or

imposing additional constraints on the solution is required to solve the

electromagnetic inverse problem uniquely.

2.4.1 Dipole fitting

A very common source model is the ECD, as mentioned above. So, for

estimation of the generators of MEG data, a few current dipoles with given

initial positions and orientations are assumed. Based on the chosen forward

model, the magnetic field of these sources is computed and compared to the

measured data. Then the source parameters are altered in order to mini-

mize the norm of the difference between the measured and the estimated

field vectors.

‖φ− φ̂‖ → min

It is a non-linear least-squares optimization problem to determine the

coordinates and orientations of each dipole. Mathematically, dipole fitting

implies the solution of an over-determined equation system, that means the

number of unknowns has to be smaller than the number of equations. The

actual number of parameters depends on the dipole model used, which can

be demonstrated by the concept of the spatio-temporal dipole: A simple

ECD has six parameters for each sample point in time - three position

coordinates and three orientation vectors. For an interval of 100 sample



2.4. THE INVERSE PROBLEM 21

points, this are 600 parameters for the so-called moving dipole. The rotating

dipole has a fixed spatial position and variable orientation, which amounts

to a total of 303 parameters for the given time interval. Finally, the fixed

dipole has three spatial and two orientational coordinates for the complete

interval, and only a time-varying amplitude. This results in 105 fitting

parameters.

With today’s multichannel devices, the number of parameters is usually

no problem. In fact, a major drawback of this method is that the number

of sources has to be known before the optimization is started.

2.4.2 Distributed sources

Another approach to solve the biomagnetic inverse problem, and cir-

cumvent the question of how many sources are active, employs a distributed

sources model. Here, dipoles with fixed positions and orientations are as-

sumed everywhere in the brain, and only their amplitudes are estimated

when they are activated. The dipole positions can either form a regular

3D grid with orientations parallel to the coordinate axes, or the dipoles are

placed perpendicularly to the cortical surface, where the majority of MEG

and EEG generators are supposed to come from.

In either case, a highly underdetermined linear equation system is in-

volved, since the number of assumed sources N is usually much higher than

the number of measurement channels M (see equation (2.4), page 19). A

unique solution can only be found when additional constraints are imposed,

like for example maximum-likelihood approach, minimum norm approach,

or resolution optimization approach. Multiple priors can be incorporated

by the Bayesian framework (Hauk, 2004).

The widely used minimum norm criterion requires the solution to best

explain the data under the condition that the norm of the dipole amplitudes

is minimal (Hämäläinen and Ilmoniemi, 1994). So the problem that has to

be solved is the minimization of the following functional, see for example



22 CHAPTER 2. THEORETICAL FUNDAMENTALS OF MEG

(Mattout et al., 2006) and (Mattout et al., 2007):

Ĵ = min
{
‖C−1/2(LJ− φ)‖2 + λ‖WJ‖2

}
(2.5)

where C is the M×M data covariance matrix and W is an N×N weighting

matrix, which allows larger amplitudes for deeper sources and weaker su-

perficial sources. This is important because otherwise, due to the minimum

norm criterion, shallow sources would always be the preferred solution. The

regularization parameter λ tunes the relative importance of the accuracy

term and the prior term (first and second part of eq. (2.5), respectively).

The general solution of the minimization problem in equation (2.5) can

be expressed by equations (2.6) or (2.7).

Ĵ =
[
LTC−1L + λWTW

]−1
LTC−1φ (2.6)

Ĵ = (WTW)−1LT
[
L(WTW)−1LT + λC

]−1
φ (2.7)

The derivative of the functional in equation (2.5) with respect to J is shown

in appendix A.1, and the equivalence of the solutions (2.6) and (2.7) is

demonstrated in appendix A.2.



Chapter 3

Rating of trials by

Subaveraging

In the course of MEG source localization, the issue of averaging over

trials recurrently occurs. Although being a strong and widely used tech-

nique, averaging also involves disadvantages. This chapter is dedicated to

shed light on this matter, discuss some related problems, and point out a

novel method for data analysis.

Central element of the new approach is a compromise between averaging

and single trial analysis. The strengths and limitations of the method are

demonstrated by a series of simulations with different source configurations.

3.1 Introduction

Raw MEG data are a combination of brain activity, biological inter-

ference, and technical noise from outside. The signals that are not brain

related are widely suppressed by measuring in a magnetic shielding room,

filtering, and software noise cancellation. Two very common methods for

the suppression of external interference are Signal-Space Projection (SSP,

Uusitalo and Ilmoniemi (1997)) and Signal Space Separation (SSS, Taulu

et al. (2003), Taulu and Kajola (2005)). A digital highpass filter eliminates

possible baseline drifts, and by bandpass filtering the focus is put on a

23
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certain frequency range.

The brain signals consist of spontaneous activity and, in the case of

neurocognitive experiments, activity elicited by a stimulus. Spontaneous

activity is ongoing and can be measured permanently and without external

stimulation. Trying to separate the stimulus-related brain signals from

spontaneous activity is challenging, because both originate in the brain.

Stimulus-related activity can be distinguished between evoked and in-

duced activity. The difference is illustrated in figure 3.1.

Figure 3.1: Brain responses that are phase-locked to a stimulus can be

averaged. When there is a jitter in latency, averaging can completely cancel

the signal. Taken from (Tallon-Baudry and Bertrand, 1999).

Evoked responses have a fixed latency and are phase-locked to a stim-

ulus. The stimulus can either be external, presented visually or auditorily,

or it can be any response of the subject, like a button press or an eye

blink, for example. To compute the generators of the event-related field

(ERF), averaging has proved to be useful. It is a standard procedure in

data processing of many psycho-physiological MEG studies that has been

applied very successfully to suppress spontaneous brain activity in favor of

the evoked activity.

As can be seen in figure 3.1, induced responses have a variable latency
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and are not necessarily phase-locked, so averaging them might lead to an

attenuation. However, if the wave form of the brain response follows a

certain temporal course, pattern search algorithms have been suggested,

for example by Gath et al. (1985) or Geva and Pratt (1994).

3.1.1 Research about variability in brain signals

It has been shown that the brain does not always respond identically to

repeated stimuli (Ioannides, 2001), and there is evidence that there might

be a great deal of information in the data which gets lost during the averag-

ing process. So, Ioannides (2006) argues that heavy filtering and averaging

of the MEG signal might eliminate small transient activations and that raw

data should be altered minimally before source reconstruction.

For example, in an MEG study about the recognition of emotional face

expressions, Streit et al. (2001) found reduced ERF activity in patients with

schizophrenia compared to normal subjects, and hypothesized hypoactivity

in certain brain areas. Later it was shown that this reduced activation was

due to higher trial-to-trial variability in patients instead of lower activation

in each single trial (Ioannides et al., 2004).

An MEG study on the visual cortex examined the single trial variability

of the N70m response (Laskaris et al., 2003). Checkerboard pattern stimuli

of different sizes were used to elicit single trial activation dependent on

the stimulus size. Different types of evoked responses were found: A large

stimulus mainly induced a relative increase in brain activity time-locked to

the stimulus, whereas a small stimulus lead to phase resetting of ongoing

brain waves. Furthermore, the authors showed that post-stimulus brain

activation is modulated by the pre-stimulus state in a non-linear way and

that response variability is higher when stimuli are larger.

Not only the visual but also the somatosensory and auditory systems

have been investigated on a sub-average and single trial level. An MEG

study on the function of the somatosensory cortex revealed different re-

sponses in single trials to identical median nerve stimulations (Ioannides et
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al., 2002). The authors employed pattern analysis to the signal power of

single trials and found that the cortical responses fall into distinct clusters.

Liu et al. (1998) analyzed the M100 component in an auditory mismatch

negativity experiment. Focusing on the temporal features of the signals,

they show that monoaural stimulation leads to earlier activation in the con-

tralateral than in the ipsilateral hemisphere in about 2/3 of all single trials.

To separate ongoing and induced brain activity, the authors defined virtual

signals based on weighted averages of the real channels, which were par-

ticularly strong when the generators associated with the M100 peak were

active.

3.1.2 The objective of the new method

Although some current density estimates of single trials have been com-

puted, the primary focus of the previous studies was on the time course of

the observed signals. The concern of this chapter, in contrast, aims at

source localization. So, the method proposed here forms a new system-

atic approach to identifying neuromagnetic activation on single trial level.

Preliminary results have already been presented in (Schönherr and Maeß,

2009). With numerous simulations, the following hypotheses will be tested:

1. With the subaveraging method, it is possible to determine the number

of trials necessary for reliable source localization.

2. The method is able to group trials according to activated brain re-

gions, i.e. it is possible to find out, in which trial a certain brain

region was active.

The first hypothesis is tackled in section 3.4. If it is valid, the subav-

eraging method can provide valuable information for the planning of neu-

ropsychological studies, since an important question in the design of these

experiments concerns the number of stimuli that have to be prepared.

In section 3.5, the second hypothesis is addressed. Based on knowledge

about anatomy or the experimental setup, different source models can be
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tested. This means, the number and positions of assumed generators un-

derlying the measured magnetic field can be varied. With the subaveraging

method it can be investigated whether or not a single trial fits into the

proposed source model.

From these investigations, far-reaching conclusions can be drawn. If

there are only a few trials which do not fit into the source model, they can

be regarded as noisy. It will be shown that the results improve significantly

when they are rejected. If the majority of trials is not consistent with the

source model, the model could be wrong. But there is a case in between,

when the data set splits into parts. Many trials might be in accordance

with the source model, but a considerable fraction of the data set might also

show disagreement. In cognitive studies, this can happen when a subject

uses different strategies to solve a task throughout the experiment. Or,

in clinical context, this can be observed during the analysis of epileptic

spikes. In presurgical evaluation it is of particular importance to detect the

generators of these spikes exactly. The subaveraging method claims to be

able to deal with different source configurations in one data set.

3.2 Random subaveraging and localization

The subaveraging method can be divided into four stages:

1. Selection of target positions

2. Random subaveraging

3. Source localization

4. Inferential statistics

1. Selection of target positions: In the very beginning one has to

decide on the number and approximate positions of the sources presum-

ably underlying the measured data. Therefore, information from previous

MEG/EEG experiments of the same type can be used, as well as results
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from a similar fMRI study, or simply anatomical knowledge. Any informa-

tion that helps selecting target source positions is welcome.

2. Random subaveraging: Let nt be the number of trials that contain

the measured MEG signal evoked by identical stimulation of the brain.

From the total number of nt trials, subsets of n trials are considered, where

n ∈ {1, 2, 5, 10, 20, 50} in this thesis. For n > 1, ns subsets are drawn ran-

domly and without replacement (Hartigan, 1969), where the total amount

of possibilities is limited by

nt
n

. For n = 1, each trial occurs only once.

In the following simulations, nt = 200 and if not indicated otherwise

ns = 10000. Experiments which are not shown here have revealed, that the

results are identical when ns is higher. In fact, since ns should be constant

for all n, it turned out that a reasonable value for ns is about half of the

upper bound which is

200

2

 = 19900, here.

3. Source localization: The inverse problem is solved for each group of

subaveraged trials (n > 1), and for each single trial (n = 1). In the examples

presented in this thesis, sLORETA (Pascual-Marqui, 2002) is used. But

it can be replaced by various other inverse methods, like minimum norm

estimation (L2), minimum current estimation (L1), or equivalent current

dipole localizations.

The distributed sources model yields a certain amplitude of activation

for each location in the source space, and thus produces at least one local

maximum. The local maxima are classified, where the number of classes

equals the number of target positions (which have been defined in step 1).

After classification, the grid point with strongest activation in each class is

regarded as an estimated source position.

