

64

Generating Graphical User Interfaces for Software
Product Lines: A Constraint-based Approach

Johannes Müller

Universität Leipzig, Grimmaische Straße 12, 04109 Leipzig

jmueller@wifa.uni-leipzig.de

Abstract: Due to a high competitive pressure on the global software market, in many
areas the software industry is moving from hand crafting to semi-automatic or automat-
ic software construction based on Software Product Lines (SPL). Techniques to auto-
mate the construction of software products from SPLs are widely available. These can
handle variability in source code artifacts but they are inappropriate to handle variabili-
ty in Graphical User Interfaces (GUIs). The main reason is that they are not designed to
handle such fine grained configurations as they are required to configure GUI frame-
works or toolkits. To nevertheless employ them in GUI generation tasks is complex and
time consuming. However, in the Human Computer Interaction (HCI) community ap-
proaches to develop GUIs in a model-based manner and with constraint-based tech-
niques are worked on that help automate the construction of GUIs. Therefore, the main
hypothesis of the proposed research is that constraint-based GUIs techniques are a well
suited basis for reducing the customization effort of generated GUIs of SPLs. The pa-
per proposes a research plan to employ these new HCI techniques in generating GUIs
for SPLs.

1 Introduction
In many areas software industry moves from hand crafting to semi-automatic or even
automatic software construction. These efforts are subsumed under the term Software
Product Line Engineering (SPLE) where software products that share some features are
built on the basis of a common reuse infrastructure. This infrastructure comprises reus-
able assets such as implementation components, models, generators and other software
related artifacts, which have to handle variability of related software products adequate-
ly. With SPLE it is possible to reduce development effort, reduce time to market, and
increase software quality. Handling variability in implementation components is widely
regarded in current research on SPLs and first techniques are developed to handle va-
riability in GUIs as well. However, with todays techniques deriving GUIs from a reuse
infrastructure requires in most cases complex customization efforts. Furthermore, these
customizations imply manually implemented artifacts for each derived product, which
have to be maintained over the whole life cycle of the derived products. An increased
development and maintenance effort and hence a reduced efficiency of SPLE is the re-
sult. This can render the whole SPLE approach uneconomical.

However, in the Human Computer Interaction (HCI) community approaches to develop
GUIs in a model-based manner are worked on that automate the construction of GUIs.
Unfortunately, they are designed for single system development. In their groundbreak-
ing work [Pleuss et al. 2010] extend these approaches to SPLs. In their approach GUIs
are generated semi-automatically with customizable stub implementations of GUIs.

Publiziert in: Alt et al. (Hrsg.), Tagungsband 15. Interuniversitäres Doktorandenseminar Wirtschaftsin-
formatik der Universitäten Chemnitz, Dresden, Freiberg, Halle-Wittenberg, Jena und Leipzig, Leipzig,
2011, S.64-71.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226099384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Literature Review

65

Since GUI implementations with ordinary frameworks and toolkits are usually inflexi-
ble, it is quite likely that the generated implementations have to be customized and
hence most of the advantages of SPLs get lost.

If a GUI contains knowledge about usability and design constraints, then it could adapt
itself to comply to these requirements. In the field of constraint-based GUIs self-aware
GUIs have been developed. A prominent instance is the Auckland Layout Model
(ALM) [Lutteroth et al. 2008]. Utilizing such techniques for automatic GUI construc-
tion in SPLs would better enable the economic advantages of SPLs also for GUI-based
systems.

2 Literature Review
The usability of GUIs is one of the topics of the HCI community. Thus, besides eva-
luating research into SPLs, HCI research is of particular interest in the next section.

