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Abstract

Living organisms throughout evolution have developed desired properties, such as the ability
of maintaining functionality despite changes in the environment or their inner structure, the
formation of functional modules, from metabolic pathways to organs, and most essentially
the capacity to adapt and evolve in a process called natural selection. It can be observed in
the metabolic networks of modern organisms that many key pathways such as the citric acid
cycle, glycolysis, or the biosynthesis of most amino acids are common to all of them.

Understanding the evolutionary mechanisms behind this development of complex biological
systems is an intriguing and important task of current research in biology as well as artificial
life. Several competing hypotheses for the formation of metabolic pathways and the mecha-
nisms that shape metabolic networks have been discussed in the literature, each of which finds
support from comparative analysis of extant genomes. However, while being powerful tools
for the investigation of metabolic evolution, these traditional methods do not allow to look
back in evolution far enough to the time when metabolism had to emerge and evolve to the
form we can observe today. To this end, simulation studies have been introduced to discover
the principles of metabolic evolution and the sources for the emergence of metabolism prop-
erties. These approaches differ considerably in the realism and explicitness of the underlying
models. A difficult trade-off between realism and computational feasibility has to be made
and further modeling decisions on many scales have to be taken into account, requiring the
combination of knowledge from different fields such as chemistry, physics, biology and last
but not least also computer science.

In this thesis, a novel computational model for the in silico evolution of early metabolism
is introduced. It comprises all the components on different scales to resemble a situation of
evolving metabolic protocells in an RNA-world. Therefore, the model contains a minimal
RNA-based genetics and an evolving metabolism of catalytic ribozymes that manipulate a
rich underlying chemistry. To allow the metabolic organization to escape from the confines
of the chemical space set by the initial conditions of the simulation and in general an open-
ended evolution, an evolvable sequence-to-function map is used. At the heart of the metabolic
subsystem is a graph-based artificial chemistry equipped with a built-in thermodynamics. The
generation of the metabolic reaction network is realized as a rule-based stochastic simulation.
The necessary reaction rates are calculated from the chemical graphs of the reactants on
the fly. The selection procedure among the population of protocells is based on the optimal
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metabolic yield of the protocells, which is computed using flux balance analysis.

The introduced computational model allows for profound investigations of the evolution of
early metabolism and the underlying evolutionary mechanisms. One application in this thesis
is the study of the formation of metabolic pathways. Therefore, four established hypothe-
ses, namely the backwards evolution, forward evolution, patchwork evolution and the shell
hypothesis, are discussed within the realms of this in silico evolution study. The metabolic
pathways of the networks, evolved in various simulation runs, are determined and analyzed
in terms of their evolutionary direction. The simulation results suggest that the seemingly
mutually exclusive hypotheses may well be compatible when considering that different pro-
cesses dominate different phases in the evolution of a metabolic system. Further, it is found
that forward evolution shapes the metabolic network in the very early steps of evolution. In
later and more complex stages, enzyme recruitment supersedes forward evolution, keeping a
core set of pathways from the early phase. Backward evolution can only be observed under
conditions of steady environmental change. Additionally, evolutionary history of enzymes
and metabolites were studied on the network level as well as for single instances, showing a

great variety of evolutionary mechanisms at work.

The second major focus of the in silico evolutionary study is the emergence of complex system
properties, such as robustness and modularity. To this end several techniques to analyze the
metabolic systems were used. The measures for complex properties stem from the fields of
graph theory, steady state analysis and neutral network theory. Some are used in general
network analysis and others were developed specifically for the purpose introduced in this
work. To discover potential sources for the emergence of system properties, three different
evolutionary scenarios were tested and compared. The first two scenarios are the same as
for the first part of the investigation, one scenario of evolution under static conditions and
one incorporating a steady change in the set of "food” molecules. A third scenario was
added that also simulates a static evolution but with an increased mutation rate and regular
events of horizontal gene transfer between protocells of the population. The comparison of all
three scenarios with real world metabolic networks shows a significant similarity in structure
and properties. Among the three scenarios, the two static evolutions yield the most robust
metabolic networks, however, the networks evolved under environmental change exhibit their
own strategy to a robustness more suited to their conditions. As expected from theory,
horizontal gene transfer and changes in the environment seem to produce higher degrees
of modularity in metabolism. Both scenarios develop rather different kinds of modularity,
while horizontal gene transfer provides for more isolated modules, the modules of the second

scenario are far more interconnected.
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Chapter 1

Introduction

Give biologists a cell, and the’ll give you the world. But beyond assuming the
first cell must have somehow come into existence, how do biologists explain its
emergence from the prebiotic world four billion years ago?

Robinson [138]

This quote perfectly summarizes the situation of modern biology with its capabilities to
describe today’s organisms in great detail and at the same time its shortcomings in the expla-
nation of how all of that emerged out of "dead” matter. Starting from Darwin‘s evolutionary
theory [33] that explains the process of natural selection which shapes the evolutionary pat-
terns of all species, to Mendel‘s laws [113], that tell about the inheritance of traits from
parents to children. Later, Watson and Crick ”found the secret of life” in the discovery of the
double helix structure of DNA [171], a molecule made of simple chemicals carrying the genetic
instructions necessary for the development of all organisms on earth. These great discover-
ies are the starting points of modern biology facilitating the advances of genetic technology
making vasts amounts of data available, from sequence information of single compounds to
interaction networks for entire organisms. Nevertheless, they do not solve the mystery of life.

While we can analyze the biological networks of many organisms and trace back evolution
for billions of years, there is a barrier past which all the technology of modern biology is
not able to look. This barrier is the last common ancestor of all living organisms and there
is little to no data about the path to this first cell exhibiting all those features of modern
organisms. Therefore, there can only be speculated about the evolution of this predecessor
and the emergence of its properties. Besides the theories and experiments, that will be
discussed briefly in the next chapter, trying to tackle this problem, simulation approaches
have been an intriguing source of potential explanations beyond the scope of analyzing data.
For the origin of life field, there are high demands on a simulation. The system of study, the
protocell, has to be modeled on multiple scales, realistic to a certain extent but at the same
time computationally feasible. Thus, making it a chemical, biological and computational
challenge altogether, demanding the application and combination of knowledge and concepts



2 CHAPTER 1. INTRODUCTION

of all of these fields. Providing a realistic and expressive model for the evolution of

early metabolism will be a major goal of this thesis.

All complex biological organisms have developed certain desired properties, such as the ability
of maintaining functionality despite changes in the environment or their inner structure (e.g.
through mutations), the formation of functional modules (e.g. metabolic pathways, organs)
and most essentially the capacity to adapt and evolve in a process called natural selection.
This observation becomes even more impressive considering that all of these systems are based
on the interactions of chemical molecules on the most basic level.

Early metabolism appears to be a fitting field of research to tackle the questions of the
emergence of complex properties and the evolution of biological systems. On the one hand,
cellular metabolism is probably the best studied biological system, especially with the ad-
vance in genome sequencing technology and the corresponding reconstruction of whole-genome
metabolic networks for many different organisms. On the other hand, the earliest steps in the
evolution of metabolism, i.e. the formation of metabolic pathways from chemical reactions,
the transition from uncatalyzed to catalyzed reaction systems and maybe even the origin of
life itself, is still unknown and the evolutionary mechanisms are still to be discovered. The
same could be said about the knowledge of the above mentioned properties that complex
biological systems possess. While methods exist to measure these properties and theories
trying to explain their existence, it is not whatsoever clear how they emerge and are pre-
served throughout evolution. Many of these problems have been discussed by generations of
researchers providing insightful hypotheses and scenarios which will be used as anchors and
guide lines for the research in this thesis. One popular thread in the research of evolution are
theories on the formation of metabolic pathways, several hypotheses exist, from the backward
evolution to the patchwork model. Some of these hypotheses exhibit some more evidence in
the data than others, but all have some eligibility. Other important problems lie in the field
of system properties, from their emergence to the reconciliation of intuitively opposing con-
cepts, such as the findings that redundancy leads to robustness or the unification of robustness
and evolvability in complex systems demonstrated on the example of the RNA sequence to
structure map by Wagner et al. Novel approaches to many of these problems will
be introduced in this work, using the in silico evolution model and several new

network analysis methods.

Understanding the evolutionary mechanisms behind the development of biological systems and
their properties benefits theoretical research on evolution and gives insights about the systems
and their components itself. Beyond that, it provides valuable knowledge for the construction
of complex artificial systems, from chemical reaction networks in metabolic engineering to
abstract technological networks, that are desired to possess properties such as robustness and
modularity.

In the following chapter, several problems in the field of metabolic evolution from the origin

of life to the formation of metabolic pathways and the emergence of complex properties will



be introduced and historic as well as ongoing research will be discussed.

In Chapter 3, techniques for the modeling of chemical reactions systems, such as metabolism,
are discussed with their applications, drawbacks and challenges. The following chapter will
then provide a detailed account of a sophisticated multi-scale model for the evolution of

early-metabolism.

The formation of metabolic pathways is investigated with the introduced in silico evolution
model in Chapter 5, several existing hypotheses are tested and a new and unifying hypoth-
esis is proposed. The emergence of complex properties in the simulated networks from this
study are the focus of Chapter 6. Here existing and novel network analysis approaches are
introduced and used to discover factors determining the evolution of metabolic networks and
their properties.



CHAPTER 1. INTRODUCTION



Chapter 2

Origins of Life and early Evolution

Life emerged, I suggest, not simple, but complex and whole, and has remained
complex and whole ever since, not because of a mysterious elan vital, but thanks
to the simple, profound transformation of dead molecules into an organization
by which each molecule’s formation is catalyzed by some other molecule in the
organization. The secret of life, the wellspring of reproduction, is not to be found in
the beauty of Watson-Crick pairing, but in the achievement of collective catalytic
closure. The roots are deeper than the double helix and are based in chemistry
itself. So, in another sense, life - complex, whole, emergent - is simple after all, a
natural outgrowth of the world in which we live.

Stuart Kauffman [93]

2.1 Origin of Life

The research on the origins of life, the transition from inanimate to animated matter, faces
one major problem. While having some knowledge of the chemical processes and constitutions
of the atmosphere before the alleged beginning of life on the early earth and more elaborate
insights of the biochemical and biological organization of some ancient successors of early
life forms, there is little known about the actual period of the transition to life, let alone
representatives of the first living things. The core of the problem is that we can look back in
the history of life only until a certain point of time, when there already exist fully functioning
cells containing all the building blocks that can be observed in today’s organisms. It is a
consent in biological science that all living organisms on earth have one common ancestor.
This last universal common ancestor (LUCA) used already a genetic code based on DNA,
expressed proteins from these genes and performed many metabolic pathways that lie at
the core of modern metabolism. As interesting as this observation may be, it also means
that by looking at modern or ancient organisms, we can not know for certain how these

5
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Figure 2.1: The dilemma of the origin of life research described by Eakin. It is difficult to look past
the last universal common ancestor which possessed all biological features of modern cells. From [40].

essential components evolved and life itself began. However, many intriguing theories have
been suggested and many experiments have been performed to shed some more light onto
this mystery.

Before discussing some of these ideas, another question asks to be solved. What is life? Again,
there is not just one answer and it is difficult to judge whether one is better than the other.
The decision whether or not something is alive is gradual rather than clear-cut. Is a virus
alive because it can evolve? Is a seed that has been dried for years alive because it has the
potential of performing metabolism again under other conditions?

Whether or not something is alive depends on the processes going on in this something. Most
definitions for life identify three essential processes that have to be active in a living organism.
One such process is growth, in the sense of being able to use free energy and resources from
the environment to maintain its functions and accumulate enough matter/stuff/molecules to
reproduce. This process can be summarized as metabolism. Another essential process is
replication, passing on heritable information which regulates the processes of the organism
and is subject to evolution. In modern organisms this could be accounted to its genes and
everything else belonging to its genome. The last functionality is keeping all these components
and processes together, such as a membrane of a cell. The order of these processes in this
paragraph is arbitrary and not based on their importance. One can argue that all three
processes are mutually dependent or at least affect each other. For example, the chemical
interactions of metabolism require a spatial concentration in order to work efficiently. Both,
the compartment boundaries and the reproduction machinery need to be synthesized through
metabolism. The heritable information in turn has to regulate these processes. Therefore, it
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Figure 2.2: Arguments for the metabolism first scenario by a) Miller and Urey’s experiment for
producing amino acids out of inorganic compounds of a supposed early earth atmosphere (from [178]),
b) Wichtershéuser theory on the evolution of metabolism around minerals (from [167]).

makes sense to view all three processes as fundamental basis of life.

However, for the question of the origin of life, matters are again more complicated, since the
emergence of all three functionalities at the same time are less probable than all occurring
separately. This poses another question. What came first? Theories and experiments for all
three possibilities exist. The most famous experiment being that of Miller and Urey [115, 116],
synthesizing amino acids from a mixture of anorganic molecules abundant in the atmosphere
of the early earth, such as methane, water and ammonia. Since amino acids are the building
blocks of proteins and thus the catalytic elements of all modern cells, these experiments would
suggest that life started with the emergence of enzymes and thus metabolism. However,
many questions remain. The first is about the assumptions of these experiments itself, it is
not clear whether such a reducing atmosphere or similar environments were present at that
time. Other questions concern the polymerization of amino acids and the replication of their
polymers without the existence of ribosomes or any kind of RNAs. Another sort of theories,
works with cofactors as catalytic elements instead of peptides [166, 110]. ATP could be such
a catalyst, in modern metabolism it is a widely used coenzyme and an important carrier of
chemical energy. Similarly, ATP could have played an important role in the early metabolism
and exist in high concentrations. This would also mean that the related nucleotides ADP
and AMP would be present in such metabolisms, therefore, one basic component of RNA and
DNA. Starting as a parasitic side product RNA could have emerged from early metabolism
and later develop to a catalyst and information carrier [109].

John von Neumann famously made the analogy between metabolism and replication in a
living organism on the one hand with the hardware and software of a mechanic automata
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on the other hand [164]. In this analogy the chemical processes of metabolism correspond
to the information processing of the automata’s hardware, while the nucleic acids that hold
the information correspond to the software. Accepting this assumption, it becomes clear that
metabolism is more fundamental than nucleic acids and thus had to emerge first. However,
this idea ignores one important molecule that can serve both as hardware and software. RNA
in the form of mRNA as transcript for translation to a polypeptide or as genetic material
in viruses can serve as simple information carrier, software. On the other hand, it can also
act as hardware, performing chemical processes in the cell, for example as ribozymes or in its
function as rRNA or tRNA. The first advocates of the RNA world [66] and their arguments,
can be found in Eigen’s theory of hypercycles [42] describing how sets of self-replicative RNAs
could form higher-level autocatalytic cycles and in the experiments of Oro and Orgel showing
how nucleotides could have been synthesized [124] and polymerize from a template [114],
respectively, under simple conditions as on the early Earth. Recently, some of the weaknesses
in the original synthesis routes were eliminated through a clever new idea for a nucleotide
synthesis, making the emergence of nucleotides in an early earth atmosphere even more likely
[132], see Figure 2.3. Further arguments for RNA’s potential in the origin of life stem from in
vitro evolution experiments made since the 1990s [43], showing that RNA can be evolved to
bind all kinds of molecules, in some cases better than there protein enzyme counterparts [136].
Another theory of how life could have originated through the emergence of RNA, is described
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in [23] introducing the idea that RNAs in protocells could have replicated by itself through
thermal cycling. Protocells could have then be selected for faster replication in the form that
protocells with faster replicating RNA molecules take away material from surrounding cells.
In such a scenario nucleotides such as AMP would be used as chemical currency first and lead
to their catalytic role in metabolism as ATP later.

There are also theories that focus on the importance of compartments in the development of
the first living things such as the clay theory [15] proposing that organic molecules concen-
trated on the surface of the clay which was also able to catalyze their polymerization. Similar
approaches exist accounting such functions to other minerals [165]. Another interesting idea
that favors the compartment-centered scenario is the regosome model [121] where regoliths,
porose dust grains, serve as compartments where chemicals would accumulate and react with
each other. One current trend in the origin of life research follows this scenario. The abun-
dance of many ancient bacteria around hot deep water vents brought up interest to these
possible places for the origin of life [110]. The sulphide in the hot water of these vents forms
membranes and spheres when going to the cold ocean water. Furthermore, these membranes
can absorb organic molecules and some sulphide complexes could catalyze certain chemical

reactions.

Although all of these theories do not solve the question of the origin of life indefinitely, they
give some guidance in the further research and also for the development of a realistic model
that incorporates all the important aspects of an early protocell.

2.2 Metabolic Evolution

Laying aside the troubles with the question of the origin of life, there are still paths to
be discovered in the history of evolution. One of them, which will be a major focus of
this work is metabolic evolution, including the evolution of enzymes and the formation of
metabolic pathways from catalyzed chemical reactions. The goal is trying to understand the
evolutionary mechanisms of complex biological systems, which has been an interest of research
in biology as well as artificial life. In this section, some of the main theories on metabolic
evolution will be discussed accompanied with their evidence from experimental data as well

as other simulation studies.