This procedure gives nt solutions for n = 1, and ns solutions for each

value of n > 1. The deviations between the estimated source positions and

the actual target positions form a distribution which allows inference about

the source model.
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4 Inferential statistics: The results are visualized in a single plot to

get an impression of the whole data set. The median, the 25%, and 75%

quartiles of the distance distribution are displayed as a function of n. Alter-

natively, separate histograms for each n display more detailed information.

Deeper understanding about the source model and single trials can be de-

rived from the figures. This will be discussed more specifically in line with

the examples (sections 3.4 and 3.5).

3.3 General setup of the simulations

A series of examples will show the potentials of the method described.

Therefore, simulations with an exactly known source configuration and ar-

tificial spontaneous brain activity have been performed.

The signals are constructed by a combination of two dipolar sources,

which vary in position, orientation, and amplitude. They are chosen from

a source space with 68424 dipoles. The dipoles form a sphere with a radius

of 6 cm, a resolution of 1 mm, and are arranged in pairs with tangential

orientations. This source space is also used for the inverse computations.

The pure dipole signals are contaminated by simulated spontaneous

brain activity. For that purpose, a less dense source space with a grid

resolution of 10 mm is built. 372 dipoles with random orientations are

distributed regularly within a sphere with 6 cm radius also.

Since realistic spontaneous brain activity is assumed to be spatially and

temporally correlated (Liu et al., 2010), this is also realized in the simula-

tions. Spatio-temporal correlation is achieved by making the amplitude of

dipole i at time t dependent on the mean amplitude of dipole i and its spa-

tial neighbors (denoted by i∗) at time t− 1. For each time instant, random

numbers z from a triangular distribution are assigned to the dipoles with

the arbitrary orientations. They represent their amplitude changes and are

always constrained to be in the range of ±2 nAm/ms. To ensure this range,

the triangular distribution was chosen. A mathematical expression is given
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in equation (3.1), where J̄i∗ indicates the mean amplitude over i∗.

Ji(t) = J̄i∗(t− 1) + z (3.1)

The simulated spontaneous brain activity is bandpass filtered at 3-30 Hz

and added to the pure dipole signals. The critical filter frequencies are

set to common values for the analysis of bioelectromagnetic signals. The

3 Hz highpass was chosen to ensure zero-mean for relatively short intervals

in time, and the lowpass of 30 Hz covers the main frequency range used

for ERF analyses. No external interference is incorporated, because as

mentioned in the introduction (section 3.1), many noise reduction methods

exist to suppress these. What is more, the intention is to separate between

spontaneous and evoked brain activity, rather than evaluate the inverse

method with respect to different noise levels.

In the following chapters the results of the different simulation exper-

iments are presented. The first series of examples examines the spatial

resolution of the described method, i.e. finding out the closest distance be-

tween two dipoles such that they can still be recognized as separate sources

(section 3.4). Based on this, in the next step two dipoles are placed in a rea-

sonable distance, and instead of simultaneous activation, they are switched

on randomly. In each trial only one dipole is active, and it will be analyzed

whether the dipoles can be related to the respective trials (section 3.5).

3.4 Simulation 1 - spatial resolution

Figure 3.2 displays the source positions of the first simulation series.

Always two sources are active at the same time. One of them is dipole 0. It

has a fixed position and points into positive z-direction. The second dipole

runs through six different positions, more and more approaching dipole 0.

Its orientation is either parallel or perpendicular to dipole 0, but always

tangential to the sphere. In the following table, the source parameters are

summarized, where α is measured between dipole 0, the center, and the

respective source position (1-6). d is the Euclidean distance of each source
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to position 0.

Figure 3.2: Source positions. Dipole 0 is combined with each of dipoles 1-6.

α x [mm] y [mm] z [mm] d [mm] orientation amp [nAm]

0 60.0 0.0 0.2 ↑ 20

1 180◦ -60.0 0.0 0.2 120.0 ↑ → 20/10/5

2 90◦ 0.0 -60.0 0.2 84.9 ↑ → 20/10/5

3 60◦ 29.7 -52.1 0.2 60.3 ↑ → 20/10/5

4 40◦ 45.8 -38.7 0.2 41.3 ↑ → 20/10/5

5 25◦ 54.4 -25.3 0.2 25.9 ↑ → 20/10/5

6 10◦ 59.2 -10.0 0.2 10.0 ↑ → 20/10/5

Whereas dipole 0 has a constant strength of 20 nAm, the dipoles at

position 1-6 have three different amplitude values. With this setup, the

results can be compared with respect to differences in

• position (i.e. distance)

• orientation

• activation strength.

The results of this first experiment series are displayed in the figures 3.3

to 3.6, as well as in appendix B.1 (figures B.1 to B.8).
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Parallel dipoles, 20/20 nAm: Figures 3.3 and 3.4 show the case of

parallel dipoles with equal strength. Just like dipole 0, also the second

dipole is oriented into positive z-direction and has an amplitude of 20 nAm.

Moving through positions 1-6, it comes closer to dipole 0 until they cannot

be resolved as two distinct sources anymore. This obviously happens at

position 5, as can be seen in figure 3.3.

Figure 3.3: Field distribution maps for parallel dipoles with 20/20 nAm.

Combinations of dipoles 1/0 (top), 4/0 (middle), and 5/0 (bottom), 200 tri-

als averaged. Left magnetometers, right gradiometers.

The diagrams in figure 3.4 show the median and the 25% and 75%

quartiles of the distribution of deviations from the target positions. For

positions 1-4 the source localization results converge nicely to the tar-

gets. Although single trial localization yields significant deviations, for

positions 1-3 already two, and for position 4 five randomly averaged trials

yield a deviation below 1 cm with a probability of 50%.

Only at positions 5 and 6, when the distance between the sources is
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Figure 3.4: Dipoles parallel, 20/20 nAm: distribution of deviations from

target positions as a function of n. The median of the distribution is drawn

with a solid black line, the area between 25% and 75% quartile is shaded in

gray. The dashed line at 10 mm deviation marks the deviation tolerance.

2.6 cm or smaller, source reconstruction fails. Merely one clear peak in the

middle between the sources is found and classified to target position 0 (see

figure 3.3, bottom). The broad distribution indicates that the other local
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maxima are noisy peaks which spread all over the source space.

Perpendicular dipoles, 20/20 nAm: A similar behavior can be ob-

served for perpendicular dipoles with equal amplitude of 20 nAm. The

corresponding field maps and diagrams are shown in appendix B.1, fig-

ures B.1 and B.2. A striking difference is that source localization still

works for the combination of dipoles 0 and 5. This means that dipoles in

close vicinity to each other are distinguished more easily when they have

different orientations.

Parallel dipoles, 10/20 nAm: Figures 3.5 and 3.6 display the results of

two parallel dipoles, with 20 nAm for dipole 0 and 10 nAm for dipoles 1-6.

Figure 3.5: Field distribution maps for parallel dipoles with 10/20 nAm.

Combinations of dipoles 1/0 (top), 4/0 (middle), and 5/0 (bottom), 200 tri-

als averaged. Left magnetometers, right gradiometers.
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Figure 3.6: Dipoles parallel, 10/20 nAm: distribution of deviations from

target positions as a function of n.

In principle, the results are comparable to those presented before. Only

the results of the weaker dipole converge more slowly to the target position.

Again, the results become worse, the closer the dipoles are. Although at

position 4 only one peak appears in the gradiometer display (see figure 3.5,

middle), source reconstruction still works for both dipoles (see figure 3.6).
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However, when the second dipole is placed at position 5 or 6, only the

stronger source can be found, with a slight bias towards the other source.

Perpendicular dipoles, 10/20 nAm: Figures B.3 and B.4 in appen-

dix B.1 illustrate the results of the simulation with perpendicular dipoles,

having amplitudes of 20 nAm (dipole 0) and 10 nAm (dipoles 1-6). Once

more, the advantage of different dipole orientations becomes evident, as

both dipoles 0 and 5 can be reconstructed. Yet, at a distance of 1 cm the

weak source vanishes and only the stronger dipole is localized.

Parallel and perpendicular dipoles, 5/20 nAm: The outcome of

the simulation with 20 nAm for dipole 0 and 5 nAm for dipoles 1-6 is also

presented in appendix B.1. Figures B.5 and B.6 show the results for parallel

dipoles, figures B.7 and B.8 for perpendicular orientations. The findings

are very much consistent with those described so far. The localization

results of the weak dipole converge still more slowly, whereas this dipole

has essentially no influence on dipole 0. In contrast to exerting a bias to

dipole 0, as in the cases before, here it is almost completely obscured at

position 4 already. Again, the source is easier to localize when it is oriented

perpendicular to dipole 0.

3.5 Simulation 2 - ratio variation

In the previous section, the method has been evaluated with various

dipole positions, orientations, and amplitudes. It turned out, that dipoles

at about 4 cm distance can be well localized, even when they are paral-

lel but only if their amplitudes do not differ too much. For the following

examination, the dipoles will have fixed parameters. They are placed at

positions 0 and 4, point into positive z-direction, and both have an ampli-

tude of 20 nAm. In figure 3.7, the source positions are visualized, the exact

coordinates can be looked up in the table on page 31.

Again, the data sets are built out of a combination of the pure dipole
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Figure 3.7: Source positions. The dipoles are parallel and have equal am-

plitudes of 20 nAm.

signals and simulated spontaneous brain activity. However, this time the

dipoles are not simultaneously active. Rather, in each of the nt = 200

trials, only one dipole is switched on. The allocation of dipoles and trials

is randomized, and the ratio of the dipoles varies between 50:50 and 90:10,

which is visualized in the following table.

dipole ratio in %

0 50 60 70 80 90

4 50 40 30 20 10

The following questions will be addressed by these simulations: How do

the different ratios influence the inference about the source model? Can the

ratio be discovered from the magnetic field data? Is it possible to find out

in which trial which dipole was active? If so, can the source reconstruction

results be improved by splitting the data set according to trials containing

the same dipole?

Ratio 50:50 Figure 3.8 shows the field distribution of all averaged trials

for equal proportions of both dipoles. Since the dipoles are parallel and

quite close, the two sources cannot be recognized in the magnetometer

map. Only the gradiometers show distinct peaks. In principle, the situation
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is similar to the first example in the previous section (parallel dipoles,

20/20 nAm). But the field amplitude is reduced by factor 2, because each

dipole is active in one half of the trials only. For comparison, see the field

map in figure 3.3 (page 32, middle: combination of dipoles 0 and 4).

Figure 3.8: Field distribution maps for dipoles 0 and 4 (ratio 50:50). Left

magnetometers, right gradiometers.

This matter of fact is also evident in figure 3.9, which depicts the out-

come of the subaveraging method. The convergence behavior rather resem-

bles that of the 10 nAm dipole in the third example of section 3.4 (parallel

dipoles, 10/20 nAm; see left column of figure 3.6, page 35).

Figure 3.9: Distribution of deviations from target positions as a function

of n.

So at first sight, the data would suggest a two-dipole source model,

whose amplitudes would be estimated too small. However, careful analysis

and a close look at the histograms reveal the actual situation. To discover

that the original dipole amplitude was stronger and which dipole was active

in which trial, the subaveraging method can be used with different target

positions.

Therefore, instead of searching for both sources simultaneously, the
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method is run two times in succession with only one target in each run.

The results are presented in figure 3.10.

Figure 3.10: Results of the subaveraging method using target positions

separately: Overall distributions and detailed display of the histograms for

n ∈ {2, 5, 10, 20, 50}, position 4 (top), position 0 (bottom).

The histograms form sharp bimodal distributions for increasing n, with

one peak at zero deviation, and another one at a deviation of 43 mm.

