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1. Introduction

It is interesting thus to follow the intellectual truths of analysis in the phe-

nomena of nature. This correspondence, of which the system of the world will

offer us numerous examples, makes one of the greatest charms attached to

mathematical speculations.

Pierre-Simon Laplace, Exposition du systéme du monde, (1799)

Identifying and mimicking concepts underlying natural phenomena and applying them to

solve problems in fields such as computer science, material science and engineering, has

grown into a research field itself. As Carver Mead once stated “..engineers would be foolish

to ignore the lessons of a billion years of evolution.” (Wooley and Lin., 2005, p.1).

Computer science and biology share a long history. Alan Turing and John von Neu-

mann, who can be considered among the founding fathers of computer science, both

showed an interest in the theoretical aspects of biological phenomena such as pattern

formation (Turing, 1952) and self–replication (von Neumann, 1966). With the expo-

nential increase in computational power over the last decades, computer simulations have

become an important tool for studying theoretical concepts underlying the behaviour of

biological systems and have been proven to be extremely helpful in the understanding and

verification of hypotheses based on empirical observations.

Biological concepts, on the other hand, can often be abstracted and fed back into com-

puter science in the form of new computational paradigms. So-called nature inspired-

computation has given rise to concepts which are almost ubiquitous in computer science

to day such as neural networks (Anderson and Rosenfeld, 1998), evolutionary com-

putation (Eiben and Smith, 2003) and swarm intelligence (Bonabeau et al., 1999).

In the last years animal collectives such as fish shoals, bird flocks and social insect

colonies have received increased attention from the computer science community. This

is due to the fact that these systems are able to accomplish very complex tasks without

any form of central control. Whether observing huddling penguins, swarming locusts or

foraging ants, one always wonders which rules underlie this seemingly complex behaviour

as such groups lack central control.

Individuals in such animal collectives usually operate on very simple local rules, while

the observed complexity in behaviour arises via the individuals’ behaviour on a group
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1. Introduction

level. Since group behaviour does not depend on single individuals, such systems are very

robust in terms of fault tolerance as well as being adaptive to change in their dynamic

environments.

This thesis tries to cover both aspects described above, namely the use of computational

models to investigate open questions regarding the organization and behaviour of social

insects, as well as the abstraction of concepts found in social insects to generate new

methods in the context of optimization. The first part of this thesis studies different

aspects of division of labour via response threshold models. The second part of the thesis

focuses on honeybees. Using theoretical models, aspects of the honeybee nest-site selection

process as well as migration will be investigated. Based on the nest-site selection process

observed in honeybees, an optimization scheme will be developed which is realized in a

new optimization algorithm for the problem domain of molecular docking. This chapter

will introduce several examples of self-organization that can be found in social insects, as

well as current computational techniques which are based these self-organizing principles.

1.1. Collective behaviour in social insects

While decentralized collective behaviour can be observed across the whole animal king-

dom (Sumpter, 2010), the collective behaviour observed in social insect societies is of

particular interest for computer science. Social insect colonies contain reproductive enti-

ties (one or multiple queens) and a huge non-reproductive workforce. Worker individuals

are very closely related (Wilson, 1971) and thus usually show the same behavioural reper-

toire. In addition social insects are “relatively” simple (in terms of cognitive abilities) and

thus operate by means of relatively simple rules. However, in spite of their genetic ho-

mogeneity and simplicity, as a whole they are able to tackle a number of very difficult

tasks.

In social insects division of labour, also known as polyethism, constitutes a self-organizing

process. Due to its decentralized and adaptive nature it allows a colony to adjust its usually

large workforce (i.e., thousands of individuals) according to its needs. As polyethism is

very robust and flexible it has been proposed as one of the most important factors for the

ecological success of social insects (Wilson, 2001).

The ways in which polyethism is achieved in social insects are as diverse as social in-

sects themselves. Some ant species exhibit caste polyethism, meaning that the colony

contains different morphological castes, which are specialized for different tasks (Wilson,

1971). One example of caste polyethism can be found in the ant species Pheidole pallidula.

Colonies of this species contain two worker classes: minors and majors. These classes differ

in terms of body and head size and take over different tasks in the colony. While minors

work on tasks such as broodcare and foraging, majors function as soldiers of the colony

2



1.1. Collective behaviour in social insects

and defend it from enemies (Detrain and Pasteels, 1992). Another form of polyethism

that can be found in social insects is so called temporal polyethism, where individuals will

specialize on certain tasks depending on their age. Honeybees are an example of social

insects that exhibit temporal polyethism. While young workers can be usually found in

the hive, taking over duties like brood and nest care, more senior individuals will guard

the nest or forage (Huang and Robinson, 1996). A third form of polyethism found

in social insects is so called genetic polyethism. Many insect species have been found to

be polyandrous (their queens will mate with multiple males), which causes slight genetic

diversity among the worker population. This genetic diversity has been linked to division

of labour, as it can influence an individual’s task preference (Robinson and Page, 1989).

One example for genetic polyethism can be found in honeybees, where a worker’s the su-

crose receptiveness is determined by its patriline (Scheiner et al., 2004). Individuals

that are highly receptive to sucrose will forage for water and nectar, while those that are

less receptive will only forage for pollen.

Foraging constitutes one of the main duties in a social insect colony. It requires the

proactive discovery of resources as well as the exploitation of known resources. In social

insects different foraging and information-distribution mechanisms have evolved according

to the species’ environment. Many ant species use recruitment pheromone to guide fellow

foragers towards potential food sources (Wilson, 1971). When returning from a candi-

date resource to the nest-site, an ant will deposit pheromones which form a trail leading

others towards the resource. For the ant species Lasius niger it has been shown that trail

recruitment can lead to a decision-making process when two food sources are discovered

simultaneously with no prior established pheromone trail, which leads to the exploitation

of the richer food source and an abandonment of the other source (Beckers et al.,

1990). When presented with food sources which are of different distance to the nest-site,

pheromone recruitment also enables a colony to decide on food sources located closest to

the nest-site (Beckers et al., 1993). Using a double bridge experiment, where a food

source can be reached on paths of multiple lengths, Goss et al. (1989) were able to

show that the Argentine ant Iridomyrmex humilis will choose the shortest path towards

a food source, by means of a stronger reinforcement of the shorter path due to faster

travel times. In a recent study, Dussutour et al. (2009) were able to show that ants

of the species Pheidole megacephala are able to constantly re-evaluate their decision and

thus change their decision in dynamic environments where the quality of the food sources

changes over time. Pheromone recruitment not only permits a colony to exploit and decide

upon resources, it has also been shown that pheromone trails can evolve to transportation

networks which resemble minimum spanning trees or Steiner networks (Latty et al.,

2011).

3



1. Introduction

Not all ants use pheromone for recruitment. Another strategy in ants is signal-based

recruitment. After finding a potential resource an individual will return to the nest-site and

signal that they found something, trying to gather followers which can then be led to the

discovered resource. A special form of signal-based recruitment is tandem running, where

an individual will lead a single recruit towards a resource via antennae contact (Franks

and Richardson, 2006).

In honeybees other recruitment strategies have evolved. Upon returning to the nest

from a discovered resource a honeybee will perform a dance on the so-called “dance floor”,

an area in the hive typically close to the entrance (Seeley, 2010). This dance, better

known as the waggle dance (von Frisch, 1967), acts as a recruitment signal for idle bees.

As well as the directions to the found resource, it also encodes its quality, which enables a

quality-dependent recruitment rate and thus an optimal distribution of foragers on avail-

able resources with respect to their resource utility. While the waggle dance has been

shown to be a very effective recruitment strategy in the case where resources are few and

of poor or variable quality (Dornhaus et al., 2006; Grüter and Ratnieks, 2011) its

importance in resource richer situations (e.g., flowering periods) is still debated (Grüter

and Farina, 2009) (foraging in honeybees is described in more detail in Chapter 5).

Another well studied self-organizing aspect of social insect colonies is colony migration.

There are several reasons why an insect colony might decide to abandon an established

nest and search for a new home, such as seasonal changes, reproduction or the destruction

of its current home. Before a colony can it first needs to locate a suitable location. If more

than one option exists, it must select the best among those. This decentralized decision-

making process is commonly referred to as “nest-site selection” and usually involves only

a fraction of a colony’s population (Visscher, 2007).

As homeless colonies are often exposed to the environment during the selection process,

they face the additional challenge of deciding on the best nest-site as fast as possible.

Social insects thus face a so called speed-accuracy trade-off. The selection process starts

off with scouts exploring a colony’s environment. Upon the discovery of a potential nest-

site these scouts will report back to the colony in order to recruit other individuals to

evaluate and campaign for the found nest-site. Recruitment techniques used in the nest-

site selection process do not differ from those used during foraging (e.g., honeybees recruit

using the waggle dance, some ant species use tandem running as a recruitment strategy).

However, the main difference between nest-site selection and foraging is that during nest-

site selection a colony needs to converge towards a single choice.

It has been shown that the nest-site selection process in ants and bees is able to tune

itself with respect to the available options as well as environmental conditions (Franks

et al., 2003; Passino and Seeley, 2006; Sumpter and Pratt, 2009). Franks et al.

showed that the ant species Leptothorax albipennis will adapt its decision-making speed

4



1.2. Swarm intelligence

based on the current environmental conditions. In situations where the colony is exposed

to a harsh environment, it will decide faster on a new nest-site in comparison to situations

where this is not the case. Honeybees and ants have been shown to adapt their decision-

making speed depending on the nesting options already under consideration (Passino and

Seeley, 2006; Sumpter and Pratt, 2009). If all available options are of poor quality,

this will lead to a decrease in recruitment speed, slowing down the decision-making process

and prolonging the proactive search for alternative nest-sites. In contrast, the discovery

of good nest-sites is usually accompanied by rapid recruitment towards the nest-site and

thus speeds up the decision-making process.

As nest-site selection in social insects is decentralized, a decision on an option also

has to be established in a decentralized manner. Social insects have evolved consensus

decision making (Pratt et al., 2002; Seeley and Visscher, 2004). While evaluating

potential nest-sites an individual will also take into account how many other individuals are

evaluating this site. If the number of individuals reaches a critical level, which is referred

to as quorum, a decision has been reached. Upon sensing this quorum the individuals at

the site will return to their colony and start the migration process.

1.2. Swarm intelligence

The definition of“swarm intelligence”was coined by Beni and Wang (1989) in the context

robotics as “systems of non-intelligent robots exhibiting collectively intelligent behaviour

evident in the ability to unpredictably produce ‘specific’ ([i.e.] not in a statistical sense)

ordered patterns of matter in the external environment” (Beni and Wang, 1989, p.2).

Bonabeau et al. (1999) refined Beni and Wang’s initial definition, by including “any

attempt to design algorithms or distributed problem-solving devices inspired by the col-

lective behaviour of social insect colonies and other animal societies” (Bonabeau et al.,

1999, p.7).

Many insect-inspired techniques have been proposed in the context of swarm robotics.

Mechanisms inspired by division of labour in ants as well as honeybees have been proposed

for the control of division of labour in robot swarms (e.g., Krieger et al. (2000); La-

bella et al. (2006); Zhang et al. (2007)). The pheromone laying behaviour observed

in ants has inspired navigational map and marker mechanisms in robotics (e.g., Russell

(1997); Vaughan et al. (2002)). Several communication mechanisms proposed in swarm

robotics are based on communication principles of social insects (e.g., Schmickl and

Crailsheim (2008); Trianni and Dorigo (2006)). Interestingly, biology has recently

begun to directly profit from advances made in robotics by using robots in behavioural

experiments with animal collectives such as cockroaches and fish shoals, as they enable

controlled experimental set-ups (Garnier, 2011; Halloy et al., 2007)
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1. Introduction

In the context of data clustering a number of swarm or ant-based clustering techniques

have been proposed (Handl and Meyer, 2007). These techniques are based on stig-

mergic mechanisms found in social insects (Theraulaz and Bonabeau, 1999), where

individual-based changes within the environment will exert feedback on future decisions of

the individuals. Pheromone is an example of a stigmergic mechanism, where the deposit of

pheromone will increase an individual’s likelihood to reuse a given path and thus deposit

even more pheromone on it. Another example of stigmergy which can be seen as one

of the prime inspirations of ant-based clustering mechanisms are aggregation and sorting

strategies in social insects. Individuals are more likely to drop items in areas where many

items are already present, which leads to clusters of items. For data clustering, similar

mechanisms can be used to achieve sorting of high-dimensional data.

Task allocation and foraging mechanisms found in social insects have not only been used

in the context of robotics. Response threshold based task allocation mechanisms found

in social insects have been suggested as control mechanisms for the workflow in facto-

ries (Bonabeau et al., 1997; Cicirello and Smith, 2004). Nakrani and Tovey

(2004) introduced a mechanism inspired by honeybee foraging to regulate sever alloca-

tion. Several routing algorithms used in telecommunication networks are based on social

insects. Di Caro and Dorigo (1998) introduced AntNet, a package routing algorithm

which is based on pheromone trails and enables routing in dynamic networks. Wedde

et al. (2004) introduced BeeHive, a package routing algorithm based on honeybee forag-

ing. These algorithms were later extended for mobile ad-hoc networks (Di Caro et al.,

2005; Wedde et al., 2005)

Social insects have also inspired the design of several population-based meta-heuristics

for optimization. Ant colony optimization (ACO), introduced by Dorigo (1992), is based

on the observation that some pheromone-laying ant species will converge towards the

shortest path between nest and food source (Goss et al., 1989). Ant colony optimization

uses virtual pheromones which denote the goodness of a solution in terms of fitness as a

heuristic for solution construction. Over iterative construction steps, solution elements

that are in solutions of good quality will be reinforced more strongly than those which

are not, which leads to an increased selection of those elements in future construction

steps. While ant colony optimization was originally designed for the Travelling Salesperson

Problem, it is nowadays a very popular optimization technique that has been extended

and used for various problem domains (for an overview see Dorigo and Stützle 2004)

Several other optimization algorithms are based on the behaviour of ants. Monmarché

et al. (2000) proposed an algorithm based on the foraging behaviour of the ant species

Pachycondyla apicalis. These ants hunt in close proximity of their nest. The proposed

algorithm utilizes this behaviour by conducting parallel local searches around the current

nest position in search space, followed by a nest relocation. Greenwood and Abbass
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1.2. Swarm intelligence

(2007) proposed a local search algorithm for continuous spaces based on army ant swarm

raids. Similarly to army ants roaming the environment by the formation of tree-shaped

trails (Franks et al., 1991), this algorithm is able to search a continuous fitness land-

scape.

Kennedy and Eberhart (1995) proposed particle swarm optimization (PSO), which

draws its inspiration from group guidance in animal collectives. Here a swarm of particles

is randomly placed in a multi-dimensional search space. During an optimization run these

particles move through the search space. Their movement is influenced by “cognitive”

information (best known position) as well as “social” information (best known position of

particles in their neighbourhood; global and local variants exist). This simple behaviour

will lead to a convergence towards an optimum in the search space. Like ACO, PSO is a

very popular optimization technique that has been extended and used in many problem

domains (for an overview see Poli et al. 2007).

Several algorithms based on the honeybees’ collective behaviour have been developed

and applied to various domains such as network routing, robotics, multi-agent systems,

and optimization. Existing optimization algorithms based on principles of honeybee be-

haviour usually mimic either foraging or mating behaviour. Mating-inspired optimization

algorithms are closely related to methods found in evolutionary computation. They are

based on the fact that genetic heterogeneity among workers typically increases a colony’s

fitness (Fuchs and Schade, 1994). In honeybees genetic heterogeneity is achieved via

the queen mating with several males (polyandry). While some mating inspired methods

constitute new operators for existing methods in evolutionary computation (e.g., Jung

(2003); Karci (2004); Sato and Hagiwara (1997)), others try to mimic the mating

flight both on a behavioural and genetic level (Abbass, 2001a).

Optimization algorithms based on the foraging concept consist of a number of agents,

known as artificial bees. As in nature, the purpose of the agents is twofold. On the one

hand they search for new solutions (find food sources) in problem space, on the other

hand they try to improve (exploit food sources) existing solutions using local search.

The ratio between exploration and exploitation behaviour depends on the number and

quality of available solutions. Several foraging-based algorithms have been proposed such

as the artificial bee colony optimization (ABC) (Karaboga (2005)), the bees algorithm

(BA) (Pham et al. (2006b)), the bee colony optimization (BCO) (Teodorovic and

Dell’Orco, 2005) or the bee colony optimization algorithm (BCOA) (Chong et al.,

2006). A detailed overview on bee-inspired algorithms is presented in Chapter 8.

7



1. Introduction

1.3. Outline

The thesis covers several aspects of self-organization principles found in social insects.

The first part of this thesis (Chapters 2, 3 and 4) will investigate division of labour on

the basis of response threshold models. The second part of this thesis (Chapters 5, 6, 7,

8) studies the nest-site selection and guidance behaviour of honeybees. Based on nest-site

selection behaviour, a new bee-inspired optimization algorithm is proposed and applied to

the domain of molecular docking.

Chapter 2 introduces the family of response threshold models. Two model variants,

the fixed response threshold model and the threshold reinforcement model, are presented

formally. In addition, previous theoretical work which has utilized these models is outlined.

Originally published in Diwold et al. (2009a), Chapter 3 investigates division of

labour in dynamic environments. On the basis of a threshold reinforcement model with

fluctuating demands it is investigated to what extent different sized colonies are able

to adapt to changing work loads. In addition, group-size dependent specialization over

consecutive demand changes is investigated.

Chapter 4 introduces an extension of the threshold reinforcement model that allows

the incorporation of spatial task distribution in such models. The aim of this Chapter

is to investigate to what extent spatial task separation, which is often observed in social

insect colonies, influences the productivity of a threshold system. In addition, several

methods that can achieve such separation (i.e., via sorting tasks) are studied and compared

regarding their adaptivity. This chapter has been previously published in Diwold et al.

(2009b).

Chapter 5 gives an overview of the biological mechanisms underlying the self-organization

in the European honeybee species Apis mellifera. Parts of this chapter were previously

published in Diwold et al. (2011b).

Chapter 6 investigates to what extent the nest-site selection process of honeybees is

shaped by the environment it operates in. To investigate this question a spatial nest-site

selection model for honeybees is developed, which is then tested in different spatial set-ups.

Chapter 7 explores the guidance mechanisms that underlie swarm navigation during

migration. First, the validity of two potential mechanisms is compared with respect to

empirical data. In addition, the impact of directional dissent on guidance in honeybees is

studied. Parts of this chapter were previously published in Diwold et al. (2011d).

Chapter 8 reviews current bee-inspired algorithms (previously published in Diwold

et al. (2011b)) and introduces nest-site selection found in honeybees as a new optimiza-

tion paradigm. First the optimization potential of the nest-site selection mechanism in

noisy and dynamic environments is tested on the basis of the spatial nest-site selection

model introduced in Chapter 6. In addition, an iterative application of nest-site selection

8



1.3. Outline

on primitive search spaces as a means of function optimization is tested, previously pub-

lished inDiwold et al. (2010). As the results are quite promising, a general optimization

scheme is proposed along with an algorithm that is applied to the domain of molecular

docking, which appeared in Diwold et al. (2011c).
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Part I.

Response threshold models of

division of labour in social insects
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Worker polymorphism in the marauder ant Pheidologeton affinis. Photo by Alexander
Wild, reproduced with kind permission1.

Understanding the mechanisms underlying division of labour in social insects is not only

important as a means of understanding the functionality of social insect societies. The

behavioural mechanisms underlying division of labour are simple, scalable and robust,

and have thus been previously used in the design of bio-inspired techniques in the field

of optimization (Campos et al., 2000; Cicirello and Smith, 2004), multi-agent sys-

tems (Lemmens et al., 2008) and robotics (Krieger et al., 2000; Labella et al.,

2006; Zhang et al., 2007).

As outlined in Chapter 1 there are several ways in which polyethism can be achieved in

social insects (i.e., caste polyethism, temporal polyethism and genetic polyethism). None

of these concepts is the exclusive mechanism underlying division of labour. Instead, social

insect colonies usually exhibit an interplay between several forms of polyethism. This

ensures the robustness of division of labour, as a colony can still function in the case of

extreme events, if for example a majority of the colony dies (Wilson, 1984). Several

models of polyethism in social insects have been proposed (for a general overview the

interested reader should refer to the review of Beshers et al. 2001). In the following

chapters response threshold models will be used to investigate division of labour. Response

threshold models are based on the response threshold hypothesis, which assumes that

an individual’s action is a response to task-related stimuli which they perceive in their

environment. Individuals are thought to have an intrinsic response threshold for each task,

1www.alexanderwild.com
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which determines how sensitive they are to the task-specific stimulus. As outlined earlier,

the forms of polyethism within social insects are diverse, thus a number of factors such as

experience, genotype and physiological state can influence an individual’s receptiveness to

a task. If a stimulus is strong enough (i.e., exceeds a worker’s response threshold), then the

individual is very likely to start engaging in the task associated with the stimulus. Given

an inhomogeneous distribution of internal threshold levels among individuals within a

colony (Bonabeau et al., 1996; Robinson and Page, 1989), the colony will be able

to divide labour among its individuals. In the following we will investigate the behaviour

of response threshold models under different environmental conditions. After a formal

introduction to these models in Chapter 2, Chapter 3 studies the behaviour of threshold

models in environments that exhibit fluctuations in task demands. Chapter 4 investigates

the influence of spatial task separation on the performance of response threshold models.
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2. Response threshold models

Two types of models are generally used to capture the response threshold hypothesis in

social insects: fixed response threshold models and threshold reinforcement models. Fixed

response threshold models (FRMs) were formally introduced by Bonabeau et al. (1996)

and assume that an individual’s response threshold is fixed over its lifetime. FTMs are

supported by a series of theoretical studies (Bonabeau et al., 1998; Jeanson et al.,

2007; Waibel et al., 2006). In addition, several experimental studies have shown that

the response threshold hypothesis can be used to account for the regulation of a number of

tasks in social insects, such as removal of dead nest mates (Robinson and Page, 1989),

thermoregulation (Jones et al., 2004), preferred foraging-task choice (Fewell and

Bertram, 1999; Pankiw and Page, 1999; Scheiner et al., 2004) and defence (Detrain

and Pasteels, 1992).

For some social insects, such as the ant species Leptothorax (Sendova-Franks and

Franks, 1994) and honeybees (Ben-Shahar et al., 2000; Withers et al., 1993), it

has been observed that individuals’ thresholds are not necessarily fixed but change over

time in a reinforcement-like manner. In order to account for this behaviour, the threshold

reinforcement model, which constitutes a refinement of the basic FTM, was introduced by

Theraulaz et al. (1998). In this model the thresholds of an individual change over time

according to learning and forgetting rates. When an individual works on a given task its

corresponding threshold will decrease, causing the individual to be more receptive to this

task. Not working on a task however will increase an individual’s threshold, thus making

the individual more insensitive for the task. This can cause individuals to specialize (i.e.,

they have a low threshold) for a task. TRMs have been used to study which factors drive

specialization in social insects (Gautrais et al., 2002; Merkle and Middendorf,

2004).

2.1. Fixed response threshold models

Typically an FTM consists of N individuals and m tasks T1, . . . , Tm. Each task Tj is

associated with a task-specific stimulus value Sj ≥ 0. Accordingly, each individual i has a

task-specific threshold value θi,j for which 0 ≤ θi,j holds.
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2. Response threshold models
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(b) Two Tasks

Figure 2.1.: Stimulus response curves for different threshold values θ in a threshold rein-
forcement model containing (a) one and (b) two tasks. Higher θ require higher
stimuli in order to trigger a response.

Let X denote the state of an individual that determines the task the individual is

currently working on. An individual has m+ 1 possible states: it can either work on one

of the m tasks, or stay idle. Idle individuals that encounter a certain task Tj will start to

work on that task with the probability

P (Xi = j|Tj) =
Sj

2

(Sj
2 + θij

2)
(2.1)

If the model contains more than one task (m > 1), a task distribution that determines the

encounter likelihood of a task has to be appointed. Here it will be assumed that all tasks

can be encountered with the same likelihood, thus the probability that an idle individual

i will start working on task Tj in a model with m tasks is given by

P (Xi = j) =
1

m
·

Sj
2

(Sj
2 + θij

2)
(2.2)

Figure 2.1 illustrates how an individual’s threshold for a task affects the probability of

the individual to work on that task in a response threshold model under one (Figure 2.1(a))

and two tasks (Figure 2.1(b)). As can be seen, the level of an individual’s threshold for

a task negatively correlates with its probability of starting to work on the task given

a certain task stimulus level. In addition the number of tasks present in the system will

determine the maximum probability of engaging in a task under the assumption that tasks

are equally encountered.
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2.1. Fixed response threshold models

Each time step an individual is engaged in a task, it will do α units of work on this task

(α > 0). With a certain probability of p ≥ 0, individuals that are active at time step t

will become idle in the next time step t+1. An individual that turns idle will remain idle

for at least one time step before it can re-engage in a task.

In the following we determine the maximal amount of work that a colony with N indi-

viduals and m tasks can perform on average in one time step per task, denoted by Wmax

(see also Gautrais et al. 2002). For this we assume a system where all individuals will

be engaged in a task immediately after one idle time step. Let pmax be the fraction of

individuals that are working when the system with maximally working individuals is in

an equilibrium state. Then pmax · p denotes the fraction of individuals that become idle

at each time step, which has to be equal to the fraction of idle individuals that become

engaged (1− pmax). This equation leads to a fraction of pmax = 1/(1+ p) individuals that

are not idle. As the workload is distributed by N individuals on m tasks, and as α units

of work are done by each individual in a time step

Wmax =
N

m
·

1

1 + p
· α (2.3)

To establish the task stimuli each task Tj is associated with a demand parameter 0 ≤

Dj ≤ 1. This parameter denotes the fraction of work a task requires per time step to keep

its stimulus level constant. As Wmax denotes the maximal amount of work that can on

average be performed on a task per time step, a task Tj with demand Dj will require

δj := Dj ·Wmax (2.4)

work per time step. If for example Dj = 1, a colony is required to perform 1 · Wmax

amount of work on task Tj per time step to maintain the stimulus value Sj at the same

level. If a colony is not able to maintain sufficient workforce for a task Tj , this will lead

to an increase of the task-related stimulus Sj. If on the other hand the colony exceeds the

amount of work necessary for the task, the stimulus will decrease. Formally, in each time

step, the task-specific stimulus values are changed for each task Tj according to

Sj = Sj + δj − Ej · α (2.5)

where Ej is the number of individuals currently engaged in task Tj , and δj determines the

additive value for the stimulus in each time step.
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2. Response threshold models

2.2. Threshold reinforcement models

Threshold reinforcement models differ from fixed response threshold models, as not only

the task-related stimuli can change over time, but also the individuals’ thresholds are able

to change, denoting a change in individual task preference. In order to prevent thresholds

from getting infinitely large, which would result in an individual never working on that task

again, such models require maximal task thresholds. For each individual i, θi,j ≤ θmax
j ,

where θmax
j ≥ 0 denotes the maximal threshold for task Tj.

At each time step, the threshold values for each task Tj are also updated for each

individual i as follows:

• if i works on Tj then θi,j = max{θi,j − ξ, 0}

• if i did not work on Tj then θi,j = min{θi,j + φ, θj
max}

Individuals are usually initialized with a threshold of 0.0 for each task. ξ is the learning

parameter and φ the forgetting parameter. Learning and forgetting can occur at different

speeds. Ben-Shahar et al. (2000) have shown that bees show their maximal response

towards a specific odour after 5 to 6 learning steps. The strength of their response is

reset to a low value after around 5 contacts with a different odour. In previous studies

on threshold reinforcement models, learning and forgetting parameters of φ = 3.5 and

ξ = 4.0 were used (Gautrais et al., 2002; Merkle and Middendorf, 2004). Further

discussion on the influence of learning and forgetting rates can be found in Gautrais

et al. 2002.

Revision of the threshold reinforcement model Gautrais et al. (2002) used a TRM

to study colony-size-dependent specialization. They concluded that increased colony size

triggers specialization in social insect colonies. The model was re-examined and extended

in Merkle and Middendorf (2004). It was noticed that stimuli-growth is colony de-

pendent, as δj is proportional to the colony size (due to Wmax, see Eq. 2.4). Stimuli will

thus grow much more slowly in small colonies than in larger colonies (see Eq. 2.5). In-

dividuals threshold values, on the other hand, are independent of colony size, which can

lead to complications in the initial phase of the model. Like thresholds stimuli are usually

initialized to 0. As stimuli values grow slowly in colonies of small size, individuals in such

colonies are very unlikely to work in the first steps of the simulations. As a consequence

their thresholds will increase, which makes it even more unlikely they will work in the

next steps. If thresholds grow faster than stimuli this can lead to a situation where most

individuals have task thresholds around θmax
j for each task. Such individuals exhibit sim-

ilar activity for both tasks, which makes it nearly impossible for an individual to become

a specialist.
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2.3. Related work: Theoretical studies on response threshold models

In large colonies in which stimuli grow faster in the first time steps after initialization,

this prohibits the above effect from taking place. An individual in a large colony will

therefore start to work early on a task, hence its threshold for the task it is working on

will stay near 0 and the threshold for the other tasks will increase by ξ each time step.

This leads to individuals specializing in single tasks.

To remove this effect of colony size on specialization in the initial steps of the simulation

Merkle et al. Merkle and Middendorf (2004) suggested a demand variation phase after

the initialization, which is an alternation of long periods of low and high demands for the

tasks in the system. After such a demand variation phase the system does not depend any

more on the initial conditions which caused the artefact described above.

Another criticism of the standard TRM raised by Merkle and Middendorf (2004)

was that results gained with such a model fundamentally depend on simulation time. This

is due to the fact that the differentiation of individuals with respect to specialization or

activity level is possible only over finite time periods. As an individual’s probability to

change from its current to any other possible state is non-zero, there is no difference in

behaviour over infinite time (i.e., all individuals would have the same degree of specializa-

tion and activity). As individuals in previous TRMs had an infinite life span, all observed

differentiations depended on the simulation time. In order to overcome this problem, a

finite life span was incorporated into the model by introducing a maximum age amax. The

individuals are initialized with an age that is chosen uniformly at random between 0 and

amax. When the age of an individual reaches amax the individual is reset. This means that

it is removed from any task it is currently working on and its task thresholds and age are

set to 0. For a better understanding, the algorithm underlying a simulation with a revised

TRM is outlined in Algorithm 1.

2.3. Related work: Theoretical studies on response threshold

models

Several theoretical studies have used FTMs as well as TRMs to study various aspects

of division of labour in insect societies. Bonabeau et al. (1996) provided the first

formal description of FTMs. Prior to the formal introduction in 1996, the model was

used informally in several studies (e.g., Robinson 1987, 1992. In their article, Bonabeau

et al. showed that threshold models are indeed able to maintain division of labour in

social insects. Further they were able to reproduce empirical task-response characteristics

of the ant genus Pheidole reported by Wilson (1984). The ant genus Pheidole features

two morphological castes, minors and majors, which differ in their task preference (majors

function as guards, while minors are engaged in foraging and nest-care tasks). Wilson
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2. Response threshold models

Algorithm 1 Threshold Reinforcement Model

1: initialize model parameters
2: reset individuals
3: for all simulation steps do

4: for all individuals do
5: if working on task then

6: stop working with probability p;
7: else

8: if not active previous step then

9: for all tasks do

10: choose to work on task according to probability P (Xi)
11: end for

12: end if

13: end if

14: age ++
15: end for

16: for all tasks do
17: update task stimuli
18: end for

19: for all individuals do
20: for all tasks do
21: if engaged in task then

22: decrease individuals threshold for task
23: else

24: increase individuals threshold for task
25: end if

26: end for

27: if age == maximal age then

28: reset age to zero
29: reset thresholds
30: end if

31: end for

32: end for
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2.3. Related work: Theoretical studies on response threshold models

noted that these roles are not necessary fixed. Upon a decline in the number of minors

present in a colony, majors will start to take over tasks which they would normally not

work on. Bonabeau et al. were able to show that such task-preference dynamics can

be achieved in an FTM with two distinct castes that have differing thresholds for certain

jobs, thus allowing for a robust and fault tolerant mechanism for division of labour.

Theraulaz et al. (1998) introduced the first model of threshold reinforcement, which

allows individuals to change their thresholds via learning and forgetting parameters. They

were able to show that such a reinforcement process can lead to the emergence of special-

ization within an insect colony which initially contains identical individuals. Threshold

reinforcement can thus account for task allocation and within-caste specialization in social

insects. In addition Theraulaz et al. also studied colony response towards perturba-

tions (the removal of specialists from the colony) in a threshold reinforcement set-up.

