
Stochastic Tree Models for Macroevolution

Development, Validation and Application

Von der Fakultät für Mathematik und Informatik

der Universität Leipzig

angenommene

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

im Fachgebiet

Informatik

vorgelegt

von Diplom Informatikerin Stephanie Keller-Schmidt

geboren am 19. August 1982 in Berlin-Kaulsdorf

Die Annahme der Dissertation wurde empfohlen von

1. Prof. Dr. Kimmo Kaski (Aalto University, Finnland)

2. Prof. Dr. Peter F. Stadler (Universität Leipzig, Deutschland)

Die Verleihung des akademischen Grades erfolgt mit Bestehen

der Verteidigung am 06.09.2012 mit dem Gesamtprädikat cum laude.
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Abstract

Phylogenetic trees capture the relationships between species and can be investigated by mor-

phological and/or molecular data. When focusing on macroevolution, one considers the large-

scale history of life with evolutionary changes affecting a single species of the entire clade

leading to the enormous diversity of species obtained today. One major problem of biology is

the explanation of this biodiversity. Therefore, one may ask which kind of macroevolutionary

processes have given rise to observable tree shapes or patterns of species distribution which

refers to the appearance of branching orders and time periods. Thus, with an increasing

number of known species in the context of phylogenetic studies, testing hypotheses about

evolution by analyzing the tree shape of the resulting phylogenetic trees became matter of

particular interest. The attention of using those reconstructed phylogenies for studying evo-

lutionary processes increased during the last decades. Many paleontologists (Raup et al.,

1973; Gould et al., 1977; Gilinsky and Good, 1989; Nee, 2004) tried to describe such pat-

terns of macroevolution by using models for growing trees. Those models describe stochastic

processes to generate phylogenetic trees. Yule (1925) was the first who introduced such a

model, the Equal Rate Markov (ERM) model, in the context of biological branching based on

a continuous-time, uneven branching process. In the last decades, further dynamical models

were proposed (Yule, 1925; Aldous, 1996; Nee, 2006; Rosen, 1978; Ford, 2005; Hernández-

Garćıa et al., 2010) to address the investigation of tree shapes and hence, capture the rules of

macroevolutionary forces. A common model, is the Aldous’ Branching (AB) model, which is

known for generating trees with a similar structure of “real” trees. To infer those macroevo-

lutionary forces structures, estimated trees are analyzed and compared to simulated trees

generatey by models. There are a few drawbacks on recent models such as a missing bio-

logical motivation or the generated tree shape does not fit well to one observed in empirical

trees.

The central aim of this thesis is the development and study of new biologically motivated

approaches which might help to better understand or even discover biological forces which

lead to the huge diversity of organisms.

The first approach, called age model, can be defined as a stochastic procedure which de-
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scribes the growth of binary trees by an iterative stochastic attachment of leaves, similar to

the ERM model. At difference with the latter, the branching rate at each clade is no longer

constant, but decreasing in time, i.e., with the age. Thus, species involved in recent specia-

tion events have a tendency to speciate again. The second introduced model, is a branching

process which mimics the evolution of species driven by innovations. The process involves

a separation of time scales. Rare innovation events trigger rapid cascades of diversification

where a feature combines with previously existing features. The model is called innovation

model. Three data sets of estimated phylogenetic trees are used to analyze and compare the

produced tree shape of the new growth models. A tree shape statistic considering a variety

of imbalance measurements is performed. Results show that simulated trees of both growth

models fit well to the tree shape observed in real trees. In a further study, a likelihood analysis

is performed in order to rank models with respect to their ability to explain observed tree

shapes. Results show that the likelihoods of the age model and the AB model are clearly

correlated under the trees in the databases when considering small and medium-sized trees

with up to 19 leaves. For a data set, representing of phylogenetic trees of protein families, the

age model outperforms the AB model. But for another data set, representing phylogenetic

trees of species, the AB model performs slightly better. To support this observation a further

analysis using larger trees is necessary. But an exact computation of likelihoods for large trees

implies a huge computational effort. Therefore, an efficient method for likelihood estimation is

proposed and compared to the estimation using a naive sampling strategy. Nevertheless, both

models describe the tree generation process in a way which is easy to interpret biologically.

Another interesting field of research in biology is the coevolution between species. This is

the interaction of species across groups such that the evolution of a species from one group

can be triggered by a species from another group. Most prominent examples are systems of

host species and their associated parasites. One problem is the reconciliation of the common

history of both groups of species and to predict the associations between ancestral hosts and

their parasites. To solve this problem some algorithmic methods have been developed in

recent years. But only a few host parasite systems have been analyzed in sufficient detail

which makes an evaluation of these methods complex. Within the scope of coevolution, the

proposed age model is applied to the generation of cophylogenies to evaluate such host parasite

reconciliation methods.

The presented age model as well as the innovation model produce tree shapes which are

similar to obtained tree structures of estimated trees. Both models describe an evolutionary

dynamics and might provide a further opportunity to infer macroevolutionary processes which

lead to the biodiversity which can be obtained today. Furthermore with the application of the

age model in the context of coevolution by generating a useful benchmark set of cophylogenies

is a first step towards systematic studies on evaluating reconciliation methods.
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CHAPTER 1

Introduction

E volution in the context of biology refers to changes of species over time and in

particular order. Stating the nature as evolution and attempting to classify different

forms of life goes back to time of ancient Greeks and Romans, but the biologist and philosopher

Carl Linnaeus (1707-1708) was the first who proposed a simple notation for different organisms

and introduced a classification by similarities of organisms (Merkl and Waack, 2003). In 1859,

Charles Darwin (1809-1882) publishedOn the Origin of Species by means of Natural Selection,

or the Preservation of Favoured Races in the Struggle for Life in which he explains the theory

of biological evolution based on the mechanism of natural selection. The theory assumes that

all present and extinct life on earth is related by one common ancestor. This implies that all

organisms are related with another which can be represented in the so-called “Tree of Life”

(see Figure 1.1). Until now, one major aim of biology is the classification of organisms and

the elucidation of driving forces which lead to their variety.

Today, different kinds of data can be used to investigate the evolutionary history of organ-

isms or genes. This includes morphological characters and molecular data, e.g., nucleotides

and amino acids (Lemey et al., 2009). The relationship between various kinds of entities can

be depicted as branching tree-like diagrams, also known as dendrograms. Those entities can

describe e.g., a single species, groups of organisms or genes. Representing taxonomic data or

evolutionary relationships among species or organisms, they are also called phylogenetic trees.

While the leaves of such diagrams represent extant entities, inner nodes stand for ancestral

entities (Clewley, 1998; Lemey et al., 2009). There are different types of dendrograms, visual-

ized in Figure 1.2. For instance, a phylogram depicts the phylogenetic relationship of entities

under consideration of branch length. The latter represents the evolutionary distance which
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Introduction

Figure 1.1.: Representation of the “Tree of Life” with five kingdoms. The kingdoms of an-
imals, fungi and plants are depicted in the given order in the upper half. The
kingdom of protista and procaryotes, along with archae are represented in the
underpart of the tree. Image by Chris King (2009)
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can be drawn proportional to the number of evolutionary modifications between two entities

(Clewley, 1998). While phylograms consider the branch length, a cladogram is assumed to be

an estimate of ancestor-descendant relationships where the order of branches is of significance

(Pavlopoulos et al., 2010). The third type of a branching diagram is the phenogram which

depicts the relationship between species or groups of organisms without reconstructing the

historical branching process but taking in account the overall similarities (Clewley, 1998).

Explaining the diversity of life is one of the major problems of evolutionary biology. There-

fore, one may ask which macroevolutionary processes have given rise to the observed tree

shapes, or patterns of species distribution. Within the scope of phylogenetic trees, tree shape

refers to the appearance of branching orders and time periods and is also known as, i.e., bal-

ance, topology, symmetry, skew, stemminess (Salisbury, 1999; Fiala and Sokal, 1985; Shao,

1990; Kirkpatrick and Slatkin, 1993). Thus, with an increasing number of known species in

the context of phylogenetic studies, testing hypotheses about evolution by analyzing the tree

shape of the resulting phylogenetic trees became a matter of particular interest. Furthermore

the attention of using those reconstructed phylogenies for studying evolutionary processes

increased during the last decades (Barraclough and Nee, 2001). An example for patterns of

tree shape is the observation of an asymmetry in a tree which is an result of speciations of

most of the descendant species by small number of lineages due to an essential adaptation

(Felsenstein, 2004). Many paleontologists (Raup et al., 1973; Gould et al., 1977; Gilinsky and

Good, 1989; Nee, 2004) tried to describe such patterns of macroevolution by using stochastic

models for tree growth. Those models describe a stochastic process to generate phylogenetic

trees. The first model was described by Yule (1925) as a continuous time, uneven branching

process. In the last decades, further dynamical models were proposed (Yule, 1925; Aldous,

1996; Nee, 2006; Rosen, 1978; Ford, 2005; Hernández-Garćıa et al., 2010) to address the in-

vestigation of tree shapes and hence, capture the rules of macroevolutionary forces. This is

done by analyzing the structures of estimated trees and comparing those to simulated trees

of models. Estimated trees can be taken from databases such TreeBASE and PANDIT. But

until now, most of the models can not be explained in a biological sense. Therefore, two new

models using an evolutionary dynamics are proposed.

But the evolution of species is not a closed system since species are able to interact. Thus,

they may mutually affect their evolution. This can be described by the more complex prob-

lem of coevolution or cophylogenetics. Symbiotic relationships between insects and plants

respectively between birds and plants or the relationship between predators and prey are

just some examples for coevolutionary systems. Here, the focus is on host parasite relation-

ships which are interesting to evolutionary biologists due to the close association between

two or more distantly related organisms. The parallel evolution leads to mutual adaptions

3



Introduction

Figure 1.2.: Four types of dendrograms representing the phylogenetic relationships of human
and simian immunodeficiency virus (HIV and SIV). The branch length is sig-
nificant in the cases of both phylograms shown in (b) and (d). the bar ont he
bottom of each branching diagram indicated the branch length. For the clado-
grams depicted in (a) and (c), the relative grouping of the shown entities is of
significance. (d) is a radial representations of a phylogram and used for unrooted
tree. Illustration modified after Clewley (1998)
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1.1 Structure of the Thesis

in host and parasites and to cospeciation of both groups. Cospeciation is the simultaneous

speciation in both lineages which thus gives rates of evolution in two groups of organisms.

The additional information can be used in comparative studies (Page and Holmes, 1998).

As mentioned earlier, phylogenetic trees for both groups of species can be constructed from

sequence data or morphological data. The interactions between the extant species of host

and parasite are known empirically. One fundamental problem of coevolution is the inference

of the cophylogenetic history when phylogenies of both groups are given. In the recent years,

different approaches have been proposed to solve the problem. These algorithms describe a

set of events that happened during the coevolution. These events leave their trace on both

phylogenies. As far as it is known, no extensively comparative study of those reconciliation

methods has been performed. But since not many host parasite systems are available, a

benchmark of reasonable test data sets of cophylogenies is necessary. Biologically motivated

branching models can be applied to this problem by generating cophylogenies.

1.1. Structure of the Thesis

The central aim of this thesis is the development and study of new biologically motivated

approaches which might help to better understand or even discover biological forces which

lead to the huge diversity of organisms. This implies the question how speciation emerges and

which evolutionary patterns are observable. Therefore, simulated trees generated by models

are analyzed in the context of tree shape statistics and compared to real trees. Within the

scope of coevolution, one of the porposed models is applied to the generation of cophylogenies

to evaluate host parasite reconciliation methods.

At first, a brief introduction to the terminology of graphs and trees, as well as the introduc-

tion of appropriate indices used for tree shape statistics is given in Chapter 2. These indices,

namely Sackin index, Colless index, and cherry distribution, are quantities for measuring the

imbalance of phylogenetic trees.

An overview of methods proposed in the last decade is given in Chapter 3. The chapter

starts with the definition of how a tree is generated when using a model. The presented

models are divided into different groups. The class of beta-splitting models includes the

ERM (Equal Rate Markov) model (Yule, 1925), the birth-death process (Hey, 1992; Nee

et al., 1994), the PDA (Proportional to Distinguishable Arrangements) model (Rosen, 1978)

and the AB (Aldous’ branching) model (Aldous, 1996). The explanation of the ERM model

as pure-birth process includes two different approaches of generating a tree. Other models,

including Ford’s alpha model and the activity model as well as the idea of age-dependent

models, are presented in a further section. For each of the models the imbalance of obtained
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trees is given and discussed at the end of this chapter.

Chapter 4 presents two novel models of macroevolution. The age model is based on the

idea that the older a species is the less likely it will speciate. The second model, innovation

model, assumes the diversification may also be caused by adaptive radiation as a rapid multi-

plication of species in one lineage after a triggering event. A tree shape statistics is performed

for both models in comparison to the common ERM model and AB model. A comparison is

also accomplished using three dataset of real trees (TreeBASE, PANDIT, McPeek). It is shown

that both models perform at least as well as the AB model and are in good agreement with

trees of TreeBASE and PANDIT.

Until now, the proposed evolutionary models are studied in the context of a tree shape anal-

ysis focusing on the tree imbalance. Chapter 5 deals with the question about the quantity

of a model. To rank models, a likelihood analysis is employed by asking for the probability

of a model of obtaining a given phylogenetic tree. But calculating the likelihood implies a

huge computational effort for large trees since each possible order of branching events leading

to the tree needs to be considered. A method of resolution is achieved by the development

of an efficient sampling method. The exact likelihood is computed for the age model and

AB model for small and medium-sized trees of real trees (TreeBASE, PANDIT and McPeek).

Results show that the age model performs similar as the AB model for TreeBASE data and

better for PANDIT data. The AB model outperforms the age model for McPeek data, but the

small data set may lead to ambiguous conclusion.

But not only the understanding of species’ evolution but also the problem of coevolution

achieves more interest in the last decades. Latter one can be described by the ability of species

to interact among one another. Hence, they may mutually affect their evolution. Different

host parasite reconciliation methods have been proposed recently. But only a few host para-

site systems have been analyzed in sufficient detail. Thus in Chapter 6 one of the proposed

models is employed to generate meaningful test data sets to tackle the lack of benchmarks.

Those data sets are used for an evaluation of host parasite reconciliation methods. As far

as known, this chapter describes an initial contribution to extensively compare methods for

cophylogeny reconciliation.
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1.2 Manuscripts

1.2. Manuscripts

A part of the results presented in this thesis have been included in the following manuscripts.

Chapter 4, introducing the new growth models, is based on the following articles:

• Keller-Schmidt S, Tuğrul M, Egúıluz VM, Hernández-Garćıa E, Klemm K (2011).

An Age Dependent Branching Model for Macroevolution. Submitted,

http://arxiv.org/abs/1012.3298.

• Keller-Schmidt S, Klemm K (2011) A model of macroevolution as a branching

process based on innovations. Accepted for publication in Advances in Complex

Systems, http://arxiv.org/abs/1111.2608

Chapter 5, discussing the likelihood analysis and presenting a new method for likelihood

estimation, is partly based on the following article:

• Keller-Schmidt S, Tuğrul M, Egúıluz VM, Hernández-Garćıa E, Klemm K (2011).

An Age Dependent Branching Model for Macroevolution. Submitted,

http://arxiv.org/abs/1012.3298.

The application of the age model to Coevolution is presented in Chapter 6. It is based on

the following article:

• Keller-Schmidt S, Wieseke N, Klemm K, Middendorf M (2011). Evaluation of Host

Parasite Reconciliation Methods using a new Approach for Cophylogeny

Generation. Submitted.
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CHAPTER 2

From Graphs to Trees and Tree Shape Statistics: Definitions and Examples

E very extant and extinct species has one common ancestor. Hence, all species are

somehow related. This relation between species can be depicted in the “Tree of

Life” whose reconstruction plays a significant role in the research field of evolutionary biology.

Such a tree is formed by various types of evolutionary forces which need to be explored. This

chapter deals with the fundamentals of phylogenetic trees in a mathematical and biological

view. This includes the definition and explanations of terminologies as well as methods for

measuring the tree shape.

2.1. Graphs and Trees

Trees are a special kind of graphs. Graphs are a widely used tool in the field of bioinformatic,

e.g., for modeling metabolic and regulatory networks, as well as for pattern matching or

for the generation and depiction of phylogenetic trees. One can differ between directed and

undirected graphs.

Definition 2.1 (directed graph). A directed graph G = (V,E) consists of a set of nodes

V = {v1, . . . , vm} and a set of edges E ⊆ V × V , which connects nodes (Diestel, 2006).

• An edge e = (vi, vj) from node vi to node vj with i, j ∈ [1;m] is called directed edge,

also vi
e→ vj. Therefore, vj is a direct successor of vi and vi is direct predecessor. The

edge is called loop, if vi = vj.

• One differ between an indegree and an outdegree of a node. An indegree of I(vi) of a

node vi is the number of its direct predecessors, I(vi) = |{vj |(vj , vi) ∈ E}|. An outdegree
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O(vi) of a node vi is the number of its direct successors, O(vi) = |{vj |(vi, vj) ∈ E}|.
Each node vi is called isolated, if O(vi) = I(vi) = 0.

• A path of a graph is a sequence of nodes v1, v2, . . . , vn, where vi and vi+1 are connected

by an edge for each i = 1, . . . , n − 1. The length of a path is the count of edges along

the path. A simple path has no repeating nodes.

• A cycle is a path where start and end node are identical. In a simple cycle every edge

(vi, vj) is used once. A graph without cycles is called acyclic.

• A graph G = (V,E) is called connected, if every pair of nodes can be connected by at

least one path.

Definition 2.2 (undirected graph). A undirected graph can be understood as a special kind

of a directed graph but without relevance of the edge orientation (Diestel, 2006) but:

• An edge is defined by {(vi, vj), (vj , vi)} with (vi, vj) ∈ E ↔ (vj, vi) ∈ E . Since the order

of nodes is not considered, an edge can also be expressed as a pair of nodes {vi, vj}.

• Two nodes connected by an edge are called adjacent.

• The degree of node vi is defined by the number of its adjacent nodes.

A tree is a special kind of a graph. Thus, it is defined as follows by using previous definitions.

Definition 2.3 (tree). A tree is defined as an acyclic connected graph G = (V,E). Each node

can have a number of children nodes (descendants) and at most one parental node (ancestor).

Following conditions must be statisfied (Semple and Steel, 2003; Diestel, 2006):

• There exists exactly one path between every pair of nodes in G.

• G is minimal connected, i.e., removing an edge e ∈ E results in a not connected graph.

• G is connected and |E| = |V | − 1.

• G is acyclic and |E| = |V | − 1.

• G is maximal acyclic i.e., adding an arbitrary edge e to E results in a graph containing

a cycle.

Definition 2.4 (rooted, unrooted). A tree can be rooted or unrooted. A rooted tree has one

node, called root, from which all other node descend. An unrooted tree has not such a root

node. The number of binary, rooted trees with n leaves can be computed by

(2n − 3)!

2n−2(n− 2)!
= (2n − 3)!! . (2.1)

As one can imagine, the number of possible trees topologies grows exponentially with increas-

ing n.
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Definition 2.5 (tree topology, shape). A topology of a tree is defined by the unlabeled

topological branching pattern without information about time (Himmelmann and Metzler,

2007). It is also referred as shape.

Definition 2.6 (leaf, inner node, root, cherry). A tree contains different types of nodes which

are depicted in Figure 2.2 (p.13). A node is called leaf if it is a terminal node. Each terminal

node holds a degree of one. All other nodes are called inner nodes with a degree not less

than two (Mount, 2004; Diestel, 2006). For a rooted tree, one node is signed as root and

contains no predecessor. Two leaves which are adjacent to a common node are called a cherry

(McKenzie and Steel, 2000).

2.2. The Link between Phylogenetics and Macroevolution

The evolutionary theory proposed by Darwin says that all existing organisms descend from

one common ancestor. The development of new species caused by branching processes out of

existing populations makes it possible to depict the evolution of all organisms in an ordered

tree (Merkl and Waack, 2003). Figure 2.1 shows a sketch of Darwin’s idea.

Figure 2.1.: Sketch of an evolutionary tree by Charles Darwin from his first notebook on
“Transmutation of Species” (1837).
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2.2.1. Phylogenetic Trees

Nowadays a huge amount of organism is identified. The Tree of Life is an attempt to arrange

all such organism in a phylogenetic tree and captures the relationship between organisms

(Mount, 2004; Lemey et al., 2009). These are trees where leaves represent extant species,

alive today, and inner nodes stand for ancestral species from which the extant species have

descended. The latter one can be hypothetical. The root allegorises the ancestor of every

organism. But for extinct and hypothetical ancestors no biological data is available. Thus

phylogenetic trees are built from extant species (Page and Holmes, 1998; Semple and Steel,

2003). Therefore, various types of data can be used such as morphological data or data gained

from sequence alignment of DNA, RNA or proteins (Merkl and Waack, 2003).