On the one side, in SPL research, a strong body of knowledge has been compiled on
automatic construction and synthesis of implementation components in recent years.
Two prominent paradigms to automate software production are Generative Software
Development (GSD) [Czarnecki/Eisenecker 2000]; [Czarnecki 2005] and Feature
Oriented Software Development (FOSD) [Apel/Kästner 2009]. However, the automatic
configuration and synthesis of GUIs in SPLs is only marginally considered so far. Be-
side some case studies of SPLs that tackle the problem of GUI configuration and syn-
thesis e.g. [Ardis et al. 2000]; [Oliveira 2008] the groundbreaking work of [Pleuss et al.
2010] is the only one that presents a conceptual framework for the configuration and
synthesis of GUIs in SPLE. They utilize results of the HCI research stream of Model
Based User Interface Design (MBUIDs). In a nutshell, they describe the GUI with a
task model and some support models in an abstract way. Depending on the selected fea-
tures, the GUI of the specified product has to fulfill different tasks. Hence, the task
model of the GUI of the specified product corresponds to the required tasks. By means
of model transformations the task model and the support models are transformed to
GUI implementation stubs. However, in most cases these stubs do not meet usability
and design requirements and hence have to be customized.

Figure 3: Spectrum of approaches for GUI construction with respect to automation (cf.
[Pleuss et al. 2010, p. 71])

On the other side, the HCI community develops techniques to ensure the usability of
GUIs. Beside the techniques of MBUID, techniques to automatically or semi-
automatically generate GUIs are developed [Balzert et al. 1996]; [Bergman et al. 2002];
[Paterno/Santoro 2002]. Figure 1 depicts the spectrum of approaches for GUI construc-
tion with respect to their degree of automation.

Generating Graphical User Interfaces for Software
Product Lines: A Constraint-based Approach

66

GUIs generated with these approaches are only sufficient in very special cases. Mostly
they require the software engineer to manually tweak the generated code [Myers 2000]
resulting in the same problems mentioned for the approach of [Pleuss et al. 2010].

In another research stream of HCI, namely Constrained Based Graphical User Inter-
faces (CBGUIs), methods and techniques are developed to create self-aware GUIs.
They allow to formulate constraints among the widgets that have to be satisfied. Hence,
widgets do not need to be placed absolutely or relatively on a window. The actual ap-
pearance of a GUI of a single system is the result of a numerical optimization. A prom-
inent approach in this field is the Auckland Layout Model (ALM) [Lutteroth et al.
2008]. In a sense, with the constraints the GUI becomes self-aware and can adapt itself
to new widget configurations. These techniques could improve the conceptual frame-
work of [Pleuss et al. 2010] and better preserve the advantages of SPLE for GUI-based
SPLs.

3 Research Question and Aim of the Proposed Work
As the literature review indicates, the question is whether and how it is possible to em-
ploy constraint-based techniques in automating the configuration and synthesis of GUIs
for SPLs. The aim is to develop an approach to GUI construction for SPL that moves
the approach of [Pleuss et al. 2010] in Figure 1 more to the right. The central research
question of the proposed research can be operationalized with the following four spe-
cific questions:

(1) What are suitable constraint-based techniques to improve the configuration and synthesis
of GUIs for SPLs?

(2) How to adapt them to the configuration and synthesis of GUIs for SPLs?
(3) How to implement a generator on the basis of the conceptual framework of [Pleuss et al.

2010] that utilizes constraint-based techniques?
(4) Is the developed generator capable of generating GUIs that satisfy usability and design

requirements?

4 Some Background
As the research question implies, the proposed work will heavily rely on the previous
work of [Pleuss et al. 2010] and [Lutteroth et al. 2008],. [Pleuss et al. 2010] provide
the surrounding framework, whereas [Lutteroth et al. 2008] provide a promising tech-
nique to improve Pleuss' et al. work. To comprehend the general idea of the proposed
work, we will give some details to both in the next sections.

4.1 Generating GUIs for SPLs
[Pleuss et al. 2010] identify the problem that current approaches to automate the gener-
ation of GUIs often produce less usable GUIs. Hence, they propose an approach that
divides the implementation of the GUI into two parts. One that covers the functional
part of the GUI, e.g. wiring model code with UI elements or defining the general skele-
ton of the GUI implementation. The other part covers the configuration of the appear-
ance of the GUI. They utilize MBUID techniques to realize the separation of both con-
cerns. In MBUID the GUI is generated by means of models. As in Model driven Soft-
ware Engineering, the models are concretized from more abstract representations to

Some Background

67

concrete ones, which are finally translated to code. Figure 2 depicts the general MBU-
ID process.

