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Abstract

The rapid growth of text based information on the World Wide Web and various

applications making use of this data motivates the need for efficient and effective

methods to identify and separate the “main content” from the additional con-

tent items, such as navigation menus, advertisements, design elements or legal

disclaimers.

Firstly, in this thesis, we study, develop, and evaluate R2L, DANA, DANAg,

and AdDANAg, a family of novel algorithms for extracting the main content of

web documents. The main concept behind R2L, which also provided the initial

idea and motivation for the other three algorithms, is to use well particularities

of Right-to-Left languages for obtaining the main content of web pages. As the

English character set and the Right-to-Left character set are encoded in different

intervals of the Unicode character set, we can efficiently distinguish the Right-to-

Left characters from the English ones in an HTML file. This enables the R2L

approach to recognize areas of the HTML file with a high density of Right-to-

Left characters and a low density of characters from the English character set.

Having recognized these areas, R2L can successfully separate only the Right-to-

Left characters. The first extension of the R2L, DANA, improves effectiveness

of the baseline algorithm by employing an HTML parser in a post processing

phase of R2L for extracting the main content from areas with a high density

of Right-to-Left characters. DANAg is the second extension of the R2L and

generalizes the idea of R2L to render it language independent. AdDANAg, the

third extension of R2L, integrates a new preprocessing step to normalize the

hyperlink tags. The presented approaches are analyzed under the aspects of

efficiency and effectiveness. We compare them to several established main content

extraction algorithms and show that we extend the state-of-the-art in terms of

both, efficiency and effectiveness.

Secondly, automatically extracting the headline of web articles has many ap-

plications. We develop and evaluate a content-based and language-independent

approach, TitleFinder, for unsupervised extraction of the headline of web articles.

The proposed method achieves high performance in terms of effectiveness and ef-

ficiency and outperforms approaches operating on structural and visual features.
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Zusammenfassung

Das rasante Wachstum von textbasierten Informationen im World Wide Web

und die Vielfalt der Anwendungen, die diese Daten nutzen, macht es notwendig,

effiziente und effektive Methoden zu entwickeln, die den Hauptinhalt identifizieren

und von den zusätzlichen Inhaltsobjekten wie z.B. Navigations-Menüs, Anzeigen,

Design-Elementen oder Haftungsausschlüssen trennen.

Zunächst untersuchen, entwickeln und evaluieren wir in dieser Arbeit R2L,

DANA, DANAg und AdDANAg, eine Familie von neuartigen Algorithmen zum

Extrahieren des Inhalts von Web-Dokumenten. Das grundlegende Konzept hin-

ter R2L, das auch zur Entwicklung der drei weiteren Algorithmen führte, nutzt

die Besonderheiten der Rechts-nach-links-Sprachen aus, um den Hauptinhalt von

Webseiten zu extrahieren.

Da der lateinische Zeichensatz und die Rechts-nach-links-Zeichensätze durch ver-

schiedene Abschnitte des Unicode-Zeichensatzes kodiert werden, lassen sich die

Rechts-nach-links-Zeichen leicht von den lateinischen Zeichen in einer HTML-

Datei unterscheiden. Das erlaubt dem R2L-Ansatz, Bereiche mit einer hohen

Dichte von Rechts-nach-links-Zeichen und wenigen lateinischen Zeichen aus einer

HTML-Datei zu erkennen. Aus diesen Bereichen kann dann R2L die Rechts-nach-

links-Zeichen extrahieren. Die erste Erweiterung, DANA, verbessert die Wirk-

samkeit des Baseline-Algorithmus durch die Verwendung eines HTML-Parsers in

der Nachbearbeitungsphase des R2L-Algorithmus, um den Inhalt aus Bereichen

mit einer hohen Dichte von Rechts-nach-links-Zeichen zu extrahieren. DANAg

erweitert den Ansatz des R2L-Algorithmus, so dass eine Sprachunabhängigkeit

erreicht wird. Die dritte Erweiterung, AdDANAg, integriert eine neue Vorver-

arbeitungsschritte, um u.a. die Weblinks zu normalisieren. Die vorgestellten

Ansätze werden in Bezug auf Effizienz und Effektivität analysiert. Im Vergleich

mit mehreren etablierten Hauptinhalt-Extraktions-Algorithmen zeigen wir, dass

sie in diesen Punkten überlegen sind.

Darüber hinaus findet die Extraktion der Überschriften aus Web-Artikeln

vielfältige Anwendungen. Hierzu entwickeln wir mit TitleFinder einen sich nur

auf den Textinhalt beziehenden und sprachabhängigen Ansatz. Das vorgestellte

Verfahren ist in Bezug auf Effektivität und Effizienz besser als bekannte Ansätze,

die auf strukturellen und visuellen Eigenschaften der HTML-Datei beruhen.
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Chapter 1

Introduction and Problem
Description

This chapter will briefly discuss the history of the World Wide Web (WWW) in Section 1.1.

It will also explain how much useful information has been published on the web by users so

far and what proportion of the information on the web is in text-based format. A glance

at this deal of text information will demonstrate that the processing of such a huge volume

of articles is completely useful and necessary to acquire knowledge. It is also interesting to

note that most of the text-based information written in HTML format is stored in web sites

(and of course in web pages) and some encyclopedia sites such as Wikipedia. Section 1.2 will

visually demonstrate the various elements of a news web site (BBC in this case) and a web

page, respectively. Details about the “Statement of Problem” are provided in Section 1.3,

where the definition for content extraction is suggested and different parts of a typical HTML

file is explained. Furthermore, it will be concluded that implementation of content extrac-

tion algorithms is not very simple due to the reasons which will be explained completely in

this section. Finally in Section 1.4 we will briefly demonstrate the Thesis Outline of this

contribution.

1.1 Motivation

The first idea about WWW was initiated in 1980 when Tim Berners-Lee designed a net-

work called ENQUIRE (116) at CERN, Switzerland. Although the modern web today is

rather different, the main idea has been inspired from his invention. Tim and his co-worker

Robert Caillian established the first successful connection between a host and an http user

on December 25, 1990 through the internet. Specifications extracted from HTTP, URL and

HTML were then published as web technology (25). Shortly after this, the first web site was

designed at CERN with the first online site being established on August 6, 1991. This web

site used to describe WWW, how anyone can have a web explorer and how to customize a

web service provider. Although a long time has not elapsed from the appearance of the web,

a great deal of information has been published on web with a considerable amount of it being

in text-based format (11)(see Figure 1.1). To the best of our knowledge, it is not simple to

determine the entire volume of this information, but the following statistics - even though
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1. INTRODUCTION AND PROBLEM DESCRIPTION

Figure 1.1: Distributions of file formats in Internet (11)

they are not exact figures - clearly reveal its daily accelerated growth (11).

• 3.164 billion - Number of email accounts worldwide

• 112 - Number of emails sent and received per day by the average corporate user

• 2.267 billion - Internet users worldwide ( December 2011)

• 555 million - Number of web sites ( December 2011)

• 300 million - Added web sites in 2011

• 800+ million - Number of users on Facebook by the end of 2011

• 225 million - Number of Twitters account

• 250 million - Number of tweets per day ( October 2011)

• 70 million - Total number of Word press blogs by the end of 2011

To emphasize and illustrate the rapid growth of information on the web, Figure 1.2 shows

the increase of hostnames in the last years. As it can be seen, the curve approximates

an exponential form and then indicates that the growth tendency is going to increase even

further (117).

It is worth mentioning that the design and creation of web pages for natural languages

other than English, German, Spanish, French, and Portuguese, for example the Persian and

Arabic languages, have been accelerated by the spread and pervasion of the internet into all

underdeveloped countries. This may encourage one to focus on the natural language used in

web pages when extracting useful information, e.g. main content and headline, from the web

pages. The BBC news web site, for example, provides users and visitors with information in

various languages.

In summary, it seems necessary to process this volume of information, in which a signif-

icant amount is in text format, as well as in different languages. In order to process text

information saved in news web pages automatically, one would first need to extract this useful

information from HTML web documents. The most important and significant components

of information which exist on various web pages are believed to be the following items:
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1.2 Elements of Web Sites and Web Pages
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Figure 1.2: Growth of the number of hostname (117)

• Main content

• Headline, subtitles

• Author(s)

• Date

Of course some other components can be placed in one HTML file which are called additional

items or external items , such as menus, advertisements, footer and header, logos, counters,

search boxes, category information, navigational links, related links, copyright information,

which constitute up to 40-50% of the total contents of web pages (42).

1.2 Elements of Web Sites and Web Pages

Thousands of news broadcasts appear on web sites and web pages daily. Although each web

site and web page specialize on a special subject, i.e. politics, sports, science, culture, etc., one

common factor among all these web pages is that they all have a main content, a headline,

a specified author and a date of issuance (10). The remaining discussion will be assigned

to introduce elements in most web sites and web pages. Figure 1.3 depicts a screenshot of

the BBC news web site. To illustrate elements which contain important information at the

bottom of the web site in Figure 1.3, some middle parts of this web site, including various

news items, have been omitted. As can be clearly seen, this web site involves the following

elements:

• Logo + Menu + Search

• Top News Story

• News

• Business

• Sport

• More From BBC News

• Future

• Spotlight

3



1. INTRODUCTION AND PROBLEM DESCRIPTION

Figure 1.3: Sample of a BBC Web Site
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1.2 Elements of Web Sites and Web Pages

• Most Popular in News

• TV and Radio

• Weather

• BBC in your language

• Footer

All elements in this web site, with the exception of logo, menu and footer, will lead us to

web pages which contain one news component each. For example, if one chooses the news

entitled “New light bulb to last 23 years” from technology tab, one will be directed to the

web page depicted in Figure 1.4. The following elements are located in the web page shown

in Figure 1.4:

• The first rectangle in red color includes the logo of the BBC web site, main menu and

search choice. Located in the same section is a banner labeled “News Technology”

which defines the category of the news on this web page. It can be argued that this

web page belongs to the technology group. Beneath this banner is another menu which

directs one to other sections of the site.

• The next part seen on this web page is the image of an advertisement (Lights, CAM-

ERA, LONDON), which is somehow associated with the main subject of this web page.

To the best of our knowledge, several ongoing research is being conducted currently

about contextual advertisement to show an advertisement to the user which is related

to the subject of text on a web page. This can possibly persuade the user to have a

look at it (44) (21).

• The next part of this web page provides the user with an option to print this page,

send it to a friend through email, or share it with others on social networks such as

Facebook and Twitter.

• The rest of web page is divided into two columns. The left column shows the news

body in addition to its upload time (8 May 2012 in this case) and the headline of the

news (here, LED light bulb to last more than 20 years). The main body of news is

written beneath which contains some subsections and paragraphs. For example, two

subsections of “Saving Energy” and “LED Challenges” are seen with some paragraphs.

Some figures are also demonstrated on the left column in addition to their captions.

Furthermore, there is another part entitled “Related Stories”, which is not regarded as

a part of news. It is not accounted for the main content of this web page but includes

the news related to the subject of this web page for further reference of the interested

users. “More on this story” is shown again after the main text body which is not part

of the main content but gives similar information to the users. Features to print, send

via email, and share this web page is devised in the following.

• Immediately after this part is an advertisement whose subject is not similar to that of

the web page. This is followed by the section services, including news feeds, mobile,

podcasts, alerts and email news. Finally, the web page footer can be seen on the bottom

of the page containing some information such the copyright, “Terms of Use”, “Contact

Us”, “Advertise With Us”, and “BBC Help”.
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Figure 1.4: Sample of a BBC Web Page
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1.3 Statement of Problem

1.3 Statement of Problem

The rapid growth of text-based information on the web and various applications making use

of this data motivates the need for efficient and effective methods to identify and separate

the Main Content (MC) from the additional content items. In particular, the identification

of the MC is beneficial for web search engines: when crawling and indexing the web, knowing

the actual main content of each web page can be utilized for the purpose of determining more

precise and descriptive index terms for the document. Furthermore, Main Content Extraction

(MCE) is also applied in scenarios in which a reduction of a document to its main content

is of advantage, e.g. on devices that have limited storage or bandwidth capacity or underlie

restrictions regarding the presentation of web documents (55), such as mobile phones, screen

readers, etc. Furthermore, MCE can be considered as a preprocessing step for general text

mining applications operating on the web. All these application scenarios have led to the

development of several approaches and algorithms for main content extraction from HTML

documents. In addition, taking into account the great diversity of web sites on WWW, the

most important examples of which are:

• News web pages: e.g. CNN, BBC

• Blog sites: e.g. blogger, Xanga

• Social web sites: e.g. Facebook, Twitter, google+

• Information sites: e.g. Encyclopedia and Wikipedia

Considering the varying structure and layout of HTML files for each web site, it seems

necessary to propose outstanding algorithms which are able to extract the main content from

various web sites automatically. Nevertheless, this is not simple and requires accurate algo-

rithms because any web page has an anarchic nature and some components which are called

“additional items” such as menu, advertisement, most viewed news, etc. cause extraction of

some irrelevant information once we use main content extraction algorithms. Another feature

is that some web pages do not have any text as a main content and they contain only images

or videos instead. In this case, algorithms of extracting main content often mistake another

text located in the HTML file of that web page and report it to the user as the main content!

Providing images and videos from these kinds of web pages is definitely irrelevant to this

thesis and in the last chapter we will give helpful comments on how to handle these types of

web pages in order to extract these multimedia items. Consequently, the objectives of this

thesis are:

“Investigating the state of the art algorithms in fields of main content extraction from

HTML web documents. Moreover, the main part of this thesis deals with developing novel

and accurate algorithms for extracting the main content and headline of HTML news web

pages”.
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It can be claimed that the term “Content Extraction” (CE) was first introduced by Rah-

man (100) in 2001 in a conversation entitled “Content extraction for HTML documents”.

Subsequently, after almost a decade, numerous studies have been launched on main content

extraction; several algorithms have been implemented and various datasets have been formed

to test these algorithms. In spite of all these studies, it is still impossible to extract the main

content by a special algorithm which is capable of being applied on all kinds of web pages

with 100% accuracy. Some algorithms are able to extract the main content of some web

pages with maximum 98% accuracy but they will show rather low accuracy once employed

for other web pages. Hence, they can not be considered to be general algorithms for main

content extraction.

1.3.1 Definition of Main Content Extraction

Thomas Gottron, in his article labeled “Content Code Blurring” (48)(2008), defined content

extraction as follows:

Definition 1. Content extraction is the process of identifying the Main Content and/or

removing the additional items, such as advertisements, navigation bars, design elements or

legal disclaimers

It is interesting to note in his definition that once the additional items such as adver-

tisement, navigation bars and design elements are removed, the main content in a web page

would be accessible (110). The only difference is that considering the different structures of

web pages, identification and deletion of these additional items would not seem simple. In

an HTML web document, the main content is usually but not always placed next to initial

information of the web page, namely JavaScript codes, CSS codes and HTML codes related

to construction of menus. Meanwhile, footers are located after the main content. Listing 1.1

completes the explanations of this paragraph.

1.3.2 Strategy of Proposed Approaches

The most common traditional approach to MCE has been to hand-code rules, often imple-

mented by regular expressions. These hand tailored rules achieve a high or even perfect

accuracy on the web documents for which they have been designed. However, since different

web sites have different layouts, perhaps even in a variety of configurations and layouts fre-

quently changing over time, hand coded rules are highly labour intensive and easily broken by

changes to the structure of a web page (95). This has led to an interest in finding solutions

which are generic (i.e. applicable to various types of web pages from different web sites),

accurate (i.e. able to extract all important content at a high precision) and efficient (i.e.

capable of processing a large number of web pages at a high throughput rate) (74). However,

generic MCE approaches do not reach a perfect accuracy. Even state-of-the-art methods have

been shown to still leave room for improvement (46).

8



1.3 Statement of Problem

Listing 1.1: Sample of HTML file in which the MC is placed in the middle of HTML file

<!DOCTYPE html>

<html>

<head>

-------------- CSS Code ---------------

<style type="text/css">

body { background -color:# d0e4fe; }

h1 { color:orange; }

p { font -size :10px; }

</style >

</head>

<body>

-------------- Menu Bar ---------------

<div id="blq -local -nav">

<ul id="nav" class="nav">

<li class="first -child "><a href="/news/">Home</a></li>

<li><a href="/news/uk/">UK</a></li>

<li><a href="/news/world/africa/">Africa </a></li>

<li><a href="/news/world/asia/">Asia</a></li>

<li><a href="/news/world/europe/">Europe </a></li>

<li><a href="/news/world/latin_america/">Latin America </a></li>

<li><a href="/news/world/middle_east/">Mid -East</a></li>

<li><a href="/news/world/us_and_canada/">US &amp; Canada </a></li>

<li><a href="/news/business/">Business </a></li>

<li><a href="/news/health/">Health </a></li>

<li><a href="/news/science_and_environment/">Sci/Environment </a></li>

<li class="selected"><a href="/news/technology/">Tech</a></li>

<li><a href="/news/entertainment_and_arts/">Entertainment </a></li>

<li><a href="/news /10462520">Video </a></li>

</ul>

</div>

--------------- Main Title -------

<h1 class="story -header">LED light bulb to last more than 20 years</h1>

--------------- First Photo in MC with its Caption --

<div class="caption body -narrow -width">

<img src="http :// news.bbcimg.co.uk/media/images /60090000/ jpg/_60090417.jpg"

width="304" height="405" alt="General Electric LED light bulb" />

<span style="width :304px;">GE used a special cooling mechanism called an

active &quot;synthetic jet&quot; to prevent overheating </span>

</div>

--------------- Main Content Area -----

<p class="introduction" id="story_continues_1">Light bulbs that are said to

last for more than two decades while consuming very little energy may go

on sale later this year.</p>

<p>US firm General Electric , Dutch company Philips and Sylvania all showcased

their products at the Light Fair industry conference in Las Vegas.</p>

<p>Using light -emitting diodes (LEDs) instead of filaments , the bulbs are

meant to produce as much light as a 100-watt incandescent alternative.</p>

<p>However , LEDs are not usually cheap.</p>

<p>In April , Philips introduced its LPrize LED that will cost $60 ( 3 7 ) - but

consumes only 9.7 watts while giving off the same amount of light as a

60-watt incandescent lamp.</p>

<p>The company has arranged discounts with shops that will sell the

bulb priced at around $20 ( 1 2 ).</p>

<p>The new EnduraLED from Philips looks similar , but is said to be equivalent

to a 100-watt incandescent bulb while consuming only a quarter of the energy.

</p>

</body>

</html>
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Chapter 4 of this thesis will utilize the idea we are going to explain here briefly for

implementation of proposed algorithms. In each HTML web document, characters (or tokens)

can be considered as Content or Code. The characters (or tokens) which are part of HTML

tags, CSS codes, and JavaScript codes are categorized as Code while the rest of characters

(or tokens) will be grouped as Content.

The second categorization that can be performed on HTML web documents is that char-

acters (or tokens) which have been grouped into Content will be separated into two sub-

categories: Main Content, shaping the main part of news web page, and Non-main Content ,

for example content characters (or token) used in menu bar, header and footer of an HTML

web document. As can be seen in Listing 1.1, the number of main content characters (or

token) in the main content area is interestingly greater than the number of code characters

(or token) used in HTML tags (90) while in other areas the density of code characters (or to-

kens) is much higher than the density of non-main content characters (or tokens), for instance

HTML tags composing menu bar. In some regions, for instance CSS and JavaScript codes, the

number of content characters is exactly zero. Now the problem of finding main content in the

HTML web page becomes the problem of finding regions which have a high density of Main

Content characters (or tokens) and low density of Code characters (or tokens), comprising

the main content.

1.4 Thesis Outline

Taking into account the above-mentioned issues which specify necessity of extracting useful

information including main content and headline from web pages, the following chapters will

explain proper algorithms which can get this information.

• Some explanations will be provided about features of texts and web page documents

in Chapter 2 of this thesis. Then, the concepts in information retrieval will be briefly

discussed. The basic concepts of content extraction will be emphasized later, and

finally Unicode and UTF-8 encoding form will be reviewed in concisely at the end of

this chapter.

• Chapter 3 will comprehensively mention state-of-the-art algorithms about extraction

of main content from web pages. This chapter will attempt to divide the algorithms of

main content extraction into several categories and then explain the algorithms of main

content extraction which are located under each of these categories. Content extraction

systems will be studied at the end of this chapter.

• Chapter 4 which is the most important part of this thesis has adopted to explain and

describe algorithms of main content extraction from web pages. Algorithms which

will be investigated in this chapter are: R2L (89), DANA (85), DANAg (84, 87), and

finally AdDANAg (86), in order of appearance. We analyse our approaches under the

aspects of efficiency and effectiveness. We compare them to eleven established MCE

algorithms (41, 48, 55, 80, 91, 96) and show that we extend the state-of-the-art in terms

of both efficiency and effectiveness. Meanwhile, this thesis will introduce a new set of

data sets which have been collected and prepared by the author of this thesis.

10
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• Chapter 5 aims to explain an algorithm which is able to extract the headline of web

pages (83). At the beginning of this chapter, previous contributions in this field will be

introduced and subsequently, the algorithm implemented in current work, TitleFinder,

will be explained in detail. This chapter also argues that the accuracy of the main

content extraction from web pages can be improved when it is possible to extract the

headline from them.

• Chapter 6 will point out one of the most interesting applications in the fields of text

mining and main content extraction (88). Having extracted relevant information of

some published papers about biology, this chapter has tried to demonstrate whether

the number of published papers on a given topic by a specific publication has decreased

or increased during a definite period of time (approximately 40 years).

• Finally, Chapter 7 will discuss the conclusion and future works. However, some ideas

addressed in the future works section of this chapter are being investigated and exam-

ined at the present time.