The latter nicely corresponds to the distance between the two source posi-

tions. The equal height of the peaks indicates an equal proportion for both

sources.

The next step is to find out which dipole was active in which trial.

Therefore, for each n, all corresponding ns subaverages are scrutinized.

The deviation from the target position of each subaverage is assigned to

the involved trials. Hence, in consideration of how often each trial occurred,

the deviation of each single trial is accumulated over all subaverages. In

the end those trials responsible for large deviations can be identified.
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This has been done for the two target positions above, and the result

is visualized in figure 3.11. The pictures show the deviation of the trials

with a horizontal line that is drawn to separate 50% of the trials with the

highest deviations. They do not fit into the actual source model and are

marked with dark gray.

Figure 3.11: Accumulated deviation of each trial. Trials with high devia-

tions are marked with dark gray. Hit rates are 88% for dipole 4 and 90%

for dipole 0.

In the simulations everything about the sources is known, so the trial

classification can be checked. It turns out that 88% and 90% of the trials

have been found correctly for dipole 4 and dipole 0, respectively. 15 trials

have a high deviation to both targets, which means that source localization

based on them almost always fails. They are probably too noisy to extract

any useful information.

As a last step, the method is run again with both targets separately.

But this time only those trials are included, that have been identified to

fit into the respective source model by the previous analysis. This means

that all trials that are marked with dark gray in figure 3.11 are omitted for

the respective target. On the left hand side of figure 3.12, the field maps of

the averaged remaining trials are displayed. Now both sources are clearly

visible, even in the magnetometer view.

On the right hand side of figure 3.12 the outcome of the subaveraging

method is depicted. Compared to the previous results, where all trials

had been used (see figure 3.10), a clear improvement can be noted. Now

the distributions have only one peak and converge quickly to the target

positions.



3.5. SIMULATION 2 - RATIO VARIATION 41

Figure 3.12: Field distributions and results of the subaveraging method

after trials which do not fit into the source model have been excluded. Top

row: dipole 4, bottom row: dipole 0.

Due to ignoring half of the trials, now there are fewer possibilities to find

enough permutations without repetition. Thus, the number of subaverages

has to be reduced, so ns = 4000 here5.

This example with 50:50 ratio of 20 nAm dipoles is very similar to a

case of 10 nAm dipoles which are active simultaneously in all trials. The

averaged signal would be identical, but with the subaveraging method it

is possible to distinguish between the two situations. Comparing the field

maps of figure 3.8 and 3.12, an increase of amplitude by factor 2 can be

noted in the latter. This happens, because only those trials corresponding

to the same source are picked. However, the amplitude change would not

happen, if the 10 nAm data set was split into parts. It could be processed

by the method in the same way, but the amplitude would stay constant.

This example shows that repetitive application of the subaveraging

method can provide deep insight into the structure of a data set. Con-

clusions about single trials are enabled through different possibilities of

analyzing and visualizing the results. This information helps improving

source analysis considerably.

5The limiting value is

nt

2

. For nt = 200, ns = 10000 subaverages were used. Since100

2

 = 4950, ns = 4000 here.
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Ratio 60:40 In the next example, the ratio is shifted from equal propor-

tions to 60% of the trials where dipole 0 is active and 40% where dipole 4

is active. The consequence is visible in the field distributions in figure 3.13,

mainly in the gradiometer map. Only the peak of dipole 0 appears, whereas

the signal of dipole 4 nearly vanishes.

Figure 3.13: Field distribution maps for dipoles 0 and 4 (ratio 60:40). Left

magnetometers, right gradiometers.

Figure 3.14 shows the result of the subaveraging method, where both

targets are given. The effect of the different ratios is clearly noticeable, as

the distribution of dipole 0 converges much faster than that of dipole 4.

Figure 3.14: Distribution of deviations from target positions as a function

of n.

However, again a deeper analysis is worthwhile to improve the conver-

gence and distinguish trials according to the generators. So, the procedure

of the example before is repeated. At first, the two sources are given as

target positions in independent runs. Figure 3.15 displays the results.

Interestingly, despite the relatively high ratio of 40%, dipole 4 is impos-

sible to localize. Still, the histograms have two peaks, but their heights are

far from the 60:40 ratio. Instead, the distributions are strongly dominated
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Figure 3.15: Results of the subaveraging method using target positions

separately: Overall distributions and detailed display of the histograms for

n ∈ {2, 5, 10, 20, 50}, position 4 (top), position 0 (bottom).

by dipole 0. Despite this, further analysis will reveal which trials are gen-

erated by dipole 4. Therefore, the deviations of each trial are computed

and shown in figure 3.16.

Figure 3.16: Accumulated deviation of each trial. Trials with high devia-

tions are marked with dark gray. Hit rates are 89% for both dipoles.

The deviations from target position 4 are almost three times as high

as for target position 0. This could indicate that dipole 4 is represented
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in little more than 1/3 of the trials only. 89% of the trials are classified

correctly to the targets. More specifically, this means that 107 trials out

of 120 could be assigned to dipole 0 (60% of nt = 200), and 71 out of 80

to dipole 4 (40% of nt = 200). 19 trials have been found to deviate a lot

from both target positions, which means that these are very noisy and not

useful for source localization.

In the final step, the dark gray trials of figure 3.16 are skipped. The field

maps in figure 3.17 show that again both target positions become promi-

nent, when the respective trials are discriminated. For the subaveraging

method, ns has to be reduced even more, because in case of dipole 4, 60%

of all trials are eliminated. Therefore, ns = 2500 for n ≥ 2 here6.

Figure 3.17: Field distributions and results of the subaveraging method

after trials which do not fit into the source model have been excluded. Top

row: dipole 4, bottom row: dipole 0.

The result of the method is shown on the right of figure 3.17. A nice

convergence behavior for both target positions proves, that the trials gen-

erated by dipole 4 have been successfully extracted.

So the subaveraging method is very useful when trying to find sources,

which are not visible in the averaged data at first sight. When from pre-

vious experiments or theoretical knowledge another source is required, the

method is able to find out whether or not it is there.

6From 200 trials, only 80 are left. Since

80

2

 = 3160, the number of subaverages is

set to ns = 2500.
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Ratio 90:10 The last three examples are summarized here, because in

principle they do not differ a lot. The results are discussed on the basis of

the extreme ratio 90:10. In appendix B.2, the figures corresponding to the

cases 70:30 and 80:20 are shown (figures B.9 to B.14, pages 98-100).

In the averaged data in figure 3.18, neither the magnetometer plot nor

the gradiometer display shows a hint of source dipole 4.

Figure 3.18: Field distribution maps for dipoles 0 and 4 (ratio 90:10). Left

magnetometers, right gradiometers.

Nevertheless, both source positions are given as targets in the subav-

eraging method. In figure 3.19, the results are depicted. Whereas the

localization results of dipole 0 converge quickly, the distribution of devia-

tions from position 4 stays broad, even at high values of n. The median

line ends clearly above the accepted distance of 1 cm, and not even the 25%

quartile reaches the dashed tolerance line.

Figure 3.19: Distribution of deviations from target positions as a function

of n.

With this outcome, target position 4 cannot be viewed as a real source.

So the small fraction of trials that has been generated by dipole 4 is simply

considered as outliers. At first, the subaveraging method is run again, solely
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with target position 0. The results are displayed in figure 3.20.

Figure 3.20: Results of the subaveraging method using target position 0

separately.

Then 10% of the trials that do not fit into this source model are ex-

cluded, and the method is rerun without them. The respective trials are

marked with dark gray on the left of figure 3.21. 15 out of 20 trials (10%

of 200) are found by the method correctly. The other 5 trials have a high

deviation from dipole 0, although they are not generated by dipole 4. They

are just noisy. On the right hand side of figure 3.21 it is demonstrated that

10% of the trials do not have an overwhelming effect. When the marked

trials are excluded from further analysis, the localization results improve

just very slightly (compared to figure 3.20). The impact is enhanced in the

examples shown in appendix B.2.

Figure 3.21: Left: Accumulated deviation of each trial. 20 trials with high

deviations are marked with dark gray. Hit rate is 75%. Right: Result of

the subaveraging method without the marked trials.

This example was set up such that the 20 trials generated by dipole 4

are placed in the first quarter of the data set. It imitates a real situation

where a subject has to get used to a task. In the beginning of the experi-

ment, different strategies are used. Later on, the subject decides upon one

strategy to solve the task and uses it until the end. The method is able
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to recognize a situation like this, where different sources might be incor-

porated. Trials with different strategies can be distinguished and one can

focus on the dominant part.

3.6 Summary and discussion

In this chapter, the development of a novel method has been described.

It is based on random subsampling and repeated source localization to en-

able inferences about single trials of MEG data. The variety of applications

has been demonstrated by numerous examples.

By simulations, the spatial resolution with different dipole orientations

and amplitudes has been investigated (section 3.4). It turned out that

with the chosen source configuration and the determined sensor geometry,

two dipoles with a distance of about 4 cm can be well distinguished. The

distance can be diminished to 2 cm, when the dipoles have perpendicular

orientations. These statements hold true, as long as the sources have almost

equal amplitudes. Two additional cases have been investigated, where the

ratio of dipole strength was 1:2 (10/20 nAm) and 1:4 (5/20 nAm). In the

latter simulation, the weak source could hardly be reconstructed.

However, the spatial resolution is not solely determined by the dipole

amplitudes and therefore by the signal-to-noise ratio. It is likely that a

saturation exists, and with still higher SNR, the results would not improve

anymore. Only a greater number of MEG channels could increase spatial

resolution then.

Another factor is the choice of the inverse method. It was sLORETA

here, which belongs to the family of minimum norm algorithms (L2). It

could be possible that an L1-method which produces clearer peaks instead

of smooth solutions would also lead to higher spatial resolution.

The inverse method is also relevant in regard to the noise in the data.

sLORETA assumes a Gaussian noise distribution, but as described in sec-

tion 3.3, the simulated spontaneous brain activity had a triangular distri-

bution. Thus, the inverse method does not fit perfectly to the noise model,
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which obviates that the localization results are too good, only because the

inverse algorithm knows too much about the noise structure. Still, there

is the question about how realistic the triangular distribution is. It can-

not be answered conclusively, because there is no perfect model to describe

individual spontaneous brain activity. If such a model existed, single trial

source localization would be easier to do. So it can only be argued heuris-

tically, that the model used here is in line with the temporal and spatial

correlation mentioned in the literature (Liu et al., 2010).

Overall, it can be summarized, that both hypotheses stated in sec-

tion 3.1.2 are confirmed. At normal noise levels quite few trials are suffi-

cient to achieve good localization results with errors below 1 cm. In most

examples, n < 10 subaverages are needed, but of course, this depends on

the concrete data set.

In section 3.5, it has been described, how source localization can be even

more efficient, when trials that do not fit into a proposed source model are

omitted. Different cases have been analyzed and they revealed that with

the subaveraging method it is possible to distinguish between data sets

containing a small fraction of noisy trials, or splitting into parts, where

different source models are appropriate. In this case, single trials can be

attributed according to the activated brain regions.



Chapter 4

Investigations on the

stability of SSS

In this chapter, the theoretical background of the Signal Space Separa-

tion (SSS) method is described. The underlying mathematical assumptions

will be stated and the central formula will be derived. Then the method’s

stability with respect to the violation of a crucial mathematical condition

is examined. Based on these findings, an extension of the applicability will

be made in chapter 5.

4.1 Introduction

The idea of SSS was first introduced in 2003 (Taulu et al., 2003). A

comprehensive coverage of this topic is presented in the dissertation thesis

of S. Taulu (Taulu, 2008) including among others the following publications:

Taulu and Kajola (2005) give a detailed technical description, and Taulu

et al. (2005) provide deeper insight into geometrical issues and introduce

different applications of SSS.