Gautrais et al. (2002) used a TRM to study colony-size dependency of specialization.

As Theraulaz et al. (1998) pointed out, the reinforcement of threshold can lead to task

specialization within social insect colonies. In order to test the effect of colony size on the

level of specialization within a colony, the model behaviour was studied under several

colony sizes and task demand concentrations. Gautrais et al.’s findings showed that

individuals in large colonies tend to differentiate in terms of activity patterns, which leads

to task specialization, while this is not the case for small colonies. Demand was identified

as an additional factor in fostering specialization in social insects. Gautrais et al.

results are in agreement with previous empirical studies, which found that organization

and task-specialization within certain social insect species such as wasps are colony-size

dependent (Jeanne and Nordheim, 1996; Karsai and Wenzel, 2000).

As pointed out above Merkle and Middendorf (2004) re-examined and extended

Gautrais et al. (2002)’s TRM. They suggest the use of an initialization phase at the

beginning of a simulation to remove effects of colony-size dependent stimuli growth which

influence the specialization within a model at early stages. In addition they suggested the

introduction of a finite life-time to detach simulation results from the model runtime. In

addition they studied the effects of age-dependent thresholds as well as task competition on

specialization in social insects. Merkle and Middendorf (2004) were not able to report

colony-size dependent specialization under normal conditions. However, competition for

work (i.e., only a fraction of individuals is allowed to work on a given task) can lead to

colony-size dependent specialization, depending on the strength of the competition.

For successful and robust division of labour a colony needs an inhomogeneous distri-

bution of internal task-threshold levels among individuals. Genetic variation among indi-

viduals has been identified as one of the main factors causing such inhomogeneous task

preferences in a population (Robinson and Page, 1989). Waibel et al. (2006) fur-

ther studied this aspect, by investigating what effect the mapping between phenotype and
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2. Response threshold models

genotype in terms of individual task thresholds has on division of labour. Using artificial

evolution Waibel et al. compared three genetic architectures “deterministic mapping”,

“probabilistic mapping” and “dynamic mapping”. Under deterministic mapping an indi-

vidual’s task thresholds were strictly determined by its genotype. Under probabilistic

mapping the genotype impacted an individuals probability to engage in a task. In the

case of dynamic mapping an individuals’ task preference not only depended on its own

genotype but also on the behaviour of other colony members. Waibel et al.’s findings

suggest that in order to create a robust process of division of labour that is able to deal

with perturbations, strict or probabilistic mappings are not sufficient. In order for the

colony to be able to react to perturbations its individuals need to exhibit behavioural

flexibility, which can be achieved for example via dynamic mapping.

In contrast to Gautrais et al. (2002) and Merkle and Middendorf (2004), Jean-

son et al. (2007) studied specialization in social insects using FTMs. Jeanson et al.

found that even in models that lack reinforcement, increased division of labour is positively

correlated with group-size. However, division of labour also depends on other factors such

as number of tasks and the task demands, which are group-size dependent. Their results

suggest that low demand and high task number facilitate an increase in division of labour.

In nature an increase in colony size is usually accompanied by an increase in task-number.

For example foraging in fungus garden ants only sets in when a certain colony size is

reached (Fernandez-Marin et al., 2003). In contrast, demand will decrease with in-

creased colony size as the number of tasks only scales with colony size up to a certain point

– the number of tasks is finite and will thus saturate at some point, while the colony’s

size can still increase further. This interdependence between number of tasks, demand

and colony-size could explain why division of labour is often found to be correlated with

colony size.

In a very recent study Richardson et al. (2011) introduced the so-called spatial fixed-

threshold model (SFTM). In contrast to the standard threshold models the SFTM operates

on a one or two-dimensional lattice. Each cell of the lattice corresponds to a potential

task and can exhibit a certain stimulus which can increase over time. Agents with fixed

thresholds populate the lattice and will work on the task located in their current cell if the

associated task stimulus exceeds their threshold. By working on a task an individual will

decrease the stimulus to a level that is unrecognisable to the individual (i.e., lower than

its threshold). Individuals are mobile and can move onto neighbouring cells if they are not

occupied. Using this simple model Richardson et al. were able to show that given a

heterogeneous set of individuals and stimuli non-random spatial structures will arise both

on the individual as well as on the stimulus level, thus leading to homœostasis.
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3. Division of labour in dynamic

environments

In their natural habitats, social insect colonies are embedded in dynamic environments.

Conditions in such environments can change on an hourly, daily and seasonal basis. While

some changes in the environment will leave a colony unaffected, others will impact the

colony and can cause a switch in task necessities. In order for a colony to survive, it must

be able to react appropriately to such changes by adapting its work-forces to the change

in demand.

A number of events such as a massive loss of workers from a specific task group (Wilson,

1984), migration (Langridge et al., 2008), increase in temperature (Jones et al.,

2004) or loss of reserves (Fewell and Bertram, 1999) can occur in social insect colonies,

which require a rapid readjustment of the work-force. As the survival and well-being of

a social insect colony crucially depends on a colony’s ability to react to environmental

changes, it is important to investigate this particular aspect in response threshold models.

Langridge et al. (2008) investigated the behaviour of a Temnothorax albipennis ant

colony over several consecutive migrations. Their findings show that repeated migrations

lead to a specialization within the colony. While the transportation during a colony’s

migration is performed by many individuals during the first migrations, specialists for this

task develop after a few migrations. These specialists dominate the transportation in later

migrations and increase the colony’s overall performance during those migrations.

This suggests that certain events in the environment can actively drive specialization in

social insects. Since a previous theoretical study (Merkle and Middendorf, 2004) has

shown specialization is not innate to threshold models per se, it is interesting to investigate

whether consecutive “migration-like processes” in response threshold models can trigger

specialization.

Here TRMs which incorporate dynamic environments with varying demand for work

will be used to study the influence of rapid environmental changes on division of labour.

This work represents a continuation of Diwold (2005), where response threshold models

with dynamic environments were first introduced. In the course of this chapter we will

see that dynamic environments indeed impact a colony’s performance. Depending on the

size of the colony such changes can cause overworking or underworking for the task that
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3. Division of labour in dynamic environments

changed in demand (i.e., working more or less than the ideal amount). By adjusting the

number of possible learning steps, which correspond to changes in the maximal threshold

values relative to a colony’s size, the performance of colonies in dynamic environments can

be improved. In addition, a setup inspired by repeated migration behaviour (Langridge

et al., 2008) is investigated. It is shown that colony-size dependent learning rates will

affect a colony’s ability to maintain an activity onset for a reappearing task and can thus

be seen as a trigger for colony-size dependent specialization in social insect colonies.

3.1. Threshold reinforcement model in dynamic environments

To study the effect of dynamic environments on the response threshold concept, a two

task TRM was used (a formal description of TRMs was provided in the last Chapter).

Environmental changes can be incorporated into such models in the form of changes in

the demand values during simulation time. This simplification is possible as we are only

interested in environmental changes which affect task necessity. Given a standard TRM

the demand value Dj represents the necessity of a task Tj for the colony. When increasing

the demand of a certain task this will lead to an increase in work-force needed for the task

in order to to keep the tasks stimulus Sj constant.

The threshold models used in previous studies used demands for the tasks that were

fixed for the entire simulation time. One exception is found in Bonabeau et al. (1998),

where the demand was doubled after some time steps to see how this affects the caste in

the model. Apart from this single work increase, the effect of demand changes was not

investigated further.

3.1.1. Adapting to dynamic environments

The first question, which is of particular interest in the case of dynamic environments,

is how fast and how well different-sized colonies can adapt to dynamic environments. To

introduce dynamic environments with changing demands over short time periods into the

TRM, we first adopt an initialization phase, as described in Chapter 2. After this phase

the demand variation starts at a time step ta. This is done as follows. The simulation

between time steps ta and the end of the simulation at time step tb is divided into equally

long subintervals with length t∆. In each of the (tb − ta)/t∆ intervals, a demand varia-

tion occurs for a certain number of time steps (details will be defined later). For clarity

we will refer to such an interval as “demand variation interval” throughout this chapter.

There are many possibilities for the implementation of a demand variation in a threshold

reinforcement model. A demand variation could for example only affect one task at a

time, or multiple tasks at the same or different times in the demand variation interval.
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Figure 3.1.: Oscillation-like demand variation interval (t∆ = 400): standard demand values
are Ds

1 = Ds
2 = 0.3, at complementary periods of the interval, the demand of

one task changes to Dc
1 = Dc

2 = 0.7.

Here an oscillation-like demand variation will be studied, where the demands of both tasks

are changed complementarity during each demand variation interval. Let Ds
j denote the

standard demand value of a given task Tj and Dc
j the demand value of the task during

an environmentally induced demand change. In the first t∆/2 time steps of a demand

variation interval the demand of task T1 is changed to Dc
1 while the demand of task T2

remains at its standard level Ds
2. For the remaining t∆/2 time steps the demand of task T1

is reset to Dc
1 while the demand of task T2 is set to Ds

2. A demand variation interval with

t∆ = 400 and standard demand values Ds
1 = Ds

2 = 0.3, that are changed to Dc
1 = Dc

2 = 0.7

during the task dependent period of the demand variation interval, is depicted in Figure

3.1.

3.1.2. Specialization in dynamic environments

As pointed out above Langridge et al.’s study on consecutive migrations in the ant

species Temnothorax albipennis suggests that consecutive migrations trigger individual

specialization. It is thus interesting to investigate whether a migration-like process can

also lead to specialization in response threshold models.

In contrast to an oscillation-like demand variation, a migration-like process is established

in the two-task threshold response model as follows. One of the tasks T1 constitutes the

modelled migration task. During non-migration times its demand D1 is low but present.

This is due to the fact that migration related actions are also required to some extent

during times of no migration. Brood carrying and sorting behaviour are examples of these

actions. Over the course of a migration such actions gain necessity, thus D1 is increased.

The other task T2 represents the actions which are necessary at any time in the colony,
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Figure 3.2.: Example migration interval with t∆ = 600, migration length tm = 200, mi-
gration task T1, other task T2, demand of migration task during migration
is D1 = Dc

1 = 0.9 and otherwise is D1 = Ds
1 = 0.3; demand of other task

D2 = Ds
2 = 0.5. The migration is characterized by an increase of the demand

related to the migration task. After migration the corresponding task demand
is reset to Dc

1. The demand which is not related to the migration task is held
constant.

regardless of whether a migration takes place or not. Thus, the demand associated with

this task is not altered at any time.

In the simulation this is realized as follows. As in the setup outlined in the last section,

the steps between time step ta and the end of the simulation tb are divided into equally

long demand variation intervals of length t∆. In each of these intervals, a migration

occurs for tm steps (tm ≤ t∆), this is referred to as migration interval (or just migration)

of length tm. During a migration the demand value of the migration task T1 is set to a

high value Dc
1. After the migration it is reset to its lower stationary value Ds

1. As already

mentioned, the demand value D2 of the other task T2 is not altered at any point in the

simulation and will remain at Ds
2 during the whole simulation. The time span between

the end of an migration interval and the start of the next migration interval is referred to

as inter-migration interval.

The demand evolution of a typical migration within a demand variation interval length

of t∆ = 600, tm = 200 is depicted in Figure 3.2. In this example the demand for task

T1, D1 is set to Dc
1 = 0.9 during migration, otherwise it corresponds to Ds

1 = 0.3, while

the demand for task 2 D2 is kept constant at Ds
2 = 0.5 . Please note that for clarity the

migration interval starts at time step 20 in Figure 3.2.

26



3.2. Experimental setup

3.2. Experimental setup

In order to study the influence of dynamic environments on polyethism in response thresh-

old models a two task TRM model as described in Chapter 2 was used. Following Merkle

and Middendorf (2004), in the first tinit = 10000 simulation steps an initialization-phase

was performed to ensure that no artefacts due to initial conditions occur. An oscillation-

like demand variation (Section 3.3.1 and 3.3.2) or migration (Section 3.3.3) started at

step ta = 5 ∗ tinit and lasted until the end of the simulation tb. The individuals had a

maximum age amax = 1000, the learning/forgetting parameters used were ξ = 4.0 and

φ = 3.5 (which corresponds to values previously used in the context of threshold reinforce-

ment model (Gautrais et al., 2002; Merkle and Middendorf, 2004), α was set to

0.1 and p = 0.2. Other parameters such as colony size N , maximal threshold θmax as well

as demand/migration interval length and demands differed among the experiments and

are thus outlined in the respective subsection. All probabilities used in our simulations

were derived from a uniform random distribution.

3.3. Experiments

The following section is organized as follows: First the adaptation abilities of different-sized

colonies under equal parameter conditions in dynamic environments are outlined. Then

a way to increase a colony’s adaptivity in such environments is presented. Finally the

activity of different-sized colonies performing an iterative migration-like task is analysed.

3.3.1. Adapting to changing environments

Unless stated otherwise, the presented results were obtained from studies of the behaviour

of different-sized colonies N ∈ {6, 10, 100, 1000} using a maximal threshold θmax = 100 in

an environment exhibiting oscillation-like demand variation with t∆ = 400. Variation of

demands is between low values a standard value of Ds
1 = Ds

2 = 0.3 and demand change

value of Dc
1 = Dc

2 = 0.7 (as in Fig. 3.1). A simulation run lasted for 770000 simulation

steps leading to 1800 demand variations per simulation.

These experiments were conducted to test how fast a colony is able to adapt to task-

related changes in the environment. In order to investigate how the behaviour of different-

sized colonies differs when confronted with environmental changes, colonies of different

sizes were studied using the same set of parameters.

A good indicator of how fast a colony can adapt to a change in the environment are

the task-related stimuli. A colony that has successfully adapted to environmental changes

should be able to fulfil the colony’s needs. This means that its individuals should neither

work too little nor too much for the tasks present in the system. Such a behaviour should
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Figure 3.3.: Change of the stimulus associated with task T1 in different-sized colonies dur-
ing a whole oscillation-like demand variation interval t∆ = 400.

result in stable stimuli. On the other hand, stimuli should change if the colony has not

yet adapted, depending on whether too much or too little work is being done on the given

tasks.

Figure 3.3 depicts the evolution of the average stimuli values of task T1 for colonies

of size 6,10,100, and 1000. Remember that for task T1 the demand is D1 = 0.7 (while

D2 = 0.3) in the first 200 steps and D1 = 0.3 (while D2 = 0.7) in the remaining steps.

As can be seen in Figure 3.3, stimulus behaviour differs strongly between different-sized

colonies. While large colonies (N = {100, 1000}) are able to adapt fast to the change

in task-demand, this does not hold for colonies with few individuals. Adaptation speed

seems to scale with colony-size, meaning the larger the colony the faster the adaptation

to changes in task demand.

How well a colony is able to adapt to environmental changes should also be reflected in

the activity of the colony during a demand variation interval. The expected ideal amount

of work W ideal
j which should be done by a colony for a given task Tj (having a demand
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3.3. Experiments

Table 3.1.: Work statistics for the first t∆/2 steps in an oscillation-like demand variation
interval t∆ = 400; N : colony size, W ideal

j : expected ideal amount of work for
task Tj , W

ave
j : work for task Tj in the first 200 steps of a demand variation

phase (averaged over all demand variation intervals); standard deviation is
given in parentheses; rj := W ave

j /W ideal
j : relative amount of ideal work done.

N W ideal
1 W ave

1 r1 W ideal
2 W ave

2 r2
6 35.0 24.7 (6.7) 70.6% 15.0 25.3 (5.6) 168.7%
10 58.3 45.6 (6.6) 78.2% 25.0 37.9 (6.4) 151.6%
100 583.3 577.2 (4.7) 99.0% 250.0 257.9 (4.8) 103.2%
1000 5833.3 5842.6 (3.6) 100.1% 2500.0 2524.0 (6.1) 101.0%

parameter Dj) in tv time steps can be easily calculated via (for details of this formula

please refer to Chapter 2).

W ideal
j = tv · δj = tv ·Dj ·

N

m
·

α

1 + p
(3.1)

Here, we are interested in tv = 200, which corresponds to half of the demand variation

interval t∆, whether we look at the first of second half of t∆ is irrelevant, as the task

demands are symmetric.

Table 3.1 contains the amount of work, the expected ideal amount of work and the

fraction of the ideal work that has been done for both tasks and colonies of sizes 6, 10,

100, and 1000, each calculated for the first 200 steps in a demand variation interval (i.e.,

D1 = 0.7, D2 = 0.3). All presented values are averaged over all demand variation intervals

in one simulation run.

From the table it is clear that colonies of all sizes fulfil or exceed the ideal amount of

work in the demand variation interval, for the task with the unchanged demand (i.e., task

T2). However, small colonies exceed the ideal amount of work far more than large colonies

(e.g., the colony of size 6 works around 68.7% more than necessary while a colony of size

1000 exceeds the ideal amount of work only around 1% ).

The ideal amount of work for the task with the increased demand is only fulfilled /

exceeded by the largest colony (i.e., N = 1000). Smaller colonies are not able to accomplish

the necessary workload. Furthermore, the ability to deal with a demand increase seems

to be positively correlated with colony size.

Our suggestion is that the phenomenon seen here (i.e., the difference in the work perfor-

mance during an demand variation interval) is due to the colony-size dependent stimuli.

Stimuli trigger the awareness of a colony’s individuals for a task. While stimuli in large

colonies are very flexible (i.e., their level can increase or decrease significantly in one time
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Figure 3.4.: Change of the stimulus associated with task 1 in a model with colony-size
independent stimuli, for colonies of size 6 and 1000 during a whole oscillation-
like demand variation interval t∆ = 400.

step, see Eq. 2.5 in Chapter 2 for more detail), this does not hold for small colonies. This

contrasts with the individual’s threshold update – all individuals, no matter what colony

size, exhibit the same threshold learning and forgetting rate. It seems therefore that indi-

viduals in small colonies are simply not as quickly aware of the workload dimensions they

have to deal with, unlike the individuals in large colonies.

To check whether the observed differences between different-sized colonies in the amount

of work, which is done during a demand variation interval, is a consequence of the colony-

size dependency of the stimuli, we studied a modified model which uses colony size inde-

pendent stimuli.

Within the model, colony-size independent stimuli can be achieved easily by the follow-

ing modification of the stimulus update formula:

Sj = Sj + (δj − Ej · α) · 1/N (3.2)

Table 3.2.: Work statistics for the first t∆/2 steps in an oscillation-like demand variation
interval t∆ = 400 in a model with colony-size independent stimuli update; for
parameters see Table 3.1.

N W ideal
1 W ave

1 r1 W ideal
2 W ave

2 r2
6 35.0 24.7 (8.9) 70.6% 15.0 25.4 (9.4) 169.3%
10 58.3 41.3 (12.9) 70.8% 25.0 42.0 (11.5) 168.0%
100 583.3 410.4 (39.6) 70.4% 250.0 422.6 (38.7) 169.0%
1000 5833.3 4105.7 (161.0) 70.6% 2500.0 4230.8 (190.8) 169.2%
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Figure 3.5.: Difference of amount of work done by a colony of size N and the ex-
pected ideal amount of work W ideal

j ; results are depicted for task j = 1,
colony sizes N ∈ {10, 100, 1000, 10000} and maximal threshold values θmax ∈
{10, 50, 100, 300, 500, 1000, 1500}; boxplots show the difference between the
amount if work done and the expected ideal amount of work W ideal

j to be
done for all demand variation phases in all test runs; dotted line in the sub-
figures shows the value W ideal

1 .

This modification ensures that the stimuli have a growth rate that is independent of the

colony size. Stimulus development and the work statistics of different-sized colonies in

the modified model confirm our hypothesis. The stimulus evolution of colonies of size 6

and 1000 are depicted in Figure 3.4 and the work statistics for N ∈ {6, 10, 100, 1000} are

presented in Table 3.2. Within the modified model, the stimulus development and work

statistics of different-sized colonies are relatively similar, which is reflected in the similar

values of rj for task j ∈ {1, 2}.

3.3.2. Increasing adaptivity in dynamic environments

As we have seen in the previous section, task adaptivity of TRMs in dynamic environments

depends on colony size. While large colonies are able to adapt fast to environmental

changes, small colonies lack these abilities.

31



3. Division of labour in dynamic environments

In their study,Merkle and Middendorf (2004) pointed out that the maximal thresh-

old θmax used in a TRM has a significant impact on the flexibility of the individuals when

learning and forgetting rates are kept constant. There are two reasons for this. On the

one hand, θmax has an impact on the magnitude of the stimuli in the system. Given a

feasible demand for a task (i.e., one that the colony can fulfil) the stimuli will not rise

much higher than θmax. If a stimulus exceeds θmax this will cause a high percentage of

the individuals to work on the corresponding task and will thus lead to a decrease in the

stimulus. The other reason why θmax has an impact on the flexibility of the system lies in

the fact that θmax determines how many learning steps are needed to switch between the

two threshold extremes θ = 0 and θ = θmax. Note that a large value for θmax corresponds

to a large number of possible learning steps.

Using a small maximal threshold should result in a system with very flexible indi-

viduals, while larger maximal thresholds should have the opposite effect. To investi-

gate whether different-sized colonies could benefit from different maximal thresholds,

colonies of different sizes were studied in the system using maximal thresholds θmax ∈

{10, 50, 100, 300, 500, 1000, 1500} and a colony-size dependent stimulus update. Note that

for ξ = 4 a small value θmax = 10 corresponds to 2.5 learning steps and a high value

θmax = 1500 corresponds to 375 learning steps needed to reduce a response threshold θ

from the maximal value to zero.

The work performance of each colony was monitored for each task in both demand

variation interval halves. Due to the oscillation-like nature of the demand variation, task T2

will behave like task T1 in the second half of the demand variation interval and vice versa,

thus only results for T1 are presented. Results for colony sizes N ∈ {10, 100, 1000, 10000}

for task T1 in the first half of the demand variation interval are depicted in Figure 3.5. For

each combination of N and θmax a boxplot of the work done is given. The dotted line in

the subfigures corresponds to the ideal amount of work W ideal
1 that should be done. Small

colonies (N . 100) tend to adapt slowly to demand changes (take longer to begin working

on the task with increased demand) if the maximal threshold is too large (see Figures

3.5(a) and 3.5(b)). Performance improves significantly when smaller maximal threshold

values are used, as can be seen by the small difference between the amount of work done

and the value of W ideal
j . In large colonies N & 500, a large maximal threshold does not

corrupt a colony’s ability to adapt to demand changes (see Figures 3.5(c) and 3.5(d)).

This is due to the fact that the stimulus values can change more rapidly, as outlined in

the last section. However, large colonies tend to overwork for the task.

Smaller colony sizes (N ≤ 10) perform best with low θmax, here 10. With increased

colony size the best performance seems to shift proportionally to θmax – see Figures 3.5(b),

3.5(c) and 3.5(d). It should also be noted that very small values of very large colonies

(N = 10000) combined with very small values for the maximal threshold (θmax . 50)
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3.3. Experiments

lead to an uncontrolled permanent switching of the individuals from one task to another,

leading to a very high workload (see Figure 3.5(d)).

3.3.3. Specialization in dynamic environments

To study the influence of migration-like processes on response threshold models, three

colonies of different sizes N ∈ {10, 100, 1000} were investigated. The maximal threshold

for each colony was chosen according to the results outlined in the last section, so that

colonies could adapt properly to changing environments: θmax = 10 for N = 10, θmax = 50

for N = 100, and θmax = 300 for N = 1000. Each simulation run was repeated 10 times

and in each run, 50 migrations with a migration interval length of tm = 200 steps were

performed. For this fixed migration interval length different demand variation interval

lengths t∆ = {210, 220, 230, 300, 500} were tested, which led to inter-migration intervals

ti = t∆ − tm, ti ∈ {10, 20, 30, 100, 300}. During inter-migration intervals, the demand for

the migration task T1 was set to Ds
1 = 0.3, while during migration tasks it was set to

Dc
1 = 0.9. The demand for the other task T2 was held constant throughout the simulation

at Ds
2 = 0.8.

An interesting aspect of the migration process is the effect of the inter-migration interval

length ti on the colony’s migration task activity during the migration. Remember that

within this setup, different-sized colonies use different maximal thresholds, which represent

the individuals’ learning behaviour. Small maximal thresholds constitute coarse learning,

which means that within a few learning / forgetting steps an individual can switch from

being an expert to being a complete non-expert, and vice versa. On the other hand large

maximal thresholds lead to slower, more fine-grained learning.

The learning behaviour has an impact on the length of the time interval an individual

can sustain its experience. In terms of the migration task, this means that an individual

which did sufficient work on the task to become an expert during migration will be able

to sustain its threshold over a non-migration period, depending on its maximal threshold.

Figure 3.6 depicts a colony’s average activity (i.e., the number of individuals that work

for the task per time step averaged over all simulation runs) for the migration task in a

subset of three migrations at the beginning and at a later stage of the simulation. Results

for two different-sized colonies N ∈ {10, 1000} and two inter-migration interval lengths

ti ∈ {10, 300} are shown.

From the figure, differences in a colony’s adaptive behaviour can be seen for different

colony sizes (compare left and right columns of Figure 3.6). The small colony adapts

quickly (due to its small maximal threshold). However it can only sustain its activity

level between successive migrations if the inter-migration interval is short enough. Given

a longer interval (ti = 300), activity can not be sustained and the colony relearns the task

33



3. Division of labour in dynamic environments

0 100 200 300 400 500 600

0
2

4
6

8
10

Migration Step

A
ct

iv
ity

ti = 10
ti = 300

(a) N = 10 Migration 1 - 3

0 100 200 300 400 500 600

0
20

0
40

0
60

0
80

0

Migration Step

A
ct

iv
ity

ti = 10
ti = 300

(b) N = 1000 Migration 1 - 3

1600 1700 1800 1900 2000 2100 2200

0
2

4
6

8
10

Migration Step

A
ct

iv
ity

ti = 10
ti = 300

(c) N = 10 Migration 9 - 11

1600 1700 1800 1900 2000 2100 2200

0
20

0
40

0
60

0
80

0

Migration Step

A
ct

iv
ity

ti = 10
ti = 300

(d) N = 1000 Migration 9 - 11

Figure 3.6.: Colony’s average activity (number of individuals working averaged over all
simulation runs) on the migration task T1 over different subsets of 3 migrations
(see subfigure labels) for different-sized colonies N ∈ {10, 1000} and under
different inter-migration interval length ti ∈ {10, 300}. Please note that the
activity for the task during the inter-migration intervals is not displayed.

each migration. In contrast, the activity of the large colony increases gradually over the

course of migrations, and does not show any decrease from the end of one migration to the

beginning of the next, regardless of the length of the inter-migration interval. However,

in the case of a long inter-migration interval the overall level of task activity is lower than

was found for shorter inter-migration intervals.

The effect of sustainability is even further highlighted by looking at the activity for the

migration task in the first step of each migration, which is typically the lowest activity per

step during the whole migration. Since the migration task had a very low demand until

the first step of the migrations, this will lead only individuals with very low thresholds

for this task to work on it. When a migration starts the demand associated with the

migration task T1 is set to Dc
1 = 0.9. As a consequence, around 45% of the population

will need to work on the migration task during the migration period in order to keep the

stimulus stable, which will lead to an activity increase in this task.
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Figure 3.7.: Activity for the migration task in the first step of each migration over the
course of 50 migrations for different-sized colonies N ∈ {10, 100, 1000}.

In Figure 3.7, the activity for the migration task in the first step of each migration

is depicted. As can be seen, the largest colony (N = 1000) performs best in terms of

maintaining an activity onset for the migration task during long inter-migration intervals

after a few migrations have been completed. In the first step of the first migration all

colonies have similar performance, with an activity level at approximately 10% of the

colony size.

In Table 3.3 the normalized (in terms of colony-size) mean and standard deviation

of the activity for the migration task is shown for the first step of different migration

intervals under different lengths of inter-migration intervals. This table illustrates that a

colony’s ability to maintain an onset for a task over a long period of time increases with its

size. While all colonies are able to sustain their activity during the short inter-migration

interval (ti = 10) at a similar level, clear performance differences can be observed for

the longer inter-migration interval. As outlined above, the reason for this can be found

in the different maximal threshold values which are used to increase the performance of

different-sized colonies in dynamic environments.
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3. Division of labour in dynamic environments

Table 3.3.: Normalized (in terms of colony-size) mean activities for the migration task at
the first step of the 10th, 25th, and 50th migration for inter-migration interval
length ti ∈ {10, 300} and different colony sizes N ; in parentheses the standard
deviation of the normalized mean activity is given.

ti = 10

N/Interval 10 25 50

10 0.34 (0.15) 0.34 (0.13) 0.37 (0.15)
100 0.33 (0.04) 0.35 (0.05) 0.35 (0.05)

1000 0.29 (0.01) 0.33 (0.02) 0.34 (0.01)

ti = 300

N/Interval 10 25 50

10 0.07 (0.08) 0.07 (0.09) 0.06 (0.07)
100 0.14 (0.03) 0.14 (0.03) 0.13 (0.03)

1000 0.16 (0.01) 0.17 (0.01) 0.17 (0.01)

3.4. Conclusion

In this chapter, the adaptiveness of different-sized colonies to changing environments was

analysed using a standard threshold reinforcement model. The performance of different-

sized colonies was compared under an identical parameter setup. While very small colonies

adapt gradually to changes in the environment and thus need a comparatively long time

for the adaptation process, large colonies have the opposite problem - they adapt too

coarsely and fast, which creates turbulences in the system.

The reason for this was identified in the colony-size dependency of stimulus growth,

which has a direct effect on colony members’ perception of task requirements. The level to

which a stimulus can grow in a large colony is high and an increase can thus create instant

awareness for a task and over-promote it. In small colonies stimulus growth is slow and

this can lead to a long period of unawareness for the task.

Since colonies should be able to adapt to environmental changes in an appropriate

manner, regardless of their size, our observations suggest that individuals in different-

sized colonies need different means of flexibility. The flexibility of a colony’s individuals

can be altered by changing the maximal threshold θmax which is used. The maximal

threshold determines how large a stimulus can grow before even the individual with the

worst threshold will start working on it. It also constitutes the individuals’ memory and

thus how many steps individuals will need to switch from being experts for a task (i.e.,

threshold equals zero) to being very insensitive (i.e., threshold equals maximal threshold).

The performance of different-sized colonies was tested for different maximal thresholds.

Our studies show that given fixed learning and forgetting rates, small colonies are able

36



3.4. Conclusion

to adapt best using small maximal thresholds. In large colonies however, small maxi-

mal thresholds cause excessive overworking, which declines with increases in the maximal

threshold.

This suggests that individuals of different-sized colonies require different flexibility in

their learning behaviours, here parametrized by the amount of possible learning and for-

getting steps needed to successfully adapt to dynamic environments. While individuals in

large colonies can afford a more gradual adaptation, individuals in small colonies need to

adapt fast. This corresponds to observations in nature where small colonies are observed

to contain more all-round workers, while large colonies often exhibit specialists that are

only receptive to a limited range of tasks.

The second aspect investigated in this chapter is to how well different-sized colonies

can sustain task-memory over consecutive task demand changes. To do so an iterative

migration-like process was studied. The results show that large colonies are able to main-

tain an activity onset for the recurring migration task over a long period of time, while

individuals in small colonies are not able to sustain low thresholds for this task over a long

period of inactivity. The inability of small colonies to keep experts over a long period of

absence of a task can be seen as a trade-off for their increased need for flexibility which

they would lack by keeping specialists. On the other hand, large colonies are able to main-

tain a fraction of experts or specialists. As the standard response threshold model does

not exhibit colony-size dependent specialization, our study suggests that specialization is

triggered through environmental changes.
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division of labour

Standard threshold models do not implement any form of spatial dimensionality. They

assume that every individual is able to sense the global task-stimuli, and thus react to the

task necessity on a colony level. While such a general setup is sufficient to study a wide

range of dynamics and specialization under the response threshold hypothesis, in nature

tasks as well as individuals are usually not homogeneously distributed over the sphere of

action of a colony.

Spatial distribution in social insect colonies can be imposed on the colony by the envi-

ronment or by the individuals themselves. Foraging is a good example for environmentally

inflicted spatial task-distribution, as it requires individuals to navigate in space outside

of the nest. Thus, while engaged in foraging, an individual will not be able to sense the

necessity of tasks which are performed inside the nest, such as brood-care. As these tasks

are spatially mutually exclusive they will impact the workers’ behaviour (it is very unlikely

to find a brood sorter in the foraging area).