11
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Chapter 2

Background

This chapter will discuss some basic issues. First, features of text and web page document

in addition to components in an HTML document will be discussed in Section 2.1. Then,

Section 2.2 aims to explain the concepts of Information Retrieval (IR) briefly and describe two

well known models of IR in detail. Section 2.3, which is of great importance, will emphasize on

the concepts of content extraction and explain the concepts of gold standard, recall, precision

and F1-measure. Finally, Section 2.4 will point to Unicode and UTF-8 encoding form, since

Chapter 4 needs such concepts.

2.1 Understanding Text and Web Page Documents

Before being able to run any process on texts and web pages, the components of a text file

and web page document must be identified. This section explains different components of a

text and a web page in brief. It will then illustrate elements and structure of an HTML file.

Afterwards, DOM tree as one hierarchical view of a web document will be introduced and

finally, the pre-processing operations needed in this thesis to be applied on web documents

will be presented.

2.1.1 Text file as a sequence of characters, tokens, lines, paragraphs

Text files, including HTML documents, are made up of a series of characters. Meanwhile,

tokens are created by placing some characters together. In a text file which contains English

characters, all tokens are a subset of words in that language. However, the situation is

somewhat different in an HTML file. As mentioned in Section 1.3.2, all tokens can be divided

into two general categories in HTML files, namely content and code tokens. The purpose of

content tokens are those which can be accounted for a member from the set of tokens of a

natural language, i.e. English. On the other hand, code tokens are those which form HTML

tags. In Listing 2.1, the content tokens highlighted in bold can be distinguished from the

code tokens. This code segment is a part of HTML code provided in Chapter 1 (Listing 1.1).
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Listing 2.1: A Portion of HTML file comprising of menu items

-------------- Menu Bar ---------------

1 <div id="blq-local-nav">

2 <ul id="nav" class="nav">

3 <li class="first-child "><a href="/news/">Home</a></li>

4 <li><a href="/news/uk/">UK</a></li>

5 <li><a href="/news/world/africa/">Africa</a></li>

6 <li><a href="/news/world/asia/">Asia</a></li>

7 <li><a href="/news/world/europe/">Europe</a></li>

8 </ul>

9 </div>

Listing 2.2: A Portion of HTML file comprising of some paragraphs.

--------------- Main Content Area -----

1 <p class="introduction" id="story continues 1">Light bulbs that are said to
2 last for more than two decades while consuming very little energy may go
3 on sale later this year.</p>
4 <p>US firm General Electric, Dutch company Philips and Sylvania all showcased
5 their products at the Light Fair industry conference in Las Vegas.</p>
6 <p>Using light-emitting diodes (LEDs) instead of filaments, the bulbs are
7 meant to produce as much light as a 100-watt incandescent alternative.</p>

The words Home, UK, Africa, Asia and Europe are content tokens, while other

tokens in this code segment such as </ul> or <div> are code tokens. Lines of an HTML file

are produced by putting together content tokens and code tokens. However, sometimes only

the code tokens can be seen in a line of HTML file. The lines 1, 2, 8 and 9 in Listing 2.1 only

contain code tokens, whereas other lines include both content tokens and code tokens.

The paragraphs in an HTML file can be mentioned after the lines. A paragraph is a set

of lines which is usually placed in an HTML tag. The most common and prevalent HTML

tag to build a paragraph is the <p> tag. Three paragraphs are seen in Listing 2.2 which is

a part of Listing 1.1. Here, the content tokens are shown in bold to be easily distinguished

from code tokens.

To conclude, the content tokens can be divided into two general categories as below:

• Main Content Tokens: These are content tokens which make the MC of a web page.

All content tokens in Listing 2.2 are classified under these kinds of tokens.

• Non-main Content Tokens: These are tokens which are not included in the MC of a

web page. For example, all content tokens summarized in Listing 2.1 constitute items

of the web page menu and are known as non-main content tokens.

2.1.2 Elements and Structure of an HTML document

The elements in web sites and web pages were investigated in terms of their appearance in

Chapter 1 (Section 1.2), meaning what is displayed by web browsers. This section adopts to
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study web pages in terms of their structural point of view (60). In other words, it wants to

see which components typically exist in an HTML file.

In an HTML file, in addition to the content tokens which can be observed by an end user

through a web browser, the following elements and components can be used:

• HTML tags

• CSS codes

• JavaScripts codes

• Comments

• Meta tags1

It should be noted that the content tokens are usually placed in an HTML tag. In

Listing 2.1 and Listing 2.2, the content tokens have been located between opening tags and

closing tags. Concerning CSS, JavaScript, comments and Meta tags, the only point which

must be mentioned here is that since these components have nothing to do with extraction

of MC and headline from web pages, they are often removed from the HTML file prior to

running the extraction algorithm of MC and headline. Noteworthy here is that HTML files

sometimes have syntactic errors, the most common of which is forgetting to put a closing tag

at the end of an HTML tag. Thus, whenever the extraction program of MC is sensitive to

syntactic errors, and especially to the closing tags, it is recommended to use some programs in

order to fix these errors. One of the best well-known programs for this purpose is Tidy (99),

which is able to correct syntactic errors. Tidy is also able to receive an HTML file and

transform it into a valid HTML code or even a XHTML code. Programmers who use the

Java language for implementation of their projects can utilize a Java version of this project

called JTidy (45).

2.1.3 Dom Tree, an Hierarchical view of HTML documents

The Document Object Model (DOM) is a cross-platform and language-independent conven-

tion for representing and interacting with objects in HTML, XHTML and XML documents.

In other words, DOM is a programming interface for XML and HTML documents. Using

this interface, we can have a full access to the XML and HTML documents and process these

types of documents. Programmers can create a document by DOM, add some elements to it,

remove some elements from it, and particularly modify it. DOM has been designed by World

Wide web Consortium (W3C) for being used via programming languages (2, 7, 8, 9). DOM

makes it possible to have a tree presentation from an XML or HTML document, because the

elements inside XML and HTML documents have nested structures. Texts which are located

between opening tags and closing tags are usually demonstrated as leaves of this tree. In

order to display the DOM of an HTML document by a tree, one would need some applica-

tions to receive an HTML document as input and then demonstrate the relevant DOM tree.

1Meta tag is data (information) about data
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The document element is usually placed at the highest level of such a tree with one or more

children. However, manipulation of the elements in a DOM tree needs to utilize a program-

ming language such as JavaScript. Numerous MC extracting algorithms are introduced in

Chapter 3 of this thesis which have utilized DOM tree to achieve their goals.

2.1.4 Text and Web Page Pre-processing

It was stated before in Section 2.1.1 that tokens are the smallest components of a document

in a text file and also in an HTML file. However, it will be discussed further in Section 2.2.2.2

that all of these tokens, which are extracted from an HTML file, do not show the same im-

portance and value. Generally speaking, some tokens, including prepositions, do not have

considerable value for further processes, while others such as keywords, are much more valu-

able once identified. Therefore, some pre-processes are implemented on the text before main

processing in text mining and information retrieval. The following has addressed some of

these pre-processing operations.

2.1.4.1 Tokenization

Assuming a given stream of text, tokenization can be defined as the breakdown of this stream

into some parts called tokens (14) and probably removing some special characters such as

punctuation simultaneously. White space, line break or punctuation characters are used in

order to tokenize a text. Furthermore, punctuation characters are also deleted. Nevertheless,

the tokenization is not always simply possible due to the following reasons:

• Existence of special characters such as an apostrophe which is used to show possession

and contraction;

• Existence of hyphenated words in some languages including English;

• Existence of compound nouns which are used in some languages including German;

• Existence of URLs and emoticons in many of computerized texts;

• Existence of some languages where there is no space between different words in a text,

such as Chinese.

Despite all of the aforementioned problems, there are some algorithms which can solve them.

2.1.4.2 Stopword Removal

Stopwords are words we specify to exclude from our text because they occur too frequently

or because of their unimportance to the text (15). In other words, stopwords are words which

are filtered out prior to, or after, processing of natural language data (text) (16). Most of the

time, stopwords are repeated several times in texts and do not have any meaning alone. Some

examples of these words are prepositions and adjectives. One of the methods to determine a

stopword list is to extract tokens of a text first and sort the tokens based on their number

of repetitions in the text. Tokens with the most frequency can be considered as a stopword
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list. However, some stopword lists are made for each language including English, German,

Farsi (114), etc. Thus, by comparing the tokens extracted from a text with a stopword list, it

is easy to specify which extracted tokens are parts of the stopword list. Sometimes removing

the stopwords will cause some problems. For example, when the stopwords are removed from

a phrase, that phrase might lose its main meaning and sense.

In Chapter 5, an algorithm will be explained which aims to extract headline from web

pages.

2.1.4.3 Stemming

The term stemming in information retrieval and linguistic morphology is used to address the

process of reducing inflected words to their stem, base or root form. The selected stem is

not necessarily the same as morphological root of the word and the related words should just

be mapped to the selected stem, even though this selected stem is not the main root itself.

Stemmer is usually a software which tries to perform the stemming process on a selected

text. Generally speaking, the right stemmers must be utilized for different languages due to

their dissimilar linguistic structures. Two sample stemmers for German and Farsi have been

proposed by Caumanns (26) and Taghva (115) in 1998 and 2003, respectively. An example

can be provided here to clarify this issue. By application of the special stemmer of English

language on “cats”, “catlike” and “catty” strings, they will be mapped into the “cat” token,

because “cat” is the root for all of these strings. Porter-stemmer (98) is one of the most

famous stemming algorithms for the English language, which was invented by Martin Porter

in 1980.

2.1.4.4 Web Page Pre-processing

A pre-processing step is considered in all algorithms provided in this thesis, i.e. R2L, DANA,

DANAg, AdDANAg, TitleFinder and finally TrendFinder, in order to prepare the input data

for the main processing. Although this will be discussed further in Chapters 4, 5 and 6, all

steps of pre-processing can be summarized as below:

• Pre-processing in R2L, DANA, DANAg and AdDANAg algorithms:

– normalizing the lines of HTML files

– removing the JavaScript codes from HTML codes

– removing the CSS codes from HTML files

– removing the comment lines from HTML files

• Pre-processing in TitleFinder algorithm:

– removing all the stopwords before running the main program

• Pre-processing in TrendFinder algorithm:

– using stemmer algorithm

– removing all the stopwords before running the algorithm
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2.2 Information Retrieval

First, basic concepts of information retrieval will be briefly discussed in this section and then

information retrieval models, i.e. Boolean and VSM, will be emphasized and examined. At

the end, some explanations will be provided about evaluation measures.

2.2.1 Basic Concept of IR

The term IR has found extensive applications in recent years through academic societies and

even people. It can be claimed that the invention of WWW has caused the popularity and

prevalence of this term. After the appearance of WWW, all individuals have become able to

search and retrieve whatever is desired from this developing ocean of information hosted by

web pages, weblogs, and forums. The retrieved information could be in the form of a text,

an image, a video or an audio. “In a simple definition, Information Retrieval means finding

and retrieving a set of records - documents in this case - which are relevant to user query”.

Therefore, for retrieving information, it merely needs to form a query and request it via one of

the browsers - such as Firefox - from WWW to find those records more relevant to the query

and then deliver them to the user. Retrieval systems rank documents located in a document

collection in terms of their relevance score to the query. Afterwards, the ranked documents

are displayed from the document with the highest rank to the one having the lowest rank (in

trolley form).

One important point is efficiency of the methods used for ranking the documents, since

when the ranking operation is done properly, the documents having more relevance with

the query will be demonstrated. In this case, efficiency would be more important than

effectiveness. It should be noted that web pages with conventional text documents which are

used in traditional IR systems are completely different. There are numerous hyperlinks and

anchor texts in web pages which are not seen in the traditional documents. Furthermore,

web pages are semi-structured and there are tag tokens in a web page, in addition to content

tokens, which have usually surrounded the content tokens. Moreover, JavaScript codes and

CSS codes are observed in a typical web page in addition to HMTL tags. However, the

most important components which are considered in this thesis are the headline and main

content of each web page which are surrounded by HTML tags. Content tokens in a web

page are located in a number of structural blocks. Some of these blocks are important in this

contribution because they include the main content, while some others are unimportant such

as involve content tokens which exist in menus, advertisements, privacy policy and copyright

notice.

A very simple architecture of an IR system is depicted in Figure 2.1 (? ). Regarding

Figure 2.1, it seems necessary to answer the following questions:

• How are documents - in this case web pages - indexed?

• How does the retrieval system find the correct records out of the indexed documents

and give them to the user?

(Noteworthy is that the same system will be utilized to find the headline of web pages,

but the document collections here are in fact blocks of a web page which include content
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Figure 2.1: A general IR system architecture (73)

tokens). In Figure 2.1 the user commences to build a query considering the information

desired, and then this query is issued for the retrieval system by query operation module.

The retrieval system uses document index to determine those documents which contain several

query items. Afterwards, it calculates retrieval scores for these documents and finally rank

the retrieved documents based on the scores obtained. At this time, the ranked documents

must be displayed so that the user could find his desired information there. One unit which

is of great importance in Figure 2.1 is the indexer. Indexer is a module that receives original

new documents, transfers them into a data structure, and indexes them to provide an efficient

retrieval.

2.2.2 Information Retrieval Models

IR models answer how a document and a query are represented in computer systems and

also how the relevance of a document is defined to a user query. Generally speaking, there

are four main IR models including (61):

• Boolean Model

• Vector Space Model

• Language Model

• Probablistic Model

The most used models in IR systems and web are the first three models. However, this

thesis will only explain and describe Boolean and VSM models. Both Boolean and VSM

models deem any document or user query as a “bag” of words or terms. Nevertheless,

sequence of terms and their positions are disregarded in the sentences of documents and user

queries, which means that a document or user query is described by a set of distinctive terms.

In other words, it does not mind here whether a term is noun, subject, verb, object and etc.

These terms can be placed in a document or query in any arrangement.
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In an IR model, a weight is associated to any term. Assume a set of documents D, and

take V =
{
t1, t2, ..., t|V |

}
as a set of distinctive terms in D. The set V is usually called

Vocabulary, and |V | is its size. A wi,j > 0 is associated to any term ti which exist in a

dj ∈ D. Meanwhile, the term that does not appear in a document dj would have wi,j = 0.

Each document dj is presented by a term vector as shown below (see Equation 2.1):

dj = (w1,j , w2,j , ..., w|V |,j) (2.1)

The weight wi,j determines the degree of importance of ti in document dj . The order of

components (terms) is not important in a vector. A collection of documents can be simply

displayed by a matrix at this kind of demonstration. Every term is an attribute, while each

weight corresponds to an attribute value in this matrix. The weight wi,j is calculated and

determined in various forms for different retrieval models.

2.2.2.1 Boolean Model

The Boolean Model (BM) is one of the most straightforward and basic information retrieval

models. In BM, only documents which have been matched with the user query are retrieved

and offered to the user. Gudivada et al. have suggested calling this model “set theoretic” (51).

In this model, documents and queries are represented as a set of representative keywords

which are known as index terms. Each term can exist or not exist in a document:

wi,j =

{
1 if ti appears in dj

0 otherwise
(2.2)

In this technique of weighting, all terms in a document will be weighted equally which is

in fact one of the major disadvantages of BM.

In BM, query terms can be combined with each other using Boolean operators such as

AND, OR, and NOT to form a Boolean query. Assume that query q is given, then the

retrieval system retrieves those documents which cause query q to obtain the true value, and

provides selected documents to the user. It can be declared that the operation of retrieval is

based on binary decision making. In other words, a document is either relevant or irrelevant,

thus this form of retrieval is also known as “exact match”. This way of retrieving is one of

the most important drawbacks of BM, since it is unable to rank the retrieved documents and

the users are not completely satisfied with the obtained and retrieved results.

Here, it seems reasonable to consider a definition of BM which has been introduced by

Baeza-Yates in his book “Modern Information Retrieval” (18).

Definition 2. Given a collection of documents D, let V =
{
t1, t2, ..., t|V |

}
be the set of

distinctive terms in the collection, where ti is a term. Further, let gi be a function that returns

the weight associated with the index term ti in any t-dimensional vector (i.e., gi(~dj) = wi,j).

For the Boolean model, the index term weight variables are all binary i.e. wi,j ∈ {0, 1}. A

query q is a conventional Boolean expression. Let ~qdnf be the disjunctive normal form for the

query q. Further, let ~qcc be any of the conjunctive components of ~qdnf . The similarity of a

document dj to the query q is defined as
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sim(dj , q) =

{
1 if ∃ ~qcc | (~qcc ∈ ~qdnf ) ∧ (∀ti, gi(~dj) = gi(~qcc))
0 otherwise

(2.3)

If sim(dj , q) = 1 then the Boolean model predicts that the document dj is relevant to the

query q (it might not be). Otherwise, the prediction is that the document is not relevant.

About storing documents, the simplest data structure often utilized in BM to store the

documents is the binary term-document incidence matrix. Indexed units are indeed terms

(words here) within this 2D matrix. Every row of this matrix belongs to a term ti of vocabu-

lary while each column of it belongs to a document dj . If the term ti exists in the document

dj , then value “1” will be stored at row i and column j of this matrix; otherwise, value “0”

will be inserted there. Figure 2.2 illustrates this data structure.

Figure 2.2: A term-document incidence matrix (78)

Another data structure which is used for BM is inverted index, which is more advantageous

than the term-document incidence matrix since it needs a much smaller space for data storage.

This data structure is comprised of two parts: vocabulary which contains terms, and posting

list. There is one list for each term in which the number of documents containing this term

has been specified. Figure 2.3 shows this data structure.

2.2.2.2 Vector Space Model

Vector Space Model (VSM) (105) (107) is the most common and applicable model of IR.

Each document dj and each user query q is demonstrated by a t-dimensional vector in this

model (Equations 2.4 and 2.5).

~dj = (w1,j , w2,j , ..., wt,j), wi,j ≥ 0 (2.4)

~q = (w1,q, w2,q, ..., wt,q) (2.5)
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Figure 2.3: An inverted index data structure( (78))

Appropriate weights of non-binary ≥ 0 are attributed to the index terms in query vectors

and document vectors in this model. Therefore, it becomes possible to calculate the degree

of similarity (DOS) between each document vector and query vector. Afterwards, a number

of documents with the maximum DOS are chosen by sorting the documents in a descending

order based on DOS for a specific query and then delivered to the users according to their

needs and considering a threshold. It is appreciable that how the documents are chosen in

VSM is more accurate and efficient than how those are chosen in BM.

In order to calculate DOS among document dj and user query q, one just needs to

benefit from the correlation between ~di and ~q vectors. This correlation can be assessed by

measurement on the cosine of the angle between these two vectors. Figure 2.4 depicts this

more clearly. To obtain and measure this correlation, Equation 2.6 can be used, where |~di|
and |~q| represent norms of document and query vectors. One noticeable point which seems

interesting is that the value of |~q| is ineffective on the ranking of the documents, since it has

the same value for all documents.
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Figure 2.4: Illustration of Cosine Similarity. score(~q, ~d1) = cosθ
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cos(~q, ~dj) =
~q · ~dj

|~q| × |~dj |
=

∑t
i=1wi,q · wi,j√∑t

i=1w
2
i,q ·

√∑t
i=1w

2
i,j

(2.6)

However, it should be discussed how index term weights are calculated. One may argue

that the most important disadvantage of the VSM is that the values of index terms must first

be defined. Assignment of appropriate values to the index terms are known as term weighting.

Salton et al. (109) (105) have demonstrated in their studies that the term weighting is by

no means a simple and trivial problem. This section introduces the terms frequency scheme

and TF IDF scheme which are usually used to calculate index term weights. As mentioned

earlier, wi,j of term ti in document dj is no longer limited to 0 or 1 and can have any positive

value as well.

• Term Frequency (TF) Scheme: In this method, weight of term ti in document dj is equal

to the number of times the term ti appears in the document dj and is demonstrated by

fi,j . In order to normalize fi,j , Equation 2.7 can be used. If the term ti does not appear

in the document dj , then tfi,j will be zero. Here, |V | gives the size of vocabulary. One

disadvantage of the TF scheme is that it ignores the situation where a term appears in

many documents. The term ti might fail to be discriminative in this case.

tfi,j =
fi,j

max{f1,j , f2,j , ..., f|V |,j}
(2.7)

• TF IDF Scheme: This scheme is one of the most popular methods of weighting scheme

(see (73, 78)). TF and IDF stand for Term Frequency and Inverse Document Frequency,

respectively. Different varieties of this scheme exist, though the simplest of them is

investigated in this contribution. Assume N as the total number of documents in the

document collection and dfi being indicative of the number of documents in which

ti appears at least once there. Thereby, idfi of term ti would be calculated through

Equation 2.8. It can be seen and understood that if a term is repeated several times

in a number of documents, that term will be unimportant and also not discriminative.

Based on the information obtained so far, TF IDF can be calculated by Equation 2.9.

idfi = log
N

dfi
(2.8)

tf idfi,j = tfi,j × idfi (2.9)

The tf idfi,j weighting scheme assigns a value to the term ti in the document dj which

can involve one of the following conditions:
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– If the term ti appears several times in a small number of documents, then the term

ti will get the greatest weight among all other terms. As a result, this term will

give high discriminating power to the documents in which it appeared.

– If the term ti appears fewer times in a document or if this term is observed in

numerous documents, then the term ti will get the lowest weight among all other

terms. As a result, this term will behave as a ordinary term.

– If the term ti exists almost in all documents, then the term ti will have the lowest

weight. Stopwords are usually classified under this group of terms.