The method is principally based on a series expansion of the measured

magnetic field in terms of orthogonal, harmonic functions. They are the

essential element of the SSS basis. The entire sensor geometry is contained

within this SSS basis, hence the coefficients of the series expansion provide a

49
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device-independent representation of the magnetic field data. A very useful

consequence of the functions’ orthogonality is the reduced dimensionality.

Thus, field information can be expressed in a compressed form, which is not

possible in physical sensor space because of overlapping field components

(Taulu, 2008).

A variety of applications has made this method an important and widely

used tool in MEG data analysis. A complete survey of potential applica-

tions can be found in (Taulu, 2008). Here, only the most important features

are mentioned and will be utilized later in this chapter and in the next.

In the first place, measured magnetic fields can be decomposed uniquely

into parts originating from neuronal and environmental sources. So working

as software magnetic shield, SSS enables suppression of external interfer-

ence by a factor of more than 100. This is why SSS as well as its tempo-

ral extension tSSS (Taulu and Simola, 2006) have been implemented into

Elekta Neuromag Oy’s so-called MaxFilterTM software, and now belong to

the standard preprocessing routines in MEG data analysis.

Furthermore, the device-independent expansion coefficients can be com-

bined with SSS basis functions corresponding to various sensor geometries.

Therefore, MEG data can be transformed to a standardized sensor array,

which is particularly useful when comparing data of different measurement

sessions or data recorded with different MEG devices. In combination with

continuous tracking of a subject’s head position during a measurement,

time-dependent standardization of MEG signals can account for head move-

ments.

4.2 The series expansion

The derivation of the series expansion formula is based on minimal as-

sumptions about the geometry of sources and sensors, which only require

the sensors to be located in a source free volume. This is the fundamental

mathematical condition mentioned above. Using the quasi-static approxi-
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mation of Maxwell’s equations (see section 2.3.1, equation (2.1), page 16),

∇×B = µ0J ⇒ ∇× 1

µ0
B = J,

it follows from J = 0 and −∇×∇V = 0 that the measured magnetic field

can be written as the gradient of a scalar harmonic potential.

B = −µ0∇V (4.1)

The potential V of a conservative force is given by Poisson’s equation

which reads as follows in the electrostatic case:

∆V (r) = −ρ(r)

ε0

In the sensor volume without any sources, where the charge density is

hence zero (ρ(r) = 0), this equation becomes homogeneous and reduces to

Laplace’s equation.

∆V (r) = 0

For typical MEG sensor arrays it is convenient to solve this equation in

spherical coordinates, where r denotes the radial distance, ϑ is the polar

angle (0 ≤ ϑ ≤ π), and ϕ is the azimuthal angle (0 ≤ ϕ < 2π) of the

sensor location. The solution of Laplace’s equation in spherical coordinates

is calculated in detail, for example, in (Jackson, 1982) and it is summarized

in appendix C.1. The final result can be expressed as a linear combination of

spherical harmonics Ylm(ϑ, ϕ), which form a complete set of basic solutions

of Laplace’s equation.

V (r) =

∞∑
l=0

l∑
m=−l

αlm
Ylm(ϑ, ϕ)

rl+1
+

∞∑
l=0

l∑
m=−l

βlmr
lYlm(ϑ, ϕ) (4.2)

Here, the coefficients αlm and βlm are the multipole moments containing the

field information in compact, device-independent form and can be viewed

as generalized channels. The first double-sum of equation (4.2) converges

for sensor position r → ∞ and diverges for r → 0, i.e. it corresponds

to the potential of sources that are closer to the center of the coordinate
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system than the sensors. The second double-sum diverges for r → ∞

and describes the potential of sources further away from the center of the

coordinate system than the sensors. They will be referred to as internal

and external parts in the following.

Plugging eq. (4.2) into eq. (4.1) and evaluating the gradient, the vector

magnetic field is expressed as a series expansion using the modified vector

spherical harmonics (VSH) νlm(ϑ, ϕ) and ωlm(ϑ, ϕ). Taulu and Kajola

(2005) show this step shortly, in appendix C.2 it is demonstrated in more

detail.

B(r) = −µ0

∞∑
l=0

l∑
m=−l

αlm∇

[
Ylm(ϑ, ϕ)

rl+1

]
− µ0

∞∑
l=0

l∑
m=−l

βlm∇
[
rlYlm(ϑ, ϕ)

]
= −µ0

∞∑
l=0

l∑
m=−l

αlm
νlm(ϑ, ϕ)

rl+2
− µ0

∞∑
l=0

l∑
m=−l

βlmr
l−1ωlm(ϑ, ϕ)

(4.3)

Transformation of the modified VSH from spherical to Cartesian co-

ordinates (which is performed in appendix C.3) and projection onto the

sensor normals n yields the SSS basis vectors alm and blm.

alm(r) = −µ0∇

(
Ylm(ϑ, ϕ)

rl+1

)
|n = − µ0

rl+2
νlm(ϑ, ϕ)|n

blm(r) = −µ0∇
(
rlYlm(ϑ, ϕ)

)
|n = −µ0r

l−1ωlm(ϑ, ϕ)|n

Using this, a measurement vector containing the scalar magnetic field data

of N channels can be written as

φ([r1, . . . , rN ]T ) =

Lin∑
l=1

l∑
m=−l

αlmalm +

Lout∑
l=1

l∑
m=−l

βlmblm (4.4)

or using matrix notation

φ = Sx =
[
Sin Sout

] xin

xout

 . (4.5)

The vectors alm span the space Sin ∈ CN×(Lin+1)2−1, the vectors blm span

Sout ∈ CN×(Lout+1)2−1. They are the SSS basis matrices of the internal and

external parts, respectively. The coefficients αlm and βlm are incorporated

in xin/out ∈ C(Lin/out+1)2−1×1.
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In eq. (4.4), l = 0 is omitted because it is associated with magnetic

monopoles which do not exist. The expansion is terminated at orders Lin

and Lout because higher order terms would describe high spatial frequencies

and fine details of the magnetic field which practically cannot be measured.

First, the sensors are arranged with a certain distance, posing a limit to

spatial frequency resolution due to the sampling theorem. In addition, cal-

ibration accuracy of the device is confined. Calibration includes knowledge

of the exact location, orientation, and size of each sensor, the gain factor

of the detector coils, and for gradiometers also balance. For these reasons,

values of Lin = 8 and Lout = 4 have been suggested (Taulu et al., 2005).

Sin and Sout (i.e. alm and blm, respectively) are subspaces of the entire

measurement space. Although they are computed by orthogonal spherical

harmonic functions, they are not orthogonal themselves. But they are

linearly independent, and the angle between them depends on Lin and Lout

as well as on the accurate calibration of the device. A consequence of

the non-orthogonality is some overlap between the subspaces. So signals

generated outside of the sensor array can also be described by the basis Sin

and vice versa.

4.3 Stability of SSS-based movement correction

4.3.1 Introduction

For every series expansion, certain conditions for convergence must be

fulfilled. This also holds for the expression of MEG signals in eq. (4.4). In

the course of the derivation, the only assumption made was that sensors are

in source-free space, such that Laplace’s equation for the potential holds.

This means that a spherical shell containing the sensors is needed, where no

sources are allowed; similar to the annulus of convergence for the Laurent

expansion of a complex valued function.

The situation is illustrated in figure 4.1. The outer radius Rout is the

Euclidean distance between the expansion origin and the most distant sen-
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Figure 4.1: The source-free sensor volume is indicated by a green shell.

Neuronal sources are enclosed by the purple sphere, external sources have

to be outside of the green area.

sor. All external interference sources must be further away from the origin

than Rout.

Here, the more crucial point is the radius Rin. For accurate forward

modeling with a spherical volume conduction model, all neuronal sources

must be closer to the origin than any of the sensors. In principle, for each

realistic head position this is the case, since the head cannot penetrate

the dewar. However, when transforming data between different sensor po-

sitions, the same definition of SSS coordinates is required for initial and

target position. So when doing head movement correction, the center of

the expansion origin needs to be optimized because in the case of extreme

head movements the convergence criterion could be violated and unwanted

noise effects can occur.

For example, in figure 4.2 an extreme head movement from the back

to the front end of the sensor array is shown. For each individual case,

an expansion origin can be found, such that the condition of a source-free

sensor volume holds true. But for transformation of both head positions to

a standardized sensor array, a common origin for both cases is necessary.
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(a) (b)

Figure 4.2: Extreme head movement from (a) back to (b) front end of the

sensor array. A common expansion origin cannot be found unless several

sensors would also lie within the sphere and thus violate the convergence

criterion.

This turns out to be a challenging, sometimes impossible task, so aim of

the following investigations is to optimize the center of the series expansion

and scrutinize the consequences of a violation of the convergence criterion.

The results of this study have already been presented in (Schönherr et al.,

2010).

4.3.2 Methods

The first step of the analysis constitutes an algorithm to find the opti-

mized head origin. It is defined here as the center of a sphere enclosing all

sources while having minimized radius, and is found based on the anatom-

ical MRI. In principle, the choice of head origin is not that important as

long as the convergence criterion is fulfilled. However, in head coordinate

system, where the sources are fixed and the sensors are moving with respect

to the sources, a small sphere allows for larger head movements.

The sphere should not be confused with the volume conductor men-

tioned in section 2.3.2. The volume conductor is necessary for accurate

forward calculation, but plays no role for the SSS method. In contrast,

the sphere is required for defining the expansion origin and checking the

convergence criterion.

In order to imitate the violation of the convergence criterion produced
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by large head movements, instead of actually moving the relative position

of sources and sensors, the position of the origin is varied. It is shifted

Figure 4.3: The relative position of sources and sensors is fixed. Only

the position of the SSS origin is shifted by -3 cm to +3 cm along the

coordinate axes with respect to the optimized origin (0 cm). Due to the

different positions, different sensors violate the condition.



4.3. STABILITY OF SSS-BASED MOVEMENT CORRECTION 57

systematically from the optimized position along the coordinate axes, such

that a sphere enclosing all sources necessarily cuts few sensors. This is

shown in figure 4.3, where the inner skull and the sensor coils of an example

subject are displayed. The sphere is indicated with yellow and its center by

a blue dot. Sensors outside of the sphere are green, sensors that violate the

convergence criterion are marked with red. Their number increases with

increasing displacement, since the sphere expands in order to enclose all

sources.

Three example data sets from different subjects, which were exposed

to auditory, visual, and somatosensory stimulation are used (details be-

low). For each of them, MaxFilterTM (version 2.1.15) with head movement

correction is applied with all 19 SSS origins. The raw data are bandpass

filtered, averaged, and sources are localized using Elekta Neuromag source-

modeling software (xfit program version 5.5.18). The localization results of

MaxFilterTM -processed data using the optimized origin provide reference

source positions. By comparing the dipole fitting results of the shifted ori-

gins to those from the optimized origin, the effect of different SSS origins

on source localization is examined.

Auditory Data These data are taken from a mismatch negativity

(MMN) experiment, comprising a standard tone (1000 Hz) and four dif-

ferent deviant frequencies (1091 Hz, 1189 Hz, 1414 Hz, 2000 Hz). The

stimuli had a sinusoidal profile and a duration of 50 ms including 5 ms rise

and 5 ms fall time. A similar experiment has been conducted by Maeß

et al. (2007), where the experimental setup is described in more detail.