2.2.1 Arguments from the Data

The mechanisms that governed the formation of metabolic pathways from chemical reactions
has been discussed for decades and several hypotheses have been proposed since the 1940s.
Research on the TIM (3/a-barrel fold architecture [26], for instance, shows that the evolution of
modern metabolism is mainly driven by enzyme recruitment, as suggested by the patchwork
model [182, 89]). Enzymes with (3/a-barrel fold architecture catalyzing similar chemical
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Figure 2.4: Metabolic network of the pyrimidine metabolism from the MANET database. Older
enzymes are colored in red, evolutionary younger enzymes in blue. The mosaic-like constitution
supporting the patchwork evolution scenario is apparent. [157]

reactions were found in many different metabolic pathways across the metabolism. This
picture of metabolism as enzyme mosaic was shown for several enzymes of E. coli, through
structural assignments and sequence comparison of their protein domains [156]. On the
example of the pyrimidine metabolism in Figure 2.4, the mosaic-like constitution of metabolic
networks concerning the evolutionary relationships of enzymes becomes apparent.

Gene duplications, on the other hand may facilitate the specialization of an originally multi-
functional enzyme, such as the Carbamoyl-phosphate-synthetase, to diverse function in new
pathways [82]. Similarly, entire metabolic pathway may duplicate and specialize, as it has
been the case for the tryptophane and histidine biosynthesis [63, 89].

The ability of enzymes to catalyze additional reactions other than those for which they are
physiologically specialized, dubbed “enzyme promiscuity” [96], forms an important evolu-
tionary reservoir from which novel catalytic functions can be drawn. Promiscuous enzyme
activities, although far less efficient than well-evolved ones, can be assembled into novel
metabolic pathways [97], which can provide a selective advantage in particular environmen-
tal niches. The evolutionary potential of enzyme promiscuity thus extends far beyond mere
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enzyme recruitment.

For an in depth discussion of these theories and further examples of pathway evolution it is
referred to three interesting recent review articles [20, 45, 144].

2.2.2 Arguments from Simulations

Several simulation studies, modeling the evolution of complex networks in general or metabolic
networks in specific, have provided some insights into the formation of complex systems and
their properties. Most famously Barabasi and Albert [7] account of an computational model
of network evolution provided an answer for the scale-free architecture of complex networks
like metabolic networks. Their model grows a network through preferential attachment, i.e.
new nodes are preferentially added to highly connected nodes, leading to networks with a
scale-free node-degree distribution. Although this is a useful description of network evolution
it does not actually explain the mechanisms behind it.

Pfeiffer [130] goes one step further in explaining the emergence of the scale-free architecture
and existence of hub-metabolites in metabolic networks. The computational model starts off
with a metabolism containing a few enzymes with broad specificity, i.e. catalyzing a great
number of chemical reactions but at a low speed. Then duplication and specialization events
occur throughout the evolution, leading to many specialized enzymes. The specialization of
enzymes leads to the disappearance of chemical reactions and metabolites which then shapes

the metabolic networks in the way we can observe them today.

Another approach by Hahndorf [71] identifies several metabolites and chemical reactions that
are of great importance or even essential for the evolution of a metabolic network. Starting
with small sets of molecules, they apply step by step known biochemical reactions from the
KEGG database to grow a metabolic network. This procedure leads to so-called scopes, sets
of compounds that are closed concerning the reaction application. Those metabolites that
lead to scopes similar to the entire network can then be considered evolutionary relevant,
thus, may have played a role in the early evolution of metabolism. Most of these important
metabolites were cofactors such as ATP or Coenzyme A, which are present in many reactions
of modern metabolic networks.

A computational model for the evolution of networks based on a simple artificial chemistry
is presented in a work by Sanjay Jain [87]. The evolved networks exhibit autocatalytic
structures and form a fixed core as well as peripheral modules [88]. The simulation starts
from a random network graph where a node is a species and a connection between two species
indicates that the one catalyzes the production of the other. The graph is then updated for
several generations, by mutating (random rewiring) the least connected node, increasing the
connectivity and complexity of the network.
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2.2.3 Scenarios

Based on the evidence from modern metabolic networks, several hypotheses to explain the
evolution of metabolism in general and the emergence of specific metabolic pathways have
been suggested. The four most widely cited scenarios (see Figure 2.5) are briefly discussed in

the following paragraphs.

The Backward Evolution Hypothesis was one of the first theories for the evolution of
metabolic pathways, proposed by Horowitz [81]. It assumes that an organism is able to make
use of certain molecules from the environment. However, individuals that can produce these
beneficial molecules by themselves gain an advantage in selection in the case of depletion
of the “food source”. Therefore, new chemical reactions are added that produce beneficial
molecules from precursors that are abundant in the environment or that are produced in turn
by the organism’s metabolism. As a consequence, one should observe more ancient enzymes
downstream in present-day metabolic pathways. Towards the entry point of the pathway,
younger and younger enzymes should be found (see Figure 2.5(a)). Backward evolution has

been proposed for both the glycolytic pathway [57] and the mandelate pathway [129].

The Forward Evolution Hypothesis can be seen as an extension or counterpart of the
backward evolution hypothesis, reversing the direction of pathway evolution. [69], and later
[30], argue for a pathway evolution in forward direction, requiring that the intermediates are
already beneficial to the organism. This is in particular plausible for catabolic pathways,
where the organism can extract more energy by breaking food molecules down to simpler
and simpler end products. Older enzymes are then expected to be upstream in the pathway,
with younger enzymes appearing further downstream (see Figure 2.5(b)). The isoprene lipid
pathway [126] is an example for the development of biosynthetic pathways in the forward

direction.

The Patchwork Model [182, 89] explains the formation of pathways by recruiting enzymes
from existing pathways. The recruited enzymes may change their reaction chemistry and
metabolic function in the new pathways and specialize later through evolution. This intro-
duction of new catalytic activities lead to a selective advantage. Looking at the constitution
of a pathway formed by enzyme recruitment, we should observe a mosaic-like picture of older
and younger enzymes mixed throughout the pathway (see Figure 2.5(c)). The observation
that the TIM §/a-barrel fold architecture occurs in many different pathways corroborates
widespread enzyme recruitment in modern metabolism [20]. Other examples are the pyrimi-
dine metabolism and the histidine biosynthesis [129].

The Shell Hypothesis was proposed by [117]. It argues for the case of the reductive citric
acid cycle that in the beginning an auto-catalytic core is formed from which new catalytic
activities and pathways could be recruited and fed. Thus a metabolic shell would form around
this core. Enzymes in the core would likely be less prone to mutational changes because they
are essential for the organism. Thus, one should still be able to observe a core of ancient
enzymes (see Figure 2.5(d)). According to Morowitz [117] the reductive citric acid cycle
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Figure 2.5: Hypotheses about the formation and evolution of metabolic pathways. (a) Backward
evolution, (b) Forward evolution, (¢) Patchwork model, (d) Shell hypothesis. Colored squares represent
enzymes, gray circles are metabolites. Color encoding for enzymes stand for their age, red being older

and blue being younger enzymes.
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constitutes such an autotrophic synthetic system.

2.3 Complex Properties

Living organisms adopt to the environment by means of gradual change of their internal net-
works and regulations. Throughout the evolutionary process, biological systems developed
certain desirable properties, such as robustness, modularity, flexibility and not least evolvabil-
ity. Despite the profound knowledge of these properties and the processes within biochemical
networks, the causes for the emergence of system properties are less well understood in most
cases. In the next paragraphs, these properties will be defined and some of the challenges
as well as findings concerning their origin and evolution will be elucidated. In Chapter 6
the emergence of complex properties will be investigated using the simulation framework

introduced in Chapter 4 and several network analysis tools.

2.3.1 Robustness

Biological organisms are highly robust in the sense that they can maintain their basic func-
tionality despite perturbations in their structure or dynamics, through genetic changes, such
as mutations or epigenetic changes such fluctuations in metabolite concentrations. There
are manifold sources of robustness in a system, such as structural and temporal modularity,
functional redundancy and plasticity or dynamical stochasticity. Both experimental [16] and

theoretical approaches [176] have tried to put a number on the impact of these sources.

While it is obvious that robustness is beneficial to a system, it is not as clear how that does not
decrease its ability to evolve. If the system is less likely to change its functionality (phenotype)
in the case of a change in its structure (genotype), then it should be more difficult to reach
other potentially favorable (phenotypic) states. However, for complex biological systems the
opposite is true. One explanation for this fact is the nature of the so-called genotype-to-
phenotype maps which exist on many levels of biological organizations.

There are still open questions about the evolution of robustness. It has been discussed in the
literature whether robustness is selected directly through natural selection or indirectly as
an inherent property stemming from other properties of the system [58]. Another interesting
problem is the relation between genetic and epigenetic robustness [168], e.g. are mutations
necessary to develop epigenetic robustness and vice versa, is environmental noise necessary

for genetic robustness or does it even decrease it.

Robustness is also under active research in the field of complex systems, where the focus lies
on the analysis of the network structure and topology. A great variety of network types, such
as social networks, road maps or the world wide web are investigated. Complex networks are
often classified based on their connectivity distribution (P(k)), most prominently the classes of
exponential and scale-free distributed networks. While both network types are highly robust,
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Figure 2.6: Error tolerance of scale-free and exponential networks. The scale-free networks (circles)
have a higher tolerance against random errors (blue) than exponential networks (squares), but are
more prone to targeted attacks (red) as can be seen by the increase in the network diameter. Adapted
from [1].

scale-free are particularly robust against random errors. However, the scale-free architecture
of these networks with the abundance of some highly connected nodes makes them also prone
to controlled knockouts (attacks), see Figure 2.6.

2.3.2 Modularity

A system is modular if it contains subsystems (modules) that exhibit a distinct function.
Studies on several biological systems [128, 102] have shown that the underlying networks are
highly modular (more than random networks) and have even defined a specific structure that
is abundant in most of these networks. This so-called core-periphery organization, consists of
a densely connected core and a number of periphery clusters [32]. The structure of metabolic
networks is further described as organized in highly connected modules that form larger
modules in a hierarchical manner [134], combining the observations that metabolic networks
have a scale-free connectivity distribution which usually does not occur in modular networks
and at the same time they have a high clustering coefficient suggesting strong modularity.

Modularity in complex networks is often measured by the clustering coefficient of its nodes.
Biological systems with a hierarchical modularity show high average clustering coefficients
independent of the networks size. Further, the clustering coefficients of single nodes scale
with a power law against the connectivity of these nodes [119]. Another approach is to find
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modules through network decomposition [183]. Besides these methods focusing on structural
and topological features of the underlying networks there has been proposed a different idea.
The concept of metabolic pathways is considered a special functional subunit of metabolic
networks [143]. Metabolic pathways are sets of reactions or enzymes which work at steady-
state, i.e. metabolite concentrations are kept constant, and they fulfill certain thermodynamic
constraints, such as irreversibility of reactions. Particularly interesting in this context is
the set of extreme pathways, from which all possible pathways through the network can be

generated.

Again the question about the emergence of this system property arises, and has been the
subject of intensive research [170]. It is known that system that optimize toward a static goal
tend not to evolve modular structures in their underlying networks. In fact, even already
existing modularity is lost under these conditions [91]. If the optimization of fitness in a
system does not let modularity emerge, then how does modularity emerge and what use does
it have for the system. One crucial factor could be the ability of modularity to increase the
evolvability of a system [168, 180], because small peripheral modules with a distinct function
evolve faster than a large complex with an overall function. Is there then a selection for
modularity because of the enhanced evolvability, or is modularity actually a side-product of
other evolutionary processes. In the beginning it was stated that modularity does not emerge
when optimizing toward a static goal, so change in the fitness landscape through adaptations
to new environments [128] or new goals [108] can lead to the development of modularity.
Another cause for the formation of modularity lies in the clustering of genes through genetic
operations, in particular horizontal gene transfer [105]. Several comparative and simulation
studies have been performed to confirm these hypotheses for the origin of modularity [106].
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A

Figure 2.7: Three types of networks with different degrees of modularity. A scale free networks
with very low modularity. B modular networks, with extremely high modularity. C networks with
hierarchical modularity with a high degree of modularity and scale-free degree distribution. Taken

from [134].
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Chapter 3

Modeling Chemical Reaction
Systems

The mere formulation of a problem is far more essential than its solution, which
may be merely a matter of mathematical or experimental skills. To raise new
questions, new possibilities, to regard old problems from a new angle requires
creative imagination and marks real advances in science.

Albert Einstein

Chemical reaction systems occur in several forms all around us. They span from the atmo-
sphere of the early earth or other planets, that formed the first forms of life, to the complex
system of biochemical reactions in the cells of our bodies, the metabolism. Further, artificial
chemical systems such as combustion or novel syntheses of products for the chemical industry
and pharmacy. To understand the behavior and properties of these systems, the change of
molecule concentrations and the essentiality of chemical reactions, they have to be modeled
in an appropriate way. The knowledge that can be gained from the models of real world or

artificial systems can be used to assess and manipulate these systems in a controlled direction.

In this chapter, several approaches to model and represent the different aspects of chemical
reaction systems will be introduced and their applications and shortcomings will be discussed.

3.1 Chemical Reaction Systems

From complex biological systems such as metabolism to comparably simple artificial chemical
systems like combustion, all chemical reaction systems have in common that they consist of

molecules and chemical reactions, together forming chemical reaction networks.

19
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3.1.1 Chemical Reactions

A chemical reaction is a process that transforms some initially existing molecules (reactants) to
other molecules (reactants) of the same combined mass. Each chemical reaction has a reaction
center which comprises all atoms and bonds which participate in the actual transformation,
i.e. bonds that are broken or formed and the adjacent atoms with involved valence electrons.
Depending on the Gibbs free (G) energy of the substrates and products, chemical reactions
are either exergonic (Gsupstrate > Gproduct) or endergonic (Ggupstrate < Gproduct). However,
in both cases the substrate molecules have to pass one or more transition state of maximal
free energy which requires a certain activation energy (E4). This activation energy further
determines the speed of the chemical reaction or more precisely the reaction rate constant
(k), which can be calculated from the Arrhenius equation (see Equation 3.1), where A is the
frequency factor, e is the irrational number with a decimal approximation of 2.718281828, R
is the gas constant and 7' the temperature.

Ea

k = Ae” BT (3.1)

However, to determine how fast the chemical reaction converts its substrates into its products
in the actual system, one also needs the concentration of the initially participating molecules
in the cell. The reaction rate (r) is computed from the rate constant and the molecule
concentrations using the rate equation Equation 3.2, where [A] is the concentration of a

a

molecule A in the cell, the exponent in [A]|* indicates the order of the reaction with respect

to the molecule A.

r = k[A]*[B]’ (3.2)

Enzymes can catalyze chemical reactions by reducing the activation energy which increases
the rate constant and reaction rate. The decrease of the activation energy of a reaction is
achieved through interactions of the enzyme with the substrate molecules which changes the
reaction path lowering the barrier of free energy that emerges by passing the transition state
(see Figure 3.1). Not all possible chemical reactions actually occur in the biological systems
we know here on earth, the biochemical reactions that we observe today are rather a small
subset of them. Most molecules in the cell consist only of hydrogen, carbon, nitrogen or
oxygen and in smaller quantities but also biologically important occur molecules containing
phosphor and sulfur. Further, biomolecules have a limited number of linkage (connections
between to atoms, e.g. C=C, N-H, P=0) types, a mere 16 types cover the majority of
biomolecules. Therefore, it is possible to have almost complete databases for biochemical
reactions [90], while for chemical reactions the respective databases do not hold such claims
and the focus lies more on reaction mechanisms. There is a steady research for novel chemical

reactions.
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Figure 3.1: Reaction path of a chemical reaction showing the change in Gibbs free energy of the
molecules along the reaction coordinate. The red curve illustrates the reaction path without the
presence of an enzyme, while the blue curve is the path with enzyme. The blue curve has a lower
activation energy, the free energies as well as the released energy are equal in both cases. Taken from
[179].

3.1.2 Chemical Reaction Networks

A chemical reaction network is simply the composition of the molecules of the system and
the reactions that are applied on them. It provides a unified representation of the interplay
between the chemical reactions and, therefore, allows a more holistic analysis of the behavior

and characteristics of a chemical reaction system.

3.2 Modeling

With the development of high-throughput technologies in biology and the accompanying vast
amounts of data from different levels the need for models describing, analyzing and predicting
biological systems and their processes arose. Away from traditional biology focusing on single
parts of a system independently, the aim now is to view the system as a whole including

processes at all scales, ideally.

Modeling is a powerful tool in many scientific fields from physics to biology, however, it
is always an abstraction and simplification of the real system. Therefore, many different
approaches, representations and models for the same system are possible, this is especially
true for a complex biological system as metabolism. Further, different objectives command

different strategies, thus, not all questions about one biological system will be solved with
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one universal model. If the aim is to explain only individual aspects then minimal models
covering limited components and making strong simplifications of the system may suffice.
However, for a description and deeper analysis of processes encompassing different scales and
parts, such as evolution or the emergence of complex properties the demands on the model
become more challenging. In the following paragraphs and the entire work, the focus lies on
models of metabolism able to predict the behavior of single components, like metabolites and
enzymes on the one hand and the development of higher order constructs, such as pathways

and the overlying network on the other.