It can be noted here that calculating the weight of terms in a query q is exactly sim-

ilar to that of terms in documents. For example, Salton et al. (106) have proposed

Equation 2.10 for calculating weight of terms in a query q.

wi,q =

(
0.5 +

0.5fi,q
max{f1,q, f2,q, ..., f|V |,q}

)
× log

N

dfi
(2.10)

2.3 Content Extraction

This section discuss the concept of CE more precisely and also to provide a formal definition

for it. Then, it will be investigated how to evaluate algorithms of MCE and how accurately

they extract MC from web pages (71).

2.3.1 Formal definition of content extraction

If one needs to explain characteristics of CE algorithms in addition to evaluate their outputs,

one must have a formal definition of CE. Here, we consider an HTML file as a sequence of

tokens 1 and, consequently, MC would be a subsequence of this HTML file but not necessarily

a continuous subsequence. The CE algorithm can be taken as a function whose domain is

an HTML file, i.e. source code, and its range is a set of ordered pairs. Each pair contains

start and end points of a part of MC in the source code. In Equation 2.11, D represents the

HTML file, so |D| would give the number of tokens in that file. si and ei are the positions of

the first and last character of a fragment of MC and they must definitely have relevance in

the Equation 1 ≤ si ≤ ei ≤ |D|. The number of fragments in the source code is N .

fCE :D → {(si, ei): 1 ≤ si ≤ ei ≤ |D|, 1 ≤ i ≤ N , sj+1 > ej , 1 ≤ j < N} (2.11)

1According to the MC extraction approaches, an HTML file is considered as a sequence of characters or
tokens.
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2.3.2 Evaluation of main content extraction approaches

In order to evaluate the performance of the MCE algorithms, one might bear in mind to

collect a great number of web pages from different domains in order to use them in the

process of algorithm evaluation. The term “data set” is utilized for the collected web pages.

Two data sets are being used in this thesis to examine and test the proposed algorithms. The

first data set was prepared and collected by Thomas Gottron (46) in 2007, while the second

one was collected by the author of this thesis in 2011. Each of these two data sets contains

numerous web pages collected from various domains.

The second task to do in order to calculate the MCE algorithm accurately is to determine

manually the MC of each web page in the data sets using an independent expert and then

save each of these manually crafted MCs in separate text files. Such files are called gold

standard file or ground truth file. It is obvious that this would be a time consuming and

expensive activity which is associated with human errors. Therefore, if the gold standard

files are not prepared with great care and precision, it will be possible to make some mistakes

in evaluating the performance of the MCE algorithms. In other words, the algorithm which

is able to extract MC at great accuracy might be misinterpreted as an inappropriate and

weak algorithm; vice versa, an algorithm with a poor ability to extract MC from web pages

might be incorrectly rated as appropriate and good.

By preparing data sets and gold standard files in steps 1 and 2, it would then be time

for step 3. At this step, the algorithms of MC extraction input each of the web documents

presented in data sets and then process each of them to extract the MC of collected web

pages. The output of the MCE algorithms is usually a text file and it is expected to contain

the MC of a processed HTML file. Van Rijsbergen (103) has labeled this output “retrieved

item”, though it is named as “extracted content” in this thesis with the file containing it

being called “cleaned file”.

However, the last part of this section will investigate how to evaluate the accuracy of

the MCE algorithms. This thesis has employed classical information retrieval performance

measure including Recall, Precision and F1-measure. Then some variables are introduced

here: g and m show the number of tokens in gold standard file and cleaned file, respectively. k

represents the number of tokens which are retrieved by LCS (Longest Common Subsequence)

function. LCS is used to find the overlap between two files of gold standard and cleaned file.

Considering the defined variables of g, m and k, Recall, Precision and F1-measure can be

introduced as in Formula 2.12:

• Recall r: Includes attribution of extracted relevant items to all relevant items;

• Precision p: Includes attribution of extracted relevant items to all extracted items ;

• F1-measure F1: Provides us with a suitable similarity measure for comparing extracted

items and relevant items based on two concepts of Recall and Precision.

r =
length(k)

length(g)
, p =

length(k)

length(m)
, F1 = 2 ∗ p ∗ r

p + r
(2.12)
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Metrics of Recall, Precision and F1-measure can have values between 0 and 1. It is

obvious that as much as the values of F1 metric are closer to one, the method applied for

MC extraction will show a higher accuracy.

2.4 R2L Languages, Unicode, and UTF-8 Encoding Form

Various languages use different directions in writing. Languages such as English, Spanish,

and German are written from left to right, while languages such as Arabic, Farsi, Pashto, and

Urdu are written from right to left. Our approaches R2L and DANA are able to extract the

main content of right to left language web pages. Therefore, in this section we will explain

some characteristics of these languages as well as their representation and encoding.

2.4.1 Languages on the Web

Figure 2.5 provides statistics concerning the top 10 languages of Internet users (12). Following

English, Chinese, Spanish, Japanese, Portuguese and German, users speaking Arabic – one

of the four languages discussed in this chapter – rank at position 7 of this list. Considering

the statistics from the Internet World Statistics (IWS), in 2011 more than 33.5% of people in

Arabian countries have access to the Internet. By exploring these statistics further, we can see

around 3.4% of all users in the world come from Arabian countries. By comparing this value

with older statistics from 2000 where only 0.8% of all users in the world were from Arabian

countries, we see a high growing rate of Internet use in Arabian countries. It is important

to know that the population of Arabian countries is more than 350 million people and in

the future, even more people in these countries will have access to the Internet. Therefore,

the numbers of visitors of Arabian web pages are going to increase. These considerations

motivate doing MCE research on Arabian web sites.

2.4.2 Unicode Character Set

Before the Unicode Character Set (13) was introduced, ASCII (developed to ISO 8859*) and

EBCDIC were used on computers. Thereby, only one byte was allocated for storing a single

character; consequently only 256 characters could be coded. By considering this limitation,

rows in the interval [128, 255] in the encoding table were used by different characters of dif-

ferent languages. Since the introduction of UCS, where only one special number was mapped

to each character, we are able to use all characters of different languages on computers. At

first, from 1991-1995, only 16 bits were reserved for each character, but when the new ver-

sion of UCS was introduced (July 1996), it was possible to save a character in 21 bits. The

newly defined UCS encoded all characters in the interval [U+0000, U+10FFFF] (32). There

are several encoding forms in UCS, such as UTF-8, UTF-16, and UTF-32. In each of these

encoding forms, respectively, one character can be saved in one to maximally four bytes, one

or two words, or 32 bits.
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Figure 2.5: Top 10 languages on the Internet in millions of users in 2010 2.5

2.4.3 UTF-8 Encoding Form

As we mentioned in 2.4.2, UTF-8 is a variable-length encoding form in UCS. This encoding

form can code all characters in UCS and represents each character in one to four bytes and

has two of the following special characteristics (Keep in mind that characters which are used

in non-English languages need two, three, or four bytes):

• It reserves the same character codes from ASCII that makes UTF-8 backward-compatible

with ASCII. Hence, every valid ASCII character (a 7-bit character set) is a valid UTF-8

character sequence and is mapped onto the following scheme. Each of these characters

has a value of less than 128.

Bits Last code point Byte1

7 U+007F 0xxxxxxx

• It is capable of encoding up to 231 characters and uses the scheme in Table 2.1 to handle

code points with up to 31 bits. Some features of this scheme are: 1) For every UTF-8

byte sequence, the first byte determines the length of the sequence in bytes. 2) The rest

bytes have 10 as their two most significant bits (bits 7 and 6), so it can be recognized

whether or not a byte is the first byte in a longer byte sequence.
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Table 2.1: Scheme of byte sequence in UTF-8 (121)

Rows Bits Last code point Byte1 Byte2 Byte3 Byte4 Byte5 Byte6
1 7 U+007F 0xxxxxxx
2 11 U+07FF 110xxxxx 10xxxxxx
3 16 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
5 26 U+3FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
6 31 U+7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

All letters of non-English-languages which we will discuss in this chapter take exactly 2

bytes, for example the Arabic character set has been represented in the interval [U+0600,

U+06FF], and follow the byte sequence in Row 2 of Table 2.1. In UTF-8, each character

which needs more than one byte will be coded in such a manner that each byte of this char-

acter is greater than 127 and so it can be distinguished from one-byte characters with values

less than 128 (see Table 2.1).

To illustrate this, consider the following example. The letter H. in the Arabic lan-

guage (corresponding to the letter b of the Latin alphabet) has been defined with the value

0x0628 (58) (with the equivalent binary value of 0B|00001100|00101000). According to the

second row of Table 2.1, this value should be divided into three parts:

000 011000 0101000

Now, two right parts will be added to the bytes corresponding to the bytes in row 2 in

Table 2.1, respectively :

11000000 10000000

The result is:

11011000 10101000

Note that the value of each of these two bytes is greater than 127. Therefore, we can eas-

ily separate one-byte characters with value less than 128 from double-byte characters by

considering the first bit.
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Chapter 3

Related Works

This chapter aims to categorize the developed algorithms and the invented frameworks for

the extraction of main content from web pages of various aspects. Then it would be possible

to put the algorithm proposed by the author of this thesis into the correct category. Main

content extraction algorithms will be classified and studied from four different aspects in

Section 3.1. Relevant algorithms of main content extraction with high performance will be

introduced in Sections 3.2 and 3.3. Then, content extraction systems will be addressed in

Section 3.4, and finally comparable platform for boilerplate removal is discussed in Section 3.5.

3.1 4-Dimensional Classifications of Main Content Extraction
Algorithms

This section mainly focuses on the classification of main content extraction algorithms which

is comprised of total four categories, i.e. 4-dimensions.

3.1.1 Single Document based Approaches vs. Multi Document Template
Detection Approaches

Algorithms developed for identification and extraction of main content from web pages are

categorized to the following general categories in terms of using single document or document

collection, generated by WCMS (web content management system):

• Single Document Based Approaches (SDBA)

• Multi Document Template Detection Approaches (MDTDA)

Gibson et al. (42) has called these two groups “Local Techniques Approach” and “Global

Technique Approach”, respectively. It is well known that web pages which are made by

WCMS have a similar template structure. In other words, template portion exists in all web

pages generated by typical WCMS. Therefore, it seems possible to identify and remove the

following segments to attain the main objective, i.e. extraction of the main content in these

document collections, by investigation and analysis of the template structure in a document

collection:
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• Navigation slide bars

• Logos

• Header and dropdown menus

• Banner advertisements and footer

Earlier works of Kolcz et al. (70), Chen et al. (28), Yi et al. (127), Ma et al. (76), Wang

et al. (119), and Bar-Yossef et al. (19) give useful information about MDTDA. Furthermore,

algorithms of FastContentExtractor (93), ExAlg (17), RTDM-TD (118) and NoiseElimina-

tor (63) employ MDTD-based techniques to identify main content in web pages.

Main content is extracted in SDBA just through processing an HTML web document. It

can be declared that one of the most powerful hypotheses in this method is that the main

content is a continuous text in a web page. In other words, main content is a zone of single

document whose content density is much greater than that of HTML tags as mentioned in

Section 1.3 previously.

One advantage of MDTDA is that it does not use the assumption that main content is

a continuous text, thus it will still be extractable even if main content is a non-continuous

text or includes image, video and more complex structures including tables. It means that

MDTDAs are more reliable in their extraction performance but their major drawback is that

they can only be executed on template-based documents which are generated by WCMS. One

other point is that in order to extract and process main content, namely in search engines,

SDBAs are widely used. This is because many web pages which are to be processed are not

generated by WCMSs, and thus it is not possible to apply MDTDAs for the extraction of

main content. In other words, SDBAs can be used on any HTML web document to extract

main content. Algorithms proposed in this thesis, by the author, are categorized as SDBAs.

Therefore, the following text will study the algorithms classified under the SDBA group which

have been presented previously. Chapter four will explain the algorithms developed by the

author of this thesis including R2L, DANA, DANAg and AdDANAg.

Jan Pomikalek (97) has classified the algorithms used to extract main content into two

groups of “page-level” and “site-level” associated with SDBA and MDTDA, respectively, in

his PhD thesis entitled “Removing Boilerplate and Duplicate Content from web Corpora”.

3.1.2 Stand-alone vs. Integrated Approaches

Since current requirements need to display the main content of web pages on different plat-

forms, it seems thus necessary to automatically identify, extract, and display the main con-

tent in web pages on various platforms. In such cases, the main content extraction algorithm

(MCEA) performs singularly and it is no longer accounted for a segment of another software.

These algorithms are called stand-alone main content extraction algorithms. On the other

hand, since the main content of web pages are valuable information sources, they can be

extensively used in the following projects:

• Text classification, clustering and summarization systems

• Question and Answering systems
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• Trend analysis systems

• Indexing systems and search engines

In such cases, MCEA is not considered as a stand-alone algorithm itself, but it is considered

as a pre-processor for the main program instead. These algorithms are called integrated main

content extraction algorithms. As the output of MCEA is used by the main program, a

high accuracy of MCEA in extracting the main content of web pages can affect the overall

performance of the system significantly. That is why researchers are still looking to find

algorithms for main content extraction which show both a relatively high performance as

well as some characteristics such as being domain-independent and language-independent.

3.1.3 Heuristic Techniques vs. Machine Learning Approaches

Most algorithms used for main content extraction usually benefit from a series of Heuristic

Rules to reach their final goal, which is main content extraction with high accuracy. A main

feature, for example text-to-tag ratio, is utilized to identify and recognize the main content

as well as its extraction from noisy information. However, based on the information obtained

from heuristic algorithms, application of a main feature will not necessarily lead to successful

results since various web pages contain different characteristics.

Another disadvantage of these heuristic methods is that one should define a set of param-

eters and consider a threshold for each of these parameters to raise the accuracy of MCEA.

The existence of such parameters will definitely render them as domain-specific and thus

they could not be used on all datasets. For example, most MCEAs experience a noticeable

decrease in the accuracy during main content extraction from Wikipedia pages and some

other web pages like Slashdot. For solving this problem, a combination of several features

can sometimes lead to better results in the main content extraction process (86).

On the other hand, some MCEAs are based on Supervised Machine Learning Methods

(SMLM). These methods involve two steps as for any other SMLMs. At the first step, a

function, a classifier, is generated by the analysis of training data. The training data have

a set of training examples with each example being comprised of an input object (typically

a vector) and a desired output value. In the second step, the generated classifier receives

some valid input objects and predicts some correct output values. If the training process is

implemented successfully at the first step, the developed classifier can make proper outputs

on new and unseen data. Otherwise, the classifier will experience a failure.

3.1.4 Methods Based on DOM Tree Structure vs. Methods Based on
HTML Source Code Elements

Algorithms and tools which are implemented for main content extraction use an “HTML

DOM tree structure” or “HTML source code elements” (20) in order to identify and extract

main content of the web pages. Looking on Sections 3.2 and 3.3 reveals that DOM tree

structure and HTML source code elements are used almost equally in main content extraction

algorithms.
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3.2 Methods Based on DOM Tree Structure

This section adopts to introduce 8 different algorithms which use HTML DOM tree structure

for extracting MC from web pages. These algorithms usually employ an “HTML parser” to

produce the DOM tree.

3.2.1 Crunch [2002, Heuristic]

The impulse for the creation of crunch framework as one of the more prominent solutions for

MCE was the necessity of transmitting and displaying the contents of web pages, especially

their main contents, on devices with a small memory capacity such as screen devices, currently

famous as tablets, mobile phones and PDAs. Therefore, developers of this framework in 2002

decided to enable transmission and displaying of main contents related to web pages on

the devices mentioned before by implementing this framework (53, 54, 55, 56, 57). This

framework initially uses an HTML parser (5) to build a DOM tree for an HTML document.

Then, it navigates this DOM tree recursively rather than using a raw HTML markup and

applies a number of heuristic filtering techniques to extract the main content of the HTML

web page.

This framework in its first heuristic filtering technique deletes tags of CSS style, images

and links from the HTML code. The second heuristic filtering technique has tried to delete

advertisements, link lists and empty tables. For removing advertisements in this framework, a

list of advertisement server addresses is kept to be used for identification of the advertisement

elements in DOM nodes. However, the Link Quota Filter technique, which will be introduced

in this chapter, has been utilized to decide whether the link lists should be deleted or remained

in the HTML code. The removed links will be saved at the end of the HTML file in order to

keep their navigation in web pages possible. However, the last part, which is deleting empty

tables, could be done more simply. It only needs to delete a table without information or

containing insignificant information. It is also useful to note that the crunch is equipped

with a plug-in mechanism to enable adding heuristic filtering techniques. Crunch is written

in Java and it was implemented in a publicly available web proxy (67). This proxy can be

used both centrally, administrated for groups of users, as well as by individuals for a personal

browser. The Crunch filtering algorithm (75) is shown in Algorithm 1(Page 35).

3.2.2 Mantratzis et al.[2005, Heuristic]

Mantratzis et al. (80) suggested a new algorithm in 2005 which has attempted to distinguish

the main content in a web document from the hyperlink-clutters like text advertisements

and long links of syndicated references to other resources. The suggested algorithm benefits

from a DOM tree structure to implement this task. This algorithm determines the areas

with a high hyperlink density within a web document, so it can separate these areas from

the main content in web pages. In doing this, they examined the DOM tree and assigned

specific scores to each section based on the amount and relative location of hyperlink nodes

in the DOM tree. The main advantage of this method is that it is able to identify “list-link”

structure of hyperlinks or “table-links” by processing various levels of DOM tree which have

been loosely or tightly defined, and also to find the main content present in the web document
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Algorithm 1: Crunch Filtering Algorithm (49)

Input: D: DOM node
begin

nodeType← D.getNodeType() ;
parent← D.getParentNode() ;
if nodeType = ELEMENT NODE then

nodeName← D.getNodeName() ;
/* First Filter */
if nodeName = DIV and setting.ignoreDivStyles = true then

removeAttribute(D, ”style”) ;

/* Second Filter */
if isAdLink(D) and setting.ignoreAds = true then

parent.removeChild(D) ;

else if nodeName = TD and setting.ignoreLinkCells = true then
linkTextRatio← getLinkTextRatio(D) ;
if linkTextRatio > threshold then

parent.removeChild(D) ;

else if isTextLink(D) = true and setting.ignoreTextLink = true then
parent.removeChild(D) ;
if setting.addLinksToBottom = true then

addLinks(D) ;

by choosing these hyperlinks and removing them from the web document. Mantratzis et al.

implemented their algorithm in Java (J2SE 5.0). Moreover, they employed two open-source

softwares called JTidy (4) and JDom (3). The former gets an (X)HTML file as its input

and finally offers a new error free file by applying several steps of filtering on the called file

which can contain some errors. However, the latter is used to create a Java-accessible object

representation.

3.2.3 FeatureExtracter and K-FeatureExtracter
[2005, Heuristic]

FeatureExtracter (FE) and K-FeatureExtracter (K-FE) are two algorithms proposed by Deb-

nath et al. (34) (33) in 2005 to extract the main content from web pages based on analysis

of blocks in a DOM tree. Noteworthy here is how these two algorithms identify blocks of a

web page. It is well known that every block corresponds to one sub-tree from a DOM tree.

These blocks (sub-trees) are selected on the basis of specific elements such as <table>, <tr>,

<p>, <hr>, and <ul>, which can be placed in the root node of a block. In other words, each

sub-tree of DOM structure, whose root node is one of the above mentioned elements, can be

considered as a block in these two algorithms. To identify all blocks, these two algorithms

have used a recursive algorithm shown in Algorithm 2 (49).
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Algorithm 2: Decomposing a document into blocks (49)

Input: D: DOM node (first called with root node of a document), T : Set of block defining
HTML elements.

Output: B: Set of blocks.
begin

B ← D ;
foreach t ∈ T do

foreach b ∈ B do
if b hasChildNode(t) then

B ← (B \ b) ∪ getBlocks(b,t);

return B

function getBlocks(b,t);
begin

NewBlocks← �;
C ← descendants(b);
foreach m ∈ C do

if elementType(m) = t then
NewBlocks← NewBlocks ∪ {m};

return NewBlocks

Having characterized all blocks in a DOM tree for identification and isolation of the main

content blocks from non-content blocks in these two algorithms, one must attribute special

features to the extracted blocks. These features are corresponding to elements which are

located in the same block. For example, if FE is called with features related to text, image or

links, then FE will identify text blocks, image blocks or navigational blocks. Since FE decides

to identify the main content blocks, it has just adopted to introduce features corresponding to

the text. Obviously, changing these features would make it possible to identify other blocks

with different features instead of the main content blocks.

The features which have been addressed for identification of the main content blocks in

works of Debnath et al. include:

• Text: the text content inside the block

• Text-Tag: the text tags, i.e. <h1> and <h2> inside the block

• List: the list available inside the block

• Style-sheet: This is also to make the list complete and compliant to W3C guidelines.

Styles are usually important for browser rendering, and usually included inside other

tags, such as links, tables, etc.

At this step, the FE algorithm attributes a value to each block based on the features

considered. Afterwards, if the sum of feature values related to the desired features is greater

than or equal to the sum of feature values corresponding to the remaining features, then the

desired block will be transformed into a winner-basket. In the second step, feature values
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will be calculated once again for a new set of blocks wherein the block with the highest sum

of desired values being selected as the winner block.

To explain K-FE, it can be pointed out that this algorithm is in fact the extended version

of FE which adopts to select K blocks rather than a block. K-FE uses an adaptive k-means

clustering to address K blocks from the winner baskets discussed earlier instead of introducing

just one winner.