Inter-stimulus interval (ISI) was 0.5 s, and the tones were presented binau-

rally while subjects were watching a silent movie. The data were recorded

at 1000 Hz sampling rate, online bandpass filtered at 0.03-330 Hz, and

digitally bandpass filtered at 2-20 Hz before averaging. For the present

examination, the oddball response of one subject to the large deviant con-

dition (2000 Hz) is analyzed, using the N100 component at a latency of

100-130 ms after stimulus onset.
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In figure 4.4, a gradiometer butterfly plot is displayed, where channels

in the temporal regions are highlighted. The topography plot shows the

field gradients within the marked time interval and the sensor locations of

the regions of interest (ROIs).

(a) (b)

(c)

Figure 4.4: (a) and (b) Gradiometer butterfly plots of large deviant condi-

tion. (c) Gradiometer topography plot at 100-130 ms latency. Channels in

the left temporal region are marked with blue, right ROI with red.

Visual Data The visual evoked field of one subject is taken from an

experiment that was originally run to examine word processing. In this

experiment, words were presented on a screen, and the response to correct

or incorrect grammar was analyzed. For the intended purpose here, only

the word onset on the screen is attended, independent of the grammar

conditions. Raw data were recorded at 500 Hz sampling rate, online filtered

at 0.1-160 Hz, and digitally filtered at 2-20 Hz. 40 ms time shift between

the electrical trigger and the signal on the screen were taken into account.

After averaging, the first visual response at the latency between 60-90 ms

was analyzed (Golubic et al., 2011). Figure 4.5 shows the gradiometer



4.3. STABILITY OF SSS-BASED MOVEMENT CORRECTION 59

butterfly and topography plots, where a ROI was defined in the occipital

region and corresponding channels are marked with green.

(a) (b)

Figure 4.5: (a) Gradiometer butterfly plot. (b) Gradiometer topography

plot at 60-90 ms latency. Channels in the occipital region are marked with

green

Somatosensory Data Somatosensory activity of one subject was in-

duced by tactile stimulation of left and right index finger using a balloon

diaphragm driven by bursts of compressed air. A detailed description of the

pneumatic stimulation device is given by Mertens and Lütkenhöner (2000).

For each finger, one block of about 1000 stimuli was applied with an ISI

of 1 s and 10% variation to avoid habituation effects. Sampling frequency

was 600 Hz, and online lowpass filtering at 200 Hz and a digital bandpass

filter of 1-30 Hz were applied. The time course was corrected for the delay

between the electrical trigger and the arrival of the pressure pulse, as well

as the inertia of the stimulator. Mertens and Lütkenhöner (2000) report

a value of 49 ms for the device, however 52 ms were used here, which has

recently been measured by Lew et al. (2009). The raw data were averaged

and the time interval between 35-55 ms including the peak of the first tactile

component was analyzed (Lew et al., 2009). In figure 4.6, the gradiometer

butterfly and topography plots for both hemispheres are displayed. ROIs

have been defined and the corresponding channels are highlighted.
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(a) (b)

(c) (d)

Figure 4.6: (a) and (b) Gradiometer butterfly plots of right and left index

finger stimulation. (c) and (d) Gradiometer topography plots at 35-55 ms

latency. Channels in the left ROI are marked with cyan, right ROI with

magenta.

4.3.3 Results

Auditory Data Figure 4.7 shows the dipole fitting results, and the lo-

calization errors depending on the shift of the SSS origin for the auditory

data. As expected, the dipoles localize in primary auditory cortices.

Very prominently, the largest errors occur when the origin is shifted

along the x-axis. In particular, a displacement away from the dipole posi-

tion increases the error, so a shift into positive x-direction raises the local-

ization error of the dipole in the left hemisphere and vice versa. In order

to avoid localization errors above 5 mm, the expansion origin should not

be more than 25 mm away from its optimized position.

Regarding displacements along y- and z-axis, the errors stay below

2 mm, i.e. the results are stable with respect to these variations.
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(a) (b)

Figure 4.7: Results for auditory data 100-130 ms after stimulus onset:

(a) Fitted dipole positions with reference origin. (b) Localization errors for

SSS origins shifted along coordinate axes.

Visual Data In figure 4.8, the result for primary visual activation is

displayed. Here, shifting along the y-axis has the strongest impact, but

also the x-direction has some influence on the error. Again, a displacement

to the front, i.e. away from the dipole, increases the error. Also, the limit of

25 mm displacement should not be exceeded to prevent localization errors

higher than 5 mm.

(a) (b)

Figure 4.8: Results for visual data 60-90 ms after stimulus onset: (a) Fitted

dipole position with reference origin. (b) Localization errors for SSS origins

shifted along coordinate axes.

Somatosensory Data The results of the somatosensory data analysis

are shown in figure 4.9. In this case, both x- and z-direction play an

important role, whereas the influence of y-direction is insignificant. This
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indicates again a connection between dipole position and shift direction, as

observed in the previous examples. Also, the 25 mm displacement threshold

for localization errors below 5 mm is apparent again.

(a) (b)

Figure 4.9: Results for somatosensory data 35-55 ms after stimulus onset:

(a) Fitted dipole positions with reference origin. (b) Localization errors for

SSS origins shifted along coordinate axes.

In summary, a systematic increase of dipole localization errors with

growing distance of the SSS origin from the reference position can be ob-

served. The errors do not exceed 10 mm, but since they are compared to

the reference origin, they accrue in addition to the inverse method’s normal

localization error.

4.3.4 Discussion

The SSS method appears to be rather robust against violations of the

convergence criterion. Even if one third of all MEG sensors violates the

condition, the localization errors are moderately small. They stay below

10 mm in all examples.

However, the noise level of sensors which violate the condition is changed,

and the signal amplitudes of sensors further away from the origin become

weaker. The consequence is an increasing localization error as the origin

is moved away from the dipole position. This behavior was observed in all

three example data sets and is demonstrated in figure 4.10. The bar graphs

display the sums of gradiometer values in the respective ROIs and time in-

tervals for different positions of the SSS origin. For the auditory and the



4.3. STABILITY OF SSS-BASED MOVEMENT CORRECTION 63

(a) (b) (c)

Figure 4.10: Bar graphs with ROI gradiometer measurements of (a) audi-

tory, (b) visual, (c) somatosensory data for different head origins. (a) and

(c) origin shifted along x-axis, (b) origin shifted along y-axis. Colors corre-

spond to previously defined ROIs. (Somatosensory data of left hemisphere

for x = −2 cm is not displayed, since MaxFilterTM produced an error.)

somatosensory data, shift of the origin along the x-axis is shown, for visual

data shift along the y-axis. Clearly visible, the amplitude of left hemisphere

ROI sensors decreases when the origin is shifted to the right, and vice versa.

The amplitude of measurement values in the occipital region decreases as

the origin is moved to the front.

Despite the observed correlation between SSS origin and dipole localiza-

tion error, the influence is very small. This source of error is not significant,

compared to sophisticated forward modeling and solving the ill-posed in-

verse problem. So for the examined data from adult subjects there seems

to be little need to carefully determine the exact position of the expansion

origin based on anatomical MR images. Instead, it is sufficient to use the

center of a sphere fitted to the digitized head shape, which was in all three

examples less than 15 mm away from the optimized origin. This implies a

dipole localization error of 2 mm at maximum, which is clearly below the

tolerance value of 5 mm found at 25 mm displacement.

It should be noted, however, that during the analysis of children’s data,

optimizing the origin might become more important, because smaller heads

are more likely to move within the dewar. So, head movements should be

minimized and monitored over time to set the SSS origin in such a way

that as few sensors as possible violate the condition.





Chapter 5

Transformation of MEG data

In the previous chapter, the stability of the SSS method with respect

to violations of the convergence criterion has been demonstrated. It has

been shown that violations have only moderate impact on the data and the

criterion can be infringed to some degree. Making use of this finding, a

possible extended application of SSS will be discussed in the following.

Beyond usual head movement correction, MEG data are transformed

from the normal sensor positions of the device to completely new coil lo-

cations. Here, the idea is to place virtual magnetometer and gradiometer

sensors directly on the scalp surface, similar to EEG electrodes. In this

chapter, the benefits of this approach are investigated and the transforma-

tion results of two different methods are compared.

5.1 Introduction and motivation

The approach pursued in this chapter describes the transformation of

MEG data in a way that accounts for different head shapes and sizes. The

conjectured benefit of this approach is comparability of MEG data on sen-

sor level. In EEG, this is already given to a certain extent, because the

electrodes are attached to the head surface. Hence, equal electrodes have

comparable positions with respect to the underlying brain areas (Koessler

et al., 2009). EEG data analysis for groups of subjects is therefore often

65
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performed on sensor level (Jensen and Hesse, 2010). The assumption is

that MEG sensor space analysis (for example oscillatory or connectivity

analysis) would be improved, if the sensors were located directly on the

scalp surface, too. Thus, equal MEG sensors would record signals from ap-

proximately the same brain areas, in much the same way as EEG electrodes

do.

Two possibilities to transform biomagnetic signals have been suggested

(Wehner et al., 2008). One way is to solve the inverse problem and cal-

culate the generators of the data. Subsequently the forward field of the

reconstructed sources at the new sensors is computed. The other option

relies on the multipole expansion of the magnetic field without construc-

tion of an explicit source estimate. Several studies on both transformation

methods have been carried out, but no direct comparison has been per-

formed for MEG. Here, the approaches will be considered more deeply and

the results of them will be compared.

For MEG, the method based on source reconstruction has been applied

by Knösche (2002). He evaluated the algorithm, transforming simulated

and phantom data from individual to standard sensor positions. It turned

out to be quite robust against noise, even for large differences between the

sensor arrays.

Numminen et al. (1995) have also applied the first method, but in the

context of MCG data. They transformed MCG signals to a standard grid

form, and achieved extrapolated time courses practically identical to the

original ones.

Transformation of biomagnetic fields using a multipole series expan-

sion has been performed successfully by Burghoff et al. (1997). They have

applied the technique to MCG data and transformed the recordings of dif-

ferent sensor types to a virtual standard sensor system. It worked well

for magnetometers, first-order gradiometers with different baselines, and

second-order gradiometers.

A comparison of both methods has been carried out for MCG by Burghoff
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et al. (2000). They achieved good results with correlations between the

signal time courses above 90%. In their investigations, the outcome of

the method with source estimation involved was slightly noisier than the

multipole expansion.

Whatever method was used by the authors, the target sensor array was

very similar to the initial one. Coil alignment and sensor orientation were

generally retained. In contrast, placing new virtual sensors directly on

the head surface changes the situation significantly. The problem is that

although multichannel MEG devices with more than 300 channels exist,

they sample the magnetic field information rather scarcely. The vector

field spreads all over, but only one direction of the flux at comparatively

few locations is measured.

So, the intention of this chapter is to examine whether reasonable trans-

formation results can be obtained for virtual target sensors on the scalp.

This certainly depends not only on the sensor array but also on the sources

which produce the magnetic fields. Hence, the influence of different source

positions is analyzed by means of a simulation study. Furthermore, the

transformation results of the two methods mentioned above are compared.

5.2 Methods

5.2.1 The simulation setup

The simulation is executed with 100 dipoles which have unit strength

and random positions and orientations. They are placed inside a sphere

with 7 cm radius, because according to Taulu et al. (2005) this is a typical

distance for superficial sources. In figure 5.1, the dipoles are visualized

by red cones. They are enclosed by the blue outer skin surface which has

been obtained by segmentation and tessellation of the anatomical MRI of

a human head. The original device sensor array is displayed in green, and

the virtual sensor positions are indicated by black dots on the outer skin

surface. They are described in further detail in section 5.3.2.
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(a) (b)

Figure 5.1: Display of 100 random sources (red cones), enclosed by outer

skin surface (blue) with virtual sensor positions (black dots) and device

sensor array (green). (a) x-y-view, (b) y-z-view.