3.2.1 Stoichiometric Matrix

A chemical reaction system can be represented by the chemical equations of its reactions. The
stoichiometric information of these equations is summarized in a matrix. The stoichiometric
matrix S of a metabolic network (Figure 3.2) comprises the stoichiometric coefficients s;; for
all metabolites (m € M) and reactions (r € R)

S=sy 0<i<|M| AO<j<|R| (3.3)

where each row describes a metabolite and indicating participation in a reaction (s;; # 0) and
each column represents a reaction denoting which metabolites it uses (s;; < 0) or produces
(sij > 0). Furthermore, the stoichiometric matrix provides information about the dynamics
of the molecule concentrations in the form of mass balance equations

da;i
T Z Sir Uy (3.4)

or in matrix form as

dx o
e Sv (3.5)
where, v are flux vectors, r the chemical reactions of the system and xz; the concentrations of
a molecule 7. This information about the time derivatives is used in the following modeling
approaches. The information about the flux vectors, in particular the nullspace, is used later

in the stoichiometric approaches.

3.2.2 Kinetic Modeling

Kinetic Modeling is the most common way to describe and predict the behavior of metabolic
and other biological systems and the perfect tool to investigate change in metabolite con-
centrations and reaction activity. The metabolic network is thereby described simply by the
set of biochemical reactions in the system and the dynamics of the individual reactions are
investigated independently.

There are two major approaches to kinetic modeling, the classical deterministic modeling
based on mass action kinetics and stochastic simulation considering stochastic effects in a
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Figure 3.2: Example network with corresponding stoichiometric matrix, including all inner metabolites
and reactions as well as transport reactions. Reactions are represented as labeled hyperedges in the
network graph and as columns in the stoichiometric matrix. Metabolites are circles in the graph and
rows of the matrix.

system. Both ideas are closely related. Deterministic kinetic modeling provides general and
exact numerical solutions through mathematical analysis of a system of ordinary differential
equations representing the set of metabolic reactions. However, it is not applicable for more
complex cases. Furthermore, if its assumption of continuous molecular concentrations does
not hold as in small-scale processes with only limited numbers of molecules which are quiet
common in real-world biological systems, deterministic modeling also cannot make correct
predictions. In both situations, stochastic simulation is the preferable choice, because it can
handle larger systems while also accounting for the stochasticity in systems with low molecule

concentrations.

Deterministic Modeling

Deterministic kinetic modeling is based on the law of mass action which states that the rate

v of a reaction is proportional to the product of the concentrations of the molecular species
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involved in the reaction. For the simple reaction
A+ B — C, (3.6)

the doubling of the concentration of A or B would double the rate of the reaction because
the number of collisions between A and B that lead to the production of C' would double.

For the general reaction formula
nA+mB — C, (3.7)

applying the law of mass action gives us the following rate equation

d[C]
dt

= KAI"B] (3.8)

as an ordinary differential equation. The rate of the reaction as well as the change of the
molecule concentrations can be determined by solving the differential equation. For simple
cases this can be done with mathematical analysis getting an analytic solution. However, in
more complex situations only numerical solutions or simulations are possible. In the same
fashion as described above for the simple reaction, many other types of reactions and pro-
cesses in metabolism can be represented using the ordinary differential equations approach of

deterministic kinetic modeling. For a reversible reaction
A& B, (3.9)

the following differential equation describes its dynamics:

d[B]

e kalA] — kp[B], (3.10)

where k4 and kg are the rate constants for the transition from A to B and back from B to A,
respectively. Another example is the representation of Michaelis-Menten kinetics describing
an irreversible enzymatic reaction with the assumption that the change of concentration in
ES is neglectable in comparison with the product formation.

E+SeES—E+P (3.11)

At this point only the differential equations for the F.S-complex in quasi-steady state and the
rate of product formation which is equal to the reaction rate is shown.

d[gtS] = k1 [E][S] — (k-1 + k2)[ES] =0 (3.12)
dP] _
= = ko[ES) (3.13)

Further applications for sequential, parallel and complex reactions as well as enzyme interac-
tions, such as several types of enzyme inhibition, are described in [100].
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Stochastic Simulation

One major drawback of deterministic modeling is the assumption of a continuous and deter-
ministic dynamics of the chemical reactions and the metabolic system in the whole. While
this approach in practice is useful for many applications the underlying assumption does
not coincide with the physical reality of these systems. First of all, the concentrations of
molecules exist and change in discrete not continuous amounts. Further, the dynamics of a
population of molecules is not deterministic, certainly not in the sense that we are able to
predict the exact state in which the system will be at the next point in time. Ignoring the
stochasticity of the system can in some cases lead to significant deviations between prediction
and actual behavior. Stochastic Modeling incorporates this stochasticity by implementing the
observation that changes in the molecule population happen through collisions of a specific
combination of molecules reacting together to form other molecules. Thus, the fundamental
task in stochastic simulation is to find the probabilities for these collisions (chemical reactions)
to occur within a certain time interval, given the present state of the system. In the following
the exact stochastic simulation algorithm by Gillespie (direct method) will be outlined. Its
detailed deduction, a comparison with the "master equation” approach and results on several
chemical systems, can be found in [67].

Gillespie starts with the assumption of a well-mixed chemical system S in which non-reactive
collisions occur more frequently then reactive collisions. The state of such a system is de-
scribed by the discrete concentrations of all molecules.

Se = ([4], [B], [C], [D], ) (3.14)

When a chemical reaction (e.g. A+ B — (') occurs after a certain time interval dt, the state
at time t (S;) undergoes a discrete change to state Sii4;, where only the concentrations of
the evolved molecules change.

Stiar = ([A] _17[3] _L[O]_'—L[D]v'“) (3.15)

The computation of the probability (a,)of a chemical reaction () requires only some physical
properties of the involved molecules, their concentrations and system properties, such as
volume and temperature, using equations similar to 3.1 and 3.2. For pairs of states that
can be transformed into each other through application of a chemical reaction, the transition
probabilities are defined as follows

P(St+dt|st) == audt. (316)

Since these probabilities of the transitions from one system state to the next do not depend
on any previous states S;_4; it can be regarded as a Markov process. The probability of the
system to be in a state S; and its change over time can be determined from the differential
equation

dP(S;)
o= Z P(S1]S4)P(Ss). (3.17)
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The entire set of differential equations for all states is called the "master equation” of this
system, from which the entire dynamics of the system can be calculated. However, the
computation is infeasible for most complex systems. The idea of stochastic simulation is
therefore to follow only one possible sequence of transitions rather than all. Starting from
the state with the initial molecule population, repeatedly one chemical reaction (u) is chosen
and applied after a time interval (7). Both p and 7 are random numbers chosen from the
distribution of the reaction probabilities. Gillespie formulates the computation of p and 7

from two pseudo-random numbers 71 and 79 in the following way:

7= (1/ap)In(1/r1) (3.18)

p—1 Iz
Zav <reap < Zam (3.19)
v=1 v=1

where ag is the sum of the probabilities of all reactions in the system. With each chemical
reaction that is applied, the molecule concentrations and with that the reaction probabilities
have to be updated and the time is set to ¢t = ¢ + 7. The algorithm of Gillespie can then be

described as a three step process.

1. Calculate the reaction probabilities a, given the

system state S.

2. Generate random numbers 71 and 9. Compute p
and 7 as in 3.19 and 3.18.

3. Update time ¢ by 7 and the molecule concentra-

tions in S according to reaction u.
Go back to Step 1.

The result of Gillespie’s algorithm is one transition sequence which is chosen by exactly the
probability that is given by the "master equation”. This allows to make predictions on the
dynamics of the system by averaging over several runs. Advances in computer technology
and updates in Gillespie’s algorithm [65] have made it feasible to produce large numbers of

runs for complex systems.

3.2.3 Stoichiometric Approach

The modeling techniques introduced in the previous paragraphs focused on the dynamics of
the reactions within a metabolic system. This section will describe approaches that regard
the system as one connected entity allowing to investigate emergent properties beyond the
reaction level. Stoichiometric modeling does not regard kinetic information, such as the rate
constant, instead it incorporates topological information about the structure of the metabolic
network and the reaction stoichiometry of a system in form of stoichiometric coefficients i.e.
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the proportion of a metabolite in a reaction. The metabolic network which will be analyzed by
the stoichiometric approaches comprises all internal metabolites and reactions as well as ex-
change reactions, such as influx of "food” metabolites and outflux of metabolites like biomass
formation. Considering the law of mass conservation, the metabolites are here implemented
to be in mass balance, i.e. metabolites can not appear out of nothing or disappear, they have
to be produced or used in one of the chemical reactions. Consequently, for each metabolite a

balance equation describing the time-evolution of its concentration can be formulated as

||

dmi
dt == ZSUU]', (320)
J

where s;; is the stoichiometric coefficient of metabolite ¢ in reaction j and v; is the flux of
reaction j. Furthermore, the investigated system is assumed to be in steady-state which
means that all internal metabolites may not accumulate and metabolites that were input or
created in a reaction either have to serve as substrate in another reaction or output. The

differential equations from 3.20 can then be written as linear equations in the following form

||
> siju; =0. (3.21)

J
Some of the reactions in the metabolic system can be regarded as irreversible, i.e. flow in one

specific direction, this can be modeled specifying inequalities as constraints.

v; >0 (3.22)
Given the stoichiometric and topological information, one wants to compute functional sub-
units of the metabolic system, called metabolic pathways. Metabolic pathways are a sequence
of reactions, which are either internal loops or paths connecting source metabolites (”food”)
with sink metabolites (biomass), which also have to fulfill the steady-state assumption. There
are two types of stoichiometric analysis, one which focuses on one or few specific solutions
from the distribution of all possible pathways obeying some additional constraints and a type
of network-based analysis regarding the full distribution. To the former type belong for ex-
ample flux balance analysis and metabolic flux analysis. The latter comprises mainly the
elementary mode and the extreme pathway analysis. The next paragraph describes the steps
from metabolic network to the stoichiometric model which is part of both methodologies. The

succeeding two paragraphs underline their differences in computation and application.

Nullspace of S

Besides representing the structure of the network, the stoichiometric matrix S can be used to
determine the dynamics of the metabolite concentrations and the steady-state component of
the network. For the former, simply instead of using balance equations (Equation 3.20) the
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Figure 3.3: The stoichiometric matrix (top) from example in Figure 3.2 and the respective kernel
matrix (bottom). Rows in the kernel matrix correspond to the reactions of the network. Columns
represent steady-state fluxes, not regarding inequality constraints yet.

stoichiometric matrix is multiplied with flux vector ¥ to derive the vector of time derivatives
for the metabolite concentration as shown in Equation 3.5.

Similarly, for determining the steady-state component which is the focus of this section, i.e.
the space of possible fluxes trough the network satisfying the steady-state assumption, the

system of linear equations from 3.21 is now written in matrix form as
Sv =0, (3.23)

where the solution for ¢ is usually not a unique flux but a solution space spanned by linear
independent flux vectors. This solution or null space can also be represented in matrix form,
the kernel matrix K, where each row represents a reaction and its participation in a steady-
state pathway. Accordingly, columns represent these pathways and the involved reactions.
There exist efficient implementations of algorithms that can compute the kernel matrix, such
as Gauss-Jordan elimination. Additionally to the use in the stoichiometric analysis that will
be described in the following paragraphs, some information about the metabolic function can
be extracted directly from the kernel matrix. For instance, by inspecting the kernel matrix
for linear dependent rows (reactions) relationships among reactions, such as enzyme subsets,
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can be discovered. Two reactions (k,[) belong to the same enzyme subset if their row vectors
(rk,rl) in the kernel matrix are equal up to a scalar, i.e. if it holds that

Vi:rk =axrl (3.24)

where a positive a indicates parallel reactions and a negative value opposing reactions. Those
opposing reactions could be excluded from further inspection since they will not be involved
in a valid pathway. Parallel reactions can be lumped together and regarded as one compo-
nent, which simplifies the further pathway analysis. Several other reductions exist, such as
discarding strictly detailed balanced reactions and conservation relations. In most cases the
solution space, which can be regarded as a convex polyhedral cone in the flux space (see
Figure 3.4b), is further cut down by introducing thermodynamic constraints, specifying some
reactions as irreversible (see Equation 3.22) or limiting the flux of a reaction to a maximum
value (kpr). In flux balance analysis, the polyhedral cone of solution space also has to be
closed through capacity limits on the fluxes of the reactions,

V; < Umnaz (3.25)

so that the optimization problem and consequently the polyhedral cone become bounded (see
Figure 3.4c).

Flux Balance Analysis

The aim of flux balance analysis is to find an optimal solution within the solution space de-
scribed above. The assumption is that the metabolic system functions optimally and evolved
to maximize a certain function, such as growth rate or biomass formation. Linear optimiza-
tion is applied to maximize or minimize a certain objective function, satisfying the set of
linear equations (Equation 3.23) and inequality constraints (see 3.22). In most cases biomass
production is chosen as the objective function Z, which would then comprise of a certain
number of exchange reactions v® and specific proportions of them (c¢¢), depending on the
respective metabolic system.

max : Z = Z csuy (3.26)

The solutions of linear optimizations lie at the edges of the polyhedral cone. The solution for
a specific objective function is a single intersection point between the linear objective function
and the edges of the cone. Since the solution space in flux balance is constrained in a way
that it represents a bounded convex polyhedral cone, the solution to the linear optimization
is either a line, when Z coincides with an edge of the cone, or optimally a single point in
flux space if Z cuts the cone in an extreme point (see Figure 3.5). A solution represents one
specific flux distribution that leads to the optimal value for the objective function.

Flux balance analysis has been shown to be consistent with experimental studies in predicting
the correct phenotype (flux distribution) that will be expressed in the real metabolic system



30 CHAPTER 3. MODELING CHEMICAL REACTION SYSTEMS

// %
v Vs
“ >»
a) Steady State: Sv =0 b) Vi : if ¢ irreversible v; > 0
A A
7/ 7/
7/ 7/
7/ 7/
VY VY
» »
¢) Bounding: vynin < v < Upas d) Optimize: max : Z = ¢;v;

Figure 3.4: Four steps in the analysis of the nullspace of the stoichiometric matrix in terms of
the solution space (gray shape). a) Fulfilling the steady-state assumption gives the nullspace of the
stoichiometric matrix S as solution space. b) Satisfying the inequality constraints of the reactions
shapes a polyhedral cone as solution space, with the extreme pathways as boundaries. ¢) Additional
maximum flow constraints bound the cone. d) Linear optimization of an objective function gives one
point in the solution space as optimal solution (red point).

[123, 92]. Further it can be used for sensitivity analysis, where either certain parameters
in the model are changed, enzymes are knocked out to simulate gene deletion or capacities
of influxes are changed (change in growth medium). The differences between the optimal
solutions in the wildtype model and the changed models give insights about the sensitivity

or robustness of the modeled system concerning the respective perturbation.

Metabolic Pathway Analysis

Instead of finding one optimal solution, in metabolic pathway analysis the entire space of
possible pathways through the network is studied. It is therefore able to shed more light on

the systematic properties, such as flexibility or modularity.
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Figure 3.5: Simple example of linear optimization in a two-dimensional solution space (gray shape).
The inequality constraints 0 > A > 60 and 0 > B > 50 as well as the flow constraint A + 2B < 120
are drawn as dotted lines. The objective function Z = 20A + 30B is the red line. The optimal solution
is the red point in the intersection of the objective function and the constraints. Adapted from [127]

The first step in metabolic pathway analysis is to determine a set of descriptive pathways
from which the full set of possible pathways can be described and gained, so to say basis
vectors spanning the space of admissible fluxes through the network, i.e. every allowed flux
can be generated by non-negative convex combination of the basis flux vectors. There are
two very related concepts that implement this idea, the approach of elementary modes and
that of the extreme pathways. Both approaches are solved using convex analysis with a
convex polyhedral cone P as the solution to the system of linear equations of the steady
state assumption and the inequality constraints representing thermodynamical irreversibility

of reactions.

P={7eR":S7=0 A v; >0if iisirreversible} (3.27)

The difference between elementary modes and extreme pathways lies in the fact that in
the concept of extreme pathways all reactions underlie an irreversibility constraint, whereas
elementary modes allow for the inclusion of reversible reactions. In terms of convex analysis
this means that extreme pathways represent the outer edges of the cone which are linear
independent of each other, while elementary modes do not necessarily fulfill this requirement
but have to be minimal in the sense that there may not be any other flux vector in the cone
which is a proper subset concerning the involved reactions. Biologically, this means that the
set of elementary modes comprise all minimal routes through the metabolic network that are
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Figure 3.6: The full set of elementary modes of the example network in Figure 3.2. The blue reactions
are part of the respective elementary mode. A thick blue line indicates a flow of two, while a thin line
represents a flow of one. Below each graph are given the flux vectors of the modes.

stoichiometrically and thermodynamically feasible. The extreme pathways are just a subset
of the elementary modes, which can pose problems in the metabolic analysis. However, if
reversible reactions are modeled as two irreversible reactions of opposite direction the set of
extreme pathways coincides with that of the elementary modes.