3.2.4 Link Quota Filter (LQF) [2005, Heuristic]

LQF is a simple heuristic method which has been utilized by Mantratzis (79, 80) and

Gupta (54, 55, 56) to delete both link lists and navigational elements from the body of a

web document and thus reach a much higher accuracy in extraction of the main content. Al-

though various versions of LQF have been implemented, the main idea in all these processes

is to measure the ratio of hyperlinked contents to non-hyperlinked contents inside a DOM

node. If the value of the calculated ratio is greater than the threshold defined by the user, the

DOM node will be deleted. Otherwise, the DOM node will remain in the structure of DOM

tree. It must be noticed that LQF readily removes additional contents with a high frequency

of the hyperlinked contents from DOM tree structure. However, it fails to achieve the desired

results against some parts of the web document including header and footer since not many

hyperlinks could be seen in this section. The LQF algorithm is shown in Algorithm 3 (49).

Algorithm 3: Link Quota Filter (49)

Input: n: DOM node
Output: q: quota of links to overall text
begin

C ← descendants(n) ;
ttot ← 0 ;
tlink ← 0 ;
foreach m ∈ C do

if ¬isBlockNode(m) then
if isTextNode(m) then

ttot ← ttot + length(getText(m)) ;
else if isLinkNode(m) then

ttot ← ttot + length(getText(m)) ;
tlink ← tlink + length(getText(m)) ;

else
ttot ← ttot + length(getText(m)) ;
tlink ← tlink + Linkquota(m) · length(getText(m)) ;

else
C ← C \ descendants(m);

q ← tlink/ttot;
return q
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3.2.5 VIsion-based Page Segmentation (VIPS)
[2003, Heuristic]

Cai et al. (22, 23) introduced the VIPS algorithm for the first time in 2003. This algorithm

uses DOM structure and analyzes visual page layout features (cues) such as position, back-

ground color, font size, font weight and etc. to build a vision-based content structure (or

simply a vision-based tree) for the web document under study. For this purpose, the algo-

rithm first extracts the blocks present in an HTML DOM tree heuristically. It then locates

the identified blocks based on the visual features of each block as well as the visual separators

between blocks such as horizontal and vertical lines. Figure 3.1 shows the layout structure

and the vision-based tree for an arbitrary web document (22).

Figure 3.1: The layout structure and vision-based tree of an example page
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As can be seen in Figure 3.1, this draft has four nodes at its first level in the order of

V B1, V B2, V B3 and V B4 from left to right. It is evident that a visual-based tree is different

from a DOM tree since the existing blocks in a web document are grouped visually in the

visual-based tree. Since the blocks in one group are almost similar in the vision-based draft,

the vision-based tree is described as “semantic structure” in some literature (24).

On the other hand, it is required to identify the nodes including the main content in

vision-based tree for the extraction of the main content. Unfortunately, the VIPS algorithm

is unable to characterize the nodes as content or non-content and thus cannot label them in

terms of content or non-content nature. If a mechanism is discovered for labeling the nodes

of vision-based tree to content and non-content, the VIPS will be able to extract the main

content with a high degree of accuracy. Nevertheless, such a labeling mechanism has not yet

been found. Finally, the VIPS is a resource intensive algorithm, since it sometimes needs to

refer to external style sheet files in order to locate the block extracted from a DOM tree in

the proper place in the vision-based tree. This may reduce the accuracy of the algorithm.

3.2.6 Content-seeker [2009, Hybrid]

Content-Seeker is an approach proposed by Samuel Louvan (75) which is a combination of

heuristic rules and machine learning techniques and provides the capability for main content

extraction from web pages, weblogs and forum pages. The first part of this algorithm, segment

and content classification, aims to break down the structure of a web document into smaller

segments with certain granularity. For this purpose, a DOM tree corresponding to the HTML

file and supervised machine learning methods (SMLM) have been utilized. The term “segment

with good granularity” is used to address a segment which represents a uniform semantic

unit . It has been initially tried in the labeled training data to categorize and label the

segments into two groups, namely good granularity and bad granularity. Afterwards, the

training data are given to each of the following four classifiers used in this contribution in

order to train the classifier:

• Decision Tree(J48)

• Random Forest

• Sequential Minimal Optimization

• Multilayer Perceptron

Now the classifiers can be used on the evaluation data to categorize the segments of each

file into good granularity and bad granularity segments. DOM nodes corresponding to good

granularity segments can also be specified as the output and be delivered as the input for the

next step, i.e. content classification. The content classification algorithm classifies the seg-

ment as either main content or noisy content considering the features of a segment including

number of images, number of frames, number of links, position in DOM tree, its length and

width, number of stopwords, etc. The purpose of the second part of this algorithm called

“additional heuristic approaches” is to identify and remove the noisy data (such as embedded

advertisement, link to related articles, comments from the web page visitors) if it is embed-

ded in the body of the DOM nodes which are delivered to this step from the previous step.
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Content-Seeker employs two heuristic techniques to identify the main content and delete the

noisy content. The first method is more appropriate for web pages and weblogs launches

to identify and specify the Largest Block of Text String in DOM tree for reaching its main

objective, i.e. main content extraction. On the other hand, the second method, which is

usually applied for web forums, performs this task by identification of Table Pattern used in

forum posts there.

3.2.7 Content Extraction via Text Density (CETD)
[2011, Heuristic]

Sun et al. (112) (2011) developed a highly effective algorithm for main content extraction

from web pages which was also able to preserve its original structure information. They

declared that in a typical web page, the parts regarded as noise are usually highly formatted

with significantly small text size. On the other hand, the parts including main content have

more text, are simply formatted, and the number of hyperlinks is very small in comparison

with the noise part. The following steps are followed in CETD after making the DOM

tree corresponding to HTML web document in order to distinguish main content from noisy

information and to express it as output:

• Calculation of text density based on Formula 3.1 for each tag in the DOM tree: Ci

denotes the number of characters in subtree associated with tag i, and Ti represents the

total number of tags in subtree associated with tag i. TD will get a greater value for

the node containing a long and simply formatted text, rather than a highly formatted

one with little text. Algorithm 4 suggests an approach to calculate TD for all nodes in

a DOM tree. Figure 3.2 depicts a histogram where the value of text density is provided

for every node in the DOM tree by vertical lines. Nodes with relatively high text density

can be simply observed in this histogram.

TDi =
Ci

Ti
(3.1)

Algorithm 4: Pseudocode of ComputeDensity(N) (49)

Input: N : DOM node
Output: TD: the value of Text Density
begin

foreach child node C in N do
ComputeDensity(C) ;

N.CharNumber ← CountChar(N);
N.TagNumber ← CountTag(N);
if N.TagNumber == 0 then

N.TagNumber ← 1 ;
N.Density ← N.CharNumber/N.TagNumber;
return N.Density
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Figure 3.2: Text Density for each node from N.Y. Times web Page (112)

• Calculation of composite text density: It is probable that the node which contains a

great number of hyperlinks and a little text cannot be accounted for an important node,

thus it can be regarded as noise. On the other hand, the node with a small number of

hyperlinks but too many texts will definitely be accounted as an important node and

can be taken as content. CETD uses Formula 3.2 (Composite Text Density) instead

of 3.1 to remove zones with great density of hyperlinks, where LCi, NLCi, LTi, LCb,

and Cb are defined as below:

– LCi : number of all hyperlink characters under i

– NLCi : number of all non-hyperlink characters under i

– LT i : number of all hyperlink tags under i

– LCb : number of all hyperlink characters under the <body> tag

– Cb : number of all characters under the <body> tag

CTDi =
Ci

Ti
log

ln (
Ci

¬LCi
LCi+

LCb
Cb

Ci+e)
(
Ci

LCi

Ti
LT i

) (3.2)

In comparison to Figure 3.2, Figure 3.3 illustrates a histogram which has calculated

the length of vertical lines for each node in the DOM tree through Formula 3.2. Fur-

thermore, it can be observed that most of the vertical line associated with the noisy

information is not seen in this histogram anymore. Thus, it would be rather simple to

identify and extract nodes which include content.

• At the last step of the CETD algorithm, a threshold t is defined and considered to

categorize the nodes in DOM tree to content and noise sections. Basically, any node
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Figure 3.3: Composite Text Density for each node from N.Y. Times Web Page (112)

with a text density greater or equal to the threshold will be selected as content, while

other nodes whose text density are smaller than the threshold will be labeled as noise.

One common problem is finding the best value for the threshold t, since an inappropriate

value for it would produce inaccurate results. Usually, <body> tag’s text labeling is

practically considered as the threshold.

3.2.8 Gaussian Smoothing-based Web Content Extraction (GSWCE) [2011,
Heuristic]

The algorithm proposed by Liu et al. (74) called GSWCE has been inspired to a large extent

from Content Code Blurring (CCB), which was developed by Gottron (48). In other words,

GSWCE has utilized a Gaussian Blurring Filter exactly like CCB in order to identify the

main content in web pages. However, this algorithm has also provided the ability to identify

title and published date. Different steps of GSWCE algorithm can be briefly summarized as

below:

• DOM Nodes List: every node in the DOM tree indicates an HTML element in the

source web page such that the nodes in the DOM tree can be divided into two of the

following categories:

– structure, layout and format node

– text nodes which make up all the content

Through traversing DOM tree in preorder, all existing nodes in the DOM tree can be

placed in one DOM nodes list (DNL), which in fact makes up the first row of the table

labeled DNL in Figure 3.4.
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Figure 3.4: An HTML web Page with its corresponding DOM tree (74)

• Tokens List (TL): Using the first row of the table, tokens in tag nodes and text nodes

were identified and then inserted in second row of the table labeled as TL.

• Gaussian Smoothing: Having observed the tokens in TL, it can be inferred that the tag

tokens are significantly important once surrounded by the text tokens. On the other

hand, the text tokens surrounded by the tag tokens are of little importance. Therefore,

the main goal here was to calculate the importance of each token according to the

importance of its surroundings. In order to calculate the effect of neighbors on each

node, Gaussian Smoothing Algorithm (GSA) was applied on text-tag Ratio Sequence

(RS) to find Smoothed Ratio Sequence for each node. Figure 3.4 lists the effect of

applying GSA, after a number of iterations, on text-tag Ratio Sequence. The third

row containes initial values of the RS. It can be seen that the tag tokens incorporate

zero values, while text tokens show unit values. Meanwhile, the fourth row provides

Smoothed Ratio Sequence for the values in Row 3.

• Content Base Node (CBN): at this step of GSWCE algorithm, a ratio threshold is

considered to categorize tokens into content and noise groups. Tokens with values

greater than ratio threshold will be considered as Potential Content Token (PCT) at

the fifth row of Figure 3.4. The following will adopt to find the longest continuous

sub-sequence of PCTs from token list. Finally, the node which contains higher number

of PCT will be chosen as CBN.
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• Primary (Main) Content Extraction (PCE): The least common ancestor of the PC node

on DOM tree is sought to address the PC. As declared by the authors of this paper,

PC for most web pages is included in <p>, <tr>, <td> or <div> tags. These kinds of

tags have been defined as Tags Containing Primary Content (TCPC). Therefore, the

nearest TCPC parent of CBN is the same common ancestor being searched with the

content inside this TCPC node being in fact the same PC.

3.3 Methods Based on HTML Source Code Elements

As mentioned previously in Section 3.1.4, some main content extraction algorithms use HTML

source code elements or in simple words HTML tags in order to extract the main content from

web pages. Algorithms which will be discussed in Sections 3.3.1, 3.3.2 and 3.3.3 are of this

type of algorithms. Most of these algorithms need to know whether the characters (tokens)

in an HTML file are components of content characters (tokens) or non-content characters

(tokens). For this purpose, a parser is usually used to recognize which type of component

they are.

3.3.1 Character and Token-Based

Algorithms discussed in this section are categorized under character and token-based class.

This is because the above mentioned algorithms take an HTML file as a sequence of characters

(tokens) which certainly contain the main content in a part of this sequence. Having executed

the algorithms of this section, a sequence of characters (tokens) is labeled as the main content

and is provided to the user.

3.3.1.1 Body Text Extraction (BTE) [2001, Heuristic]

The work of Finn et al. (41) described the process of extracting and classifying information

from HTML documents for the purpose of integrating it into digital libraries. They proposed

the “Body Text Extraction” (BTE) approach, which identifies a single continuous fragment

of the HTML document containing the MC. The BTE algorithm is based on the assumption

that the main content in a web document is a single continuous block of text which also

contains a few number of HTML tags (even perhaps no HTML tag may be seen in this

text). In order to find the corresponding block, first all tokens present in the web document

are identified. It is clear that the obtained tokens belong to HTML tags or they are words

placed in a text segment. Therefore, the web document can be considered as a sequence of

N token numbers represented by B0, B1, B2, . . . , BN−1. Now, taking into account the policy

of the BTE algorithm, the main objective would be to find a zone in this sequence of tokens,

i.e. between indexes i to j, where there is a maximum value for the number of text tokens.

Meanwhile, the number of tag tokens before index i and after index j must be greater than

the number of tag tokens in that range. Finding such a zone just needs the function 3.3 to

reach its maximum value.

Ti,j =

i−1∑
n=0

Bn +

j∑
n=i

(1−Bn) +

N−1∑
n=j+1

(Bn) (3.3)
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Tag tokens and word tokens have been given the values one and zero in this function,

respectively. An interesting interpretation of cumulative distribution of tag tokens in a web

document has been depicted in Figure 3.5. It can be observed that a continuous plateau is

indicative of the main content in a web document.

Figure 3.5: Cumulative distribution of tag tokens in a web document. The continuous plateau
is indicative of the main content in a web document (41)

At this point, it would be important to note the main drawbacks of the BTE algorithm.

The BTE algorithm just looks for a continuous block of tokens. Therefore, if the main content

is composed of several parts, the BTE will provide us with that part of the main content

since the Formula 3.3 has reported a much greater value in this range. The last thing to

remember is that the BTE technique has been implemented on the basis of Algorithm 5 in

the Python programming language and its module is accessible to everyone (1).

3.3.1.2 Document Slope Curves (DSC) [2002, Heuristic]

Pinto et al. (96) invented the Document Slope Curve (DSC), which is a heuristic method, in

2002 which can be claimed as a developed method for BTE. As mentioned previously con-

cerning the BTE algorithm, it has a limitation, which is the extraction of only one continuous

block from a web document. This drawback has been changed to an advantage in the DSC

algorithm, since the latter is able to identify and extract more than one part from the main

content once it is composed of more than one part.

The DSC method starts to characterize tokens of the web document while some of these

tokens are tag tokens and the others are text tokens. Therefore, instead of using BTE

formula and maximizing it, the function appeared in Formula 3.4 should just be calculated.

This function explains the cumulative tag token distribution (Figure 3.6).
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Algorithm 5: Finn’s BTE algorithm (49)

Data: B: Token vector of an HTML document of length N , where Bi corresponds to the i-th
token and has a value of 1 for tag tokens and 0 for word tokens.

Result: Index tuple tindex = (i, j) with i ≤ j denoting the token range with the main content
begin

tindex ← (0, N − 1);
Tmax ← 0;
// count tag tokens till index i

lookupForward[0] ← B0;
for i = 1 . . . N − 1 do

lookupForward[i] ← lookupForward[i-1] +Bi;

// count tag tokens after index j

lookupBackward[N-1] ← BN−1;
for j = N − 2 . . . 0 do

lookupBackward[j] ← lookupBackward[j+1] +Bj ;

// Search optimum

for i = 0 . . . N − 1 do
for j = i . . . N − 1 do

Ti,j ← lookupForward[i] + lookupBackward[j];
for k = i . . . j do

// Add word tokens

Ti,j ← Ti,j + (1−Bk);

if Ti,j > Tmax then
tindex ← (i, j);
Tmax ← Ti,j ;

return tindex

d(i) =

i∑
n=0

Bn, for 0 ≤ i ≤ N − 1 (3.4)

Now, because the main content contains many text tokens and just a few tag tokens, the

parts having a low slope have been deemed as the main content in Figure 3.6. It can be

observed that the main content is composed of five different parts. Noteworthy here is that

if the web document does not include the main content, then Figure 3.6 will be transformed

to Figure 3.7. Figure 3.7 shows that the number of text tokens in the web document has not

been significant with the most tokens being tag tokens in nature.

The following question may arise: What is the exact definition of the low slope? How

can the five parts represented in Figure 3.6 be extracted as the main content? How can all

constituents of a main content be identified? Pinto has utilized a windowing technique to

access his goals. Thus, it is necessary to determine the size of a window based on the web

document. In other words, the size of a window is dependent on the number of tokens of the

web document. For documents with up to 200 tokens, the size of a window is assumed to be

8 tokens, while those documents having 5000 tokens or even more, the size of the window is
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Figure 3.6: Cumulative distribution of tag tokens in a web document. The five continuous
plateaus depict the main content in a web document

Figure 3.7: An HTML web document without any main content area

considered much larger. However, the maximum size can equal 50 tokens. At this point, take

the total average slope of the document as Av. Now, the window defined with a length of L -

based on the number of tokens in the document - is moved along on the sloped curve related

to the web document but with steps equal to half the length of the window, that is L/2.

Now, if the average slope of part of the document located inside the window is smaller than

half of Av, then this part will be taken as a low slope part. Three continuous parts with low

slope characteristics can act as the beginning of a low slope region. The region ends when it
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Algorithm 6: Document Slope Curve (49)

Data: B: Token vector of an HTML document of length N , where Bi corresponds to the i-th
token and has a value of 1 for tag tokens and 0 for word tokens.

Result: L: Vector of length N denoting whether token i is in a low slope region. Li is 1 for
token in low slope regions, 0 otherwise

begin
// Create document slope curve

d[0]← B0;
for i = 1 . . . N − 1 do

d[i]← d[i− 1] +Bi;

// Determine window size

w ←= 8;
if N > 5000 then

w ←= 50;
else if N ≥ 200 then

w ←= d0.00875 ·N + 6.25e;
// Determine low slope regions

stotal ← d[N − 1]/N ;
// History for last two windows

h← [0, 0];
// Flag if currently in low slope region

lr ← 0;
for i = 0 . . . N − 1− w, stepwidth w/2 do

si ← (d[i+ w − 1]− d[i])/w;
// Determine if low slope section

ls← 0;
if si < 0.5 · stotal then

ls← 1;

// Check history and update low slope region status

if lr = 0 then
if (ls = 1) ∧ (h[0] = 1) ∧ (h[1] = 1) then

lr ← 1;

else
if (ls = 0) ∧ (h[0] = 0) ∧ (h[1] = 0) then

lr ← 0;

for j = i . . . i+ w − 1 do
L[j]← lr;

// Update history

h← [ls, h[0]];

return L

reaches three continuous parts having an average slope greater than Av. This region is the

same main content under study. Algorithm 6 provides the working method of DSC (49).
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Figure 3.8: The result of repetitious application of the Gaussian distribution function on CCV
elements (48)

3.3.1.3 Content Code Blurring (CCB) [2008, Heuristic]

Gottron introduced two algorithms called Content Code Blurring (CCB) and Adapted Con-

tent Code Blurring (ACCB) in 2008 (48). The main idea and objective of these two algorithms

is to identify and address the regions with high density of content and low density of code

in a web document. All HTML tags in the web document are taken as codes by CCB and

ACCB, whereas all other things except HTML tags are regarded as content.

These two algorithms tokenize an HTML file and save any character of this file in a one

dimensional vector called Content Code Vector (CCV). However, another version of them

employs the tokens themselves instead of the characters. Now, if the character saved in an

element (of CCV) is taken from an HTML tag, the element under study will be assigned zero;

if not, then one. Next, the weighted-average is calculated, taking into account the adjacent

elements - r elements on the right and r elements on the left - for each element existing in

CCV, i.e. the i-th element. The new value is named Content Code Ratio (CCR). It is evident

that the amount of CCR for the i-th element will be one if this element is equal to one and

r elements to the right and left of it are both assigned one. Moreover, if the i-th element is

assigned zero and r elements on both the right and left sides of it are also zero, the amount of

CCR for the i-th element will be zero. The third case, which is even more important, would

be that the i-th element and r elements on its right and left sides take a combination of 0

and 1. In this case, the amount of CCR for the i− th element is in the range of 0-1.

Two algorithms of CCB and ACCB have utilized Gaussian distribution function for cal-

culating the CCR. Therefore, the amount of weighted-average for CCV elements after initial-

ization of the CCV elements would be obtained by the Gaussian distribution function. This

process is known as blurring. It is obvious that blurring must be repeated on CCV elements

until no change is seen in CCV elements. In other words, the CCV elements should reach

their stable values. Figure 3.8 depicts the result of repetitious application of the Gaussian

distribution function on CCV elements. The upper section shows the initialization of CCV,

while the lower section gives the result of repetitious implementation of blurring on CCV

elements. After termination of the blurring, those elements with amounts greater than the

user defined threshold will be taken as the main content and extracted. As mentioned earlier,

these two algorithms are dependent on parameter r. If this parameter has greater than usual
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Algorithm 7: Content Code Blurring (CCB) (49)

Input: D: HTML document with resolved entities, where D[i] is the i-th character, w: weight
vector of length 2δ + 1, SC: stop criterion, t: threshold, r: replacement character

Output: D′ HTML document, where all characters in additional contents are masked by r
begin

// Creating the content code vector

k ← 1;
for i = 1 . . . |D| do

if ¬( isComment (D[i]) ∨ isWhiteSpace (D[i]) ∨ isScript (D[i]) ∨ isStyle (D[i]))
then

if inTag (D[i]) then
c[k]← 0;

else
c[k]← 1;

k ← k + 1;

// Iterative blurring

repeat
for i = 1 . . . |c| do

ctmp[i]← 0;
for j = −δ . . .+ δ do

ctmp[i]← ctmp[i] + c[i+ j] · w[j];

c← ctmp;

until stop criterion SC is met ;
// Extraction process

k ← 1;
for i = 1 . . . |D| do

if ¬( isComment (D[i]) ∨ isWhiteSpace (D[i]) ∨ isScript (D[i]) ∨ isStyle (D[i]))
then

if inTag (D[i]) then
D′[i]← D[i];

else
if c[k] > t then

D′[i]← D[i];
else

D′[i]← r;

k ← k + 1;

else
D′[i]← D[i];

return D′

values, then the amount of recall will be increased whereas the precision will have smaller

values. On the other hand, if the parameter r is initially smaller than usual, the amount of

precision will increase but recall will decrease. In ACCB, all anchor-tags are ignored during

the creation of the CCV. Two parameters influence the behaviour of these two algorithms;

therefore, tuning these two parameters is important in order to produce quality results (50).