Figure 4: General MBUID Process (cf. [Pleuss et al. 2010, p. 71])

In MBUID the most abstract models are the Task Model and the Domain Model. The
Task Model is an abstract representation of the tasks that are covered by an application.
A Task Model covers different types of tasks. An application task is fulfilled by the
system, e.g. displaying a value. An interaction task affects the system as well as the us-
er, e.g. typing a value. The Domain Model describes the data and the capabilities of a
system. The Domain Model as well as the Task Model are concretized to an Abstract
User Interface Model (AUI). The AUI is an abstract representation of the UI and com-
prises Abstract Interaction Objects (AIO), which are implementation and modality-
independent representations of the UI elements. An example of an AIO would be the
input element that receives some input from the user. In a graphical UI this AIO would
be realized with an text entry field, in a speech based system it would be realized by a
voice entry. Finally, the abstract representation in the AUI is concretized to a Concrete
User Interface Model (CUI) that is a model-based representation of the model-specific
implementation of the UI. From the CUI source code can directly be generated [Pleuss
et al. 2010, 72].

[Pleuss et al. 2010] integrate the previously described concept of MBUID into the gen-
eral SPLE processes Domain Engineering and Application Engineering. They propose
to derive concrete GUIs of systems in Application Engineering on a higher level of ab-
straction, namely on the level of the the Task Model. Features of a product line are re-
lated to tasks in a Task Model. Thus, the AIOs are indirectly related to the features
through their relation to the tasks in in the Task Model. At this point Pleuss et al. pro-
pose to give the software engineer the chance to customize the mapping from the AUI
to the CUI and finally to the source code.

These customized models and mappings have to be individually tracked. Hence, the
smaller the number of customized artifacts is, the smaller the effort to manage and track
the customized artifacts is. A proposed technique the reduce the amount of artifacts that
have to be customized is the ALM.

4.2 Auckland Layout Model
Today most GUI frameworks and toolkits contain layout engines that ease the position-
ing and configuration of widgets. Often they are feed with abstract information about
the position and appearance of widgets and calculate the layout whenever it is neces-
sary. Commonly used layout engines realize row-, table-, or grid-bag layouts. Configu-
rations of these layouts usually cannot be reused and combined in a component-like fa-
shion. Usually, this makes the configuration and synthesis of GUIs a hassle.

Generating Graphical User Interfaces for Software
Product Lines: A Constraint-based Approach

68

The ALM pursues another path. In ALM a GUI is described by means of constraints
that have to be fulfilled by widgets. On the lowest level the GUI is modeled as an linear
optimization program with constraints and an objective function that has to be mini-
mized.

The constraints are formulated by means of tab stops between widgets of the GUI. Tab
stops are either vertical (y-tabs) or horizontal (x-tabs). A layout with , , … ,
x-tabs and , , … , y-tabs would be formulated with constraints such as

 … …
with the coefficients , , … , and the right side are real number and the ope-
rand is one of <, >, =. Constraints can be absolute, e.g. in terms of pixels, relative,
i.e. in terms of space between widgets, or grouped to areas. These basic constraint pat-
terns are used to build abstractions that are more powerful and more easy to use. Fur-
thermore, it is possible to define other classes of constraints that take other parameters
than the position of widgets into account [Lutteroth & Weber 2008, pp. 301].

The ALM is implemented for several GUI frameworks, such as Windows Forms. It is
capable to separate the constraints from the actual application logic. It does this with an
external configuration file that contains the constraints and a corresponding overloaded
layout manager that wires the constraints with the actual application logic [Lutte-
rot/Weber 2008, 301].