Minimal Knockout Sets

Elementary modes are a concept for functional subunits of the network, in this paragraph
now the focus will lie on a related but opposing concept. Minimal knockout sets are so to
say dysfunctional subunits of the network. They are sets of reactions which block a certain
target function if they are knocked out simultaneously, see Figure 3.7. The knockout of the
reactions of one knockout set has to block the target function in all situations, i.e. in all
elementary modes where the target reaction is active, see the sets on the top in Figure 3.8.
Knockout sets could , thus, also be described as cutting or hitting sets of elementary modes.
This means that for all elementary modes in which the target reaction is active (non-zero),
there has to be one reaction in the knockout set that is also active in this elementary mode
[99]. Further, the knockout sets have to be minimal in the sense that there is no subset of
the knockout set that is itself a knockout set for the specified target function, see some not
minimal knockout sets on the bottom of Figure 3.8.
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{R2, R4, R6} {R3, R4, R8}

Figure 3.7: Four of the ten minimal knockout sets of the example network in Figure 3.2. The target
function here is the transport reaction of metabolite F. A crossed out reaction is knocked out and
part of the respective minimal knockout set. Red lines represent reactions that are blocked through
the knockouts. In all knockout sets the target reaction is knocked out. Green lines indicate reactions
through which there is still flow. Below the graphs the reactions of the minimal knockout sets are

given.

{R2, R5, R6} {R1, R6}

Figure 3.8: Four sets of knocked-out reactions that are not minimal knockout sets. The two sets
on the top are not MKS because the target function is not blocked, even though a large number of
reactions is knocked out. The two sets on the bottom block the target function but are not minimal,
not all reactions (light red cross) of these sets are needed for the blocking.
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3.2.4 Chemical Organizations

Another way to view chemical reaction systems is through so called chemical organizations,
sets of molecules and reactions of the chemical reaction system that are closed and self-
maintaining. This means on the one hand that the application of the included reactions to
the molecules of the set does not produce new molecules outside this set (closeness). On
the other hand, all molecules of the organization has to be produced from molecules and
through reactions within the organization (self-maintenance). Thus, chemical organizations
are steady-state subsystems of a chemical reaction system, but of the form that they do not
evolve new behavior. In fact, all steady states of a reaction system are included in the full
set of chemical organizations [38]. Therefore, they can tell us something about the dynamics
of the system. Since the set of chemical organizations forms a partially ordered set with the
inclusion operation [22], it can be represented through a Hasse-diagram, which will be called
organization hierarchy, throughout this work. See Figure 3.9 for an example reaction system
with the corresponding subsets and the organization hierarchy.

3.2.5 Computational Representations

A model of metabolism comprises several objects on different levels, in the following para-
graphs possible computational representations of these parts are introduced. The focus will
lie on representation in graph form which is an easy to grasp concept and the most intuitive
way to view the objects of this study, such as molecules, reactions and networks. Further,
graph theory provides many useful tools for their analysis and manipulation.

A graph G is a tuple of a set of vertices V' and a set of edges E connecting pairs of vertices.

G=(V,E); V=wuv,...,vp5; ECV XV (3.28)
A subgraph S of a graph G is the subset of the vertices and edges of G.

S=(Vs,Eg); VsCV; EsCE (3.29)

Mbolecules

The most common computational representation of a molecule is as molecular graph, in which
the vertices represent the atoms and the edges correspond to the bonds of the molecule. The
molecular graph representation provides storage of important chemical information such as
atom and bond type as well as charges and aromaticity through vertex and edge labels.
Furthermore, it allows to compare molecules and search for molecules which contain or are
contained in another molecule, using well known graph theoretic approaches for graph and
subgraph isomorphism. A graph G is a subgraph of another graph G if there is a mapping
of the vertices and edges of (G; to the vertices and edges of Gbs.
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Figure 3.9: Example reaction system with its chemical organization hierarchy. Top left: The reaction
system, with molecules (circles: a,b,c,d), reactions (arrows) and stoichiometry (caption of arrows). Top
right: The different categories of subsets. Bottom: Hierarchy of all subsets, including the organization
hierarchy (solid lines, solid boxes). The top organization of the hierarchy is the full reaction network,
the bottom organization is the empty set. From [37]

Two graphs are isomorphic if both graphs are a subgraph of the other, i.e. if there exists
such a mapping for both directions. There exist several efficient algorithms for subgraph
and graph isomorphism checking [162]. However, performing this check for a huge number of
graph pairs it becomes a computationally costly factor. It is sometimes important to know
whether a certain graph has already appeared in the course of an algorithm, which means that
every graph has to be checked against all previous graphs. For molecular graphs representing
valid chemical molecules there exist more efficient tools than graph isomorphism checks. It is
possible to represent molecules in a canonical line or string format such as SMILES [175]. In
chemical textbooks the structural formula is the commonly use string representation, a short
and comprehensible format, however, it is not unique which makes it uninteresting for the

use in search strategies.
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Figure 3.10: Reactions as graph grammars: Chemical transformations very naturally translates into
graph transformation rules. As an example the Cope rearrangement, a concerted pericyclic [3,3]-
sigmatrope rearrangement, is shown (15¢ row on the left). A graph rewrite rule consists of 3 graphs:
(i) the left graph which is composed of all the atoms and bonds which vanish during the reaction (ii)
the context graph comprised of all atoms and bonds which do not change (iii) the right graph consists
of all the atoms and bonds which are formed during the reaction. The conjunction of left and context
graph forms the pre-condition for the applicability of the rewrite rule. the rules for the Cope and oxy
Cope rearrangement are shown (2" and 3™ rows on the left). The context sensitivity of graph rewrite
rules is illustrated by Wender’s methatese, a tandem reaction (oxy Cope rearrangement followed by
Cope rearrangement). While the Cope rule applies to both steps, the oxy Cope rule is only applicable
to the first step of the tandem reaction.

Chemical Reactions

Once molecules are represented as (labeled) graphs it becomes natural to view reactions
as graph transformations. Again, this matches the intuition. After all, a chemical reaction
mechanisms is taught and understood as a sequence of events that break and/or form chemical
bonds among the atoms (vertices) of small assembly of molecules (graphs). From a computer
scientist’s point of view, chemical reactions are thus just graph-rewriting rules, see Figure 3.10
for an example.

A graph rewriting rule is specified as a triple consisting of left graph, context, and right graph.
Left and right graphs consist of all atoms and bonds that vanish or are newly formed in
the transformation, respectively. The context specifies the necessary prerequisites for the
applicability of the rule beyond the atoms that are actually affected by the reaction itself.
Note that in proper chemical reactions all vertices (atoms) involved in the reaction are part
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Figure 3.11: Tmaginary Transition State (ITS) and their hierarchical organization: Superimposition
of educt and product molecular graphs and subsequent removal of all atoms and bonds which do
not directly participate in the chemical reaction (marked in green) yields a cyclic ITS for a chemical
reaction (e.g. acidic hydrolysis of ethylacetate). Bonds which are broken/formed during the reaction
are marked with a red x/o. The ITS can be organized in a hierarchical structure where each tree
level adds additional information to the base cycle of the ITS such as bonds or atom labels. Specific
instances of reactions are found as leafs of the tree.

of the context of the rewrite rule because they neither disappear nor are newly created.

Another representation describing chemical reactions is the imaginary transition state struc-
ture, I'TS. The ITS of the reaction is intimately connected to the left and right graphs. It
is obtained from the superposition of educt and product molecular graphs and subsequent
removal of all atoms and bonds which do not directly participate in the reaction (see Fig-
ure 3.11). The form of monocyclic ITSs that are used in this work, account for over 90% of

all known chemical reactions [73].

Chemical Reaction Networks

Mathematically speaking, a chemical reaction network consists of a set of nodes (Molecules)
and a set of subsets of these nodes (Reactions). This corresponds perfectly to the notion of
a hypergraph H = (N, H), where H are the set of hyperedges. Hyperedges, just as chemical
reactions, are non-empty subsets of the set of nodes N. Hypergraphs are an intuitive way
to view chemical reaction networks, see Figure 3.12a) for the above used example network as
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Figure 3.12: Example network in a) hypergraph representation and b) as bipartite graph. In both
representations gray circles are metabolites. In the hypergraph, reactions are represented as hyperedges
(arrows). In the bipartite graph, reactions are the white boxes and participation is indicated through
connection with arrows.

hypergraph. Often in biology textbooks metabolic networks or chemical routes will be shown
as hypergraphs.

Another appropriate graph representation of chemical reaction networks is the bipartite graph.
As for the hypergraph, no connectivity information is lost as would be for simpler reaction
or substrate graphs. A bipartite graph B = (N1, N2, F) is a tuple of two independent sets
of nodes N1, N2 and a set of edges F, where an edge e always contains one node nl of the
nodeset N1 and one node n2 of the other nodeset N2. In case of a chemical reaction network,
the two independent node sets are the sets of metabolites and reactions, respectively. A
connection between a metabolite node and a reaction node in the bipartite graph indicates
the participation of the metabolite in the respective chemical reaction.

3.3 Artificial Chemistry

Artificial chemistries are models of real chemical systems or systems that behave like one,
that can deliver insights about the evolution of complex systems and possibly some of their
properties. An artificial chemistry model is defined through molecules, reactions specifying the
interactions between molecules and a dynamic on the reactions, where the notion of molecule
and reactions can be understood as metaphors for objects and the rules for changing objects,
respectively. There exist several approaches for such models, which differ in the level of
abstraction and the definitions of the set of molecules and reactions. An interesting property
of an artificial chemistry is to be constructive in the sense that new molecules outside the
set of initial molecules are created, thus one can not enumerate and define the set of possible
molecules explicitly and possibly not even implicitly, they just emerge through the interaction

of the existing molecules.

Based on the structure of molecules and definition of the molecule interactions, artificial
chemistry approaches can be ascribed to specific classes, such as rewrite, arithmetic or turing-
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machine like systems. Many models of artificial chemistries have been developed in recent
years. Most famously, Walter Fontana’s A1Chemy [49, 50], representing molecules as A-calculus
expressions and defining reactions by the application of one A-term to its reaction partner. The
result is a new A-term. Related models are based on a wide variety of different computational
paradigms from strings and matrices to Turing machines and graphs [3, 6, 36, 161, 158, 112,
141], for a broad review it is referred to [39, 153].

3.3.1 Molecules

The molecules in artificial chemistry models are sometimes sets of strings, bit-strings, graphs,
lambda-expressions, numbers or other abstract symbols and objects. The set of molecules M
can be defined either explicitly,

M ={my,...,my}; neN, (3.30)

where all molecules can be enumerated, or it is defined implicitly through a grammar or
another form of construction definition

M = {mz tm; € L(G)}, (331)

where L(G) is the set of all words that can be derived from grammar G. Sometimes, it is
sufficient to define an initial set of molecules

Minit = ma, ma (3.32)

and additional molecules emerge from the interactions between the molecules, i.e. the defini-
tion of the reactions. In this work the graph representation of real chemical molecules is used
an thus will be the focus.

Historically, the description of molecular structures was one of the roots of graph theory
[21, 154]. Graphs with vertex labels denoting atom types and edges indicating bond orders
are ubiquitous in every book and journal article on Organic Chemistry and in practice con-
vey enough information to provide chemists with a good idea of the molecules behavior in
particular chemical reactions.

By construction, the graph representation abstracts spatial information to mere adjacency.
Thereby avoiding the most time-consuming computation step: embedding the atoms in 3D
by means of finding the minima on a potential energy surface [72]. On the other hand, the
restriction to graphs implies that several features of real molecules cannot even be defined
within the model: (1) There is no distinction between different conformers and, in particular,
between cis and trans isomers at a C = C double bond. (2) there is no notion of asymmetric
atoms and chirality.
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3.3.2 Rules

The rules of an artificial chemistry define interactions between molecules, the chemical reac-
tions. A rule r is thus a function from M to M (r : M — M) and can be written similarly to
a chemical reaction as

mi + ms N ms+my; m; €M (3.33)

If all molecules of the left side of a rule are existent, then a rule is applied by replacing those
molecules with the molecules of the right side.

If molecules are represented as graphs the set of rules are modeled as graph-rewrite rules and
can be understood as a graph grammar. A graph rewrite system [120] interprets the graph
rewrite rule and performs the graph rewriting step if the graphical pre-condition is matched
in a host graph. The applicability of rewriting-based approaches to metabolic network data
was demonstrated recently in an analysis of KEGG data [47].

3.3.3 Dynamics and Energy

The dynamics of an artificial chemistry determine how its rules are applied to the set of
molecules. The two major approaches differ in the way they treat molecules, either as single
entities or as frequencies of molecule types. The former view usually leads to stochastic-
simulation-like dynamics, where molecules are randomly drawn and, if possible, rules are
applied, creating new molecules. The latter approach is best described by a system of differ-
ential equations, based on the rules of the chemistry, that describe the chemical evolution of
the molecules frequency or concentration. A discussion of both modeling approaches can be
found above in Section 3.2.2.

Reaction energies can introduce important constraints on the dynamics and the development
of artificial chemistries, by selecting one or a few preferred reaction pathways from the en-
tire space of possible reaction channels. Therefore, an energy function is indispensable for
a realistic model of chemical reaction systems. Despite substantial progress in theoretical
chemistry, detailed quantum chemical computations are in many cases still too expensive to
be employed in large scale computer simulations. Comprehensive reaction databases used
e.g. in synthesis planning, on the other hand, are mostly commercial products which come a
substantial access costs. It also remains unclear to what extent the network of the millions
of reactions performed and compounds synthesized by organic chemists over the past two
centuries [70] provided a view biased by the history of chemical research. Knowledge-based
approaches hence appear less attractive for this purpose.

ToyChem model

The ToyChem model [13] utilizes a caricature version of quantum chemistry to compute to-
tal binding energies directly from the labeled graphs. In particular, the chemical structure
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graph is decomposed in an unambiguous way into hybrid orbitals using the VSERP rules
[68]. Application of a simplified version of the Extended Hiickel Theory (EHT) [80] yields
a Schrodinger type secular equation which is parametrized in terms of the atomic valence
state ionization potentials and the overlap integrals between any two orbitals. The physical
properties of a molecule are determined by the eigenvalues of the Hamilton matrix and their
associated eigenvectors as well as by the number of valence electrons and the electrons in the

various molecular orbitals. For details it is referred to [13].

The ToyChem model was used to study the generic graph-theoretic properties [12] of chemical
reaction networks under thermodynamic constraints. A straightforward extension of the
ToyChem model to solvation energy made it possible to study chemical reaction networks in a

multiple phases setting [14].

More realistic estimates of reaction rates require the use of state-of-the-art methods from well
established quantum mechanical program packages such as GAUSSIAN or Schrédinger Soft.
Unfortunately, many of these sophisticated quantum mechanical methods are very expensive
in terms of computer time. Semi-empirical methods like PM3 (implemented for example in
Mopac and GAUSSIAN) are computationally less costly but also provide less reliable results.
Another popular choice nowadays is DFT on the B3LYP level of theory, which works well
for certain organic molecules, but not across board for the whole organic chemistry subset
[181, 19].

3.4 Metabolism

We are seeing the cells of plants and animals more and more clearly as chemical
factories, where the various products are manufactured in separate workshops.
The enzymes act as the overseers. Our acquaintance with these most important
agents of living things is constantly increasing.

Eduard Buchner in 1907

Metabolism comprises a set of catalyzed chemical reactions, responsible for the uptake of
food molecules and building new structures essential for the survival of the cell, using some
form of energy. Thus metabolism can be seen as a chemical reaction system. However,
it has some characteristics that make it a specialized form. One important difference to
general chemical reaction systems, is the fact that metabolism contains enzymes that catalyze
the chemical reactions and give them direction. These enzymes can form subsets or entire
metabolic pathways shaping the metabolic network. The way enzymes evolved through series
of duplications and specialization, as parts of clusters and pathways that also duplicate and
specialize makes metabolism a unique chemical reaction system. This of course also true for
the evolutionary history of the entire system, in which it adapted to environmental changes,

overcame barriers and was subject to natural selection.
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3.4.1 Enzymes

The vast majority of chemical reactions in metabolism are performed and catalyzed either by
protein enzymes or ribozymes. Enzymes differ in their reaction mechanisms and substrate
specificity, some react only with a very restricted set of metabolites while others can react
with entire classes of metabolites. Also the way in which reactions are catalyzed, i.e. how
the activation energy of the chemical reaction is lowered, differs among enzymes, from the
stabilization of the transitions state to spatial orientation of the substrates. The activity of
the enzymes activity can be inhibited or activate through interactions with specific substrates

or other enzymes.

3.4.2 Metabolic Pathways

A metabolic pathway is an organized sequence of chemical reactions where the products of
one reaction are the substrates of the subsequent reaction. The orchestrated procedure in a
pathway, which is achieved for instance through enzyme complexes or spatial proximity of
enzymes catalyzing subsequent reactions, ensures a high rate of throughput. The products
of a pathway can accumulate and then be used in biomass formation, as input for another
metabolic pathway or released out of the cell or compartment. Intermediary products, how-
ever, are never accumulated because it is constantly consumed by other reactions, this means
that metabolic pathways are in steady-state. The steady-state condition does not imply an
energy equilibrium, in fact, metabolic pathways constantly release (catabolic) or use (an-
abolic) energy. Catabolic and anabolic pathways, thus, are connected with each other and
two parallel but opposing pathways are usually regulated reciprocally, i.e. if the catabolic
pathway is up-regulated, the according anabolic pathway will be down-regulated. Therefore,
never all metabolic pathways will be active at the same time, the cell rather switches be-
tween specific patterns or modes of pathways. The union of all metabolic pathways build one

overlying metabolic network.