Algorithm 7 provides the working method of CCB (49).
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3.3.1.4 Naive Bayes (NB) Scoring [2009, Hybrid]

Pasternack and Roth (95) introduced a hybrid approach in 2009 which was a combination

of heuristic and supervised learning methods, calling it Maximum Subsequence Segmenta-

tion or Maximum Substring Segmentation (MSS). They indeed transformed the problem of

finding the main content in HTML documents into the problem of Maximum Subsequence

Optimization (MSO). MSO assumes that there is a sequence of numbers and the main ob-

jective is to find a contiguous subsequence of numbers among this sequence of numbers in

which the sum of the elements for this subsequence reaches its maximum. As an example

consider the input sequence (4,−5, 3,−5, 1, 2,−2, 2,−2, 1, 5). The maximum scoring subse-

quence is (1, 2,−2, 2,−2, 1, 5) with a total score of 7. Formula 3.5 can be used to identify this

subsequence, wherein a and b are defined as two indexes having values between 1 and n.

(a,b) = argmax
(x,y)

y∑
i=x

si (3.5)

Ruzzo et al. (104) published their article entitled “A Linear Time Algorithm for Finding

All Maximal Scoring Subsequence” in 1999 in which an algorithm has been proposed that

finds non-overlapping maximal subsequence in a linear time. The time complexity of this

algorithm for recovering an ordered list includes K highest-valued subsequences from one

sequence of n elements equal to O(n∗ log(K)). The Algorithm 8 provides a simple and single

pass algorithm for finding the maximum subsequence in a linear time (62). Furthermore,

Figure 3.9 illustrates an overall flowchart of NB Scoring (30).

Algorithm 8: Finding the Maximum Subsequence in a Linear Time

Input: S : S = (s1, s2, ..., sn), si ∈ R
Output: maxSS : maxSS = (si, si+1, ..., sj), 1 ≤ i ≤ j ≤ n
begin

start← 1 ;
sum← 0 ;
maxSS ← (−∞) ;
for i = 1 to n do

sum← sum+ si ;
if sum > value(maxSS) then

maxSS ← (sstart, sstart+1, ..., si) ;

if sum < 0 then
start← i+ 1 ;
sum← 0 ;

return maxSS
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Within MSS, each web document is tokenized and displayed based on the following steps:

• removing everything between <script> and <style> tags, since scripts never contain

main content

• break up the HTML document into a list of tags, words and numbers

• apply porter stemming (98) to all words

• generalize numeric tokens, all numbers stemmed to “1”

In order to apply MSO on the obtained tokens, MSS uses the local token-level classifier

to produce a score for each token of the web document. A negative score implies that the

observed token does not tend to be considered as a content token, while a positive token

tends to be taken as a content token. Since the MSS uses a global optimization overall score,

there is no need to have highly accurate local classifiers. But in order to calculate the score

of each token, the Naive Bayes method with two types of features has been adopted for each

labeled token in the web document:

• trigram of token: the token itself and its 2 successors

• parent tag of token in the DOM tree

Having calculated the score p by the NB classifier, the value obtained by f(p)=p-0.5 is

transformed into a new value to yield a sequence of scores located in the range of [-0.5,

0.5]. Then, the application of MSO on the sequence of scores produced by the local token-

level classifier would lead to segments having the maximum subsequence. The indexes of this

subsequence are indicative of the starting point and ending point of a set of tokens which form

the main content. It is important to note here that both phases of learning and prediction in

the NB Scoring have a linear time and the obtained results are acceptable. In other words,

this semi-supervised algorithm yields an overall F1-measure of 97.94%. One of the problems

of semi-supervised algorithms is that they would need to tune their tunable parameters upon

application of the algorithm on a new domain. NB Scoring is also not excluded from this

rule.

Figure 3.9: The Flowchart of NB Scoring (30)
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3.3.2 Block-based

Block-based main content extraction algorithms, divide an HTML file into a number of blocks,

and then look for those blocks which contain the main content. Therefore, the output of these

algorithms is comprised of some blocks which probably contain the main content.

3.3.2.1 Boilerplate Detection using Shallow Text Features
[2010, Machine Learning]

Kohlschütter et al. (69) introduced “Boilerplate Detection using Shallow Text Features” in

2010. The main idea of the proposed algorithm is to classify the individual text elements,

at text block level, into the main content and boilerplate text in an HTML web document

based on the analyzing the following structural and shallow text features:

• Analyzing the most popular set of shallow text features, i.e. average word length,

average sentence length, and the absolute number of words.

• Examining a few heuristic features such as: 1) the absolute number of words that either

start with an uppercase letter or are completely upper-case, 2 )the ratio of two different

kinds of words, i.e. words starting with an uppercase letter or words comprising of

completely upper-case, compared to the total number of words, 3) the ratio of full

stops to the overall number of words, the number of date/time-related tokens and the

number of vertical bars “|”.

• Examining the structural features such as: the presence of a particular headline tag

(<H1>, <H2>, <H3>, <H4>, <H5>, <H6>), a paragraph tag <P>, a division tag <DIV>.

• Computing the link density: the number of tokens within an <a> tag divided by the

total number of tokens in the block; for this computation, the <a> tag does not regard

as a block separator.

• Identifying the local context, i.e. the absolute and relative position of a text block in

an HTML document.

Kohlschütter concluded that a combination of two features such as “number of words”

and “link density” leads to a simple classification model that achieves competitive accuracy.

The overall approach which is used in this algorithm is simple and can be explained as

below.

• First of all, collected web pages are segmented into atomic text blocks. Atomic text

blocks are those blocks which are separated by one or more HTML tags, except for

<a> tags. Then, all atomic text blocks are annotated with structural and shallow text

features and on this basis classified into main content or boilerplate text using decision

trees method and linear support vector machines.

• The evaluation is performed on two datasets, a news collection for training and testing

and the CleanEval collection for validation. The first dataset consists of 621 manually

assessed news articles from 408 different web sites. The second dataset consists of 798

raw HTML pages randomly sampled from Web search engines.
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3.3.2.2 Content Extraction via Sequence Labeling
[2007, Machine Learning]

Gibson et al. (43) used “Statistical Sequence Labeling Models” (SSLM) to identify the main

content in a news web page. To the best of our knowledge, SSLM has numerous applications

in natural language processing (NLP) for performing various tasks including part-of-speech

tagging and noun-phrase chunking. Gibson deems main content identification from a web

page as a sequence labeling problem, in which the sequence elements are blocks in an HTML

file. These blocks are indeed a set of tokens placed in HTML tags (but not in all tags). Then,

he used three of the following sequence labeling models to make main content identification

possible and it should be noted that the CRF method provides much better results than

other methods.

• Conditional Random Field (CRF) (72)

• Maximum Entropy Classifier (MaxEnt)

• Maximum-Entropy Markov Model (MEHH)

By using each of above methods, the existing blocks in a web document are then categorized

to content or non-content.

3.3.3 Line-based

In this section we explain line-based algorithms which consider each HTML file as a continuous

sequence of lines. Taking into account the applied logic, they introduce those lines of the file

which are expected to contain the main content. Then, the main content is extracted and

provided to the user from the selected lines.

3.3.3.1 Content Extraction via Tag Ratio (CETR)
[2008, Heuristic]

Weninger et al. (124) introduced content extraction via Text-to-Tag Ratios (TTR), called

CETR, which is partially based on previous work in web content extraction (123). This

method extracts the main content from web pages by using the HTML document’s Text-

to-Tag ratio. Their method computes the ratio of the number of non-tag characters to the

number of tags characters per line and stores these values in a one-dimensional array named T

and, afterwards, produces a two-dimensional histogram based on the results (see Figure 3.10).

This histogram demonstrated that the lines 220 to 260 in the HTML file are those with rather

high Text-to-Tag Ratios and thus could be considered as the main content.

To elucidate this issue, a brief snippet from the news web site of Hutchinson has been

provided in Example 3.11 with the method of calculating TR.

The core of the CETR algorithm is described in Algorithm 9. Prior to calculation of TRs,

all tags related to script, remark and style are removed from the body of the HTML file since

these codes are accounted for non-tag text and this can make the CETR algorithm unable

to provide the user with the main content.
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Figure 3.10: Text-to-tag ratio for a web page from the Hutchinson News (124)

Figure 3.11: A brief snippet of a webpage news article

Finally, by using the k-means clustering method originally proposed by MacQueen (77),

the resulting histogram is clustered into the content and the non-content area. Since CETR

is an heuristic method and benefits from the K-means technique to cluster both content and

non-content areas, it no longer requires training. It is interesting to note that CETR is

one of the best MCE methods and its performance can be claimed as good. Another point

which must be pointed out here is that CETR uses a Gaussian smoothing function before

clustering the lines of an HTML document to content or non-content. This function can

prevent removing short paragraph lines which might be a part of the main content, such as

the page title.

The overall flowchart of CETR is shown in Figure 3.12.

3.3.3.2 Density [2009, Heuristic]

Moreno et al. (91) introduced a language independent algorithm called Density (tested on

English, Italian and German languages) for the main content extraction. This approach has
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Algorithm 9: CETR Pseudocode (123)

Input: D: Document
Output: T : Tag ratios for all lines
begin

D ← removeScriptTags(D) ;
D ← removeRemarkTags(D) ;
D ← removeStyleTags(D) ;
for i = 1 to |D| do

x← nonTagChars(Di) ;
y ← tags(Di) ;
if y = 0 then

y ← 1 ;

Ti ← x/y ;

Figure 3.12: The Flowchart of CETR (30)

two phases. In the first step, texts are separated from the HTML tags by using an HTML

parser (6); afterwards, the extracted texts are saved in an array of strings L. A graphical

representation of the array L is depicted in Figure 3.13 in which the x-axis represents the

position of the array and the y-axis represents the length of the strings at the different

positions.

In the second step, a region in the array L that has the highest density will be determined

as a main content. In addition to finding the highest density area in the array L, two

parameters influence the behaviour of the algorithm. The first parameter, C1, determines

the minimum required length for texts in each element of the array L to be selected and

inserted into the new array of String R, which is considered to keep the high density region

of text. The second parameter, C2, specifies the acceptable distance between lines in R and

the lines which want to be added to R.

3.4 Content Extraction Systems

A number of algorithms which are implemented to extract the main content from web pages

were studied in sections 3.2 and 3.3. Moreover, several frameworks and systems have been

designed and implemented for main content extraction from web pages, two examples of

which are explored here.
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Figure 3.13: Example plot of the document density (91)

3.4.1 Crunch Framework

One of the more prominent solutions for MCE is the Crunch framework of Gupta et al. This

framework applies an HTML parser to construct a DOM tree from an HTML document.

Then, by navigating the DOM tree recursively, rather than using the raw HTML markup,

and utilizing a number of heuristic filtering techniques, the main content of HTML web pages

is extracted.

3.4.2 CombinE System [2008, 2009]

CombinE system was first introduced by Thomas Gottron in 2008 (47). The main purpose

of this system was to combine the content extraction heuristic algorithms with each other

in order to extract the main content from web pages with much more accuracy. He has

implemented an http-proxy server which is able to filter web pages on-the-fly. This system

also has the ability to configure and evaluate various combinations of CE heuristic algorithms

automatically. The CombinE system is indeed an extensible collection of content extraction

filter modules with a standardized interface. These modules are the original building blocks

of filter pipelines. In other words, each filter pipeline is a combination of an arbitrary number

of content extraction filter modules. Figure 3.14 depicts the outline of a CombinE system.

It should be noted that filter modules can be combined with each other in various forms

to build a filter pipeline. Three filter pipelines are considered in CombinE, namely: serial,

parallel and voting. In serial filter pipelines, content extraction algorithms are executed

based on a predefined order and deliver the output of one filter to the next filter. Several

content extraction algorithms are selected in parallel filter pipelines, and then each of them is

executed on a copy of the original version of the web page. Afterwards, the obtained results

are verified or intersected with each other to finally give the main content. In the third form,
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Figure 3.14: Outline of the CombinE system

i.e. voting, which is a special case of parallel filter pipeline, a feature has been devised for

the content extraction algorithm to vote those parts of web documents which can potentially

contain main content.

When a content fragment has received sufficient votes from the filters, it can be introduced

as the main content. Various filters were built and executed based on the predefined data sets

in the second version of the CombinE system (122) to evaluate different filters. However, it

should be pointed that the heuristic algorithms which were used by CombinE system were:

DSC, BTE, ACCB and LQF.

3.5 Comparable Platform for Boilerplate Removal

CleanEval was introduced in 2008 by Baroni et. al (81). The main goal of this project was

to establish representative web data, with a gold standard, for use as a corpus for linguistic

and language technology research and development. It is obvious that if a web corpus with

uncleaned data is fed to layers of linguistic technology, then the most significant bigrams will

often be “Click here” or “Further information” and consequently the language model will

distorted considerably. So, the organizers of the CleanEval decided to invite scholars to take

part in an open competitive evaluation platform (to identify good cleaning algorithms and

to foster sharing of ideas and programs) on the topic of cleaning arbitrary web pages.

The evaluated algorithms mainly apply machine learning techniques for the classification.

So, similar to all other machine learning algorithms, in CleanEval 57 and 60 web pages in

English and Chinese languages have been collected and annotated as development set to

be employed in learning phase of machine learning algorithms. In addition, 684 and 653

web pages in English and Chinese languages have been prepared as evaluation data that

can be used for measuring the accuracy of the contributed content extraction algorithms.

NCleaner (35) and Victor (111) are two machine learning techniques which have been con-

tributed to this competitive evaluation platform.

In this project, all files in the development set were annotated by two annotators. The

annotators were instructed to remove all boilerplate text and then add a basic encoding of
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the structure of the page using a minimal set of symbols(e.g. p, h, l) to make the beginning

of header, paragraphs and list elements.

57



3. RELATED WORKS

58



Chapter 4

Algorithms: R2L, DANA, DANAg,
and AdDANAg

This chapter is the main part of this thesis and we will explain all four invented main content

extraction methods, namely R2L, DANA, DANAg, and AdDANAg. Based on the obser-

vations regarding character encoding in Section 2.4, we develop our R2L (89) algorithm in

Section 4.3. With its extensions DANA (85) and DANAg (84) in Sections 4.4 and 4.5, we

further enhance and generalize the original idea towards a better performance and a language-

independent version. Finally at the end of this chapter, we introduce AdDANAg which is

an adaptive version of DANAg and it is able to extract the main content of hyperlink rich

web documents. Altogether, in this chapter after introducing data sets in Section 4.1 and

evaluation methodology in Section 4.2, we will make three main contributions:

• We develop the idea of using character encoding for developing R2L, a new approach

for main content extraction.

• We extend the R2L approach to the algorithms DANA, DANAg, and AdDANAg to

further improve the extraction accuracy and develop a language independent version of

the method.

• We analyse our approaches under the aspects of efficiency and effectiveness. We com-

pare them to eleven established MCE algorithms (41, 48, 55, 80, 91, 96) and show that

we extend the state-of-the-art in terms of both efficiency and effectiveness.

In Chapter 3, we categorized all main content extraction algorithms into two categories as

follows:

• MCE algorithms based on the DOM tree structure

• MCE algorithms based on the HTML source code elements

Our presented algorithms are categorized in the second group because we employ only HTML

tags to implement our methods. In addition, our approaches can be classified into line-based

main content extraction methods which have been described in Section 3.3.3.
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Table 4.1: Evaluation corpus of 2,166 web pages

web site URL Size Languages

BBC http://www.bbc.co.uk/persian/ 598 Farsi

Hamshahri http://hamshahrionline.ir/ 375 Farsi

Jame Jam http://www.jamejamonline.ir/ 136 Farsi

Al Ahram http://www.ahram.org/ 188 Arabic

Reuters http://ara.reuters.com/ 116 Arabic

Embassy of http://www.teheran.diplo.de/ 31 Farsi
Germany, Iran Vertretung/teheran/fa/Startseite.html

BBC http://www.bbc.co.uk/urdu/ 234 Urdu

BBC http://www.bbc.co.uk/pashto/ 203 Pashto

BBC http://www.bbc.co.uk/arabic/ 252 Arabic

Wiki http://fa.wikipedia.org/ 33 Farsi

Table 4.2: Evaluation corpus of 9,101 web pages

web site URL Size Languages

BBC http://www.bbc.co.uk/ 1,000 English

Economist http://www.economist.com/ 250 English

Golem http://golem.de/ 1,000 German

Heise http://www.heise.de/ 1,000 German

Manual several 65 German, English

Republica http://wwwrepublica.it/ 1,000 Italian

Slashdot http://slashdot.org/ 364 English

Spiegel http://www.spiegel.de/ 1,000 German

Telepolis http://www.telepolis.de/ 1,000 German

Wiki http://fa.wikipedia.org/ 1,000 English

Yahoo http://news.yahoo.com/ 1,000 English

Zdf http://www.heute.de/ 422 German

4.1 Data sets

For the evaluation of our algorithms proposed in this chapter, we use two different corpora.

The first corpus contains 2,166 web documents in Arabic, Farsi, Pashto, and Urdu (see

Table 4.1). This data set has been proposed in (89) and has been collected for the evaluation

of main content extraction algorithms on Right-to-Left language web pages. The second

corpus contains 9,101 web pages from different web sites (see Table 4.2). This data set has

been introduced in (48) and has been established for evaluation of main content extraction

approaches on Western language documents. To evaluate R2L and DANA algorithms, we

use only the first corpus. On the other hand, for evaluation of DANAg and AdDANAg

approaches both data sets will be used.
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4.2 Evaluation Methodology

As explained in detail in Section 2.3.2, in order to calculate the accuracy of any main content

extraction method, it is necessary to provide a manually crafted gold standard for the main

content of all HTML files. Both corpora provide such a gold standard. For the purpose of

evaluation, the output of a main content extraction algorithm is compared with the gold

standard of the corresponding HTML document. For comparing the gold standard file with

the produced cleaned file, it is essential to compute an overlap between the two of them. The

establish method, introduced in (46) and used throughout several papers on main content

extraction (48, 50, 91), is to use the Longest Common Subsequence (LCS) (62) to find this

overlap between the gold standard and the cleaned file. Now by counting the number of tokens

of gold standard and cleaned files, g and m respectively, and the number k of tokens returned

by the LCS function, we can evaluate the accuracy of the main content extraction algorithm

by applying the classical information retrieval performance measures – Recall, Precision, and

F1-measure (46), as defined again here in formula 4.1:

r =
length(k)

length(g)
, p =

length(k)

length(m)
, F1 = 2 ∗ p ∗ r

p + r
(4.1)

4.3 Algorithm R2L

In the early days of the World Wide web, the content of most of the web pages was written in

the English language. By now, and especially in the last decade, a great deal of information is

also being published in other languages, for example in Spanish, German, French, etc. Except

for the non-English languages mentioned here, there are several other languages using non-

ASCII codes for their characters (Figure 4.1 gives an example of web pages with a non-ASCII

character set in which we have also highlighted the main content). The Unicode character

set (UCS), which was introduced after ASCII and ISO-8859*, reserves an exact interval for

each language. Some of these intervals have no common character with the English character

set.

The R2L (89) approach presented in this chapter exploits this fact to realize an MCE

algorithm for the Arabic, Farsi, Pashto, and Urdu languages. By working on the binary

character encoding directly, we achieve an improvement in time performance. Moreover, our

approach also outperforms all other MCE algorithms in extraction performance, i.e. detects

the main content more accurately and reliably. This provided the motivation for the initial

version, R2L, of our algorithms presented in this chapter.

Figure 4.2 shows our R2L system architecture. A user may submit an HTML document to

the R2L system as the initial input. The results returned by R2L are text files including main

content of corresponding HTML files. The process underlying R2L system can be subdivided

into a preprocessing step and four main phases. The individual steps in this process work as

follows.
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Figure 4.1: A web page with an outlined main content (dotted lines are drawn manually)

4.3.1 Preprocessing step

In the preprocessing step, all JavaScript and CSS codes and comments are removed from the

HTML file(see Figure 4.2). There are two reasons for this: (a) they do not directly contribute

to the main text content and (b) they do not necessarily affect the content of the HTML

document at the same position where they are located in the source code. Particularly this

latter incoherence between presentation and technical realisation in the source code could

introduce inconsistencies in the downstream analysis1. In addition in this step, we normalize

line length and, thereby, render the approach independent from the actual line format of the

source code.

4.3.2 First Phase: Character Set Separation

In the following, we define the two sets, S1 and S2, which we will use throughout this section:

S1 = {All characters belonging to UCS R2L languages}
S2 = {All first 128 characters of UCS}

We know that the English characters, which are used in HTML tags, have values less

than 128 and therefore can be classified to S2. All characters of R2L languages use two bytes

1This effect has already been observed in related work (48).
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with a value greater than 127, and therefore they are classified to S1. This simple rule helps

us to efficiently separate R2L language characters from the first 128 characters of UCS.