In the following only rooted, binary phylogenetic trees are considered.

Definition 2.7 (phylogenetic tree). A rooted phylogenetic tree T for a set S = s1, . . . , sn of

n species is a strict binary tree with n leaves and following conditions.

• It is a tree with exactly one node, called root, with degree two or zero.

• Each of the inner nodes has exactly two children and thus a degree of three.

• Each leaf has degree of one and is labeled with exactly one species s ∈ S.

• Each species exists exactly one time in the set of leaves S.

Definition 2.8 (subtree). Given a phylogenetic tree T with a root w, a subtree T ′ is obtained

as the component not containing w after cutting an edge {i, j} of T . T ′ is again a rooted

strict binary tree.

Since the considered trees are rooted, the direction in the tree from the root to all other

descending nodes can correspond to evolutionary time (Page and Holmes, 1998). Given the

evolutionary time and two nodes i, j connected by a path which starts at the tree root, one can

draw conclusion about their relationship of ancestor and descendant. If the node i is closer

to the root, i is the ancestor of j and vice versa. An unrooted tree has no root and hence,

one can not infer any relationship in the sense of descendant and ancestor (Page and Holmes,

1998). With the focus on the tree shape in the following chapters, various characteristics such

as the distance, height, and depth of trees can be evaluated.

Definition 2.9 (distance, height, depth). The distance between two nodes i and j on a tree

T is the number of edges contained in the unique path between i and j. The height of a tree

is the maximal distance from the root w to a leaf. The height of a node i is defined by the

height of the subtree rooted at i. The depth of a node i is the length of the path to its root

(i.e., its root path).
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Figure 2.2.: Terminology of phylogenetic trees with seven leaves. The height of the tree is
four. The numbers in the circles is the depth for each leave.

Usually, the edge length of phylogenetic trees can be interpreted as time estimations. Thus

periods of evolution or counts of morphological and molecular differences between two nodes

can be demonstrated. A tree where all leaves have an equal distance to the root, displays

only the relative relations between species, but no evolutionary changes. This tree is called

cladogram whereas phylograms feature branch length which can represent evolutionary time

or changes (Page and Holmes, 1998). In the following, it is assumed that all edges have a

unit length. Thus, only cladograms are considered.

A summary on the terminology of a phylogenetic tree is visualized in Figure 2.2.

2.2.2. Evolutionary History in the Sense of Macroevolution

The idea of biological evolution is based on the assumption that all species descend from one

common ancestor which is the origin of the large diversity. It comes along with changes in

living organisms over time and occurs at every level of biological classification. This includes

biomolecules such as DNA and proteins, an individual species or a population of species

(Erwin, 2000; Hall et al., 2008). The research field of biological evolution can be divided into

two subfields: microevolution and macroevolution. Both terms were introduced in 1927 by

the Russian Entomologist Filipchenko (1927) in German and 1937 translated into English by

Dobzhansky (1951).

Microevolution encompasses the small-scale history of life which happens in a short period

of time. It refers to changes at the molecular level within a population of species or an

individual species. For phylogenetic trees one can say that the focus lies on one branch only.

This changes affect the allele frequencies and thus microevolutionary patterns can be observed

in the phenotype of organisms. Microevolutionary changes can be caused by, e.g., mutation,

gene flow, genetic drift or natural selection (Reznick and Ricklefs, 2009; Kimura, 1983; Page

and Holmes, 1998).

In contrast to microevolution, macroevolution defines changes at the level of species or
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above, i.e., phyla and genera (Ayala and Fitch, 1997). It considers the large-scale history

of life and gives rise of the diversity of an entire clade and its stability instead of a single

species. Macroevolutionary patterns occurring in a long-term development are caused by

dynamic processes such as character changes in lineages, speciation and extinction. Also

evolutionary mechanisms defined by microevolution (mutation, gene flow, genetic drift and

natural selection) can help biologists to find an explanation of macroevolutionary patterns

in the Tree of Life, under the condition that a long-term observation is given. Though

micro- and macroevolution can merge seamlessly if microevolution continues and a population

educes a new species which is not able to reproduce organisms of that population. This is the

reason why some scientists understand macroevolution as a large amount of microevolutionary

processes over a long time scale since the mechanisms are identical (Erwin, 2000). This

controversy is not further discussed here.

Recent studies (Barraclough and Nee, 2001; Reznick and Ricklefs, 2009; Ricklefs, 2007)

discuss the meaning of the phylogenetic tree structure when explaining macroevolutionary

processes. In a biological point of view the tree shape might give an answer to the question

how the diversity of life has been arisen. Methods for measuring the tree shape are considered

in Section 2.3.

2.3. Tree Shape and Appropriate Methods of Measurement

In some contexts, shapes of trees are a result of optimization: prominent examples include

minimum spanning trees (Bang and Kun-Mao, 2004) of weighted graphs, self-balancing search

trees (Pfaff, 2004) like AVL trees (Bouge et al., 1995; Nievergelt, 1974), the red-black-trees

(Guibas and Sedgewick, 1978) and trees of branching blood vessels optimized for a large

flux (West et al., 1997). For other types of trees, however, shapes may not be selected by

optimization or at least the underlying optimization principle is not known. Then one may ask

what dynamical branching rules (Harris, 1963) govern the observed tree shapes. Phylogenetic

trees are such cases with large datasets available and little knowledge about the mechanisms

shaping these structures. Thus the shape of phylogenetic trees is used to test hypotheses

about the evolution and corresponding macroevolutionary processes and may give hints on

how the biological diversity has arisen. Different methods to study the tree balance have

been proposed and applied to simulated and empirical trees in the last decades (Kirkpatrick

and Slatkin, 1993; Mooers and Heard, 1997; Agapow and Purvis, 2002; Savage, 1983; Matsen,

2007).

2.3.1. Tree Imbalance

Analyzing the tree shape one can focus on the tree balance which refers to a topological

structure. It can be described as the degree to which daughter subtrees of internal nodes are of
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Figure 2.3.: Comparison of tree shapes concerning tree balance. Imbalance refers to an
uneven distribution of the number of leave between left and right branches of
a tree or subtree. In this case each tree of size eight consists of a root (white
diamond), a set of inner nodes (black squares) and a set of leaves (gray circles).
The left tree is totally imbalanced, also called comb tree, with Sackin index
d = 35/8 = 4.375 and Colless index c = 21/21 = 1 . The right tree is a complete
binary tree with Sackin index d = 24/8 = 3 and Colless index c = 0/21 = 0 .

similar or different size (Matsen, 2007). The size of a tree refers to the number of leaves. Note

that tree balance disregards branch length and does not regard labels (Mooers and Heard,

1997). The balance of a tree is influenced by variation of the speciation or extinction rate

(Kirkpatrick and Slatkin, 1993). Systematic deviations between shapes of small phylogenetic

trees and trees from uncorrelated stochastic processes of speciation and extinction have been

known for decades (Gould et al., 1977). Recent studies (Blum and François, 2006; Herrada

et al., 2008) provide a quantitative and exhaustive analysis of tree shapes in large databases

(Sanderson et al., 1994; Whelan et al., 2006). The studies by Blum and François (2005) of the

phylogenetic imbalance based on trees of the database TreeBASE show that the tree shape

undergoes a rapid change from the smaller to the intermediate-sized and larger trees (Aldous,

1996).

The deviation from an evolutionary null model (see Section 3 (p.19)) can be pinned down

to an increased imbalance of the phylogenetic trees (Matsen, 2007; Mooers and Heard, 1997;

Agapow and Purvis, 2002), a tendency to unevenly split the set of leaves between the left

and right subtrees. Figure 2.3 depicts examples for a completely imbalanced and completely

balanced tree.

Several indices for balance measurement have been proposed and compared in the litera-

ture (see Mooers and Heard (1997); Matsen (2006); Agapow and Purvis (2002); Kirkpatrick

and Slatkin (1993) for detailed discussion). The following subsection explains three of these

indices, namely the Sackin index (Sackin, 1972) as depth index, the Colless index (Colless,

1982) as metric for tree balance and the cherry distribution (McKenzie and Steel, 2000) as

measurement of tree quality. All three metrics do not consider the branch length. Kirkpatrick

and Slatkin (1993) and Matsen (2006) concluded that the Sackin index and the Colless index
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were the most powerful statistics. Furthermore the study by Matsen (2006) stated the cherry

distribution as an appropriate second statistic. Similar conclusion was achieved by Agapow

and Purvis (2002).

2.3.2. The Sackin Index

The Sackin index (Sackin, 1972) d is the average distance of leaves from root, in the following

also called depth of a tree

d =

∑n
i=1 di
n

. (2.2)

The depth of a tree is commonly needed in the manipulation of the various self balancing

trees, AVL trees (Bouge et al., 1995) in particular. Conventionally, the value −1 corresponds

to a subtree with no nodes, whereas zero corresponds to a subtree with one node. Here the

depth is considered as a measure of imbalance. In a tree with n leaves, di denotes the number

of edges to be traversed to reach the root from node i ∈ {1, . . . , n}. This measure may be

applied to non-binary trees, including polytomies and monotomies.

For a complete binary tree, d = log2 n since all n = 2k leaves are at level k. As the other

extreme, a comb (or pectinate) tree has d = 1 + 2 + · · · + (n − 2) + 2(n − 1) resulting in

asymptotically linear scaling d ∼ n .

2.3.3. The Colless Index

The Colless index (Colless, 1982) c measures the average imbalance of a tree. The imbalance

at an inner node j of the tree is the absolute difference cj = |lj − rj | of leaves in the left

and right subtree rooted at j, denoted by lj and rj. Then the average of imbalance can be

computed by

c =
2

(n− 1)(n − 2)

n−1
∑

j=1

cj (2.3)

with an appropriate normalization. The index j runs over all n− 1 inner nodes including the

root itself. One can easily conclude that c = 0 for a complete binary, totally balanced, tree

and c = 1 for a comb tree, see Figure 2.3.

2.3.4. The Cherry Distribution

Another statistic for tree shape is the distribution of cherries. It is an easy computed statistic

where the number of pairs of leaves which are adjacent to a common ancestor is calculated

McKenzie and Steel (2000). Studies by McKenzie and Steel (2000) and Matsen (2007) show

that the distribution of cherries is asymptotically normal under two common null models for

generating phylogenetic trees.
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2.4. Data Sets of Empirical Phylogenetic Trees

The analysis and comparison of macroevolutionary models (introduced in Chapter 3 (p.19)

and 4 (p.31)) is based on three different data sets. The data was preprocessed since some of

the trees contain

• outgroups: a single node, which is the most distant related one of the root; essential for

rooting a tree (Gregory, 2008).

• monotomies: a node in a tree which has only one descending branch.

• polytomies: a node in a tree which has more than two descending branches.

The preprocessing was done as in studies by Blum and François (2005) including the removal

of outgroups by deleting the leaves or cherries branching off of the root. Since not all empirical

trees are binary trees, polytomies (multifurcating nodes) and monotomies were solved in a

random manner by splitting them based on the ERM model (Blum and François, 2005;

Matsen, 2006). In addition, trees with less than four leaves are without meaning for the

analysis and hence, were excluded from the used data sets.

Data set of database TreeBASE: TreeBASE (Sanderson et al., 1994) is the main phylo-

genetic database containing phylogenetic trees of species and populations. The data from

TreeBASE has been downloaded from http://www.treebase.org in June, 2007 containing

5,212 phylogenetic trees. After preprocessing the data set contained 5,087 trees of size 4 to

535 .

Data Set of database PANDIT: The database PANDIT (Whelan et al., 2006) contains phy-

logenetic trees representing the evolution of protein families. PANDIT has been downloaded

from http://www.ebi.ac.uk/goldman-srv/pandit in May 2008 and contains 7,738 protein

families respectively 46,428 phylogenetic trees. Preprocessing results in a data set containing

36,136 trees of size 4 to 2,562 .

McPeek Data Set: The McPeek data set is assembled by McPeek and Brown (2007) and

includes 245 species-level molecular phylogenies of 245 clades of animals and plants, namely

chordate, arthropod, mollusk, and magnoliophyte. One part of trees are fossil-based estima-

tions while another part is based on molecular phylogenies. One tree (ID: Glor et al 2003)

was removed since the tree in newick format is missing. For further details on the selected

phylogenies it is referred to the work by McPeek and Brown (2007) and McPeek (2008).

An overview of the empirical data sets is given in table 2.1
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TreeBASE PANDIT McPeek

leaves representing species proteins species
number of trees 5,212 46,428 245
amount of leaves 3 . . . 535 2 . . . 5,121 4 . . . 116
number of tree after preprocessing 5,087 36,136 244
amount of leaves after preprocessing 4 . . . 535 4 . . . 2,562 4 . . . 116

Table 2.1.: Overview of empirical data sets.
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CHAPTER 3

Stochastic Models of Macroevolution

C lassifying organisms by their similarities is of great interest since scientists are

aware of their diversity. The first attempt to display the diversity in a tree of life,

based on the idea that there is one common ancestor for all organism, was published in “The

Origin of Species” by Darwin (1859). With an increasing number of species in phylogenetic

studies, the asymmetrical branching of different groups of organisms was noticed (Stich and

Manrubia, 2009; Willis and Yule, 1922). One reason of the tree asymmetry might be the

branching of rare clades which give rise to a large number of descendant species due to an

important adaption (Felsenstein, 2004).

For describing and understanding patterns of biological diversity or macroevolution, stochas-

tical models have been used by many paleontologists (Raup et al., 1973; Gould et al., 1977;

Gilinsky and Good, 1989; Nee, 2004). But to infer about macroevolution, phylogenetic in-

formation is necessary since one is interested in the history of clades (Nee, 2006). With an

expanding number of molecular data (Hey, 1992; Nee et al., 1992), the interest in stochasti-

cal models increases (Nee, 2006). The continuous-time, uneven branching process was first

described as stochastic process for modeling phylogenies by Yule (1925). Since that time

stochastical models have been used to address several distinct questions and purposes con-

cerning

• the estimation and comparison of the diversification rate of clades

• the investigation of clade shapes

• the estimation of speciation and extinction rates from fossil data which is only resolved

to a certain level in the taxonomic rank, e.g., genus
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• the deduction about past speciation and extinction rates from correct phylogenies of

extant species

• the reconstruction of phylogenies from molecular data

• the usage as null model when trying to assign data with a biological significance

(Nee, 2004, 2006; Aldous et al., 2011) to name but a few.

When considering the issue on understanding driving forces of evolution that have led to

the diversity of living organisms, the reconstruction of phylogenies plays an important role.

Several models treat speciation and extinctions as random process (Aldous et al., 2008). Hy-

potheses about those dynamical rules governing all evolutionary processes may come under

scrutiny with large collections of phylogenetic trees available nowadays (Sanderson et al.,

1994; Whelan et al., 2006). A suitable starting point and null hypothesis is the ERM (Equal

Rate Markov) process suggesting that species undergo further speciation at a constant homo-

geneous rate, independently of previous events and other species present. The introduction

and explanation of the ERM model as well as other common models, such as the PDA (Pro-

portional to Distinguishable Arrangements) model and the AB (Aldous’ branching) model, is

the main part of this chapter. Beginning with a brief explanation on the basic branching pro-

cess of generating a phylogentic tree, the imbalance of trees generated with different models,

growth models in particular, is discussed as well.

3.1. Tree Generation

From the evolutionary dynamics, an evolving phylogenetic tree T (t) is obtained within the

following formal framework. At each time step t, the leaves of T (t) are the species S(t).

A species s ∈ S(t) is choosen according to a probability distribution π(s, t) on S(t) and

undergoes speciation. This is, two new leaves s′ and s′′ attach to a leaf s such that

S(t+ 1) = S(t) \ {s} ∪ {s′, s′′} (3.1)

is the set of species at time t+ 1. After this event, s is an inner node and no longer a leaf of

the tree. The initial condition at t = 1 is a single species. Therefore, the discrete time t and

the number of species n are identical, n = |S(t)| = t. In this way, each model of speciation

dynamics also defines a model for the growth of a binary tree by iterative splitting of leaves.

Abstracting from the dynamics behind tree generation, one may formulate a model directly

in terms of a probability distribution on a set of trees. More precisely, a probability distri-

bution is given separately for each set of all eligible trees of the same given tree size n. Here

eligible trees are oriented binary rooted trees. Oriented is to say that left and right subtrees

are explicitly distinguishable by a left-right labeling. By this choice the isomorphy classes

with respect to left-right symmetry can be disregarded.
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In a particular class of models, including the ERM model and AB model described in the

next sections, the probability L(T ) of a tree T is defined by a product over its inner nodes

I = {1, 2, . . . , n− 1} according to

L(T ) =
∏

j∈I

pmodel(ij |nj) . (3.2)

The model-specific probability factor pmodel, to determine the next node for speciation, de-

pends on the total number nj of leaves in the subtree with root node j and the number ij of

leaves in the left subtree of j. Arguments naturally fulfill 1 < ij < nj. Left-right symmetry

is ensured by

pmodel(i|n) = pmodel(n − i|n) (3.3)

such that L(T1) = L(T2) when T1 is isomorphic to T2. The choice of the functional form of

pmodel determines the expected balance of the trees. By concentrating probability mass at

values ij close to two and close to n− 1, imbalance is enforced.

3.2. Beta-Splitting Models

The so-called beta-splitting models (Aldous, 1996) belong to a one-parametric class of mod-

els for stochastic tree generation with expected imbalance tunable by a parameter β ∈
[−3/2,+∞[. Beta-splitting models define a distribution of trees by the probability, depending

on the total number n of leaves in a rooted subtree with i numbers of leaves in its left subtree,

pβ(i|n) =
1

aβ(n)

Γ(β + i+ 1)Γ(β + n− i+ 1)

Γ(i+ 1)Γ(n − i+ 1)
(3.4)

with appropriate normalization factor aβ(n) (see Aldous (1996)) and Γ(x) as Gamma function

(Abramowitz and Stegun, 1972). Choosing β → ∞ produces complete balanced trees whereas

β < 0 corresponds to more unbalanced trees such as trees generated by the ERM model.

The first subsection discusses the well known ERM model as a simple pure-birth process.

The birth-death process is considered afterwards. Furthermore, the PDA model as well as

the AB model and activity model are considered. Growth models which do not belong to the

class of beta-splitting models are pointed out in the last Section 3.3.

3.2.1. Equal Rate Markov Model as Pure-Birth Process

The Equal Rate Markov (ERM) model is assigned to the scientific work of Harding (1971)

and Cavalli-Sforza and Edwards (1967). Nevertheless it is also called Yule model because it

is based on models of diversification process which were proposed by Yule (1925). The model

is considered as the earliest mathematical model of evolutionary branching. It is well-known

21



Stochastic Models of Macroevolution

and often used as null hypothesis for phylogenetic tree shape respectively for evolutionary

dynamics.

The ERM model is based on the idea that species undergo speciation at a constant homo-

geneous rate, independently of previous events and other present species. In the process, the

probability of choosing a species is uniform at each time step, π(s, t) = 1/t . It is a pure

birth process since the probability for extinction is zero. Additionally, processes that share

a similar probability distribution of topologies as the ERM model have been investigated by

Moran (1958) and Hey (1992). Simberloff (1987) and Simberloff et al. (1981) studied the ap-

plication of the model to statistical testing of area cladograms (Slowinski, 1990). The model

is a particular case of β-splitting with β = 0 (Blum and François, 2006).

There are two options of growing trees under the ERM model with different probability

distributions, both are depicted in Figure 3.1 and explained in the following. In the first case,

and as pointed out previously, each species has an uniform probability to split. The algorithm

of generating a tree of size n is given in Algorithm 1.

Algorithm 1: Standard ERM model for tree generation.

Input: root, number of nodes n of tree T
Output: tree T
while n in T is not reached do1

Choose leaf s from all current leaves S in T at random;2

Replace s by a cherry with s′ and s′,′ as descendants;3

In the second case, called modificated ERM model in the following, starts with initializing

a root node which is labeld with the target tree size n. Not only the root, but each leaf s

is assigned with the number of leaves in the subtree with root s. Since the final tree size n

of T must be known in initial conditions, this variant of the ERM model is not a model of

open-ended evolution, since no adaptions in tree size while generating the trees are possible.

The recursion of generating the tree is given in Algorithm 2.

The ERM model correspond to a particular simple probability distribution on the set of

generated trees, as pointed out in the previous part describing the modificated ERM model.