Spatial task separation is not always imposed by the environment but can also be the

result of individual behaviour, for example via stigmergy (Theraulaz and Bonabeau,

1999). Several social insect species exhibit task segregation in their nests, which reveals

itself in the spatial organization of the nest itself. A honeybee hive, for example, contains

different areas designated for brood, pollen and honey storage, thus creating a spatial dis-

tribution (Johnson, 2009). Another example for individually induced spatial segregation

can be found in several ant species which sort their brood in a centrifugal manner around

the nest centre according to the larval stage, which allows easy deployment of the different

care required by the larvae (Sendova-Franks and Franks, 1993). A recent study has

shown that bumblebees occupy different spatial zones within their hive according to their

age, and these zones are usually associated with different tasks (Jandt and Dornhaus,

2009). As outlined in Chapter 2, Richardson et al. (2011) recently proposed a spatial

fixed-threshold model (SFTM) and were able to show that including spatial features in

response threshold models can lead to homœostasis.

These empirical and theoretical examples show that spatial distribution plays an impor-

tant part in the dynamics underlying self-organization and thus division of labour in social
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insects. This chapter investigates the effect of spatial task-distribution on productivity in

the context of response threshold models. In addition, potential “sorting strategies” that

could enable a colony to maintain spatial task separation are outlined and tested regarding

their adaptiveness in dynamic environments.

4.1. The spatial threshold reinforcement model

In the standard TRM which was introduced in Chapter 2 an individual is always able

to encounter the stimuli of all tasks present in the system. As mentioned previously, in

real insect colonies tasks as well as individuals are usually spatially distributed within the

environment. Single individuals might thus only be able sense local stimuli. To include this

aspect in the context of response threshold models the standard TRM was extended by

spatial aspects. This extended model will be referred to as spatial threshold reinforcement

model (STRM).

Formally, the STRM has l different locations L1, . . . , Ll. Each location Lk (0 ≤ k ≤ l),

contains nk individuals. Therefore the whole system contains N =
∑l

k=1 nk individuals.

For simplicity we assume that the number of individuals at each location is fixed. As

outlined in Chapter 2 a standard TRM contains m tasks. Any of these m tasks can be

present at each location with a certain local demand. An individual i located at location

Lk can only sense the local necessity for the tasks. Thus, a demand Dk
j and stimulus Sk

j

exist for each task Tj at each location Lk. Let Dj =
∑l

k=1D
k
j be the total demand for

task Tj and Sj =
∑l

k=1 S
k
j be the total stimulus for task Tj over all l locations. Individuals

only consider the local stimuli when deciding which task to work on and the work of an

individual contributes only to the tasks at its location. Hence the demand and stimulus

values at the different locations are independent.

The stimulus of a task reflects the necessity for a colony to work on that task. As it is

correlated with the workload fulfilment of a colony, it can also be seen as the amount of

work for a given task which has accumulated without being processed until a certain time

step. For example a high stimulus for feeding means that there are many starving larvae

in the colony. In colonies with high stimulus values there is more undone work around

than in colonies with low stimuli. Thus the stimuli values can serve as a quality measure

and are used to evaluate the performance of the systems in this study. The sum of all

stimulus values for all tasks at a given time step

S =

m
∑

j=1

Sj (4.1)
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is also called the total stimulus and it is assumed that the lower this value, the better the

performance of the system.

After a system has adapted to the required demand distribution, the stimuli will still

display minor fluctuations over time. In order to disregard these fluctuations we average

the total stimulus over an interval of time steps to yield the value S�. Within this

study, stimulus values were recorded after 5 · tinit, which in previous studies proved to be

sufficient time for a system to adapt to a given demand distribution (see Merkle and

Middendorf 2004).

4.2. Experimental setup

Unless stated otherwise the presented results are averaged over 50 simulation runs using the

following parameter values. The number of locations is l = 2 and the number of different

tasks is m = 2 (this could for example model an ant nest with two brood chambers where

it is necessary to feed the larvae and to take care of the eggs). The number of individuals

at each location Lk is assumed to be nk = 100. The total demand for task Tj , j ∈ {1, 2} is

Dj = 1. For the learning parameter ξ and the forgetting parameter φ we take the values

ξ = 3.5 and φ = 4.0 (these values have also been used in previous studies (Gautrais

et al., 2002; Merkle and Middendorf, 2004). The length of initialization phase is set

to tinit = 10000 steps, the maximum age of an individual is amax = 1000 and the maximal

threshold values are θmax
i,j = 20.

4.3. Experiments

4.3.1. Division of labour in a spatially distributed environment

In this section the effects of spatial task distribution on division of labour under the

response threshold hypothesis are studied. This is a necessary first step since it is not

clear whether or not spatial task distribution has any effect on the model.

Fixed demands

To investigate whether the spatial distribution of tasks has any effect on the individuals’

work performance in the system, we first consider a system with a static task distribution,

meaning that the demand for every task at each location is fixed. Since individuals at

each location consider only the local stimuli in order to choose a task to work on, such a

setup corresponds to two threshold reinforcement models running in parallel.

Such a system can be studied under different task demand distributions at each of

the two locations L1, L2. The task distribution among the two locations can be seen as
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Figure 4.1.: Average total stimulus S� under different demand distributions Dk
j for both

tasks on both locations, over 50000 time steps, with a total demand ofDj = 1.0
for each task.

a representation of how spatially separated the tasks are. In a setup with strong spatial

separation, each task is only present at one location (e.g., D1
1 = 0,D1

2 = 1,D2
1 = 1,D2

2 = 0).

In contrast, in a system where the task demands are not spatially separated the tasks are

equally present at each location (i.e., D1
1 = D2

1 = 0.5, D1
2 = D2

2 = 0.5).

The system should be able to cope with any demand distribution when the demand-

sums for both tasks are fixed to Dj = 1.0. Even when the tasks are only present at a single

location this can be accomplished by workers at the location, even though they would need

to work with full force, since they would need to provide maximal work for each task at

each timestep to maintain a constant stimulus value at their location.

Figure 4.1 depicts the average total stimulus S� of the system under various distribu-

tions of demands on the two locations. As can be seen, the system is able to keep the total

stimulus on the lowest level in a scenario where both tasks are only present at different

locations. In this case the individuals at each location can focus on a single task only,

since demand and thus the stimulus for the other task are zero.

Another observation that can be made is that the total stimulus increases with decreased

separation (i.e., the demands of both tasks become more similar at each location) and with

a more unequal distribution of the tasks at the two locations (i.e., the sum of the demands

at both locations becomes unequal). The stimulus reaches its maximum in the situation

where both tasks are present only at the same location. As each individual in the system

has a fixed spatial location, in this case half of the colony has all the workload while the

other half of the colony is idle.

A colony can cope with any possible spatial distribution of demand in situations where

Dj ≤ 1.0 holds for each task. This is due to the fact that the number of work δj a task
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4.3. Experiments

requires per timestep is defined as δj := Dj · Wmax, where Dj constitutes the demand

Dj of task Tj and Wmax denotes the maximal amount of work that can be performed on

average on a task (see Chapter 2 for more information). Accordingly the demand value for

each task was defined as 0 ≤ Dj ≤ 1 in Chapter 2. As the total demands Dj used here are

distributed over two locations, we can however assume higher total demand values. Even

in a situation where Dj > 1.0, there are still possible distributions of the demands on the

two locations which fulfil Dk
j ≤ 1. This is not the case with increasing Dj . For example

with a total demand of Dj = 2.0, for a given task Tj, only one distribution is possible in

a system with 2 locations: full demands on both sites for that task.
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Figure 4.2.: Average total stimulus S� under different demand distributions Dk
j for both

tasks on both locations, over 50000 time steps, with a total demand ofDj = 1.4
for each task.

Figure 4.2 depicts the average total stimulus value of a system with the total demand of

each task fixed toDj = 1.4. As in the previous experiment the system is able to achieve the

best average stimulus value in a situation where the demands of the two tasks are spatially

separated over two locations. Note that a complete separation is not possible any more,

since this would require task-demands greater than 1.0 at each location. However the

experiment shows that even partial sorting can increase the performance of a system. It

thus seems that a spatial task distribution is beneficial in a multi-location system if the

total amount of demand permits it (i.e. Dj ≤ 2.0 in the case of 2 locations).

Impact of demand redistribution

A second aspect that is interesting regarding spatial task distribution is whether a redis-

tribution during runtime will affect the system in any way. We thus consider a scenario

where the demands of the tasks can change at both locations, to investigate if and how

fast the system can adapt the total stimulus after a demand change. One would expect

that the stimulus values change after a change in the demand values, since they repre-
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sent the necessity of a task. Given a high demand that is then decreased, the associated

stimulus should also decrease until it attracts the needed amount of individuals, because

the high stimulus will attract too many workers for the task and thus decreases due to

over-work. If the stimulus can decrease after a demand separation, this would indicate

that a proactive rearrangement of task demands can effectively increase the performance

of such systems. This might also explain why such phenomena are often observed in

nature, for example in ant colonies where the ants arrange larvae and eggs at different

locations (Sendova-Franks and Franks, 1993).

The simulation started with suboptimal task distribution with respect to the total stim-

ulus. At timestep 100000 the task demands were changed to be spatially more separated.

The result are depicted in Figure 4.3. The total stimulus varies between 23 and 28 dur-

ing the first phase with a demand setting of D1
1 = D2

1 = D1
2 = D2

2 = 0.5. After time

step 100000 when the demands were changed to D1
1 = 0,D1

2 = 1,D2
1 = 1,D2

2 = 0, the

total stimulus decreases very fast and varies afterwards between 15 and 20. This indicates

that demand rearrangements during a simulation can indeed have a beneficial effect and

increase the performance of a system.

4.3.2. Individual-based task redistribution

As we have seen, spatially separated tasks within a spatial threshold reinforcement model

can increase the overall performance of a system. In addition, a redistribution of tasks
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to increase their spatial separation increases a system’s efficiency. Here we investigated

whether it is efficient for a colony to change the spatial distribution of tasks by means of

active redistribution carried out by part of its workforce. Clearly, an active rearrangement

of the tasks by the colony itself comes with additional costs as it requires individuals to

spend part of their time working on task rearrangement. In the following we will refer to

tasks rearrangement as task sorting. Individuals that redistribute tasks are accordingly

called sorting individuals. Tasks are referred to as sorted if each task occurs only at

one location and no other task occurs there. As sorting comes with a cost we will first

investigate how much workforce a colony can devote to task-sorting under aspects of work

efficiency.

Figure 4.4 depicts the influence of the number of active individuals on the total average

stimulus for task T1 under different demand distributions. The other individuals are

assumed to be passive, which means that they will not work. It can be seen that in an

environment where tasks are unequally distributed over locations (e.g. D1
1 = 1), the colony

can keep the total stimulus at a lower level when some of the individuals remain passive

(i.e., do not work), compared to a situation where the tasks are equally distributed over

the locations and all individuals are active (i.e., potentially work for a task).

This changes however when the proportion of active individuals drops to less than

about 60%. In this case, colonies in less unequally distributed task environment are able

to maintain better average stimulus levels. This is due to the fact that in the threshold

reinforcement model an individual encounters each task with the same probability, which
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4. Influence of spatial task distribution on division of labour

means that each task is chosen with a maximum probability of 0.5 (see Eq. 2.2 in Chapter 2

for more details).

Consider a situation where both tasks are present at one location only, again an individ-

ual will only be able to choose a task with the probability of 0.5. However, if it does not

choose the first task it will definitely choose the second, so it will work with a probability

of 1.0. If in contrast the tasks are sorted, only one task will be present at a given location

and the stimulus for this task at the respective location will be high. However, agents will

only start to work for this task with a probability of at most 0.5.

Besides these extreme cases, the results depicted in Figure 4.4 indicate that under

the response-threshold hypothesis it is beneficial for a social insect colony to spare some

workers from the actual working process and use them to maintain a favourable spatial

distribution of the tasks. In the the rest of this section we will discuss how active sorting

can be integrated into the spatial threshold reinforcement model.

Task rearrangement by a specialized caste

In many social insects species, colonies are composed of multiple behavioural and or mor-

phological castes (Wilson et al., 2009), i.e., groups of individuals that manage different

duties in the colony. Task rearrangement could be accomplished by a specialized cast of

individuals that focuses on this rather than on the “normal” tasks. Hence, let us consider

that the current model contains two castes: workers and task-sorters.

Formally a fraction fsort of the individuals at every location constitutes the members

of the sorting caste and the rest of the individuals are workers. Sorters solely focus on

sorting (details are given later) and do not contribute to the normal workforce. Unless

stated otherwise, a value of fsort = 0.1 was used for the simulations.

In a realistic scenario the amount of demand that a task-sorter can move from one

location to another will be limited, e.g., an ant can carry only one egg from one brood

chamber to another at a given time. Therefore, it is assumed here that within one time

step a task-sorter can transport from one location to another exactly the amount of task

demand Wpickup = m/n that can be accomplished by a worker in a single simulation

step. Different sorting strategies are possible for the task-sorters to decide which task to

transport from which source location to which sink location. Two sorting strategies are

proposed and investigated here:

i) Deterministic sorting. For this strategy it is assumed that the task-sorter knows

which task belongs to which location and try to shift misplaced demands accordingly.

More formally: each task Tj is assigned to a location Lk. In every time step each task-

sorter at a location Lk will try pick up a demand for a task that is not assigned to location
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Lk and place it on the assigned location of the tasks. This is done by the agents without

changing their location.

ii) Stigmergic sorting. Stigmergy mechanisms use individual-based changes to the en-

vironment as feedback that triggers the behaviour of other individuals. Many aspects of

social insect behaviour rely on stigmergic principles (Theraulaz and Bonabeau, 1999).

Since stigmergy could also be useful in the context of spatial task rearrangement, a strat-

egy is adopted which is similar to that used by ants to aggregate brood (Sendova-Franks

and Franks, 1993). This aggregation strategy is based on the density of brood items,

e.g., eggs or larvae. The probability for an unladen agent to pick up an item is higher the

lower the number of other items in the neighbourhood. On the other hand the probability

to drop an item again is higher the more objects are around. Given a random distribution

of items in an environment, such a strategy leads to the formation of small clusters of

items which will slowly merge into bigger item clusters.

In the stigmergic sorting strategy a task-sorter becomes active at each time step. The

probability that a task-sorter at location Lk will pick up demand from task Tj is

P k
j,pickup from =

P k
j,pickup

∑m
j=0 P

k
j,pickup

, with P k
j,pickup =

(

Tpickup

Tpickup + Sk
j

)2

(4.2)

where Sk
j denotes the stimulus of task Tj at location Lk and Tpickup is a parameter that

is called pickup threshold. As can be seen, the smaller Sk
j is, the more likely it is that the

task-sorter picks up demand of task Tj.

Once a task demand is picked up, the task-sorter decides at which location to drop it.

Again the stimulus values of the corresponding task at different locations determine the

probability to drop the demand at location Lk

P k
j,drop at =

P k
j,drop

∑l
k=0 P

k
j,drop

, with P k
j,drop =

(

Sk
j

Sk
j + Tdrop

)2

(4.3)

where Sk
j denotes the stimulus of task Tj at location Lk and Tdrop is a parameter that is

called the drop threshold.

Figure 4.5 depicts the efficiency of a system with task-sorters over 800 consecutive

simulation steps after a change in demand. This system used the standard setup outlined

in section 4.2 and a sorter fraction of fsort = 0.1 (i.e., 10 task-sorters per location).

As can be seen, both sorting methods achieve a spatial separation of tasks which results

in a lower total stimulus. In the first step the task stimuli increase for both sorting-methods

(Figure 4.5(a)). This is due to the fact that at step 50000 demands Dk
j are reset to 0.5.

This creates turbulences since workers have to adapt to the new demand situation while
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Figure 4.5.: Change of total stimulus and demands at the different locations in a system
with task-sorters shown over 800 simulation steps after step 50000. Demands
Dk

j are set to 0.5 at time step 50000 and fsort = 0.1 resulting in 10 sorters at
each location given the standard setup of n = 100 individuals at each location.

sorters have to start to redistribute the demands. The deterministic sorting method is

able to reach the spatial task distribution faster then the stigmergic sorting method. This

is not surprising, since in the deterministic case, sorting individuals intrinsically know on

which location to place which task demand. This however can also be a disadvantage in

dynamical situations where rearrangement needs to be flexible.

To investigate sorting performance in a dynamical environment it is assumed that at

each time step t a certain fraction fcease of each task demand Dk
j ceases at each location.

In order to keep the total demand Dj for each task Tj constant, this demand has to be

fed back into the system. fk,j
re−enter denotes the fraction of the vanished demand fcease ·Dj

placed on location Lk, and the fraction of the demand placed on the other location thus

corresponds to 1− fk,j
re−enter.

Within such a system the task demands on each location will slowly converge towards

the distribution given by fk,j
re−enter. How fast this happens depends on fcease. If for example

fcease = 1.0 it would only take one time step. Depending on fk,j
re−enter, sorters might have

to work at each time step in order to maintain a spatial task distribution.

Figure 4.6 depicts the total stimulus for three systems under different cease fractions

fcease and rearrangement fractions fk,j
re−enter, one without task rearrangement, one using

deterministic sorting and a one using stigmergic sorting. Additionally the pairwise dif-

ferences between the total stimulus of these systems with differing sorting methods are

shown. Please note that the rearrangement fractions for the different tasks sum to 1.

The data presented were averaged over the last 500 steps of 10 simulation runs lasting for

100000 time steps.
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Figure 4.6.: Total average stimulus values and total average stimulus differences for differ-
ent sorting methods as a function of different cease fcease and rearrangement
fractions fk,j

re−enter.

The figure clearly depicts the lack of flexibility of the deterministic sorting method. Its

inability to adapt the sorting to locations which would be beneficial makes its performance

worst in scenarios where the tasks appear mainly on locations where they are not expected

to be. Stigmergic sorting can recognize such situations and adapt the sorting accordingly.

As can be seen, both sorting methods are only able to achieve lower stimuli levels than

a system with no sorting agents if the cease fraction fcease per time step is low. This

indicates that sorting in a spatial system is only beneficial if the amount of task demand

that needs to be moved at each time step can be handled by the colony. Otherwise sorting

has a negative effect and results in higher stimuli levels.

Figure 4.7 depicts the total stimulus for systems with small cease fraction fcease. In

such scenarios systems using sorting will always outperform systems without task sorting,

except in cases where the external demand change already results in a well sorted system.

The reason is that in such cases a system without task sorting mechanisms has more

workers available.
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4. Influence of spatial task distribution on division of labour

Figure 4.7.: Total average stimulus values and total average stimulus differences for differ-
ent sorting methods as a function of different cease fcease and rearrangement
fractions fk,j

re−enter.

Task rearrangement as a third task

The sorting methods considered before have the potential drawback that the number of

task-sorters is fixed and can not adjust itself according to sorting requirements. Thus, it

might be more advantageous for a system to use one unifying principle that incorporates

“task sorting” as a task in itself. However, it is not obvious how to assign a reasonable

stimulus value to the sorting task, as it lacks a demand value. As mentioned earlier, sorting

should ideally result in a spatial task separation. As such, given the sorting task Tj+1, we

suggest that the stimulus for this task on location Lk is given by

Sk
j+1 = Sj+1,max · (

m
min
j=1

Sk
j /

m
max
j=1

Sk
j ) (4.4)

where Sj+1,max is a parameter that denotes the maximal sorting stimulus. As a task’s

stimulus values Sk
j can be sensed under the threshold reinforcement model, it might also

be plausible for many real systems that the relation between stimuli can be estimated by

the individuals, at least when the number of tasks is not too large.

Clearly, for systems with m = 2 tasks the proposed stimulus measure will result in high

values if both normal (i.e. non-sorting) tasks have approximately equal stimuli at a single

location, and will result in low values if only one task has a high stimulus. Regarding
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the underlying sorting mechanism, we re-apply the methods proposed before. In contrast

to the morphological sorting approach, the standard threshold equation is now used to

determine whether an individual will work as a sorter

P (Xi = j) =
1

m
·

Sj
2

Sj
2 + θij

2
(4.5)

An individual’s sorting duration and idle times are also determined as for the other tasks.

Only the decision of which task is to be sorted is based on the sorting mechanisms outlined

earlier (i.e., deterministic / stigmergic sorting).

Care must be taken when models with and without sorting tasks are compared with

respect to their efficiency. This is due to the fact that the introduction of a sorting task

affects the stimulus values. All tasks are encountered with the same likelihood, and the

additional sorting task affects the maximal amount of work Wmax that can be done for

a task on average, and thus stimulus growth. Hence, the total stimulus values can not

be used as a direct comparison of efficiency between models with different amounts of

tasks. Figure 4.8 depicts the efficiency of a system that incorporates sorting as a third
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Figure 4.8.: Change of total stimulus and demands on the different locations in a system
with a sorting task, shown for 800 simulation steps after step 50000; demands
Dk

j are set to 0.5 at time step 50000.

task over 800 consecutive simulation steps after a change in demand. As can be seen, the

system can achieve a spatial distribution of tasks, which also leads to a decrease in the

total stimulus. Furthermore as depicted in Figure 4.8(b), work that is done for the sorting

task decreases after a spatial distribution is reached (due to the sorting stimuli being 0 in

such a situation). Such a system thus appears to be more flexible than the morphological

sorting presented above, since a colony can adapt not only to regular task demands but
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4. Influence of spatial task distribution on division of labour

also to the need for task rearrangement. This should also be evident from the average

stimulus values in dynamic situations (described in the last section).

Figure 4.9.: Total average stimulus values (left, center) and total average stimulus dif-
ferences (right) for different sorting methods under different cease fcease and

rearrangement fractions fk,j
re−enter.

In a final test, the system’s behaviour in a dynamic environment was tested. Figure 4.9

depicts the behaviour of the system with a sorting task as a function of different cease

fractions fcease and rearrangement fractions fk,j
re−enter. Even though the stimuli values can

not be directly compared, comparing the topology of the total stimulus values in Figure

4.9 and Figure 4.6 suggests that a system with sorting as a third task is able to cope with

stronger changes in external task demand (i.e., fcease, f
k,j
re−enter) than a system with a fixed

amount of sorting individuals. This is due to the fact that a system that implements “task

sorting”as a third task is not restricted to a fraction of sorters, but can dynamically adjust

its workforce to a given situation. However given that each task is encountered with the

same likelihood, even such a system has its sorting boundaries. These are encountered

when the amount of demand that needs to be rearranged per time step is greater then the

maximal amount of demand that can be rearranged per time step.

4.4. Conclusion

Threshold reinforcement models constitute a method for explaining and analysing division

of labour in social insect colonies. While these models are able to capture many aspects of

division of labour in social insects, they do not incorporate any form of space, which means

that each individual is able to sense the entire colony’s need for any task at any time. In

nature, however, space and the spatial separation of tasks and individuals is ubiquitous.

While such a spatial separation is often imposed on a colony by its environment (e.g.,
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foraging areas are not located in the hive), it has been shown that individuals themselves

establish and maintain spatial separations.

To study the effect of different spatial distributions on division of labour, we introduced

an extension of the threshold reinforcement model, the so-called “spatial threshold rein-

forcement model”, which incorporates spatial task distribution across multiple locations

into these models. In the context of this model it was shown that colonies in spatial envi-

ronments achieve their best performance in situations where tasks are completely spatially

separated (i.e., each task is exclusively present at one location). This corresponds to the

aforementioned empirical observations.

As social insects are always located in a dynamic environment, they will need to ac-

tively maintain spatial separation. We investigated different ways in which a colony can

actively achieve task sorting. These methods either operate in parallel to the threshold

reinforcement model, which could correspond to a caste system, or are incorporated into

the threshold response model as an additional task. As we have shown, both approaches

can successfully sort the tasks and can approximately preserve the sorted state in a dy-

namic environment with external changes in task demands. However, the proposed caste

system leads to a lack of flexibility as the colony can not adjust the amount of work that is

devoted to task sorting. In contrast, task-sorting methods that are based on the response

threshold hypothesis, in the sense that sorting itself is considered as a task, can adjust the

amount of work for sorting and are thus more flexible and efficient.

In conclusion, the sorting of tasks seen in social insects can be understood in terms of

the proposed spatial threshold reinforcement model as a spatial separation of tasks, which

leads to better performance in such model systems.
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Part II.

Honeybees as a model of

self-organization in biological systems
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A queen honeybee solicits food from one of her daughter worker bees (Apis mellifera).
Photo by Alexander Wild, reproduced with kind permission1.

Brad Crane: Are you endowing these bees with human motives? Like saving

their fellow bees from captivity, or seeking revenge on Mankind?

General Thalius Slater: I always credit my enemy, no matter what he may

be, with equal intelligence.

The Swarm, 1978

Honeybees are eusocial insects that are part of the Apidae family. Eusociality constitutes

the highest form of social organization in the animal kingdom, where reproduction is

preformed by a single individual (i.e., the queen), while the necessary work is performed

by a sterile caste of female workers (Wilson and Hölldobler, 2005).

A typical honeybee colony is composed of a single queen and up to several thousand

workers. Although a colony lacks a central control mechanism, it is nevertheless able to

solve complex tasks by means of collective behaviour. Such tasks include the division of

labour among the workers (Robinson, 1992), the maintenance of a constant temperature

in the hive (Jones et al., 2004), keeping track of changing foraging conditions (Beekman

and Ratnieks, 2000; Beekman et al., 2004; Visscher and Seeley, 1982) and select-

ing the best possible nest-site (Seeley and Buhrman, 2001).

Due to their decentralized collective behaviour, honeybees have become an important

model system in the field of swarm intelligence which was outlined in chapter 1. Several al-

1www.alexanderwild.com
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gorithms based on honeybees’ collective behaviour have been developed and applied to vari-

ous domains such as network routing (Wedde and Farooq, 2006), robotics (Srinivasan,

2011) and multi-agent systems and optimization (Karaboga and Akay, 2009). Chap-

ter 8 provides an overview of current bee-inspired optimization algorithms.

The aim of this chapter is twofold. First we will use simulation and modelling techniques

to study two closely related behaviours found in honeybees: nest-site selection and a

swarm’s migration behaviour thereafter. Then we will investigate to what extent the bees’

nest-site selection behaviour is applicable to optimization.

Chapter 5 provides an overview of the biological principles underlying the self-organizing

behaviours found in honeybees. Chapter 6 introduces a spatial nest-site selection model,

which will be used to study the impact of spatial nest-site topologies on the nest-site

selection process. In Chapter 7 the flight guidance of honeybees will be studied. Using a

guidance model, two different forms of guidance (active and passive) will be investigated

theoretically. Their characteristics will be compared to those found in real honeybee

swarms. In addition, this Chapter will investigate to what extent directional dissent can

be incorporated in a moving group under active guidance. Chapter 8 discusses the potential

of the nest-site selection process in the design of optimization algorithms and introduces

the Bee Nest-Site Selection Scheme (BNSSS) which can be used for optimization. Based

on this scheme the first nest-site inspired algorithm Bee-Nest will be introduced and its

performance will be tested in the domain of molecular docking.
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5. Biological background of self-organization

in honeybees

This chapter briefly outlines the biology of the European honeybee species Apis mellifera,

focusing on the self-organization that can be observed in honeybees and is of interest for

swarm intelligence and bio-inspired computation. In particular we will describe the pro-

cesses by which honeybees divide labour, forage for resources and choose a new nest-site.

The interested reader should refer to Seeley’s marvellous book on honeybees “Honeybee

democracy” (Seeley, 2010) or Winston’s “The Biology of the Honey Bee” (Winston,

1987) for more detailed information on the biology underlying these fascinating creatures.

5.1. Division of labour

The queen is normally the only individual that reproduces in the colony, whereas the

workers need to perform a number of tasks such as cleaning the nest, foraging for food and

feeding the brood. As a colony is constantly exposed to a dynamic environment, division

of labour among the workers needs to be flexible and adaptive to quickly adjust to the

current needs of a colony and thus guarantee its survival.

The response threshold concept, which has been discussed in the first part of this thesis

(see Chapters 2,3,4) is thought to be one of the key principles underlying the honeybees’

division of labour. Thus individuals will work for a task if they perceive it to be necessary

to be dealt with. Several factors have been identified which influence the receptiveness

of a worker-bee towards a certain task, such as its age (Seeley and Kolmes, 1991),

physiological state (Amdam and Omholt, 2003), social interaction (Beshers et al.,

2001) and genotype (Oldroyd and Fewell, 2007).

In many social insects an age-related division of labour can be observed, where young

individuals perform tasks within the nest and older individuals take over outdoor tasks

such as foraging (Calderone, 1998). This is also the case for honeybees, where young

individuals are predominantly engaged in brood care and other nest duties, while older

workers leave the hive to forage for resources.

From an evolutionary perspective, such an age-based division of labour is beneficial for

a colony. This is due to the fact that outdoor tasks are usually associated with higher
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mortality rates, thus with only older individuals of a colony engaging in such tasks the

average life expectancy of an individual will increase, increasing its average contribution

to the colony (Tofilski, 2002).

The reasons for this seemingly age-dependent division of labour in honeybees is still

debated. Seeley and Kolmes (1991) observed a cohort of bees within an observation

hive. They reported two possible age-related task transitions among this group regarding

hive duties (however only agreed on the validity of the first transition) and thus concluded

that “..age polyethism for hive duties in honey bees is a reality, not an illusion” (Seeley

and Kolmes, 1991, p.296). In contrast, Robinson et al. (1989) have shown that

division of labour can also be observed in single-cohort colonies (i.e., a colony comprised

of workers with the same age) and seems to be mediated by a juvenile hormone. Later

studies (Huang and Robinson, 1992) have linked the levels of juvenile hormone within

a hive to social interaction between workers, which thus also seems to impact division of

labour.

In addition the physiological state of an individual has also been found to play a crucial

role regarding its work (Janmaat and Winston, 2000; Woyciechowski and Moroń,

2009). Janmaat and Winston (2000) have shown that that bees that were deprived

of pollen during their larval period show a different foraging onset than those who were

not. In a recent study, Woyciechowski and Moroń (2009) linked the onset of foraging

with the life expectancy of individuals, as they showed that individuals with a lower

life expectancy (experimentally induced via CO2 or fungus) start to forage earlier than

individuals of the same age with a higher life expectancy.

During their maiden flight, queens mate with an average of 20 or so males (Palmer

and Oldroyd, 2000) and store a lifetime’s worth of sperm in a sperm storage device

called a spermatheca. This polyandry causes a genetic differentiation among the workers

within a colony – when workers that do not share the same father differ in their task

threshold, genetically based task specialization results. A range of task thresholds have

been found to be affected by an individual’s genotype such as undertaking, guarding and

foraging choice (Robinson, 1992). Imagine that workers sired by father A will be the first

to start removing dead nest-mates from the hive whenever they encounter them. Because

their action reduces the undertaking-stimulus for the whole colony, other individuals’ un-

dertaking threshold (e.g., those not sired by father A) will not be reached, thus leading

to a specialization of a specific patriline towards undertaking. If however individuals of

this patriline are removed from the nest, the undertaking stimulus will increase resulting

in individuals with higher undertaking thresholds to perform the task. Such genetic diver-

sity and the associated task-threshold differentiation among workers is thought to enable

a colony to respond resiliently to changes in the environment (Oldroyd and Fewell,

2007). Empirical work has shown that honeybee colonies comprising a genetically diverse
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work force indeed perform better (Jones et al., 2004; Mattila et al., 2008; Mattila

and Seeley, 2007).

As outlined earlier division of labour in honeybees (or rather in social insects in general)

depends on many different factors rather than on a single regulatory mechanism. This

adds robustness to division of labour and enables a colony to respond appropriately to a

wide range of situations which require different actions.

5.2. Foraging behaviour

There are several external resources a honeybee colony requires, such as pollen, nectar and

water (Winston, 1987). While pollen is used rather rapidly as it is fed to the developing

brood, nectar is stored (becoming honey) to allow the colony to survive periods when forage

is not available. While a colony is usually able to acquire its required water via nectar,

in times of increased heat or low nectar collection individuals additionally need to forage

for water to cool the hive or guarantee sufficient water levels for the colony (Kühnholz

and Seeley, 1997). The foraging choice of an individual depends on its patriline as well

as on experience (Scheiner et al., 2004). Sucrose responsiveness acts as a threshold,

whereby individuals that are very sensitive to sucrose will forage for water if necessary,

while individuals that are very insensitive to sucrose will only forage for pollen. As pointed

out above the polyandry within a bee colony leads to an inhomogeneous distribution of

initial sucrose sensitivity and thus a differentiation among foragers.