In this first phase, the algorithm reads an HTML file as a stream of bytes and then by

using the above rule, it distinguishes whether the generated byte is a member of S1 or S2.

Now, the characters in each line of the file are separated into two parts: characters that are a

member of S1, called content characters, and the ones that are a member of S2, named code

characters. With regard to this condition, we are able to count the number of characters

belonging to S1 and S2 for each line of an HTML file, which is stored in two one-dimensional

arrays T1 and T2, respectively.

4.3.3 Second Phase: Smoothing

After storing the number of R2L and English characters for each line of the HTML file in the

two arrays T1 and T2, we want to recognize areas in the HTML file in which the density of

R2L and English characters is high and low, respectively.

To illustrate our approach, we depict two diagrams. In Figure 4.3, we draw two groups of

columns above and below the x-axis, with the length equal to the number of R2L and English

characters, as stored in T1 and T2, for each line of the HTML file. For example, suppose that

the i-th line of an HTML file has y1 R2L and y2 English characters. Then, two lines with the

length equal to y1 and y2 are drawn above and below the x-axis. Our hypothesis is that the

main content is typically located above the x-axis. In Figure 4.3, the measurement unit for

the x-axis is the number of lines in the HTML file and the measurement unit for the y-axis,

above and below the x-axis, is the number of R2L and English characters, respectively, of

each line of an HTML file. Here we interpret Figure 4.3 to find the MC of an HTML file.

There are three types of regions:

• Regions that have a low or near zero density of columns above the x-axis while having

a high density of columns below the x-axis. We observed that these regions typically

consist mainly of HTML tags. We outline examples for such areas with A in Figure 4.3.

• Further, we see some regions which have a high density of columns above the x-axis

and low density of columns below the x-axis, one of them marked with B in Figure 4.3.

The main content, typically, will be found areas like this. In other words, some of these

areas comprise the main content.

• There are some regions that have a medium density of columns above and below the

x-axis. These regions form parts of navigation menus, panels, or other related link lists.

Here, normally, the density of the columns below the x-axis is somewhat more than the

density of the columns above the x-axis because in HTML files we need to write many

tags to make menus or extraneous items. One of these areas is outlined in Figure 4.3

and labeled with C.

Now the problem of finding MC in the HTML web pages becomes the problem of finding

regions such as region B in Figure 4.3 comprising the main content. In the next two steps

and in phase three (Section 4.3.4), we apply an elegant and simple method for finding regions

such as B containing the main content in an HTML file:
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Figure 4.3: An example plot shows the density of the main content and extraneous items

• For all lines i we calculate diffi by using Formula 4.2. In this formula, T1i and T2i are

the number of R2L and English characters of line i in an HTML file.

diffi = (T1i-1 − T2i-1) + (T1i − T2i) + (T1i+1 − T2i+1) (4.2)

This produces a smoothed plot as can be seen in Figure 4.4. Here again, if

diffi > 0 we draw a line with length diffi above the x-axis. Otherwise, we draw a

line with length |diffi| below the x-axis. Unlike Figure 4.3, a large part of the menus

and additional news in Figure 4.4 have been hidden.

• Now in Figure 4.4, we identify all regions above the x-axis and, for simplicity, we define

a new set R = {r1, r2, ..., rn} of all such regions. Each element rj denotes only one

individual line or a range of lines covering one region (see Formula 4.3) and n is the

total number of recognized regions above the x-axis. In our example, there are several

regions, one near the y-axis, two regions in the middle of the x-axis, and finally some

small regions in the interval [450, 500] of the x-axis. In addition, we count the number

of characters for each region and also we specify the position of regions in Cartesian

coordinate. The strong hypothesis underlying R2L is that among all regions, the region

with the maximum number of characters definitely belongs to the main content.

rj = [xj , yj ], xj , yj ∈ N, xj ≤ yj (4.3)
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4.3.4 Third Phase: Recognizing the Boundary of the Main Content Area

In this phase, all regions shaping the main content are discovered. Concerning the set

R = {r1, r2, ..., rn} defined at the end of the previous phase, we have two possible outcomes:

(1) we discovered only one region, i.e. n = 1, or (2) we have discovered several regions,

so n > 1. If n = 1, then r1 is the only main content region and this procedure is finished.

Otherwise, if n > 1, we start by finding the region rm ∈ R which contains the highest number

of characters. Again, we define a new empty set T , intended to denote the set of all regions

comprising the main content at the end of this phase, and add rm to this set T . For finding all

other regions of the main content, we use Algorithm 1. In this algorithm, d(ri, rj) returns the

distance between two regions ri and rj (see Formula 4.4) and the parameter gap determines

the maximum allowed distance between two sequential regions of main content.

ri = [xi, yi], xi, yi ∈ N, xi ≤ yi
rj = [xj , yj ], xj , yj ∈ N, xj ≤ yj (4.4)

yi < xj

d(ri, rj) = xj − yi + 1

In Algorithm 1, the first loop discovers all regions on the left side of rm comprising the

main content. For example in the first iteration of while, Algorithm 1 evaluates the distance
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between sequential regions rm and rm−1 and if this distance is less than or equal to gap, then

rm−1 is added to the set T . Otherwise, the while loop is terminated. Therefore, the while

loop will be terminated immediately as soon as the distance between two consecutive regions

becomes greater than gap. In the same way, the second loop distinguishes all regions to the

right side of rm comprising the main content and adds the valid regions to the set T . The

result and output of Algorithm 1 is the set T comprising all regions making up the main

content of the selected web page. It is clear that T is a subset of R.

Algorithm 1 Finding All Regions Comprising MC

1: T = {rm}, R = {r1, r2, ..., rn}, 1 ≤ m ≤ n
2: i = m
3: while ((i > 1) AND (d(ri, ri−1) ≤ gap)) do
4: T = T ∪ {ri−1}
5: i−−;
6: end while
7: i = m
8: while ((i < n) AND (d(ri, ri+1) ≤ gap)) do
9: T = T ∪ {ri+1}

10: i + +;
11: end while
12: return T

Obviously, the parameter gap has an influence on the accuracy of R2L. We used a small

set of test pages to empirically find a well performing default value for gap. For R2L, a value

of gap = 8 has proven to demonstrate good results.

4.3.5 Fourth Phase: Extracting the Main Content from Selected Regions

In this phase, all Right-to-Left characters of the areas recognized in phase three are separated

from all characters belonging to S2 and then are considered as the final output of the R2L

algorithm. Effectively, the output then contains the MC.

4.3.6 Results

Table 4.3 shows the F1 scores of R2L algorithm on the corpus composed of Right-to-Left

language web documents. Column 3 shows F1 scores when considering the parameter gap

set to a default value of 8. We can see that the achieved accuracy of R2L is very high in

general. For many web sites, such as BBC, Hamshahri, and Jame Jam, it achieves nearly a

perfect F1 score very close to 1 and it has a very good F1 score for most other web pages.

Additionally, we investigated the theoretical upper bound for MCE using R2L. Columns

4 and 5 show a theoretical optimal setting for gap, which provides the best result that can

be achieved with R2L. For example, on the Al Ahram data set, the optimal value for the gap

parameter would be 7. In this case, we achieve an F1 score of 0.983, which is a significant

improvement over the baseline of the fixed gap parameter. However, in most cases the

optimum value for gap is not far from 8 and the best theoretical F1 score does not diverge

much from the performance of R2L.
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Table 4.3: The Average F1 Scores of R2L based on Table 4.1

web site Languages F1 with Optimal value F1 with optimal
gap = 8 for gap gap in Col. 4

BBC Farsi 0.991 8 0.991
Hamshahri Farsi 0.991 8 0.991
Jame Jam Farsi 0.977 3 0.987
Al Ahram Arabic 0.929 7 0.983
Reuters Arabic 0.936 4 0.971
Embassy of Farsi 0.954 15 0.971
Germany, Iran
BBC Urdu 0.956 11 0.997
BBC Pashto 0.974 8 0.974
BBC Arabic 0.987 8 0.987
Wiki Farsi 0.283 16 0.385

4.4 Algorithm DANA

Here, we introduce the first extension of R2L, DANA (85) to improve the effectiveness of

R2L. Since the R2L approach determines its output only from the Right-to-Left character

set of the identified main content areas of web pages, it might miss some fractions of the MC.

This happens when there are some English words or characters in the main content areas

of a web page. As the R2L algorithm is incapable of keeping these English words in the

extracted main content, the recall score of R2L algorithm will not be optimal in these cases.

This conceptual drawback is overcome by DANA.

DANA is divided into one preprocessing step and four phases. Empiric evaluation on our

small set of test pages show that for DANA, the best value for the parameter gap is 20, so all

results produced by DANA are based on a value of gap = 20. The preprocessing step as well

as phases one, two, and three are equivalent to the R2L approach. Thus, below we explain

only the differences in phase four.

4.4.1 Extracting the Main Content from Selected Regions Using a Parser

In this phase of DANA, we feed only those HTML lines determined in the third phase of R2L

as an input to an error-tolerant parser (48). Following our hypothesis, the output of the parser

is more accurate than the output of the phase four of the R2L approach, so DANA achieves

overall extraction performance better than R2L. On the downside, applying the parser to

selected fragments of a document causes an overhead in computation, so R2L achieves an

overall better time performance than DANA. Concerning these two facts, we will see that

the trade-off between efficiency against effectiveness is worth the runtime overhead.

4.4.2 Results

Tables 4.4, 4.5, and 4.6 give statistics showing the recall, the precision and the average F1

scores of DANA and 11 other algorithms on 2,166 selected web pages from 10 different web

sites based on a gap parameter setting of 20.
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Table 4.4: Recall of DANA based on the corpus in Table 4.1

A
l

A
h
r
a
m

B
B

C
A

r
a
b
ic

B
B

C
P

a
sh

to

B
B

C
P

e
r
si

a
n

B
B

C
U

r
d
u

E
m

b
a
ss

y

H
a
m

sh
a
h
r
i

J
a
m

e
J
a
m

R
e
u
te

r
s

W
ik

ip
e
d
ia

ACCB-40 0.837 0.911 0.874 0.941 0.939 0.758 0.929 0.802 0.913 0.641
BTE 0.930 0.997 0.945 0.999 0.998 0.980 0.969 0.970 0.999 0.926
DSC 0.877 0.902 0.812 0.947 0.833 0.782 0.933 0.888 0.848 0.687
FE 0.743 0.033 0.099 0.033 0.001 0.009 0.137 0.016 0.147 0.145
KFE 0.901 0.882 0.830 0.807 0.647 0.757 0.643 0.844 0.742 0.597
LQF-25 0.931 0.997 0.951 0.998 0.996 0.974 0.963 0.968 1.0 0.744
LQF-50 0.931 0.997 0.951 0.998 0.996 0.977 0.968 0.968 1.0 0.853
LQF-75 0.931 0.997 0.951 0.998 0.996 0.978 0.968 0.968 1.0 0.890
TCCB-18 0.870 0.921 0.888 0.962 0.982 0.845 0.936 0.888 0.933 0.776
TCCB-25 0.853 0.911 0.883 0.960 0.990 0.840 0.934 0.880 0.931 0.768
Density 0.843 0.183 0.883 0.724 0.932 0.845 0.893 0.859 0.981 0.566

DANA 0.995 0.963 0.938 0.995 1.0 0.930 0.980 0.932 0.974 0.573

In Table 4.6, the bold values show the highest F1 score and the italic numbers represent

the highest F1 score among all algorithms except DANA. In addition, in Table 4.7 we compute

the processing performance in terms of data throughput (MB/s) of DANA and other methods.

By looking to these two tables, the following important points can be noticed:

• As can be seen from six web sites, Al Ahram, BBC Arabic, BBC Persian, BBC Urdu,

Hamshahri, and Reuters, DANA achieves an F1 score higher than 0.95 and especially

on BBC Urdu with an F1 score of exactly 1. No other method shows such a high

effectiveness.

• In Table 4.6, only BTE on Wikipedia web documents achieves an F1 score greater

than DANA. Wikipedia documents have already been observed to be very difficult for

MCE algorithms in other papers (48). By looking inside the Wikipedia HTML file,

we discover that there are big gaps, more than 20, between the regions composing the

main content. Looking at DANA’s recall of 0.5734, it can be seen that it erroneously

discards large parts of the main content. In the previous section, we configured the gap

parameter with a value of 20. If the gap parameter is set to 160 instead of 20, then

DANA achieves a recall of 0.8364, a precision of 0.8974 and an F1 score of 0.8571. In

this case, DANA outperforms all other algorithms. In our outlook at further work, we

will suggest some ideas how to overcome this drawback of DANA to parametrize the

gap value.

• Among all eleven algorithms, only DSC and TCCB achieve F1 scores close to but never

as high as DANA.

• We can see that DANA also shows considerable efficiency of approximately 19.43 MB/S.

Therefore, in comparison with the comparable methods in this chapter – DSC, TCCB-

18 and TCCB-25, which have an extraction performance close to our algorithm – DANA
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Table 4.5: Precison of DANA based on the corpus in Table 4.1
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ACCB-40 0.920 0.760 0.847 0.851 0.958 0.846 0.774 0.890 0.889 0.925
BTE 0.792 0.340 0.782 0.424 0.926 0.696 0.331 0.675 0.804 0.748
DSC 0.871 0.876 0.882 0.957 0.988 0.890 0.958 0.949 0.862 0.856
FE 0.900 0.460 0.667 0.568 0.035 0.204 0.809 0.145 0.800 0.715
KFE 0.573 0.631 0.840 0.701 0.920 0.795 0.719 0.737 0.946 0.681
LQF-25 0.691 0.648 0.760 0.730 0.917 0.773 0.643 0.605 0.774 0.833
LQF-50 0.688 0.645 0.751 0.711 0.917 0.766 0.644 0.588 0.774 0.721
LQF-75 0.671 0.639 0.751 0.698 0.917 0.760 0.629 0.588 0.774 0.671
TCCB-18 0.907 0.753 0.939 0.892 0.997 0.947 0.821 0.981 1.0 0.889
TCCB-25 0.899 0.818 0.939 0.896 0.993 0.946 0.853 0.981 1.0 0.895
Density 0.926 0.349 0.940 0.803 0.997 0.946 0.947 0.985 0.901 0.889

DANA 0.975 0.965 0.936 0.994 1.0 0.953 0.980 0.960 0.971 0.940

Table 4.6: Average F1 Scores of DANA based on the corpus in Table 4.1
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ACCB-40 0.871 0.826 0.859 0.892 0.948 0.784 0.842 0.840 0.900 0.736
BTE 0.853 0.496 0.854 0.589 0.961 0.810 0.480 0.791 0.889 0.817
DSC 0.871 0.885 0.840 0.950 0.896 0.824 0.948 0.914 0.851 0.747
FE 0.809 0.060 0.165 0.063 0.002 0.017 0.225 0.027 0.241 0.225
KFE 0.690 0.717 0.835 0.748 0.750 0.762 0.678 0.783 0.825 0.624
LQF-25 0.788 0.780 0.844 0.841 0.957 0.860 0.765 0.737 0.870 0.773
LQF-50 0.785 0.777 0.837 0.828 0.954 0.856 0.767 0.724 0.870 0.772
LQF-75 0.773 0.773 0.837 0.819 0.954 0.852 0.756 0.724 0.870 0.750
TCCB-18 0.886 0.826 0.912 0.925 0.990 0.887 0.871 0.929 0.959 0.814
TCCB-25 0.874 0.861 0.909 0.927 0.992 0.883 0.888 0.924 0.958 0.814
Density 0.879 0.202 0.908 0.741 0.958 0.882 0.920 0.907 0.934 0.665

DANA 0.984 0.963 0.936 0.994 1.0 0.935 0.978 0.945 0.967 0.674
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Table 4.7: Average processing performance (MB/s)

Method Performance (MB/s)

ACCB-40 0.40
BTE 0.17
DSC 7.76
FE 14.33
KFE 11.76
LQF-25 1.25
LQF-50 1.25
LQF-75 1.25
TCCB-18 17.09
TCCB-25 15.86
Density 7.62

DANA 19.43

has an acceptable efficiency. On Wikipedia, BTE achieves extraction performance su-

perior to DANA, but DANA is about 100 times faster than BTE.

4.5 Algorithm DANAg

The R2L and DANA algorithms are both language-dependent, while the second extension of

R2L, called DANAg (84) (87), is a generalized method which is able to run on web pages

written in any language. The extraction process of DANAg is divided into one preprocessing

step as well as four phases. The preprocessing step and phases two, three, and four are equiva-

lent to the DANA approach. In the following, we will only explain the differences in phase one.

4.5.1 Calculating the Length of Content and Code of Each Line

In the first phase of the algorithm DANAg, our aim is to count and store the number of

characters comprising both the content and the code of the lines of the HTML file into two

one-dimensional arrays T1 and T2, respectively.

To provide two one-dimensional arrays T1 and T2, we first count and store the number

of characters of each line into the one-dimensional array Length. In the second step, we feed

the HTML file to our parser to extract all words representing the content of the HTML file.

By this method, we are able to count and store the number of content characters for each

line in a one-dimensional array T1. Formula 4.5 shows how the number of characters in each

line used in code elements are calculated and stored in array T2.

T2 = Length− T1 (4.5)

Although DANAg generalizes the R2L and DANA to a language-independent approach, it

is expected that incorporating the parser directly in this phase of DANAg causes a significant

overhead in computation and that DANAg runs slower than DANA.
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Table 4.8: Average F1 Scores of DANAg based on the corpus in Table 4.1
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ACCB-40 0.871 0.826 0.859 0.892 0.948 0.784 0.842 0.840 0.900 0.736
BTE 0.853 0.496 0.854 0.589 0.961 0.810 0.480 0.791 0.889 0.817
DSC 0.871 0.885 0.840 0.950 0.896 0.824 0.948 0.914 0.851 0.747
FE 0.809 0.060 0.165 0.063 0.002 0.017 0.225 0.027 0.241 0.225
KFE 0.690 0.717 0.835 0.748 0.750 0.762 0.678 0.783 0.825 0.624
LQF-25 0.788 0.780 0.844 0.841 0.957 0.860 0.765 0.737 0.870 0.773
LQF-50 0.785 0.777 0.837 0.828 0.954 0.856 0.767 0.724 0.870 0.772
LQF-75 0.773 0.773 0.837 0.819 0.954 0.852 0.756 0.724 0.870 0.750
TCCB-18 0.886 0.826 0.912 0.925 0.990 0.887 0.871 0.929 0.959 0.814
TCCB-25 0.874 0.861 0.909 0.927 0.992 0.883 0.888 0.924 0.958 0.814
Density 0.879 0.202 0.908 0.741 0.958 0.882 0.920 0.907 0.934 0.665

DANA 0.984 0.963 0.936 0.994 1.0 0.935 0.978 0.945 0.967 0.674
DANAg 0.949 0.986 0.944 0.995 0.999 0.917 0.991 0.966 0.922 0.699

4.5.2 Results

Tables 4.8 and 4.9 give statistics showing the average F1 scores of DANAg and other main

content extraction algorithms on both data sets. In addition, in Table 4.10 we compute the

processing time (MB/s) of DANAg and other approaches on the data described in Table 4.1.

By looking at the Tables 4.8 and 4.9, the following important observations can be made:

Results on Arabian language documents

• As can be seen in Table 4.8 from six web pages, Al Ahram, BBC Arabic, BBC Persian,

BBC Urdu, Hamshahri, and Reuters, DANAg achieves an F1 score of more than 0.95

and especially on BBC Urdu with an F1 score extremely close to 1. In addition, no

other method shows such a high effectiveness.

• Among all eleven algorithms, only DSC and TCCB achieve F1 scores close to but never

as high as DANAg.

Results on Western language documents Now, we describe the results in Table 4.9.

For higher clarity, this table was divided into three parts. We explain each part of this table

below:

• In the middle part of the Table 4.9, DANAg achieves F1 score higher than other algo-

rithms on the six web pages golem, heise, republica, spiegel, telepolis, and yahoo. As

can be seen, ACCB is the best algorithm on three web pages among all other algorithms

after DANAg.
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• The left side of Table 4.9 shows three web pages in which DANAg achieves F1 score

less than the DSC, CCB, and ACCB approaches. But as it can be seen, the differences

between the F1 score of DANAg and last three mentioned methods are 0.013, 0.0144,

and 0.017, and this shows that DANAg could be acceptable on these web pages as well.

• On the right side of Table 4.9, we see the three web pages manual, slashdot, and

wikipedia in which DANAg and other algorithms could not achieve a considerable F1

score. For a better explanation about these three web pages, we depict six figures and

we describe the behavior of these figures in the next paragraphs.

Figure 4.5 and Figure 4.6 are original and smoothed diagrams of an example of a

Wikipedia web page. The recall, precision and F1 scores of this web page achieved by

DANAg are 0.3636, 0.8889, and 0.5161, respectively. In Figure 4.5, we determined the

main content area that should be extracted, but Figure 4.6 shows that only a small

part of the web page was obtained. If we use Formula 4.6 instead of Formula 4.2 as a

smoothing function, then the variables recall, precision, and F1 achieve values of 0.6469,

0.9158, and 0.7582. We conclude that perhaps, for fully structure web pages, it is better

to use the smoothing method in Formula 4.6.

diffi = (T1i − T2i) (4.6)

Figures 4.7 and 4.8 depict original and smoothed diagrams of a sample of a manual

web page. The recall, precision and F1 scores of this web page are 0.9783, 0.5396, and

0.6959, respectively. In Figure 4.7, we draw an ellipse to specify the main content area

that should be extracted. Figure 4.8 shows that after running DANAg, a large part

of extraneous items, which should not be extracted, was retrieved as main content. In

manual web pages, the distance between the main content area and area comprising

menus and advertisement is less than the value of gap, 20, which has been defined in

our project. In the next section as well as in “Conclusions and Future Directions”, we

will show what should be done in order to solve this problem.