For a tree with n ≥ 2 leaves generated by the ERM model and i ∈ {1, 2 . . . , n − 1}, let

pERM(i|n) be the probability that exactly i leaves are in the left subtree of the root. Then

pERM(i|n) = 1/(n − 1). This is shown inductively as follows.

Proof. Obtaining exactly i leaves at step n, either they were already present at the previous

step and the speciation took place in the right subtree, or the number increased from i − 1

to i by speciation in the left subtree. Addition of these products of probabilities for the two

cases yields
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3.2 Beta-Splitting Models

pERM(i|n) = n− 1− i

n− 1
pERM(i|n − 1) +

i− 1

n− 1
pERM(i− 1|n − 1) . (3.5)

With the induction hypothesis pERM(j|n − 1) = 1/(n − 2) for all j, one can obtain

pERM(i|n) =
[

1

n− 1
· 1

n− 2
· (n− 1− i)

]

+

[

1

n− 1
· 1

n− 2
· (i− 1)

]

=
1

n− 1
· 1

n− 2
· [n− 1− i+ i− 1]

=
1

n− 1
· 1

n− 2
· [n− 2]

=
1

n− 1
.

The induction starts with pERM(1|2) = 1 which holds because a tree with two leaves has one

leaf each in the left and in the right subtree. Thus the uniform selection of species turns into

a uniform distribution on the number of nodes in the left or right subtree. Note that the same

distribution applies to each subtree of an ERM model generated tree. Therefore, pERM fully

describes the statistical ensemble of ERM trees. The probability of obtaining a particular

tree is the product of pERM terms taken over all subtrees. This becomes particularly relevant

for modifications of the model taking p non-uniform, as shown in the second case of the ERM

model.

Algorithm 2: Modificated ERM model analogous to beta-splitting with predefined
tree size n.
Input: root labeled with target number of leaves n
Output: tree T
while ∃ leaf s with label l > 1 do1

Choose leaf s of already generated tree randomly;2

Replace s by a cherry with s′ and s′,′ as descendants;3

Assign new leaves with labels i and l − i whereas i is drawn from flat distribution4

on {1, . . . , l − 1}
pERM(i|l) = 1

l − 1
;

The topologies generated with the ERM model tend to be compact and nearly balanced

tree shapes, regardless of the version of the growing tree. When comparing with the shape of

observed trees of a certain moderate size, however, the ERM hypothesis can be rejected, as

most real phylogenetic trees are significantly less balanced than those generated by the ERM

model (Herrada et al., 2008).
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b

b b n

i b b n− i

p(i|n) = 1
n−1

(a) Standard ERM model: Calculating the probabil-
ity distribution in a top-down manner.

b

n

n− i b b i

n−1−i
n−1

b

·p(i, n − 1)

b i−1
n−1

·p(i− 1, n − 1)

p(i|n) =n− 1− i

n− 1
· p(i, n− 1)

+
i− 1

n− 1
· p(i− 1, n − 1)

(b) Modificated ERM: Calculation of probability of a
node being the parent node of two nodes in a bottom-
up manner.

Figure 3.1.: Two cases for tree generation under the ERM model in a top-down and bottom-
up approach. n is the total number of leaves in the corresponding node and i
describes the number of leaves of one of its child nodes. p(i|n) is the probability
of node to obtain i given n leaves from its parent node.

3.2.2. The Birth-Death Process

On models based on a birth-death process each species has a probability to die with a constant

rate rd, additionally to the constant speciation rate rb. The death process is called extinction.

Assuming that the number of species grows exponentially in time, the probability of a lineage

lasting from birth to a later instant of time t is given by

p(t) =
1− rd

rb

1− rd
rb
e−(rb−rd)t

in which rd
rb

regulates the tree growth such that it is different to the one from a pure-birth

process (Nee, 2006). With the focus on macroevolution, the birth-death model allows to

estimate speciation and extinction rates from molecular phylogenies with missing information

from extinct species (Nee, 2006). For more details and results on the birth-death process with

varying birth and death rates it is referred to Kendall (1948); Hey (1992); Nee et al. (1994);

Nee (2006).

3.2.3. The Proportional to Distinguishable Arrangements Model

The model of Proportional to Distinguishable Arrangements (PDA) was first described by

Rosen (1978) in the field of cladograms. As the ERM model the PDA model is a special

case of the beta-splitting model but with an observable β = −1.5 . It is no explicit model

of growing trees. In fact, each tree topology of n labeled leaves has the same probability.
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3.3 Further Models

Within the set of all possible arrangements of n species, the frequency of each topology is

proportional to the number of distinguishable trees sharing that topology (Mooers and Heard,

1997). For instance, considering a tree of four leaves, with Equation 2.1 (p.10) one receives

15 possible tree topologies from which three are balanced and 12 are unbalanced trees. Thus,

balanced trees have a frequency 0.2, whereas imbalanced trees show a frequency 0.8 (Mooers

and Heard, 1997). The random selection from all possible phylogenetic trees is not of interest

in the scope of evolutionary dynamics. Hence, it is not considered in the following work.

3.2.4. Aldous’ Branching Model

Choosing the parameter value β = −1 for Equation 3.4 is of particular interest because it has

been demonstrated to maximize the agreement of beta-splitting with observed phylogenetic

trees (Blum and François, 2006) in terms of imbalance. When β is set to −1, the model is

called Aldous’ branching (AB) model with probabilities

p−1(i|n) =
1

a−1(n)

n

i(n − i)
(3.6)

whereas a−1(n) is a suitably chosen normalization constant.

Analogous to pERM, described in previous Section 3.2.1, pβ(i|n) is the probability that a

tree has i out of its n leaves in the left subtree. While the model can statistically reproduce

features of empirical trees in the databases, it does not hint at any biological explanation of

these features, as Blum and François (2006) remark.

3.3. Further Models

The focus of the previous section was on beta-splitting models of Aldous including the ERM

model, PDA model and AB model as special cases. This section deals with a different family

of models including the Alpha model by Ford (2005) and the activity model. Both models are

dynamical models which result in growing trees. The last subsection gives a brief introduction

to age-dependent models.

3.3.1. Ford’s Alpha Model

Ford’s alpha model (Ford, 2005), sometimes also called Uniform model, belongs to a class

of models which are parameterized by tunable parameter value α ∈ [0, 1]. It is a model for

recursive tree formation. Assume the tree representation as a set of leaves whereat each leave

is connected to an internal node by an edge. Each internal node is again connected to other

internal nodes by internal edges. Note that the root is defined as an internal node connected

by a single edge to another node, which can be an internal node or a leaf. Thus, a tree of n

leaves has n− 1 internal edges. For generating a tree, each edge which connects a leave to an
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Stochastic Models of Macroevolution

internal node has a weight 1 − α. All other edges between internal nodes are assigned with

a weight α each. According to their weights, an edge e is choosen at random. A new leaf

connected to an edge e′ is then added to the middle of e. When growing a tree by using the

Ford’s Alpha model, α has a regulating function by controlling the proportion of branching

probabilites which is assigned with 1− α to each leaf and proportional to α to each internal

edge (Ford, 2005; Hernández-Garćıa et al., 2010; Jones, 2011). Normalizing the probabilities

results in 1−α
n−α respectively α

n−α . Equal to the ERM model, the branching process at a chosen

leaf produces two new leaves. But choosing an internal edge for branching, the new leaf is a

result of the insertion of a new internal node into the edge (Hernández-Garćıa et al., 2010).

For α = 0 one gets the ERM model and for α = 1
2 the PDA model (Hernández-Garćıa et al.,

2010; Jones, 2011).

3.3.2. Activity Model

Motivated by the fact that Fords alpha model “gives a simple mechanisms for scaling in

trees with tunable exponent, the dynamical rule of posterior insertions of inner nodes is hard

to justify in the context of evolution” (Hernández-Garćıa et al., 2010), Hernández-Garćıa

et al. (2010) proposed the activity model. In the model, the set of species S(t) at time t is

partitioned into a set of active species SA(t) and a set of inactive species SI(t). Starting the

branching process with the root, at each time step t a species s is randomly chosen with equal

probability from SA(t) if SA(t) 6= ∅, otherwise SI(t) is drawn uniformly. The emerging new

species s′ and s′′ are added independently of each other to the active set SA(t + 1) with an

activation probability p. For p = 0.5 a critical branching process is obtained. Otherwise the

model is similar to the ERM model. A variation of the activity model has been introduced

by Herrada et al. (2011) in the context of protein family trees.

3.3.3. Bellman-Harris Model

A further development of birth-death models considering a constant time are the Bellman-

Harris models. Those models are based on age-dependent processes (Athreya and Ney, 1971)

and were first analyzed by Bellman and Harris (1952). The process of growing trees of these

models is influenced by the age of each species which is the passed time since its birth. Thus

the speciation and extinction is dependent on the age of species. Each species is independent

from others and has no information about its parent (Jones, 2011). There has been not much

attention on age-dependent processes as models for phylogenetic trees. Lately they were

considered in studies by Gernhard et al. (2008). A new age-dependent model is presented in

Section 4.1 which describes a pure-birth branching process.
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3.4 Imbalance Obtained for Empirical Trees

3.4. Imbalance Obtained for Empirical Trees

The validity of models can be assessed by comparing the shape of phylogenetic trees (Sackin,

1972; Herrada et al., 2008; Campos et al., 2004; Stich and Manrubia, 2009). In particular

comparing their degree of imbalance (Colless, 1982; McKenzie and Steel, 2000), with trees

generated by different evolutionary mechanisms (Aldous, 2001; Blum and François, 2006;

Hernández-Garćıa et al., 2010), a selection of realistic models is possible. For many trees

produced by models it is observed that the mean depth scales logarithmically with the number

of leaves n. More precisely, models predict more imbalance than observed in trees inferred

from real data which has been shown in different studies (Aldous, 1996; Steel and McKenzie,

2002; Pinelis, 2003; Mooers and Heard, 1997; Guyer and Slowinski, 1991).

Blum and François (2006) studied the phylogenetic imbalance based on trees of the database

TreeBASE. Their analysis shows that the tree shape undergoes a rapid change from the

smaller to the intermediate-sized and larger trees (Aldous, 1996). Studies by Guyer and

Slowinski (1991) observed more imbalanced trees than the predicted ones by the ERM model

when using small samples of trees. This excess of imbalance may be explained by errors in

molecular data, incompleteness of trees and bias due to approximate reconstruction methods

(Blum and François, 2006; Mooers and Heard, 1997). Overall one can say that tree shapes

based on empirical data deviate significantly from those predicted by completely uncorrelated

speciation processes. The depth scaling and biological motivation of previously presented

models is discussed in the following. An overview is given in Table 3.1 (p.29).

With the focus on beta-splitting models, the parameter β ∈ [−2;+∞[ in Equation 3.4

tunes the expected imbalance. The probability distribution of trees from the ERM model

is recovered by taking β = 0. As the opposite extreme, the Proportional to Distinguishable

arrangements model is obtained at β = −3/2 (Pinelis, 2003; Steel and McKenzie, 2001). While

the depth of the ERM model scales logarithmically with the number of leaves n (Hernández-

Garćıa et al., 2010):

〈d〉(n) ∼ log n , (3.7)

the depth grows algebraically with the number of leaves n as

〈d〉(n) ∼ √
n (3.8)

for the PDA model (Mooers and Heard, 1997).

The PDA model tends to generate more unbalanced trees (Heard, 1996; Aldous, 1996;

Pinelis, 2003). But when tuning the parameter value α the balance decreases. A complete

unbalanced tree, also comb tree, is observable for α = 1. But unlike the AB model, the PDA

model can not generate trees which are more balanced than the ones produced by the ERM

model. For the PDA model this is the consequence of choosing α = 0 which is unique to the

ERM model Hernández-Garćıa et al. (2010).
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Stochastic Models of Macroevolution

The tree shapes produced by the activity model differ from the ones generated by ERM

model as a result of the memory in terms of internal states of the nodes (Hernández-Garćıa

et al., 2010). Studies by Hernández-Garćıa et al. (2010) have shown that for an activity

probability p = 1
2 the model generates trees with a mean depth growing as the square root

of tree size. For p 6= 1
2 and p ∈ (0, 1) the depth seems to increase logarithmically with n

(Hernández-Garćıa et al., 2010).

The trees in TreeBASE have been found to match best with a case of the beta-splitting

model when choosing the intermediate parameter value β = −1.0 (Blum and François, 2006)

which is the AB model. For this model, the expected mean depth increases as

〈d〉(n) ∼ (log n)2 . (3.9)

But the AB model and others introduced to account for tree imbalance assign probabilities

to tree shapes in a way which is not based on any evolutionary principles. The same holds

for the modificated ERM model since both models are not a case of open-ended evolution.

Furthermore, the dynamic rule of the PDA model defined by the posterior insertion of inner

nodes can also hardly described by evolutionary processes as well (Hernández-Garćıa et al.,

2010). With the activity model and the age model respectively the innovation model (latter

two are discussed in Chapter 4), three approaches of biologically motivated models were

introduced.
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log n if β > −1, includes ERM (β = 0)

(log n)2 if β = −1, AB model

n−β−1 if β < −1, includes PDA (β = −1.5)











yes (standard)/no (modificated)

no

no

Fords alpha model

(Ford, 2005)
nα no

activity model

(Hernández-Garćıa et al., 2010)

{

n0.5 if p = 0.5,

log n otherwise.
yes

age model

(Keller-Schmidt et al., 2010)
(log n)2 yes

innovation model

(Keller-Schmidt and Klemm, 2011)
(log n)2 yes

complete tree log n –

comb tree n –

Table 3.1.: Overview of the average distance of leaves from root, the depth scaling behavior, of different models. The last column
indicates whether the model is biologically motivated and thus affected by an evolutionary dynamics or not. For details of
the latter two models, age and innovation, see chapter 4 (p.31).
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CHAPTER 4

Two New Approaches For Understanding Macroevolution

V arious kinds of models generating phylogenetic trees of different attributes con-

cerning, for instance, tree balance were presented in Chapter 3. Most of these

models are simple probability distributions which are not intended to represent any evolu-

tionary process. In addition the produced trees by some of the models show less conformity

with real trees. This chapter deals with two new approaches of tree growth. The stochastic

analysis and validation of generated trees using both new models show that the generated

trees of both models are in good aggreement with the observed balance of empirical trees.

Furthermore a biological motivation is given for both new models.

The first section introduces an age dependent growth model, called age model. It is based

on the fact, that the tree imbalance in terms of a speciation rate is decreasing with the age of

a species. In the speciation process of the age model, the branching probability of a species

is inversely proportional to the time since the species was last involved in a speciation. Thus

the hypothesis is that the speciation rate is a decreasing function of the waiting time since the

last speciation. In Section 4.3.1 it is shown that the imbalance in terms of the mean distance

of leaves from the root, also Sackin index or depth of a tree, grows as (log n)2 in leading order

with tree size n. Also the shape of trees generated by the age model are in agreement with the

scaling observed by exhaustive analysis of the databases TreeBASE and PANDIT. Compared

to the AB model (Blum and François, 2006), the age model yields larger likelihood values on

the trees in databases with up to 19 leaves.

In the second section the explanation of the so-called innovation model is addressed. In this

case, the evolution of species is triggered by the generation of novel features and exhaustive

combination with other available traits. Under the assumption that innovations are rare, a
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bursty branching process of speciations is obtained. The analysis (see Section 4.3) of trees

representing the branching history reveals structures qualitatively different from those of

random processes. For a tree with n leaves generated by the introduced model, the average

distance of leaves from root scales as (log n)2 to be compared to log n for random branching.

The mean values and standard deviations for the tree shape indices depth (Sackin index) and

imbalance (Colless index) of the model are compatible with those of real phylogenetic trees

from databases. Again, earlier models, such as the AB model, show a larger deviation from

data with respect to the shape indices.

4.1. The Age Model – an Age-Dependent Method

The age model can be defined as a stochastic procedure which describes the growth of binary

trees by an iterative stochastic attachment of leaves, similar to the ERM model. In contrast,

the branching rate at each clade is no longer constant, but is decreasing in time, i.e., with the

age. The age of a species is defined by the time that passed from the birth of that leave to

the present time. Put differently, species involved in recent speciation events have a tendency

to speciate again. This amounts to bursting behavior in evolutionary activity. That is to say

that the probability of speciation is inversely proportional to the age of a species. At each

time, a species s is drawn from the set of species S(t) with probability

πs(t) ∝ τs(t)
−1 (4.1)

normalized properly. Each leaf s is assigned an age τs(t) being the time that passed from the

birth of the leaf, ts, to present time t, i.e. τs(t) = t − ts. The growth proceeds by iterating

through the following three steps:

(i) A species s is chosen with probability ps(t) inversely proportional to its age

ps(t) =
τs(t)

−1

c(t)
, (4.2)

where c(t) is chosen such that probabilities of all leaves sum up to 1.

(ii) Two new leaves k and l with creation times tk = tl = t are attached to node s.

(iii) Time t is increased by ∆t and the process resumes at (i). It is considered that a constant

time increment ∆t = 1 unless indicated otherwise. With this choice, time t is equivalent

to number of branching events, and t = n− 1.

A visualisation of the stepwise process of speciation is depicted in Figure 4.1. A pseudocode

is given in Algorithm 3.
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4.1 The Age Model – an Age-Dependent Method

Figure 4.1.: The process of speciation using the age model. At time step t = 0 a root of the
tree is generated and grows with a discrete time ∆t = 1. t is equivalent to the
number of branching events and thus t = n−1. Each level represents a time step
containing the set of nodes which are able to speciate. Gray circles define the
speciating node in each level and white circles the nodes which were not chosen
to speciate.

Algorithm 3: Pseudocode for the age model. Based on the hypothesis that speciation
rate is a decreasing function of waiting time since last speciation of a node.

Data: N . . . amount of nodes / species which simulated tree T should have;
∆t . . . time constant;

Result: T of size N = |T |
set t = 0, create root;1

while |T | < N do2

choose leave s ∈ T with ps(t) =
τs(t)−1

c(t) ;3

attach two new leaves k, l with tk = tl = t to i;4

t = t+∆t;5
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4.2. The Innovation Model

Since the seminal work by Darwin (Darwin, 1859), the evolution of biological species has been

recognized as a complex dynamics involving broad distributions of temporal and spatial scales

as well as stochastic effects, giving rise to so-called frozen accidents. These are incidents with

extensive and manifold consequences to the future. They are reproducable to one chance

event which could have turned out differently (Gell-Mann, 1995). There is vast exchange

and overlap of concepts and methods between the theory of evolution and the foundations

of complex systems such as fitness landscapes (Wright, 1932; Gavrilets, 2004; Klemm and

Stadler, 2012) and neutral networks (Kimura, 1983), the evolution of cooperation (Axelrod,

1984) and self-organized criticality (Per, 1996) to name but a few.

A striking feature of biological macroevolution is its burstiness. The temporal distribution

of speciation and extinction events is highly inhomogeneous in time (Sepkoski, 1993). As

described by the theory of punctuated equilibrium (Gould and Eldredge, 1993), a connection

between punctuated equilibrium in evolution and the theory of self-organized criticality (Per,

1996) is established through the model by Bak and Sneppen (Bak and Sneppen, 1993; Sneppen

et al., 1995). Ecology, i.e., the system of trophic interactions and other dependencies between

species’ fitnesses, is driven to a critical state. Then minimal perturbations cause relaxation

cascades of broadly distributed sizes.

Rather than through ecological interaction across possibly all species, bursty diversification

may also be due to adaptive radiation as a rapid multiplication of species in one lineage after

a triggering event. About 200 million years ago, a novel chewing system with dedicated molar

teeth evolved in the lineage of mammals, allowing it to rapidly diversify into species using

vastly distinct types of nutrition (Ungar, 2010). There are many more examples where a

single innovation triggers adaptive radiation such as the tetrapod limb morphology caused

by a binary shift in bone arrangement (Thomson, 1992) and the homeothermy as a key

innovation by the group of mammals (Heard and Hauser, 1995; Liem and Nitecki, 1990).

Environmental conditions a species has not encountered previously, e.g., when entering a

geographical area with unoccupied ecological niches, may also be the source of adaptive

radiation. The diversity of finch species on Galapagos islands is the famous example first

studied by Darwin. Spontaneous phenotypic or genetic innovations and those caused by the

pressure to adapt to a change in environment are treated on the same footing for the modeling

purposes in this contribution. Though being a central concept in the theory of evolution, the

term innovation has not been ascribed a unique definition so far (Pigliucci, 2008).

The model, introduced and studied in this chapter, is a branching process to mimic the

evolution of species driven by innovations. The process involves a separation of time scales.