3.4.3 Metabolic Network

The metabolic network of a cell comprises all its metabolic pathways and chemical reactions
serving the function to produce energy and biomass molecules from the steadily imported
food metabolites. Since the metabolism of a cell is in steady state only certain combinations
of pathways and chemical reactions can act simultaneously. The organization of metabolic
networks evolved in a way to efficiently reorganize these pathway combinations according to
the needs of the cell. The structure of the networks is hierarchical and modular, i.e. small
modules group into larger modules which itself build even larger modules. These modules
are never fully separated, in most cases some highly connected metabolites (e.g. pyruvate,
coA)ensure their connectedness. These so called hub-metabolites account for the majority

of the overall connectivity, the remaining metabolites participate only in one or very few
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reactions. The benefit of such a scale-free topology for the network are short paths between
pairs of metabolites and high robustness against random knockouts [1], which allows the cell
to respond quickly to environmental (e.g. depletion of food sources) and internal changes

(e.g. mutations, different energy levels).
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Chapter 4

Computational Framework

In the previous chapter, the possibilities and potential benefits for modeling chemical reac-
tion networks that underlie metabolism were discussed. In this chapter, a novel multi-scale
computational framework for the simulation of the evolution of early metabolism is presented
in its details, including the single components as well as the big picture.

The particular Chemical Universe (see Figure 4.1) that underlies the simulation framework is
motivated by the way how chemical reactions are explained in introductory Organic Chemistry
classes: in terms of structural formula (labeled graphs) and reactions mechanisms (rules for
modifying graphs). It further contains a minimal, RNA-World style, genetics and a simple
fitness function linked to metabolic efficiency.

4.1 Protocells

The “players” in the Simulation Universe are modeled as complex agents, referred here to as
protocells. These protocellular entities are characterized by individual genomes which encode
for its catalytic elements. These ribozymes represent the individual’s metabolic capability,
which is internally realized through an algebraic chemistry. Besides the catalyzed chemical
reactions, exchange of metabolites with the environment is performed. There is also selection
process on the protocell population. The selected individuals will then multiply and the
resulting child protocells incorporated in the population, while their genomes undergo some

genetic operations.

4.2 Genome

The interest of this work lies primarily in the earliest stages of metabolic evolution, which
arguably took place in the setting of the Early RNA World [64]. In this setting, RNA has
the double role of genetic material and serves as catalysts. Both the analysis of naturally
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Figure 4.1: Overview of the simulation system: (A) Transcription of genes into catalytic ribozymes;
(B) Assignment of catalytic functions to each ribozyme; (C) Estimation of reaction rates; (D) Con-
struction and stochastic simulation of the metabolic network; (E) Metabolic Flux analysis and fitness
evaluation; (F) Application of genetic variation operators.

occurring ribozymes and a wide variety of artificial selection experiments have shown that
RNA molecules of about 100nt are capable of catalyzing most important types of chemical
transformations that occur in a modern organism, see [118, 24, 155] for recent reviews. Thus
it makes good sense from a prebiotic evolution point of view to implement “enzymes” as struc-
tured RNAs of approximately tRNA-size. For simplicity, a very simple genomic organization
is used: A single RNA sequence serves as genome carrying a collection of non-overlapping
“genes” encoding ribozymes. Start and stop positions of genes are marked by special sequence

motifs.

The organisms in this model are thought to be haploid. As genetic operators, currently
point mutations, deletions as well as gene duplication and horizontal gene transfer are used.
More sophisticated modes of genome evolution such as rearrangements or recombination are

excluded at present but could easily be incorporated into the computational framework.

The detailed modeling of any form of gene regulation is discarded in the present model to
reduce the computational efforts. Again, such refinements could be included e.g. along the
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Sequence Space Structure Space

Figure 4.2: The RNA sequence-to-structure map: There are many more sequences than structures
which brings redundancy into the map. Sequences which fold into the same secondary structure form
extended neutral networks in sequence space. The strong interweavement of the neutral networks
implies that the sequences in a small volume around an arbitrary sequence realize all possible secondary
structures.

lines of [152, 48]. The minimal organisms of this model thus exhibit constant metabolic
characteristics throughout their life-time, thus dispensing with the need to explicitly model
any aspects of growth or development at the level of individuals.

4.3 Ribozymes

The catalytic activity of ribozyme as well as a polypeptide enzyme is dependent on the three-
dimensional structure of the catalytic heteropolymer. The map from sequence to catalytic
activity can be understood in two steps: sequence — structure — function. In the case
of protein-enzymes, translation of the genomic nucleic acids sequence into the polypeptide
sequence forms an additional mapping step.

The first step, the sequence-to-structure map [51] (Figure 4.2), is well approximated by the
usual RNA folding algorithms. RNA molecules form secondary structure by folding back onto
itself to form double helical regions interspersed with unpaired regions termed “loops”. The
resulting secondary structure can be represented by an outer planar graph with nucleotides
as vertices and base pairs as edges. A well established energy model [111], with parameters
derived from melting experiments, assigns a free energy to every possible secondary structure.
The simplest approach to RNA folding consists then of selecting the structure with minimal
free energy from the combinatorial set of all possible structures. Fortunately, this task can be
solved efficiently by dynamic programming algorithms that run in time proportional to the
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cube of the sequence length. Here the folding routines as implemented in the Vienna RNA
package [79] are used.

The statistical architecture of the RNA sequence-to-structure map and it’s implications for
the evolutionary dynamics [53, 54] has been extensively studied over the past decade. In par-
ticular, the map possesses a high degree of neutrality, i.e. sequences which fold into the same
secondary structure are organized into extended mutationally connected networks reaching
through sequence space. A travel along such a “neutral network” leaves the structure un-
changed while the sequence randomizes. The existence of neutral networks in sequence space
has been demonstrated in a recent experiment [145]. Due to the fact, that the neutral networks
are strongly interwoven, the sequence-to-structure map shows another interesting property
called “shape space covering” [146]. Meaning that within a relatively small volume of se-
quence space around an arbitrary sequence any possible secondary structure is realized. Both
features of the RNA sequence-to-structure map account for directionality and the partially

punctuated nature of evolutionary change.

For the structure-to-function mapping, unfortunately, there does not exist any well-understood
physically realistic model. Instead, a simple purely computational model based on structural
features motivated by early models of RNA evolution [53] is used. Catalytic structures typi-
cally depend on the molecular details of an active center, which is abstracted here to a local
motif contained in a secondary structure. Here the longest “loop” (cycle) of the secondary

structure is used as a computationally easily accessible feature of this type.

Without any claim of physical realism, this cycle can be interpreted as an encoding of the
imaginary transition state of the catalyzed reaction. This type of mapping was inspired by
the fact that many enzymes catalyze a chemical reaction by stabilizing its transition state
and the work on reaction classification systems, in particular Fujita’s imaginary transition
structures (ITS) approach [59], in which cycles also play a central role. All common homo- and
ambivalent reactions, which account for over 90% of all known reactions [77], can be described
by a mono-cyclic ITS [73]. The rest of the reactions are usually composites of successive
mono-cyclic reactions in sequence (rarely more than two [74]) with unstable intermediates
like carbene or nitrene.

In order to construct and evaluate the structure-to-function map a hierarchical classification
of imaginary transition states [76] is utilized here. The size of the ITS, i.e. the number of
atoms involved in the electron re-ordering in course of the chemical reaction, corresponds to
the length of the loop and constitutes level 1 of classification hierarchy (see rhs of Figure 4.3).
The “reaction logo” specifies in addition the bond types in the transition state. The length
and the type of the enclosing base pairs of the adjacent stems is further used to determine
the bond types of the transition state. The absolute positions of the stems within the loop
determine the arrangement of the electron re-ordering corresponding to level 3, the basic
reaction. The information that leads from the basic reaction to the specific reaction (level 4),
the atom-types, stems from the sequence within the loop. Again, each of the different loop
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Figure 4.3: The structure-to-function map: (left) The colored regions of the ribozyme fold determine
the catalytic function i.e. which leaf in ITS-tree is picked; (right) Along the levels of the ITS-tree the

amount of chemical detail increases.

regions stands for one part in the transition state, here the atoms.

Since the structure-to-function map is not based on an approximation of physico-chemical
principles but on an ad hoc model, it is necessary to investigate its statistical properties.
To this end, the autocorrelation function of the sequence-to-function map is considered and
compared to the autocorrelation function of the sequence-to-structure map of RNA folding
[55]. For this, a distance measures on the spaces of RNA structures and transition states is

needed, respectively.

For the structure space, an existing tree edit distance is used that is obtained through a
sequence alignment procedure and the minimization of the cost for transforming one tree
into the other, allowing deletions, insertions and relabeling of nodes as edit operations [51].
Similarly, the distance measure for the transition states starts with an alignment procedure.
This can either be done on the graph representation or a unique string form of the transition
state [163]. Edit operations include substitution of atoms, rearrangement of electron re-
ordering, substitution of bonds and increase/decrease of transition state size. The cost of the
edit operations rises in this order, atom substitution thus being the cheapest operation. The
total cost for transforming one transition state to the other is then minimized.



10 T T | T | T T 10 T T | T | T T
08k AUGC 1 osl GC _
c = . | .
'% 0.6+ — sequence-function - o6t —
[ - sequence-structure s - .
S — 0.4} 7
8 - -
3 - 0.2 ~
0.0 | N )

1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1

40 60 80 100 O 20 40 60 80 100
Hamming distance Hamming distance

Figure 4.4: Autocorrelation functions for sequences of length n = 100 for secondary structure land-
scape and transition-state landscape, with alphabets AUGC (left) and GC (right). For each of 1000
randomly generated reference sequences 1000 mutants were produced for each of the 100 Hamming

distance classes.

The autocorrelation function of a map ¢ : (X,d) — (Y, D) between metric space X with
distance d and Y with distance D can be defined as

(D(p(x), (Y))d(,y)=d
(D?) ’

pld) =1 - (4.1)

where (D?) denotes the expected distance between the images ¢(x) and ¢(y) of two indepen-
dent elements z,y € X [51]. Figure 4.4 shows that the composite sequence-to-function map
behaves much like the underlying sequence-to-structure map. This is not surprising: if the
sequence-to-structure map is dominated by neutral and essentially randomized structures, as
in the case of RNA folding, then the second component, the structure-to-function map, has
little influence on the overall behavior of the composite sequence-to-function map [150]. This
observation in particular justifies the use of an ad hoc artificial structure-to-function map in

this simulation setting.

It can also be shown that the composite map, of RNA sequence to structure map and the
novel structure to function map described above, performs superior against other artificial
genotype-phenotype mappings, as well as other maps based on RNA folding, in terms of
evolvability, connectivity and extension of the underlying neutral network (see Section 6.5.1).
Thus, making it the preferable choice for the present model and possibly other similar opti-

mization tasks.

4.4 Reaction Network Generation

To apply the system of graph-rewrite rules, here a generic graph rewrite engine is utilized. The
computationally most difficult step is the identification of all occurrences of the left graph of



4.4. REACTION NETWORK GENERATION o1

the rule in an input graph. To solve this subgraph isomorphism problem the dedicated state-
of-the-art VF-algorithm (freely available in the C++ VF1ib-2.0 library [28, 29]) is applied. For
each match, the input molecule is then rewritten according to the current graph rewrite rule.
The resulting molecule graphs are converted into unique SMILES [174] to test for duplicates.
The initial molecule(s) and the resulting ones are needed to calculate the transition rate for
the applied reaction.

The energy calculation is performed through the ToyChem model as discussed earlier in Sec-
tion 3.3.3. For situations in which a faster rate calculations are needed, an estimation using
quantitative structure-property relationship (QSPR) and the Wiener numbers of reactants
and products can be used. Here, the QSPR and the approach for activation energy compu-
tation from Faulon is applied, delivering still realistic enough results [46], for the calculation
of the rate constants. The final reaction rate is gained, by multiplying the rate constant with
the reactant concentrations divided by the volume (here, the sum of concentrations of all

molecules in the particular cell).

The complete chemical reaction network can be constructed by exhaustive enumeration. In
practice, however, this is not feasible due to the combinatorial explosion that would result from
iteratively applying all possible reactions to all combinations of molecules. It is imperative
therefore to prune the growing network at each step by removing energetically unfavorable
products and by ignoring highly unlikely reaction channels [135, 46], Figure 4.5.

Suppose a given list of reaction mechanisms and an initial list £9. Performing all unimolecular
reactions on each molecule M € £y and all bimolecular reactions with each pair of molecules
(M1,Mz) € £ x £9 we obtain a new list £] and a list of new molecules £; = £/ \ £9. The
recursion then proceeds in the obvious way:

k-1
ft1 = U Li | x LpU (Lr x Lg) (4.2)
=0

and £541 = £7,1 \ ULk This type of strategy [46] was applied in practice e.g. to predicting
product distributions from simulations of chemical cracking and combustion processes, which
have notoriously large reaction networks.

In addition to kinetically inaccessible reaction products also molecules with more than 30
atoms are excluded in order to keep the efforts of computing molecular properties within
manageable bounds. Note that the resulting reaction networks could contain autocatalytic
compounds whose production would have to be kick-started by external addition of a small
amount of that compound. Evidence for such autocatalytic compounds (notably ATP) has
been reported by Kun and collaborators [104] in the metabolic networks of several species.

In order to check whether a newly generated molecule m is already contained in a previous list
a comparison of the structural formulae must be performed. This is done by transforming the
molecular graphs into their canonical SMILES representation [175], which then are compared
as strings.
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Figure 4.5: Generating reaction network: To avoid combinatorial explosion during reaction network
generation a filtering step, which prunes unproductive parts from the reaction network, is needed after
each application of the reaction set (arrows) to the (current) set of molecules (circles). The network
usually quickly converges in size if the filtering is done on a kinetic basis. In particular, after the
estimation of reaction rates (green squares), the dynamics of the reaction network is simulated by a
Gillespie type stochastic method, followed by removing nodes from the reaction network which have
not accumulated enough particles, due to small reaction rates. This type of strategy [46] has been
used to predict the right product distributions in simulations of chemical cracking and combustion
processes, which are notoriously large reaction networks.



4.5. FITNESS AND SELECTION 593

4.5 Fitness and Selection

The final ingredient in this minimal model of evolutionary processes is the choice of fitness
function and a scheme for selection.

The fitness of the protocells is derived directly from their metabolic yield, more precisely, the
amount of “desirable end products” that can be produced from a defined quantity and compo-
sition of input material. Its explicit computation is again a computationally nontrivial task.
First the pathway distribution of the metabolic network under the steady-state assumption
is determined using metabolic pathway analysis (MPA) [127]. This approach starts from the
stoichiometric matrix .S of a metabolic network which is extracted from the structural infor-
mation encoded in its graph representation. (Internally, the simulations represent metabolic
networks as bipartite graphs composed of metabolite and reaction nodes.) The steady state
assumption implies that the interest lies in non-negative flux vectors ¢ in the null-space of
S, i.e., SU = 0. The assumption is that catalyzed reactions have a non-zero flux only in one
direction. The implementation of MPA in this computational framework delivers the set of
extreme pathways from which all other admissible pathways through the metabolic network
can be derived as linear combination. The optimal yield of the entire network is therefore
realized by one of the extreme pathways[60]. The fitness is consequently computed as the
maximum of the (linear) yield function over all extreme pathways.

This fitness function depends on the definition of a set of metabolites that need to be produced
as “desirable end products”. This set can be either chosen explicitly by the user (entering
a set of target molecules and a graph-similarity measure), or by defining an order on the
produced metabolites with the help of molecular descriptors. Here, several different topolog-
ical indices such as Balaban-Index [4] or Wiener-Number [177] are offered. A certain number
of produced metabolites with maximal/minimal (user’s choice) values (graph-similarity or
topological index) then constitutes the set of “desirable end products”.

The selection process is modeled here as adaptive walk, which applies in the limit of strong se-
lection, weak mutation, negligible interactions between individuals, and constant environment
[125]. An adaptive walk amounts to accepting a genomic mutation if and only if it increased
this yield function. A similar setup is used e.g. in simulations of metabolic evolution based
on group-transfer reactions [130] that explain the emergence of hub metabolites.

4.6 Visualization

For the analysis of complex simulations an efficient visualization tool is of particular interest.
On the one hand it is used to identify simulations with worthwhile properties for further
inspection and on the other hand it supports the choice of appropriate statistics and measures

to summarize the simulation results.
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Several tools have been developed for the visualization of large-scale biological networks [159,
101, 139] and there exist methods for dynamic graph drawing [94], however, there is no tool
which combines these two fields to handle dynamic biological systems.