5.2.2 Analytical and SSS-based forward computation

Two different formulas are used to compute the forward solution for

this set of dipoles. The first one is the analytical solution for the spheri-

cal volume conductor (see equation (2.3), page 18), which is called Sarvas

formula in the following.

In addition, it is possible to compute MEG field distributions on the

basis of the SSS series expansion. This formula is also subject to spher-

ical symmetry, since the magnetic field is expressed in terms of spherical

harmonics. It will be referred to as Taulu formula (equation (5.1), page 69).

The derivation of the forward equation based on the multipole expansion

is presented by Taulu and Kajola (2005). Here, it is summarized to get a

brief overview about how it works. Starting with equation (4.3) (chapter 4,

page 52)

B(r) = −µ0

∞∑
l=0

l∑
m=−l

αlm
νlm(ϑ, ϕ)

rl+2
− µ0

∞∑
l=0

l∑
m=−l

βlmr
l−1ωlm(ϑ, ϕ),

the Taulu forward equation can be derived with the following expression

for the coefficients αlm and βlm:

αlm =

∫
Ω
λαlm(r′) · Jin(r′) dΩ

βlm =

∫
Ω
λβlm(r′) · Jout(r′) dΩ
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Here, Jin/out are given dipolar sources, λlm denote lead fields, and the

integration reaches over the source volume Ω.

With the vector spherical harmonic function defined by Hill (1954)

Xlm(ϑ, ϕ) =
−1√
l(l + 1)

[
mYlm(ϑ, ϕ)

sinϑ
eϑ + i

∂Ylm(ϑ, ϕ)

∂ϑ
eϕ

]
,

the lead fields can be written as

λαlm(r′) =
i

2l + 1

√
l

l + 1
· r′lX∗lm(ϑ′, ϕ′)

λβlm(r′) =
i

2l + 1

√
l + 1

l
·
X∗lm(ϑ′, ϕ′)

r′l+1

Now, since the forward field refers to neuronal sources, the external part

is omitted and only the internal part of the equation will be considered.

Using Dirac’s delta distribution for a current dipole at location q, Jin(r′) =

Q · δ(r′ − rq), the internal multipole moment gets the form

αlm =

∫
V ′

i

2l + 1

√
l

l + 1
· r′lX∗lm(ϑ′, ϕ′) · Jin(r′) dV ′

=
i

2l + 1

√
l

l + 1
· rlqX∗lm(ϑq, ϕq)Q.

This gives for the magnetic field vector the following series expansion

(equation (5.1)), which is called Taulu formula here.

Bin(r) = −µ0

Lin∑
l=0

l∑
m=−l

i

2l + 1

√
l

l + 1
· rlqX∗lm(ϑq, ϕq)Q ·

νlm(ϑ, ϕ)

rl+2
(5.1)

Using the notation of chapter 4, it can be split into the basis matrix

Sin and the corresponding coefficients xin.

Sin(r, l,m) = −µ0 ·
νlm(ϑ, ϕ)

rl+2

xin(l,m) =

Lin∑
l=0

l∑
m=−l

i

2l + 1

√
l

l + 1
· rlqX∗lm(ϑq, ϕq)Q

Theoretically, the series expansion would go to infinity but it is rather

terminated at Lin here. Examinations with real data have shown that

orders Lin = 8 and Lout = 4 are sufficient for the Elekta Neuromag R©

device (Taulu et al., 2005). It also does not make sense to take higher

orders, as explained in section 4.2. So the expansion is terminated and

approximates the actual situation with a certain accuracy.
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5.2.3 Two approaches to data transformation

As mentioned in the introductory section of this chapter, two methods

of transforming MEG data between sensor arrays are investigated. One is

based on the series expansion of the magnetic field in terms of spherical

harmonic functions. The other one relies on the solution of the inverse

problem and the forward calculation using the estimated sources. The

methods are described more precisely in the following.

SSS-based data transformation Noise suppression and movement cor-

rection are well known applications of MaxFilterTM . Especially the latter

is an important feature, because the MEG sensor array is rigid and the

subject’s head can move relative to the sensors. This can distort the data

and complicate correct source localization considerably. By monitoring the

head position throughout the measurement, for each sample a new basis

matrix S can be computed. The whole geometry information about the

relative position of the head and the sensor array is contained in this basis

matrix. Using equation 4.5 from chapter 4 (page 52), device-independent

multipole moments x̂ are obtained by

x̂ =

 x̂in

x̂out

 = S†φ,

where φ is the vector of measured MEG data and S† denotes the pseudo-

inverse of S (Taulu and Kajola, 2005). The multipole moments represent

the series expansion coefficients and constitute an equivalent representation

of the measured magnetic field data.

Noise cancellation is simply done by omitting the external part, so the

biomagnetic signals are reconstructed by

φ̂in = Sinx̂in.

The transformation of the MEG data to another sensor array can be

realized by simply replacing Sin with a new basis matrix S∗in comprising

the actual or virtual new coil positions and orientations. Then the new
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field vector φ̂∗in is computed by the product of the new basis matrix and

the estimated coefficients.

φ̂∗in = S∗inx̂in

This transformation of MEG data to a standardized sensor configuration

is the principle of SSS-based head movement correction. In this way Max-

FilterTM can be utilized to match MEG data recorded in different mea-

surement sessions or on different days. Furthermore, it allows converting

data between different types of detector coils, so even recordings of different

devices can be compared.

Inverse and subsequent forward calculation The basis for this method

is equation (2.4), page 19.

φ = L · J

From the combination of the current density vector J and the measure-

ment vector φ through the leadfield matrix L, an estimated current density

Ĵ can be calculated, for example, by a minimum norm algorithm (see sec-

tion 2.4.2). Using a new leadfield matrix L∗, the data vector φ̂∗ for different

sensor positions is calculated.

φ̂∗ = L∗ · Ĵ

The source localization method employed for the computations in this

chapter is eLORETA (Pascual-Marqui, 2007). It is a distributed sources

approach to estimate the positions and orientations of the generators of

the data. Source space is a sphere with 11476 dipoles, arranged in pairs of

two orthogonal, tangential dipoles with 5 mm grid resolution. The dipoles

fill the whole volume and their number is very high in order to explain the

data as accurately as possible. A single sphere is used as volume conduction

model.
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5.2.4 Comparison of field vectors

In the following, the magnetic field vectors obtained by forward compu-

tation with the different formulas (see 5.2.2) will be termed Sarvas forward

field or Taulu forward field, respectively. The field vectors computed by

transformation are termed transformed field. Two different comparisons

will be performed:

• comparison between Sarvas forward field and Taulu forward field (sec-

tion 5.3)

• comparison between the transformed fields (by SSS-based transfor-

mation or by inverse and subsequent forward computation) and the

different forward fields (Sarvas and Taulu forward fields) (section 5.4)

The first comparison shall analyze, how exactly the fields of the dipolar

sources can be computed by the Taulu formula, i.e. how fast the series

expansion converges towards the solution of the Sarvas formula.

In the second comparison, the results of the different transformation

methods are contrasted.

For comparing the field vectors, some useful measures to quantify their

similarity are required. Lew et al. (2009a) have introduced several error

criteria, which are modified here a little bit in order to get meaningful

values in the range between -1 and 1. They are defined as follows.

The first one is the magnification factor (MAG) indicating changes in

amplitude. In principle, it is the ratio of the Euclidean norm of a vector φ

and a reference vector φref .

MAG =
‖φ‖
‖φref‖

− 1

With this definition, −1 ≤ MAG < ∞. For MAG = 0 both fields have

equal strength, for MAG < 0 the reference field is stronger and vice versa.

Since the magnification factor is insensitive to differences in the topog-

raphy, the second figure of merit is the relative difference measure (RDM).

It computes the norm of the difference between the two normalized vectors.
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It is insensitive to deviations in amplitude, but it is a very useful measure

to distinguish between the topographies.

RDM =
1

2

∥∥∥∥ φ

‖φ‖
−

φref
‖φref‖

∥∥∥∥
It holds that 0 ≤ RDM ≤ 1, so different vector orientations can be discrim-

inated. For parallel vectors RDM = 0, for antiparallel vectors RDM = 1,

and for orthogonal vectors RDM =
√

2/2.

5.3 Results of the forward computations

5.3.1 Original sensors

In the first part of the simulations, the forward fields of the 100 sources

at the original device sensor array are computed. The Sarvas forward fields

are used as reference solutions, and the results of the Taulu formula with

different expansion orders Lin are compared to them. Figure 5.2 depicts

the MAG and RDM values as a function of Lin. In the figure, the color

coding indicates the distance of the sources to the expansion origin dorig.

The lines are green for dorig < 4 cm, yellow for 4 cm ≤ dorig ≤ 6 cm, and

red for dorig > 6 cm.

Figure 5.2: MAG and RDM values as a function of Lin at original de-

vice sensor positions. The distance between the sources and the origin is

indicated by different colors (see text).

For all sources, the series expansion converges quite fast to the Sarvas

solution. The proposed order Lin = 8 is sufficient to achieve a zero MAG
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error for both sensor types. Also the RDM error is zero for sources with

dorig < 6 cm. For more superficial sources, the RDM value grows up

to 0.2 at Lin = 8. For gradiometers, the errors are a bit larger than for

magnetometers.

5.3.2 Virtual scalp sensors

For the definition of the virtual sensor coils it is very crucial to obey

the requirement of a source-free sensor volume. The black dots in figure 5.1

(page 68) indicate the positions of 1014 magnetometers and 2028 orthogonal

planar gradiometers. These positions are simply the nodes obtained from

the tessellation of the outer skin surface. They are not closer than 8 cm

to the expansion origin, keeping a distance of at least 1 cm between the

sources and the virtual sensors. The sensor normals are radial. Due to the

large amount of detector coils, a dense spatial sampling is provided.

In figure 5.3, the Taulu forward fields with different expansion orders are

compared to the Sarvas fields. For the magnetometers the series expansion

converges fast again. But for the gradiometers a higher expansion order

is necessary for good agreement, especially for the sources corresponding

to the red lines, which are more than 6 cm away from the origin. For the

sources closer to the origin than 6 cm, Lin = 8 still yields an absolute MAG

error below 0.1, only the RDM value rises up to 0.2.

Figure 5.3: MAG and RDM values as a function of Lin at virtual scalp

sensor positions.

The set of virtual sensors is in a comparably short distance to the brain
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sources. Therefore, the magnetic field distributions produced by the nearby

sources also occupy higher spatial frequencies. Consequently, the series

expansion converges more slowly than for the original sensor geometry.

It is an interesting observation that the RDM and MAG errors are

higher for gradiometers. This can be explained by the fact that gra-

diometers in principle consist of two magnetometer coils. Their values are

weighted according to the baseline and combined to obtain the gradient of

the magnetic field. Thus, the approximation errors of both coils accumulate

and result in higher values for the gradiometers.

5.4 Results of the transformations

5.4.1 Data transformation based on SSS method

The helmet-like shape of the original sensor array covers the upper

part of the head very well, but only about 60% of the full sphere (Wilson,

2004). Since the device has no coils on the bottom, there is no information

available about the magnetic field there at all. Therefore, estimation of the

field distribution for the lower part is avoided by constructing the virtual

sensor array in a helmet-like shape as well. So, in addition to the constraint

of 8 cm minimum distance to the origin, no virtual sensors on the bottom

are allowed. Only nodes with z > −0.07 m represent virtual coil positions

(see figure 5.1, page 68). Otherwise strong artifacts would occur at the

respective sensors and the errors would become extremely large.