Rare innovation events trigger rapid cascades of diversification where a feature combines with

previously existing features. The newly defined branching process is called innovation model.
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Figure 4.2.: Example for generating a tree of nine leaves applying the innovation model. The
root node labeled with the feature set {∅} speciates through the application of an
innovation event by adding the feature {1} to the feature set. This results in two
nodes labeled with {∅} respectively {1} . The innovation events are performed
until a loss step is possible. The loss event is performed by removing the feature
{1} and resulting in the new feature set {2} which does not occur in the tree yet.
The process is repeated until the tree has nine leaves.
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The Featured-Based Method In the innovation model, each species s is defined as a finite

set of features s ⊆ N. Features are taken as integer numbers in order to have an infinite

supply of symbols. Let F (t) be denoted by the set of all features existing at time t, that is

F (t) =
⋃

s∈S(t) s. Each speciation occurs as one of two possible events.

Definition 4.1 (innovation event). An innovation event is the addition of a new feature

φ ∈ N \F (t) not yet contained in any species at the given time t. One of the resulting species

carries the new feature, s′ = s∪{φ}. The other species has the same features as the ancestral

one, s′′ = s.

Definition 4.2 (loss event). A loss event generates a new species by the disappearance of

a feature. A feature φ is drawn from F (t) uniformly. The loss event is performed only if

s \ {φ} /∈ S(t) such that elimination of φ from s actually generates a new species. In this

case, the resulting species are the one having suffered the loss, s′ = s \ {φ} and the species

s′′ = s remaining unaltered. Otherwise, φ is not present in s or its loss would lead to another

already existing species, so nothing happens.

In both cases, a species s is drawn from the set of species S(t) at time t with uniform

probability for speciation. For the case of the model, the assumption is made that creation

of novel features is significantly less abundant than speciation by losses. This separation

of time scales is implemented by the rule that an innovation event is only possible when

no more losses can be performed. In order to facilitate further studies in the following, a

pseudocode description in Algorithm 4 is provided. Furthermore the process of generating a

tree by applying the innovation model is given in Figure 4.2, which shows an example of the

dynamics.

4.3. Comparison of simulated and empirical trees

With the introduction of the new growth models, age and innovation model, in Section 4.1

respectively Section 4.2, a validation of those is necessary. A comparison by simple inspection

of trees from real data and models may already reveal substantial shape differences. Figure 4.3

shows an example. The trees in panels (a), (b) and (c) are less compact than that of panel (d)

of Figure 4.3. Panel (a) represents a tree from TreeBASE. Trees generated with the age model

and innovation model are shown in panel (b) respectively (c). In panel (d) a tree created as

realization of the ERM model is depicted.

For an objective and quantitative comparison of trees generated by models and empirical

trees, the three following measures of tree shape are analyzed:

• The Sackin index d (Sackin, 1972) describing the compactness of a tree by the average

distance of all leaves from root (see 2.3.2 (p.16)).
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4.3 Comparison of simulated and empirical trees

Algorithm 4: Pseudocode for the innovation model

Data: N . . . final size of simulated tree T ;
S . . . set of all species s;
F (t) . . . set of all features existing at time t;

Result: T of size N

set t = 1, F (0) = ∅, S(0) = {∅};1

while |S(t)| < N do2

if S(t) \ {s \ {φ} : s ∈ S(t), φ ∈ F (t)} 6= ∅ then3

// loss event4

draw φ ∈ F (t) uniformly;5

draw s ∈ S(t) uniformly;6

if s \ {φ} /∈ S(t) then7

S(t+ 1) = S(t) ∪ {s \ {φ}};8

F (t+ 1) = F (t);9

increment t;10

else11

// innovation event12

draw s ∈ S(t) uniformly;13

set φ = 1 +max(F (t) ∪ {0});14

set S(t+ 1) = S(t) ∪ {s ∪ {φ}};15

set F (t+ 1) = F (t) ∪ {φ};16

increment t;17
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• The Colless index c (Colless, 1982) for the evaluation of tree balance (see 2.3.3 (p.16)).

• The cherry distribution (McKenzie and Steel, 2000) as measurement of tree quality by

computing the number of cherries of a tree (see 2.3.4 (p.16)).

For the analysis and comparison the simulated data sets were chosen as follows. A data

set for each model (AB model, ERM model, age model and innovation model) encompasses

1,000 trees for each tree size from 5 to 535 and ten trees for each tree size from 536 to 2,562.

Empirical data sets were taken as explained in Section 2.3.3 (p.16).

4.3.1. Evaluation using the Sackin Index

This section consists of two parts. Each of them deals with the quantification of tree imbalance

using the Sackin index, in the following also named depth d of a tree. The first part studies

trees generated with the age model, the second deals with trees created by the innovation

model. The average depth values d of the empirical trees from TreeBASE, PANDIT, and McPeek

are depicted in Figure 4.4

d ∼ (log n)2 (4.3)

in good approximation. Alternative analytic expressions for the growth can be fitted, in

particular a power law d ∼ nγ , with γ ≈ 0.4 describes TreeBASE data equally well (Herrada

et al., 2008). But for the larger tree sizes contained in PANDIT, the (log n)2 form is more

accurate (Herrada et al., 2011).

For evaluating the similarity of model generated trees with empirical trees from TreeBASE,

PANDIT and McPeek, a p-value analysis is applied. The p-value is calculated as follows. Given

a model M and an empirical tree T of depth d and having nreal leaves. The fraction f of

the model trees, consisting of nmodel leaves, possessing a depth which is larger as or equal

to d can be calculated. For each tree size which is obtained in the empirical data set, 1,000

trees were generated with M . Each model tree was tested against each real tree of size nreal

if nmodel = nreal. Taking that p-value and a significance level α = 0.05, a model can be

rejected, if f < 0.05 or f > 0.95, i.e., the observed value lies at one of the extremes of the

model distribution. Table 4.1 (p.42) shows an overview of the fraction of trees for the age

model, ERM model and AB model which were rejected, respectively not rejected compared to

empirical trees of TreeBASE, PANDIT and McPeek. The not rejected cases are called accepted

in the following. The total set of trees for each stochastic data set is divided into four subsets

containing about 25% of total trees with an increasing tree size. Each tree size is fully included

in one of the subsets. For TreeBASE, for instance, 1,347 out of 5,087 (which makes 26%) trees

have 18 or fewer leaves. The age model is acceptable for a fraction of 0.8270 (=1,114 trees)

out of these 1,347.
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4.3 Comparison of simulated and empirical trees

Figure 4.3.: Empirical and simulated trees. The depicted phylogenetic tree in (a) is from
the database TreeBASE (Matrix ID M2957, relationships in rosids based on mi-
tochondrial matR sequences), (b) is a tree generated with the age model, (c) is
a tree created as a realization of the innovation model, and (d) a tree from the
ERM (Yule) model. Each of the trees has 161 leaves.
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Figure 4.4.: The square-root of the mean depth vs. size of phylogenetic trees contained in
databases for species (TreeBASE, �; McPeek, △) and proteins (PANDIT, ◦).
The depth is averaged for all trees having the same number of leaves. In this
scale (log-linear), the behavior 〈d〉 ∼ (log n)2 is a straight line.

Age model

For the age model, there is evidence that the expected depth 〈d〉 increases as (log n)2 with

the number of leaves n. An approximation is shown in Section 4.4.3. Hence, the growth law

is identical to the AB model. Also, it is in good agreement with the depth values obtained

from the databases TreeBASE and PANDIT (see Figure 4.8 (p.49)). The results of the p-value

analysis for supporting the similarity of trees from the databases and the ones generated

by the age model with the time increment of ∆t = 1 is depicted in Table 4.1 (p.42). The

accepted trees of the ERM model are decreasing with tree size for all three data sets and

are the most-often rejected trees. The results show that 80% of the trees with 5 to 47 leaves

generated by the age model are accepted when compared the TreeBASE data set. Thus, the

age model performs slightly better than the AB model. For trees with 48 to 535 leaves 71%

of trees generated by the AB model but 70% of trees from the age model are evaluated as

accepted. The results for the age model are similar for the PANDIT and McPeek data set,

whereat AB model performs best for the McPeek data set.

When comparing the mean values of the Sackin index in Figure 4.5a from the age model,

ERM model and AB model to the empirical data sets, the age model shows the smallest

discrepancy and fits well with the PANDIT and TreeBASE dataset. The McPeek data set shows

a mean depth distribution between the AB model and ERM model generated trees. But

compared to the other two empirical data sets, McPeek is of a small size and a small number
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Figure 4.5.: Comparison of size-dependent summary statistics for models and real trees. Sym-
bols distinguish the ERM model, the AB model and the age model respectively
the innovation model and the data sets TreeBASE, PANDIT and McPeek. The mean
values of depth, panel (a), are binned logarithmically as a function of tree size n.
The mean value of n is calculated for each bin. The same procedure is applied
to the standard deviation, panel (b). Panel (c) depicts the same values of depth
as in panel (a) and (b) with an n-dependent rescaling. This is the average depth
divided by lnn. The factor is chosen such that the rescaled values for the ERM
model asymptotically approach a constant. See reference Blum et al. (2007) for
the scaling of the indices of the ERM model.
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#leaves
AB m. ERM m. age m. innovation m.

#T
acc rej acc rej acc rej acc rej

(a) TreeBASE (5,087 trees in total)

5 .. 18 0.8478 0.1522 0.6570 0.3430 0.8270 0.1730 0.8315 0.1685 1347
19 .. 31 0.7693 0.2307 0.4335 0.5665 0.7972 0.2028 0.8465 0.1535 1218
32 .. 47 0.7250 0.2750 0.2713 0.7287 0.7976 0.2024 0.8384 0.1616 1349
48 .. 535 0.7187 0.2813 0.1679 0.8321 0.7076 0.2924 0.7349 0.2651 1173

(b) PANDIT (36,136 trees in total)

5 .. 7 0.6472 0.3528 0.6472 0.3528 0.6314 0.3686 0.6314 0.3686 9464
8 .. 12 0.7856 0.2144 0.5665 0.4335 0.8537 0.1463 0.8322 0.1678 9212
13 .. 25 0.6109 0.3891 0.2876 0.7124 0.8146 0.1854 0.8444 0.1556 8806
26 ..2,562 0.4148 0.5852 0.0879 0.9121 0.7148 0.2852 0.7858 0.2142 8654

(c) McPeek (238 trees in total)

5 .. 9 0.8361 0.1639 0.7705 0.2295 0.8033 0.1967 0.7705 0.2295 61
10 .. 14 0.9545 0.0455 0.6970 0.3030 0.8788 0.1212 0.8485 0.1515 66
15 .. 24 0.8654 0.1346 0.6538 0.3462 0.7115 0.2885 0.8077 0.1923 52
25 .. 116 0.8814 0.1186 0.6441 0.3559 0.6271 0.3729 0.6441 0.3559 59

acc = accepted; rej = rejected; m. = model; #T = amount of trees in subset

Table 4.1.: P-values with a significance level α = 0.05 for each model regarding real trees
from (a) TreeBASE, (b) PANDIT and (c) McPeek. Each model tree of size nmodel

was tested against each real tree of size nreal when nmodel = nreal. For each nreal

1,000 trees were realized by each model. Results where divided into partition of
size >= 25% of trees so that all trees of same size are in one subset. The fraction
f of the model trees, consisting of nmodel leaves, possessing a depth which is larger
as or equal to depth d for an empirical tree T of size nreal is calculated. A model
is, if rejected, if f < 0.05 or f > 0.95. The model showing the highest acceptance
rate is displayed in green, the lowest in red.

of trees of large size. This may lead to an improper distribution.

Comparing the standard deviation of the mean depth values (shown in Figure 4.5b), the age

model performs slightly worse than the innovation model but still bear a larger resemblance

to the ERM model and AB model, besides the innovation model, which is discussed in the

next part. The values of McPeek are again between those of AB model and ERM.

In Figure 4.5c, the averages of the Sackin index is depicted after rescaling to facilitate the

comparison. The age model values are the best matching to those of PANDIT, TreeBASE and

McPeek. The curves from the age model and the TreeBASE data set possess a high overlap.

The innovation model performs similar and is discussed in the following.
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4.3 Comparison of simulated and empirical trees

Innovation model

The innovation model generated trees show a similar imbalance as real trees from TreeBASE,

PANDIT and McPeek. Table 4.1 shows the results of the p-values analysis for each model

including the innovation model in the last column. The innovation model shows the highest

acceptance rate for the TreeBASE data set for the three subset with tree size larger than 18

which is also tree size independent and reaches from 0.7349 to 0.8465. For the PANDIT data

set, the innovation model shows the highest rate of acceptance for three out of four subsets

regarding tree size. Only for small trees of size three to seven the AB model shows a slightly

higher acceptance rate with a difference of 0.0158. The p-values are independed of tree size

for the AB model as well as for the innovation model. The acceptance rate of trees generated

using the ERM do not show such an independency but is decreasing with the tree size. As

already pointed out previously, the AB model performs best for the the McPeek data set, but

for tree of size 10 to 24, the age model and innovation model still show an acceptance rate of

71% to 85%.

An ensemble of mean values and standard deviations of the Sackin index is shown in Figure

4.5. Comparing the results of the three models, ERM model, AB model, and innovation

model, to those of the trees from two databases, the least discrepancy is obtained between

the innovation model and the trees from TreeBASE, representing macroevolution. In Figure

4.5c, the averages of the Sackin index are shown after rescaling to facilitate the comparison.

Of all models, the values of the innovation model are also best matching those of PANDIT.

According to the p-values and Figure 4.5, out of all models, the results of the innovation

model are the best matching those of PANDIT and TreeBASE. Furthermore one observes the

lowest discrepancy to the results of the McPeek data set. But the results of the age model are

almost as good or identical.

4.3.2. Validation by the Colless Index

For measuring the average imbalance of trees the Colless Index is calculated for each em-

pirical data set (TreeBASE, PANDIT, McPeek) and stochastic data set including ERM model,

AB model, age model and innovation model. Figure 4.6a and 4.6b depict the mean value

respectively the standard deviation of the Colless index for each data set. Comparing the

results of four models to those of trees from the two databases TreeBASE and PANDIT, the

least discrepancy is obtained between the innovation model respectively age model and the

trees from TreeBASE, representing macroevolution. The McPeek data set shows a different

scaling for larger trees compared to trees from TreeBASE and PANDIT. Thus trees of size 40

to 90 the AB model shows the highest conformity. One reason for that could be the small

data set of 232 trees compared to 5,087 for TreeBASE respectively 36,030 trees for PANDIT.

Figure 4.6c shows the averages of Colless index after rescaling to facilitate the comparison.

Of all models, the values of the innovation model and age model are also best matching those
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Figure 4.6.: Comparison of size-dependent summary statistics for model generated and real
trees. Curbes are shown for ERM model, the AB model, the age model and
the innovation model and the data sets TreeBASE, PANDIT and McPeek. The
Colless index, panel (a), is binned logarithmically as a function of tree size n.
The mean value of n is calculated for each bin. The same procedure is applied
to the standard deviations, panel (b). The same values of the Colless index as
in panel (a) with an n-dependent rescaling is shown in panel (c). Therefore, the
average Colless index is divided by n−1 lnn. These factors are chosen such that
the rescaled values for the ERM model asymptotically approach a constant. See
reference Blum et al. (2007) for the scaling of the indices of the ERM model.
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of TreeBASE and PANDIT whereat the values of TreeBASE shows a smaller discrepancy for tree

of size 250 and up.

4.3.3. Analysis of the Cherry Distribution

For the measurement of the tree quality when testing empirical trees (TreeBASE, PANDIT,

McPeek) against simulated trees (from ERM model, AB model, age model, innovation model)

the cherry distribution for each data set is studied. For that purpose the amount of cherries

for each tree in each data set is calculated.

The mean value of cherries normalized by the tree size as function of leaves n is depicted in

Figure 4.7a. For the ERM model the largest number of cherries can be observed. The number

of cherries of trees generated by the innovation model seems to increase with n and approaches

to the curve of he ERM model. At this point, for an explanation, the process performed

during an innovation event is anticipated and described in detail in Figure 4.10 (p.53) and

corresponding text. The increase might be caused by the addition of a tree when an innovation

event is processed. The added tree is similar to those generated with the ERM model. The

curve of TreeBASE is falling at the end due to the appearance of a single tree for that size and

thus is not representative. The smallest deviations to TreeBASE for trees of size 30 to 130

approximately is observed for the innovation model. But also the AB model is in agreement

with the empiricial data sets when compared to the age model and ERM model.

But without normalizing the mean value of cherries as function of n, shown in Figure 4.7c,

all data sets show a similar scaling behavior. Here, the mean values are binned logarithmically.

A more detailed plot of the behavior and associated regression lines reflects Figure 4.7d. Here

the mean values are binned logarithmically for trees of size 5 to 64 and trees of size < 99 are

binned in partitions of size 50. As shown in studies by McKenzie and Steel (2000) and Matsen

(2006) the distribution grows asymptotically normal with increasing number of leaves. The

coherence between the cherry count and leaf number is also represented by the regression

lines whereby the stochastical data sets show a stronger dependency than the empirical data

sets. The more narrow both regressions lines for each data set in the intersection the higher

the observable stochastic dependencies between the tree size and the number of cherries. For

all model generated trees, the regressions lines are one upon the other, also the empirical

data sets show only a small difference. Thus, all trees show a high stochastic dependency.

The regression line for the age model is the closest to the one from TreeBASE and thus

shows a similar dependency of cherries from leave counts. The other simulated data sets

are in accordance to the McPeek and PANDIT data sets, which are also similar among one

another. The ERM model trees are the most balanced ones which results in more cherries

with increasing tree size.

The standard deviation for the amount of cherries is given by Figure 4.7b. The standard

deviation is a increasing function with tree size for all data sets. Observing similar values
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Figure 4.7.: (a) Mean of cherry number normalized with n over trees of logarithmically binned
tree size as a function of leaves n. (c) Number of cherries as a function of leaves n.
Trees of size 5 to 64 are binned logarithmically, (d) Same as panel (c) with a more
detailed binning: trees of size 5 to 64 are binned logarithmically, and trees of size
< 99 are binned in partitions of size 50. The mean value of n is calculated for
each bin. Additionally, the regressions lines for each data set is depicted. Dashed
line presents regression line for number of cherries ∼ n and dashed-dotted line
corresponds to n ∼ number of cherries.
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for small trees, the curves of the data sets drift apart with increasing tree size. The curve

of the ERM model is the closest to the curves of the empirical data sets with 130 leaves

approximately, but the almost overlaying curves of the AB model and innovation model are

near as well as the age model data.

Overall, when comparing the mean values of cherries, all models generate trees with a

similar behavior as empirical trees. But if taking bins of a small range of tree size, the age

model shows the lowest discrepancy to TreeBASE. But for the AB model and innovation

model a similar behavior to PANDIT and McPeek is observed. The ERM possess the greatest

differences to the empirical data sets.

4.4. Approximation of depth scaling

The mean depth can not only be used for imbalance measurement but also for tree comparison.

Thus the depth scaling behavior of model generated trees is used to compare among one

another with empirical trees. This is done by answering the question how the mean depth

scales with tree size.

4.4.1. Mean Depth Scaling of Most Imbalanced Trees

Considering a rooted, binary but completely imbalanced tree with n leaves, the depth d′ for

all nodes in the tree is given by

n · d′(n) = 1 + 2 + . . . + (n − 2) + (n − 1) + (n− 1) (4.4)

=

n−1
∑

k=1

k + (n− 1) . (4.5)

Therefore, the mean depth is obtained by dividing each term by n

d(n) =

n−1
∑

k=1

k

n
+

n− 1

n
(4.6)

=
n
∑

k=1

k

n
− 1

n
(4.7)

=
1

n

n
∑

k=1

k − 1

n
. (4.8)
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Now substitute the sum by a finite sequence which leads to

d(n) =
1

n

(

n
n+ 1

2

)

− 1

n
(4.9)

=
n

2
+

1

2
− 1

n
(4.10)

and results in a depth scaling

d(n) ∼ n . (4.11)

4.4.2. Mean Depth Scaling of Most Balanced Trees

In a complete balanced tree each leaf has the same distance to the root. The size of such a

tree, which additional is rooted and binary, is given by n = 2i. Therefore, i defines the tree

levels starting with zero for the root and also stands for the mean depth of each level. Thus

d(n) = i and defining d(n) = log2 n results in a scaling of

d(n) ∼ log n (4.12)

(Hernández-Garćıa et al., 2010).

4.4.3. Mean Depth Scaling of the Age Model

The n-dependence of the expected depth of trees stochastically generated by the age model

is analyzed in the following for ∆t = 1. Numerical and heuristic arguments strongly suggest

that d ∼ (log n)2 is the asymptotic growth law for this model (see Figure 4.8 ), but a fully

rigorous demonstration of that is not provided. Instead the upper and lower bounds for the

depth in the model are established, and provide numerical evidence for the (log n)2 scaling of

them, from which the same behavior would hold for d(n).