Gathering resources is crucial for a colony, as only colonies that contain sufficient honey

stores are able to survive the winter (Seeley and Visscher, 1985). This has led to the

the evolution of a unique recruitment mechanism that allows foragers to recruit nest-mates

to discovered food sources: the bees’ dance language (von Frisch, 1967). The use of the

dance language enables a colony to rapidly exploit and monopolise profitable food sources

while effectively ignoring those that are of mediocre quality (Beekman and Lew, 2008).

The honeybees’ dance encodes information about the direction and distance of the food

source found. Up to 7 dance followers (Tautz and Rohrseitz, 1998), known as potential

recruits, are able to extract this information upon which they will leave the colony and try

to locate the advertised food source. During a typical dance the dancer strides forward

vigorously shaking her body from side to side (Tautz et al., 1996). This is known as

the “waggle phase” of the dance. After the waggle phase the bee makes an abrupt turn

to the left or right, circling back to start the waggle phase again. This is known as the

“return phase”. At the end of the second waggle, the bee turns in the opposite direction so

that with every second circuit of the dance she will have traced the famous figure-of-eight

pattern of the waggle dance (von Frisch, 1967).
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The most information-rich phase of the dance is the waggle phase. During the waggle

phase the bee aligns her body so that the angle of deflection from vertical is similar to

the angle of the goal from the sun’s current azimuth. Distance information is encoded in

the duration of the waggle phase. Dances for nearby targets have short waggle phases,

whereas dances for distant targets have protracted waggle phases.

Honeybees modulate their waggle dance depending on the profitability of the food source

found – the more profitable the food source, the “livelier” and longer the dance (Seeley

et al., 2000). As a result, bees dancing for highly profitable sites attract more dance

followers than those that dance for mediocre sites. The dance language enables a honeybee

colony to track the constantly changing foraging conditions (Beekman and Ratnieks,

2000; Beekman et al., 2004; Visscher and Seeley, 1982).

While the dance communication has been shown to be crucial for a colony in situa-

tions where resources are few in number and of poor and variable quality (Dornhaus

et al., 2006; Grüter and Ratnieks, 2011), its importance in other situations is still

debated (Grüter and Farina, 2009). One main criticism regarding the status of the wag-

gle dance as the main mechanism underlying foraging is that it is very imprecise (Riley

et al., 2005). Foragers have been found to use private information (i.e., memories of

their previous foraging experience) to find and exploit resources (Beekman, 2005). Not

only are foragers able to remember previous resource locations, they have also been found

to memorize blooming times of plant species and exploit them accordingly (Ribbands,

1949)1. In addition, the waggle dance has been found to modulate other behaviours which

are not directly linked to the dance information but stimulate foraging. While dancing

foragers release chemical cues during their dance which stimulate the lift-off of idle individ-

uals (Thom et al., 2007), followers have been found to take up scent cues from dancers

which help them to find the advertised food patches or remind them of previously visited

patches (Srinivasan and Reinhard, 2009).

As for division of labour, many different mechanisms seem to influence and steer the

foraging behaviour of honeybees, enabling a wide range of appropriate foraging strategies

in a dynamical environment, which is crucial for the survival of a colony.

5.3. Nest-site selection

When a bee colony reaches a certain size, workers will start feeding several female larvae

a special diet of royal jelly (Winston, 1987). As a result these larvae develop into young

queens. Once the new queens are ready to emerge from their cells, the old queen and

1On a side-note, bumblebees have recently been found to readjust their foraging route when incorpo-
rating new feeding locations, and can thus solve the well-known NP-complete travelling salesperson
problem (Lihoreau et al., 2010)

62



5.3. Nest-site selection

about two thirds of the workers will leave the old colony and cluster temporarily on a tree

branch or a similar structure while one of her daughter queens inherits the old nest. The

cluster of bees containing the old queen is referred to as a reproductive swarm (Winston,

1987). The swarm is now homeless and needs to locate and evaluate potential nest sites

– such as hollows in trees or crevices in buildings – and choose the best among several

options.

A reproductive swarm of honeybees deciding on a new home is one of the most impressive

examples of decentralised decision-making in animals, as only about 5% of the bees in the

swarm take part in the decision-making process (Seeley et al., 1979). Several hundred

scout bees fly from the swarm cluster to search for tree cavities and other potential dwelling

places. The dozen or so scouts that find suitable cavities assess the quality of the site for

characteristics such as volume, height, aspect of the entrance, and entrance size (Seeley

and Morse, 1978). After returning to the swarm the scout performs a waggle dance if she

has rated the site of sufficient quality to be considered. Dance followers use the information

encoded in the dance to locate the advertised site, which they then independently evaluate

for quality.

The number of dance circuits in the first dance performed by a returning scout is pos-

itively correlated with the scout’s perception of the site’s quality. After completing her

dance, the scout leaves the swarm to re-evaluate the nest site before returning again and

dancing another time for the same site. Each time an individual scout dances for the

same nest site after having re-evaluated that site, she reduces the number of dance circuits

by a fixed number of waggle runs (approx 17 dance circuits according to Seeley and

Visscher 2008), regardless of the site’s quality (Seeley, 2003). This means that high

quality sites are advertised for longer than poor quality sites because the initial number

of circuits is higher. Thus, over time more individuals are recruited to high quality sites

compared to sites of lower quality.

While inspecting a potential nest site, a scout estimates the number of other scouts

that are also evaluating the site. If this number exceeds a threshold (“quorum”) the

scout returns to the swarm and signals that the quorum has been reached by “piping”, an

auditory signal produced by wing vibration (Seeley and Visscher, 2003). This piping

signal informs other swarm members to prepare for flight as a decision on the new site

has been made (Visscher and Seeley, 2007). Finally, when the swarm is prepared

to travel to its new nest site, scouts from the chosen nest site run excitedly through the

swarm, breaking up its structure and inducing other bees to take off. Although the process

of swarm guidance is not completely understood, it is thought that the scouts guide the

swarm by flying rapidly through the swarm in the direction of the nest site (Beekman

et al., 2006; Janson et al., 2005; Latty et al., 2009; Schultz et al., 2008). Upon

arrival at the new site, a new colony is established.
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Depending on the species, bees have different requirements for their nest sites. A.

mellifera is a cavity-nesting species. It has very specific nest-site requirements with respect

to the volume of the cavity and size of its entrance (see above). Open-nesting species,

such as the red dwarf honeybee A. florea have less specific requirements, as they only

require a shaded location, usually a twig or branch, from which to suspend their single

comb (Wongsiri et al., 1996).

Differences in nesting requirements between A. mellifera and A. florea have an impact

on both the frequency with which they move to a new home as well as the accuracy of the

decision-making process employed. The cavity nesting A. mellifera will, in general, only

select a new nest site during its reproductive cycle. Its selection process is very precise,

and a swarm will only lift off when a decision for a single nest site has been made. This

is reflected in the dances on the swarm prior to lift-off; approximately 30 minutes before

lift-off the dances generally converge on the chosen site (Seeley and Buhrman, 1999).

A swarm that is forced to lift off prior to such convergence will settle again and restart

the selection process (personal communication, Madeleine Beekman).

In contrast, A. florea does not migrate solely for reproductive purposes. Colonies of A.

florea also migrate to follow seasonal changes in food abundance (Wongsiri et al., 1996)

and in response to changes in nest cover (Seeley et al., 1982). Unlike the dances of A.

mellifera, the waggle dances performed by A. florea scouts are very imprecise (Beekman

et al., 2008). A. florea scouts do not usually leave the swarm between bouts of danc-

ing, hence they do not continually re-evaluate a nest site in the same way as A. mellifera

does (Makinson et al., 2011). This makes it very unlikely that A. florea uses location-

based quorum sensing to determine the time for lift-off. Although A. florea scouts will

ultimately stop dancing for a site, there is no evidence for site quality dependent dance

attrition in A. florea (Makinson et al., 2011). Further, it is not clear to what extent

(if at all) site quality influences the duration of the waggle dance in A. florea, while it has

a significant impact on A. mellifera’s dance behaviour. In A. florea often many different

locations are advertised at a given time during the nest-site selection process. It is still

unclear exactly what A. florea scouts advertise, but it seems that they indicate a gen-

eral directional preference within their dances rather than an exact location (Makinson

et al., 2011).
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6. How habitat shapes choice: Decentralized

decision making in spatial environments

Nest-site selection constitutes a decentralized decision-making process which can be ob-

served in many social insects (Visscher, 2007). During selection a social insect colony

faces the problem of finding a new home that suits its requirements. The underlying mech-

anism must provide a means by which different nest-sites can be evaluated and compared,

so that the colony is able to choose the best option given a set of prospective sites in a

dynamic environment. As a colony might compare different sites of similar quality, the

decision-making process needs to converge, in order to guarantee that a colony ends up

with a decision on a single site, rather than getting stuck between multiple solutions. An-

other problem the nest-site selection process has to tackle is the speed-accuracy trade off,

which means that although a colony needs to decide on the best nest-site available, it needs

to do this within a feasible amount of time, as it is usually vulnerable to the environment

during the selection process. The faster the selection process the higher the chance to end

up in a suboptimal solution. On the other hand, the longer the decision-making process

takes, the longer a colony will be exposed to the environment.

As pointed out in the previous chapter the nest-site selection process of honeybees

varies across honeybee species. While the European honeybee A. mellifera exhibits a very

precise decision-making process (a swarm will only lift-off when a decision on a nest-site

has been made), other species such as the Asian dwarf honeybee A. florea show a more

fuzzy selection process.

The main distinction between those two species in terms of housing are their nesting

requirements. As a cavity nesting species, A. mellifera requires a potential future nest-site

to fulfil several particular requirements, while A. florea literally only requires a shady tree

branch upon which to build its nest. The nesting requirements of a species will affect its

choice during the selection process. While A. mellifera has to decide between a handful

of nest-sites which are usually located far away from each other, potential nest-sites are

ubiquitous in the case of A. florea.

An aspect which has not yet been covered in theoretical investigations on honeybee nest-

site selection is to what extent the selection process has been shaped by the environment

it operates in. In other words, are differences in nest-site selection which can be observed
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between cavity and non-cavity nesting species a result of the species’ natural habitats?

To investigate this question we use an extended version of the individual-based nest-

site selection model for honeybees developed by Janson et al. (2007). While Janson

et al.’s model is purely probabilistic (distances to nest-sites are encoded in different

probabilities of finding them), we embedded the nest-site selection process in a spatial

environment. Accordingly, the bees in the model were equipped with a scouting and flying

behaviour that enabled them to sample the environment and find suitable nest locations

that would be considered during decision making.

6.1. Related work: Models of honeybee nest-site selection

Several models have been used to investigate various aspects of the nest-site selection

process in honeybees. Britton et al. (2002) modelled the information spread regarding

potential nest-sites among bees using a differential equation model. In particular they

compared what effect the possibility of direct and indirect switching between nest-sites

has on the decision-making process. Direct switching implies that bees that abandon a

given nest-site can directly switch to an alternative without considering the abandoned

nest-site again. In the case of indirect switching bees will fall into a state where all nest

options are considered. Britton et al. were able to show that under the assumption of

direct switching bees are always able to choose the best option, whereas a colony might

settle on a suboptimal choice assuming indirect switching if the better option is discovered

too late in the decision-making process. Britton et al. were also able to show that

the nest-site selection process does not require a comparison between nest-sites on an

individual level, but that the information spread and thus recruitment within a colony

will lead to decision at the colony level.

Myerscough (2003) studied the impact of recruitment dances on the selection process.

Using a Leslie matrix model for population growth, she was able to show that dance

attrition (i.e., the decrease in waggle dances for a site over consecutive visits) and the

associated decline in recruitment over time for a nest-site regardless of its quality play a

crucial role in the selection process. This is due to the fact that the quality of sites does

not change over consecutive visits, in contrast to foraging where an advertised resource

diminishes due to the bees’ exploitation over time. Dance attrition provides such a decrease

and thus allows the incorporation of newly found nest-sites into the selection process.

Additionally, it prevents a swarm from becoming deadlocked in a decision between two

nest-sites of equal quality.

Passino and Seeley (2006) developed an individual-based model to study the speed

accuracy trade-off in honeybees’ nest-site selection. Given a landscape of nest-sites, where

each nest-site had the same likelihood at being discovered, Passino and Seeley investi-
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gated three aspects which govern the speed accuracy trade-off during nest-site selection:

quorum size, dance attrition and recruitment rate. Quorum size determines how many bees

are necessary for a decision to be made. Dance attrition controls how long individuals will

promote individual nest-sites and thus how much time a site has to enter the selection

process (by being successfully promoted) before it is forgotten, and the recruitment rate

steers the exploitation-exploration ratio of a colony (i.e., how many individuals scout for

new nest-sites and how many individuals evaluate known nest-sites). Using a Monte Carlo

simulation Passino and Seeley explored the parameter-space of these three aspects.

Their findings suggest that evolution tuned quorum size and dance attrition in bees in

such a way that speed and accuracy are balanced. In addition they were able to show

that an adaptive recruitment rate (i.e., the probability to start scouting for new nest-sites

negatively correlates with the number of dances on a swarm) which can be observed dur-

ing nest-site selection helps to foster a decision in situations where good nest-sites have

been found (thus many dances occur on the swarm) and also prolongs the exploration in

situations of poor choice.

Perdriau and Myerscough (2007) developed a density-dependent Markov process

model to study the impact of noise on nest-site selection process. Noise can enter the

selection process via random events on various levels. One example are aberrations in

individuals’ quality assessments, which can lead to nest-site promotion behaviour that

does not correspond to the actual quality of the site. Another factor that can introduce

noise in the selection process is the delayed discovery of sites, as it can steer a swarm out

of a nearly made decision or prolong the whole process. Perdriau and Myerscough’s

results suggest that event-induced noise does indeed influence a swarm’s ability to make

the right decision and that the noise level increases with increasing quality of the sites

present in the selection process.

Janson et al. (2007) used an individual-based nest-site selection model to study the

impact of scouting behaviour and adaptive recruitment on the nest-site selection process.

They were able to show that a recruitment strategy like that which is found in bees’

foraging behaviour leads to a good balance between exploitation and exploration. Similar

to Passino and Seeley (2006), the probability of an idle bee to start scouting increases

with the length of time it is unable to locate a dance on the swarm to follow. In contrast

to previous models, Janson et al. incorporated the distance of a nest-site to the swarm

in the probability of finding the site. This allowed them to investigate to what extent

different search strategies and the associated difference in discovery time impact the nest-

site selection process. Three search strategies were investigated: a uniform search strategy

(each site is discovered with equal likelihood regardless of its distance to the swarm), a

distance search strategy (the probability to discover a nest-site decreases with its distance

to the swarm) and distance-squared search strategy (the probability of finding a nest-site is
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inversely proportional to the square of the distance to the swarm, which takes into account

that the search space increases quadratically the further away you move from the swarm).

Their findings suggest that the quality of a scouting strategy depends on the travelling

costs. Under a uniform search strategy a colony will always choose the better nest-site

and disregard the distance to the nest-site. However, given two nest-sites of the same

quality and different distances, the closer nest-site should be chosen as it minimizes the

distance the whole swarm has to travel and thus decreases the time a swarm is exposed to

the environment. Using the distance or distance-squared search strategy a swarm is able

to discriminate between those two sites and will choose the site which is closer. Janson

et al. also tested a scenario with nest-sites of different qualities and different distances to

the swarm. In a situation where the better nest-site is further away from the swarm than a

suboptimal choice, the bees’ should select for the site which is further away, as it imposes

more costs to move into a lower quality site than it does to move further. While bees show

this behaviour using the uniform and distance search strategies, their ability to choose the

superior site decreases with increasing distance under the distance squared-search strategy.

Marshall et al. (2009) set the nest-site selection behaviour of honeybees and ants in

analogy with the decision-making found in primate brains. Marshall et al. argued that

like in the brain, where a neuron fires once an activation threshold is reached, social insects

will recruit individuals for different choices in different opposing“choice populations”, with

a decision being made once one of the populations reaches a certain size and thus quorum

is reached. Using Britton et al. (2002)’s nest-site selection model they investigated

to which extent the honeybee nest-site selection behaviour approximates a statistically

optimal decision-making process, which can be observed in ‘diffusion models’ of primate

decision making.

Recently Nevai et al. (2010) proposed two compartment models to study the stability

of choice during the nest-site selection process. Their first model simulates a swarm’s

assessment process of a single site, which constitutes the decision of whether a site is of

sufficient quality to enter the selection process. Two equilibrium states of the assessment

process model are investigated: the disinterested equilibrium, where bees will disregard

a site; and interested equilibrium, where bees will show interest in a given site. The

stability of these equilibria is investigated regarding the basic and absolute recruitment

numbers, which denote the sensitivity of the swarm towards individual recruitment dances.

Additionally, Nevai et al. estimated a critical site quality threshold. If the quality of

a site exceeds the threshold it enter the selection process (by being promoted), otherwise

it won’t. Using their second model Nevai et al. studied a swarm’s discrimination

process between two nest-sites which differ in both quality and the time at which they are

discovered by the swarm, and the disinterested and interested equilibria for the decision-

making process were estimated regarding the basic recruitment numbers.
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6.2. Model for nest-site selection in a spatial environment

The individual-based model which was used here to simulate the nest-site selection process

of A. mellifera under different spatial setups is an extended and revised version of Janson

et al.’s nest-site selection model (Janson et al., 2007). The model does not cover the

behaviour of the reproductive swarm as a whole, but simulates bees that are involved

in the selection process, which are estimated to be 2 − 5% of the swarm (Seeley and

Buhrman, 1999). In the following we will introduce the model and outline the differences

to Janson et al.’s model.

The model operates in discrete time-steps representing 1 second of real time. Note that

in the original model (Janson et al., 2007), a time-step size of 6 seconds was used. As we

are interested in modelling nest-site selection within a spatial environment, which involves

simulating the flight and scouting behaviour of bees, such a temporal resolution would

be too coarse. Scouting honeybees can travel with a maximum speed of approximately 5

meters per second (Beekman et al., 2006), meaning that they can travel a maximum

distance of 30 meters in a time-step of 6 seconds. In a spatial simulation this would make

it very likely for a bee to miss a potential nest-site by simply flying over it, thus a smaller

timescale had to be used.

During each simulation-step all virtual bees are invoked in random order. Each bee will

act according its current behavioural state. In nature the duration of behaviours such as

scouting, missing and nest-site assessment can vary. To account for this, each of these

behavioural states E are associated with a mean duration time TE . The exact duration

of the respective behaviour is determined by T (E) = λ · TE, where λ = µ/10 is a scalar

factor, with µ being drawn from a chi-square distribution χ2(10) 1. In the following the

mean duration times for time-varying behavioural states E will be stated.

6.3. Behavioural states

The following section outlines the behavioural states used in the nest-site selection model.

Each bee can be in one of eight possible states. The states are briefly outlined in Table 6.1,

a state diagram which depicts the possible transitions between the states is provided in

Figure 6.1.

Resting

Not all of the bees that are involved in the nest-site selection process are active participants

all the time. Several empirical studies (Beekman et al., 2007; Camazine et al., 1999)

1Note that this leads to an expected value of 1 for λ
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Figure 6.1.: State diagram showing the individual behaviours underlying the honeybee
nest-site selection process. Details of the states and state transitions are out-
lined in Section 6.3.
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State Description

REST The bee is resting on the swarm and currently not involved in
the selection process

SEARCH The bee is on the swarm and searching for a dance to follow
SCOUT The bee searches the surroundings for potential nest-sites
ASSESS The bee assesses the quality of a potential nest-site
DANCE The bee advertises a nest-site on the swarm by dancing
FOLLOW The bee is on the swarm and follows a dance it found during SEARCH
TRAVEL The bee flies towards a destination (e.g., nest-site, swarm location)
MISS The bee misread the dance and searches around the

wrong location for the advertised nest-site

Table 6.1.: Behavioural states of the nest-site selection model.

have noted that bees tend to drop in and out of the selection process, by switching from

their resting state into searching for a dance and vice versa. In accordance with these

studies, the probability that a resting bee will start to search for a dance or start resting

was set to Prest = 0.002. This leads to an expected switch interval of 500 seconds between

resting and searching, if potential switches from SEARCH to other behavioural states

(SCOUT, FOLLOW) are disregarded.

Searching

A bee that is in the behavioural state SEARCH will try to locate a dance for a nest-site on

the swarm. The probability that it will be able to locate a dance increases with the number

of dances D which are currently being performed on the swarm. In accordance with Tautz

and Rohrseitz (1998) the probability to find a dance was set to Pfind = 0.005 ·D. If the

bee is able to find a dance it will randomly choose a dance from those that are currently

being performed on the dance floor. A bee will only follow the chosen dance if it has

less than 7 followers. The probability that it will start to follow a dance is given by

Pfollow = 0.2min{2,f}, where f denotes the number of bees already following the dance. If

a bee chooses not to follow the dance it will remain in the SEARCH state.

The longer a bee is unable to locate and follow a dance, the more likely it gets that

the bee will start to scout. The probability that a searching bee will switch to scouting

depends on the time t it has been searching for a dance (i.e., has been in state SEARCH)

and is given by

Pscout(t) =
t2

t2 + θ2
(6.1)
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Figure 6.2.: Evolution of the cumulative (PΠ
scout(t)) and per time-step (Pscout(t)) probabil-

ity that a bee in the state SEARCH will start scouting.

where t denotes the number of time steps it has been searching for a dance and θ = 4000

denotes a threshold. The reader should note that Pscout(t) corresponds to a response

function which is used in response threshold models, which were discussed earlier (see

Chapter 2). As Pscout(t) is applied in the case of a searching bee at each time-step, the

cumulative probability that a bee will start to scout after t seconds of unsuccessful dance

searching is given by:

PΠ
scout(t) = 1−

t
∏

i=0

(1− Pscout(i)) (6.2)

Figure 6.2 depicts the evolution of Pscout(t) and PΠ
scout(t) over 20 minutes. As can be seen,

a majority of bees will have left the swarm after around 10 minutes of searching for a

dance to proactively look for a suitable nest-site themselves.

The combination of Pfind, Pfollow and Pscout modulates the exploration/exploitation

rate of a swarm. If very few potential nest-sites have been found and thus the number of

dancing bees is low, bees searching for a dance are likely to become scouts. When many

sites have been found and therefore dances are abundant, a searching bee is likely to find

a dance to follow and will become a recruit instead of a scout.
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Scouting

As Lindauer (1955) observed, bees usually scout the area surrounding the swarm for

about 20 minutes before returning. Accordingly, a bee will scout for TSCOUT = 1200 sim-

ulation steps. While scouting the virtual bees move through a 2-dimensional environment

in search of potential nest-sites. This is a major difference to Janson et al.’s model

where scouting was modelled stochastically, and also affects the behaviour of the model.

In the original model a scouting bee will always scout for TSCOUT iterations before either

finding a nest-site or returning to the swarm, meaning that it will take at least TSCOUT

iterations to find a nest-site. This is not the case here; bees will sample the 2-dimensional

environment and if they find a nest-site they will immediately stop scouting.

In order to guarantee that a scout that is searching the 2-dimensional environment

returns to the swarm after TSCOUT simulation steps, the scouting behaviour was split into

two sub-behaviours

1. scouting: a bee will scout as long as it is able to be back at the swarm after Tscout

time steps.

2. returning: if the remaining scouting time is smaller or equal to the time needed to

return to the swarm, a scout returns to the swarm.

Spotting a potential nest-site In nature a bee can spot a target if the target subtends

the bee’s visual angle αmin (see Figure 6.3 for a sketch) which can range between five

and fifteen degrees (Giurfa et al., 1996; Kugler, 1933). The diameter of nest boxes

normally used in nest-site selection experiments is around 40cm. Here we assume a minimal

angle of αmin = 8 degrees, which means that a scout can spot a nest-site up to a distance

of approximately 280cm. After a successful discovery, a scout will immediately start to

assess the site and thus change its state.

Scouting strategy: The exact way scouts search the environment is still unknown. Re-

cent studies (Reynolds et al., 2007, 2009) suggest that bees exhibit a Lévy flight/walk

when searching for resources and misplaced food sources. The Lévy walk is a random

walk which is characterized by the fact that the length of the movement segments without

directional alternation is distributed according to a power law distribution. Besides bees,

several other animals such as albatrosses (Viswanathan et al., 1996) and deer (Focardi

et al., 2009) have been suggested to exhibit Lévy walk patterns when searching for re-

sources. Whether or not animals really exhibit Lévy flights is still debated (Benhamou,

2007; Reynolds, 2008). One of the main arguments against the Lévy flight is that for

an animal to really exhibit this search strategy the scale-free distribution of the lengths

of its movement paths has to be an intrinsic property of the animal. If alternations in
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Object not detected

Object detected

Figure 6.3.: Sketch of a bee’s ability to spot a target. A bee can detect an object if the
object subtends the bee’s visual angle αmin.

the travel direction are caused by the environment (e.g., visual, chemical cues), then what

might appear to be a Lévy walk is in fact none, as it is caused by the environment, and a

different environment might cause different (non-Lévy) travel paths of the animals.

In the case of honeybees trying to relocate food sources (Reynolds et al., 2007, 2009),

it is unclear if the Lévy flight trajectories observed in experiments are an intrinsic feature

of the bees’ search movement or caused by external factors such as environmental cues or

the bees’ memory. In the experiments, the bees knew what they were searching for (i.e., a

foodsource they had visited before which was no longer where they expected). As pointed

out in Chapter 5 honeybees are able to incorporate lots of private information in their

foraging routine, which could thus shape their flight trajectory when trying to relocate

known resources.

When searching for a new nest-site, scouting bees are not able to fall back on private

information, they need to locate potential nest-sites that are unknown to them. To sim-

ulate their scouting strategy an intermittent search strategy was used in this model. An

intermittent search consists of two phases, a phase of fast motion during which individ-

uals traverse the environment and a phase of slow motion which allows the detection of

resources. Intermittent search strategies have been shown to be particularly useful when
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searching for hidden unknown targets (Bénichou et al., 2005) and are thought to be

widespread in many animals (Bell, 1990; Kramer and McLaughlin, 2001).

Janson et al. (2007) suggested that an intermittent search strategy could underlie the

scouting behaviour of honeybees during nest-site selection, where scouts will fly towards

an area which they then search thoroughly. In our model an intermittent search strategy

is realized as follows: scouts choose a random location within a search area that is defined

by the range of locations that are reachable within one third of its available scouting time

Tscout. During the travel-phase a scout will fly to the chosen location (flight behaviour is

explained in the next section). After reaching the chosen location a scout will perform a

correlated random walk (CRW) to search for a potential nest-site (Bartumeus et al.,

2005; Zollner and Lima, 1999). Various species such as ants, beetles and butterflies

have been shown to perform CRWs (Crist et al., 1992). As a result, CRW has been

used to reproduce movement patterns from various experimental data (e.g., Bergman

et al. 2000; Crone and Schultz 2008). In contrast to a pure random walk (i.e.,

Brownian motion), CRW incorporates directional persistence in movement patterns. Given

a position and a direction, directional persistence can be achieved by limiting the angular

displacement of the direction between successive steps.

For the scouts’ movement a CRW with a fixed movement length of 1 meter per step is

used. Angular displacement is achieved by adding directional noise which is drawn from a

wrapped Cauchy distribution (Baschelet, 1981). Wrapped Cauchy distributions contain

a shape parameter 0 ≤ ρ ≤ 1 which controls directional persistence. If ρ = 0 the resulting

walk is uncorrelated. In contrast ρ = 1 results in total correlation, which means that no

noise is added to the direction. For the simulation runs a correlation parameter value

ρ = 0.5 is used, resulting in intermediately correlated movement steps. Figure 6.4 depicts

a sample flight path of a scout.

Flying towards a destination

A scout flying towards a destination travels with a speed of 5 meters per second. If the

distance to the destination is smaller than 5 meters, the bee is placed on the destination,

otherwise it will travel 5 meters in the direction of the destination. In order to prevent bees

from flying in straight lines, angular noise was added from a uniform random distribution

ηfly (−22.5◦ ≤ η ≤ 22.5◦). Because a bee aligns its flying direction each time step, it is

guaranteed to arrive at the destination.

Site assessment

Should a scout successfully locate a potential nest-site it will assess it. Nest-site assessment

in real bees usually lasts for about 10 minutes (Lindauer, 1955) which corresponds to
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Figure 6.4.: Sample scout flight-path of a scout using an intermittent search strategy.

TASSESS = 600 iterations of the simulation. Each nest-site S has a certain quality QS ,

which in the simulation corresponds to a natural number in the range [0−100]. The quality

of a nest-site S is perceived by a bee during the assessment. Quality is always perceived

with some noise, thus Q(S) = QS + δ, with δ drawn from a normal distribution N(0, σ2)

with a standard deviation of σ = 10. If the perceived quality Q(S) exceeds a bee’s quality

threshold Φ, the bee dances for the nest-site when it returns home. Otherwise it switches

to searching after it returns home. As in the original model, the threshold Φ is set to

50 for all individuals in the simulation. After a bee has completed the assessment of a

nest-site it flies back to the swarm.

Dancing

If a bee discovers a potential nest-site S (i.e., Q(S) > Φ), it dances for it after returning

to the swarm. The number of waggle runs performed during a dance depends on two

factors, the perceived quality of the nest-site Q(S) and the number of consecutive visits to

the nest-site. Based on empirical data (Seeley, 2003), the simulated bees perform Q(S)

waggle runs after their first visit to the nest-site and Q(S)− 16(k − 1) after returning for
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the kth time. If Q(S) − 16(k − 1) ≤ 0 it will stop dancing for this site and switch to

searching.

The distance to and direction of the potential nest-site are incorporated into the dance

by assuming that a waggle phase lasts 2.4 seconds per kilometre and 1.5 seconds are added

for the return phase (Gardner et al., 2008). Thus a single dance for a potential nest-site

located 1000 meters away from the swarm takes 3.9 seconds.

Following

A searching bee that has found a dance and was able to follow it, follows the dance until

the dancer ceases dancing. If the bee had previously visited the advertised site, it will find

that site again. The number of waggle runs a bee is able to follow determines if the follower

will be able to find the advertised site. Mautz (1971) monitored the success rate of bees

to find a given resource regarding the followed waggle dances. Janson et al. (2007) used

these rates to estimate the probability of a bee correctly locating the advertised nest-site

after following w waggle runs

PfindSite(w) =
s(w)

1.5 · u(w) + s(w)

Here u(w) = 1 − 1/
√

(w + 1) represents Mautz’s distribution of bees that followed w

dances-cycles and were not able to locate the resource and s(w) = w2/(w2 + θ), with

θ = 60, represents the distribution of bees that were able to locate a given resource after

following w waggle runs.

Successfully recruited to nest-site

If a bee has been successfully recruited for a potential nest-site and correctly read the dance

it followed, it flies towards the proposed nest-site. After reaching the nest-site it starts to

assess it for TASSESS simulation steps. If the assessment is successful (i.e., Q(S) > Φ),

the bee returns to the swarm and starts to dance for the nest-site. Otherwise, it returns

to the swarm to search for new dances.

Missing the advertised nest-site

The reason why bees miss a nest-site after following a waggle dance is due to impreci-

sion in the dance which yields variance in the transmitted directionality of the promoted

site (Weidenmüller and Seeley, 1999). In our model this is implemented by adding

noise drawn from a uniform distribution (maximum of αmiss = [−5◦ − 5◦]) to the direc-

tion of the advertised nest-site. After the dance has ceased, a wrongly informed bee will

fly towards this wrong nest-site location. After reaching the wrong location and finding
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no potential site, the bee will start to search the surroundings for TMISS = 400 simulation

steps, using a CRW as in the search-phase during scouting. If a bee is able to find a

nest-site (either the one it tried to locate initially or a different one) it will continue to

assess the found nest-site. Otherwise it will return back to the swarm.

6.4. Experiments

6.4.1. Experimental setup

Unless stated otherwise we used the parameter values mentioned in the last section. We

present the results as average values obtained from 100 independent runs. The number

of individuals used in the experiments was set to n = 500, which corresponds to approx-

imately the number of bees involved in nest-site selection in real honeybees. Simulations

were run for over 57600 simulation steps. With each simulation step corresponding to one

second in real time this corresponds to a simulation duration of 16 hours.