In Figure 4.9 and Figure 4.10 we depict the original and smoothed plots of an example

of a slashdot web page. As these plots show, these web pages are full of extraneous

items. Hence, many main content approaches could not extract the main content of

these noisy web pages.

We can see that DANAg also shows a remarkable efficiency of approximately 11.41 MB/s.

Therefore, in comparison with the comparable methods in this chapter (DSC, TCCB-18 and

TCCB-25, which have an extraction performance close to our algorithm), DANAg has an

acceptable efficiency.

As explained in 4.5.1, applying the parser in the first phase of DANAg causes an overhead

in computation and as shown in Table 4.7, DANAg has a lower efficiency in comparison to

DANA (19.43 MB/s).

73



4. ALGORITHMS: R2L, DANA, DANAg, AND AdDANAg

Table 4.9: Average F1 Scores of DANAg based on the corpus in Table 4.2
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Plain 0.595 0.613 0.514 0.502 0.575 0.704 0.549 0.906 0.582 0.823 0.371 0.106
LQF 0.826 0.720 0.578 0.806 0.787 0.816 0.775 0.910 0.670 0.752 0.381 0.127
Crunch 0.756 0.815 0.772 0.837 0.810 0.887 0.706 0.859 0.738 0.725 0.382 0.123
DSC 0.937 0.881 0.847 0.958 0.877 0.925 0.902 0.902 0.780 0.594 0.403 0.252
TCCB 0.914 0.903 0.745 0.947 0.821 0.918 0.910 0.913 0.758 0.660 0.404 0.269
CCB 0.923 0.914 0.929 0.935 0.841 0.964 0.858 0.908 0.742 0.403 0.420 0.160
ACCB 0.924 0.890 0.929 0.959 0.916 0.968 0.861 0.908 0.732 0.682 0.419 0.177
Density 0.575 0.874 0.708 0.873 0.906 0.344 0.761 0.804 0.886 0.708 0.354 0.362

DANAg 0.924 0.900 0.912 0.979 0.945 0.970 0.949 0.932 0.952 0.646 0.401 0.209

Table 4.10: Average processing performance (MB/s)

Method Performance (MB/s)

ACCB-40 0.40
BTE 0.17
DSC 7.76
FE 14.33
KFE 11.76
LQF-25 1.25
LQF-50 1.25
LQF-75 1.25
TCCB-18 17.09
TCCB-25 15.86
Density 7.62

DANA 19.43
DANAg 11.41
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Figure 4.5: Original diagram of wikipedia

Figure 4.6: Smoothed diagram of wikipedia
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Figure 4.7: Original diagram of manual

Figure 4.8: Smoothed diagram of manual
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Figure 4.9: Original diagram of slashdot

Figure 4.10: Smoothed diagram of slashdot
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4.6 Algorithm AdDANAg

AdDANAg (86) is inspired by an adaptation of the preprocessing step of ACCB (48) and

DANAg (84). The process behind AdDANAg can be divided into two preprocessing phases

and a core extraction phase. While the first preprocessing phase and the core extraction

phase are taken from DANAg, the second preprocessing from ACCBs has been adapted and

enhanced.

In the first preprocessing phase of the AdDANAg algorithm (which is exactly similar

to R2L, DANA, and DANAg), all JavaScript codes, CSS style codes, and comments are

removed from the HTML file and retain only the HTML code as the output. Furthermore,

it normalizes the distribution of line breaks characters in the source code as it operates on

the level of lines.

Our second preprocessing phase normalizes imbalances in the source code structure that

hinder typical CE approaches. The imbalances can be motivated due to technical constraints

or domain specific deviations from the typical source code patterns. It is important to note

that they do not imply a semantic change in the main content specifications.

Below we explain the second preprocessing step of AdDANAg in detail and recall the core

extraction phase for the sake of completeness on Wikipedia web pages. In addition, for the

purpose of evaluation, we use the datasets in Tables 4.1 and 4.2 introduced in Section 4.1,

composed of 9,101 and 2,166, respectively, web pages from different web sites. Furthermore,

keep in mind that we prepared a gold standard for each web page.

4.6.1 The Second Preprocessing Step of AdDANAg

A common problem of source code based content extraction methods with hyperlink rich web

documents is that the main content can not be detected accurately. This can be explained

with the code for hyperlinks prevailing over the actual content items, which contradicts typical

assumptions made by the content extraction methods. Figure 4.11 shows some paragraphs

of a BBC HTML file and Figure 4.12 represents some portions of a typical Wikipedia source

code. In Figure 4.11, there is no hyperlink, so DANAg approach extracts the main content

accurately. In comparison, in Figure 4.12, there are plenty of hyperlinks in which the length

of attributes are much more than the length of anchor texts.

In this section, the preprocessing step of ACCB will be explained first and will be called

Filter 1 hereafter. Then, two new methods of preprocessing will be introduced which will be

named Filter 2 and Filter 3 for simplicity. Between Filter 2 and Filter 3, the preprocessor of

Filter 3 will be used in the AdDANAg algorithm.

4.6.1.1 Filter 1

As mentioned in Section 3.3.1.3, in the ACCB algorithm, which is an adapted version of

CCB, all anchor tags are removed from HTML files during preprocessing step, i.e. Filter 1,

and then the core section of algorithm ACCB will be provided with a new HTML file for

further processes. It will be demonstrated in the next sections that by the application of

Filter 1 with the DANAg algorithm, some results will be obtained with lesser accuracy than

that produced from AdDANAg (i.e. application of Filter 3 with DANAg algorithm).
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</div>
      <p id="story_continues_2">&quot;Especially the under-fives and the pregnant 
women, they&#039;re suffering from malnutrition and communicable disease like the 
measles, diarrhoea and pneumonia,&quot; he said.</p>

        <p>Earlier this week Mark Bowden, the UN humanitarian affairs co-ordinator 
for Somalia, told the BBC that the country was close to famine.  </p>
        <p>Last week Somalia&#039;s al-Shabab Islamist militia - which has been 
fighting the Mogadishu government - said it was lifting its ban on foreign aid 
agencies provided they did not show a &quot;hidden agenda&quot;. </p>
        <p>Some 3,000 people flee each day for neighbouring countries such as 
Ethiopia and Kenya which are struggling to cope.</p>

</div>

<

Figure 4.11: Some Paragraphs of a BBC HTML file

Figure 4.12: Some portions of a Wikipedia HTML file

Algorithm 2 shows the simple logic used in Filter 1. It can be seen that one just needs to

remove all the existing hyperlinks in an HTML file which is done at line 5 of this algorithm.

The only disadvantage of this preprocessing is that by removing the hyperlinks, the anchor

texts are also removed. As a result, this will cause the existing hyperlinks in the main content

to finally be removed. Thus, their anchor texts, which must be seen in the main content, do

not exist in the final main content. Consequently, the application of Filter 1 will reduce the

accuracy or the amount of recall.
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Algorithm 2 Filter 1 used in ACCB

1: Hyper = {h1, h2, ..., hn}
2: i = 1
3: while i <= n do
4: hi.remove()
5: i = i + 1
6: end while

4.6.1.2 Filter 2

An idea which is utilized in Filter 2 is a little different than that of Filter 1. With respect

to Algorithm 3, which shows the codes of Filter 2, one can understand that the attribute of

each anchor tag is removed in Filter 2. Thereby, an anchor tag will only contain an anchor

text, as shown below:

<a>anchor text</a>

An advantage of Filter 2 over Filter 1 is that some anchor texts related to anchor tags,

which are located in the main content area, can be extracted using Filter 2. In other words,

the amount of recall which is obtained from the application of Filter 2 is greater than that

produced from Filter 1. The application of Filter 2 with DANAg might possibly cause some

problems and reduce the accuracy of the main content extraction algorithm, but how?

We know that each of the lines of the HTML file were smoothed in the second phase of

the Algorithms R2L, DANA and DANAg by the application of Formula 4.2. The lines with

diff > 0 were possibly able to be selected as a part of main content. Now, assume that three

anchor tags exist in a Wikipedia file as evident from List 4.1:

By the application of Filter 2 and later using formulae 4.2 on the lines in the List 4.1, the

second anchor tag will certainly show diff > 0. This means that this line has the potential to

be a part of the main content.

Listing 4.1: Sample of HTML file with three anchor tags which are extraneous items

<a href="link one">anchor text one</a>

<a href="link two">anchor text two</a>

<a href="link three">anchor text three</a>

Having specified the first region or line of the main content in the third phase of the

Algorithms R2L, DANA, DANAg, one should now look for other regions and lines of the

HTML file to construct the entire main content. As mentioned in Section 4.3.4, a region

or a line of the HTML can be a part of MC when it first of all has a diff > 0 (the second

anchor tag in List 4.1 has a diff > 0) and secondly, the distance of that region or line of the

HTML document from the MC area specified so far does not exceed 20 lines (gap = 20).

Therefore, whenever the distance of the second existing anchor tag in List 4.1 from the MC

specified so far is smaller than 20 lines, then the second anchor tag will be selected as the

MC. However, it is also possible that this tag belongs to a part of extraneous items instead of
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MC. This assumption is probable since when it is part of MC, some words and sentences are

seen around this anchor tag. For example, each line of a Wikipedia file contains a number of

anchor tags which are surrounded by some words and sentences. Consequently, if we consider

the anchor text of the second anchor tag as one part of MC, then the precision obtained from

the application of Filter 2 will be reduced. It is interesting to note that if Filter 1 was used

here in these conditions, the anchor tags would have been completely removed and thus the

precision would not have been diminished.

Algorithm 3 Filter 2

1: Hyper = {h1, h2, ..., hn}
2: i = 1
3: while i <= n do
4: hi.href.remove()
5: i = i + 1
6: end while

4.6.1.3 Filter 3

In the third preprocessing method, called Filter 3, which is used in AdDANAg, we normalise

all HTML hyperlinks using a fast approach based on substitution rules. For better compre-

hension and simplification, we will explain the approach using a typical example. Suppose

the following hyperlink to be contained in an HTML file:

<a href="http :// www.BBC.com/">BBC Web Site </a>

Here, there is only one attribute, which is href="http://www.BBC.com/". Now, the

length of the anchor text (in this example: BBC web Site) is determined and we refer to this

value by LT. Then, we substitute the attribute part of the opening tag with a placeholder text

with the length LT - 7, where the subtracted 7 comes from the length of <a></a>. Therefore,

using the underscore sign as placeholder, the new hyperlink for our example should be as

below:

<a _______ >BBC Web Site </a>

The purpose of this rule is to normalise the ratio of content and code characters represent-

ing hyperlinks. This counterbalances inequalities originating from the URLs in hyperlinks.

These explanations are summarized in Algorithm 4. As can be observed in this algorithm,

the inside while loop, which is repeated for n times, the length of the anchor text related to

each hyperlink is calculated first and stored in the LT variable. Then, a string of LT-7 length

is made of the sign and then placed in the string variable “Str”. Finally, the attribute part

of hyperlink is replaced with the Str string.

The advantage of using Filter 3 over Filter 1 is that by the running of the second phase of

the Algorithms R2L, DANA and DADAg on the anchor tags in List 4.1, the second anchor
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tag will bear diff = 0. It means that this line cannot be considered as a part of MC. As

discussed earlier in section 4.6.1.2, if this anchor tag is not a part of menus or extraneous

items, a number of words and sentences will exist around them, as in Listing 4.2. For the

lines in Listing 4.2, the amount of diff is certainly greater than 0. This means that these

lines will be selected as the MC when conditions of the third phase of the Algorithms R2L,

DANA and DANAg are met.

Algorithm 4 Filter 3 used in AdDANAg

1: Hyper = {h1, h2, ..., hn}
2: i = 1
3: while i <= n do
4: LT = Length(hi.anchor text)
5: String Str = new String(“ ”, LT − 7)
6: substitute(hi.attribute, Str)
7: i = i + 1
8: end while

Listing 4.2: Sample of HTML file with three anchor tags in the main content area

These three anchor tags are not extraneous items. <a href="link one">anchor text one</a>

They are located in one of the main content regions. <a href="link two">anchor text two</a>

Using Filter 3 we are able to extract anchor texts of hyperlinks. <a href="link three">

anchor text three</a> Filter 3 is used in AdDANAg as a preprocessing step.

4.6.2 The Core Extraction Phase

The core extaraction phase of DANAg and its new version, AdDANAg, is divided into four

phases. In the first phase, it calculates the length of content and code of each line of the

HTML file and stores these numbers in two one-dimentional arrays T1 and T2, respectively.

For each line of the HTML file, Figure 4.13 draws two types of columns above and below

the x-axis with the length equal to the values of these two one-dimentional arrays, since the

measurement unit for the y-axis upward and downward is the length of content and code

of each line of an HTML file. Furthermore, in this figure, each column exactly corresponds

to an individual line of the Wikipedia web page demonstrated in Figure 4.15, because the

measurement unit for the x-axis is the number of lines in the HTML file. In Figure 4.15, all

the hyperlinks are highlighted and it can be seen that the density of hyperlinks are extremly

high on the Wikipedia web pages. AdDANAg and DANAg algorithms’ hypothesis is that

the main content is typically positioned above the x-axis. In Figure 4.13, the main content

area is located in the interval [15, 540] and the rest of the diagram belongs to the extraneous

items such as menus and advertisements.

The normalisation of the hyperlinks in the second preprocessing phase in AdDANAg

takes effect, since for each hyperlink, it equally modifies the values in T1 and T2. This is

the key point of AdDANAg. In Figure 4.14, a new plot of Figure 4.13 is drawn based on

this outstanding preprocessing phase. In this Figure, the length of codes in each line of the

HTML file is shorter than the length of codes in Figure 4.13. In other words, the ratio of
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content to code in Figure 4.14 is greater than the same ratio in Figure 4.13. Consequently

we will show, using Wikipedia web pages, that combining the Algorithm DANAg with our

newly proposed preprocessing phase, now called AdDANAg, we can retain columns located

above the x-axis representing the main content.

Figure 4.13: Example plot shows the main content area in Wikipedia web pages

Figure 4.14: New plot of Figure 4.13 affected by using second preprocessing step in AdDANAg
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Figure 4.15: Example of Wikipedia web pages
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Figure 4.16: Smoothed plot of Figure 4.13

In the second phase, DANAg and AdDANAg compute diff through Formula 4.2 for each

line of the HTML file, and keep these new numbers in a one-dimensional array T3 in order to

produce a smoothed plot of original plot. In a smoothed plot, a column is drawn above the

x-axis if diff > 0. Otherwise, a line with the length |diff| is depicted below the x-axis. The

smoothed plot of Figure 4.13 can be seen in Figure 4.16 if we run the DANAg Algorithm. As a

result, all the extraneous items in Figure 4.16 have been hidden, but unfortunately, most parts

of the main content area have been removed as well and this is not what DANAg expected

as the output; in contrast, AdDANAg produces a graph including plenty of columns in the

main content area. Figure 4.17 demonstrates a smoothed plot of Figure 4.14. Comparing

both Figure 4.16 and Figure 4.17 show that AdDANAg can keep all columns above the x-axis

comprising the main content area.

Considering the positive values of T3, both algorithms AdDANAg and DANAg identify all

regions located above the x-axis and, for simplicity, they define a new set R = {r1, r2, ..., rn}
of all such regions. Each element rj ∈ R denotes only one individual paragraph or line and

n is the total number of recognized paragraphs above the x-axis.

In the third phase, AdDANAg discovers all paragraphs shaping the main content using

Algorithm 1. Finally, AdDANAg feeds all these extracted paragraphs to a parser to obtain

the main content of the HTML file.

4.6.3 Results

The F1 scores of AdDANAg, DANAg, and other main content extraction algorithms on both

data sets shown in Tables 4.1 and 4.2 are presented in Table 4.11 and Table 4.12. A first

observation is that in comparison to DANAg, AdDANAg does not show major drawbacks.

Furthermore, AdDANAg and DANAg for most documents deliver the best results. When

focusing on the set of Wikipedia web pages, which have been observed to be extremely difficult
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Figure 4.17: Smoothed plot of Figure 4.14

for main content extraction algorithms, we can observe that AdDANAg clearly outperforms

DANAg and all other approaches. By looking at the Table 4.11 and Table 4.12, the following

observations can be made:

Results on Arabian language documents

• The overall average F1 score for both DANAg and AdDANAg on both Tables 4.11 and

4.12 are 0.8686 and 0.886, respectively. It can be concluded that AdDANAg is able to

extract MC at a greater accuracy than the DANAg Algorithm.

• Among all eleven algorithms, only DSC and TCCB achieve F1 scores close to but never

as high as AdDANAg.

• As can be seen in Table 4.11, DANAg algorithm has achieved the greatest value of the

F1 score on seven web pages. On the other hand, AdDANAg algorithm has the highest

value of the F1 score on eight web pages. It is interesting to note that the algorithms

DANAg and AdDANAg have equal F1 scores on the web pages of Ahram, BBC Pashto,

BBC Persian, BBC Urdu, Embassy and Hamshahri. However, this value is greater than

the F1 scores obtained by other algorithms, i.e. ACCB, BTE, DSC, FE, K-FE, LQF,

CCB and Density.

• Although the AdDANAg Algorithm has not achieved the highest value of the F1 score

on the BBC Arabic web page (Table 4.11), its difference to the F1 score from the

DANAg Algorithm is reported as being only 0.001, which can be said to be almost

negligible. Generally speaking, the F1 score obtained by the AdDANAg Algorithm is

greater than that of other algorithms, except DANAg, on a BBC Arabic web page.
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Table 4.11: Average F1 Scores of AdDANAg based on the corpus in Table 4.1
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ACCB-40 0.871 0.826 0.859 0.892 0.948 0.784 0.842 0.840 0.900 0.736
BTE 0.853 0.496 0.854 0.589 0.961 0.810 0.480 0.791 0.889 0.817
DSC 0.871 0.885 0.840 0.950 0.896 0.824 0.948 0.914 0.851 0.747
FE 0.809 0.060 0.165 0.063 0.002 0.017 0.225 0.027 0.241 0.225
KFE 0.690 0.717 0.835 0.748 0.750 0.762 0.678 0.783 0.825 0.624
LQF-25 0.788 0.780 0.844 0.841 0.957 0.860 0.765 0.737 0.870 0.773
LQF-50 0.785 0.777 0.837 0.828 0.954 0.856 0.767 0.724 0.870 0.772
LQF-75 0.773 0.773 0.837 0.819 0.954 0.852 0.756 0.724 0.870 0.750
TCCB-18 0.886 0.826 0.912 0.925 0.990 0.887 0.871 0.929 0.959 0.814
TCCB-25 0.874 0.861 0.909 0.927 0.992 0.883 0.888 0.924 0.958 0.814
Density 0.879 0.202 0.908 0.741 0.958 0.882 0.920 0.907 0.934 0.665

DANAg 0.949 0.986 0.944 0.995 0.999 0.917 0.991 0.966 0.945 0.699
AdDANAg 0.949 0.985 0.944 0.996 0.999 0.917 0.991 0.973 0.945 0.852

• On Reuters web page in Table 4.11, only the algorithms TCCB-18 and TCCB-25 show a

greater F1-score than the algorithms AdDANAg and DANAg. The value of the F1 score

obtained by TCCB-18 is equal to 0.959, while the calculated F1 score from TCCB-25 is

0.958. However, the values of the F1 score obtained from DANAg and AdDANAg are

the same (0.945) in this case. The average F1 score is calculated as 0.784 on Reuters web

page, which demonstrate that both DANAg and AdDANAg algorithms have produced

a significant F1 score for this web site.

• The most important part of Table 4.11 is related to the Wikipedia web site in which the

amount of the F1 score from the AdDANAg Algorithm is equal to 0.852, whereas this

value is reported as 0.699 in the DANAg Algorithm. Among other existing algorithms

in Table 4.11, BTE, TCCB-18 and TCCB-25 algorithms have the greatest values of the

F1 score, reported as 0.817, 0.814 and 0.814, respectively. As a result, the minimum

improvement in F1 score which is achieved by the AdDANAg Algorithm is 0.035, which

is considerable in this case.

Results on Western language documents Now we will describe the results in Ta-

ble 4.12. For a better understanding, this table was divided into three parts. These are

explained here:

• Three web sites of BBC, Economics and ZDF can be observed on the left side of

Table 4.12, where AdDANAg has failed to get the highest values of the F1 score on

these web sites. Noteworthy here is that the values of F1 score obtained by AdDANAg

and DANAg are almost the same. By looking at the difference between the maximum F1

score obtained on the web sites of BBC, Economics and zdf and the F1 score produced

by AdDANAg algorithm (0.015, 0.0144 and 0.018, respectively), one may conclude
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Table 4.12: Average F1 Scores of AdDANAg based on the corpus in Table 4.2
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Plain 0.595 0.613 0.514 0.502 0.575 0.704 0.549 0.906 0.582 0.823 0.371 0.106
LQF 0.826 0.720 0.578 0.806 0.787 0.816 0.775 0.910 0.670 0.752 0.381 0.127
Crunch 0.756 0.815 0.772 0.837 0.810 0.887 0.706 0.859 0.738 0.725 0.382 0.123
DSC 0.937 0.881 0.847 0.958 0.877 0.925 0.902 0.902 0.780 0.594 0.403 0.252
TCCB 0.914 0.903 0.745 0.947 0.821 0.918 0.910 0.913 0.758 0.660 0.404 0.269
CCB 0.923 0.914 0.929 0.935 0.841 0.964 0.858 0.908 0.742 0.403 0.420 0.160
ACCB 0.924 0.890 0.929 0.959 0.916 0.968 0.861 0.908 0.732 0.682 0.419 0.177
Density 0.575 0.874 0.708 0.873 0.906 0.344 0.761 0.804 0.886 0.708 0.354 0.362

DANAg 0.924 0.900 0.912 0.979 0.945 0.970 0.949 0.932 0.952 0.646 0.401 0.209
AdDANAg 0.922 0.900 0.911 0.994 0.931 0.970 0.951 0.932 0.950 0.840 0.404 0.236

that this difference is not considerable. Thus, AdDANAg can also be applied as an

acceptable method on these web sites.