In Keller-Schmidt et al. (2010) (version 1), the upper and lower bound recursions were

derived assuming that the replacement of the actual age distribution by an extreme case does

not yield a decreasing depth. But this assumption does not hold in general, which is shown

at the end of this section.

First, a single realization of the stochastic process is considered. For each integer time

t > 0, let δ(t) be the distance from root of the two new leaves added at time t. This means

that δ(t) − 1 is the distance from root of the leaf chosen to speciate. Let τ(t) be the age of

the leaf chosen at time t. Then δ(t) obeys the recursion

δ(t) = δ(t − τ(t)) + 1 (4.13)

for t > 1 with δ(1) = 1 as initial condition.

Now, considering the case that the process has generated the sequence δ(1), δ(2), . . . , δ(t−1),
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Figure 4.8.: The dependence of depth d on the number of leaves n. Curves with symbols are
the lower (�) and upper (◦) bounds obtained by the recursion Equations 4.19
and 4.22 inserted into Equation 4.24. Stochastic simulations yield an average
depth plotted as the solid line with error bars indicating standard deviation over
the 30 independent realizations with ∆t = 1. Analogously, the dashed line is
for stochastic simulations but using a time increment ∆t = 1/n. Note that

√
d

is plotted over a logarithmic n-axis, so the dependence d ∼ (log n)2 results in a
straight line. The inset shows the slopes of the curves in the main panel, which
display better the asymptotic approach to a constant slope, i.e., the approach to
a (log n)2 growth.
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one can ask for the expectation value η of δ(t). In the calculation of η also the distribution

f(τ, t) of ages of the leaves of the tree enters as

η = 1 +

∑t−1
τ=1 f(τ, t)τ

−1δ(t− τ)
∑t−1

σ=1 f(σ, t)σ
−1

. (4.14)

In the following, an f -independent lower-bound on η is established. To this end, a particular

age distribution is defined as

f≤(τ, t) =











2t−1, if τ = 1

t−1, if 2 ≤ τ < t

0, if t ≤ τ

(4.15)

Dynamically, this age distribution is obtained when one of the youngest leaves (τ = 1) is

chosen in each step. The assumption is made that the expected level does not increase when

replacing the actual age distribution f by f≤. Therefore

η ≥ 1 +

∑t−1
τ=1 f≤(τ, t)τ

−1δ(t− τ)
∑t−1

σ=1 f≤(σ, t)σ
−1

. (4.16)

The expectation value 〈δ〉(t) over the whole stochastic process is obtained formally by an

average over all histories as follows. Call Dt the set of all eligible distance sequences of length

t− 1 and Ft the set of all eligible age distributions at time t. Then one can write

〈δ〉(t) = 1 +
∑

δ∈Dt

∑

f∈Ft

p(δ, f, t)

∑t−1
τ=1 f(τ, t)τ

−1δ(t− τ)
∑t−1

σ=1 f(σ, t)σ
−1

(4.17)

with p being the joint distribution of distance sequence and age distribution at a given time.

An exact solution for 〈δ〉(t) would thus involve a recursion for p, which is difficult to treat.

The lower bound on η in Equation 4.16, however, is valid for each possible realization of the

process. Therefore

〈δ〉(t) ≥ 1 +

∑t−1
τ=1 f≤(τ, t)τ

−1
∑

δ∈Dt
δ(t− τ)p′(δ, t)

∑t−1
σ=1 f≤(σ, t)σ

−1
(4.18)

where p′ is the marginal of p after summation over Ft. Performing the sum over Dt yields

〈δ〉(t) ≥ 1 +

∑t−1
τ=1 f≤(τ, t)τ

−1〈δ(t − τ)〉
∑t−1

σ=1 f≤(σ, t)σ
−1

(4.19)

Thus a recursion for a lower bound on 〈δ〉 is established.
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Likewise, the age distribution

f≥(τ, t) =











2t−1, if τ ≤ ⌊t/2⌋
t−1, if τ = (t+ 1)/2

0, otherwise

(4.20)

can be used to establish an upper-bound recursion. Dynamically, this age distribution is

obtained when an oldest leaf is chosen in each step. Again, it is assumed that the expected

level does not increase if the age distribution f is replaced by f≥. Therefore,

η ≥ 1 +

∑t−1
τ=1 f≥(τ, t)τ

−1δ(t− τ)
∑t−1

σ=1 f≥(σ, t)σ
−1

. (4.21)

By arguments analogous to the above, the upper-bound recursion can be formulated as

〈δ〉(t) ≥ 1 +

∑t−1
τ=1 f≥(τ, t)τ

−1〈δ(t− τ)〉
∑t−1

σ=1 f≥(σ, t)σ
−1

. (4.22)

For transforming 〈δ〉 into expected depth d, consider the sum of distances of leaves from

root, D(t) = td(t). Addition of two leaves at distance x from root increases D by 2x−(x−1) =

x+ 1. Thus

D(t) =

t
∑

s=2

(δ(s) + 1) (4.23)

for a realization of the stochastic process with level sequence δ. By linearity of expectation

values the expected depth is

〈d(t)〉 =
t

∑

s=2

[〈δ(s)〉 + 1]/t . (4.24)

As pointed out previously, assumptions for deriving the lower and upper bound recursions,

i.e., the replacement of the actual age distribution by an extreme case does not decrease the

depth, does not hold in general. This shown by means of the following example. A comb

tree, of a sufficiently tree size n ≥ 6, is growing by speciation of the “right” leaf in a cherry.

But before the last splitting at t = 6 the left child node of the root splits which results in

δ(4) = 2. At time step t = 6 one can obtain the ages one and two, twice each, and three and

four. With replacing f by f≤ and applying Equation 4.14 both ages of two are replaced by

two and five. This implicates an increase of η in Equation 4.14 and thus, the estimation in

Equation 4.16 is not fulfilled.

Figure 4.8 shows upper and lower bounds on the expected depth 〈d〉 obtained as numerical

solutions of the recursion Equations 4.19 and 4.22. The same diagram contains a plot of the

results of direct simulations of the model. In one set of simulations the usual time increment

∆t = 1 is used, so that t ∼ n. Another set of simulations is performed with ∆t = 1/n to check
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Figure 4.9.: Average depth in dependence of the number of leaves n in trees generated with
stochastic loss events (dots with error bars). Each data point is an average over
100 realizations with error bars indicating standard deviations. for comparison,
the expected depth for the ERM model (�) and for complete binary trees (△)
are shown.

for robustness under different evolution of overall speciation rates. Upper and lower bounds

as well as the two sets of simulations strongly suggest that the asymptotic growth behavior

for the depth is (log n)2. An overview of the scaling of the average depth with the number of

leaves is given in Table 3.1 (p.29) for different kind of models including the age model.

4.4.4. Mean Depth Scaling of the Innovation Model

The first part considers the deterministic tree growth as an approximation of the innovation

model. The given preliminary conditions are essentiel for an approximation of the depth

scaling for the innovation model, which is discussed in the second part of this section. There,

it is shown that for a tree with n leaves generated by the innovation model, the average

distance of leaves from root scales as (log n)2 to be compared to log n for random branching.

Preliminary conditions

For calculating the average depth of a tree, one may focus on the subtree generated by an

innovation. Supposed that the i-th innovation, generating feature i, affects a species s with

f features. Then s is removed from the set S of extant species, turning into an inner node in

the tree. Two new species s′ and s′′ are attached, having feature sets s′ = s and s′′ = {i} ∪ s.

In subsequent loss events, a subtree Ti is built up with 2f leaves, each of which is a species
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4.4 Approximation of depth scaling

Figure 4.10.: The deterministic growth of a tree considered as an approximation of the inno-
vation model. Each subtree generated by an innovation is indicated as a shaded
area.

σ ⊆ s ∪ {i}. Call D(Ti) sum of the distances of all the leaves in Ti from the root of Ti.

Now, one can estimate the expectation value 〈D(Ti)〉, which only depends on the number

of features of f . Trivially, D(Ti) is lower bounded by f2f since the most compact tree is the

complete balanced one with all nodes at distance f from root. In particular, we conjecture

f2f < 〈D(Ti)〉 < DERM(2f ) (4.25)

with the number of distances for the ERMmodelDERM. The second inequality is corroborated

by the plots in Figure 4.9. This can be made plausible as follows. Similar to the ERM model,

a leaf is chosen in each time step when executing loss events. Here, however, the loss event is

performed only if the chosen leaf carries the chosen feature and the reduced feature set is not

yet present in the tree. Thus the probability of accepting a proposed loss event at a leaf s is

anticorrelated with the number of features |s| at s. The expected number of features carried

by a leaf decreases with its distance from root. Therefore, one can argue that the present

model adds new nodes preferentially to leaves closer to root than average, resulting in trees

with an expected depth increasing more slowly than in the ERM model.

Approximation

The study of tree growth is derived from the innovation model by two simplifying assumptions:

(i) Each innovation is introduced at the leaf with the largest number of features in the tree.

(ii) Introducing an innovation at a leaf with f features triggers the growth of a subtree that

is a perfect (complete) binary tree with 2f leaves at distance f from the root of this

subtree.
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This leads to the consideration of the following deterministic growth starting with a single

node and i = 0. Choose a leaf s at maximum distance from root; split s obtaining new leaves

s′ and s′′; take s′′ as the root of a newly added subtree that is a perfect tree with 2i leaves;

increase i by one and iterate. Figure 4.10 illustrates the first few steps of the growth.

After i steps, the number of leaves added to the tree most recently is 2i−1. Therefore, the

total number of leaves after step i is

n(i) = 1 +
i

∑

j=1

2j−1 = 2i (4.26)

because the procedure starts with a single leaf at i = 0.

The leaves of the subtree added by the j-th innovation have distance

j
∑

k=1

k =
j(j + 1)

2
(4.27)

from root because these leaves are j levels deeper than those generated by the previous

innovation. Therefore, the sum of all leaves’ distances from root is

D(i) = i+

n
∑

j=1

2j−1[j(j + 1)/2] (4.28)

after the i-th innovation has been performed. The first term i arises because the innovation

itself renders one previously existing leaf at a distance increased by one, cf. the leaves outside

the shaded areas in Figure 4.10. In performing the sum of Equation 4.28 the following equality

is used
i

∑

j=0

xj−1[j(j + 1)] = 2i[i2 − i+ 2]− 2 (4.29)

to arrive at

D(i) = i+ 2i−1[i2 − i+ 2]− 1 . (4.30)

A substitution of n(i) = 2i, i.e. i = log2 n, and the division of D by n is performed to arrive

at the depth

d(n) =
1

2
[(log2 n)

2 − (log2 n) + 2] +
(log2 n)− 1

n
(4.31)

of the tree with n leaves generated by deterministic growth. For large n, the depth scaling is

d(n) ∼ (log n)2 . (4.32)

By the comparison in Fig. 4.11, the (log n)2 scaling is also found for the depth of trees

obtained from the innovation model as defined in Section 4.2. Thus one can hypothesize that
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Figure 4.11.: Depth as a function of tree size n for the innovation model (◦) and for the
deterministic growth (thick solid curve) according to Equation 4.31. Note that
square root of depth is plotted such that a straight line in the plot indicates a
depth scaling d(n) ∼ (log n)2. Small symbols (+) connected by thin lines give
〈n/i〉, the average number of leaves per innovation. For each size n, the plotted
points (◦, +) are averages over

√

d(n) and i/n for 100 independently generated
trees. Error bars give the standard deviation.

the deterministic growth captures the essential mechanism leading to the depth scaling of the

innovation model. The prefactor of (log n)2 is smaller in the innovation model than in the

deterministic growth. In the actual model, most innovations hit a leaf with a non-maximal

number of features and therefore, trigger the growth of a lower subtree than assumed by

deterministic growth. Table 3.1 (p.29) provides an overview of the scaling of average depth

with the number of leaves for various tree models .

4.5. Discussion and Concluding Remarks on Age Model and

Innovation Model

The proposed age model compares with observed phylogenetic trees better than previous

models. In addition, it describes the tree generation process in a way which is easy to

interpret phylogenetically: it assumes that lineages which have not speciated for a long time

would display in the future a still more reduced speciation rate.

Future work should provide a more detailed analysis of the model itself and further compar-
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ison to real phylogenetic trees. The depth scaling analysis is a challenging problem. Heuristic

arguments suggest an depth scaling d ∼ (log n)2 for the age model. But is is pointed out

that the proposed analytic solution for the expected depth of its bounds shows deficiencies.

It would be also desirable to obtain expressions or at least numerical results for the second

and perhaps higher moments. For the likelihood expressions, a factorization or other kind

of decomposition would allow for faster exact computation. Instead of exact computation,

estimation by a Monte-Carlo sampling method may circumvent the present size limitation of

trees in the likelihood analysis.

An additional interesting point of analysis and comparison of phylogenetic trees is the dis-

tribution of branch lengths. Branch length data, however, are not as reliable as the topological

structure of phylogenetic trees (Barraclough and Nee, 2001). This argument is supported by

Pigolotti et al. (2005), summarizing the variety of behaviors of distributions found in the

literature. There is evidence to suggest that future studies in the line of Venditti et al. (2009)

may accumulate sufficiently reliable branch-length data to allow for comparison to models

such as the present one.

Finally, timing in the model is worth further clarification. The model describes tree growth

as a Markov chain where exactly one speciation event occurs at each time step. A more real-

istic version would formulate a Markov process that assigns a speciation rate to each species

at any moment in continuous time. The choice ∆t = 1/n in the results of Fig. 4.8 (p.49) is a

first step in that direction.

The innovation model establishes a connection between the burstiness of macroevolution

and the observed imbalance of phylogenetic trees. Bursts of diversification are triggered by

generation of new features and combination with the repertoire of existing traits. In order to

keep the model simple, the diversification after an innovation is implemented as a sequence

of random losses of features. More realistic versions of the model could be studied where

combinations of traits are enriched by re-activation of previously silenced traits or horizontal

transfer between species. Furthermore, the model as presented here neglects the extinction

of species and their influence on the shapes of phylogenetic trees. As the age model the

innovation model also produces trees which fit well the oberserved tree structue in estimated

trees.

Regarding the robustness of the model, the depth scaling would have to be tested under

modifications. In particular, the infinite time scale separation between rare innovations and

frequent loss events could be given up by allowing innovations to occur at a finite rate set as

a parameter.

In summary, with the innovation model a well-working, biologically motivated model is

defined which nevertheless is sufficiently simple to allow for further enhancement regarding

biological concepts such as sequence evolution and genotype-phenotype relations.
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CHAPTER 5

Likelihood Analysis For Growth Models

A further study on models of tree growth can be performed by the use of a likelihood analysis

in order to rank models with respect to their ability to explain observed tree shapes. Thus,

when abstracting from the algorithmic formulation of tree generation, a branching model A

can be characterized by the probability LA(T ) of obtaining a given tree T . The quantity

LA(T ) is also called the likelihood of model A under the data (tree) T . When aiming at

modeling empirical data, it is supposed that one model A is better than a different model B,

if

LA(T ) > LB(T ) (5.1)

for an observed tree T . Let T be a rooted binary tree, the permutation of inner nodes

leading to T is defined as a branching sequence. In that process, a node branches at one

time step and children cannot branch earlier than their parents. Results of the likelihood

analysis for small trees (up to 19 leaves), discussed in Section 5.1.2, show that the age model

performs at least as good as the AB model for TreeBASE data and better for PANDIT data.

To support this observation a further analysis using larger trees is necessary. But calculating

the exact likelihood for the age model, one needs to sum up the probabilites for each possible

branching sequence. Summing up the probabilites of all possible branching sequences implies

a huge computational effort because of the exponential increase of branching sequences with

tree size. To this effect, a sampling of branching sequences comes in to consideration for

estimating the likelihood. Section 5.2 deals with a naive method and an effective method

based on importance sampling (Ripley, 1987) for estimating the likelihood. Both methods

are compared by means of a tree from TreeBASE.
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5.1. Exact Likelihood Computation

The way of computing the likelihood needs to be considered individually for each growth

model. As it is simple for both beta-splitting models, ERM model and AB model, it is not

as easy for the age model. The likelihood computation of the mentioned models is defined in

Section 5.1.1 , respectively Section 5.1.2.

5.1.1. Simple Calculation For ERM Model and AB Model

For the ERM model and the AB models (see Chapter 4 (p.31) ), the computation of the

likelihood is straight-forward:

LA(T ) =
∑

x∈I(T )

pERM/AB(s(left(x))|s(x)) (5.2)

where A is the model under consideration, I(T ) is the set of inner nodes of tree T , s(x) is the

number of leaves in the subtree with the root x and left(x) is the left child node of node x.

For the age model it is not clear if a simple method of exact likelihood computation exists.

At the moment, the exact value of Lage(T ) is calculated by adding up probabilities of all

branching orders leading to the observed tree T . Details are described in section 5.1.

5.1.2. Likelihood Computation for Age Model

The computation of the likelihood Lage(T ) of the age model generating a given rooted binary

tree shape T is not as straight-forward as for the ERM model and AB model and can be

calculated as follows. The nodes of the tree are assigned unique labels in A := {1, . . . , 2n−1},
where the inner nodes have the labels I := {1, . . . , n − 1}. The root has label 1. For a non-

root node i > 1, the unique parent node is denoted by m(i). The set of all permutations

of I is called S, so each element of S is a bijection s : I → I. Such a permutation is to

encode a branching order of a tree: s(i) is the time step at which node i branches. In a

valid branching order, children cannot branch earlier than the parent. Thus, one can say that

s ∈ S is compatible with T , if s(i) > s(m(i)) for each i ∈ I \ {1}. Let Sc(T ) ⊆ S be the set of

compatible permutations. When branching according to s ∈ Sc(T ), the set of leaves at time

t > 1 is

B(s, t) = {j ∈ I \ {1} | s(m(j)) < t < s(j)} (5.3)

∪ {j ∈ A \ I | s(m(j)) < t} .
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LAGE(T ) =
∑

s∈Sc(t)

p(s, T ) = p ((b, c, g), T ) + p ((c, b, g), T ) + p ((c, g, b), T )

Figure 5.1.: Branching orders for tree T with five leaves leading to the same tree topology.
Gray nodes represent the speciating nodes. The likelihood of T under the age
model is computet by adding up the probability for each of the three branching
sequences according to Equation 5.5.

The age of a leaf j at time t > 1 is t−m(j). Thus, the age model generates the tree T with

the branching order given by s ∈ Sc with probability

p(s, T ) =
n−1
∏

i=2

(s(i)− s(m(i))−1

∑

j∈B(s,s(i))(s(i) − s(m(j))−1
. (5.4)

The overall probability of generating T with the age model is obtained by summing over all

branching orders generating T ,

Lage(T ) =
∑

s∈Sc(t)

p(s, T ) . (5.5)

As pointed out, the age model is obtained by summing over all branching orders leading

to an observed tree T . But this implies a huge computational effort due to an exponential
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increase of branching orders with tree size. A method for likelihood sampling is essential and

discussed in the next Section.

5.2. Likelihood Estimation for Certain Growth Models

Since the number of possible ways of generating an observed tree T grows exponentially, the

multiplication along each path and summing over each of them for the likelihood estimation

of T is time consuming. Hence an exact likelihood calculation is only feasible for small trees

and implies a huge computational effort otherwise. Thus, which method allows to calculate

the likelihood for large trees? An approach is the estimation of the likelihood for large trees

by sampling with an equal probability over all possible branching sequences which lead to T ,

in the following called naive sampling method. More precisely, the likelihood is computed by

the average of the likelihoods along each path of the sample. But one must take into account

that branching sequences have different probabilites which results in an improper likelihood.

Moreover the necessary amount of samples for a significant likelihood is unknown. Another

option for a likelihood estimation would be to sample over the most probable branching

sequences using a general efficient Monte-Carlo method instead of factorizing over branches.

The idea of considering the most probable branching sequences is based on the method of

importance sampling (Ripley, 1987). Importance sampling is a technique for reducing the

variance of estimates. This is done by drawing attention to the values with an higher impact

of a set of random variables in a simulation. Thus, importance sampling attends to approach

quantities for a variety of applications where the computation of exact results is restricted

or difficult to obtain (Wiuf et al., 2006). Keeping in mind that trees are a special kind of

networks, different ways of likelihood computation using importance sampling to ascertain

how well a network growth models fits to data were already proposed by Wiuf et al. (2006)

and Guetz and Holmes (2010). At this point, it is referred to Ripley (1987); Liu (2008) for

more details on importance sampling.