The visualization tool used here was specifically build for the use with the evolving metabolic
networks produced by the computational framework introduced in this chapter. Almost all
aspects of single simulation runs can be investigated through the use of versatile points of view
and the high scalability that is provided. This supports a profound and efficient analysis of the
structure and properties of the generated metabolic networks and its underlying components,
while giving the user a vivid impression of the dynamics of the system. The analysis process of
the visualization tool is inspired by Ben Shneiderman’s mantra of information visualization
[148]. For the overview, user-defined diagrams give insight into topological changes of the
graph as well as changes in the attribute set associated with the participating enzymes,
substances and reactions. This way, ”interesting features” in time as well as in space can be
recognized. A linked view implementation enables the navigation into more detailed layers of

perspective for in-depth analysis of individual network configurations.

4.6.1 Data

The most prominent data that is visualized are the metabolic networks representing the
molecular interactions of the simulation’s protocells. A directed bipartite labeled graph is used
to visualize the metabolic networks, which is a commonly used representation. Metabolites
and enzymes (reaction) build the nodes (subnodes) of this graph. While its edges indicate
participation in the same metabolic reaction, which is further specified through edge labeling
(see Figure 4.6 for a reaction schema). Several attributes of the network’s components, such
as metabolite concentration and enzyme activity, are also visualized as will be explained in

the following paragraphs.
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Figure 4.6: One enzyme node can have an arbitrary number of reaction nodes as children. Metabo-

lites (circles) are un-grouped. Either the red elements (Reaction View) or the yellow elements (En-
zyme View) are visible. Metabolites are always shown. The dashed lines indicate the child-parent-
relationship. From [140].
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The second type of information which is visualized is the set of extreme pathways of the
metabolic networks in from of a matrix, where each row represents one pathway and columns
are reactions. The matrix entries indicate the participation of a reaction in the corresponding

pathway.

Finally, the information about the sequence of the metabolic networks is used to build a
coherent picture of the evolution of the metabolic system over all generations of the simulation.

4.6.2 Framework

In this paragraph, the possibilities of the visualization tool and the responsible methods are
given, for a more detailed description see [140].

The central object of interest and starting point of all visualization tasks here is the network
graph depicted in Figure 4.7. The constitution of this graph with enzyme nodes and corre-
sponding reaction child-nodes (see Figure 4.6) allows switching between views, the enzyme
view (Fig 4.7 top) with enzymes as nodes and reactions encoded only in the edge label, and
the reaction view (Fig 4.7 bottom) discarding enzymes and representing each reaction as a
single node.

The network graph can be augmented with further visualizations of information about the
network’s dynamics and some of its components. The set of extreme pathways is used here in
two ways. Firstly, single pathways or combinations of pathways can be selected, highlighting
all of its components. Secondly, the information about which components (metabolites /
reactions / enzymes) participate to which extent in the extreme pathways is used to define
node and edge weights. This is particularly useful in combination with the dynamic graph
drawing capabilities of this visualization tool, allowing it to view the change in material flow
through the network (see Figure 4.8). Another information that is encoded in the augmented
network graph is the metabolite concentration, which is represented by the fill level within a
metabolite node.

The data from one simulation can already produce large network graphs, with potentially
important information in small sets or even single components. The visualization framework
therefore provides the ability of overviews and detailed views. As a simple example, the
labeling for metabolite nodes changes from a mere index in the broad overview, to a structure
formula, to a SMILES notation (see Appendix) and finally in the most detailed view to the
molecule graph of the metabolite, enabling to view the exact reaction educts and products
(see Figure 4.9).

Another part of the visualization framework are secondary visualizations, e.g. overviews that
span over all generations of the simulation, such as the life-time diagram and time-series charts
tracking certain network properties such as average or maximum node degree, and detailed

attribute diagrams for single networks from a specific generation, giving a more precise view
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Figure 4.7: Union graph laid out using Sugiyama layout algorithm. The reaction nodes (rectangles)
are colored according to their first appearance (red: earlier, blue: later). Note that the positions of
metabolite nodes (ellipses) remain the same. From [140].
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Figure 4.8: Scaling of the nodes and edges in the network graphs of several generations. The size
of the nodes and the thickness of the edges decodes the strength of the flow through the metabolites
and reactions, respectively. The filling of the metabolite nodes represents their concentration in the
network at a specific time.

on the network properties, e.g. the node-degree distribution is the detailed counterpart to

the average node degree time-series.

The life-time diagrams depict the inclusion of all nodes (metabolites / reactions / enzymes)
in the network for each generation. Every row of the diagram stands for one node. If a node
was included in the network at a specific generation then the respective row is colored at this
time point. The color of the row encodes the ’age’ of the node, i.e. the generation in which the
node entered the network for the first time. Nodes that entered early (‘old’) are colored red,
nodes from later generations (young’) are colored blue. Inside the row, attributes specific
for each node type are depicted as dark columns. For metabolites the height of the columns
indicate the concentration, for enzymes it shows the number of catalyzed reactions and for

reactions the amount of material flow through this node.

All of these visualizations are closely linked to the network graph, on the information level as
well as in terms of user interaction, which is reached through a linked view implementation
[137]. This means that all interactions in the network graph are updated and immediately
shown on all other views, which allows a fast navigation in space (nodes and edges) and
time (generation of the simulation). The same is true for the reverse direction, if interesting
generations or nodes are discovered in overviews, the respective network is immediately shown

and the corresponding parts of the graph are highlighted.
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Figure 4.9: Semantic Zoom: Below a certain level-of-detail threshold, the chemical structure of the
molecule is shown instead of the totals formula. From [140].
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Chapter 5

In silico Evolution of early
Metabolism

In Chapter 2 the problem of metabolic evolution and in particular the formation of metabolic
pathways was elucidated. Some of the most popular scenarios and evolutionary mechanisms
were introduced. Fach of these mechanisms was shown to be supported by evidence from
certain pathways, so that none of these mechanisms is exclusive. As discussed, studies on
hypotheses of pathway evolution [20, 117] suggest that metabolism has evolved differently
in different phases. Furthermore, only traces, or “shadows”, are still observable from the
events in the very distant past of terrestrial life. Many aspects of the evolutionary history are
therefore still not well understood. In particular, the first steps that lead to the emergence of

the earliest forms of metabolism evade observation by conventional approaches.

Thus, there is an urgent need for detailed and realistic models of early metabolism that
consider all its components and scales. As shown, simulation approaches have proven to be
useful in finding and challenging explanations for the evolution of biological networks. In
Chapter 4, a computational framework for the early evolution of metabolism was introduced,
modeling all its significant components in a realistic way. In this chapter, the focus lies on
the detailed analysis of evolutionary transitions, aiming in particular at an understanding of
the processes underlying metabolic innovation.

5.1 Computational Approach

Innovation is hard to model. In contrast to population dynamics or quantitative genetics,
where the dynamics is governed by Darwinian selection and the generation of variability can
be described by simple statistical models, we need a way of judging whether an innovation
has been selected, or whether an observed fitness increase is the result of an incremental
adaptation. This implies that phenotypes must be represented explicitly as objects whose
fitness can be evaluated. This paradigm has been explored already two decades ago in the

61
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context of evolving RNA molecules [52], where phenotypes are modeled as RNA secondary
structures. Subsequent investigations have demonstrated that the sequence-structure map or,
in a more general setting, the genotype-phenotype map [146, 85] plays a crucial role. More
recently, neutral networks were studied in the context of gene regulation [25] and metabolic
networks [142].

In particular, the accessibility of potential novelties plays a crucial role: in a realistic setting
the search spaces are so large that evolutionary trajectories are determined to large extent
by the ease with which advantageous mutants can be generated from extant populations
[53, 149]. Tt is crucial, therefore, to devise models of phenotypes that are as biophysically
realistic as possible and computationally feasible. While in the case of RNAs the fairly simple
and well-understood relation of RNA sequences and RNA secondary structures, i.e., the map
defined by RNA folding, could be employed, it is a highly complex task to devise realistic
genotype—phenotype—fitness mappings for even minimal organisms. A very primitive “ribo-
organism” was devised, for instance, to study the evolution of primitive genetic codes [173].

5.2 Results

In this section, the computational model described in this work is used to simulate the evo-
lution of metabolic networks and analyze the change of its structure and components over
several generations. All simulation runs performed for this section were initialized with the
full set of chemical reactions to chose from, the same configurations for genome length (5000
bases), and the same TATA-box constitution (“UAUA”) and gene length (100 bases). They
differ in initial conditions, population size, environmental conditions, selection criteria, and

simulation time (number of generations).

5.2.1 Quantitative Analysis

To gain some quantitative insights into the general principles of metabolic evolution, a series
of simulation runs was performed to investigate certain measures that give a picture of the
evolutionary constitution of the metabolic networks throughout the evolution process.

As a starting point the connectivity of enzymes and metabolites throughout the evolutionary
process is investigated. The assumption from biological observations and simulation studies
[130] is that enzymes from early stages show a higher connectivity than those from later stages,
which are more specialized in the sense that they catalyze only few reactions. Similarly, highly
connected metabolites, so called hub metabolites usually are ancient components of metabolic
networks. Here, these findings can be confirmed by the analysis of the networks from a
sample of 100 simulation runs starting from a simple set of initial metabolites (cyclobutadiene,
ethenol, phthalic anhydride, methylbutadiene, and cyclohexa-1,3-diene). For every generation
the average contribution of enzymes and metabolites that originated at the particular time
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Figure 5.1: Average relative connectivity of a) enzymes and b) metabolites introduced in the same
generation, for 100 generations. The height of the bars shows the fraction of the overall connections
that are accounted by enzymes/metabolites from a particular generation. All values are averages over
100 simulation runs. Input molecules are not considered in the statistic, they account for nearly 50
percent of metabolite connectivity.

is tracked. Figure 5.1(a) shows a clear trend for enzymes from the first generations to be
responsible for the major part of connections in the metabolic network. On the one hand,
this can be explained simply due to the fact that enzymes that enter the system earlier have
more time to form connections. On the other hand, this observation could also indicate that
enzymes with higher and higher specificity evolve in the later stages. It could be anticipated,
that enzymes with all specificities still appear in later generations but only specific enzymes
catalyzing few reactions are taken to the next generation, while multi-functional enzymes are
discarded because they would change the structure of the network too rigorously. Considering
the connectivities of metabolites (see Figure 5.1(b)), the highly connected nodes can still be
found in the early steps, especially if considering environment metabolites that are always
abundant which account for about 50 percent of connectivity (not shown here). However,
there is a constant production of metabolites potentially becoming highly connected. The
evolution of enzymes and metabolites show similarities in that in both cases highly connected
components mostly stem from the early phase of evolution. However, the extent to which
that happens is different. The reason for this observation might be that evolution selects for

enzymes but not for metabolites.

5.2.2 Evolution of metabolic Pathways

In order to find arguments for some of the evolution hypotheses, the occurrence time (age) of
reactions and metabolites along pathways is observed and studied. It is of particular interest
to determine in which direction (downwards — with the flow of mass, or upwards — against
mass-flow) pathways are formed by addition of chemical reactions that recruit or produce
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Figure 5.2: Evolutionary history of simulated metabolic networks. For the first 100 generations, we
show the number of links and pathways that conform to the forward and backward evolution scenarios,
respectively. Links are pairs of a) consecutive reactions or b) consecutive metabolites along a pathway.
A pathway is identified as “forward-evolved” if at least one of its links is forward and none backward.
In the first generations, the network consists predominantly of forward (reaction) links and pathways.
After about 20 generations, the relative abundance of forward pathways decreases drastically but
quickly reaches a persistent plateau value.

new metabolites. For the investigation of reactions, the term forward (backward) link will
be used if, in a pair of reactions in a pathway, the successor is evolutionary older (younger),
i.e. the catalyzed reaction that lies more downstream in the pathway occurred later (earlier)
in the evolution process. In the same vein, a forward (backward) link between metabolites
refers to a situation in which the products of a reaction are evolutionarily older (younger)
than the educts. Accordingly, forward (backward) pathways are defined as pathways in which
there is at least one forward (backward) link and no backward (forward) link. Given these
definitions, the set of extreme pathways is computed for every generation and all cells. For
each pathway the percentage of forward and backward links and pathways is determined, for
both reactions and metabolites.

For this study, 100 simulation runs were performed with the following settings: a population
size of 100 cells running for 100 generations and performing 100 network expansion (stochastic
simulation) steps per generation. The always abundant input molecules were cyclobutadiene,
ethenol, phthalic anhydride, methylbutadiene, and cyclohexa-1,3-diene. In Figure 5.2, one can
see the change from generation to generation in the constitution of the metabolic networks
regarding the above mentioned measures of forward/backward links and pathways. Consid-
ering the reactions of the networks, it can observed that in the first generations, the networks
consist mainly of links and pathways conforming to the forward evolution scenario. However,
in later generations a much more mixed mosaic-like picture appears, arguing in favor of the

patchwork model. This trend becomes even more evident from the metabolite’s point of view:
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almost all pathways consist of forward and backward links in equal numbers. Another obser-
vation from the reaction’s point of view is that most forward pathways from the early stages
remain even until the last stages, which could mean that they form a core of pathways that
are not subject to evolutionary change. This would support the shell hypothesis.

For the gene history analysis in the next section, longer simulation runs of 2000 generations
were performed, while keeping the same initial conditions as in the previous simulations,
however, with fewer network expansion steps per generation. The statistics for these runs is
summarized in Figure 5.3. The main observation is the ongoing trend of a mix of forward
and backward links while retaining a certain fraction of forward pathways throughout evo-
lution, giving further support to the observations from the previous shorter simulation runs.
The situation as studied so far can be interpreted as follows. While the first generations
of network evolution are dominated by the forward evolution scenario, patchwork evolution
takes over after a sufficiently diverse repertoire of enzymes has built up from which enzymes
can be recruited. An evolution in layers, as proposed in the shell hypothesis, so far has not
been observed. However, the maintenance of the set of pathways that originated by forward
evolution in the earliest generations at least suggests the possibility of an ancient metabolic
core from which later pathways are build by enzyme recruitment or other strategies, such as
enzyme or pathway duplication.

Until now, the simulation results do not provide any support for the backward evolution
scenario. However, the simulations investigated so far have not incorporated an environment
with temporary depletion of “food” metabolites, which is one of the major assumption of this
theory. To this end, the following study is investigating exactly this impact of variations in
resource abundances to metabolic evolution. For this purpose, now 100 simulations over 900
generations are run and analyzed. The initial conditions are the same as in the previously
described simulations. However, the set of “food” metabolites is changed for certain time
periods. For the first 100 generations the system is left unperturbed and thus under the same
conditions as in the previous simulations. Starting from generation 100, one of the five “food”
metabolites will be removed from the input set. This means that the particular metabolite can
still be produced by other metabolites but is not permanently imported from the environment
and might deplete in the same way as other internal metabolites. After a time interval of
50 generations the removed metabolite is added back to the set of “food” metabolites and
the next “food” metabolite is removed. After every “food” metabolite has been removed
once (after 350 generations) the initial “food” set is reintroduced for the next 50 generations.
The upper plot in Figure 5.4 shows the metabolic pathway evolution statistics for these first
400 generations. In the next phase which is depicted in the lower plot in Figure 5.4 | pairs
of “food” metabolites are removed for intervals of 50 generations in the same procedure as
described above for the removal of single metabolites. After 900 generations every possible
combination of two metabolites from the full set of “food” metabolites was removed once.

In the first 100 generations, no fundamental differences to the previous simulations can be
observed. This is to be expected since the conditions up to this point are the same. In the
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following three intervals of 50 generations, from generation 100 to 250, still no significant
changes in the network evolution are apparent despite the perturbation in the set of “food”
metabolites. For the next 100 generations (250-350), however, an increase in backward links
and the emergence of backward pathways can be observed. More specifically, at the begin-
ning of the two intervals there is a sudden and drastic increase of backward evolved pathways
followed by a slow decline for the rest of the interval. The explanation for the increase in
backward pathways is that of the retrograde evolution hypothesis: due to the depletion of
an important “food” metabolite, there is a strong selective advantage for pathways that can
produce this metabolite from other sources. The sudden increase suggests that the reactions
or at least the enzymes of these backward pathways must have been already present in the
network rather than invented through the emergence of entirely new enzymes or catalytic
mechanisms, i.e., capitalizing on enzyme promiscuity. The other factor explaining the sharp
increase in the beginning and the slow decline afterwards is that the network complexity
and thus the overall number of metabolic pathways decreases after depletion of the “food”
metabolite. Therefore, pathways that depend upon the depleted metabolite, mostly forward
pathways, disappear since they no longer contribute significantly to the organism’s fitness.
When the network later evolves new (forward or mixed) pathways based on the new condi-
tions, the fraction of backward pathways among all pathways decreases. The five intervals
of perturbation are followed by an interval (350-400) with the full “food” metabolite set.
Surprisingly, this interval also starts with a sudden increase in backward links as well as a
slightly smaller increase in backward pathways and is not followed by a decrease later in the
interval. No satisfactory explanation can be provided for this observation so far.