As the description indicates, specifying a GUI with constraints is more flexible than
with common layout mechanisms. Furthermore, bears the division of the constraints
from the actual GUI program code the potential to configure the GUI in a more compo-
nent-oriented way. In how far these constrained based techniques can be used in gene-
rating GUIs for SPLs is topic of the proposed research and is planned to be tackled in
the following way.

5 Research Outline
The planned research will investigate the above mentioned four research questions.
Thus, the work will consist of four main work packages.

(1) Suitable constraint-based techniques have to be identified and selected.
(2) The selected techniques have to be adapted to the task of configuring and synthesizing

GUIs in SPLs and possibly new ones have to be developed.
(3) A prototypical generator that facilitates the adapted and developed techniques has to be

implemented.
(4) The developed approach has to be evaluated.

In the first work package suitable techniques will be identified through an extensive li-
terature survey and evaluated according to a catalog of requirements for such tech-
niques. In the second work package the identified techniques will be adapted and new
ones will be developed. The underlying mathematical model will be based on the gen-
eral structure of linear optimization programs with an objective function and several
constraints.[Lutteroth et al. 2008] have already defined the general structure of linear
programs to enforce usable GUIs in the ALM. However, since the requirements to en-
force the usability for variable GUIs of products of an SPL differs from enforcing usa-
bility for single system GUIs, it is likely that some extensions are required.

Conclusion

69

In the third work package, a technique for constraint-based GUI generation for SPLs
will be developed. The technique ought to be an extension of the work of [Pleuss et al.
2010] and should be integrated into the conceptual framework of GSD [Czarneck-
i/Eisenecker 2000] and its technology projection to EMP [Müller, 2009]. The general
idea is to use the model based approach of [Pleuss et al. 2010] to describe the GUI.
However, instead of directly generating GUI code, a GUI description, for example in
ALM syntax, with annotated constraints is generated. Since the constraint-based defini-
tion of GUIs allows to express more complex relations between widgets of a GUI, it is
possible that the GUI can adapt itself to the present widgets. This would not be possible
with ordinary techniques such as grid-bag- or table-based layouts. To test the applica-
bility of the developed methods and techniques a case study, for instance with the open
source Mobile Media SPL [Figueiredo et al. 2008], will be carried out.

Within the case study the reuse infrastructure of the example will be adapted to the
technology projection to EMP. That means, a domain specific language, a generator,
and implementation components will be implemented or adapted. The generator will
implement the adapted and developed techniques to configure and synthesize GUIs.

The prototypically implemented reuse infrastructure is the basis for the evaluation of
the developed approach in the fourth work package. The following hypothesis shall be
tested:

 The adapted and developed constraint-based techniques generate usable GUIs for
SPLs.

An empirical, quantitative evaluation is planned, which is carried out in three steps.
First, a representative number of products is generated on the basis of the prototypically
implemented SPL. Second, these products will be tested with common usability tests
such as a cognitive walkthrough. It is intended that the tests are carried out by two
groups of students trained in usability evaluation methods. One group will be from the
University of Leipzig, Germany and the other group from the University of Auckland,
New Zealand. Third, the results are interpreted and used to test the hypothesis.

6 Expected Contribution of the Work
With the planned artifacts, the research will be a contribution to industry as well as to
science. Software manufacturers will get a first generator prototype that can serve as a
basis for the development of commercial tools to automate the configuration and syn-
thesis of GUIs in SPLs. Such a tool is able to increase the efficiency of software con-
struction. Since many German software manufacturers – for instance Intershop Com-
munications, otris, or Delta Software Technology to name a few – already employ
SPLE techniques, they would become more competitive with such a tool on the global
software market. From a scientific point of view, the work will show whether SPL de-
velopment can benefit from constraint-based GUIs. The research will show, whether
constraint-based techniques can ensure usable GUIs for SPLs.