Now, starting with a formal introduction of calculating the likelihood leads to an efficient

sampling method which considers the most probable branches. Therefore, let n > 1 be a

natural number and X1, . . . ,Xn finite sets (of states) with |X1| = 1. Considering a stochastic

dynamics that starts at the unique state in X1 at time t = 1 and makes a transition to one

state of the next set at each time step. After n− 1 steps, the process stops at a state in Xn.

The dynamics, henceforth called p-dynamics is given by the transition probabilities

pi(y|x), i ∈ {1, . . . n− 1}, x ∈ Xi, y ∈ Xi+1 . (5.6)

A trajectory is a sequence Θ ∈ X1×X2×· · ·×Xn =: X. The probability R with which the

system produces trajectory Θ is simply the product over the transition probabilities (“from
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one state to another”)

R(Θ) =
n−1
∏

i=1

pi(Θi+1|Θi) . (5.7)

Of interest is the probability L that the system ends up in a given set of target states

Zn ⊆ Xn. In terms of trajectories, L is the sum of probabilities over all trajectories that end

up in a state Θn ∈ Zn

L =
∑

Θ∈X,Θn∈Zn

R(Θ) . (5.8)

In the application to growing binary trees, non-vanishing transition probabilities are sparse

and from many intermediate states the target state set is not reachable at all. For 1 ≤ i < n,

the set

Zi = {x ∈ XN |∃y ∈ Zi+1 : p(y|x) > 0} (5.9)

is defined iteratively and contains the states from which Zn is reachable. Restricting the

summation in Equation 5.8 to trajectories with non-zero probabilities, one can write

L =
∑

Θ∈Z

R(Θ) (5.10)

with Z = Z1 × Z2 × · · · × Zn.

If |Z| is too large to perform the sum explicitly, sampling may be employed. In many cases

of interest, however, the distribution of trajectory probabilities is very broad: There are many

trajectories with negligible probability while the value of L is determined by a few trajectories

with relatively large probability. Then sampling each trajectory with equal probability does

not yield good convergence.

By introducing a different sampling procedure, the likelihood calculation may be more

efficient in such difficult cases. Starting with the introduction of the q-dynamics restricted to

the sets Z1, . . . Zn. The q-dynamics is also depicted in Figure 5.2. The transition probabilities

are

qi(y|x) =
pi(y|x)
s(x)

, i ∈ {1, . . . n− 1}, x ∈ Zi, y ∈ Zi+1 (5.11)

with the normalization

s(x) =
∑

y∈Zi+1

p(y|x) . (5.12)

In this stochastic process, a trajectory Θ ∈ Z has the probability

S(Θ) =
n−1
∏

i=1

qi(Θi+1|Θi) . (5.13)
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To each trajectory Θ ∈ Z an output is assigned

A(Θ) =

n−1
∏

i=1

s(Θi) . (5.14)

The expectation value of A over trajectories under q-dynamics is the probability L that

the p-dynamics ends up in the target set Zn, as shown by the following sequence of term

replacments.

〈A〉 =
∑

Θ∈Z

S(Θ)A(Θ) (5.15)

=
∑

Θ∈Z

n−1
∏

i=1

qi(Θi+1|Θi)

n−1
∏

j=1

s(Θj) (5.16)

=
∑

Θ∈Z

n−1
∏

i=1

qi(Θi+1|Θi)s(Θi) (5.17)

=
∑

Θ∈Z

n−1
∏

i=1

pi(Θi+1|Θi) (5.18)

=
∑

Θ∈Z

R(Θ) (5.19)

=
∑

Θ∈X

R(Θ) (5.20)

= L (5.21)

Thus L can be approximated as an average of A over sufficiently many trajectories generated

with q-dynamics. This approximation method is applicable, if for each i ∈ {1, . . . , n− 1} and

all states x ∈ Xi

1. it can be decided efficiently (fast) if x ∈ Zi or not,

2. the normalization s(x) can be computed efficiently.

5.3. Results and Discussion on Likelihood Analysis

For the likelihood analysis based on the exact likelihood calculation, the age model and AB

model were compared under the tree shapes on small and medium-sized trees with up to 19

leaves in the databases TreeBASE, PANDIT and McPeek. Figure 5.3 shows that the likelihoods

of the age model and AB model are clearly correlated under the trees in the databases. The

variation of likelihoods across trees of the same size n is smaller in the age model compared to

that in the AB model. Notably, the age model has larger likelihood than the AB model under

more than half of the trees under consideration for PANDIT, so that it can be considered a
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Z2

Z3

Zn−1

Zn

Figure 5.2.: Visualization of dynamics of the systems. Starting at unique state X1 of size
one, the number of trajectories leading to Zn (black boxes), and thus leading to
T , is of main interest. For each level i, Zi contains the states from which the
target states Zn is reachable. But from a large number of intermediate states
(gray boxes), Zn ⊆ Xn can not be accessed. For an efficient estimation of the
likelihood for the systems reaching the set of target states Zn, one starts with
states in Zn. Going backwards in the system, only transition probabilities leading
from Zi to Zi−1 will be considered for likelihood computation.

better description of the evolutionary process. But one can observe larger likelihoods for the

AB model than for the age model for more than half of trees of TreeBASE. In case of McPeek

the AB model outperforms the age model as well but one must take the small amount of trees

for each tree size into consideration which may lead to biased results. Thus for example, the

number of trees of size 15 to 19 reaches from three to nine.

The results of the likelihood analysis for trees up to 19 leaves have shown that the age

model performs slightly worse as the AB model for TreeBASE data and worse for McPeek data

but better for PANDIT data. To support this observation a further analysis using larger trees

is necessary. But the overall probability of generating T with the age model is obtained by

summing over all branching orders leading to the observed tree T . This implies a huge com-

putational effort due to an exponential increase of branching orders with tree size. Two ways

for sampling were proposed in Section 5.2. One is easy to apply to models since it assumes

that each branching order has the same probability. For the efficient likelihood estimation
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Figure 5.3.: Comparison between age and AB model by likelihoods under tree shapes from
databases. (a) log(Lage(T )) versus log(LAB(T )) for each of the 538 tree shapes T
with n = 19 leaves in the database PANDIT. The dashed line is the identity. (b)
Same as (a) for the 111 tree shapes with n = 19 leaves in the database TreeBASE.
(c) Same as (a) for five tree shapes with n = 19 leaves in the database McPeek. (d)
Fraction of trees T with Lage(T ) > LAB(T ), separately for each n ∈ {5, . . . , 19}.
The overall fraction is 0.552 = 13, 674/24, 754 for PANDIT and 0.415 = 605/1, 458
for TreeBASErespectively 0.382 = 58/152 for McPeek. The number of available
tree instances is one order of magnitude smaller in TreeBASE than in PANDIT

leading to larger fluctuations in the TreeBASE results. The results for McPeek are
based on a small data set which may lead to ambiguous conclusion.
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method, the normalization in each step i is calculated by summing over the probabilites of

all possible states x if x ∈ Zi.

The likelihood was estimated using both methods for trees of TreeBASE. For each of the

methods five runs with 10,000 samples each were computed. The likelihood for an example

tree of size 19 chosen from TreeBASE (Matrix ID: M954) is given in Figure 5.4. For each

run, Figure 5.4a visualizes the likelihood for each sample for the naive method respectively

in Figure 5.4b for the effective method. One can obtain that the naive sampling results in

large increasing and decreasing leaps until it converges to the value of the exact calculated

likelihood. The curve with the highest peak in Figure 5.4a compared to the other samples

shows clearly that the likelihood after a certain amount of samples does not need to converge

to the exact likelihood. This is a problem since the number of needed samples for an estimated

likelihood close to the exact likelihood is unknown. For the efficient likelihood estimation in

Figure 5.4b all samples converge to the exact likelihood value with a smaller number of samples

compared to the naive sampling method. Also the leaps can not be observed as strong as for

the naive way of likelihood estimation. The difference in converging to the exact likelihood

value between both method for each run up to 3,000 samples is again visualized in Figure 5.4.
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(c) Five runs of effective (blueish) and naive (reddish) likelihood sampling with 3,000 samplings each.

Figure 5.4.: Comparison of likelihood estimation for a tree of TreeBASE (Matrix ID: M954;
phylogenetic tree representing the relationship of symbiotic cyanobacteria and
related species of the lichen fungus Peltigera (O’Brien et al., 2005) ) using the
naive way of sampling (reddish curves) and the the effective method (blueish
curves) by calculation the most probable branching sequences. The dashed line
represents the exact value of the logarithmic likelihood of the tree using the age
model. Five runs with 10,000 samples each were performed.
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CHAPTER 6

Evaluating Host Parasite Reconciliation Methods Using The Age Model For

Cophylogeny Generation

C oevolution between species is a common phenomenon in biology: species interact

across groups such that the evolution of a species from one group can be triggered

by a species from another group. Most prominent examples are systems of host species and

their associated parasites. Typically in this field, phylogenetic trees for both groups of species

can be constructed from sequence data or/and morphological data. In addition, the host

parasite interactions between the extant taxa are known empirically. The problem is then to

reconcile the common history of both groups of species and to predict the associations between

ancestral hosts and their parasites. Some algorithmic methods have been developed in recent

years to solve this reconciliation problem. Only few host parasite systems, however, have been

analyzed in sufficient detail to serve as benchmarks for the evaluation of the reconstruction

methods. In this chapter a dedicated approach for generating cophylogenies is introduced to

tackle the lack of benchmarks by generating meaningful test data sets. The method builds

on biologically motivated branching models to generate cophylogenies under the assumption

of the widely used coevolutionary model. It pictures coevolution as a stochastic process

with cospeciation, duplication, lineage sorting and (host) switching as discrete events. The

probability of an independent parasite speciation as well as the ratio between cospeciations

and sortings and between duplications and host switches are user defined parameters. Results

on the evaluation of reasonable parameter settings under the aspect of producing realistic

coevolutionary scenarios, giving rise to a large set of test scenarios, are discussed in the end

of the chapter. Furthermore a detailed analysis and comparison of the common tools TreeMap

3b, Jane 2.0, and CoRe-Pa with a focus on the significance of the computed reconstructions is
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Figure 6.1.: Examples of coevolutionary systems on Earth. (a) Host parasite relationship
between Ceratothoa imbricata and a fish1. The parasitic crustacean attaches
itself on the fish tongue. There, it draws blood out of the tongue which then
degenerates. The parasite stays as kind of tongue in the fish’s mouth (Brusca
and Gilligan, 1983). (b) Symbiotic relationship between Humming bird and or-
nithophilous flowers2. Birds serve as pollinators while flowers allocate nectar
according to the birds diet. See (Stiles, 1981) for more details regarding the
coevolution. (c) Symbiotic mutualism between Anemonefish and Sea anemone3.
The coevolution of some clownfish species with certain sea anemones may have
lead to an immunity of the fish to the toxins of the anemone (Mebs, 1994). (d)
An insect-plant relationship as symbiosis between Monarch butterflies and Milk-
weed plant4. The Monarch only lay eggs on the milkweed plant from which its
larvae feed become poisonous to other animals (Malcolm and Brower, 1989). (e)
Parasite host relationship of Ixodida and host, here Human5.

provided. All three tools are based on the maximum parsimony principle but using different

heuristics and cost models.

A brief introduction to the field of cophylogenies and the necessity is given in Section

6.1 (p.69). In Section 6.2 (p.70) definitions such as phylogenetic trees in the sense of host and

parasite trees are introduced as well as the usage of growth models for trees to accommodate

a coevolutionary event model in order to generate cophylogenies. The principle of coevolution

and the considered coevolutionary event model is explained as well. The chapter ends with a

discussion on the properties of the resulting cophylogenies to assess their biological plausibility.

1Copyright by Nico Smit (Nico.Smit@nwu.ac.za)
2Copyright by frogger - Fotolia.com
3Copyright by TommySchultz - Fotolia.com
4Copyright by Jearu - Fotolia.com
5Copyright by Ste2.0 - Fotolia.com
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6.1 Introduction

6.1. Introduction

In the research field of phylogenetics, the recent advent of large genetic data sets offers in-

creased insight into the evolutionary histories of species. Representations of such histories

are phylogenies, which typically are binary trees with leaves corresponding to extant taxa

and inner nodes representing ancestral species. In order to understand the driving forces of

evolution leading to a high diversity of species, the reconstruction of phylogenies is inevitable.

Statistical macroevolutionary growth models (see Chapter 4 (p.31)) are used to understand

the dynamical rules of evolutionary processes such as the speciation and extinction. For ex-

ample the Yule model (Yule, 1925) (Section 3.2.1 (p.21), the simplest model and generally

referred to as the null hypothesis, describes a continuous-time branching process where each

speciation is equally likely (Blum and François, 2006; Aldous, 2001). But the evolution of

species cannot be understood as a closed system. Species are able to interact and may mutu-

ally affect their evolution. This can be described by the more complex problem of coevolution

or cophylogenetics. Examples for coevolutionary systems are relationships between hosts and

their associated parasites, between predators and prey, or between groups of species with

symbiotic interactions. Some of those are depicted in Figure 6.1 . With a focus on the co-

evolution of parasites with their hosts, several methods have been proposed (Charleston and

Perkins, 2006; Doyon et al., 2011; Merkle and Middendorf, 2005; Merkle et al., 2010; Ronquist,

1998; Conow et al., 2010) to infer plausible cophylogenetic histories from given phylogenies

for the host and the parasite species and an assignment of the extant parasite species to their

hosts. Assessing the accuracy of these methods requires benchmarks, preferably based on

empirically confirmed data of coevolutionary histories. However, such data are scarce. The

main reason is that it is very difficult to get clear evidence about the former relations between

the predecessors of the extant host and parasite species. Data from simulated coevolution

might be able to fill the gap. A first step in this direction is taken with the proposal of

a method for the generation of cophylogenies in Section 6.3 (p.73). Based on sets of co-

phylogenies that have been generated by this method, the accuracy of several cophylogeny

reconstruction methods that have been proposed in the literature have been studied. For

evaluation purpose Doyon et al. (2011) presented a simulation approach for coevolutionary

scenarios. Therefore, an ultrametric tree (i.e., the host tree) was generated with a standard

birth death process. Additionally the dependent tree (i.e., the parasite tree) was created by

generating coevolutionary events according to a Poisson process with respect to the rates of

the respective events. Unfortunately this approach requires a dating scheme of the indepen-

dently generated host tree and biologically motivated estimations of the coevolutionary event

rates. To avoid timing issues and evolutionary rates a new method of generating cophylo-

genetic scenarios can be used. Utilizing stochastic branching models like the ERM (Yule,

1925) or the age model (Keller-Schmidt et al., 2010) presented in 3.2.1 (p.21) respectively

4.1 (p.32) the intention was to extend these models to produce evolutionary dependencies

69



Evaluating Host Parasite Reconciliation Methods Using The Age Model For Cophylogeny
Generation

between two simultaneously generated phylogenies. Such type of dependencies have been

described in the well-known coevolutionary event-model (see, e.g. Charleston and Perkins

(2006)). The branching models are used to generate binary trees iteratively by speciating a

leaf chosen with a probability distribution given by the model. This process is combined with

the four types of events that are typically used to describe host parasite coevolution, namely

cospeciation, duplication, host switch, and sorting. A comparison of cophylogenies that have

been generated by the proposed method using different growth models is performed with a

focus on the proper choice for the parameter values of the generation model. Furthermore,

generated pairs of phylogenetic trees consisting of a host tree and a parasite tree need to be

compared in the context of a cophylogenetic analysis such that biologists are able to explore

the relative rate of evolution with the knowledge about the coevolution of hosts and their

parasites (Charleston and Perkins, 2006). Common cophylogenetic reconstruction methods

are TreeMap 3b (Jackson and Charleston, 2004), Jane 2.0 (Conow et al., 2010), and CoRe-Pa

(Merkle et al., 2010). These methods are evaluated with a focus on the significance of the

reconstructions that they deliver for the test sets of cophylogenies that have been generated

with the different dynamical branching models.

6.2. Basic Definitions on Cophylogenies

This chapter introduces basics which are necessary for the following chapter. The first part

deals with the principle of maximum parsimony since it is a basic concept of common recon-

ciliation methods. As introduced in Section 2.1 (p.9), phylogenetic trees describe the phyloge-

netic history between different organisms and are considered as rooted binary trees with inner

nodes representing ancestral species and leaf nodes representing extant species. But species

are able to interact and affect their evolution, i.e., the relationship between host and parasite.

This is called coevolutionary system and the evolution can be represented as cophylogeny

which will be discussed in the second part of this section. Finally, a brief introduction of all

three tools is given.

6.2.1. The Principle of Maximum Parsimony

The principle of maximum parsimony in this context means reconstructing an optimal solution

by minimizing the total number of evolutionary changes, i.e., amount of events, respectively

the total costs which mapped to the events. The resulting solution is calledmost parsimonious.

Originally, the method was establihed for molecular data (Hennig, 1966) and based on the

assumption of minimal evolution. This criteria of optimality deduces from the so called

occam’s razor which states with the words of Einstein (about 1900) “Everything should be

kept as simple as possible, but no simpler” . It is known in many research fields and for the

reconstruction of phylogenetic trees it simply means that the easiest explanation for consistent
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Figure 6.2.: Example for a coevolutionary system and a corresponding reconstruction. Left:
Example for a small coevolutionary system with four extant host species (leaf
nodes in dark grey tree) and four extant parasite species (leaf nodes in light grey
tree). Right: Example of a cophylogenetic reconstruction for the coevolutionary
system. The three associations (p5, h5), (p6, h6) and (p4, h0) induce one cospecia-
tion and one sorting event. The three associations (p1, h2), (p4, h0), and (p0, h0)
induce one duplication and two sorting events. The reconstruction needs two
cospeciations, one duplication, and three sortings.

characters between species is a common ancestor.

6.2.2. Coevolution

Definition 6.1 (Cophylogeny, Coevolutionary System). A coevolutionary system, also called

cophylogeny, consists of two (coevolved) phylogenetic trees, a host tree Th and a parasite tree

Tp. It describes the interaction of species across groups such that the evolution of a species

from one group, i.e., the parasite, developed in dependence from a species of another group,

i.e., the host.

The coevolution of two groups of species is studied in order to explore the combined phylo-

genetic history. Therefore, the two phylogenetic trees Th and Tp of both species are inferred.

To this end, the observed host parasite associations in the extant species have to be known.

Such associations are defined as follows:

Definition 6.2 (association). The association between host h and parasite p can be seen as

a relation φ between the different leaf sets, i.e., φ ⊂ L(Tp) × L(Th). Thereby it is assumed

that one parasite species can be associated to at most one host species.

The latter assumption is widely used in the literature on algorithms for the analysis of

coevolution. Note, however, that there are several empirical examples where this assumption

does not hold. An example of an artificial coevolutionary system is given in Figure 6.2 (left).

Figure 6.3 depicts an instance taken from the real life on earth. Shown is the relationship

between parasitic primate lice and their vertebrate hosts studied by Reed et al. (2007).

A common approach for the reconstruction of cophylogenetic histories establishes a mapping

from the parasite tree onto the host tree. In this way, ancestral dependencies between parasites
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Figure 6.3.: Example for a real coevolutionary system of a host parasite relationship. The
figure by Reed et al. (2007) represents the phylogenetic trees for parasitic primate
lice and their vertebrate hosts. The tree is assembled by the use of morphological
and genetic characters.

and their hosts are predicted. Coevolution is captured in terms of events. In this case four

different types of events are employed and visualized in Figure 6.4.

Definition 6.3 (host dependent events: copseciation, sorting). The events cospeciation (co)

and sorting are host dependent and describe the reaction of a parasite if its associated host

performs a speciation. In case of the cospeciation event, host and parasite speciate simulta-

neously. A sorting event describes the lineage sorting of a parasite across the speciation of its

associated host. In this case, the parasite species remains on only one of the newly emerged

host species.

Definition 6.4 (host independent events: duplication, host switching). The remaining two

events are host independent, namely, duplication (du) and host switching (sw) where the spe-

ciation of a parasite occurs without a speciation of an associated host. The duplication event

describes the speciation of a parasite alone. The resulting two child species are associated to

the same host as the parent species. A host switching event refers to a host shift of one of

the parasite child species immediately after a speciation (Charleston, 1998).

To each of the four event types, a cost value is assigned taking into account the likelihood of

the event. Less likely events incur larger cost. Using maximum parsimony a reconstruction is

sought such that the total costs of all events that occur is minimal. Depending on the chosen

event costs, i.e., the cost model, different reconstructions can be optimal. A reconstruction
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Figure 6.4.: Coevolutionary Events. Host tree Th (dark gray), parasite tree Tp (light gray);
(a) cospeciation: node of Th and Tp associated; (b) sorting ; (c) duplication: both
child nodes of Tp are associated with a node in the same subtree of Th; (d) host
switch: only one child node of Tp is associated with a node in the respective
subtree of Th.

being optimal under a certain cost model is called a Pareto optimal solution of the coevolu-

tionary system. Pareto optimal solutions are optimal compromises of two criteria where the

enhencement of one criteria affects the other by decreasing its importance. Thus, if S is a

Pareto optimal solution, there exists no other solutions S which performs better as S with

respect to the same cost model (Beier et al., 2007). In the scope of cophylogenies, S defines

the reconstructed coevolution. An example of a reconstruction for the coevolutionary system

depicted in Figure 6.2 (left) is given in Figure 6.2 (right).