In the second phase (400-900), in which pairs of “food” metabolites are withheld, similar
observations to the first phase of perturbations can be made. However, the modifications to
the network are not as significant and less clearly visible. The depletion of “food” metabolites
is again mostly followed by an increase in backward links and pathways, but less dramatic
as before. Further, the slow decrease after the sharp rise is not as clear as in the previous
phase and sometimes interrupted by smaller increases. In the later intervals (750-900), one
can even observe an overall decrease in backward links and pathways compared to forward
pathways. To conclude, synchronous depletion of multiple metabolites can induce some form
of backward evolution. At the same time, however, too invasive perturbation can disrupt
the entire system. Furthermore, it can be suggested that the backward evolution observed
within the simulations is driven by an enzyme recruitment process rather than a formation

of completely novel reaction pathways.

5.2.3 Detailed Analysis of simulated evolutionary Histories

In the following, some of the findings from the previous study are illustrated in more detail for
a single simulation, starting with only two input molecules and developing only few enzymes.
For the visualization of an evolutionary time series see Figure 5.5. Figure 5.6 gives an overview
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of reaction- and metabolite-lifetimes. The genome, and hence the set of enzymes, is chosen
at random in the beginning. The two input molecules of this simulation are the cyclic and
sequential forms of glucose. The simulation run is terminated after 100 generations.

metabolites=11, reactions=8 metabolites=18, reactions=15
a) b)

metabolites=27, reactions=27 metabolites=30, reactions=30
c) d)

Figure 5.5: A series of simulated metabolic networks after a) 10, b) 30, c¢) 66, and d) 100 generations.
Colored squares represent chemical reactions, gray circles represent metabolites. Metabolites involved
in a reaction are connected to it in the network graph. The size of the nodes and the width of the
edges encode for the number of extreme pathways in which the respective object is involved. The
coloring for the reactions encode their age, where red stands for older (occurrence in early generation)
and blue for newer (later generation) reactions.

The focus lies again on the evolutionary constitution of the metabolic network, i.e. investi-
gating the relation between the occurrence time (age) of chemical reactions and their position
in the network (downstream vs upstream) to draw conclusions about one of the evolution
scenarios being at work. The four snapshots in Figure 5.5 showing the metabolic network
in different stages are aligned to a union graph over all generations [140]. From this view,
it is easy to see that in the first generations the reactions upward in the network are added.
The pathways are formed further in this forward direction. Looking at the last generation,

basically all pathways from source to sink follow the forward evolution scenario.
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a) — “‘
c) “

Figure 5.6: Life-time diagrams for reactions and metabolites. a) Life-time of reactions, b) union net-

work graph over all 100 generations, ¢) life-time of metabolites. The reactions and metabolites (rows)
in the life-time diagrams are positioned corresponding to their position in the union network graph,
i.e. reactions/metabolites close to the source metabolites are in upper positions, reactions/metabolites
close to the sink metabolites are placed at the bottom. The rows have colored entries if the corre-
sponding reaction/metabolite was present at a certain generation (columns 1-100). We use the same
coloring scheme as above, older reactions/metabolites are red, newer blue. The colored bars show the
age distribution of reactions in the network in the same order as in the lifetime overview. The first
bar represents our results, following the pattern for backward evolution, forward evolution and the
patchwork model.
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This observation is further supported by the life-time diagram for all chemical reactions in
Figure 5.6. The reactions are here ordered according to their position in the union graph,
combining all components that occurred throughout the simulation. There is a clear trend
of older reactions being on the top of the metabolic network (upstream) and younger ones
following more downstream. The colored bar next to the life-time diagram shows the pattern
of the relation between age and position of reactions and metabolites for the example simu-
lation run. The other three bars show the patterns for backward, forward evolution and the
patchwork model, respectively. The forward evolution pattern shows the highest similarity to
the simulated pattern. This illustrates again the speculation from the general analysis that in
the early phase of metabolic evolution, forward evolution seems to be dominant. However, for
metabolites there appears to be not a clear relation between the position along pathways or
the network and their first appearance in the system. Similar to the general results, a much
more mixed picture is observed for the metabolites. Therefore, no clear explanation can be
made for the metabolite constitution.

Another, more complex, setting is used in a simulation run in which the evolutionary history
of the involved genes/enzymes is investigated, depicted here in the catalytic function geneal-
ogy for all generations (Figure 5.7). The simulation takes the same five input molecules from
the above general study, but with a higher mutation and duplication rate and runs for a total
of 2000 generations. The simulation frameworks allows to study the emergence of divergence
and convergence of catalytic functions [2] since it can record the genealogy of each gene (re-
action catalyst) throughout a simulation run, and it can utilize the ITS classification of the
catalyzed reaction as a representation of the enzymatic function. Divergence of function is
caused by gene duplication followed by sequence mutations, creating functionally different
but structurally related catalysts. Convergence of function occurs when catalysts from ge-
nealogically unrelated genes independently accumulate mutations resulting in the catalysis
of the same reaction (or class of reactions). In Figure 5.7 convergence events are marked by
circles. A small selection of divergence events, which were very frequent in all simulations,

are marked by broken circles.

In Figure 5.8a) the history for one specific gene/enzyme (ITS code: 404040) is shown, to-
gether with the I'TS-structures of the enzymes leading to the formation of this enzyme and
those that originated from it. Interestingly, the divergence of the enzyme is always preceded
by an increase in the number of genes, either through duplication or convergence of other
genes/enzymes. That corresponds to the duplication and divergence scenario proposed in
several biological studies on the evolution of enzymes. Furthermore, the analysis of the func-
tional transitions on the basis of the ITS graphs reveals that catalysts can alter their substrate
specificity by small changes in the context of the graph rewrite rule, i.e. the necessary pre-
condition for the applicability of the graph transformation rule. In this example, most of the
adjacent enzymes have a similar I'TS structure and consensus in most parts of the substrate
structure as well as in the reaction mechanism. However, the first as well as the last adjacent
enzyme do not show any significant similarity to the ITS structure of the studied enzyme.
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Figure 5.7: Genealogy of catalytic functions and gene dosage over 2000 generations. Each row rep-
resents an observed catalytic function. Black horizontal lines indicate time intervals in which genes
coding for that catalytic function were present in the genome (0-200: from left to right). The thickness
of the black lines indicates the number genes with a given function. Thin vertical red lines indicate
points where the accumulation of mutations caused a transitions between catalytic functions. If the
number of genes copies in a function class increases without a transition from another gene, then the
increase is due to a gene duplication. A new gene can be created in the genome through the fortuitous
formation of a TATA-box. Conversely, a gene can vanish if its TATA-box is destroyed by mutation.
On the left of the chart a numerical encoding of the graph transformations performed by the “enzyme”
is plotted.
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The four transitions which show more similarity in terms of their I'TS are of particular interest
and thus only these transitions will be discussed here.

The first of these transitions is described in Figure 5.8b, with the I'TS codes, the ITS structures
and the corresponding reaction mechanisms of the enzymes, as well as a sample reaction using
one of the five “food” metabolites catalyzed by them. Here, only one atom in the context of
the ITS is changed (from O to C) while all other parts remain the same. This preserved the
exact same reaction mechanism. Nevertheless, both enzymes react with different metabolites
from the original set of “food” molecules. The enzyme with the I'TS code 402040 reacts with
phthalic anhydride, while 404040 is able to make use of methylbutadiene (see example in (b)
and (c)) and cyclohexa-1,3-diene (see example in (d) and (e)).

In the next transition (Figure 5.8c) one additional bond is introduced to the context of
the reaction, increasing the substrate specificity of the new enzyme and also resulting in a
significant change in the product structure, despite keeping the overall reaction mechanism.
The new enzyme uses ethenol, which is also available among the five “food” metabolites.
It is an interesting observation that although all of the three enzymes discussed until now
posses the same reaction mechanism and differ only slightly in the stabilized transition state
structure, they are able to make use of different starting molecules and consequently also
introduce metabolites not present in the metabolism before.

The transition in Figure 5.8d causes a loss in substrate specificity through removal of two
bonds from the reaction context. As before, the change of the product structure is more
significant than the comparably moderate change in the substrate molecule. However, this
enzymes is not able to use any of the original “food” metabolites. This might explain the
accepted specificity loss of this transition which is more rare in the studied simulations than
transitions with a gain in specificity. However, since the new enzymes is able to use some of
the constantly abundant ”food” molecules, the transition is beneficial.

A more interesting case is the last of the four transitions (Figure 5.8e). Although the ITS
structures of the enzymes before and after the transition seem very different, a large part of
the reaction mechanism is retained and the change in the substrate binding can be described
as an increase of substrate specificity by adding two atoms (N and C) to the context of the
reaction. The upper parts of the substrate, product, and reaction are equal in both enzymes,
only the lower part of the new enzyme differs from the original enzyme. The mutated enzyme
is able to make use of the same “food” metabolite (phthalic anhydride) as the enzyme in (b)
and yields similar product metabolites but has a more restrictive context.

These examples demonstrate that, in the simulation universe, relatively small changes in
the gene sequence can lead to new enzymes with typically similar reaction mechanisms but
different substrate specificity. This in turn sometimes causes quite drastic changes in the
reactions that are actually catalyzed. This also shows the power of the introduced structure-

to-function mapping.

The impact of enzyme promiscuity on enzyme evolution, enzyme engineering and biocatalysis
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Figure 5.8: (a) History for one enzyme (ITS: 404040) of the 2000 generation simulation run, with ITS
structure of this enzyme and all adjacent enzymes. ITS structure - Lines: solid = reaction context,
dashed = bonds that are broken by reaction, dotted = bonds that are created; Circles: black = oxygen,
gray = carbon, white = nitrogen. Evolutionary events are marked in the timeline when they occur,
N = New occurrence, D = Duplication, I = (In) convergent event, O = (Out) divergent event. The
number of lines parallel to the timeline indicate the number of gene copies for that enzyme. Four of the
six functional transitions are depicted (b)-(e) with the ITS codes (top), the ITS structures (middle)
and the reaction mechanisms (bottom) of the two adjacent enzymes. The actual reaction mechanism
is represented by the big circles and solid lines only. Including small circles and dotted lines gives a
sample reaction using one of the original “food” metabolites. In (b) substrate changes in only one
atom position (O to C), in (c¢) substrate specificity increases through addition of a bond to the context,
in (d) substrate specificity decreases due to removal of two bonds from the context and in (e) substrate
specificity increases by adding two atoms (N and C) to the context.
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[83, 95, 18, 27, 122] has been discussed widely throughout the literature for quite a long time.
For instance many enzymes exhibit so called substrate promiscuity i.e. they perform the same
chemical transformation on a wide range of substrates. An impressive natural example for this
type of enzyme promiscuity is methane monooxygenase (EC 1.14.13.25), which hydroxylates
approximately 150 different alkane substrates in addition to its major substrate methane.
This characteristic of natural enzyme function is fully represented in the presented model and
is as well a target of evolutionary change. Other aspects of enzyme promiscuity such as two
different reaction mechanisms are either implemented by the same residues in the active site
(thymine hydroxylase EC 1.14.11.6), or the residues in the active site are used in different
mechanistic context, do not have a representation within the model.

Noteworthy, the sample enzyme and its six neighboring enzymes (connected trough functional
transitions in this sample simulation) are already able to catalyze chemical reactions using four
of the five originally added “food” metabolites. While most functional transitions from one
enzyme to another introduce only little innovation to the reaction repertoire of the metabolic
system, some give access to previously unreachable parts of the existing chemistry.

5.2.4 Summary of Results

Using both simple examples and a series of more complex simulation runs, the evolution of
the components on the small scale (metabolites, enzymes) as well as on the level of systems
(pathways, networks) was investigated. The analysis of the genes history, showed all different
kinds of evolutionary events, such as convergence, duplication and divergence, and many
different functional transitions from one gene/enzyme to another, increasing the substrate
specificity or changing the reaction chemistry. The simulations further allow to discriminate
between different scenarios for the evolution of metabolic pathways. Based on the observations
from this study, it can be argued that the different evolutionary hypotheses can be reconciled,
in that they act in different phases of evolution, i.e., in different scenarios one might observe
another strategy at work. Here, it is suggest that forward evolution dominates in the earliest
steps and is then superseded by a phase of enzyme recruitment, however, leaving behind a
trace in form of a core set of forward evolved pathways. Another noteworthy finding of this
study is that the depletion of important “food” metabolites introduces backward evolved
pathways. However, the formation is rather driven by enzyme recruitment than a formation

from scratch according to the retrograde hypothesis.
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Chapter 6

Emergence of complex Properties

As discussed in Chapter 2, the emergence and evolution of system properties in complex
biological systems is an intriguing field of research in biology with many unresolved ques-
tions. The knowledge that can be gained from it is not only beneficial for the understanding
and optimization of existing systems but also for constructing many kinds of novel artificial

systems.

In this chapter, the emergence and evolution of complex properties in biological systems
is investigated by studying the in silico evolution of early metabolism and observing the
structure and dynamic behavior of the underlying metabolic networks. For the former, the
already introduced multi-level computational model for the evolution of catalyzed reaction-
networks is used to simulate different evolutionary scenarios and thus provide appropriate
network data from an evolving biological system. The latter, is achieved with the help of
conventional network measures as well as measures suited for metabolic reaction networks.
The goal is to gain insights about the complex properties of the investigated networks and
their evolution throughout the simulation.

In the following, several measures of system properties, such as robustness and modularity

are introduced and the results of their application to the simulated networks are discussed.

6.1 Simulation Data

For the investigation of this chapter, several extensive simulation runs were performed. Three
different evolutionary scenarios were considered. For each scenario 100 simulation runs are
recorded. One simulation consists of 500 generations (1000 generations for one of the three
scenarios) and 100 network expansion steps per generation. The set of initial input metabo-
lites, the "food” metabolites, contains 17 molecules from the citric acid cycle (see Table 6.1),
as it can be found in the KEGG [90] database. Further, all simulation runs are initialized in

the same way as for the studies in the previous chapter, i.e. the full set of chemical reactions

7
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KEGG ID | SMILES/Formula NAME
C00022 CC(=0)C(0)=0 Pyruvate
C00122 OC(=0)C=CC(0)=0 Fumarate

C00036 OC(=0)CC(=0)C(0)=0 Oxaloacetate
C05379 OC(=0)CC(C(0)=0)C(=0)C(0)=0 | Oxalosuccinate
C00024 C23H38N70O17P3S (SF) Acetyl-CoA

C00149 OC(CC(0)=0)C(0)=0 (S)-Malate
C00311 OC(C(CC(0)=0)C(0)=0)C(0)=0 Isocitrate
C00417 OC(=0)CC(=CC(0)=0)C(0)=0 cis-Aconitate
C00042 0OC(=0)CCC(0)=0 Succinate

C00158 | OC(=0)CC(0)(CC(0)=0)C(0)=0 | Citrate

C00068 C12H19N407P2S (SF) Thiamin diphosphate
C00091 C25H40N7019P3S (SF) Succinyl-CoA

C00026 OC(=0)CCC(=0)C(0)=0 2-Oxoglutarate
C05381 C16H25N4010P2S (SF) 3-Carboxy-1-hp-ThPP

05125 | C14H23N408P2S (SF) 2-Hydroxyethyl-ThPP
C00068 C12H19N407P2S (SF) Thiamin diphosphate
C00074 OC(=0)C(=C)0[P](0)(0)=0 Phosphoenolpyruvate

Table 6.1: Metabolites of the citric acid cycle used as set of ”food” molecules in the simulations of
this chapter. Given are the KEGG ID, the SMILES notation and the name for all 17 metabolites. For
the six largest molecules, their structural formula (SF) are shown instead of the SMILES notations,
due to their length.

is available, the random genome length is 5000 bases, the TATA-box sequence is “UAUA”
and the gene length is 100 bases.

The first scenario will be referred here to as the static scenario, because the set of ”food”
metabolites stays the same for the entire time of the simulation. The multiplication and
duplication rates in this scenario are the same as in the previous simulations in Chapter 5.
This scenario should allow for a steady evolution of chemical reaction networks with few
perturbations. It will be interesting to see, whether both genetic and non-genetic robustness
will evolve in this scenario. Modularity is not expected to arise under these conditions.

In the second scenario the set of input metabolites is not static anymore but will change after
periods of 50 generations. It starts with 50 generations with the full ”food” set, followed
by eight periods in which a small number (3-4) of metabolites is taken away from the full
set. The eliminated metabolites are reintroduced at the end of a 50 generation period and
no metabolite is discarded for more than one period. This first phase of moderate changes
(50-450) is followed by three periods (450-600) of strong perturbation. In these periods, only
rather small "food” sets of six to eight metabolites remain. For the next period (600-650) the
full ”food” set is reintroduced, while in the subsequent period (650-700) all input molecules are
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discarded at the same time. All of the described periods are repeated again (700-1400), but
in this study mostly only the first 1000 generations will be considered and compared with the
other two scenarios. The idea behind this scenario stems from the hypothesis that a biological
system under varying environmental conditions will develop modularity. Furthermore, the
effect of non-genetic perturbations on genetic robustness will be investigated.

The third and last scenario will incorporate another type of genetic operation besides mutation
and duplication as in the first two scenarios, the horizontal gene transfer. Additionally,
the mutation and duplication rate will be increased ten fold to the original rates in the
previous simulations. The "food” set is again the full set as in the first scenario. Horizontal
gene transfer is believed to be another source of modularity beside environmental change.
Therefore, one interest in this scenario will be whether or not modularity emerges. Another
uncertainty in the outcome of this scenario is the degree of genetic and non-genetic robustness.
Will the increased rate of mutations make the system adapt to coping with mutational errors
or will it weaken it to be overall less robust then systems evolved under steady conditions?