Because the simulation is done for brain sources only, the field trans-

formation is performed based on the series expansion using Lin = 8 and

Lout = 0. The transformed fields are analyzed from different points of view.

First, they are compared to the Sarvas forward fields at the virtual

sensors. This reveals the difference between the computed field distribution

and the one that would have been measured if it was technically possible.

It shows the difference between the transformed fields and the theoretically

measurable fields at the virtual sensor positions.
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Second, the transformed fields are compared to the Taulu forward fields.

It has been shown in the previous section (see figure 5.3), that the Taulu

forward fields at Lin = 8 do not describe the field distributions on the

head surface accurately enough. The results shown there imply, that data

transformation from device to virtual scalp sensors goes along with an in-

accuracy due to the expansion order. Since the new sensors are moved

closer to the head, spatial frequencies that are initially not in the data be-

come relevant. So, the objective of this comparison is to analyze whether

the errors introduced by transformation are caused by the missing spatial

frequencies alone, or if other reasons play a role, also.

In figure 5.4, the absolute MAG errors and the RDM errors of the

gradiometer comparisons are visualized. As discussed above, they are con-

sidered to be more sensitive than the magnetometer errors. Therefore, they

constitute a worst case scenario and provide upper limits for the errors.

Figure 5.4: Absolute MAG and RDM errors for comparison of SSS-based

transformation with Sarvas forward fields (top row) and with Taulu forward

fields (bottom row). Only the gradiometer values are shown.



5.4. RESULTS OF THE TRANSFORMATIONS 77

The values are displayed for each source as a function of its distance to

the origin (dorig) as well as its distance to the closest original sensor (dsen).

The colored bar on the bottom of each image encodes the distance between

the sources and the origin, according to the colors used in figures 5.2 and 5.3.

For reasons of visibility, the |MAG| and RDM errors are color-coded and

the dot size is scaled to be proportional to the square-root of the values.

Only errors smaller than (|MAG| < 0.0016, RDM < 0.0016) are indicated

by tiny black dots, because otherwise they would be invisible.

The agreement between the forward and the transformed fields of the

100 dipoles depends considerably on their position. Obviously, the trans-

formation works very well for deep sources, close to the expansion origin,

and becomes worse as dorig increases. So, for dorig < 4 cm both |MAG|

and RDM errors are close to zero. However, for dorig > 6 cm they exceed

0.3 and 0.2, respectively.

But also the source positions relative to the original sensors play an

important role. When the sources are more than 5 cm away from the

sensors, the |MAG| values are below 0.1, and the RDM errors are about

0.2. The errors become larger for decreasing dsen.

These observations demonstrate that both criteria, dorig and dsen, have

an influence on the results. So there are very superficial sources, yet far

away from the closest sensor, having a smaller error than deeper sources

which are closer to the sensor array.

Finally, the comparison with the different forward fields shall be con-

sidered (upper and lower row of figure 5.4). Regarding this comparison, no

substantial difference can be observed. For a couple of sources, the trans-

formed field vectors show slightly better agreement to the Sarvas forward

field, reflected predominantly in the MAG errors. But there are RDM

errors which are smaller for the comparison with the Taulu forward field

for some sources, as well.
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5.4.2 Data transformation by inverse and subsequent for-

ward computation

Figure 5.5 depicts the results of the transformation based on source lo-

calization and forward computation using the reconstructed sources. Here,

the transformed field vectors are compared to the Sarvas forward field only,

because this method has nothing to do with the series expansion.

Figure 5.5: Absolute MAG and RDM values for comparison of transforma-

tion by inverse and subsequent forward computation with Sarvas forward

fields. Only the gradiometer values are shown.

The general observation of the dependence on dorig and dsen is apparent

again. But most strikingly, the agreement between the transformed and

the forward fields is much better than in the previous analysis, where SSS-

based transformation was used. This can be seen clearly in the absolute

MAG values, which are below 0.1 for almost all sources. Only for the most

superficial sources with dorig ≈ 7 cm and dsen < 4 cm, |MAG| > 0.4. Also

the RDM values are substantially smaller, exceeding 0.2 only sporadically

for extremely shallow sources (dorig > 6 cm).

5.5 Discussion

The investigations in this chapter described two methods for transform-

ing MEG data from the device sensor array to virtual sensors on the scalp

surface. The first method was based on expressing the measured data in

terms of multipole coefficients. Using a new basis matrix containing the



5.5. DISCUSSION 79

geometry of the virtual sensors, the data were transformed. The second

method comprised the estimation of underlying sources followed by for-

ward computation to the new sensors. A comparison of the transformation

results revealed much better agreement with the forward magnetic fields

on the head surface for the second method. It is an interesting finding that

the promising method which works without volume conduction modeling

and inverse solution is less suitable for this application.

An explanation can be that the multipole expansion relies stronger

on the actual measurements, whereas the second method is not that con-

fined and allows more flexibility. Especially, the results shown in figure 5.4

demonstrate this. It does not make a difference which forward field is used

for comparison, the transformed data just deviate a lot from the fields on

the scalp. This implies that the errors are due to missing spatial frequen-

cies that are not contained in the signals of the original sensors and thus

cannot be reconstructed at the virtual sensors.

For inverse and subsequent forward calculation, the transformation does

not seem to be much of a problem. Indeed, a reasonable source model is

needed, and the source space has to resemble the actual simulated dipoles.

This is provided by the distributed sources model, so most of the important

field characteristics are mirrored by source localization. Computing new

forward fields then produces really new data, and the transformation results

are similar to the scalp forward fields. They are not obtained solely from

the original sensor data, because through the intermediate step of source

localization more information is taken into account.

These findings are in line with speculations of Numminen et al. (1995).

They presumed that the poor extrapolation result of the multipole expan-

sion method can be explained by the fact that all source current is put into

a single point. The strength of the method based on source reconstruction

is the realistic source current distribution.

As a general finding, which could be observed for both methods, the

transformation outcome depends strongly on the source position. So the
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procedure of placing virtual sensors closer to the brain is an efficient way to

enhance the weak signals of deep sources. However, the signals of superficial

sources should not be treated like this. By the way, this is not necessary,

because the neuromagnetic signals of shallow generators are recorded well

enough already. A reason for the problems with shallow sources might be

that they produce strong fields with high spatial frequencies. For the series

expansion, this requires large amplitudes for the higher order coefficients,

which affects the whole sensor array. Changing the geometry to the virtual

sensors is difficult, because the coefficients are not adjusted for it. Likewise

with the source localization method, the results are biased too much toward

the details of the strong fields, and pay no attention to the overall picture.

To summarize, there are a lot of constraints regarding the arrangement

of the virtual sensors. When defining new sensors at really different posi-

tions, the measured field has to be extrapolated in terms of spatial as well

as directional information. One tries to compute what has not been mea-

sured, and the larger the difference between initial and target sensor array,

the harder and more inaccurate it becomes. This is why, the sensors have

to be aligned similarly to the original sensors, regarding the helmet-like

shape and normals pointing approximately into the same direction.

Moreover, one should refrain from doing source localization based on the

transformed data, since the data have been obtained from measurements

relatively far away from the sources. Although transformation leads to an

increase in amplitude and curvature, there are still not all features recovered

in the patterns that would appear in real measurements.

The objective of the examinations performed in this chapter was to

study the practicability of the concept. It turned out that under certain

conditions, it can be a useful tool to facilitate augmented data analysis.

Based on the results here, the method of choice would be to transform the

data by solving the inverse problem and not to use the SSS expansion.

First investigations with real human data have shown that the method

is applicable to raw data as well as filtered or averaged data, and that the
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sequence of the analysis steps does not matter. It is an interesting question

whether the described data transformation could improve the detection of

significant differences between conditions. This issue could be addressed

with experimental data of a usual oddball design, for example. There-

fore, a common definition of the virtual coil positions would be useful to

have a standardized channel arrangement representing the individual head

shapes, like the electrodes of an EEG cap. This could be subject of further

investigations.





Chapter 6

Summary and Conclusions

6.1 Summary of the scientific results

The objective of this dissertation thesis was to evaluate existing meth-

ods and develop new approaches for data analysis in MEG. In chapter 3,

a novel method has been presented which finds a compromise between av-

eraging over all trials and single trial analysis by random subaveraging

and repeated source localization. This allows drawing inferences about the

generators underlying single trials of the recorded data. A systematic simu-

lation study with a large number of examples yielded the following results.

With the subaveraging method it is possible to determine the number

of trials necessary for reliable source localization for future experiments.

In the depicted examples, the dependence of spatial resolution on source

amplitude and orientation is illustrated. Certainly, the larger the source

amplitude the higher the signal-to-noise ratio, so for stronger sources less

trials are needed. The resolution of two sources in close vicinity to each

other is easier when the sources have similar amplitudes, but different ori-

entations.

Furthermore, the subaveraging method enables the attribution of sin-

gle trials to certain source models. A small fraction of noisy trials can

be detected and excluded from further analysis, leading to clearer source

localization results. Also data sets with different underlying source config-
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urations can be treated by grouping the trials according to the activated

brain regions.

In chapter 4, the stability of the SSS method with respect to viola-

tions of the convergence criterion has been examined. The expansion origin

was shifted systematically such that different MEG sensor coils are located

within the source volume. Then the effect on source localization was in-

vestigated. It turned out that there is a strong relation between source

location and shift direction. The localization errors are increasing when

the expansion origin is shifted away from the source. However, the errors

are relatively small. They stay below 5 mm for shifts up to 25 mm. These

results are consistent throughout three different data sets. They indicate

that the SSS method is stable against violations of the convergence condi-

tion requiring a source-free sensor space.

Finally, in chapter 5, two approaches for data transformation have been

compared. The unconventional strategy was to convert the data to vir-

tual sensors located directly on the scalp surface, instead of transforming

between two physical sensor arrays. One of the transformation methods

was based on a series expansion of the measured field in terms of spherical

harmonics. The other method involved an inverse and subsequent forward

calculation. For both methods, the transformation results of 100 simulated

sources showed strong dependence on the source position. For deep sources

far away from the sensors, the transformation is uncomplicated. Larger

errors occur for superficial sources or sources too close to the sensors. The

method based on source reconstruction yielded superior results compared

to the method relying on the series expansion.

6.2 Conclusions and Perspective

The results of this work make a contribution to the field of MEG data

processing and source analysis. Although true single trial source recon-

struction still has to be regarded as an unsolved problem, more informa-

tion about the generators is gained by the subaveraging method. The



6.2. CONCLUSIONS AND PERSPECTIVE 85

usefulness of the method could be tested in the framework of more source

configurations, and its applicability should be transferred from simulations

to real data. Eventually, more effort in this direction is needed, and new

approaches and algorithms have to be developed.

The findings made in chapter 4 are valuable, since the application of

MaxFilter is a standard preprocessing step in the data analysis of many

MEG experiments. A lot of published studies have shown the properties of

SSS, and the present examination about its robustness is in line with these

results.

The investigations on the transformation of MEG data to the scalp

surface arose from an exploratory idea. As shown in chapter 5, it cannot

be brought into operation naively. But being aware of the limitations, the

data transformation can provide better comparability of MEG data from

different subjects, or with EEG recordings.