6.3. The Generation of Cophylogenies

The common and new growth models introduced in Chapter 3 (p.19) respectively 4 (p.31) for

phylogenetic tree generation can not directly be used for the generation of cophylogenies. The

reason is that it is essential that the two phylogenetic trees are generated simultaneously with

respect to the intended dependencies between the corresponding groups of species. Therefore,

the aim here is to adopt common growth models to meet these demands.

6.3.1. The Model

The starting point is a host tree and a parasite tree, both consisting of a single node. Fur-

thermore, the parasite node is associated with the host node. Then, one node is chosen for

an upcoming speciation. If the selected node is from the parasite tree, this results in a host

independent coevolutionary event (i.e., a duplication or host switch). Otherwise the event is
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host dependent (i.e., a cospeciation or sorting). To decide which node is the next to speciate,

a parameter phc is introduced, giving the probability that the node belongs to the host tree.

The respective probability for selecting a parasite node is defined by

ppc = 1− phc (6.1)

With this probability, only the type of the node (i.e., host or parasite) is chosen. The decision

of which leaf in the host tree, respectively parasite tree, has to be done according to the

considered branching model. Thus it is ensured that both created trees satisfy the particular

branching model. Furthermore, in each step it is clear which are the current extant species.

This information is needed later for producing time consistent host switching events, as a

parasite can only switch to a host which existed at the same time.

To achieve the intended dependencies between host and parasite species, additional pa-

rameters have to be considered. These parameters pco, pso, psw, pdu define the probabilities

for the respective coevolutionary events cospeciation, sorting, host switch, and duplication.

Thereby it holds

pco = 1− pso (6.2)

psw = 1− pdu (6.3)

It can be seen that the probability for pso respectively pdu can be inferred from pco respectively

psw using Equation 6.2 and 6.3. Therefore, these parameters can be obtained from the

ratio between the event frequencies of the two host dependant (respectively the two host

independent) event types. Compared to the approach presented in (Doyon et al., 2011) it is

easier to estimate these ratios than the true evolutionary rate for each of the events.

In case of a host dependent event occurring after a host node is chosen for speciation, for

each associated parasite it has to be decided with probability pco if the parasite speciates too,

resulting in a cospeciation event. Otherwise a sorting event occurs and the parasite remains

on only one of the newly emerged host children. The respective host child is selected randomly

with an equal probability. In case of a host independent event after a parasite node is chosen

for speciation, at least one of the child species remains on the same host species. The other

child species can switch to a randomly selected host leaf with probability psw or otherwise

remains on the same host species too.

In that way the generation of both trees Th and Tp and their respective associations is done

iteratively until there exists a given total number s of extant species, i.e., s = |L(Th)|+|L(Tp)|.
The pseudocode describing this method is shown in Alg. 5.
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Algorithm 5: Pseudocode for the generation of a cophylogentic history.

Input: trees Th, Tp each with only a single node, size s, probabilities phc, pco, pdu,
psw, pso

Output: cophylogeny composed of a parasite tree Tp associated with a host tree Th

and s = |L(Th)|+ |L(Tp)|
while s < |L(Th)|+ |L(Tp)| do1

with uniform probability chose r ∈ [0, 1];2

if r ≤ phc then3

choose leave l ∈ L(Th) w.r.t. a branching model;4

foreach parasite associated with host l do5

with uniform probability chose r ∈ [0, 1];6

if r ≤ pco then7

do cospeciation;8

else9

do sorting;10

else11

choose leave l ∈ L(Tp) w.r.t. a branching model;12

with uniform probability chose r ∈ [0, 1];13

if r ≤ psw then14

do switch to a randomly selected host from L(Th);15

else16

do duplication;17

update Th, Tp;18
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6.3.2. Properties of Generated Cophylogenies

It is obvious that not all combinations of parameter values for the proposed cophylogeny

generation method lead to “relevant” cophylogenies. For example choosing phc = 0 will result

in a single host node, as no host will ever be chosen for a speciation. Thus all parasite nodes

will be associated with this single host. On the other hand if the probabilities phc and pso are

both 1 then only host nodes are chosen and the one associated parasite does always a sorting.

This results in a parasite tree with a single node associated to one of the host leaves.

To decide whether a generated host parasite system is a “relevant” data set or not properties

have to be found which describe if a certain cophylogeny is similar to real biological data. The

number of empirically confirmed cophylogenies does not allow a meaningful statistical analysis

on that. But the host parasite systems seems to have several things in common. Studies by

(Charleston, 1998; Hafner and Nadler, 1988; Kikuchi et al., 2009; Refrégier et al., 2008; Reed

et al., 2007; Hughes et al., 2007; Banks et al., 2006; Ramsden et al., 2009) have shown that

the sizes of the two trees Th and Tp differ only slightly in the way that Tp is somewhat larger.

Additionally, there is usually no host taxa included which is not associated with at least one

parasite. Also every host harbors approximately the same number of parasite species.

Thus, in order to evaluate the generated host parasite systems the following two character-

istics are considered: The ratio between parasite tree size and host tree size and the variance

of the number of associated parasites per host leaf. Generated cophylogenies with a size

ratio close to 1 and variance close to 0 are considered to be more likely similar to biological

cophylogenies.

Formally the ratio between the sizes of parasite and host tree (scale) is defined as

scale =
|L(Tp)|
|L(Th)|

(6.4)

The variance of the number of associated parasites (var) is defined as

var =

∑

hi∈L(Th)
(xhi − µ)2

|L(Th)|
(6.5)

with xhi being the number of parasites associated with host leaf hi, i.e., xhi = |{(p, hi) ∈ φ}|
and µ being the average number of associations per host leaf. Note, that µ = scale since

assuming that each parasite leaf is associated with exactly one host leaf.

To compare cophylogenies of different sizes scale and var are normalized to range from −1

to 1, respectively 0 to 1. For this purpose cut off values of 1/10 and 10 were defined for scale

such that a value of scale that is 10 or larger is rated 1 and a value of scale which is 1/10

or below is rated −1. Furthermore, a scale value of 1, i.e., equal size host and parasite trees,
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should result in a normalized value of 0. The formal definition is given in Figure 6.6.

scale∗ =























1 if scale > 10
scale−1

9 if scale ≥ 1 ∧ scale ≤ 10
− 1

scale
+1

9 if scale ≥ 1
10 ∧ scale < 1

−1 otherwise

(6.6)

Accordingly a threshold of 10 is defined for var such that a variance of 10 or above results

in a normalized value of 1. Equation 6.7 describes this normalization.

var∗ =

{

1 if var > 10
var
10 otherwise

(6.7)

A threshold of 10, respectively 1/10, was chosen, as this is the maximal, respectively min-

imal, value when considering cophylogeny systems of size 10, which are the smallest systems

being analyzed in this study. Both normalizations result in a value of 0 in the best case,

i.e., equal sized host and parasite trees, respectively equally distributed number of parasite

associations. Conversely values of ±1, respectively +1 indicates that a host parasite system

is likely to be unrealistic.

To combine both measures scale∗ and var∗ they are multiplicatively linked to obtain a

quality value which is used as a measure of how likely a cophylogeny can be considered to be

realistic. Formally, Equation 6.8 is defined by

quality = (1− |scale∗|) ∗ (1− var∗) (6.8)

6.4. Results

In the following, the space of parameter values for the cophylogeny generation method is ana-

lyzed in order to identify “good” sets of parameter values that lead to realistic cophylogenies.

Then, an evaluation data set of cophylogenies is generated. This data set is used to evaluate

the cophylogeny reconstructions that are delivered by the tools TreeMap 3b, Jane 2.0, and

CoRe-Pa. The result of this evaluation is given at the end of this section.

6.4.1. Parameter Values

For the parameter evaluation, the modified ERM and the age model were used with the

generation method to generate 100 cophylogenies for each combination of parameter values

s = {10, 15, . . . , 50}, phc = {0.0, 0.05, . . . 0.95, 1.0}, pco = {0.0, 0.05, . . . 0.95, 1.0}, and psw =

{0.0, 0.05, . . . 0.3}. Only values up to 0.3 have been considered for psw because in typical

biological host parasite systems it is much more likely for a parasite to remain on an associated

host than to switch to another host. Moreover, a very high switching probability would mean
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that there is only a very loose relation between hosts and their parasites. Those systems are

not of high interest and thus, it is not essential to analyzed them by reconciliation methods.

The cophylogenies generated with the different sets of parameter values have been evaluated

with respect to scale∗, var∗, and quality. To analyze in more detail the influence of the

system size cophylogenies have also been generated for size s = 100.

The quality of cophylogenies that have been generated with different combinations of pa-

rameters values phc and pco and for different values of s are shown in Figure 6.5. Recall that

a set of cophylogenies may be considered to be more realistic if i) both trees are of similar

size (scale∗ ≈ 0), and ii) every host is associated with approximately the same number of

parasites (var∗ ≈ 0). Cophylogenies where Tp equals Th and each of the parasites is associated

with the corresponding host can be generated using parameter values pco = 1 and phc = 1. In

this case no host independent events occur and there is always a cospeciation of the parasite

whenever a host speciates. These perfect scenarios belong to the upper right corner of each

of the quality plots given in Figure 6.5.

It comes as no surprise that independently of all other parameter values a value for phc

of at least 0.4 is needed to obtain equal size trees. Otherwise, there will be too few host

speciations resulting in very small host trees. By increasing the probability of cospeciations

pco the parasite tree becomes larger. Hence phc must be increased simultaneously in order to

obtain the same results. Surprisingly there is nearly no influence of the switching probability

psw and the system size s on the ratio of both tree sizes. On the other hand, the variance

of the associations varies strongly depending on the system size. In general it holds that

the larger the system size s is, the higher the host choosing probability phc has to be in

order to obtain a small variance. Additionally, if a higher probability of cospeciations pco is

chosen then smaller values of phc are possible for producing quite reasonable variances. If a

higher switching probability psw is used, phc can be decreased further while retaining a small

variance.

Figure 6.5 shows that the range of “good” parameter values strongly depends on the system

size. With an increasing system size, the range of parameters leading to realistic cophylogenies

shrinks to the upper right quarter of the plot. Thus for systems with 50 or more leaves, the

probability pco should be at least 0.4. Choosing smaller values for pco is not recommended,

when considering highly dependent host parasite systems. Additionally, phc should be greater

than 0.7. Otherwise, the variance becomes large. Surprisingly, there is only a small influence

of the switching probability psw such that the ranges of “good” values for phc and pco can be

larger. This means that any of the considered psw values can be chosen to produce realistic

cophylogenies.
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Figure 6.5.: Mean quality of 100 generated cophylogenies per parameter combination of phc
and pco for a tree sizes s = (25, 50, 100) (left to right) and psw = (0.1, 0.3) (top
to bottom) for the age model. (See Appendix C.1,C.2 and C.3 for more results
of further parameter combinations considering the age model as well as the ERM
model.)

6.4.2. Evaluation of Reconciliation Methods

This section starts with an overview of common reconciliation methods which is followd by

a definition of the test data set used for the analysis. The last section deals with the recon-

struction of host parasite system using the different tools, Treemap, Jane 2.0 and CoRe-Pa.

Overview of Common Reconciliation Methods

In this part, the three software tools TreeMap 3b (Charleston, 2011), Jane 2.0 (Libeskind-

Hadas, 2010) and CoRe-Pa (Wieseke et al., 2010) are compared in terms of accuracy when

reconstructing cophylogenetic histories for the generated test data. TreeMap is probably the

most common tool for computing reconciliations of host parasite systems. It is now in its 3rd

major release and was rewritten completely in Java. Jane 2.0 and CoRe-Pa are quite novel

tools which offer several additional features. For instance, Jane 2.0 includes an advanced

reconstruction viewer where the user can browse easily through all possible reconstructions.

CoRe-Pa provides a graphical user interface for designing host parasite systems and is able to

deal with non-binary species trees.

Although all three methods are based on the same coevolutionary event model, they differ

in how the costs for each of the events are counted. This is due to the fact that in one

approach the costs are counted per event while in the other they are counted per emerged

sibling in the parasite tree. An overview on the different cost methods is given in Table 6.1.

6The cost method used by Jane 2.0 is the same as the one that was used in former versions of TreeMap; Jane
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Cospec. Dupl. Sorting Switch

TreeMap 3b 2c 2d s d+ w
Jane 2.06 2c 2d s 2d+ w
CoRe-Pa c d s w

Table 6.1.: Different methods of costs assignments per event for the reconciliation methods
considering specified cost values c, d, s and w

All three approaches are based on the maximum parsimony principle. Given a certain cost

vector (i.e., a cost value for each type of event) the tools search for the reconstruction which

results in the minimum total cost. For that reason, the resulting reconstructions depend

highly on the used cost model. Jane 2.0 uses costs c = 0, d = 1, s = 2 and w = 1 by

default. But as in all three applications the cost model can also be user specified. TreeMap

3b and CoRe-Pa offer more sophisticated methods to solve this issue. Since version 3b (build

1234), TreeMap uses a heuristic to find several reconstructions that are potentially optimal

under a certain cost model. This set of so called Pareto optimal solutions may be huge and

the reconstructions differ very much. So it is hard to decide for one of the reconstructions

being the most likely. CoRe-Pa also tries to find all these Pareto optimal solutions by applying

multiple cost models. In addition every reconstruction is then rated by a value which indicates

how good a reconstruction fitted to the appropriate cost model.

The cophylogeny reconstruction problem is NP-hard (Ovadia et al., 2011). Therefore, all

tools use heuristics for the optimization. Only TreeMap gives the opportunity to search for

an exact solution. Depending on the size of the host parasite system the computation can

be time and space intense so that only small instances can be solved in reasonable time. By

default TreeMap 3b uses a heuristic, too. While CoRe-Pa always finds an optimal solution,

the reconstruction may be chronologically invalid, involving sets of inconsistent host switches.

TreeMap 3b and Jane 2.0 always produce consistent though not necessarily optimal solutions.

Test Data Generation

To evaluate the reconciliation methods 1,000 test data sets per branching model are com-

puted. The sizes of the generated cophylogenies and the other parameter values are chosen

randomly with a distribution proportional to the quality gathered from the parameter space

evaluation discussed in the previous section. In this way it is ensured that each combination

of parameters can be selected, but it is more likely that parameters are chosen that will result

in cophylogenies that are similar to cophylogenies that occur in biological systems.

For each model it is distinguished between the complete cophylogenies as they were gen-

2.0 can also be configured to count the costs in the same way as CoRe-Pa does.
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erated and a pruned version. In this pruned cophylogenies host nodes are removed which

have no assigned parasites. This was done due to the fact that most biological studies also

disregarded hosts without associated parasites. So one might ask if this lack of information

would have a measurable impact on the reconstructions. An overview of removed simulated

systems which were not used for the evaluation is given in Appendix C.4.

This results in four test set-ups, one for each combination of ERM or age model with

complete or pruned cophylogenies. But not each of the 1,000 generated cophylogenies per

set-up could be considered for reconstruction. Due to the wide range of possible parameter

values combinations 7% to 24% of the datasets were cophylogenies with one of the trees

having less than 3 nodes. These trivial instances were not included in the analysis. Very

few cophylogenies could not be processed with TreeMap 3b resulting in an “out of memory”

error. These cophylogenies were also removed. Altogether between 771 to 920 cophylogenies

were used per test set-up.

Reconstruction Evaluation

The reconstructions computed with TreeMap 3b were done with the default heuristic trying

to find different Pareto optimal solutions. Although in some rare cases more than 500 differ-

ent reconstructions were found for a single data set, the dominant number of computations

(around 60%) produces only three or less distinct reconstructions. The command line version

of Jane 2.0 was used with its default cost model, producing exactly one reconstruction per

data set. CoRe-Pa was configured to evaluate 2,500 different cost models and the best rated

reconstructions were considered for the analysis. In most cases (more than 90%) CoRe-Pa

produced a single reconstruction. In the other cases up to seven different solutions were

found, all having the same event distribution.

To measure the accuracy of each tool, the amount of correctly predicted host parasite

associations were analyzed with respect to the generated cophylogenies. If more than one

solution was found by one of the tools (TreeMap 3b or CoRe-Pa), the average amount of correct

hits was taken. As TreeMap 3b tries to find different Pareto optimal reconstructions the

solution with the highest, respectively lowest, number of hits were analyzed additionally. But

it should be noted that for a determination the best (or worst) of the solution knowledge about

the exact history is necessary (which will not be available for the application to biological

data). For normalization purposes, the fraction of the exact hits compared to the total number

of associations - including false positives and false negatives - was used.

Figure 6.6 depicts the strip chart of the sorted fraction values with one dot for each data

set and method. Only the results of the complete age model data set are shown. For the

results of the pruned cophylogenies and the ERM model it is referred to the Appendix C.7,

as these are quite similar.

CoRe-Pa turns out to be the most precise method in this analysis. Depending on the
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Figure 6.6.: Sorted fraction of exact predicted host parasite associations for each tool for the
complete cophylogenies with age model data set.

used branching model it produces significantly more exact hits than Jane 2.0. It comes

as no surprise that the average fraction of hits computed from the multiple solutions of

TreeMap 3b is much lower. By considering multiple Pareto optimal solutions there are many

reconstructions which differ very much from the corresponding generated cophyogeny. This

obviously lowers the average fraction of hits. On the other hand one would assume that

by considering only the most similar of these reconstructions the fraction of hits would be

much better, especially because the solutions of Jane 2.0 and CoRe-Pa are Pareto optimal too.

This leads to the assumption that the heuristic used within TreeMap 3b misses a significant

amount of Pareto optimal solutions, not reaching the results of Jane 2.0 and CoRe-Pa.

Additionally the reconstructed events were analyzed. This was done by computing the

difference between the number of reconstructed and generated events. The difference was

normalized by division with the parasite tree size. It turns out that each method has its

advantages and disadvantages. Using the default cost model Jane 2.0 results in a good

estimation for the number of cospeciation events. But it underestimates the number of sortings

and duplications and slightly overestimates the number of host switches. Both methods,

TreeMap 3b and CoRe-Pa, overestimate the number of cospeciations. Whereas TreeMap 3b

overestimates the number of sortings and underestimates the number of duplications CoRe-Pa

is quite exact in predicting the total number of both types of events. On the other hand,

CoRe-Pa seems to produce too few host switches whereas TreeMap 3b tends to produce slightly

too many of them. Figure 6.7 shows boxplots of the deviations of the number of events for

each type of event and application gathered from the complete set of cophylogenies of the age

model data set. For results using the prunded data set and the ERM model it is referred to

82



6.4 Results

TreeMap 3b
(0.055)

J ane 2.0
(−0.007)

CoRe−PA
(0.044)

−
0

.6
−

0
.2

0
.0

0
.2

0
.4

0
.6

Cospeciations
N

o
rm

a
liz

e
d

c
o

s
p

e
c
ia

ti
o

n
d

e
v
ia

ti
o

n

TreeMap 3b
(−0.053)

J ane 2.0
(−0.073)

CoRe−PA
(−0.003)

−
0

.6
−

0
.4

−
0

.2
0
.0

0
.2

0
.4

Duplications

N
o

rm
a

liz
e

d
d

u
p

lic
a

ti
o

n
d

e
v
ia

ti
o
n

TreeMap 3b
(0.002)

J ane 2.0
(0.08)

CoRe−PA
(−0.075)

−
0

.8
−

0
.4

0
.0

0
.2

0
.4

0
.6

Host Switches

N
o

rm
a

liz
e

d
h

o
s
t

s
w

it
c
h

d
e
v
ia

ti
o
n

TreeMap 3b
(0.206)

J ane 2.0
(−0.277)

CoRe−PA
(0.056)

−
2

0
2

4

Sortings

N
o

rm
a

liz
e

d
s
o

rt
in

g
d

e
v
ia

ti
o

n

Figure 6.7.: Normalized deviation between number of simulated and reconstructed events for
the complete cophylogenies with age model data set. The average deviation per
event and tool is depicted in brackets in the x-axis.

Appendix C.6 .