7 Conclusion
In the paper we motivate the problem of automatic GUI synthesis and configuration in
SPLE and present a literature survey on GUI generation for SPL and GUI generation
approaches from the HCI community. We identified the work of [Pleuss et al. 2010]

Generating Graphical User Interfaces for Software
Product Lines: A Constraint-based Approach

70

where an approach to semi-automatically generate GUIs for SPLs is discussed. We fur-
ther identified the ALM [Lutteroth et al. 2008] where an constraint-based approach to
GUI specification is presented and discussed the potential to leverage the approach of
[Pleuss et al. 2010] with the ALM.

The next step is to prototypically implement a generator to judge more sound on the
usefulness of ALM for the GUI generation task in SPLE.

References
Abrams, M. et al., UIML: an appliance-independent XML user interface language. In:

Comput. Netw. 31 (1999), pp. 1695–1708.

Apel, S. ; Kästner, C., An Overview of Feature-Oriented Software Development. In:
JOT 8 (2009), Nr. 5, pp. 49–84.

Ardis, M. ; Daley, N.; Hoffman, D.; Siy, H. ,Weiss, D., Software product lines: a case
study. In: Software-Pract. and Exper. 30 (2000), Nr. 7, pp. 825–847.

Balzert, H., Hofmann, F., Kruschinski, V., Niemann, Ch., The JANUS Application De-
velopment Environment - Generating More than the User Interface. In: Vander-
donckt, Jean (ed.): CADUI '96, Presses Universitaires de Namur, 1996. pp.
183–208.

Bergman, L.D., Banavar, G., Soroker, D., Sussman, J.B., Combining Handcrafting and
Automatic Generation of User-Interfaces for Pervasive Devices. In: (Kolski u.
Vanderdonckt, 2002), pp. 155–166.

Czarnecki, K., Overview of Generative Software Development. In: Banatre, J. P. et al.
(eds.): Unconventional Programming Paradigms. Heidelberg, Berlin : Springer,
2005, pp. 326–341.

Czarnecki, K., Eisenecker, U.W., Generative Programming Methods, Tools, and Appli-
cations. Boston : Addison-Wesley, 2000.

Draheim, D., Lutteroth, Ch., Weber, G., Graphical user interfaces as documents. In:
Proc. of CHINZ ’06. New York, NY: ACM, 2006. pp. 67—74.

Figueiredo, E. et al., Evolving software product lines with aspects: an empirical study
on design stability. In: Proc. of ICSE ’08. New York, NY: ACM, 2008, pp.
261–270.

Kolski, Ch., Vanderdonckt, J. (eds.): Computer-Aided Design of User Interfaces III,
2002, Valenciennes, France. Kluwer, 2002.In: Constraints 13 (2008), pp. 307–
342.

Lutteroth, Ch., Weber, G., Modular Specification of GUI Layout Using Constraints. In:
Proceedings of the 19th Australian Conference on Software Engineering. Was-
hington, DC, USA : IEEE Comp. Soc., 2008, pp. 300–309.

Müller, J., Generative Softwareentwicklung mit openArchitectureWare: Eine Fallstudie
mit der E-Commerce-Plattform Intershop Enfinity Suite. Berlin: Logos, 2009
(Leipziger Beiträge zur Wirtschaftsinformatik 3).

Myers, B., Hudson, S.E., Pausch, R., Past, present, and future of user interface software
tools. In: ACM TOCHI 7 (2000), pp. 3–28.

References

71

Oliveira, C., Rocha, F., Medeiros, R., Lima, R., Soares, S., Santos, F., Santos, I.H.F,
Dynamic Interface for Multi-Physics Simulator. In: Inter. Journ. of Mod. and
Sim. for the Pet. Ind. 2 (2008), Nr. 1, pp. 35–42.

Paternò, F., Santoro, C., One Model, Many Interfaces. In: (Kolski u. Vanderdonckt,
2002), pp. 143–154.

Pleuss, A., Botterweck, G., Dhungana, D., Integrating Automated Product Derivation
and Individual User Interface Design. In: Benavides, David; Batory, Don;
Grünbacher, Paul (eds.): Proc. of VaMoS ’10, 2010, pp. 69–77.