6.4.2. Nest-site discovery in sparse spatial environments

In the first experiment a swarm’s ability to locate and decide upon nest-sites in a sparse

environment under an intermittent search strategy is investigated. In nature, nest-site

availability depends on the environment as well as on the requirements of the species. As

pointed out before A. mellifera has very strict nest-site requirements and thus usually has

only a few options which may be highly distributed in the environment. This can lead

to a dispersal of honeybee colonies up to several kilometres (Camazine et al., 1999;

Schneider, 1995). While colony dispersal is the norm in migration of A. mellifera, it

should be noted that a few cases of colony aggregation have been reported (Baum et al.,

2005; Oldroyd et al., 1995), which are attributed to nest-site richness in the respective

environments as well as other factors.

To test a swarm’s discovery and selection potential in a sparse environment, the swarm

was placed in the center of a square area of size 100 km2 in which 99 nest-sites were

randomly distributed (see Figure 6.5 for a setup sketch). Each nest-site had to be at least

150 metres away from any other nest-site of the swarms location. An equal amount of

good (Q(S) = 70), mediocre (Q(S) = 50) and bad (Q(S) = 45) quality nest-sites were

distributed in the environment, leading to a total of 33 nest-sites of each quality. As nest-

sites are uniformly distributed in the environment, the described setup leads to an average

of 1 nest-site per km2.

During each of the 100 simulation runs the colony was able to detect at least one nest-site

of good quality (Q(S) = 70) and the decision-making process always converged towards a

good quality nest-site, as indicated by a majority of individuals dancing and assessing the
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Figure 6.5.: Sparse nest-site distribution in an environment with an area of 100 km2. S
denotes the location of the swarm, and each o corresponds to a potential
nest-site.

nest-site while other found alternatives were abandoned. Figure 6.6(a) depicts a histogram

of the total number of nest-sites which were discovered during single simulation runs. As

can be seen a colony was able to evaluate between 2 and a maximum of 10 nest-sites

during the selection process. Figure 6.6(b) displays the fight distances from the swarm’s

position to the found nest-sites which ranged from several hundred meters up to around

7 kilometres.

As pointed out above, a colony was able to locate and select a nest-site of good quality

during each simulation run, while the number of nest-sites that were discovered in total

per simulation run altered. Figure 6.7(a) depicts the total number of nest-sites a swarm

discovered during a simulation run regarding the discovery rank of the first nest-site of

good quality which was discovered (i.e., a discovery rank of i indicates that the nest-site

was the ith site discovered by the swarm).
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Figure 6.7.: Correlation of total number of nest-sites discovered in a single simulation run
and discovery rank of first high quality nest-site.

As can be seen the total number of sites discovered during a simulation run correlates

with the discovery rank of the first good quality nest-site that was found. This is due to

the fact that the discovery of a site with good quality is accompanied by a quick built-up

of strong recruitment towards this site, which leads to an increased number of dances and

thus a decline in scouting. In cases where only sites of medium or bad quality are found,
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Figure 6.8.: Sketch of experimental setup to test the influence of local choice on conver-
gence towards a single solution.

recruitment is retained and thus many individuals will decide to scout, which eventually

leads to discovery of a good site.

The correlation between sites discovered in total and rank of the first good site discovered

is a good depiction of the ability of the nest-site selection process to modulate between

speed and accuracy during the selection process given its current set of choices. This

corroborates previous findings on the adaptivity of the decision-making speed during nest-

site selection in social insects (Passino and Seeley, 2006; Sumpter and Pratt, 2009).

Additionally these results suggest that an intermittent search strategy as used in our

model is indeed a valid search strategy in sparse spatial environments, as it enables a

swarm to find a sufficient amount of nest-sites in a wide spatial range. Again this agrees

with observations from experimental data on nest-site selection in honeybees (Lindauer,

1955).

6.4.3. Influence of increased local choice on site convergence

As we have seen in the last section the nest-site selection process is able to locate and select

good nest choices in sparse environments, a scenario a migrating A. mellifera swarm is

likely to face. As pointed out earlier other bee species such as A. florea face an abundant

set of choices during migration and also exhibit a selection process that differs from the one

found in A. mellifera in terms of dance-precision and consensus before lift off (Beekman

et al., 2008; Makinson et al., 2011).

While it was assumed in the previous model (Janson et al., 2007) that a bee would

unsuccessfully scout for around 7 minutes before returning to the swarm, here the bee

will actually search its surrounding for the missed site to assess it. Search behaviour

after missing an advertised site has been reported for relocated food sources (Reynolds

et al., 2009) and is thus likely to occur when missing a nest-site. In such a case the

bee has a chance to discover the nest-site it missed as well as other sites that are in

its vicinity. If the bee discovers a nest-site it was not looking for, this can impact the

selection process. “Non-intended scouting” can lead to the discovery of nest-sites and can
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thus increase inter-nest-site competition and slow down the convergence process towards

a nest-site.

To examine to what extent the selection process has been shaped by the environment,

thus leading to a very precise selection process in A. mellifera and a rather fuzzy one in A.

florea, we tested the influence of close local choice on the selection process. A swarm was

situated in an environment containing two nest-sites. Both nest-sites were equidistant to

the swarm (i.e., 250 metres) and had a given angular separation α between them regarding

the swarm’s position (see Figure 6.8 for a sketch of the experimental setup). At the start

of the simulation a random bee started to dance for one of the nest options, while the other

site remained undiscovered and acted as a decoy site, which could either be discovered via

regular scouting or during search after missing the discovered site.

Three angular separations of α ∈ {5, 8, 15} degrees were tested under low, medium and

good nest-site quality conditions Q(S) ∈ {45, 50, 70}. Figure 6.9 depicts the number of

bees at the discovered nest-site as well as at the decoy nest-site for the resulting 9 scenarios.

Both quality and angular separation affect the incorporation of the decoy nest-site into

the selection process. Given a small angular separation (α = 5◦) between both sites, a bee

which misses the advertised nest-site is very likely to discover the decoy nest-site during the

search, following a failure to locate the advertised nest-site. As can be seen in Figures 6.9

a, b and c, given a small angular separation (α = 5◦) the build up of bees at the decoy

nest-site is very strong. In the case of the nest-sites being of good or mediocre quality

(Q(S) ∈ {50, 70}) the decoy nest-site is never discovered via regular scouting but always as

a result of bees missing the initially advertised nest-site. Given poor site conditions bees

sometimes discover the decoy nest-site via conventional scouting. A decrease in quality

further increases the rate of which bees will miss an advertised site as it leads to a reduction

of dance circuits during the waggle dance resulting in an increased chance of error and

thus missing the advertised site. It should be pointed out that site-discovery via missing

happens in both directions (i.e, bees that were initially recruited for the decoy nest-site

will end up at the original site and vice versa). This makes a convergence towards one

nest-site nearly impossible in situations of small angular separation as sites are never able

to leave the competition as they are constantly rediscovered.

Increased angular separation between the two nest-sites decreases a bee’s probability of

ending up at the decoy nest-site when missing the advertised site. While such a tendency

is still observable in a situation of of an angular separation of α = 8◦ (Figures 6.9 d, e

and f ) it is nearly gone in the case of α = 15◦ (Figures 6.9 g, h and i). Given a large

angular separation between nest-sites (α = 15◦), missing behaviour will only result in the

detection of the decoy nest-site when the quality of the initially found site is mediocre or

bad (Q(S) ∈ {45, 50}). However alternative site discovery as a result of missing happens
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very seldom and thus has no visible effect on the swarm’s convergence in choice, in contrast

to situations of smaller angular separation.

These results indicate that the nest-site selection process is indeed sensitive to the spatial

distribution of nest-sites in the environment, even when the angular separation α between

two sites is greater than the angular error αmiss. Given an environment where potential

sites are too densely clustered, a selection process that is geared towards selection of a

single nest-site is likely to run into difficulties, which can either delay a swarm’s convergence

towards a decision or cause a deadlock between decisions. A decrease in site quality further

increases the obstructive nature of environments with densely clustered nesting options,

as it leads to an increase in bees missing advertised sites and thus discovering close-by

alternatives.

6.4.4. Influence of increased local choice on decision making

The previous experiment has shown that nest-sites which are in the close vicinity of dis-

covered nest-sites can influence a swarm’s convergence in decision, as they are likely to be

discovered when bees miss a given nest-site and thus enter the selection process causing

an ongoing flux of bees between the nest-sites and thus delaying, or in cases of very close

and bad quality, disabling the convergence towards a single site. In this experiment we

wanted to test the influence of spatial proximity when the swarm has to decide between

two nest-sites.

To test a swarm’s decision-making ability in the case of increased local choice, a swarm

swarm was situated in an environment containing 4 nest-sites. All nest-sites were equidis-

tant to the swarm (i.e., 250 metres). In pairs of two, the nest-sites were located in two

separate regions on opposing sides of the swarm (see Figure 6.10 for a sketch of the exper-

imental setup). At the start of the simulation the swarm discovered one nest-site in each

region, while other nest-site in the region functioned as a decoy site.

A nest-site pair in region p had a given angular separation αp regarding the swarm’s

location. While the angular separation between the nest-site pair in region 2 was held

constant at a level which would not impact the convergence towards the site discovered

initially (i.e., α2 = 15◦), the angular separation between the nest-site pair in region 1 was

altered (i.e., α1 ∈ {5◦, 8◦, 15◦}). The three resulting spatial setups were tested under three

different quality conditions (Q(S) ∈ {45, 50, 70} corresponding to low, medium, and good

quality), with each potential nest-site exhibiting the same quality.

Figure 6.11 depicts boxplots of the number of bees located at each nest-site during the

last time-step of the simulation (i.e., after 57600 simulation steps). As can be seen in

Figures 6.11 a,b and c, regions that contain nest-sites with very close proximity to each

other (i.e., α1 = 5◦) will win the swarm’s attention, leading to bees on either of the sites

83



6. How habitat shapes choice: Decentralized decision making in spatial environments

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Hour

N
um

be
r 

of
 b

ee
s 

at
 s

ite

Discovered Nest
Decoy Nest

(a) Separation α = 5◦

Low Quality (Q(S) = 45)

0 5 10 15
0

10
0

20
0

30
0

40
0

50
0

Hour

N
um

be
r 

of
 b

ee
s 

at
 s

ite

Discovered Nest
Decoy Nest

(b) Separation α = 5◦

Medium Quality (Q(S) = 50)

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Hour

N
um

be
r 

of
 b

ee
s 

at
 s

ite

Discovered Nest
Decoy Nest

(c) Separation α = 5◦

High Quality (Q(S) = 70)

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Hour

N
um

be
r 

of
 b

ee
s 

at
 s

ite

Discovered Nest
Decoy Nest

(d) Separation α = 8◦

Low Quality (Q(S) = 45)

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Hour

N
um

be
r 

of
 b

ee
s 

at
 s

ite

Discovered Nest
Decoy Nest

(e) Separation α = 8◦

Medium Quality (Q(S) = 50)

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Hour

N
um

be
r 

of
 b

ee
s 

at
 s

ite

Discovered Nest
Decoy Nest

(f) Separation α = 8◦
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(h) Separation α = 15◦
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Figure 6.9.: Average number of bees assessing a nest-site over 57600 simulation steps (i.e.,
16 hours) for different degrees of angular separation α ∈ {5, 8, 15} and site
qualities Q(S) ∈ {45, 50, 70}.
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Decoy Site
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Swarm
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Figure 6.10.: Sketch of experimental setup to test the influence of local choice on decision-
making.

at the end of a simulation. As in the previous experiment, the swarm’s ability to neglect

the decoy site and converge towards a decision increases with the quality of the nest-

sites. However, even in a situation of good quality (Figure 6.11 c), where the influence

of the decoy nest-site is not as strong as under low or medium quality setups, the spatial

distribution of the nest-sites shapes the swarm’s choice as a most of the bees end up at

the initially discovered nest-site in region 1 in a majority of the simulation runs. If spatial

nest-site distribution did not have any effect on the selection process one would expect a

uniform distribution over the 2 initially discovered sites, which is clearly not the case.

With an increase of angular separation between the nest-sites in region 1 (i.e., α1 = 8◦),

the trend towards the region with the denser nest-site distribution prevails in situations

where nest-sites are of low and medium quality (Figure 6.11 d,e). In situations of high

nest-site quality (Figure 6.11 f) the swarm is nearly always able to neglect the decoy nest-

site in region 1 in the decision-making process, and the convergence towards nest-sites in

either regions is nearly balanced.

When the angular separation between nest-sites in region 1 further increases (i.e., α1 =

15◦) the selection process is nearly unaffected by the decoy nest-sites (which are seldom

discovered at all) and the swarms will end up at either of the initially discovered nest-sites

with the same likelihood, as one would expect in a situation where only the two discovered

nest-sites are present.

As all the nest-sites in the experiment are of the same quality it does not matter for

which site the swarm decides, as long as it decides. To test if close nest-site proximity

obstructs a swarm’s ability to choose the best available nest-site, we presented the swarm

with 4 nest-sites. Again, these sites were located in opposing regions in pairs of two, with

an angular separation of α1 = 5◦ for sites in region 1 and α2 = 15◦. Again, the swarm

initially discovered one site in each region. The site discovered in region 2 was of good

quality (Q(S) = 75), while all the other sites were of mediocre quality (Q(s) = 50).

Figure 6.12 depicts the number of bees at each nest-site over the whole simulation run.

In each of the 100 simulation runs the colony chose the site with the highest quality, while

the other sites were abandoned. This indicates that spatial proximity does not hinder a

swarm in choosing the best out of several options, in contrast to situations where multiple
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Figure 6.11.: Boxplot distribution of median number of bees on the 4 nest-sites after 57600
simulation steps (i.e., 16 hours).
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options of same quality are in close proximity, which can delay a swarm’s decision-making

ability, as well as lead to a focusing of the selection process towards a particular nesting

region.
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Figure 6.12.: Average number of bees assessing a nest-site over 57600 simulation steps (i.e.,
16 hours). The swarm initially discovered two nest-sites which were located
on opposite sites of the swarm: Nest 1 (mediocre quality) and Nest 2 (good
quality). A decoy site was located next to each discovered nest-site, with
differing angular separation: α1 = 5◦ for Nest 1 and α2 = 15◦ for Nest 2.

6.5. Conclusion

This chapter investigated the influence of spatial nest-site distribution on the nest-site

selection process of the European honeybee A. mellifera. Our results suggest that the

arrangement of nest-sites in the environment can indeed influence the selection process.

Environments that exhibit a dense distribution of nest-sites can pose a problem for the

selection process. This is due to the fact that bees that misread a waggle dance for a

given site are likely to discover another site in the vicinity of the missed site, which leads

to this site entering the selection process. As missing behaviour is unintended this can

lead to a flux of recruits between nest-sites, thus preventing the swarm from converging

towards choosing a single site. Two factors influence the impact of close-by nest-sites on

the selection process.

The first factor is the angular separation between two sites regarding the swarm’s lo-

cation. Three angular separations α ∈ {5◦, 8◦, 15◦} were tested here. If the angular
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separation between two sites is sufficient (α = 15◦), bees are very unlikely to discover

additional nest-sites during their missing behaviour. With decreasing angular separation

(α = 8◦) such sites are likely to be discovered and will enter the selection process, however

as their discovery-rate is still low a swarm will be able to focus and converge towards a sin-

gle nest-site. In situations of a very small angular separation (α = 5◦) missing behaviour

does lead to a regular discovery of an additional nest-site thus obstructing the swarm’s

ability to converge towards a single site as the other site might always enter the selection

process.

The second factor that influences a swarm’s convergence of choice is the quality of the

sites to be chosen. If the sites are of good quality this will lead to the bees promoting

the sites performing more waggle dances on the swarm, which reduces the likelihood of

followers missing the advertised site, and thus a site in close vicinity of the promoted site

to enter the selection process.

When a swarm faces a decision between two nest-site regions with different nest-site

densities the swarm will be biased towards the denser region if both regions contain nest-

sites of equal quality. Again the swarm’s preference depends on the angular separation

between nest-sites. With increased separation the bias of the swarm towards a region

will decrease until regional decoy nest-sites no longer influence the selection process and

the swarm chooses uniformly between the nest-sites initially discovered. The ability of a

swarm to choose the nest-site with the best quality is not affected by spatial setups and a

swarm will always choose such a site even if initially presented with a nesting choice in a

dense nest-site region.

These results suggest that a swarm that faces a decision between two regions of different

nest-site densities will tend towards the denser nesting-region, thus the colony dispersion

observed in the European honeybee seem to be a necessity imposed by the environment

rather than a feature of the selection process. This may explains why high bee colony

densities such as those reported by Baum et al. (2005) and Oldroyd et al. (1995)

occur in nest-site rich habitats.

As nest-site density influences the convergence speed of a swarm’s decision making-

process, our findings could also explain why open-nesting honeybee species such as A.

florea, which faces nest-site selection in regions with abundant nesting locations, exhibit a

fuzzy selection process (i.e., no quorum consensus is reached towards a site before lift-off),

as this speeds up the selection process and prevents a swarm from getting stuck between

decisions.
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In many animal species individuals exhibit collective movement, often over considerable

distances, as they perform seasonal migrations, travel to food sources or return to safe

havens (Boinski and Garber, 2000; Couzin and Krause, 2003; Krause and Rux-

ton, 2002; Simpson and Sword, 2010). The movement of these groups is commonly

self-organized, arising from simple local interactions between individuals rather than from

a command hierarchy. In many species, relatively few individuals within a group have

pertinent information about the group’s travel destination (usually because of differences

among individuals in age or experience) and these informed individuals guide those that

are not informed. The key to understanding group behaviour and its manifestations, such

as crowd panic in humans (Helbing et al., 2007) or swarming in locusts (Bazazi et al.,

2008), is to understand the nature of the local rules that individuals in the group follow,

and to formalise these in simulation models (Sumpter, 2010).

In the case of honeybees the question of group guidance has been studied experimentally,

in particular in one species, the European honeybee A. mellifera. Group guidance follows

the successful selection of a new nest-site by a reproductive swarm (please refer to chapter

Chapter 5 for a biological outline of nest-site selection). Once the swarm has achieved a

quorum for a given nest-site, bees that were involved in the quorum return to the swarm

and prepare its lift-off using an auditory signal known as piping. This signal informs

the quiescent bees in the cluster that they should prepare themselves for flight (Seeley

et al., 2003). The final signals for flight are “buzz running”, in which a scout runs in

zig-zags over the swarm vibrating its wings every second or so (Lindauer, 1955). The

swarm then takes flight and flies to its chosen home guided by the bees that know the

location of the new nest.

How are honeybee swarms guided? Two mechanisms have been proposed. Lindauer

(1955) observed in airborne swarms that some bees fly through the swarm cloud at high

speed and in the correct travel direction, seemingly pointing in the direction of the new

nest-site. He suggested that these fast-flying bees, “streakers”, are scouts that have visited

the chosen nest-site and that their behaviour guides the other uninformed bees towards

their new home. This hypothesis has been referred to as the streaker or vision hypothesis.

An alternative is the olfaction hypothesis of Avitabile et al. (1975), who proposed that

the scouts provide guidance by releasing assembly pheromone from their Nasanov glands
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(a gland on the bees abdomen) on one side of the swarm cloud, thereby creating an odour

gradient that guides the other bees in the swarm. Beekman et al. (2006) tested both

the vision and the olfaction hypotheses in honeybee swarms. They studied in detail the

flights of normal honeybee swarms and swarms in which each bee’s Nasanov gland was

sealed shut. Their results firmly reject the olfaction hypothesis, as the sealed swarms

were perfectly able to fly to their destination. Although this study does not provide direct

proof for the vision hypothesis, it obtained evidence strongly consistent with it, as it found

that the peak flight speeds of swarms (2-3 m/s) are well below the peak flight speeds of

individual bees (9-10 m/s). This shows that it is possible for scout bees to streak through

a flying swarm. Additionally, using photographic analysis Beekman et al. (2006) were

able to show that a moving bee swarm contains fast-flying individuals in its upper half.

Since Beekman et al.’s first experimental study on the guidance of honeybee swarms,

two more experimental studies have investigated been performed (Latty et al., 2009;

Schultz et al., 2008). Schultz et al. (2008) provided further information about

the speed and directionality of bees in a moving swarm. In agreement with Beekman

et al. (2006), their analysis revealed that the swarm contains fast flying individuals

heading towards the desired nest-site. Additionally they observed that the distribution

of individual speed and flight angles differs within the swarm. While individuals in the

upper half in the swarm seem more aligned towards the swarm’s travel goal, individuals

in the bottom of the swarm are not well aligned in terms of directionality. This study

indicates that a moving bee swarm is far from directional consensus on an individual level,

while still being able to move towards a given location as a whole. Latty et al. (2009)

investigated the impact of directional noise, provided by fast flying foragers, on a swarm’s

movement. By setting up a“bee highway”(i.e., a foraging route that ran orthogonal to the

swarm’s travel route), they were able to show, that an airborne bee swarm is significantly

handicapped by fast foragers that travel orthogonally to the swarm’s heading direction.

The experimental evidence outlined above clearly favours streaking as the mechanism

underlying honeybee migration. Another possible explanatory guidance principle in hon-

eybee swarms that has not yet been ruled out is passive guidance (Couzin et al., 2005).

In such a situation the group is guided by a few informed individuals without these in-

dividuals providing explicit guidance signals that would allow a group-intern distinction

between informed and uninformed individuals.

In order to decide which of these competing mechanisms (passive / active guidance)

best explains honeybee swarming behaviour, evidence must be shown that the candidate

mechanisms can reproduce features that are observed in nature in moving swarms. As

pointed out in Schultz et al. (2008) bee swarm is far from being an aligned entity, in

contrast to fish shoals. This chapter thus investigates to what extent active and passive
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guiding mechanisms can account for directional noise within a moving group and thus

reproduce known features of a migrating honeybee swarm.

A second aspect we will investigate in this Chapter is to what extent the streaking

hypothesis requires directional consensus in order to lead to directed group motion. As

pointed out in Chapter 5 differences in nesting requirements between open and cavity

nesting honeybee species impact the frequency with which they will search for a new

home, as well as the accuracy of the decision-making process. While reproductive swarms

of the European honeybee A. mellifera will only lift off after a consensus for a single site

has been achieved, swarms of open-nesting species such as A. florea will start moving

before that is the case.

Given that A. florea swarms lift-off without having reached a consensus on the precise

direction in which to fly (Makinson et al., 2011), a universal flight mechanism under-

lying honeybee migration would require the ability to lead to a directed flight even under

directional dissent. In the case of passive guidance (Couzin et al., 2005), it has already

been shown that different directional preferences do not hinder swarm guidance. For the

streaking hypothesis this has not been investigated yet. If the streaking hypothesis proofs

being able to cope with directional dissent this would be an indication that it can serve

as a fundamental movement hypothesis for the whole Apis genus and not only for specific

species.

7.1. Group guidance in animal collectives

One of the first models of collective movement proposed by Reynolds (1987) demon-

strated that the coordinated movement of a collective can be achieved by each individual

aligning its position and direction of movement with that of individuals within a certain

neighbourhood, while keeping a minimum distance to its immediate neighbours. In a model

this can be achieved by a set of simple uniform rules representing attraction to neighbours

with respect to vectorial alignment and avoidance. Such an allelomimetic mechanism (“do

what your neighbour does”) has been shown, both theoretically and empirically, to lead to

collective movement and explain patterns observed in nature (Sumpter, 2010). Given the

diversity of animal groups, it is not surprising that a range of models has been developed

to study collective movement of animal groups (Cresswell et al., 2011; Vicsek and

Zafiris, 2010). These models share the core assumptions of allelomimetics while the exact

implementation of the movement rules differ depending on the species studied.

There are two extreme ways in which groups can “decide” on a direction of movement.

Either all individuals within the group contribute to a consensus, or else relatively few

individuals (for convenience we will call these leaders) have information about the group’s

travel destination and guide the uninformed majority. In some species all individuals

91



7. Swarm guidance in honeybees

within a group share a genetically determined propensity to travel in a certain direc-

tion (Berthold et al., 1992; Berthold and Querner, 1981) or all are involved in

choosing a particular travel direction (Grünbaum, 1998; Neill, 1979). In other species

groups are guided by a small number of individuals that determine the group’s forag-

ing movements and steer a group towards a target (Reebs, 2000; Seeley et al., 1979;

Swaney et al., 2001).

For groups containing only a small fraction of leaders, the question arises, how informa-

tion on travel direction is dispersed throughout the swarm in order to produce a directed

movement of the group. Recently, two theoretical studies have addressed the issue of in-

formation transfer from informed to uninformed group members. Janson et al. (2005)

modelled a situation of active guidance, where informed individuals make their presence

known by moving at a higher speed than the average group member and in the direction

of travel. Uninformed individuals tend to align their direction of movement with that of

their neighbours, taking individuals moving faster than themselves strongly into account.

As informed individuals initially move faster, they have a larger influence on the direc-

tional movement of the uninformed individuals, thereby steering the group and allowing

guidance to emerge.

Couzin et al. (2005) have shown that group guidance can also be achieved passively. In

such a situation the group is guided by a few informed individuals without these individuals

providing explicit guidance signals that would allow a group-intern distinction between

informed and uninformed individuals. Informed individuals differ from uninformed ones

only in the tendency to move in a preferred direction. Given this directional preference

and the tendency of the group to stay together, informed individuals will passively steer

the group towards their directional preference.

The main difference between the two models lies in the presence or absence of cues

or signals from the informed individuals to the uninformed majority. Janson et al.’s

leaders clearly make their presence known, whereas Couzin et al.’s model suggests that

leadership can arise simply as a function of information difference between informed and

uninformed individuals, without the individuals being able to tell which ones have more

information.

7.2. Swarm guidance model

Here an extended and revised version of the streaking model proposed by Janson et al.

(2005) was used to investigate how well the two different paradigms (i.e., passive and active

guidance) resemble the dynamics empirically observed in moving bee swarms. Furthermore

we tested to what extent the streaking mechanism is able to cope with directional dissent

among streakers.
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As outlined above, recent experimental studies have investigated the individual dynam-

ics underlying a flying bee swarm. Schultz et al.’s detailed photographic analysis of a

moving bee-swarm provided information about the distribution of individual flight-speed

and directionality in a moving swarm (Schultz et al., 2008). Janson et al.’s original

model lacks these dynamics – although the swarm is guided by streakers, individuals in a

moving swarm are too well-aligned for a moving bee swarm. Additionally, the resulting

streaker model is further modified to model swarm movement under passive guidance. We

modify, rather than create a new or use an existing model in this study in order to compare

the two approaches with the same set of parameters. In the following the extended and

revised version of the streaker model will be outlined.

At any time point t in the simulation each individual i of the swarm is represented by two

3-dimensional vectors, one denoting its current position pi(t) and the other one its velocity

vi(t). In the following formal description of the model the index i will be omitted providing

that the context is clear. In accordance with Janson et al. (2005) informed individuals

are guided by different rule-sets in the case of active guidance (streaking), whereas all

bees show more homogeneous behaviour in the case of passive guidance (Couzin et al.,

2005).

7.2.1. Active guidance: Behaviour of uninformed individuals

The idea behind the guided flight behaviour is that uninformed bees are influenced by

movements in their surrounding. An uninformed individual’s behaviour is guided by four

rules:

• Avoid : The avoidance rule prevents collisions between individual’s in the swarm and

reflects an individuals intention to keep a certain distance between itself and other

individuals.

• Align: The alignment rule enables individuals to adjust their orientation to the

heading direction of neighbouring individuals and thus enables a guided movement

of the swarm.

• Cohere: The coherence rule denotes the tendency of individuals to stick together

and thus prevents the swarm from breaking up.

• Random: The random rule adds noise to an individual’s movement.

Each rule results in a vector whose weighted sum corresponds to an individual’s velocity

update, with the weights reflecting the influence of the respective rule. In the following

the rules are outlined more formally.
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Avoid The avoidance vector vavoid implements the tendency of an individual to move

away from neighbours that come too close. It is calculated in the same manner as in the

model of Janson et al. (2005):

v′ =
1

dmin
·

1

|Nmin|
·
∑

j∈Nmin

(p− pj) · (
dmin

p− pj
− 1) (7.1)

vavoid =
v′

|v′|α
(7.2)

Nmin denotes the set of neighbours the focal individual tries to avoid, because they violate

its personal space (defined by a minimum distance dmin). Similar to force fields, the

magnitude of the avoidance correlates to the closeness of an individual (i.e., the closer

the stronger the avoidance, see fourth factor in Eq. 7.1). By scaling v′ via Eq. 7.2 with

α ∈ (0, 1) the avoidance vector is further increased, however its length will remain within

[0, 1].

Align As pointed out above, the alignment rule enables a swarm to direct its movement

in a specific direction. The alignment rule used here differs from the one used by Janson

et al. (2005). We use a topological neighbourhood metric (i.e., the k closest individuals)

instead of a Euclidean metric (i.e., all individuals within a certain range). Topological

metrics have been used to model the flocking behaviour of sparrows (e.g., Ballerini

et al. 2008). These metrics have the benefit that the size of an individual’s neighbour-

hood stays stable regardless of the distance between it and its neighbours. This prevents

over-information as well as loosing track of neighbours. Additionally, only faster flying in-

dividuals are incorporated in the alignment, while all neighbours were taken into account

previously (Janson et al., 2005).

The alignment vector is calculated as follows: First, the k closest neighbours of a given

individual i are determined. This results in a set of neighbours Ki. Let si = |vi| denote

the speed of an individual i, then Kfast
i = {kj | kj ∈ Ki and sj ≥ 2 · si} constitutes

the set of neighbours that are at least twice as fast as individual i. For its alignment, an

individual will only take Kfast
i into account (no alignment will take place if Kfast

i = ∅).

The alignment vector is calculated as

valign =
1

vmin
·

1

|Kfast
i |

·
∑

j∈Kfast
i

vj (7.3)

The first factor of Eq. 7.3, scales the length of valign between [0,1] if the speed of the

individuals in Kfast
i is lower than a given minimum speed vmin. Such a scaling is necessary

to prevent the perpetuation of alignment (and thus movement of the swarm) in a system
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7.2. Swarm guidance model

where no informed individuals (i.e., streakers) are present. Once streakers are active or

neighbours reach a speed greater than vmin, they will have a stronger impact on the

alignment vector valign.

Cohere The centre of a swarm containing n individuals is defined as

pcore =
1

n
·

n
∑

j=1

pj (7.4)

the coherence vector of a given individual i is thus given by

vcohere =







1
dcore

· (pcore − pi) if Kfast
i 6= ∅

0 otherwise
(7.5)

dcore is a scaling factor that limits the length of vcohere to [0, 1] if an individual is within

dcore distance to the swarm’s centre. The closer an individual is to the swarm’s centre, the

less need it feels to get closer. Thus, individuals at the outside of the swarm will cohere

more strongly than those in the centre.

In contrast to the previous model (Janson et al., 2005), coherence is only applied if

faster flying individuals are present in an individual’s neighbourhood. This change was

necessary to fit the model to experimental data (Schultz et al., 2008), which showed

that individuals in a swarm behave more independently (in terms of flight speed and

angle) than initially expected. If coherence and alignment would be applied regardless of

speed (even when strongly weighting streakers) the streakers’ direction would propagate

through the swarm, leading to a very strong directional alignment within the whole swarm.

In order to maintain a level of individuality within the swarm, individuals here will only

be governed by alignment and coherence if they are disturbed by significantly faster flying

individuals or leave the swarm. When an individual leaves the swarm it will slow down its

movement, making it more receptive to alignment and coherence which will lead it back

to the swarm and prevent a swarm breakup.

Random The random vector introduces randomness into the velocity of an individual

and is achieved in the same manner as in Janson et al. (2005)

vrandom = β ·
v′′

|v′′|
(7.6)

v′′ is randomly chosen from [−1, 1]3 and the scaling factor β is chosen randomly according

to the distribution function F (x) of the exponential distribution F (x) = 1−e−λ·x restricted

to [0, 1] with λ = 2 .
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7. Swarm guidance in honeybees

Update For the velocity update the weighed sum of these vectors is calculated

v∗new = wcohere · vcohere + wavoid · vavoid +walign · valign + wrandom · vrandom (7.7)

where wcohere, wavoid, wavoid, walign and wrandom denote positive weights of the respective

vectors. The weights enable us to emphasize certain factors, which is done here in contrast

to the previous model (Janson et al., 2005) where each rule had the same impact on

an individual’s behaviour (for specific parameter setting please refer to Section 7.3). The

length of v∗new constitutes an individual’s change in velocity. In order to prevent infinite

speed-up the acceleration of an individual per simulation step is capped using a maximum

acceleration amax

vnew =







v∗new if |v∗new| < amax

v∗new

|v∗new | · amax otherwise
(7.8)

In order to calculate the new velocity of an individual a fraction w ∈ [0, 1] of the old

velocity is kept and the update velocity is added

v(t+ 1) = w · v(t) + vnew (7.9)

After the velocity is updated the position of each individual is derived according to p(t+

1) = p(t) + v(t+ 1).