By comparing the runtime of the three tools TreeMap 3b and Jane 2.0 perform quite similar

on the test data with the complete phylogenetic trees, but Jane 2.0 is significantly faster on

reconstructing the pruned test data set. On average TreeMap 3b needs around 3 to 15 times

longer, but this was due to the fact that there were several instances where TreeMap 3b had

exceptional long runtimes. CoRe-Pa was around 40 to 100 times slower compared to Jane

2.0. But it should be noted that Jane 2.0 considers only a single cost model whereas CoRe-Pa

analyzes 2,500 different cost models per computation. Figure 6.8 shows boxplots of the

runtimes for each application required for the reconstructions of the complete cophylogenies

with the age model data set. The results on the runtime for the ERM model and pruned

cophylogenies are given in Appendix ap:cophylo:runtime.

It is interesting that the different branching models seem to have only a small impact on

the accuracy of the reconstructions. However, when considering pruned cophylogenies the

deviation between the reconstructed number and the original number of the host dependent

events (cospeciations and sortings) becomes larger. This does not hold for duplications or
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Figure 6.8.: Runtimes of the three tools for the complete cophylogenies with age model data
set. The y-axis is in log scale. The average runtime per tool is depicted in brackets
in the x-axis.

host switches. Hence, for coevolutionary studies it might be useful to enrich the host parasite

systems with data from host species without associated parasites to obtain more precise

reconstructions.

6.5. Concluding Comments

In this work, a method for generating cophylogenies that describe the common evolution of

two groups of species were presented. In particular, the case of cophylogenies that can describe

the coevolution of hosts and their parasites have been considered. Existing branching models

for creating phylogenetic trees have been combined with a coevolutionary event model con-

sidering cospeciation, duplication, lineage sorting, and host switching events. The influence

of different parameters (e.g., the probabilities for different types of coevolutionary events) on

the characteristics of the generated cophylogenies have been analyzed. It was shown which

parameter values are relevant for generating cophylogenies that have similar properties to

cophylogenies found in biological systems. Based on this analysis, different sets of cophylo-

genies have been generated, that can be used as test data for reconciliation methods. These

data sets have been used to make the first systematic study to evaluate the common tools

TreeMap 3b, Jane 2.0, and CoRe-Pa on test data.

The evaluation has shown that on the generated data sets CoRe-Pa is the most precise of

the three tools in predicting the correct host parasite associations. But CoRe-Pa is not best in

estimating the correct number of cospeciation and switching events. Furthermore, CoRe-Pa

is the computational most intense method. Jane 2.0 is best to estimate the correct number

of cospeciations and is the fastest of the three tools. A disadvantage is that it always relies

on a single user specified cost model. TreeMap 3b is the only tool which can be configured
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such that it always finds the optimal reconstruction for a specified cost model. Using the

implemented heuristic it is much faster, but the accuracy of the computed reconstructions is

not as good as that of the other tools. Additionally TreeMap 3b sometimes computes several

hundred solutions making it hard to decide which is the best without any further evaluation.
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CHAPTER 7

Conclusion

P hylogenetic trees capture the evolutionary relationship between species or groups

of species in tree-like branching diagrams based on morphological and/or molecular

data. In the last decades, a variety of dynamical models have been proposed (Yule, 1925;

Aldous, 1996; Nee, 2006; Rosen, 1978; Ford, 2005; Hernández-Garćıa et al., 2010) to address

the investigation of tree shapes and hence, capture the rules of macroevolutionary forces which

gave rise to the diversity of organisms.

In this work, two new models for growing trees in the context of macroevolution have

been developed and analyzed. Both models, namely the age model and innovation model,

are introduced in Chapter 4. The age model is defined as a stochastic procedure which

describes the growth of binary trees by an iterative stochastic attachment of leaves. The

branching rate at each clade is no longer constant, as in common models, but decreasing in

time i.e. with the age. Thus, species involved in recent speciation events have a tendency to

speciate again. The second introduced model describes a branching process which mimics the

evolution of species driven by innovations. The process involves a separation of time scales.

Rare innovation events trigger rapid cascades of diversification where a feature combines with

previously existing features.

Both models were compared intensively in the scope of a tree shape statistics to the most-

often used nullmodel, the ERM model, and to AB model. Latter one is known to produced

trees with an imbalanced similar to the one from estimated trees of TreeBASE but is not

intended to model evolutionary processes. These alternative models are simply probabilities

distributions on trees while the age model and the innovation model describe a more complex

mechanism of generating trees. Three data sets, including of estimated trees were considered
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for the tree shape statistic, including TreeBASE (phylogenetic trees about the evolution of

species and populations), PANDIT (phylogenetic trees representing the evolution of protein

families) and the small data set McPeek (molecular phylogenies on species-level). A tree

shape statistic was performed under consideration of a variety of imbalance measurements

including the Sackin index and Colles index, which are stated as most powerfull indices.

Results show that simulated trees of both growth models fit well to the tree shape observed

in estimated trees.

Chapter 5 deals with a further study on the age model based on the likelihood computation

in order to rank models with respect to their ability to explain observed tree shapes. The

likelihood is calculated by summing up the probabilities of all possible branching sequences.

Results show that the likelihoods of the age model and AB model are clearly correlated under

the trees in the databases when considering small and medium-sized trees with up to 19 leaves.

To summarize, when compared with the AB model, the age model yields larger likelihoods

for PANDIT data set and slightly less likelihoods for TreeBASE on small and medium-sized

trees in the databases, where likelihood computation is feasible. In case of the small McPeek

data set the AB model outperforms the age model but one must take the small amount of

trees for each tree size into consideration which may lead to biased results. To support this

observation a further analysis using larger trees is necessary. But an exact computation of

likelihoods for large trees is computationally too intensive since the number of branching

sequences leading to the observed trees grows exponentially. Therefore, an efficient method

for likelihood estimation was proposed and compared to the estimation using a naive sampling

strategy.

For future work one can consider a comparative analysis of phylogenetic trees not by ana-

lyzing the tree structure but using the distribution of branch length data. Altough, branch

length data is stated as not reliable as the topological structure of pyhlogenetic trees (Barr-

aclough and Nee, 2001; Pigolotti et al., 2005) at this time, it is assumed that future studies

will yield to more approved branch length data (Venditti et al., 2009). In that case, a further

comparision of the age model to others regarding branch length may be accomplished.

Both models are sufficiently simple to allow for further enhancement regarding biological

concepts. This involves the sequence evolution and genotype-phenotype relations in case of

the innovation model. Formulating the age model as a Markov process which allows a speci-

ation at any moment in continuous time would result in a more realistic version.

The coevolution between species, describing the interaction of species across groups such

that the evolution of a species from one group can be triggered by a species from another

group, is discussed in Chapter 6. Considering systems of host species and their associated par-

asites a major problem is the reconciliation of the common history of both groups of species.

Different heuristic approaches have been proposed recently to solve the problem of predicting
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the associations between ancestral hosts and their parasites. But only a few host parasite

systems have been analyzed in sufficient detail to serve as benchmark of evaluating reconcil-

iation methods. As far as known there is no approach to generate a reliable test data set in

the context of cophylogenies. In this work a method based on the age model is presented to

generate such a test data set. The method generates cophylogenies that describe the common

evolution of two groups of species. The appliance of the age model exhibits several advantages

such as the simultaneously generation of host and the parasite tree. Also the chronological

information in terms of age can be used to improve the coevolutionary reconstruction. Three

reconciliation methods for cophylogenies, Jane 2.0, Treemap 3b and CoRe-Pa were applied

to the test data set generated with the age model. All software tools use an event-based

methods to find cost minimal reconstructions. Results have shown that CoRe-PA yields the

most precise predictions of the associations between hosts and parasites. However, it does not

optimally estimate the number of events and is the computationally most expensive method.

Jane 2.0, being the fastest of the three tools, is best at estimating the correct number of

cospeciations. TreeMap 3b is the only tool with the option to find the optimal reconstruction

for a specified cost model.

To conclude, the presented age model as well as the innovation model produce tree shapes

which are similar to obtained tree structures of estimated trees. Both models describe an

evolutionary dynamics and might provide a further opportunity to infer macroevolutionary

processes which lead to the biodiversity which can be obtained today. Furthermore with the

application of the age model in the context of coevolution by generating a useful benchmark

set of cophylogenies is a first step towards systematic studies on evaluating reconciliation

methods.
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APPENDIX A

Program for Likelihood Computation

A.1. General Information

The tool takes as input an oriented (rooted) binary tree T and a stochastic model M of tree

growth defined in terms of a Markov chain. The output is the likelihood L(M,T ) of the model

for the given tree.

When the likelihood cannot be expressed in closed form the calculation is performed by an

importance sampling over histories of the Markov chain. The tool is able to deal with a

large class of tree growth models including dynamics of hidden variables such as sequence

information on the nodes of the tree.

A.2. Availability and Installation

An executable file of the program LiCoMoPhy for calculating the likelihood of model generated

trees is available at:

• http://www.stephie-it.de/software/LiCoMoPhy.tar.gz

It is written in Java 6.0 . Just extract the archive and run LiCoMoPhy.jar. An installation

is not necessary.

For some examples, change to directory test and perform a run by typing:

• java -jar LiCoMoPhy.jar -m all -e 1 -a 30 -i 5 -c s -p 20 -s y -b T -d

./simpletrees/ > example.out
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After the calculation for all files in simpletrees for all available models, the results can be

found in the file example1.out.

A.3. Input Format

An inputfile or a directory containing files must be committed. Each input files contains the

tree data in form of a node list. It is essential that the tree data file ends on .tree . Example

files are given in directory test.

A.4. Options

Several options which can be used to manage the estimation of the likelihood are given in

Table A.1. Usage: LiCoMoPhy.jar

A.5. Output Format

Output of data stored in a simple file is ordered in columns as followed.

• counter

• filename

• amount of inner nodes

• amount of possible branching sequences

• llh, which is the loglikelihood

Additionally for the likelihood estimation for each used model:

• s standing for standard deviation

• lb gives the lower bound of loglikelihoods

• lq gives the lower quartil of loglikelihoods

• m stands for the median

• uq gives the upper quartil of loglikelihoods

• ub gives the upper bound of loglikelihoods
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A.5 Output Format

When sampling the likelihood and the output of the likelihood for each sample or is re-

quested, an additional output file is stored. The file is named after the inputfile and used

parameters divided by an underscore,

e.g., M954.wop.treeAGE cn e12345 p10000 t1 l0-1.stepwiseout.

The columns are ordered by:

• index of sample

• logarithm of likelihood for a sample

• average of log likelihoods for recent samples

• seed for random number generator
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short long type description default

-a --maxleave int Options used for defining maximal number of
leaves of a tree, for which a likelihood compu-
tation is performed.

30

-ae --ageexp int When using the age model and if one like to
change the age paramter, this can be done tun-
ing this parameter.

1

-b --beginstr string String with which treefiles should start (to
limit files to process).

-c --calctype e, s, n Defines the way of likelihood computation or
estimation. Therefore, e stands for exact, s for
sampled and n for the naive way of sampling.

e

-e --seed int Defines the initial seed value for random pro-
cesses.

12345

-h --help Calling help will give an overview of all possi-
ble options.

-i --minleave int Options used for defining minimal number of
leaves of a tree, for which a likelihood compu-
tation is performed.

5

-m --model model Defines the model. It can be choosen from the
AB model (ABM), ERM model (ERM), age model
(AGE) and innovation model (INNOV). If the
calculation is requested for all models, just use
the option all .

all

-o --stepoutdir string Defines the directory for stepwise output of
likelihoods. If no output directory is defined,
the user’s default starting directory is ued.

user’s dir

-p --samples y, n Defines the amount of samplings if --calctype
equals s or n .

1

-s --sortout y, n Define with this option, if the output files
should be sorted by the number of leaves of
tree.

y

-t --stepwide int The size of bins for the output of the likelihood
computation, when --stepout is defined by y.

1

-w --stepout y, n, l If the output of the likelihood should take place
in bins, use y here. For logarithmical binning
use l. Otherwise use n

n

Just one of the following must be defined (files must end on .tree!):
-f --file string Defines the path of the input file containing

tree. Keep in mind to use only -f or -d .
-d --dir string Defines the path of the input directory contain-

ing tree files for which likelihood computation
should be performed. Again, keep in mind only
define -f or -d .

If data should be calculated for Innovation model:
-l --alpha double The parameter alpha defines the probability to

perform an innovation step. If alpha equals
zero, the probability distribution equals the
one from the ERM model.

0.1

Table A.1.: Options supported by the LiCoMoPhy algorithm.
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Tree Statistics Program

B.1. General Information

The tool takes as input an oriented (rooted) binary tree T and calculates different tree shape

characteristics including:

• the mean depth, known as Sackin index (Sackin, 1972), describing the compactness of

trees by the average distance of a leaf from root in a tree.

• the Colless index (Colless, 1982), for the evaluation of tree balance.

• the cherry distribution (McKenzie and Steel, 2000) as measurement of tree quality by

computing the number of cherries of a tree.

The results can be used, e.g. in the scope of a tree shape statistic using the tree imbalance

as quantification.

B.2. Availability and Installation

An executable file of the program TreeStatistics for calculating some characters of trees

generated by different models is available at:

• http://www.stephie-it.de/software/TreeStatistics.tar.gz

It is written in Java 6.0 . Simply extract the archive and run the TreeStatistics.jar. An

installation is not necessary.

For some examples, change to directory examples and perform a run by typing:
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• java -jar TreeStatistics.jar -d ./examples/ -m n -o ./ -s y -t example

After processing all files in examples ending on .tree, the results can be found in the cmmitted

output directory.

B.3. Input Format

An inputfile or a directory containing files must be committed. Each input files contains the

tree data in form of a node list.

B.4. Options

Several options which can be used to manage the estimation of the likelihood are given in

Table B.1. Usage: LiCoMoPhy.jar

B.5. Output Format

There are two different output files. First the stat4[dataID] singlefiles.out containing

the results for each of the processed trees in the following order:

• n defining the number of leaves of the processed tree

• n left defining the smallest number of leaves in branches of root

• d states the depth of the tree

• <d> stands for the mean depth, also Sackin index

• #cherries gives the number of cherries

• I colless gives the Colless index

• node ID represents the ID of the node whereas zero refers to the root node

The second generated file stat4[dataID] lclsum l[number of leaves].out contains for

all trees of the same size (number of leaves) how often the amount of leaves in the left branch

(refering to the smallest number of leaves of both branches of the root) can be obtained. The

data is given in columns in the following order:

• n l represents the smallest number of leaves in branches of root

• how often appearing gives the number of observed n l for trees of the same size
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short long type description default

-a --maxleave int Options used for defining maximal number of
leaves of a tree, for which a likelihood compu-
tation is performed.

30

-b --beginstr string String with which treefiles should start (to
limit files to process).

-h --help Calling help will give an overview of all pos-
sible options.

-i --minleave int Options used for defining minimal number of
leaves of a tree, for which a likelihood compu-
tation is performed.

5

-m --subtreeDepthCalc y, n Defines if for each root of tree and each sub-
tree the depth should be calculated or if only
the root node of the whole tree should be
taken into account for tha calculation.

-o --outdir string Defines the output directory for the storage
of the results.

-s --sortout y, n Define with this option, if the output files
should be sorted by the number of leaves of
tree.

y

-t --dataID string String for a unique labeling of processed
data, e.g. outputfiles for processed trees gen-
erated with the age model can be named
stat4age*.out when using -t age

Just one of the following must be defined (files must end on .tree!):
-f --file string Defines the path of the input file containing

tree. Keep in mind to use only -f or -d .
-d --dir string Defines the path of the input directory con-

taining tree files for which likelihood compu-
tation should be performed. Again, keep in
mind only define -f or -d .

Table B.1.: Options supported by the tool TreeStatistics.

97





APPENDIX C

Supplement for Results on Cophylogenies

The following Sections contain additional material on the evaluating study. The results are

depicted for both models, the ERM model and age model as well as for the complete and

pruned cophylogenies. The generated benchmark test data set of all simulation set-ups with

respective reconstructions and results can also be downloaded from:

http://pacosy.informatik.uni-leipzig.de/files/19/suppl11.zip .
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Supplement for Results on Cophylogenies

C.1. Results for Variance of the Number of Associated Parasites

to a Host
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Table C.1.: Results for the normalized variance var∗ ∈ [0, 1] of the number of associated
parasites to a host when using the age model for generating cophylogenies.
The use of different parameter combinations is shown for different tree sizes
l ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 100} and different host switch probabilities
psw ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The variance is depicted as gray scale.
The x-axis represents the probability of cospeciation pco while y-axis depicts the
probability of performing an event on the host tree.
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Table C.2.: Results for the normalized variance var∗ ∈ [0, 1] of the number of associated
parasites to a host when using the ERM model for generating cophylogenies.
The use of different parameter combinations is shown for different tree sizes l ∈
{10, 15, 20, 25, 30, 35, 40, 45, 50, 100} and different host switch probabilities psw ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The variance is depicted as gray scale. The x-axis
represents the probability of cospeciation pco while y-axis depicts the probability
of performing an event on the host tree.
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Table C.3.: Results for the normalized ratio scale∗ ∈ [−1, 1] between the sizes of par-
asite and host tree when using the age model for generating cophylogenies.
The use of different parameter combinations is shown for different tree sizes
l ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 100} and different host switch probabilities
psw ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The ratio is depicted as gray scale. The
x-axis represents the probability of copseciation pco while y-axis depicts the prob-
ability of performing an event on the host tree.
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Table C.4.: Results for the normalized ratio scale∗ ∈ [−1, 1] between the sizes of para-
site and host tree when using the ERM model for generating cophylogenies.
The use of different parameter combinations is shown for different tree sizes
l ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 100} and different host switch probabilities
psw ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The ratio is depicted as gray scale. The
x-axis represents the probability of cospeciation pco while y-axis depicts the prob-
ability of performing an event on the host tree.
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Table C.5.: Result for quality measurement using the measures scale∗ and var∗ when using the
age model for generating cophylogenies. The quality ∈ [0, 1] measures how likely a
cophylogeny can be considered to be realistic. The use of different parameter com-
binations is shown for different tree sizes l ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 100}
and different host switch probabilities psw ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The
quality is depicted as gray scale. The x-axis represents the probability of cospeci-
ation pco while y-axis depicts the probability of performing an event on the host
tree.
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Table C.6.: Result for quality measurement using the measures scale∗ and var∗ when
using the ERM model for generating cophylogenies. The quality ∈ [0, 1]
measures how likely a cophylogeny can be considered to be realistic. The
use of different parameter combinations is shown for different tree sizes l ∈
{10, 15, 20, 25, 30, 35, 40, 45, 50, 100} and different host switch probabilities psw ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The quality is depicted as gray scale. The x-axis
represents the probability of cospeciation pco while y-axis depicts the probability
of performing an event on the host tree.
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C.4. Data Sets

age model ERM model

complete pruned complete pruned

systems with a single node tree 46 112 47 82
systems unfeasible with Jane 2.0 42 117 32 104
systems unfeasible with TreeMap 3b 2 0 1 1

applicable systems 910 771 920 813

Table C.7.: Number of simulated systems which had to be skipped for the analysis, i.e., those
containing a single node tree or being unfeasible with one of the reconciliation
methods.

C.5. Runtime of Reconciliation Methods
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Figure C.1.: Runtimes of the three methods for the complete (a, c) and pruned (b, d) age
model (top) respectively ERM model data set (bottom). The y-axis is in log
scale. The average runtime per method is depicted in brackets in the x-axis.
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C.6 Deviation of Events

C.6. Deviation of Events
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Figure C.2.: Normalized deviation between simulated and reconstructed events for the com-
plete (a) and pruned (b) age model data set.
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Figure C.3.: Normalized deviation between simulated and reconstructed events for the com-
plete (a) and pruned (b) ERM model data set.
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Figure C.4.: Sorted fraction of exact predicted host parasite associations for the complete (a,
c) and pruned (b, d) age model (top) respectively ERM model data set (bottom).
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Hall, B., Hallgŕımsson, B., and Strickberger, M. (2008). Strickberger’s evolution: the integra-

tion of genes, organisms and populations. Jones & Bartlett Learning.

Harding, E. (1971). The probabilities of rooted tree-shapes generated by random bifurcation.

Advances in Applied Probability , pages 44–77.

Harris, T. (1963). The theory of branching processes. Springer-Verlag, Berlin, and Prentice-

Hall, Inc., Englewood Cliffs, N.J. Reprinted by Dover, NY, 1989 and 2002.

120



Heard, S. (1996). Patterns in phylogenetic tree balance with variable and evolving speciation

rates. Evolution, pages 2141–2148.

Heard, S. and Hauser, D. (1995). Key evolutionary innovations and their ecological mecha-

nisms. Historical Biology , 10(2), 151–173.

Hennig, W. (1966). Phylogenetic Systematics. University of Illinois Press, Urbana-Champaign.
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