Appendix A

Minimum norm solution

A.1 Derivation

The derivation of the general solution to the minimization problem in

equation (2.5), page 21:

Ĵ = min
{
‖C−1/2(LJ− φ)‖2 + λ‖WJ‖2

}
= min

{
(LJ− φ)TC−1(LJ− φ) + λ(WJ)T (WJ)

}

0 =
d

dJi

[
JTLTC−1LJ − JTLTC−1φ− φTC−1LJ + φTC−1φ + λJTWTWJ

]
=

d

dJi

[
N∑
k=1

N∑
l=1

Jk(L
TC−1L)klJl

]

− d

dJi

[
N∑
k=1

Jk(L
TC−1φ)k

]
− d

dJi

[
N∑
k=1

(φTC−1L)kJk

]

+ λ
d

dJi

[
N∑
k=1

N∑
l=1

Jk(W
TW)klJl

]

87



88 APPENDIX A. MINIMUM NORM SOLUTION

0 =

[
N∑
k=1

N∑
l=1

δik(L
TC−1L)klJl + δil(L

TC−1L)klJk

]

−

[
N∑
k=1

δik(L
TC−1φ)k

]
−

[
N∑
k=1

δik(φ
TC−1L)k

]

+ λ

[
N∑
k=1

N∑
l=1

δik(W
TW)klJl + δil(W

TW)klJk

]

= 2 · (LTC−1L)J − 2 · LTC−1φ + 2λ(WTW)J

=
[
LTC−1L + λWTW

]
J − LTC−1φ

Ĵ =
[
LTC−1L + λWTW

]−1
LTC−1φ

A.2 Equivalence

Equivalence of equations (2.6) and (2.7), page 22

[
LTC−1L + λWTW

]−1
LTC−1 = (WTW)−1LT

[
L(WTW)−1LT + λC

]−1

LTC−1 = LTC−1L(WTW)−1LT
[
L(WTW)−1LT + λC

]−1

+ λWTW(WTW)−1LT
[
L(WTW)−1LT + λC

]−1

= LTC−1L(WTW)−1LT
[
L(WTW)−1LT + λC

]−1

+ λLTC−1C
[
L(WTW)−1LT + λC

]−1

1 =
[
L(WTW)−1LT + λC

] [
L(WTW)−1LT + λC

]−1

= 1



Appendix B

Random subaveraging

B.1 Results of simulation 1: spatial resolution

The results of the first simulation series are discussed in section 3.4.

Here, only the figures are displayed for illustration.
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Figure B.1: Field distribution maps for perpendicular dipoles with

20/20 nAm. Combinations of dipoles 1/0 (top), 4/0 (middle), and 5/0

(bottom), 200 trials averaged. Left magnetometers, right gradiometers.
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Figure B.2: Dipoles perpendicular, 20/20 nAm: distribution of deviations

from target positions as a function of n.
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Figure B.3: Field distribution maps for perpendicular dipoles with

10/20 nAm. Combinations of dipoles 1/0 (top), 4/0 (middle), and 5/0

(bottom), 200 trials averaged. Left magnetometers, right gradiometers.
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Figure B.4: Dipoles perpendicular, 10/20 nAm: distribution of deviations

from target positions as a function of n.
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Figure B.5: Field distribution maps for parallel dipoles with 5/20 nAm.

Combinations of dipoles 1/0 (top), 3/0 (middle), and 4/0 (bottom), 200 tri-

als averaged. Left magnetometers, right gradiometers.
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Figure B.6: Dipoles parallel, 5/20 nAm: distribution of deviations from

target positions as a function of n.
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Figure B.7: Field distribution maps for perpendicular dipoles with

5/20 nAm. Combinations of dipoles 1/0 (top), 3/0 (middle), and 4/0 (bot-

tom), 200 trials averaged. Left magnetometers, right gradiometers.
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Figure B.8: Dipoles perpendicular, 5/20 nAm: distribution of deviations

from target positions as a function of n.
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B.2 Results of simulation 2: ratio variation

Ratio 70:30 At first, the method is run with the averaged data and both

target positions. The result is shown in figure B.9.

Figure B.9: Top: Magnetometer and gradiometer maps for dipoles 0 and 4

(ratio 70:30). Bottom: Distribution of deviations from target positions as

a function of n.

Then only target position 0 is given. The outcome is depicted in fig-

ure B.10.

Figure B.10: Result for target position 0 with all trials.

After 30% of the trials with high deviation are marked and excluded,

the procedure is repeated with ns = 8000, see figure B.11.

Omitting 30% of the data has a significant influence on the localization

results. Comparison of figures B.10 and B.11 demonstrates faster conver-

gence and lower variability.
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Figure B.11: Left: 30% of trials with high deviation are marked with dark

gray. Hit rate is 82%. Right: Result without the marked trials.

Ratio 80:20 Figure B.12 illustrates the averaged data and the outcome

of the subaveraging method with both targets.

Figure B.12: Top: Magnetometer and gradiometer maps for dipoles 0 and 4

(ratio 80:20). Distribution of deviations from target positions as a function

of n.

Figure B.13: Result for target position 0 with all trials.

Again, due to poor localization results, dipole 4 is not treated as a source

position anymore. Only target position 0 is given. Figure B.13 depicts the
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result.

The 20% of the trials with high deviation are searched and excluded.

With ns = 8000 the procedure is repeated. The outcome is depicted in

figure B.14.

Figure B.14: Left: 20% of trials with high deviation are marked with dark

gray. Hit rate is 73%. Right: Result without the marked trials.

Also 20% of the trials which do not fit into the source model have

a considerable effect. Source localization improves clearly when they are

removed.



Appendix C

Signal Space Separation

C.1 Solution of Laplace’s equation

For the solution of Laplace’s equation in spherical coordinates a sepa-

ration of variables is assumed:

V (r) = R(r) ·Θ(ϑ) · Φ(ϕ)

The Laplacian in spherical coordinates is given by

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

r2 sin2 ϑ

∂2

∂ϕ2

and each differential operator only acts on its respective function, so the

equation reads

0 = ∆V (r) =

[
∂2R

∂r2
+

2

r

∂R

∂r

]
ΘΦ︸ ︷︷ ︸

radial

+

[
cosϑ

r2 sinϑ

∂Θ

∂ϑ
+

1

r2

∂2Θ

∂ϑ2

]
RΦ︸ ︷︷ ︸

polar

+

[
1

r2 sin2 ϑ

∂2Φ

∂ϕ2

]
RΘ︸ ︷︷ ︸

azimuthal

The radial term is connected to the Euler Differential Equation and has

the solution

R(r) = Ar−l−1 +Brl.

The polar angle term can be written as the associated Legendre Dif-

ferential Equation which has the associated Legendre Polynomials as a
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solution.

Θ(ϑ) = Plm(cosϑ)

Finally, the azimuthal angle term is solved by the complex exponential

function.

Φ(ϕ) = e±imϕ

The combination of everything gives the general solution to Laplace’s

equation in spherical coordinates (eq. (4.2), page 51)

V (r) =
∞∑
l=0

l∑
m=−l

(
αlmr

−l−1 + βlmr
l
)
Plm(cosϑ)eimϕ

=
∞∑
l=0

l∑
m=−l

αlm
Ylm(ϑ, ϕ)

rl+1
+

∞∑
l=0

l∑
m=−l

βlmr
lYlm(ϑ, ϕ)

with coefficients αlm and βlm and spherical harmonics Ylm(ϑ, ϕ).

C.2 The gradient of spherical harmonics

For the evaluation of the gradient of spherical harmonic functions the

Nabla-operator in spherical coordinates is required:

∇ =
∂

∂r
er +

1

r

∂

∂ϑ
eϑ +

1

r sinϑ

∂

∂ϕ
eϕ

So the directional derivatives of the internal and external parts of eq. (4.2),

page 51, are

∇

[
Ylm(ϑ, ϕ)

rl+1

]
=


−(l + 1)r−(l+2)Ylm(ϑ, ϕ)

r−(l+1) 1
r
∂Ylm(ϑ,ϕ)

∂ϑ

r−(l+1) 1
r sinϑ

∂Ylm(ϑ,ϕ)
∂ϕ



=
1

rl+2


−(l + 1)Ylm(ϑ, ϕ)

∂Ylm(ϑ,ϕ)
∂ϑ

im
sinϑYlm(ϑ, ϕ)

 =
1

rl+2


ν

(r)
lm(ϑ, ϕ)

ν
(ϑ)
lm (ϑ, ϕ)

ν
(ϕ)
lm (ϑ, ϕ)


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∇
[
rlYlm(ϑ, ϕ)

]
=


lrl−1Ylm(ϑ, ϕ)

rl 1r
∂Ylm(ϑ,ϕ)

∂ϑ

rl 1
r sinϑ

∂Ylm(ϑ,ϕ)
∂ϕ



= rl−1


lYlm(ϑ, ϕ)

∂Ylm(ϑ,ϕ)
∂ϑ

im
sinϑYlm(ϑ, ϕ)

 = rl−1


ω

(r)
lm(ϑ, ϕ)

ω
(ϑ)
lm (ϑ, ϕ)

ω
(ϕ)
lm (ϑ, ϕ)


with the modified vector spherical harmonics νlm(ϑ, ϕ) and ωlm(ϑ, ϕ).

They provide the basis functions for the vector magnetic field expressed

as a series expansion (eq. (4.3), page 52).

C.3 Transformation of VSH

Transformation of the modified VSH into Cartesian coordinates and

projection on the sensor normals yields scalar magnetic field values. They

are necessary for the calculation of basis matrices used for the series ex-

pansion representation of MEG data.

The transformation is done by use of an orthogonal rotation matrix

which is obtained from the normalized Jacobian. The Jacobian is the ma-

trix of first derivatives of a vector function of several variables. Its nor-

malized columns are the unit vectors of the present coordinate system,

spanning the vector space. With

x = x(r, ϑ, ϕ) = r sinϑ cosϕ

y = y(r, ϑ, ϕ) = r sinϑ sinϕ

z = z(r, ϑ, ϕ) = r cosϑ

the Jacobian reads

J =


∂x
∂r

∂x
∂ϑ

∂x
∂ϕ

∂y
∂r

∂y
∂ϑ

∂y
∂ϕ

∂z
∂r

∂z
∂ϑ

∂z
∂ϕ

 =


sinϑ cosϕ r cosϑ cosϕ −r sinϑ sinϕ

sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ

cosϑ −r sinϑ 0


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Normalization of the columns gives the unit vectors

er =


sinϑ cosϕ

sinϑ sinϕ

cosϑ

 eϑ =


cosϑ cosϕ

cosϑ sinϕ

sinϑ

 eϕ =


− sinϕ

cosϕ

0


which make up an orthonormal basis of R3:

R =


sinϑ cosϕ cosϑ cosϕ − sinϕ

sinϑ sinϕ cosϑ sinϕ cosϕ

cosϑ sinϑ 0


This matrix is used for the transformation of a vector field A between

Cartesian and spherical coordinate systems:

(
Ax,Ay,Az

)T
= R ·

(
Ar,Aϑ,Aϕ

)T
(
Ar,Aϑ,Aϕ

)T
= RT ·

(
Ax,Ay,Az

)T
where the superscript T denotes transposition.

Thus, the modified VSH νlm(ϑ, ϕ) and ωlm(ϑ, ϕ) can be transformed

into Cartesian coordinates and projected onto the sensor normals, which

are also given in Cartesian coordinates. This completes the derivation of

basis matrices Sin and Sout, needed for the fundamental series expansion

formula for SSS (see equations (4.4) and (4.5), page 52).



Appendix D

Software Developments

The most important implementations done for the computations in this

thesis include, but are not limited to:

• Sarvas formula for calculation of the forward solution (equation (2.3),

page 18)

• evaluation of vector spherical harmonics (VSH), i.e. gradients of

spherical harmonics (equation (4.3), page 52)

• SSS basis vectors alm and blm (page 52)

• Taulu formula for calculation of the forward solution (equation (5.1),

page 69)

• visualization of the results

Programming language was Matlab. The codes are designed for proof

of concept, they are not optimized regarding computation time or required

working memory.
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