7.2.2. Active guidance: Behaviour of informed individuals

Informed bees (streakers) guide a swarm by consecutive fast flights through the swarm.

Here they streak through the swarm along a straight flight path, which is parallel to the line

that goes through the swarm centre in their preferred direction of travel. Once streakers

reach the front of the swarm (i.e., they have less than 10 surrounding neighbours within a

given distance dvis = dmin), they will fly back to the trailing edge of the swarm. Reaching

the end of the swarm (i.e., having less than 10 surrounding neighbours in a given distance

dvis) will trigger their streaking again.

Empirical data suggests that streaking occurs in the upper segment of a swarm while

bees appear to fly back through the lower section of the swarm (Schultz et al., 2008).

We thus implemented streaking and return flights at different heights within the swarm.

Thus streakers that reach the front of the swarm are relocated to the bottom front of the

swarm where they will start to fly back. Accordingly streakers that reach the back of the

swarm will be relocated to the upper segment of the swarm before streaking is re-initiated.

Streakers will use different speeds for streaking (sstreak) and flying back (sflyback).
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7.2. Swarm guidance model

7.2.3. Passive guidance: Behaviour of uninformed individuals

One argument against the streaker hypothesis is that it requires two distinct behavioural

patterns, while group guidance in animal collectives can also be achieved in a more homo-

geneous, thus simpler manner.

While speed differences play a crucial role under the streaker hypothesis (as faster-flying

neighbours have a strong impact on an individual’s orientation), this is not the case for

models of passive guidance. All individuals in a swarm exhibit the same constant speed

and potential neighbours are not discriminated according to speed differences.

In order to transform the streaker model outlined above into a model of passive guidance,

several changes have to be made. Passive guidance can be easily achieved by modifying

the align, cohere and update rules of the streaker model.

Align The alignment rule has to be changed as it now has to disregard the speed of

neighbouring individuals. Again, the k individuals that are closest to an individual are

considered to be its neighbourhood. The alignment vector is then calculated as

valign =
1

|Ki|

∑

j∈Ki

vj
|vj |

(7.10)

In order to make sure that each neighbour has the same influence on an individual, the

unit vectors of the velocities rather than the velocities themselves are used.

Cohere The coherence rule has to be changed as well. While coherence is only executed

if fast neighbours are present, it will apply each time step in a model of passive guidance.

This leads to coherence having a too strong impact on the model when it is used in streaker

form. The reformulation of vcohere will return a unit vector and this reduces the impact

on the velocity update. this is in contrast to Eq. 7.5, where the length of the vector can

exceed 1, depending on the individual’s distance to the swarm core.

vcohere =
(pcore − p)

|(pcore − p)|
(7.11)

Update In contrast to the streaker approach, all individuals exhibit the same constant

speed under passive guidance. Thus after calculating v(t + 1) (see Eq. 7.7 and 7.8) the

new velocities need to be normalized regarding a desired speed s.

v(t+ 1) =
v(t+ 1)

|v(t+ 1))|
· s (7.12)

Finally the position of each individual is updated according to p(t+ 1) = p(t) + v(t+ 1)
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7. Swarm guidance in honeybees

7.2.4. Passive guidance: Behaviour of informed individuals

While streakers exhibit a different behavioural repertoire than uninformed swarm mem-

bers, this is not the case under passive guidance. Here the guides only differ by incorpo-

rating yet another vector that describes their tendency to go towards a desired destination

pdest

vdir =
pdest − pi
|pdest − pi|

(7.13)

which is then incorporated into the velocity sum update with a given weight wi
dir

v′′new = wcohere · vcohere + wavoid · vavoid+

walign · valign + wrandom · vrandom + wdir · vdir
(7.14)

The component velocities of informed individuals are updated in the same manner as for

uninformed individuals according to Eq. 7.7, 7.8 and 7.12.

7.3. Experimental setup

Following Janson et al. (2005), each swarm was initialized by placing its individuals

at a random position within a cube of side length n/10 cm, where n corresponds to

the number of uninformed bees in the swarm and the cube is centred around a starting

position (200,200,200) (note that one unit corresponds to 1 centimetre). Each simulation

step corresponded to 10 milliseconds of realtime. Such a fine scale was necessary in order to

capture the dynamics of the system. A simulation run lasted for 2000 simulation steps (i.e.,

20 seconds) with the first 300 simulation steps corresponding to an initialization phase.

During this initialisation phase each bee, streakers and uninformed bees alike, showed the

same behaviour. To allow for a realistic bee distribution in the swarm, only the avoid,

cohere and random rules were applied for the first 150 steps of the initialization phase

when updating each individual’s position and velocity. The alignment rule was enabled in

the second half of the initialization phase. Guidance started after the initialization.

Table 7.1 lists the parameter values used in the experiments comparing active and

passive guidance. As can be seen, all parameters are identical except for the weight of the

random rule wrandom are identical.

The weight of the random rule wrandom had to be lowered in order to achieve a directed

flight behaviour during passive guidance. Figure 7.1 depicts the representative flight

trajectories of a passively guided swarm under both random weight settings wrandom ∈

{0.2, 0.6} over a whole simulation run. Informed individuals would like to reach the point

(200,10000,200) and the ideal flight path thus corresponds to a vertical trajectory along

the y-axis.
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Table 7.1.: List of parameter descriptions and values used in the streaker model. Value
(Active) denotes the parameters used for active guidance. Value (Passive)
denotes the parameters used for passive guidance.

Parameter Description Value (Active) Value (Passive)

n number of uninformed bees 475 475
ninf number of informed bees 25 25
wavoid weight of avoidance vector 1.0 1.0
walign weight of alignment vector 0.3 0.3
wcohere weight of coherence vector 0.3 0.3
wrandom weight of random vector 0.6 0.2
k number of nearest neighbours for alignment 10 10
α exponent used in scaling of avoidance vector 3/4 3/4
vmin minimum speed required for alignment 2.0 –
amax maximum individual acceleration 20 cm/10ms –
dmin visibility length scale 20 cm 20 cm
dcore scaling factor for distance to swarm core 20 cm 20 cm
ainformed speed of informed bees 9.55 cm/10ms –
aflyback flyback speed of informed bees 3.55 cm/10ms –
wdir preferred direction preferred of informed bees – 0.3
s speed of individuals – 2.7 cm/10ms

Regardless of the strength of the noise weight, the swarm is able to stick together.

However, as can be seen in Figure 7.1(a), passive guides are not able to set a swarm in

the desired direction given too much individual noise in the swarm (i.e., wrandom = 0.6

), while the this is possible given the smaller random noise weight (i.e., wrandom = 0.2).

The reason for this lies in the fact that under passive guidance an individual can not

discriminate between individuals and will thus take all of it’s neighbours into account.

This leads to the case that an individual’s neighbours will influence its directional update

in each step (i.e., regardless of their speed). As the random weight essentially puts noise in

an individual’s directionality, this leads to a decrease in the broadcast of correct directional

information throughout the swarm, as such information will become increasingly distorted

over consecutive simulation steps. The swarm will thus not be able to travel in the direction

desired by the informed individuals. This is also reflected in the distance a swarm is able

to move under the differing random weight settings. While the swarm is able to travel

around 11.5 meters given a random weight of wrandom = 0.6, it travels approximately 40

meters with the lower random weight wrandom = 0.2.

For the experiments investigating the necessity of directional dissent under the streaking

paradigm a smaller number of informed individuals was used than for the experiments
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(a) wrandom = 0.6
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Figure 7.1.: Sample flight trajectory of passively guided swarm under differing random
weight settings wrandom ∈ {0.2, 0.6}.

comparing active and passive guidance. Based on Makinson et al. (2011)’s A. florea

data, it was assumed that only 2% of the individuals would engage in the streaking process.

This leads to ninf = 10 informed individuals and n = 490 uninformed individuals given a

total swarm size of 500. A swarm size of 500 is however relatively small in comparison to

the size of real A. florea swarms. In order to demonstrate that the streaking hypothesis is

also applicable to swarms with real A. florea characteristics, the model was used in a final

experiment to simulate the flight of test swarm 1 of Makinson et al. (2011). The exact

size of swarm 1 was not estimated in the original study, but it appeared to be roughly the

same size as swarm 5 (Makinson et al., 2011). Accordingly, for the simulation of a real

A. florea swarm-flight, a swarm size of 2700 individuals was used. Here it is assumed that

the individuals that danced in the last hour before lift-off (i.e., 28 individuals) will act as

streakers during the swarm’s flight. Each experiment was repeated 5 times.

7.4. Experiments: Active vs passive guidance

As pointed out earlier the study by Schultz et al. (2008) revealed that a moving swarm

of honeybees is quite noisy in terms of individual directionality and speed. The following

experiments test to what extent passive and active guidance can achieve such charac-

teristics. In particular we will compare the flight-behaviour of a swarm containing in-
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7.4. Experiments: Active vs passive guidance

formed individuals with one that does not contain informed individuals. Additionally, the

angular alignment within a swarm under the two moving hypothesis will be compared

with Schultz et al.’s findings. The preferred direction of the informed individuals

within these experiments was 0◦, which corresponds to a vertical flightpath along the

y-axis, starting from the initialization point of the swarm.

7.4.1. Swarm behaviour with and without informed individuals

It is assumed that a honeybee swarm will only set flight when informed individuals are

present in the swarm and a decision has been made. A honeybee swarm that does not con-

tain any leaders will not be able to find any suitable nest-site and should thus recluster and

reinitiate the decision-making process rather than perform an aimless flight. Unfortunately

the flight-behaviour of a leaderless honeybee swarm has not been tested yet experimen-

tally, as it is simply impossible to remove informed individuals from an airborne swarm.

As informed individuals are those who prepare a swarm for lift-off it is also not possible

to get a swarm airborne when no informed individuals are present. A situation similar to

this is when the airborne swarm does not contain a queen and it does not make sense to

fly to a new nest-site as the core of the new colony is absent. In such a case the swarm will

not travel in any direction. Instead it will aimlessly hover around its previous cluster lo-

cation and settle again (personal communication Madeleine Beekman). To find out what

impact the two different movement strategies have on a swarm’s flight trajectory with

and without informed individuals we conducted two flight experiments for each guiding

strategy, one with informed individuals and one without informed individuals. Figure 7.2

depicts the average flight trajectory of a passively guided swarm over 5 repeats. As can

be seen the swarm will always set in motion, regardless of whether informed individuals

are present or not. However, the flight direction depends on the presence of informed

individuals. The reason why a swarm that does not contain any informed individuals will

still start to move is that the swarm does not require faster flying individuals to speed

up. As individuals have no means of discriminating between informed and uninformed

individuals in a passively guided swarm, they will cohere and align to their neighbours.

The swarm will thus reach a random consensus direction at some point in which it will

fly. Adding informed individuals (Figure 7.2(a)) only adds an directional bias which will

pull the swarm towards the target direction and prevents it from flying in a random di-

rection. As can be seen, the influence of the uninformed individuals on the swarm’s flight

trajectory is still present when informed individuals guide the swarm, as they not only

influence other uninformed individuals but also the informed ones. Active guidance differs

in this respect. As can be seen in Figure 7.3 a swarm will only take flight, if informed

individuals are present in the swarm. This is due to the fact that informed individuals not
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Figure 7.2.: Average flightpath over 5 simulation runs of a passively guided swarm with
(a) and without (b) informed individuals. Crosses indicate the position of the
swarm at the end of simulation step 150 after alignment was enabled.
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Figure 7.3.: Average flightpath over 5 simulation runs of an actively guided swarm with
(a) and without (b) informed individuals. Crosses indicate the position of
the swarm at the end of simulation step 150 after alignment was enabled (in
Figure (b) the cross was omitted to expose the flight-path).
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only set a swarm’s directionality but also initiate its speed-up. Uninformed individuals in

the presented active guidance model are very wayward, which means that when no faster

individual is among their 10 closest neighbours they will only try to stick to the swarm

via the coherence rule and avoid other individuals. In order to get the swarm moving

it thus requires informed individuals as these will initiate directed and fast movement in

the swarm. The impact of active guides is also notable when comparing the flight trajec-

tories of passively and actively guided swarms. Uninformed individuals clearly influence

the flight trajectory in the case of passive guidance, which leads to a swarm movement

in the preferred direction albeit not close to the ideal flight trajectory. In contrast, the

trajectory of an actively guided swarm is quite close to the optimal flight trajectory even

though uninformed individuals exhibit a higher noise level and are thus more reluctant to

fly on route than uninformed individuals in a passively guided swarm.

7.4.2. Flight speeds of a guided swarm

While analysing the flight characteristics of a moving bee swarm, Schultz et al. (2008)

noticed that the flight speed of individual bees within the swarm differed depending on the

bee’s position and orientation. Additionally, they found that individual bees move signifi-

cantly faster than the complete swarm, which is an indicator for poor directional alignment

in the swarm, as under complete alignment the swarm’s velocity should correspond to the

velocity of each individual.

Figure 7.4 depicts the evolution of swarm speed and average individual speed under the

two different guiding mechanisms. When comparing the characteristics of the first 500

simulation steps the differences between the two guiding mechanisms are quite obvious.

Swarm and individual movement under active guidance clearly depends on the presence of

informed individuals. The activation of the alignment rule at simulation step 150 has no

effect on the swarm’s or the individuals’ movement speed (the initial peak in Figure 7.4(a)

is due to the fact that individuals are initialized quite close to each other and thus first

need to establish some personal space). Only when the streakers are added to the swarm

(i.e., at simulation step 300), both the individuals’ and the swarm’s speed increase and the

swarm sets in motion. As in the empirical data of Schultz et al. (2008), the average

individual flight speed exceeds the swarm’s movement speed.

Under passive guidance the alignment rule governs the flight behaviour of a swarm. A

swarm will set in motion as soon as the alignment rule is activated (i.e., at simulation

step 150), which explains the flight trajectories found for an unguided swarm, which were

presented in the last section. In contrast to active guidance the swarm will reach the same

speed as the fixed individual speed of (2.7 cm/10ms).
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Figure 7.4.: Average individual and swarm velocity development in the time course of a
simulation under active (a) and passive (b) guidance.

From a speed perspective, active guidance is thus favourable in terms of resembling

characteristics of a moving honeybee swarm.

7.4.3. Angular distribution within a guided swarm

Schultz et al. (2008) also estimated the flight-angle distributions for different parts of

a flying swarm. The swarm was partitioned into bottom and top. In each of these sections

the flight angles in the front, middle and back were measured, resulting in a total of 6

flight angle distributions. To gain the data a moving swarm was repeatedly photographed

while flying over a camera (Schultz et al., 2008). Their findings show that the variance

of the flight angle distributions in the top of the swarm is smaller within all sections than

the flight angle distribution in the bottom of the swarm. Especially the bottom middle of

the swarm exhibited a wide range of individual orientation, meaning that the bees were

not well aligned to each other at all in this segment. Here we test to what extent such

angular distributions can be achieved in simulation under different guidance strategies.

To investigate the angular distribution within a swarm, individuals’ orientations at a

single timepoint were used. In order to ensure that the observed angular distributions at

a single timestep are meaningful for the whole flight trajectory of the swarm, a Phillips-

Perron Test for Unit Roots (Perron, 1988) was conducted on the angular deviations from

the swarm’s mean direction between timestep 600 and 2000. Timestep 600 was chosen as a

starting point of the time-series as it is assumed that the swarm reached a stationary state
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at that timepoint after ending its initialization phase at timestep 300. The Phillips-Perron

tests confirmed that the angular deviation time-series of our simulations do not contain a

unit root, which allows the assumption that the flight angles between timesteps 600 and

2000 are stationary and thus that observations made at one timestep can be generalized

regarding the whole simulation after timestep 600.

As in Schultz et al. (2008) the individual flight angles were grouped into six cat-

egories (top/back, top/middle, top/front, bottom/back, bottom/middle, bottom/front),

depending on an individual’s position in the swarm. An individual was considered to be

in the top of the swarm if it was above the swarm core. To establish the back, middle and

front regions of the swarm a rectangle was fitted around the swarm in the orientation of

the informed individuals’ preferred direction. The sides parallel to the optimal flight path

were divided into 3 equal sections corresponding to back, middle and front respectively.

Figure 7.5 depicts the individuals’ orientations in a swarm under different guiding strate-

gies. The angular distribution between the two different guiding strategies differs signif-

icantly (circular Kruskal-Wallis test, α = 0.051). As can be seen when comparing Fig-

ure 7.5(a) with 7.5(b), an actively guided swarm shows stronger directional dissent than a

swarm guided passively, which corresponds to and thus better resembles the dynamics that

Schultz et al. observed in their experiment. As in the experimental data, directional

dissent is strongest in the middle bottom segment of an actively guided swarm, which is

not the case for a passively guided swarm.

Another finding of Schultz et al. (2008) is that the angular variance differs between

the top and the bottom segment of the swarm. Table 7.2 exhibits the variances of angular

orientation (in radians) in the six different segments of the swarm under both active

and passive guidance. As can be seen, both guiding mechanisms exhibit a difference

in angular variance, with the difference between top and bottom of the swarm being of

greater magnitude for actively guided swarms. To test if the observed difference in angular

variance between the top and bottom segment of a swarm is statistically significant a

circular Kruskal-Wallis test (α = 0.05) was performed. The difference between the angular

distributions in the top and bottom segments of the swarm is significant for both guiding

mechanisms. However as the flight angle variance observed in the empirical data is quite

large between the top and bottom segment of the swarm, the flight angle characteristics

of a moving honeybee swarm are better characterized by an actively guided swarm.

It should be pointed out that the directional dissent measured by Schultz et al. (2008)

is of higher magnitude than that observed in simulations of either guiding mechanism,

which suggests that real bees are even more wayward than our virtual model bees. The

reason why active guidance is able to reflect a real swarm’s characteristics better than

1All statistical evaluations on the angular data were performed with the circstat MATLAB tool-
box (Berens, 2009)
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passive guidance is due to the nature of these two guiding strategies. As outlined earlier,

guidance is usually thought to be based on allelomimetics (i.e., do what your neighbour

does), which is bound to create alignment within a moving group. As an individual

is not able to distinguish between informant and and non-informant individuals under

passive guidance it will take everyone into account, which will increase the allelomimetics

effect and thus create strong alignment. While such guiding strategies resemble the travel

trajectory of several species perfectly well (Sumpter, 2010), this seems not to be the case

for honeybees. The angular noise within a colony is a strong indicator that honeybees

are very reluctant to do as their neighbours do and need guides that catch their attention

(i.e., by streaking) in order to get the swarm moving in the right direction. This has the

advantage that an uninformed bee’s personal flight preference will not propagate through

the swarm, and a swarm is thus able to fly towards a location more precisely. As nest-sites

are relatively small in comparison to the distance a swarm has to travel towards a new site,

precision is crucial, as only a small angular deviation within a swarm’s flight trajectory

might lead to the swarm ending up at an unwanted location.

Table 7.2.: Variances of angular orientation (in radians) within different segments of a
swarm under differing guidance strategies.

Segment Variance s2 (Active) Variance s2 (Passive)

Top Back 0.0096 0.0012
Bottom Back 0.2298 0.0037
Top Middle 0.0116 0.0019
Bottom Middle 0.4814 0.0017
Top Front 0.0289 0.0032
Bottom Front 0.5972 0.0019

7.5. Experiments: Directional dissent

In the experiments on directional dissent we will test to what extent active guidance via

streaking is applicable to swarms that contain informed bees with different directional

preferences. As pointed out already some species of honeybees can lift off before the

selection process has converged towards a single nest-site. This seems especially to be

the case for open-nesting species such as A. florea, which exhibits a very fuzzy nest-site

selection process (Makinson et al., 2011). If the streaking hypothesis is a universal

swarm guidance mechanism in bees, then it should be able to cope with directional dissent

among informed individuals.
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(a) Angular histogram under active guidance
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(b) Angular histogram under passive guidance

Figure 7.5.: Angular histogram of the observed individual orientations in a swarm under
differing guidance mechanisms at simulation-step 1000. The small numbers in
the histograms correspond to the number of occurences.
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7. Swarm guidance in honeybees

Figure 7.6.: Schematic of the spatial domain used for decision-making simulations.

7.5.1. Directional dissent for streaking

To test a swarm’s behaviour under directional dissent among streakers, we presented our

model swarm with two large potential nesting regions (see Figure 7.6 for a sketch of the

setup). Each region had an angular extent of 60◦. We then varied the proportion of the

streakers dedicated to each region, where each streaker chose a random direction within

its region, representing its preferred flight direction.

As pointed out in Section 7.3 a smaller number of streakers was used here (i.e., 2% which

corresponds to 10 individuals given a total swarm size of 500), as this fits the experimental

data on open-nesting honeybees (Makinson et al., 2011). Thus a total of 6 simulation

setups varying from total consensus (i.e., each streaker being dedicated to the same region)

to dissent (half of the streakers attempting to steer the swarm to one region; the other half

to the other region) were investigated. The exact direction of a streaker, within a region,

was chosen at random and kept fixed during the 5 repeats.

Figure 7.7 depicts the flight paths of swarms with different levels of directional dissent.

When the number of streakers dedicated to each region is equal, the swarm is not able to

move in the direction of either region. Any attempt to move towards a specific region will

be opposed by a strong force trying to guide the swarm in the other direction. Despite

this strong directional conflict within such a swarm, a ‘swarm breakup’ (i.e., the division

of the swarm into two sub-swarms that move towards one of the respective regions), does

not happen, but the swarms showed a trend to move in the averaged direction of the two

regions.

When the majority of streakers is dedicated towards the same region (here region 1),

the swarm is able to move towards that region. This process can be thought of as an

in-flight quorum, meaning that even if different regional preferences are present within the
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Figure 7.7.: Average flightpath over 5 simulation runs of swarms under different dedication
ratios x-y for region 1 and 2, where x represents the number of individuals
dedicated to region 1 and y the ones dedicated to region 2. Crosses indicate
the position of the swarm at the end of the initialization phase.
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7. Swarm guidance in honeybees

streaker population at the start of the flight, the swarm will be able to move towards the

region the majority favours without an explicit quorum prior to lift-off.

Even though the swarm is able to fly towards the region favoured by the majority,

directional dissent comes at a cost. As can be seen in Figure 7.7, the number of renegades

that favour another region other than that of the majority impacts upon the distance

the swarm is able to travel during one simulation run. Figure 7.8(a) depicts the distance

between the initialization point of the swarm and the point it reached at the end of the

simulation. The distance travelled by the swarm positively correlates with directional

consent. Under strong directional dissent a swarm is only able to move ≈ 2 meters away

from its starting position, which constitutes a tenth of the distance a swarm exhibiting

total directional consent is able to travel. The effect of directional dissent is also reflected

in the swarm’s average flight speed. Figure 7.8(b) shows a swarm’s average flight speed

under the different levels of directional agreement. Again, in the presence of directional

consent, the swarm flies fastest.

The effect of directional disagreement on the swarm’s flight speed is not surprising given

that the streaking mechanism depends on speed and direction propagating through the

swarm. In other words, individuals that chase after streakers will be chased after by other

(i.e., slower) individuals, creating a directed movement towards a given direction. If a

swarm additionally contains opposing streakers, the directional consent in a swarm will

get even smaller, as even if an individual will start chasing after a streaker it is very likely

that it will slow down again, due to the opposing force of other streakers.

7.5.2. Streaking in A. florea

The results presented in the last section indicate that streaking is indeed applicable to

swarms that contain informed individuals with differing directional preferences. In this

final experiment the active guidance model was tested in more realistic conditions using

experimental data from a previously studied A. florea swarm (i.e., Makinson et al.

(2011) test swarm 1).

Figure 7.9(a) depicts the angular histogram of the observed dance directions in the

last hour before lift-off of Makinson et al.’s (2011) test swarm 1. As outlined earlier,

following Makinson et al. it is assumed that the individuals that dance in the hour

before lift-off are responsible for the guidance of the swarm, which corresponds to 28

informed individuals.

Figure 7.9(b) shows the resulting average flightpath of a swarm with 2700 individuals.

The simulated swarm flew in an average direction of 260.9◦ (std 0.6319◦), which is close

to the averaged dance direction of all dances observed one hour before lift-off (256◦).
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Figure 7.8.: (a) Average distance between start and end position of swarms under dif-
ferent directional dissent. The x axis represents the number of individuals
dedicated to region 1, the y axis the covered distance. Error bars show stan-
dard deviation; (b) Average swarm velocity development in the time course
of a simulation under different dedication ratios (06− 04,08 − 02,10 − 00).

Not only is active guidance able to cope with directional dissent among streakers, but it

also enables a swarm to fly into a direction which constitutes the average direction (given

that the directional preference is not completely opposing as in the experiment presented

in the last section). As the swarm converges towards the average flight direction while

en route, this can be seen as some sort of in-flight quorum. Swarms of different sizes

did show some difference in flight speed, with smaller swarms moving faster than a large

swarm (small swarms moved at a speed of (≈ 1.2m/s) while the large swarm moved at

(≈ 0.8m/s)). These differences can be eliminated by parameter tuning, however because

of the associated computational costs this was not done here. The main reason for running

these simulations using a more realistic swarm size was to investigate if our small swarms

showed aberrant behaviour. Clearly they do not.

7.6. Conclusion

This chapter investigated group guidance in the context of migrating honeybee swarms. A

swarm flight towards a new nest-site constitutes the last step in the process of migration in

honeybees, where a small number of informed individuals needs to lead the swarm towards

a new home. To date, the empirically best supported guidance hypothesis is the vision

hypothesis, which states that honeybee swarms are guided by fast-flying individuals (called

streakers). Streakers repeatedly fly through the upper segment of a moving swarm, while

uninformed individuals will chase after close-by individuals that are faster than themselves,
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Figure 7.9.: (a) Angular histogram of the observed dance directions in test swarm 1
of Makinson et al. (2011) one hour before lift-off; (b) average flightpath of
test swarm 1 over 5 simulation runs; Cross indicates the position of the swarm
at the end of the initialization phase.

which sets the swarm en route. While some alternative honeybee guidance hypotheses such

as the olifactory hypothesis have been experimentally rejected (Beekman et al., 2006),

it is still debated whether honeybees are guided actively (via streakers) or in a passive

fashion. Models of passive guidance have been used previously to simulate the group

movement of fish (Ioannou et al., 2011) and assume that an individual is not able to

distinguish between guide and non-guide. Instead, some individuals exhibit a directional

preference, which influences movement behaviour. As a swarm will stick together these

informed individuals are then able to guide the swarm in their desired direction. The

advantage of passive guidance is that it is (from a behavioural perspective) simpler as it

can be implemented via homogeneous individual behaviour, while active guidance requires

two distinct behavioural classes.

To investigate which of these two rivalling hypotheses better captures honeybee swarm

flight characteristics, a previously introduced model for group guidance in honeybees

(Janson et al., 2005) was used. The original model was modified and extended to

allow the study of both mechanisms under a nearly identical parameter set and used to

investigate the extent to which the two guiding strategies are able to reproduce swarm

characteristics from recent empirical findings on honeybee guidance (Schultz et al.,

2008).

While both guiding mechanisms are able to guide the swarm in the right direction,

our results show that active guidance better reflects the characteristics found in honeybee

swarms than passive guidance. Schultz et al.’s (2008) empirical data suggests that

moving honeybees are very noisy in terms of flight speed and directional orientation of
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individuals within the swarm. Under passive guidance these features can not be repro-

duced. This is due to the fact that individuals in a passively guided swarm are not able

to distinguish between leaders and other uninformed individuals, which will lead per se

to a stronger alignment within the group than when an individual is able to distinguish

and takes only the guide into account. Active guidance is able to create such a diversity

within a moving swarm, however to achieve empirical-like characteristics, individual bees

have to be much more wayward than assumed in previous models (i.e., any information

from surrounding individuals except faster flying ones is disregarded). Nevertheless, an

actively guided swarm is still able to move in the desired direction and also shows more

precision in terms of the swarm’s flight directionality.

The second aspect investigated in this chapter concerns active guidance under directional

dissent. Previous models on passive guidance (e.g., Couzin et al. 2005) have shown that

even in the absence of directional consensus, groups can still be guided by a small number of

knowledgeable individuals. Here we demonstrated that group movement under directional

dissent can also be achieved using the streaking mechanism. This suggests that streaking

behaviour can be seen as a universal guidance mechanism in honeybee collective movement

and not only a specialized form of guidance in specific honeybee species. However, we

have also shown that when the direction of travel is decided while on the move, successful

guidance is only possible if the group does not need to move to a specific location. If the

exact location is vital, groups should only initiate movement once the specific direction of

travel has been agreed upon. Hence, idiosyncrasies of the biological system have a huge

influence on how groups of animals are guided.
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8. Hunting the optimum: Honeybee

nest-site selection as an optimization

process

Bee-inspired algorithms are a new type of algorithm that has emerged in the field of swarm

intelligence in recent years. These algorithms attempt to utilize the principles underlying

the collective behaviour of honeybees, and have already been applied to various domains

such as robotics (Gordon et al., 2003; Schmickl and Crailsheim, 2008), network

routing (Farooq, 2008; Nakrani and Tovey, 2004), multi-agent systems (Lemmens

et al., 2008) and optimization (Karaboga and Akay, 2009).

Although these algorithms draw their inspiration from honeybee behaviour, they are

based on different concepts. In general, one can distinguish between two main classes of

honeybee optimization algorithms: algorithms that utilize genetic and behavioural mech-

anisms underlying the bee’s mating behaviour, and algorithms that take their inspiration

from the bee’s foraging behaviour. The biological background of these behaviours has

been introduced in Chapter 5.

The first class of optimization algorithms makes use of the fact that a honeybee colony

comprises a large number of individuals that are genetically heterogeneous due to the

queen mating with multiple males. Many of the mating-inspired algorithms extend existing

optimization algorithms from the field of evolutionary computation (Eiben and Smith,

2003) by introducing bee-inspired operators for mutation or crossover. Other algorithms

in this class evolve populations of solutions by imitating a bee’s maiden flight.

For the second class of optimization algorithms, foraging in honeybees is interesting as

the underlying decentralized decision-making processes enable a colony to balance exploita-

tion of known food sources with exploration for new and potentially better food sources in

a dynamic environment (Beekman et al., 2007). Algorithms based on foraging usually

use artificial bees to search for solutions and thus associate solutions with food sources.

Depending on the number of food sources (solutions) found and their quality, a subset of

the artificial bee population will explore the environment (search space) by finding new

food sources (creating new solutions), while the remaining bees exploit the environment
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8. Hunting the optimum: Honeybee nest-site selection as an optimization process

around the found food sources in order to try and improve current food sources (i.e., they

perform local search operations in order to improve the current solutions).

In this chapter we introduce a third possible class of optimization algorithms based on

nest-site selection. In contrast to foraging, where bees can typically forage at different

locations simultaneously, nest-site selection always involves the selection of a single new

site. Finding a good nest site is vital for the continued survival of the colony and the

corresponding decision-making process should be flexible enough to allow the discovery of

superior new nest sites during later stages of the selection process. This makes nest-site

selection of particular interest for dynamic optimization problems, in which the problem

instance is likely to change during the optimization process.

Based on the spatial nest-site selection model used in Chapter 6 to investigate the impact

of nest-site distribution in the environment on the decision-making process, we will assess

the optimization potential of this behaviour. Additionally an optimization scheme, called

the bee nest-site selection scheme (BNSSS), based on nest-site selection is introduced. A

realization of this scheme, the BeeNest algorithm is outlined and applied to the domain

of molecular docking.

8.1. Related work: Current bee-inspired algorithms

As outlined above, current bee-inspired optimization approaches are based on one of two

behaviours found in bees: foraging or mating. This section outlines current algorithms

based on these behaviours. For previous reviews of bee optimization methods and related

techniques, the interested reader should refer to Karaboga and Akay (2009).

8.1.1. Mating-based optimization algorithms

Honeybee Mating Optimization Algorithm One example of a genetically-based opti-

mization algorithm is the honeybee mating optimization algorithm (HBMO) developed

by Abbass (2001a,b) for discrete optimization problems. The HBMO algorithm contains

four main (artificial) entities called queens, drones, brood, and workers. The algorithm

operates in two stages: maiden flight and brood development. Both stages are executed

alternately until a stopping criterion is satisfied.