The analysis and comparison of all three scenarios can shed some light on the sources of ro-
bustness, modularity and its relatives such as flexibility and evolvability of biological systems,

as well as the structure and evolution of the underlying reaction networks itself.

6.2 Network Analysis

The goal of general network analysis is to discover certain topological features in complex
networks that can give valuable insights about their structure and dynamics. Many different
measures exist that approach this goal from various angles [31]. Most of the work in network
analysis was developed for random graphs [44], however, recent research focuses more and
more on the application of real world networks, such as the world wide web [8], biological
networks [9] or social networks. These networks usually diverge from random graphs in one
or the other topological feature. As was shown by [172] most of the real world networks
are also so-called small-world networks, they have a comparably small diameter such that
the minimal distance between any two nodes is usually very low. Later, [7] analyzed the
node-degree distribution and found that complex networks belong to the class of scale-free
networks with the majority of nodes connected only to few other nodes and some highly

connected nodes called hubs.

Network analysis is able to give a better picture of complex networks, regarding their structure
and properties. In the following paragraphs some network measures, such as the connectivity
distribution, spectral graphs and the clustering coefficient will be introduced and applied to
the evolved networks from the simulations described above. The results will be discussed
in terms of their expressiveness about system properties, with the focus on robustness and
modularity.
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6.2.1 Connectivity Distribution

As mentioned above, [7] used the connectivity distribution to classify complex real world
networks and compare them with random networks. It was suggested that these biological or
social networks belong to the class of scale-free networks differing from random networks that
show normally or exponentially distributed connectivities. Interestingly for this study, scale-
free networks exhibit a much higher robustness than the normally distributed or exponential
random networks. The high degree of robustness can be accounted to the specific structure of
scale-free networks, where most nodes of the network are only connected to one or few other
nodes and only a few highly connected nodes connect the entire network. Consequently, in
scale-free networks the random removal of one node will have only a minute impact. Although,
the knock-out of one of the hubs is likely to disturb large parts of the networks structure and
dynamics, this is more than compensated with the very low probability of this event due
to the low frequency of hubs compared to the much higher probability of removing a node
connected only to few other nodes and thus having almost no negative effect.

In Figure 6.1 the connectivity distribution for the three described scenarios averaged over
all simulations are shown and compared with the average connectivity distribution of full
pathway maps from the KEGG database from ten different organisms (see Table 6.2.2). Scale-
free distributions can be represented by power law graphs defined through the polynomial
of the form k~*. For this purpose, k is the node degree, A is a constant and k£~ is the
frequency of nodes with node degree k. Here, two power law graphs (with A = 1, 2)are
depicted for further orientation, as well as an exponential function (e=*). For the real data
(KEGG pathway maps), the connectivity distribution of the networks follows approximately
the power law with exponent A = 2, as expected. The networks from the first (Static) and
third scenario (HGT/Mutation) show a very similar distribution, while those for the second

scenario (Changing) also approximate a power law but more closely one with exponent A\ = 1.

The first conclusion that can be drawn from these results is that the simulations under certain
conditions (Static and HGT) lead to network structures similar to real-world metabolic net-
works. Interestingly, the mutation rate per generation does not affect the overall connectivity
of the network, since the connectivity distribution from both scenarios are highly similar for
all node degrees. On the other hand, the change in the constitution of the environment or
"food” set appears to have some (negative) impact on the connectivity of a network, while still
resulting in a realistic network structure, in the sense that it is scale-free. The main difference
in the second scenario is the higher number of highly connected nodes (node degree > 80) but
also nodes with ten to twenty connections. A possible explanation could be the emergence
of modularity and the subsequent building of interconnections between the modules. While
these interconnections might be a necessity in order to switch more flexibly between modules,
it decreases the robustness of the overall structure.

In the Figures 6.2-6.4, the change of the connectivity distribution throughout the simulation



6.2. NETWORK ANALYSIS 81

— KEGG networks
— Static

— Changing

—— HGT/Mutation

Frequency
0.01

0.001
Il

0.0001

1 10 100
Node Degree

Figure 6.1: Connectivity distribution for all three scenarios compared with real-world metabolic
networks from the KEGG database. Shown is the frequency of metabolites with a node-degree up to
one hundred. The black line here represents the expected distribution for real metabolic networks.
The static scenario (blue line) comes closest, while the changing scenario (red line) diverges most of
all three scenarios. The scenario with increased mutation rate and HGT (green line) is similar to
the static scenario. The dotted lines represent power law (black, red) and exponential distributions
(green). The changing scenario is more similar to the power law with exponent one (red dotted line)
while the other distributions are similar to the power law with exponent two (black dotted line).
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Figure 6.2: Connectivity distribution for the networks of the static scenario in four phases of the
simulations. The distributions for all phases are highly similar and similar to a power law distribution

with exponent two (black dotted line).
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Figure 6.3: Connectivity distribution for the networks of the changing scenario and five phases of the
simulations. The distribution of the earliest phase (green line) corresponds more to an exponential
distribution. The distributions from the later phases more and more resemble power law distributions.
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Figure 6.4: Connectivity distribution for the networks of the HGT/MUT scenario and four phases of
the simulations. Similarly to the static scenario, the distributions of all phases are very similar and
there is no significant change throughout the network evolution.
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is shown on snapshots from four generations (50, 100, 250, 500). The development of the
first and third scenario are rather minute. In both cases, the overall distribution is reached
already in the earliest generations and does not change notably in the further evolution. In
contrast, the networks in the second scenario undergo considerable change in terms of their
connectivity distribution. In the earlier generations, highly connected hub metabolites are
significantly underrepresented. In the course of evolution this number is steadily increasing
and at the last stages even at a higher level than in the other two scenarios. Possibly, in this
scenario modules are formed first, followed only later by a drive to connect these modules
among each other. This would consequently lead to the increased number of highly connected
nodes.

All three scenarios evolve scale-free networks, resembling real world complex networks. There-
fore, they should also exhibit similar behavior in case of perturbations in the network struc-
ture. Since scale-free networks, as mentioned above, are particular robust this is then also
true for the networks of the three scenarios. For the second scenario, one distinction has to
be made. Although, the networks evolve to a more favorable constitution in terms of their
connectivity distribution, due to the high number of highly connected nodes these networks
are less robust against knockouts then networks from the other two scenarios or real-world

networks.

6.2.2 Clustering Coefficient

It has been shown that biological networks contain many small tightly connected groups.
The number of these clusters is higher than in random networks [172] and even more interest-
ingly scale free networks. This observation is explained by the hierarchical modularity that
underlies most biological systems. The clustering coefficient that will be discussed here is a
measure for the extent of clustering a network possesses. The average clustering coefficient
(see Equation 6.2) can be used as and indicator of modularity in general, while the local clus-
tering coefficient (see Equation 6.1) may serve as proof for the real-world typical hierarchical
modularity. Biological networks have a high average clustering coefficient independent of the
network size and the local clustering coefficient scales against the node degree with approxi-
mately d(n)~! [119]. In this section, both measures will be applied to the simulated networks
of all three scenarios to look for signs of modularity and hierarchically modular organization.

In a graph or network G = { N, E'}, the local clustering coefficient cc; of a node n; is the ratio
between the actual number of connections (C4,) between all nodes that are adjacent to this

node (A;) and the possible number of connections between these adjacent nodes.
__ |Cail
| Ail (Al = 1)
A; = {nj : (l,j) S E}
Ca, ={U k) : (G, k) € ENG k€ A}

CC;
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KEGG Code | Organism Size |N| | CC

ath Arabidopsis thaliana 2068 0.273229
cel Caenorhabditis elegans 1748 0.270794
cyt Cyanothece sp. 2003 0.277287
dme Drosophila melanogaster | 1738 0.271532
dre Danio rerio 1874 0.275166
eco Escherichia coli 2009 0.272218
eok Escherichia coli (EPEC) | 1991 0.271731
hsa Homo sapiens 1835 0.277645
mmu Mus musculus 1835 0.277645
sce Saccharomyces cerevisiae | 1578 0.26941

Table 6.2: Ten organisms that serve as real-world metabolisms for the comparison with the simulated
networks. Here their KEGG Organism Code, name, number of metabolites (|N|) and the clustering
coefficient (CC) of their metabolic networks are given.

The average clustering coefficient C'C' is the sum of the local clustering coefficients of all nodes
in the network, divided by the number of nodes.

‘12601'
eEN

(6.2)

In Figure 6.5 the average clustering coefficients of the networks from the simulations is de-
picted in dependency to the network size, compared with metabolic networks from the KEGG
database (see Table 6.2.2). Those real-world networks are much bigger than the networks from
the simulations. However, the assumption was that for biological networks the average clus-
tering coefficient is independent of the network size. In fact, the majority of the simulated
0.27) of the KEGG networks.
Therefore, the degree of modularity and the structure of the networks from all three scenarios

networks has a clustering coefficient similar to the value (&

appears to correlate with that of actual metabolic networks, rather than random networks or
single metabolic pathways.

When comparing the distributions of the three evolutionary scenarios, two main observations
should be noted. First, the clustering coeflicient is mostly independent of the network size,
ignoring the divergence in some scenarios, but for the largest networks the clustering coefficient
is dramatically plunged in all scenarios. A possible explanation is that these networks stem
from the last evolutionary stages and thus are not yet adapted in the same way as those
from previous stages. The second observation is that only the first scenario (Static) is really
constant over all network sizes, while the other two show some peculiarities. For the second
scenario (Changing) the clustering coefficient increases with network size until the sharp

decline. In the third scenario some small but highly clustered (CC' > 0.5) networks are



6.2. NETWORK ANALYSIS 85

o

n -

o
—
c
[}
5 o o0&
£ o
O N+
O o o KEGG Networks
O KEGG Pathways
(@] < Static
= 8 A Changing
S — R
oo v HGT/Mut
—
[%2)
=
O n

o o

© 2

N
o

N

o

© T T T T

20 100 500 2000

Network Size (|m])

Figure 6.5: Clustering coefficient vs network size, for all three scenarios compared with real-world
metabolic networks and single pathways. The average clustering coefficients of networks with the same
number of metabolites are shown for the static (blue diamonds), changing (red upwards triangle) and
HGT/MUT scenario (green downward triangle) as well as for entire pathway map (black circles) and
single pathways (gray squares) from the KEGG database.
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Figure 6.6: Clustering coefficient vs network size, for networks of the static scenario and four time
intervals. Shown here are the clustering coefficients for the intervals of generation 0 to 50 (green), 50
to 100 (red), 100 to 250 (blue) and 250 to 500 (black).
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Figure 6.7: Clustering coefficient vs network size, for networks of the changing scenario and five time
intervals. The clustering coefficients for the same intervals as above are shown plus the interval from
generation 500 to 1000 (gray).
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Figure 6.8: Clustering coeflicient vs network size, for networks of the HGT/MUT scenario and four

time intervals. Shown here are the clustering coefficients for the intervals of generation 0 to 50 (green),
50 to 100 (red), 100 to 250 (blue) and 250 to 500 (black).
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formed. To explain these observation, the evolutionary steps of the simulations has to be
inspected in more detail.

To this end, Figures 6.6-6.8 illustrate this evolutionary transition for the three scenarios, by
depicting the clustering coefficient for several time steps of the simulation (generations 0 -
50, 50 - 100, 100 - 250, 250 - 500 for all and 500 - 1000 for the second scenario). In the
first scenario (Static), in all phases there is a similar trend of slightly decreasing clustering
coefficients, which indicates a slightly lower modularity and divergence from the structure of
real-world networks. However, this trend becomes smaller in the later phases and might vanish
for longer time spans. As discussed above, the large networks (|N| > 250) and significantly
lower clustering coefficient (CC' < 0.1) all stem from the latest phase. Figure 6.7 depicting the
evolution of the second scenario (Changing), provides a clear explanation for the increasing
clustering coefficient noted above. The average clustering coefficients in the earliest phase (0
- 50) are around 0.15 and thus lower than in the next phase (50 - 100; C'C ~ 0.2) and much
lower than in the latest phases with clustering coefficients around 0.3. Thus, evidently the
increased clustering can be accounted to the evolution in this scenario. The main driving
force in this scenario was the environmental change in the set of "food” metabolites. So it
could be concluded that this change of the environment leads to an increased clustering in the
underlying networks and a higher modularity in systems that evolved under such conditions.
In the third scenario, even the early phases (0 - 50 and 50 - 100) exhibit high clustering
coefficients, suggesting that an increased mutation rate and/or horizontal gene transfer can
lead to a rather spontaneous increase in modularity. Nevertheless, there also appear to be
limitations on the impact of these two factors. First of all, the clustering coefficient does not
increase further with more mutations and gene transfer taking place throughout the evolution.
Secondly, the proposed modular structure does not hold for many of the large networks. It is
possible that too many mutations disrupt the overall structure to a less clustered organization.
To investigate this and identify further possibilities, it is necessary to take a closer look at

the structural organization of these networks in terms of their clustering/modularity.

Figure 6.9 provides this deeper look by showing the local clustering coefficients of nodes with
the same node-degree. Again, in this overview the measure is shown for all three scenarios.
For a comparison with real-world biological networks the clustering coefficient of full metabolic
networks maps and single pathways from ten organisms out of the KEGG database is shown
too. All network types, except the single pathways which are not full networks in that sense,
share a similar distribution. Until a node degree of around 20, the local clustering coefficients
increases with its connectivity, while after this point it decreases. Beginning from the turning
point the clustering coefficient of the KEGG networks scales against the node degree as a
function of the form k= as proposed above. The clustering coefficients of the second and
third scenario behave in a similar way. Only the first scenario deviates more strongly from
this scaling. Due to the lack of environmental change or horizontal gene transfer, the two most
prominent potential sources of modularity, the extent of hierarchical modularity observed in
real biological networks may not be reachable. In the second scenario, even nodes with higher
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Figure 6.9: Local clustering coefficient vs node-degree for all three scenarios compared with metabolic
networks and single pathways from KEGG. Real-world metabolic networks are known to exhibit hi-
erarchical modularity which shows in the scaling of their metabolites’ clustering coefficients against
their node degree (black circles). The nodes of the simulated networks show a similar but slightly
divergent scaling, in particular the static scenario (blue diamonds) misses highly connected nodes with
high clustering coefficients.
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Figure 6.10: Local clustering coefficient vs node-degree for the metabolites of the simulated networks
from the static scenario. Results are presented for the intervals from generation 0 to 50 (green), 50 to
100 (red), 100 to 250 (blue) and 250 to 500 (black).
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Figure 6.11: Local clustering coefficient vs node-degree for the metabolites of the simulated networks

from the changing scenario. Results are presented for the intervals from generation 0 to 50 (green),
50 to 100 (red), 100 to 250 (blue), 250 to 500 (black) and 500 to 1000 (gray).

o

Q .

— v 0-50

A 50 - 100
<© 100 - 250
4 | 0 250 - 500
c
Q A A & VEXAVIYER o
Qo o 8 3 ®8o8550seg8k
= o 3 0888877 o
AW

38 ° sy
o° RS
o dﬁ@%égg%
E — ° :AOO ©
—_ o
z 10 P,
= O -
Qo

—

CJ_ .

© T T T T T T

2 5 10 20 50 100
Connectivity

Figure 6.12: Local clustering coefficient vs node-degree for the metabolites of the simulated networks

from the HGT/MUT scenario. Results are presented for the intervals from generation 0 to 50 (green),
50 to 100 (red), 100 to 250 (blue) and 250 to 500 (black).
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connectivity have a relatively high clustering coefficient compared to the other scenarios and
the KEGG networks. If the environmental change in this scenario causes its modularity then
this might also have the side effect of adding many interconnections between the various
modules in order to be able to switch between one another. This would not be necessary
for modularity from horizontal gene transfer, here modules can be more independent of each
other.

For a detailed evolutionary study of the relation between local clustering coefficient and node
degree, the Figures 6.10-6.12 depict this relation for several time steps in the evolution of all
three scenarios. All scenarios show remarkably different developments, while the first scenario
starts off (0 - 50) with many highly clustered nodes (cc; > 0.35) evolving to less clustered
nodes (cc; < 0.25), the opposite development can be observed in the second scenario, where
highly clustered nodes only form late in the simulation history. Further, there is almost no
change in the constitution of network nodes, with respect to the clustering coefficient, in the
third scenario. Again, these differences have to be viewed in consideration of the forces that
shape the evolution of the different scenarios. As above, horizontal gene transfer leads to a
certain level of clustering and modularity in short time but does not increase significantly.
Under environmental change, on the other hand, modularity increases steadily but slower. In
the absence of any of the two factors, modularity is stagnating if not even decreasing.

6.2.3 Graph Spectrum

Another graph measure that can be used to analyze the properties of the studied metabolic
networks is the graph spectrum, or better the spectrum of the Laplace operator ¢ of the
network. Here the network is assumed to be a directed graph with nonnegative edge weights.
This measure has been used to distinguish different types of biological networks and identify
some of their structural characteristics and even evolutionary processes that lead to their
formation [10]. It was shown for instance that in metabo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>