The HBMO operates with several queens. At the beginning of the maiden flight each

queen is equipped with a single randomly generated reference solution. In addition a queen

has a flight speed s, an energy e, and a limit for the amount of sperm (i.e., sample solutions

from drones) she can store in her spermatheca (i.e., a pool of new sample solutions). A

queen stops her maiden flight either when her energy is depleted or when a maximum
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number of drone solutions has been collected. During each step of her maiden flight a

queen Q encounters a drone D. She will absorb the drone’s solution with a probability of

p(Q,D) = e−d/s (8.1)

where d represents the fitness difference between the queen’s reference solution and the

drone’s solution and s represents the flight speed of the queen. As can be seen from

p(Q,D) a queen is very likely to accept a drone’s solution if the solution is better than

the queen’s reference solution or if her speed is high. After each step the queen’s flight

speed and energy are decreased, which results in the queen becoming more selective with

respect to absorbing potential drone solutions over the course of her flight.

The maiden flight is completed when a maximum number of drone solutions has been

collected, or when the queen’s energy is depleted. At this point, a queen will mate with

a drone solution randomly selected from those in her spermatheca. Mating involves the

application of a crossover operation to the selected drone solution and the queen’s reference

solutions, and results in a single offspring. In addition a mutation operation might be

applied. The survival of the offspring depends on the quality of this offspring reference

solution.

The offspring solutions of the queens are nursed by the workers during the brood devel-

opment stage. A worker represents a local search heuristic and nursing corresponds to the

application of this heuristic to try and improve the offspring solution. Then, before a new

maiden flight stage is started the least fit queens are replaced with the fittest offspring

until no offspring is fitter than the least fit queen. Again, this process is repeated until a

stopping criterion is satisfied.

Initially the HBMO algorithm was proposed for solving the Boolean satisfiability prob-

lem (Abbass, 2001a,b) and has since been adapted for several other problems such as

water reservoir management (Afshar et al., 2007; Haddad et al., 2008; Mohan and

Babu, 2010), data clustering (Fathian and Amiri, 2008; Marinakis et al., 2008) and

vehicle routing (Marinakis et al., 2009a).

Bumble bees mating optimization The Bumble Bees Mating Optimization algorithm

(BBMO) was introduced by Marinakis et al. (2009b) and is closely related to HBMO.

Here the mating behaviour of bumble bees is used as a template for optimization. The

algorithm is initialized by creating a number of solutions to a given problem, with each

solution corresponding to the genotype of a bumblebee. The best solution to the initial

population becomes the queen, while the rest of the population are considered to be drones.

As in the HBMO algorithm the queen will select drones in terms of fitness and mate with

them until her spermatheca is full.

117



8. Hunting the optimum: Honeybee nest-site selection as an optimization process

After this initial mating the queen will start to lay eggs. A queen is able to produce

two kinds of bees: workers and drones. Workers are the result of a point-wise crossover

between the queen’s genotype and one of the drones (i.e., given a certain crossover rate

Cr it is decided for each position in the genome if the queen’s genetic information is kept

rand(0, 1) < Cr or the drone’s genetic information will be used). In contrast, drones are

created via random mutations of the queens genotype.

The fittest individuals of the worker population are considered as new queen candidates.

Via a feeding process (which corresponds to local search) the new queens are fed by the

old queen as well as a number of workers. The local search is applied multiple times to

single positions of the candidate queens genotype (i.e., single dimensions of the problem)

and realized via the following equation:

nqi = nqi + (bmax −
(bmax − bmin) · lsi

lsimax
· (nqi − q)+

1

M
·

M
∑

k=1

(bmin −
(bmax − bmin) · lsi

lsimax
· (nqi − wk)

(8.2)

Here nqi corresponds to the genotype of a new queen candidate, q denotes the solution

of the old queen and wk corresponds to a worker bee. M denotes the number of workers

that will feed the candidate queen. The impact of the workers versus the impact of the old

queen on the local search is steered via the parameters bmax, bmin, lsi and lsimax, where

lsimax corresponds to the maximum number of local search steps which are performed,

lsi corresponds to the current local search step and bmax and bmin are parameters in the

range of (0,1). Marinakis et al. choose bmax to be close to 1 and bmin to be close to 0,

which leads to the local search incorporating the old queen’s solution in early local search

iterations, while focusing on the workers in the later phase.

After the feeding the candidates, queens as well as the drones leave the hive and mate

and the fittest fertilized candidate queens survive and continue the reproduction process.

The BBMO algorithm was initially introduced as a hybrid approach to clustering

(Marinakis et al., 2009b) and has since been applied to the vehicle routing prob-

lem (Marinakis and Marinaki, 2010) as well as unconstrained optimization problems

(Marinakis et al., 2010).

Honeybee inspired evolutionary computation Other approaches that are based on hon-

eybee mating utilise bee-inspired operators within existing evolutionary computation al-

gorithms, see for example Sato and Hagiwara’s bee system (Sato and Hagiwara,

1997), Jung’s queen-bee evolution (Jung, 2003) or Karci’s bee-inspired genetic crossover

operator (Karci, 2004). As these methods extend well-known optimization methods we

will not go into further detail here.
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8.1.2. Foraging behaviour based approaches

Foraging behaviour based approaches take inspiration from the mechanisms underlying the

foraging process in honeybees. Besides the experimental studies outlined in Chapter 5,

several theoretical models support and outline the effectiveness of the honeybee’s decen-

tralized decision-making process when foraging (Beekman and Lew, 2008; de Vries

and Biesmeijer, 1998; Dornhaus et al., 2006; Seeley et al., 1991; Sherman and

Visscher, 2002; Sumpter and Pratt, 2003).

Sherman and Visscher (2002) investigated when waggle-dance recruitment is benefi-

cial. Their results suggest that this recruitment increases the amount of food a colony can

collect when resources are scarce. A recent study by Dornhaus et al. (2006) suggests

that the recruitment dance is especially beneficial if resources are few in number and of

variable quality. Beekman and Lew (2008) found that recruitment is most beneficial if

the average success in locating new food patches falls below the average success of recruit-

ment. Additionally, they showed that communication facilitates the rapid exploitation of

highly profitable food sources when several food sources of different quality are present.

Thus, the bees’ dance communication regulates the trade-off between exploitation and

exploration.

These studies underline the usefulness of honeybee foraging behaviour in terms of op-

timization in a dynamic environment in which resources are sparse and differ in quality,

as is the case in many problem domains of optimization. Moreover, the above-mentioned

studies outline the importance of direct communication between the bees. Inspired by

these findings, direct information transfer plays an important role in the algorithms which

are outlined below. This is in contrast to ant colony optimization algorithms that rely on

indirect communication via artificial pheromones (Bonabeau et al., 1999).

The Artificial Bee Colony Algorithm (ABC)) The Artificial Bee Colony algorithm

(ABC) was introduced by Karaboga (Karaboga, 2005; Karaboga and Basturk,

2007b) for function optimization. Each solution (i.e., a position in the search space) rep-

resents a potential food patch and the solution quality corresponds to the food patch’s

quality. Agents (artificial bees) search and exploit the food sources in search space.

The ABC uses three types of agents: employed bees, onlooker bees, and scouts. Em-

ployed bees (EB) are associated with the current solutions of the algorithm. In every step

of the algorithm an EB tries to improve the solution it represents using a local search step,

after which it will try to recruit onlooker bees (OBs) for its current position. OBs select

among the promoted positions according to their quality, meaning that better solutions

will attract more OBs. Once an OB has selected an EB and thus a solution it tries to

optimize the EB’s position by means of a local search step. An EB updates its position if
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an OB it recruited was able to spot a better position, otherwise it remains at its current

position. In addition, an EB will abandon its position if it was not able to improve its

position for a certain number of steps. When an EB abandons its position it becomes a

scout, meaning that it selects a random position in the search space and becomes employed

at that position.

The algorithm can be described in more detail as follows: given a dim dimensional

function F and a population of n agents, ne = n/2 EBs and no = n/2 OBs. The algorithm

is initialized by placing EB i (i ∈ ne) on a random location θi in the search space. F (θi)

is then the quality of the position of EB i.

In every iteration, each EB tries to improve its location using a local search step. First,

EB i calculates a new a candidate solution

θ∗i = θi + rand(−1, 1) · (θi − θk) (8.3)

where θk corresponds to the position of another randomly chosen EB with index k (i 6= k)

and rand(−1, 1) constitutes a random number between −1 and 1 drawn from a uniform

distribution. Note that formula 8.3 is typically not applied for all dimensions of θi. While

the number of dimensions that are taken into account in the case of a constraint opti-

mization problem depends on a parameter called the perturbation rate (see Karaboga

and Basturk (2007a) for more details), only one dimension is taken into account for un-

constrained optimization problems. The dimension(s) to be altered are randomly chosen.

After a new candidate solution is calculated a greedy selection mechanism is used in order

to decide if θi should be discarded

θi =







θi if F (θi) > F (θ∗i )

θ∗i else
(8.4)

After each EB has updated its position, each OB chooses one of the current solutions.

A standard roulette wheel selection (Eiben and Smith, 2003).

Pi =
F (θi)

∑ne

k=1 F (θk)
(8.5)

is used, and better solutions attract more OBs. After choosing a solution an OB tries

to improve the solution using the same mechanism as outlined in Eq. 8.3. The EB that

corresponds to this solution updates its position if a better position is found by the OB.

The algorithm keeps track of how many steps an EB has been at the same solution. If the

number of steps spent on the same position reaches a certain value limit the EB abandons

its position and scouts for a new position, which corresponds to choosing a random position
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Algorithm 2 Artificial Bee Colony

1: place each employed bee on a random position in the search space
2: while stopping criterion not met do

3: for all EBs do
4: if steps on same position == limit then
5: choose random position in search space
6: else

7: try improve position (according to Eq. 8.3)
8: if better position found then

9: change position
10: reset steps on same position
11: end if

12: end if

13: end for

14: for all OBs do
15: choose position of employed bee (according to Eq. 8.8)
16: try improve position (according to Eq. 8.3)
17: end for

18: end while

in search space. This parameter thus controls the exploitation/exploration rate of the

system. In Karaboga and Basturk (2008) the impact limit was investigated, and

found to depend on the problem’s dimensionality and the number of employed bees in

the system, with an optimal value given as limit = ne · dim. In a recent study (Akay

and Karaboga, 2009) this suggestion was re-examined. It was concluded that small

colonies should use a value limit > ne · dim, as they need more time to search in the

vicinity of the EBs’ solutions than large colonies. In a very recent study (Diwold et al.,

2011a) the influence of ABC’s parameters on its optimization behaviour was investigated,

including the influence of the OBs on the algorithm’s performance, showing that the ideal

parameter values depend on the hardness of the optimization goal and that the standard

values suggested in the literature should be applied with care. Diwold et al. were also

able to show that using OBs is not always of advantage and that the ABC’s performance

decreases when used for problems where the optimum is not located in the centre of the

search space. Additionally, two new selection schemes were introduced which significantly

improved the ABC’s performance. For a better understanding, the basic ABC algorithm

is outlined in Algorithm 2.

The ABC has been used in several problem domains such as unconstrained (Karaboga

and Basturk, 2007b, 2008) and constrained numerical optimization (Karaboga and

Basturk, 2007a), data clustering (Karaboga and Ozturk, 2011), the training of neu-
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ronal networks (Karaboga et al., 2007) and protein structure prediction (Bahamish

et al., 2009).

Bees Algorithm (BA) The Bees Algorithm (BA) was introduced by Pham et al.

(2006b) as an optimization method for continuous and combinatorial function optimiza-

tion.

As in the ABC, the population of bees is divided into two groups: scouts and recruits.

While scouts are responsible for the exploration of the search space the recruits try to

exploit (i.e., improve) found solutions via local search. The algorithm depends on a set of

parameters which will be outlined briefly below.

The optimization process starts by assigning each of n scout bees to a random position

in the search space. A scout’s fitness corresponds to the quality of the position (solution)

it currently occupies. The best m ≤ n scouts are selected and the rest are discarded

(selected scouts are referred to as selected bees). The selected bees are further partitioned

according to their fitness into e elite selected bees and the m− e non-elite selected bees.

Each selected bee is assigned a number of recruits, and how many depends on the

solution quality of the bee. Each elite bee receives neq recruits, each non-elite bee nsp

recruits.

Each recruit performs a local search step at its assigned position according to

x∗j = (xj − ngh) + (rand(0, 1) · ngh · 2) (8.6)

with ngh denoting the search patch size. The best improvement of a selected bee’s so-

lution will replace this solution. If none of the solutions found by the recruits yields an

improvement over the selected bee’s solution, the solution is maintained. The scout pop-

ulation is filled up with these m solutions and n−m random solutions and the algorithm

repeats until a stop criterion is satisfied. It should be noted that the BA algorithm was

recently improved (Pham et al., 2008) by introducing more local search methods such as

mutation, creep, crossover, interpolation and extrapolation, that can be used by recruits

to improve given selected solutions. The algorithm underlying a standard BA is outlined

in Algorithm 3 according to Pham et al. (2006b).

The BA has been applied to various engineering problems, such as the training of neural

networks (Pham et al., 2006a,b,c,d), controller formation (Pham et al., 2009), image

analysis (Olague and Puente, 2006), job multi-objective optimization (Pham and

Ghanbarzadeh, 2007) and data traffic load balancing (Bernardino et al., 2011).

Bee Colony Optimization algorithm (BCO) The Bee Colony Optimization algorithm

(BCO) (Teodorovic and Dell’Orco, 2005) constitutes a generalized and improved
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Algorithm 3 Bees Algorithm

1: place each bee on a random position in the search space
2: evaluate the fitness of the population
3: while stop criterion not satisfied do

4: select solutions for a local search (exploitation)
5: assign bees to commit local search on selected solutions and evaluate fitness
6: for each solution select the best improvement
7: replace remaining solutions with random solutions (scout)
8: end while

version of the Bee System algorithm (Lucic and Teodorovic, 2001). Both algorithms

were designed to tackle combinatorial optimization problems. As the two algorithms are

basically identical, we will treat them as one in the following.

BCO divides the optimization process into I ≥ 1 iterations, where I is a parameter set

by the user. During each iteration, B virtual bees try to construct a solution for the given

problem. Due to the combinatorial nature of the problems BCO tackles, solutions are

constructed as a consecutive extension of initial partial solutions. To do so each iteration

is divided into a finite sequence of m ≥ 1 stages S = {s1, s2, . . . , sm}.

During a stage sj a bee will extend its current partial solution by adding an available

partial solution. In the BCO terminology extending a current solution with a partial so-

lution is called the forward pass. How a forward pass is implemented depends on the

underlying problem. In Lucic and Teodorovic (2001) the BCO (then called Bee Sys-

tem) was used to solve the travelling salesperson problem, and the Logit model (Cramer,

2003) was used to decide how to extend partial solutions.

After each bee has performed a forward pass, a backward pass is performed, in which

all bees compare their current partial solutions. On the basis of this comparison bees

decide whether or not to keep their current partial solution, promote it to other bees, or

abandon it. Bees that give up their current partial solution will choose one of the solutions

promoted by other bees. The backward pass ends a stage. The sequence of stages leads

to an iterative solution build-up where bad partial solutions will be abandoned and the

search will focus on promising partial solutions.

At the end of each iteration, it is determined whether the best solution found in that

iteration should become the new global best solution. The underlying algorithm is outlined

in Algorithm 4.

The BCO has been used to solve problems in traffic and transportation (Lucic and

Teodorovic, 2001, 2002, 2003; Teodorovic and Dell’Orco, 2005; Teodorovic and

Dell’Orco, 2008; Teodorovic et al., 2006).
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Algorithm 4 Bee Colony Optimization

1: initialization
2: for all I iterations do
3: for all m stages do
4: for all B bees do
5: forward pass: choose partial solution
6: end for

7: for all B bees do
8: backward pass: exchange information about partial solutions with bees in nest
9: end for

10: end for

11: if best solution obtained in iteration is global best, update best-known solution
12: end for

The Bee Colony-Inspired Algorithm (BCiA) The bee colony-inspired algorithm (BCiA)

was recently introduced by Häckel and Dippold (2009) for the vehicle routing problem

with time windows (VRPWTW). Given a number of customers that have to be supplied

with goods within a certain time window, optimizing the VRPWTW requires finding a

route schedule that minimizes the associated costs (number of vehicles needed and total

tour length). In order to avoid conflicts between the two optimization objectives, BCiA

operates in two stages – in the first it tries to reduce the number of vehicles needed for

a valid solution and in the second it tries to minimize the total tour length. Instead

of a single population of virtual bees, BCiA uses 2 populations P1 and P2 operating

in stages 1 and 2, respectively. The principles used in BCiA are similar to those used

in the ABC (Karaboga and Basturk, 2007b), but ABC was designed for numerical

optimization problems whereas BCiA tackles discrete optimization problems.

BCiA uses virtual bee populations that consist of three bee types: employed bees (EBs),

follower bees (FBs), and scouts. The separation of roles within a population is similar to

ABC: EBs are associated to current solutions, FBs try to improve those solutions (similar

to OBs in ABC), and scouts provide the population with new solutions (this is done by

EBs in ABC).

The two populations of BCiA each consist of neb EBs, nfb FBs and nscout scouts. Ini-

tially, the EBs of both populations are initialized with random solutions. Each iteration

of the algorithm is divided into two stages. In the first stage the first population P1 tries

to improve its solutions. This is done similarly to the ABC, i.e., each FB chooses an EB

based on its fitness with respect to the first optimization goal F1.

FBs then try to improve an EB’s solution by constructing a new solution. During the

construction process a new solution is constructed taking the EB’s solution into account.

The details of the process depend on the specific optimization problem and will not be
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discussed here (the interested reader is referred to the publication itself Häckel and

Dippold (2009)). If the solution found by an FB has better quality than the EB’s current

solution, the latter is replaced by the FB’s solution.

Algorithm 5 The bee colony-inspired algorithm (BCiA)

1: initialize populations
2: while stop criteria not met do
3: for all i ∈ {1, 2} do

4: for all FBs ∈ Pi do

5: choose EB ∈ Pi

6: construct new solution regarding Fi using EB
7: end for

8: update EBs ∈ Pi according to the solutions found by the FBs
9: for all scouts ∈ Pi do

10: construct a new solution with respect to Fi

11: exchange worst EB if better solution is found by scout
12: end for

13: if i equals 1 then

14: update EBS in P2 according to P1

15: else

16: update EBS in P1 according to P2

17: end if

18: end for

19: check age of solutions and replace them if age exceeds limit
20: end while

After the FBs try to improve the current solutions in the populations, the scouts create

new solutions. Scouts do not use a reference solution when generating a new solution, but

apart from this the generation process is identical to the one used by the FBs. The best

scout solutions will replace the worst EBs if their quality is better. After the improvement

step a solution exchange between the two populations P1 and P2 is initiated. In stage

1 each EB in P1 that is not yet present in P2 and has a better quality regarding the

optimization goal of P2 (i.e., F2) than the worst EB in population P2 is added to P2, while

the worst EB in P2 is deleted. The converse occurs in stage 2.

The second stage of the iteration is then executed. It follows the same sequence of

actions as in the first stage but uses population P2 and the optimization goal F2. At the

end of each iteration of stage 2 the age (i.e., number of iterations the solution was not

improved) of all solutions (i.e., EBs) is checked. Solutions that exceed a certain age are

exchanged (similar to ABC). Any old solutions of the population P1 are substituted by new

scout-generated solutions, and if any solutions in P2 are abandoned, they are substituted

by the best solution with respect to F2 from population P1. The substitution in P2 only
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Table 8.1.: Look-up Table for adjusting ri according to the profitability rating.

Profitability Rating ri
Pfi < 0.9 · Pfcolony 0.60
0.9 · Pfcolony ≤ Pfi ≤ 0.95 · Pfcolony 0.20
0.95 ·Pfcolony ≤ Pfi ≤ 1.15 ·Pfcolony 0.02
1.15 · Pfcolony ≤ Pfi 0.00

happens if the solution in P1 contains the best (i.e., smallest) number of vehicles known

so far, otherwise no substitution takes place.

BCiA terminates when a stop criterion is satisfied. The algorithm is outlined in algo-

rithm 5.

Bee Colony Optimization Algorithm (BCOA) Introduced by Chong et al. in 2006,

the Bee Colony Optimization Algorithm (BCOA) was originally proposed for the job shop

scheduling problem (Chong et al., 2006, 2007).

BCOA consists of a population of n foragers. During each iteration each forager fi

constructs a solution for the given optimization problem. The foragers then promote their

solutions to each other. Based on the quality of its own solution, a forager can decide to

keep its previous solution or abandon it and adopt that of another forager. After each

forager has decided, it will create a new solution based on its current solution. The general

principle of BCOA has similarities to the BCO which was outlined above.

Each iteration in the BCOA can be divided into two phases: the dancing phase and

the foraging phase. During an iteration each forager constructs a solution for the given

problem (how will be explained later). Then each forager fi (i ∈ [1, n]) returns to the

hive and performs a waggle dance with a certain probability p. Let Pfi = 1/Ci
max denote

the profitability rating of the solution a dancing forager fi is trying to promote, where

Ci
max represents the fitness of fi’s current solution. The average profitability rating of

all dancing foragers is given by Pfcolony = 1/nd
∑

i∈Fd
Pfi, with nd corresponding to the

number of dancing bees, and Fd the set of dancing bees.

The waggle dance of forager fi will last for D = di · A steps with di = Pfi/Pfcolony

depending on the profitability rating of the obtained solution (e.g., make span, tour length)

and 0 < A denoting a waggle dance scaling factor. Each forager also attempts to follow

a randomly selected dance of another forager with probability ri, with ri depending on

the profitability rating of the solution found (see Table 8.1) (i.e., foragers that found a

solution with high profitability rating are unlikely to follow another forager’s dance).

The BCOA has been extended for the travelling salesman problem (Lu and Zhou,

2008; Wong et al., 2008, 2009) and a recent modification of the algorithm for feature

selection problems has also been proposed (Subbotin and Oleinik, 2009).
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The Virtual Bee Algorithm (VBA) The Virtual Bee Algorithm (VBA) algorithm scheme

for numerical optimization was introduced by Yang (2005). It proposes function optimiza-

tion via a set of virtual bees that are initialized on random positions in a given search

space. Each position of the search space is assigned virtual food, such that the food quality

corresponds to the value of the function to be optimized at a given position. Virtual bees

will explore the search space and communicate found food patches to other bees. Bees that

receive information about other food patches will incorporate this information into their

search behaviour. Please note that Yang gives only a very schematic description of the

algorithm. The exact details of how communication, search, and incorporation of solutions

obtained from other individuals is handled is not explained in Yang (2005). The VBA

was tested on two 2-dimensional test functions and the author claims that it outperformed

a standard genetic algorithm. As the article lacks detailed information on the proposed

algorithm it is hard to validate these findings.

8.2. Nest-site selection as an optimization process

To test the optimization potential of nest-site selection the spatial nest-site selection model

introduced in Chapter 6 was used. Unless stated otherwise, the same parametrization as

in Chapter 6 was used in the optimization experiments. All presented results are averaged

over 10 runs and the number of bees was set to n = 500, as this resembles a reasonable

number of real honeybees taking part in the selection process.

8.2.1. Experiment: Nest-site selection in a dynamic environment

This experiment tests how the nest-site selection process performs in an environment where

the quality of the sites changes over time. In an environment with two nest sites located

equally far from the swarm but which differ in quality, the number of scouts would build

up quickly at the higher quality nest-site if the nest-sites quality remains the same. In this

experiment however the quality of the nest sites is swapped at regular intervals. While

such a situation is unlikely to occur in nature, changing optima are ubiquitous in dynamic

optimization problems.

The environment contains two potential nest sites n1, n2 that are located in opposite

directions 150 meters away from the swarm’s position. Site n1 is initialized with a good

quality (qgood = 75) while n2 is initialized with bad quality (qbad = 45). The simulation

runs for 32 hours, corresponding to 115200 simulation steps. At an interval of 28800

simulation steps (i.e., every 8 hours) the qualities of the nest sites are swapped. This leads

to a total of 3 quality switches over the whole simulation run.
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Figure 8.1.: Average number of bees assessing a nest site in a system where the site qualities
are swapped every 8 hours (2880 simulation steps). Error bars show standard
deviation.

Given that there is a probability that a scout will not find a given nest site, it is possible

that the swarm discovers one nest site only during the simulation, or perhaps even none

at all. In addition, a swarm can “forget” a low quality nest site if no dance for that site is

sustained prior to the switch in nest-site quality. When this happens the site needs to be

rediscovered after the qualities have been swapped. To ensure that bees are aware of both

nest sites each time their quality is switched, a random bee is chosen that starts dancing

for the nest site that was of low quality but switched to high quality.

Figure 8.1 depicts the average number of bees at each nest site over 10 simulation runs.

The swarm quickly adapts to changes in nest-site quality. It is clear that the process is

rather slow as it takes the swarm approximately 2 hours to adapt to the change in quality.

However, this is not necessarily a disadvantage as it makes a swarm resilient towards noise.

Even though in real bees the quality of a nest site is most likely to remain constant, the

discovery of a new nest site also constitutes a change in the swarm’s environment. Without

the ability to react to changes in the environment, a swarm could get stuck in a suboptimal

solution if it finds a nest site of mediocre quality early in the decision-making process. In

terms of optimization, adapting to a dynamic environment is an interesting aspect, as

it can be applied to the detection of changing locations of the optima in problems with

dynamic fitness functions.
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Figure 8.2.: Average number of bees assessing a nest-site when the nest-site of high quality
changes in quality. The quality of nest site n1 changes each 1800 simulation
steps between qgood = 75 and qvbad = 35, whereas the quality of nest site n2
is constant at qmediocre = 55. Error bars show standard deviation.

8.2.2. Experiment: Nest-site selection in a noisy environment

This experiment tests whether the swarm is capable of selecting a stable mediocre quality

nest site and disregarding a site of sometimes high but very unstable quality.

The number of bees and the number and position of the potential nest-sites is the

same as in Experiment 1, but the quality of nest-site n2 is kept constant at mediocre

quality (qmediocre = 55), whereas the quality of nest site n1 changes at an interval of 1800

simulation steps (i.e., every 30 minutes), alternating between good (qgood = 75) and very

bad (qvbad = 35). Nest-site n1 is initialized with a good quality qgood. A simulation run

lasted for 32 hours corresponding to 115200 simulation steps. To ensure that the swarm

is aware of each nest site, a random bee starts dancing for each nest site at the beginning

of the simulation.

Figure 8.2 shows the average number of bees at the two nest sites over 10 simulation

runs. As can be seen, the swarm is able to direct most scouts towards the stable mediocre

nest site. At the start of a simulation the number of bees builds up quickly at both

nest sites, which is caused by the fact that one bee starts dancing for each nest site

when the simulation is started. However, as bees begin to revisit the nest sites, more

bees are recruited towards the mediocre stable site. This is due to the revisit behaviour

of honeybees. Even though many bees will initially promote nest-site n1 more strongly

than nest-site n2 due to better quality, the ongoing revisiting will cause many bees to

abandon the unstable site and choose the stable site. Nest-site n1 will never be completely
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Table 8.2.: Test functions and domain space range (R). The dimension of each function is
2.

R

Sphere fsp(~x) =

n
∑

i=1

x2

i [−25; 25]n

Booth fbt(~x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 [−10; 10]n

abandoned due to the fact that some visiting bees will always experience it as a very good

nest site and thus revisit it. In general this experiment demonstrates that the nest-site

selection mechanism is, to some extent, resilient towards noise.

8.2.3. Experiment: Function optimization via iterative nest-site selection

When searching for a new nest-site, bees typically have to decide between several discovered

nest-sites. In case of the European honeybee A. mellifera, the number of possible good

nest sites is limited as they live in cavities. The swarm needs to ensure that it decides

for the best site possible so that it becomes unlikely that the nest site turns out to be of

insufficient quality, forcing the swarm to move again. However, for bee species that live

in the open such as the Dwarf honeybee A. florea, the quality of the nest site appears to

be less important and the swarm has the chance to “upgrade” if its initial decision was

suboptimal (Oldroyd et al., 2008).

Thus it interesting to see if an iterative nest-site selection process as found in A. florea

can lead to an optimization in an environment with many potential nest sites. In this

experiment it is assumed that the swarm’s environment corresponds to the search space of

a continuous function. Each position in the environment constitutes a potential nest site,

and its quality corresponds to a value of the function at that position. The test functions

used in the experiment and their associated parameter values are given in Table 8.2. The

swarm is initially placed at position [-20,-20] for the Sphere function and [-10,-10] for the

Booth function.

For this experiment the scouting behaviour of the bees has been changed, as the first

version of the extended model is orientated to the behaviour of A. mellifera where a scout

assesses a nest-site for a certain period of time before returning to the swarm. However in

this experiment each location corresponds to a potential nest-site, and scouts would thus

immediately start to assess sites after a single scouting step. To overcome this, a scout in

this experiment remembers the best position it encountered during its scouting trip. If the

quality of that position is better than the current location of the swarm it starts dancing

for that site.
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Figure 8.3.: Boxplots of the quality of the occupied nest site over several relocations for
the two test functions.

The quality of a newly discovered site is defined relative to the quality of the current

location of the swarm. If a scout discovers a nest-site that is 60% better than the swarm’s

current location, this site is assigned quality 60.

Bees that followed a dance for a potential nest-site become recruits for this site and will

fly towards it. If they encounter a better site on their way to this nest site, they abandon

the recruitment process and become scouts. Recruits that do not find an advertised nest

site also become scouts.

Nest-sites are assessed by recruits and returning bees for a certain amount of time,

TASSESS, during which a bee counts the number of other bees present at the site. If the

number of bees at a site reaches a given quorum q = 10 the swarm is relocated to this

new site and the nest-site selection process is restarted. The parameter values used in

this experiment are: step size step = 0.1, scouting TSCOUT = 100, and assessment time

TASSESS = 20. A simulation run is stopped when no swarm relocation occurs within 3600

simulation steps.

The changes in the quality of the found nest sites for both test functions over several nest-

site relocations is depicted in Figure 8.3. As can be seen, the bees are able to iteratively

optimize the position of the swarm within the search space. The optimization process is

limited by several factors. Since scout time TSCOUT and step size step are fixed, scouts are

only able to explore a certain range around the swarm’s current location whereas a fixed

step size prevents scouts from finding better solutions as they are likely to fly over them.

This is especially the case when the swarm is close to the global optimum when scouts

should actually search at a finer scale. Another limiting factor is the quality assessment.

Remember that the quality of a newly found nest site is determined according to the

potential improvement with respect to the current location of the swarm. To make an

algorithm based on nest-site selection applicable to real optimization problems, the swarm
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Algorithm 6 Bee Nest-Site Selection Scheme (BNSSS)

1: place bees on a random home position (swarm location) in the search space
2: initialize parameters Φ, Φ′, Ψ, d, and d′

3: while stopping criterion not satisfied do

4: for all scouts do
5: k = h
6: repeat

7: the scout flies to a random position x with maximum distance d to its current
home

8: if f(x) ≥ Φ then

9: the scout performs k local search steps to find an improved location
10: k = 0
11: else

12: k = k − 1
13: end if

14: until k ≤= 0
15: end for

16: for all followers do
17: randomly assign the follower to one of the scouts where the probability depends

on the quality of the location of the scout
18: repeat

19: the follower flies to a random position x with maximum distance d′ from the
location of the scout it is assigned to

20: if f(x) ≥ Φ′ then

21: the follower performs k local search steps to find an improved location
22: k = 0 and stops
23: else

24: k = k − 1
25: end if

26: until k ≤= 0
27: if the follower could not find a location x with f(x) ≥ Φ′ then

28: the follower abandons the scout
29: end if

30: end for

31: if the swarm has found a location that is better than it its home location then

32: its new home is the best of these locations
33: else if there exists a scout which has more than Ψ followers assigned to it then
34: the swarm is assigned to the scout or one of its followers which has the best

location
35: else

36: the swarm is assigned a new randomly chosen home location or it stays at its
current location

37: end if

38: update d, d′, Φ, Φ′ and Ψ
39: end while
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needs to become more sensitive to small quality differences to identify better potential

nest sites when the swarm comes closer to the location of an optimum.

The decision-making process underlying the optimization is slow. The higher the quo-

rum q of bees needed at a potential nest before the swarm changes to this site, the slower is

the optimization process. The quorum mechanism could however also prove to be useful in

terms of optimization, because the existence of a quorum prevents premature convergence

onto a local minimum by slowing down the decision-process and thus giving better sites a

higher chance to be discovered and enter the decision-making process. Another potential

benefit of the quorum mechanism is that it requires bees to revisit and reassess a given

site several times, which is important for dynamic or noisy optimization functions.

8.3. The BNSSS scheme

Since some aspects of the bee nest site selection model are relevant for real bees but are

not useful for a function optimization algorithm, we present here a scheme — called Bee

Nest-Site Selection Scheme (BNSSS) — for the design of optimization algorithms. The

BNSSS, described in Algorithm 6, is provided as a framework into which details have to

be added when a specific algorithm is designed. For example the values of d, d′, Φ, Φ′, and

Ψ have to be defined. Where Φ, Φ′, and Ψ should depend on the quality of the locations

that have been found already. The values for d and d′ might decrease during the run of the

algorithm so that the swarm concentrates on a small area of the search space. In contrast,

for dynamic optimization functions it might also be necessary to increase the values of d

and d′ at points in the decision-making process when it is found that the function to be

optimized has changed. In addition, for noisy optimization functions it might be suitable

to set d′ = 0 so that the location of a scout is evaluated several times.

The BNSSS scheme given here is designed for a single swarm of bees, however the appli-

cation of multiple swarms within an algorithm is also possible. This would require defining

how the different swarms cooperate – for example, the swarms might be implemented to

remain a certain distance from each other in order to cover different parts of the search

space.

8.4. Applying bee nest-site selection behaviour to molecular

docking

As we have already seen, the nest-site selection process has great potential for optimiza-

tion. Based on the BNSSS scheme outlined in the last section, the first Bee Nest-site

optimization (BNSO) algorithm for solving a complex optimization problem was devel-
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Figure 8.4.: A small molecular ligand visualised as a chemical formula with internal degrees
of freedom highlighted by arrows (top) and the ligand bound into the pocket of
a tRNA-Guanine Transglycosylase (bottom) as experimentally resolved by X-
ray crystallography (Protein Database entry 1K4G). This figure is reproduced
from Diwold et al. (2011c) and was created by Carsten Baldauf.

oped (Himmelbach, 2011). This algorithm is called Bee-Nest and its application in the

domain of molecular docking, which constitutes a challenging real-life application domain,

is outlined in this section. Unless stated otherwise the figures in this section (adapted

from Diwold et al. (2011c)) were originally created by Daniel Himmelbach.

By recognizing small molecules, proteins act as the receptors of ligands. These interac-

tions are formed if the three dimensional (3D) structure of the ligand fits into the binding

pocket of the protein, like a key into a lock (see Figure 8.4 for an exemplary illustra-

tion). Knowledge about such interactions is crucial for the understanding of physiological

processes and is a fundamental basis for the development of pharmaceutical substances.

The 3D structural information has been experimentally resolved for only a limited num-

ber of protein-ligand pairs, while no such data is available for the vast majority of cases.

As resolving structural ligand-protein information experimentally is quite costly, compu-

tational approaches have become more and more established in the prediction of such

complexes (Halperin et al., 2002). Computational approaches allow the fast and inex-

pensive screening of large libraries of potential ligands against a variety of protein targets

134



8.4. Applying bee nest-site selection behaviour to molecular docking

and thus serve as a means of sampling potential ligand candidates, with the best results

then being further investigated in wet-lab experiments. Such rapid in silico-screening

methods are of growing importance in the industrial drug design process.

From a computer science perspective, molecular docking boils down to an optimization

problem, namely finding the protein-ligand pose with minimal binding energy. Given

a scoring function that estimates the binding energy of a protein-ligand complex, the

docking problem results in the search for the global minimum in a multi-dimensional

energy landscape.

Several population-based metaheuristics such as genetic algorithms (Jones et al.,

1995), ant colony optimization (Korb et al., 2006) and particle swarm optimization

(Janson et al., 2008; Liu et al., 2005; Meier et al., 2010) have been proposed to

provide solutions to the problem of molecular docking.

8.4.1. Bee-Nest algorithm

The Bee-Nest optimization starts with a colony of virtual bees being placed at a ran-

dom position in search space. Here the search space represents an environment and each

position in the search space corresponds to a potential nest-site (solution). The quality

of a nest-site is given by the value of the function to be optimized at the corresponding

position.

Using the principles of nest-site selection the colony tries to find a nest-site of better

quality than its current location. A colony contains two types of bees: scouts and fol-

lowers. The selection process begins with scouts trying to find potential nest-sites in the

surroundings of the swarm’s current location. If the scouts are able to find a location that

is of acceptable quality, they report it to the swarm. Followers choose a scout to follow

based on the quality of the nest-site it has found (i.e., scouts that found better nest-sites

will attract more followers). The follower then flies to the location the scout found and

searches the surrounding to eventually find a better location. If the colony is able to come

up with a location that is of better quality than its current location, it will relocate itself to

the new location and restart the nest-site selection process. Otherwise, the colony repeats

the selection process at its current location.

More formally: Given a dim dimensional function F that is to be minimized and

a swarm of n virtual bees consisting of nscout scouts and nfollower followers (i.e., n =

nscout + nfollower). The swarm is initially placed on a randomly chosen location pswarm =

(x1, . . . , xdim) in the search space. Each scout s chooses a location ps uniformly at ran-

dom with the restriction that it has a maximal distance dscout · fr to the swarm’s current

location (i.e., |pswarm − ps| ≤ dscout · fr). Here dscout is a parameter and fr (0 ≤ fr ≤ 1)

is a factor that decreases over time in order to achieve an increasingly local search of the
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Figure 8.5.: Visualization of a Bee-Nest optimization run over 4 nest relocations (in this
case on a two dimensional Sphere benchmark function).

algorithm. One possibility of defining fr is to predefine a maximum number of iterations

MAXITER per optimization run and adapt fr accordingly by

fr = 1−
iteration

MAXITER
(8.7)

where iteration is the number of the current iteration. The quality of the chosen location

is tested with the criterion F (ps) ≤ F (pswarm) · fq, where parameter fq (0 ≤ fq ≤ 1)

is a quality factor. If a chosen location satisfies the criterion, this means the scout has

found a potential nest-site at location ps, which can then be chosen by potential followers.

The probability to be chosen by a follower depends on its relative fitness, defined by

fits = max{0, (F (pswarm) · fq)− F (ps)}.

After each scout has updated its location, each follower f chooses one scout using a

standard roulette wheel selection so that the probability Ps of choosing scout s is

Ps =
fits

∑nscout

k=1 fitk
. (8.8)

Each follower is placed at the location of the scout it has chosen and chooses uniformly at

random a location pf in the vicinity of the scout’s location ps, such that it is not further
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Algorithm 7 Bee-Nest

1: place swarm on random location p, i.e., pswarm = p
2: repeats = 0;
3: while stop criterion not satisfied do

4: reduce frange according to Eq. 8.7
5: for all scouts do
6: Choose new location ps with a max distance of dscout · frange to the nest
7: fits = max{0, (F (pswarm) · fq)− F (ps)}
8: end for

9: for all followers do
10: Choose a scout s according to Eq. 8.8
11: Choose new location pfollower with a max distance of dfollower to chosen scout’s

position ps
12: Sample search space between ps and pfollower in m flight steps
13: end for

14: if better location p was found then

15: Relocate swarm to p, i.e., pswarm = p
16: else

17: if repeats ≥ MAXREPEATS then

18: Place swarm on new random location p, i.e., pswarm = p
19: repeats=0;
20: else

21: repeats=repeats+1;
22: end if

23: end if

24: end while

distant than the parameter dfollower (i.e., |ps−pf | ≤ dfollower). Then the follower samples

the search space between ps and pf in a directed flight consisting of m equal length flight

steps. At the end of each step function F is evaluated.

During the whole process the system maintains the best solution found so far pbest. If the

swarm is able to find a better location than its current location (i.e., F (pbest) > F (pswarm))

it migrates to the new location. Otherwise it restarts the nest-site selection process from

its current location. If a swarm is not able to improve its location in MAXREPEATS

steps then it is moved to a random location in the search space and the nest-site selection

process restarts. The algorithm terminates when a given stopping criterion is satisfied.

For better understanding, the pseudocode of the Bee-Nest algorithm is presented in

Algorithm 7. A visualization of a search run over 4 nest-site relocations, containing the

search trajectories of scouts and followers, on a 2-dimensional Sphere function is shown in

Figure 8.5.
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8.4.2. Experimental setup

Bee-Nest was implemented in ParaDocks, a molecular docking framework developed for

population-based heuristics (Meier et al., 2010). To benchmark the performance of the

Bee-Nest algorithm for the docking problem, 173 instances from the PDBbind database

core-set (Wang et al., 2004) were used for testing. The obtained optimization and

sampling performance was compared to a PSO algorithm that was previously proposed

for docking (Meier et al., 2010), as well as randomly selected solutions and solutions

derived using local optimization.

Modelling of molecules and molecular complexes in chemistry and biochemistry always

features a variety of approximations, some of which affect the number of degrees of freedom

(DOF), i.e., the dimension of the search space. In the approximation used here, a ligand-

receptor pose is described by a vector containing 3 Cartesian coordinates for the ligand’s

position, its orientation is described by the 4 DOF of a quaternion, and N internal DOF

describe the ligand’s conformation. In the used test instances the internal flexibility ranges

up to N = 35 internal DOF. Thus, the search space with 7 + N dimensions can be up

to 42-dimensional. The conformation of the receptor is regarded to be rigid (this is an

accepted approximation in the field).

The statistically derived potential PMF04 was used to describe the binding energy

landscape between ligand and receptor as pair-wise potentials of ligand and receptor atoms:

Wij(dij) = − ln
gij(dij)

gref
, (8.9)

with gij(dij) the density of the atom pair ij in distance dij, and gref the average density

of atom pair ij. PMF04 is derived from 6611 protein ligand complexes and describes the

interactions of 17 protein atom types with 34 ligand atom types (for a detailed description,

see Muegge 2006). The adaptations necessary to use PMF04 for molecular docking are

described in Meier et al. (2010).

The following three optimization algorithms were employed as a reference:

PSO: The PSO was used with the settings suggested in Meier et al. (2010) with

30 particles evaluated in 300,000 generations.

RNDM: Nine million random poses were generated based on the Mersenne twister

algorithm published by Matsumoto and Nishimura (1998) and the best result

was kept.

RHC: 9,000 randomly chosen poses were locally optimized by 1,000 hill climbing

steps. Lower energy poses are accepted, higher energy poses are discarded.
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Algorithm 8 Random Walk

1: for k ∈ 0 . . .MaxLO do

2: fl = (1− k/MaxLO)/16
3: Generate new random solution pr with |pr − pnn| < fl · dscout
4: if (F (pr) < F (pnn) then
5: pnn = pr
6: end if

7: end for

For the molecular docking problem the BNSO algorithm Bee-Nest was slightly extended

with a local search as follows. When a better nest-site pnn was found, by a scout or follower,

a simple random walk (Algorithm 8), was applied to the location MaxLO ≥ 1 times for

the purpose of local optimization. This random walk generator chooses a location in the

vicinity of the current best location pnn. The maximum distance of the randomly generated

location pr to the current best location pnn is restricted to |pr − pnn| < fl · dscout where

fl is a parameter. Parameter fl decreases over the the local search iterations towards 0 (

see Algorithm 8), which leads to convergence of the new locations pr to pnn. The random

walk is also applied to the final location returned by Bee-Nest for PostLO times.

The following parameter settings were used for the BeeNest algorithm: n = 30, nscout =

10, nfollower = 20, fq = 0.95, MAXREPEATS = 20, MaxLO = 4, PostLO = 4096.

Since in the context of molecular docking the dimensions of the search space correspond

to different aspects of the problem (position, orientation, rotations of single axes in the

molecules (internal DOF)) different values of dscout (dfollower) are used for the different

types of dimensions in order to determine the search range for new locations around the

current nest or scout location:

dscout =



















0.003616 · SpaceRange, for position

0.001084 · 2π, for orientation

0.027854 · 2π, for internal DOFs

dfollower =



















0.025366 · SpaceRange, for position,

0.039257 · 2π, for orientation

0.012289 · 2π, for internal DOFs

Each of the four algorithms were tested on the 173 test instances, with a duration

corresponding to 9, 000, 000 energy evaluations. Each test instance was repeated 50 times.

The test results will provide on insight into the quality of the solutions and the robustness

of the algorithms with regards to the molecular docking problem.
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8.4.3. Results

Tables 8.3, 8.4 and 8.5 show a comparison of the minimum, median and mean energy

values achieved by the four algorithms averaged over all test-instances. As can be seen,

Bee-Nest performs very well. It is able to achieve better energy values than PSO as well

as RHC and RNDM on the majority of the test instances for all three comparisons. The

Table 8.3.: Minimum energy value comparison for 173 test instances. Each cell denotes
the number of test instances for which the minimum energy value obtained in
50 test runs of the algorithm stated in the row was better (i.e., lower) than the
minimum energy of the algorithm stated in the column.

Alg vs. Alg PSO Bee-Nest RNDM RHC

PSO - 32 172 134

Bee-Nest 141 - 173 168

RNDM 1 0 - 0

RHC 39 5 173 -

Table 8.4.: Median energy value comparison (analogously to Table 8.3).

Alg vs. Alg PSO Bee-Nest RNDM RHC

PSO - 74 173 116

Bee-Nest 99 - 171 142

RNDM 1 0 - 0

RHC 39 5 173 -

Table 8.5.: Mean energy value comparison (analogously to Table 8.3).

Alg vs. Alg PSO Bee-Nest RNDM RHC

PSO - 77 173 113

Bee-Nest 96 - 173 133

RNDM 0 0 - 0

RHC 60 40 173 -

random hill climbing method (RHC) shows a decent performance, which is slightly worse

than PSO and Bee-Nest. The randomly generated solutions of RNDM are outperformed

in each aspect by the other algorithms. Table 8.3 suggests that Bee-Nest is particularly

capable of finding very low energy levels. In comparison with PSO it found the protein

conformations with the lowest energy levels in 141 of the 173 test instances.

Figure 8.6 depicts scatter plots of the median energy levels found by the Bee-Nest, PSO,

and RHC in all test instances. Scatter plots for RNDM are omitted as its performance

was very poor in general (see Tables 8.3-8.5). In Figure 8.6 the x-value corresponds to

the median energy value of one algorithm for a given molecular docking instance and the
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Figure 8.6.: Scatter plots comparing the median performance (energy) of two algorithms
for all test instances. Each data point indicates the contrasted algorithms’
performances on a specific test instance. Points lying on the diagonal reflect
comparable performance by each algorithm. As lower energy reflects better
performance, points above the diagonal indicate better performance by the
algorithm indicated on the x-axis, and vice versa.
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Figure 8.7.: Bean plot of representative test instances from the test set. Each bean depicts
the performance (energy) distribution of the PSO (green) and Bee-Nest (red)
arising from 50 repeats of each instance (x-axis). Instances are ordered by
number of rotatable axes. Small coloured lines depict individual data points;
dark lines show distribution mean.

respective y-value corresponds to the energy value of a reference algorithm for the same

docking instance. Values on or close to the diagonal denote test-cases where the algorithms

showed similar performance. Values above the diagonal correspond to instances where the

algorithm on the x-axis achieved better energy values and values below denote instances

where the algorithm on the y-axis produced better energy values.

As can be seen in Figure 8.6(a) PSO and Bee-Nest perform on par in instances with

high energy levels (which usually corresponds to proteins with a small number of rotatable

axes). In comparison to PSO the performance of Bee-Nest improves for instances with a

higher number of rotatable axes in the ligand. This can also be observed when comparing

the Bee-Nest with the RHC.

Figure 8.7 shows beanplots (see Kampstra (2008) for more details) depicting the es-

timated energy level distributions of the 50 solutions found by Bee-Nest and PSO for a

representative subset of docking instances from the test set. As can be seen, the spread

and thus the solution diversity increases with the increase of the internal flexibility of

the ligand (number of rotatable axes). This is not surprising as it directly increases the

dimensionality of the search space and thus leads to a more complex fitness landscape.

In cases of an increased number of rotatable axes, the distribution of the PSO’s energy

levels is quite narrow in comparison to Bee-Nest’s energy level distribution. This suggests

that PSO generates protein ligand poses that are similar. In comparison Bee-Nest is more
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BEE-NEST

Figure 8.8.: Cumulative histogram of the RMSD values from the X-ray crystal structures
of the best solutions. This figure is adapted from Diwold et al. (2011c) and
was originally created by Carsten Baldauf.

likely to produce a variety of poses during the 50 test runs, especially for proteins with

many rotatable axes. Furthermore, the behaviour illustrated in the plots (Figure 8.7) also

suggests that Bee-Nest has some problems escaping local optima. This is best seen for

the docking instance 1fcz, where the Bee-Nest converges to either one of two possible

minima, one with a suboptimal energy level around -800 and one with an optimal energy

level around -1300. In contrast, PSO converges towards a configuration at the low energy

level in most of the cases. However, such a spread can also be beneficial; for example in

the docking instances 10gs and 5er1, Bee-Nest is able to reach lower energy levels, whereas

the PSO is apparently stuck in suboptimal configurations.

Root mean square deviation As pointed out above, the energy levels of the protein

configurations found by Bee-Nest in comparison to the reference algorithms are promising

as they are in general of lower energy. In order to judge the biological significance of

the calculated poses, the root mean square deviation (RMSD) was calculated for the best

results found for each instance by each algorithm. RMSD is often used to measures the

average distance between the different conformations of molecules. Here we compute the

RMSD of the poses generated by our docking experiments with respect to experimentally

derived 3D structures resolved by X-ray crystallography. Thus, the RMSD value is a

good estimate for the biological plausibility of the calculated conformation. RMSD gives

the deviation of the algorithmically generated protein-ligand pose from the experimentally
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generated reference in Ångström (0.1nm). As proteins are not rigid bodies in space, RMSD

values of up to 2.5Å can be considered as a reasonable fit.

Figure 8.8 depicts a cumulative histogram of the RMSD values of the solutions generated

by the four algorithms RNDM, RHC, PSO, and Bee-Nest. The solutions produced by the

PSO show the best fit regarding the real position and conformation of the ligand in the

receptor. While Bee-Nest and PSO produce roughly the same amount of conformations

that are a very close fit (i.e., 13% and 14% of the poses produced by the Bee-Nest and

PSO, respectively, have an RMSD ≤ 0.5Å), this does not hold for higher RMSD values.

Only 36% of the solutions found by Bee-Nest have a RMSD value ≤ 2.5Å, whereas this

is the case for 47% of the conformations produced by PSO. This result is unexpected, as

it was shown in the last section that the energy levels of the conformations produced by

Bee-Nest are in general lower than those of PSO conformations.

There are two potential explanations for this observation: As outlined earlier, receptor-

ligand conformations are evaluated using approximate energy functions to estimate their

energy. Thus, part of the problem can come from the accuracy of the scoring function. It

could, for example, be the case that the low-energy conformations found by Bee-Nest are

not plausible in comparison to the real conformation. However, this can only explain a

part of this odd behaviour, as this argument also applies to the solutions generated by the

PSO. Another explanation for this phenomenon is that even though Bee-Nest sometimes

gets stuck in local optima, it is still able to adapt the conformation of the ligand in such

a way that it leads to low energy values. This would highlight the ability of Bee-Nest

to generate low-energy solutions, but also shows its limited ability in overcoming larger

energy barriers during the optimization process, as it has a single position (i.e., receptor-

ligand pose) as a starting point which is then continuously improved. In contrast, PSO

performs a more thorough global search, as it starts off with its particles distributed over

the whole search space.

Molecular docking fitness landscapes are by no means a homogeneous environment.

Usually, only a very limited number of conformations yield low energy levels and seemingly

small variations in the conformations can lead to a drastic quality change. It could thus

be the case that while Bee-Nest outperforms PSO in terms of fine-tuning the conformation

of the protein-complex, it can not creep over the fitness barriers imposed by the fitness

landscape as well as PSO. Both explanations will be further investigated in future work,

for example by using different scoring functions. If the latter explanation turns out to be

true, a hybrid approach in which PSO is used to sample the search space and Bee-Nest acts

more as a fine-tuning mechanism, might yield an algorithm of truly improved performance.
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8.5. Conclusions

Bee-inspired optimization techniques have recently become popular within the optimiza-

tion community but have so far been restricted to using the bees’ foraging behaviour and

mating behaviour. This chapter proposed the bees’ nest-site selection behaviour as a third

class of behaviour to be used for the development of bee-inspired optimization techniques.

Nest-site selection involves the active discovery of potential sites by scouting bees and a

subsequent decision between those candidate sites. In nature, it enables bees to solve the

best-of-n-problem (i.e., deciding on the best nest-site). In contrast to the mating and for-

aging behaviour, nest-site selection constitutes a decision-making process that has a clear

optimum.

To investigate the optimization potential of the nest-site selection mechanism, a biolog-

ical model was used. This model was initially introduced in Chapter 6, where it was used

to study the extent to which the distribution of nest-sites within an environment shape the

choices of a swarm. Three optimization experiments were conducted. Using this model,

we performed three optimization experiments.

In the first experiment the swarm was situated in an environment where the quality of

nest-sites could fluctuate over time. When presenting the swarm with two nesting options,

where one was of stable but mediocre quality and the other was of unstable good quality,

the swarm chose the more reliable stable nest-site. In the second experiment the swarm

was placed in a dynamic environment where nest-sites swapped their qualities at regular

intervals. Given such a scenario the swarm was able to re-decide on the better nest-

site after such a quality change occurred. In the last experiment the swarm was placed

on two-dimensional fitness landscapes. Each position in these landscapes represented a

potential nest-site, with the quality of a site corresponding to the fitness function value of

the respective position. Given an iterative application of the nest-site selection process,

the biological nest-site selection model was able to achieve function optimization up to a

certain extent.

These results corroborate that the honeybee’s nest-site selection process is indeed useful

in the context of optimization. However, the biological model can not directly be used for

general function optimization problems as the observed optimization is coarse and slow due

to its biologically realistic nature. We thus introduced a general algorithmic scheme called

“Bee Nest-Site Selection Scheme” (BNSSS), which is inspired by the nest-site selection

model and can be used in the design of optimization algorithms.

Based on the introduced optimization scheme the first bee nest-site optimization algo-

rithm (BNSO algorithm) “Bee-Nest” was developed for the domain of molecular docking.

The performance of Bee-Nest was compared to three reference algorithms that have been

previously used in this problem domain.
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Molecular docking was chosen as a test problem as it constitutes a challenging real-life

optimization problem of high importance in the fields of bioinformatics and biochemistry.

Bee-Nest was tested on an available set of molecular docking instances. The solutions

found by Bee-Nest were compared to those established by the reference algorithms in

terms of lowest energies, energy distribution and RMSD to the reference solution. In

comparison to the three reference algorithms Bee-Nest is able to generate receptor-ligand

conformations with the lowest energy levels for the majority of the test instances. However,

the correspondence to empirical data of the conformations produced by Bee-Nest are not

as accurate as their energy levels would suggest. The reason for this could be the used

scoring function. Another potential explanation is that Bee-Nest has problems overcoming

the vast fitness barriers imposed by the molecular docking fitness landscapes. Lower energy

values would then be the result of the Bee-Nest’s superiority in fine tuning the protein

conformations regarding its surrounding. If this is the case, a hybrid approach where the

PSO is applied as a means of search space sampling and the Bee-Nest algorithm functions

as a post-processing algorithm might yield a very good performance if applied to molecular

docking.
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This work has investigated several self-organizing principles found in social insects which

can be regarded as “optimization in nature”, as they enable a group of relatively simple ho-

mogeneous individuals to tackle complex tasks within their environment. Understanding

such principles is not only in the interest of biology, but also yields a better understanding

of the complex system behaviour underlying such self-organizational principles. Knowl-

edge of such systems can be used in the design of new adaptive and robust control and

optimization mechanisms, as well as to aid understanding of existing methods based on self-

organizing principles found in nature. In addition to the investigation of self-organization

in social insects, a new optimization technique was introduced which is based on the nest-

site selection behaviour of honeybees. The optimization potential of the nest-site selection

process was first evaluated in its biological context and an abstracted optimization scheme

was presented. The first optimization algorithm based on this optimization scheme was

outlined and tested on a difficult real-world problem.

9.1. Division of labour

The first part of this thesis investigated several aspects of division of labour in social insects

on the basis of response threshold models. First the adaptiveness of different-sized colonies

to dynamic changes in the environment was analysed. Our findings show that a colony’s

ability to react fast to changes in the environment increases as a function of colony-size.

As a determining factor for this colony-size dependent performance difference, the colony-

size dependency of stimulus growth was identified, which directly affects an individual’s

perception of a task’s necessity. In order to decrease the level of performance differences,

different-sized colonies need to exhibit different flexibility. While small colonies need to

be able to adapt fast to environmental changes, larger colonies can afford a more gradual

adaptation on an individual level. If an individual’s adaptation speed is adjusted to the size

of its colony, this will impact the specialisation present in different sized colonies. In a test

of how well different-sized colonies can sustain task memory over consecutive task demand

changes, we were able to show that large colonies are able to maintain specialists for a

task over a long period of time, even when the task is of low demand, while small colonies

“forget” about the task as soon as it is done. Colony-size dependent specialisation is a
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phenomenon often observed in nature, and while it has been directly linked to colony-size

as well as competition before, our results suggest that colony-size dependent specialization

is a direct consequence of the dynamic environment a social insect colony is embedded in.

While small size colonies are more dependent on the work of each and every member and

thus require very flexible individuals, larger colonies allow less flexibility which will lead

to specialisation.

The second aspect of division of labour which was investigated is to what extent different

spatial distributions of tasks and individuals influence division of labour. To study this,

an extension of the threshold reinforcement model – the “spatial threshold reinforcement

model” – was introduced, which enables the study of spatial task distribution across mul-

tiple locations in these models. Using this model, we were able to show that social insects

can benefit from a spatial task separation within their environment, as it increases the

colony’s productivity. This could explain the spatial organization which is often observed

within social insect colonies. As the maintenance of order does not come without cost, we

also investigated to what extent it pays off to actively enforce order within a colony. Our

findings suggest that even when the maintenance of spatial separation is associated with

a cost (omission of workforce), it is still beneficial for a colony to actively maintain order

within its environment. Additionally, an exploration of different sorting strategies showed

that sorting mechanisms operating in parallel to the threshold model show little flexibility

to adapt to changes in sorting demand. The best approach was to implement sorting as

an additional task in the system, as this allows the colony to best adapt its sorting-force

to the required demand.

Our results on division of labour on the basis of response threshold models corroborate

empirical observations and deliver potential explanations for them. However, as several

control mechanisms proposed in the context of scheduling and optimization are based on

the principles of division of labour in social insects, these findings might also help to further

analyse and understand the performance of such systems as well as aid to further improve

them and increase their applicability to other domains.

9.2. Self-organization in honeybees

In the second part of this thesis, several aspects of self-organization found in honeybees

were studied using computer-simulations. First we showed the influence of spatial nest-site

distribution on the ability of the European honeybee A. mellifera to select a new nest-

site. When a swarm is situated in an environment that supplies a dense congregation of

potential new nest-sites, this can impact the selection process and prevent convergence to

a single site. This is due to the fact that honeybees that miss a potential nest-site they

were recruited for are likely to discover an alternative which then will enter the nest-site
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selection process as a competitor. As such “missing” behaviour is triggered by the amount

of dances a bee follows, nest-site quality as well as angular distribution between the nest-

sites were identified as driving factors of this behaviour. When a swarm is confronted with

two regions of differing nest-site density, the swarm will be biased towards the region where

the sites are more densely clustered. While a bias towards nest-site rich habitats can be

observed if all the nest-sites present in the selection process are of equal quality, a swarm’s

ability to choose the best nest-site in an environment is not obstructed and it will choose

a nest-site in the sparser environment if this nest-site is of superior quality. A colony’s

disability to disregard close-by nest-sites which might prevent convergence to a single

nest-site might explain why honeybee species which have less requirements regarding a

new nest-site have evolved a more imprecise form of nest-site selection than cavity-nesting

species, as too much precision might hinder a swarm from its decision.

A second self-organizing behaviour of honeybee which was investigated is the group guid-

ance behaviour of migrating honeybee swarms. Previous empirical studies have suggested

that migrating swarms are guided actively by fast-flying informed individuals (streakers)

that consecutively fly through the upper segment of a swarm. Non-streaking individuals

are thought to chase after faster individuals which leads to a directed motion of the swarm.

An alternative hypothesis, which could not be ruled out until now, is that migrating hon-

eybee swarms are guided passively. Passive guidance assumes that informed individuals

only differ from uninformed ones in a slight directional bias, and in a moving group this

directional bias will drag the swarm in the desired direction. To investigate which of these

two rivalling hypotheses better captures honeybee swarm flight characteristics, a move-

ment model was used which can exhibit both forms of guidance and allows their study

and comparison under equal parameter conditions.

Our results suggest that active guidance, as proposed by previous empirical research,

better reflects moving honeybee swarms than passive guidance. Unlike other moving an-

imal collectives such as fish or locusts, where individuals are in general well aligned in

terms of directionality and speed, honeybee swarms have been found to be very noisy in

terms of individual flight speed and directional orientation. This noise is not reproducible

under passive guidance as the indistinguishability between informed and uninformed in-

dividuals leads to the incorporation of a lot of information in an individual’s update on

directionality. Active guidance in contrast allows such a distinction and is thus able to

replicate characteristics of real swarms. These results thus corroborate active guidance as

the mechanism underlying migration in honeybee. In addition they emphasise that the id-

iosyncrasy underlying the individual behaviour in animal collectives has evolved according

to the needs of the respective species and thus can take different forms.

As our results suggest that active guidance underlies the migration behaviour of honey-

bee swarms, we also tested to what extent this guidance mechanism is able to incorporate
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directional dissent among informed individuals. The consensus on a nest-site before lift-off

can vary across different honeybee species, and active guidance must be able to deal with

such directional dissent. We were able to demonstrate that group movement can also be

achieved using active guidance under directional dissent. In such situations the travel

direction of the swarm represents the average direction of the informed individuals, which

can be interpreted as an in-flight decision-making process.

Nest-site selection in honeybees can be regarded as an natural optimization process.

It is based on simple rules and achieves local optimization as it enables a swarm to de-

cide between several potential nest-sites in an previously unknown dynamic environment.

These factors make the nest-site selection process interesting in the context of function

optimization. To investigate this optimization potential, the aforementioned spatial nest-

site selection model was used. We first tested a swarm’s ability to choose a nest-site in

a stochastic environment where nest-sites can exhibit fluctuations in quality. In such a

situation the swarm is able to select a stable site and disregard unstable solutions, al-

though unstable solutions transiently have better quality than the stable solution. In a

second experiment we tested the swarm’s ability to adapt its decision making in a dy-

namic environment where nest-site qualities are frequently swapped. Again, the nest-site

selection process was shown to enable optimization, as the swarm could track the nest-site

with the highest quality. In a final experiment the swarm was placed on 2-dimensional

fitness landscapes, where each position represented a potential nest-site. Over an iterative

application of the nest-site selection process we were able to achieve function optimization

up to a certain extent.

9.3. A nest-site inspired optimization framework

Based on these findings, which suggest that the nest-site selection process is indeed useful

in the context of optimization, we introduced a general algorithmic scheme — called “Bee

Nest-Site Selection Scheme” (BNSSS) — which is inspired by the nest-site selection model

and can be used in the design of optimization algorithms. In addition, we developed

the first bee nest-site optimization algorithm “Bee-Nest”. Bee-Nest was applied to the

domain of protein docking. The performance results were encouraging in comparison to

other optimization techniques for this problem domain, as Bee-Nest was able to achieve

very good results in terms of creating docking configurations with minimal binding energy.

However, a limitation is that some of the Bee-Nest solutions do not correspond to empirical

results. It is unclear whether this is due to the scoring function used, or if it reflects Bee-

Nest’s inability to overcome fitness barriers in the search space. Nevertheless, Bee-Nest

shows potential for future applications due to its strength in local search, and could perhaps

be used as part of a hybrid optimization system.
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9.4. Closing remarks

In conclusion this thesis has brought forward several models which allow the study of self-

organization in social insects. Using these models a range of issues that are of biological

interest were addressed. In addition, we were able to demonstrate that there are still

many unexplored biological mechanisms which may be of interest for computer scientists

working on computational solutions to optimization problems.
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