• Seven web sites can be observed in the middle part of Table 4.12, where AdDANAg

has been able to achieve the greatest F1 score in comparison with the other algorithms.

The amount of the F1 score on Heise and Yahoo web sites obtained by DANAg is a

little greater than that obtained from AdDANAg, though the difference is really small.

The most important point in this section is that the AdDANAg Algorithm shows a

considerable improvement over the DANAg Algorithm on the web site of Wikipedia.

The F1 score of DANAg algorithm on this web site is 0.646, while the F1 score from

the AdDANAg Algorithm is equal to 0.840 which demonstrates a 0.206 growth.

• Two web sites of Manual and Slashdot web sites are seen on the right part of Table 4.12.

As explained before in section 4.5.2, no MC extraction algorithm has been able to

successfully extract the MC from these web sites.

Comparing Filter 1, Filter 2, and Filter 3 Tables 4.13 and 4.14 list the results obtained,

i.e. recall, precision and F1 score, from combining each of the filters introduced in this section

with DANAg algorithm. It is well known that the AdDANAg Algorithm is produced from

the combination of the DANAg Algorithm with Filter 3. Each of these tables is divided into

three parts: the first part contains 3 rows and adopts to compare the recalls; the second part

also includes 3 rows and compares the precision; and finally, the third section will compare

the F1 score. By looking at Tables 4.13 and 4.14, one can conclude the following points:

• As seen in the third part of both Tables 4.13 and 4.14, Filter 3 has acquired a better

F1 score in comparison with the other two filters, i.e. Filter 1 and Filter 2, in most of

the 18 cases. In contrast, Filter 2 has obtained the minimum amount of F1 score as

compared with Filters 1 and 3.
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Table 4.13: Comparing Recall, Presion and F1 of Normalization Methods based on the corpus
in Table 4.1
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Recall, Filter 1 0.942 0.987 0.961 0.997 0.999 0.953 0.953 0.963 1.0 0.853
Recall, Filter 2 0.942 0.989 0.961 0.997 0.999 0.953 0.942 0.963 1.0 0.886
Recall, Filter 3 0.942 0.987 0.959 0.997 0.999 0.949 0.993 0.97 1.0 0.81

Precision, Filter 1 0.969 0.952 0.929 0.973 0.999 0.833 0.611 0.97 0.897 0.869
Precision, Filter 2 0.969 0.691 0.918 0.961 0.999 0.831 0.498 0.97 0.897 0.852
Precision, Filter 3 0.969 0.987 0.929 0.994 0.999 0.902 0.989 0.976 0.897 0.915

F1 , Filter 1 0.949 0.969 0.944 0.985 0.999 0.884 0.716 0.966 0.945 0.852
F1 , Filter 2 0.949 0.804 0.939 0.979 0.999 0.883 0.624 0.966 0.945 0.861
F1 , Filter 3 0.949 0.985 0.944 0.996 0.999 0.917 0.991 0.973 0.945 0.852

Table 4.14: Comparing Recall, Presion and F1-measure of Normalization Methods based on the
corpus in Table 4.2

B
B

C

E
c
o
n
o
m

is
t

Z
d
f

G
o
le

m

H
e
is

e

R
e
p
u
b
li
c
a

S
p
ie

g
e
l

T
e
le

p
o
li
s

Y
a
h
o
o

W
ik

ip
e
d
ia

M
a
n
u
a
l

S
la

sh
d
o
t

Recall, Filter 1 0.913 0.967 0.963 0.993 0.976 0.995 0.946 0.979 0.954 0.810 0.687 0.399
Recall, Filter 2 0.922 0.967 0.963 0.745 0.965 0.994 0.946 0.979 0.952 0.760 0.690 0.440
Recall, Filter 3 0.890 0.967 0.963 0.999 0.964 0.996 0.941 0.980 0.953 0.787 0.686 0.372

Precision, Filter 1 0.991 0.830 0.880 0.941 0.900 0.872 0.943 0.914 0.948 0.927 0.355 0.208
Precision, Filter 2 0.935 0.732 0.812 0.707 0.830 0.792 0.938 0.914 0.944 0.882 0.356 0.192
Precision, Filter 3 0.991 0.855 0.880 0.989 0.911 0.954 0.974 0.919 0.948 0.927 0.357 0.197

F1 score, Filter 1 0.939 0.884 0.910 0.965 0.931 0.914 0.938 0.930 0.950 0.856 0.403 0.248
F1 score, Filter 2 0.916 0.827 0.871 0.724 0.884 0.865 0.937 0.930 0.948 0.809 0.404 0.239
F1 score, Filter 3 0.922 0.900 0.910 0.994 0.931 0.970 0.951 0.932 0.950 0.840 0.404 0.236
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• By looking at the first part of Tables 4.13 and 4.14, it can be observed that Filter 3 has

the maximum recall only in 11 web sites among a total number of 22 web sites, while

Filter 3 attains the maximum F1 score in 18 web sites.

• In web sites in which the values of recall obtained from Filter 2 or 3 are equal to that of

Filter 1, one can conclude that the web site has not contained any hyperlink in its MC.

For example, it can be seen on Economics and zdf web sites that the recall is equal for

all the three filters.

• When Filter 1 has a recall equal to one in a web site such as Reuters, it can be ar-

gued that the web sites certainly include no hyperlink in its MC, thus the other two

preprocessors of Filters 2 and 3 have calculated the recall value as one.

• When Filter 2 has a higher recall and a lower precision than the other two filters, it

can be concluded that a major part of the extraneous items have been selected as the

MC. It is well known that the menus are taken as one of the additional items in the

web pages and each item in the menu is usually built by an anchor tag. Therefore, by

the application of Filter 2, it would be possible to consider menus as the MC in some of

the web sites such as BBC Arabic. However, the value of recall is equal to 0.989 in the

web site of BBC Arabic, which is excellent. On the other hand, the value of precision

is reported as 0.804 which is rather low and indicates the existence of some words in

the final MC which can hardly be taken as a part of MC.
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Chapter 5

Headline Extraction

In this chapter we address the problem of identifying the headline of a web article. While most

of the headline extraction approaches mainly focus on structural and visual features of the

headline (38, 39, 65, 126), here we propose a heuristic and content based method, TitleFinder,

to identify the headline of a web document based on the content of an article. Given the

design of the algorithm it has two main advantages over previous approaches. First, it is an

unsupervised approach that does not require training data. Second, it is capable of operating

on single documents and is independent of a template-driven layout of the documents. In

our evaluation the method shows a very accurate (F1-measure > 0.969) identification of the

headlines of 11,218 web documents and outperforms two baseline methods using structural

and visual features.

5.1 Related Work

Hu et al. (65) have claimed in 2005 that no special research has concentrated on the problem

of headline extraction from HTML files prior to their work. They have also stated that the

extraction of the headline from the body of HTML files is not that simple, since various

web pages contain different contents and formats. The method proposed by Hu et al., the

supervised machine learning approach, has been used to identify and extract the headline.

This method benefits from two main phases like many other machine learning methods,

namely training phase and extraction phase. The experimental data will be prepared before

the first phase and during preprocessing. First, each web document is transformed into several

text segments such that each text segment exactly corresponds to a line containing text in

the web document. Afterwards, the text segments will be initialized based on specifications

such as font size, font weight and position, which are very conspicuous for the headline.

Meanwhile, the headline is annotated among the text segments of each web document. Now,

a classification model is trained in the first phase according to the training data. This model

will determine whether a text segment is a headline or not. However, they have used the

classification model as a perceptron with uneven margins during the extraction phase. In the

second phase of the algorithm, the extraction phase, text segments of a web document enter

the model, while the model allocates a score to every unit. Finally, text segments having the

greatest score will be taken as the headline.
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Hu et al. (64), in their research on automatic headline extraction, used other models

of machine learning such as maximum entropy, maximum entropy marker model and voted

perceptron. They concluded that the performance of the perceptron model was the best.

Furthermore, the authors of this paper have also assessed the models developed on various

domains and in different languages. They finally discovered that the accuracy is not decreased

significantly.

Xue et al. (126) have employed supervised machine learning methods to extract the head-

line from web documents. The methods employed covered SVMs and Conditional Random

Fields (CRF). As features in the machine learning models, formatting information and lin-

guistic information have been utilized in this contribution. It is interesting to note that the

CRF model is shown to be more successful than SVM in extraction of the headline.

Ibrahim et al. (66) developed an algorithm for automatic extraction of the headline and

the main content of news web pages. For doing this, they proposed a supervised machine

learning classification technique based on the use of a SVM classifier to extract the desired

textual elements. The SVM classifier is trained strictly on structural features to identify the

main content and its headline.

Changuel et al. (27) proposed an automatic method for extracting the headline of HTML

web documents based on supervised machine learning technique such as Decision Trees and

Random Forests. The key point in their contribution is that they employ information in the

header of the HTML file in order to obtain labeled training data for title extraction with

limited human effort.

Zhang et al. (128) proposed a content-based and domain-independent method for extract-

ing headlines from Chinese research papers using the support vector machine classifier. They

claimed their contribution achieved better results than rule based methods and attribute this

to using apriori information about the headline’s words and the relationship between the

headline and the body of the HTML web page.

All the approaches presented so far employ supervised machine learning techniques.

Therefore they depend on training data from which they derive typical characteristics of

the headline. Given the large variety of web document designs on the web, it is a challenging

task to provide an un-biased training set in this setting. A similar problem has already been

observed in the related field of main content extraction (36).

An alternative approach is to formalize human experience and domain knowledge into

heuristics for solving the task of headline detection. Fan et al. (38, 39) have found that the

headline is often annotated by a special HTML tag (H1-H6) and given visual prominence. In

this regard, they proposed a two-stage algorithm for characterizing the headline. In the first

step, headline candidates are selected based on two of the following criteria: The first criterion

states that only those candidates (lines containing text) can be selected as the headline whose

horizontal starting position is not greater than that of main text region. Meanwhile, their top

position must not be less than the top quarter of the main text region. The second criteria

implies that the font size of candidates must not be smaller than that of the main article text.

In the second step, a score is calculated for each candidate based on some rules including font

size and the position of the candidate. The candidate with the highest score will be selected

as headline.
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Figure 5.1: Example of web pages with the selected headline

5.2 Problem Setting and Analysis

We already demonstrated the need for identifying and characterizing the headline in HTML

web documents. To motivate a content based approach (rather than the structural and visual

based approaches of related work), we now look at the problem setting in a more detailed

way. Generally speaking, the structure of a web article is comprised of some text paragraphs,

some figures or diagrams with their relevant captions, and of course a headline. Besides

these main components of news, some additional items come along with the article, which

are not related to the main content at all. Moreover, there are some elements which are not

accounted as the main article but are somehow related to it. For example the news links

located beside the main news directing the user to other pages.

We use the web document in Figure 5.1 to elucidate this issue in a bit more detail. The

following parts can be identified in this article taken from the BBC News web site:

• α : Header and main menus of this news page from the BBC web site can be seen in

this section which are known as additional items.
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• β : This section includes main parts of the news, i.e. the headline, publish date,

constituent paragraphs, subtitles, and semi-related useful news β′ as well as prominent

news tips β′′.

• γ : This section involves additional news items which are not closely related to the

main news. The following sections are some of them:

– top stories

– features and analysis

– most popular

It is obvious that most of the subsections contain a series of links which direct users to

other pages for getting access to the text of news.

• δ : The browser window’s menu bar indicates meta-information of the web document. It

shows the text fragment which is encoded in HTML using the content of the title element

<title> . . . </title>. This fragment usually provides a good hint of the headline, but

typically contains other text as well. In this case, the web site’s name is provided as

well, other settings add a date or a copyright remark.

5.3 TitleFinder

We now develop our novel and content based method TitleFinder for identifying the headline

of web articles. As mentioned previously, the position of the headline related to a web

document can contribute much to the algorithms, either line-based or block based, which

decide to extract the MC from the web document.

The algorithm proposed in this chapter benefits from one of the observations mentioned

above: A great proportion of the word tokens inside the headline are similar to the title

element. However, the text content between the HTML tags <title> . . . </title> usually

contains additional information, e.g. the name of the web site hosting the article, the cur-

rent date or a copyright notice. This observation is utilized in TitleFinder to identify the

headline of web articles. It interprets the text in the <title> element as a query to be

applied to the text fragments of the article’s content. This allows for the identification of

the most descriptive text fragment for the article. By considering all text nodes in the DOM

tree as potential candidates for this text fragment and breaking them down into sentences,

TitleFinder is independent of structural or visual information.

In more detail, the process behind TitleFinder passes through the following phases:

5.3.1 Preprocessing

First, since we do not make use of it, JavaScript code, CSS code, comments and meta tags

are removed from the web document. Furthermore, we normalize the source code (86) for

line breaks or excessive white space, which allows for easier identification of text fragments

and word tokenization in the downstream process. For the same purpose, other characters

such as the single quote, double quote, comma and colon are deleted from the content of an

HTML file.
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5.3.2 Conversion of Text Fragments into Vector Space Representation

Our content based headline identification method maks use of a vector space representa-

tion (108) of text fragments. To arrive at this representation we take several steps. After the

preprocessing, we extract the text fragments from the source code by considering the text

nodes of the DOM tree. For simplicity, we will use the expression sentence to distinguish a

text fragment from the text of the complete web document. Assuming that N text fragments

of the HTML file denote its content, there would be N sentences corresponding to the web

document. We tokenize each sentence into words and transform it into a classical vector

representation −→s j :

−→s j = {w1,j , w2,j , ..., w|V |,j} (5.1)

The entries wi,j in this vectors correspond to the weight of term ti ∈ V in sentence j,

wherein V = {t1, t2, ..., t|V |} is the set of distinctive words of the content of HTML document.

In our experiments we considered two very well–established weighting schemes, namely term

frequency (tf) weights and term frequency–inverse document frequency (tf idf) weights.

5.3.3 Similarity Metrics

In order to identify the headline in a web document, we first obtain the text in the title

element of an HTML file. Next, we consider this text as a query q. Then, the similarity

between the query q and each one of the N sentences is assessed. Based on our observation,

the hypothesis behind TitleFinder is that the sentence which bears the highest similarity with

query q will be the headline. In the vector space framework of TitleFinder, we implemented

the four following methods to measure the similarity between the query q and each of the N

sentences:

• TF: Cosine Similarity based on tf weighting Scheme

• TF IDF: Cosine Similarity based on tf idf weighting Scheme

• OSM: Overlap Scoring Measure

• Aggregate = TF + TF IDF + OSM

The cosine similarity corresponds to measuring the cosine of the angle θ between the query

vector −→q and one of the −→s j vectors (1 ≤ j ≤ N) with its value being in the range between

0 and 1. Higher values indicate a higher similarity of the vectors, which is interpreted as a

high semantic similarity of the respective text fragments.

OSM, the third similarity metric (78), is a less commonly used similarity metric. It

incorporates tf idf weights for the query terms, which is shown by wt,q, and tf weighting with

Euclidean normalization for the sentences, which is shown by wt,s. The OSM similarity is

provided in the following Formula 5.2:

OSM(−→q ,−→s j) =
∑
t∈−→q

wt,q × wt,sj (5.2)
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The fourth and last method aggregates the values of the previous three metrics and is

shown in Formula 5.3. It combines values obtained from the three previous techniques for

each of N sentences to identify the headline. Thus, it shows similarities to techniques for

result list merging.

Aggregate(−→q ,−→s j) = Costf(
−→q ,−→s j)

+ Costf idf(
−→q ,−→s j) (5.3)

+ OSM(−→q ,−→s j)

5.4 Experiments

5.4.1 Data sets

For evaluation purposes we use the data sets introduced in (85) (cf. Table 5.1) and (46, 48)

(cf. Table 5.2), composed of 2,282 and 8,936, respectively, web pages from different web sites.

As we explained in Section 4.1, the first data set is a collection of web documents in Arabic,

Farsi, Pashto, and Urdu and the second data set has been established for the evaluation of

main content extraction algorithms on Western language documents. The most important

point is that the headline in each web page should be as a sub–string of the title element,

otherwise TitleFinder is not able to extract the headline of web pages. Considering this

observation and that the title element in two web sites Embassy of Germany and Manual

has no information about the headline of web page, these web sites are not evaluated in this

chapter by TitleFinder. For the same reason, we were forced to eliminate 100 web pages in

the BBC web site and evaluate only 900 web pages (compare Table 4.2 and Table 5.2 ).

Table 5.1: Evaluation corpus of 2,282 web pages

web site URL Size Languages

Ahram www.jamejamonline.ir/ 188 Arabic
BBC www.bbc.co.uk/arabic/ 252 Arabic
BBC www.bbc.co.uk/pashto/ 368 Pashto
BBC www.bbc.co.uk/persian/ 598 Farsi
BBC www.bbc.co.uk/urdu/ 213 Urdu
Hamshahri hamshahrionline.ir/ 375 Farsi
Jame Jam www.jamejamonline.ir/ 137 Farsi
Reuters ara.reuters.com/ 116 Arabic
Wiki fa.wikipedia.org/ 35 Farsi

5.4.2 Evaluation Methodology

In order to calculate the accuracy of any headline extraction method, it is necessary to provide

a manually crafted gold standard for the headline of all HTML files. Both corpora mentioned

in Section 5.4.1 provide such a gold standard. For the purpose of evaluation, the output of an

headline extraction algorithm is checked for a precise match with the gold standard headline

of the corresponding HTML document.
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Table 5.2: Evaluation corpus of 8,936 web pages

web site URL Size Languages

BBC www.bbc.co.uk/ 900 English
Economist www.economist.com/ 250 English
Golem golem.de/ 1,000 German
Heise www.heise.de/ 1,000 German
Repubblica www.repubblica.it/ 1,000 Italian
Slashdot slashdot.org/ 364 English
Spiegel www.spiegel.de/ 1,000 German
Telepolis www.telepolis.de/ 1,000 German
Wiki en.wikipedia.org/ 1,000 English
Yahoo news.yahoo.com/ 1,000 English
Zdf www.heute.de/ 422 German

In our experiments, we follow other approaches and employ recall, precision and F1 as

performance metrics (64). The metrics are defined in Formula 5.4 and 5.5, in which we

define A to be the number of headlines correctly identified as headlines, B as the number of

other elements misclassified as headlines and C to be the number of headlines erroneously

non–identified as such (cf. also Table 5.3).

Recall =
A

A + C
Precision =

A

A + B
(5.4)

F1−measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(5.5)

Table 5.3: Contingence table with regard to headline extraction

Is
headline

Is not
headline

Extracted A B

Not Extracted C D

5.4.3 Baselines

As baseline approaches we consider the two methods. First of all, we evaluate the naive

approach of assuming the content of the title element to be equivalent to the headline.

As mentioned previously, extracting the headline of a web document using this method is

not reliable because there is some additional information in the title element of the web

document not related to the headline.

Therefore, we employ a more sophisticated baseline. It follows the observation that the

headline often corresponds to the first encounter of the largest font size in the document (27,

65). Thus, we tested the accuracy of such a visual feature–based baseline method. We
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implemented a method searching for the first encounter of the highest order headline element

in web document.

5.4.4 Results

Table 5.4 presents the results of our experiments showing the average F1-measures and the

processing speed (KB/s) of TitleFinder and the baseline approaches on the two data sets.

On the left side of Table 5.4, the columns labelled TF, TF-IDF, OSM and Aggregate list

the accuracy of the different similarity metrics implemented in the TitleFinder method for

identifying the headline in the HTML files. In addition, the columns labeled Largest Font and

title shows the accuracy of the baseline approaches in headline extraction from an HTML

file. All six columns on the right side of the table demonstrate the processing speed (KB/s)

of TitleFinder on our data sets. The columns are labeled TF, TF-IDF, OSM and Aggregate,

as well as the baseline approaches including the columns labeled Largest Font and title.

The last row in the table aggregates the values using a macro-average F1-value.

Regarding the baselines, it can be observed that they either always succeed or always fail

on the documents taken from one web site. This is not surprising since most modern web

sites are template driven and exhibit the same or at least a very similar structure. The naive

approach of simply using the title element’s content fails in most cases (18 out of 20 web

sites).

Also the more sophisticated baseline of using the first occurrence of the largest font-size

fails quite often (8 out of 20 web sites). The two assumptions considered in it, namely “the

headline has the largest font size” and “the headline is the first occurrence of the largest font

size”, seem not to hold for extracting the headline from HTML documents. We observed that

the headline quite often is not contained in the semantically correct elements h1 to h6, but

rather in <div> and/or <span> tags. This technique is used, for instance, on the web sites

BBC, Jame jam, and Ahram. Furthermore, the documents from Slashdot, Spiegal, and ZDF

web sites have employed <h1> tag for displaying the web site’s name which is not a headline.

An important point to bear in mind is that the extraction of the headline assumes a certain

consistency of the underlying document template. It always selects the same first largest

headline element in a document. In Table 5.4, there are five entities employing the same web

site template: BBC, BBC Arabic, BBC Pashto, BBC Farsi, and BBC Urdu. Looking for

explanations of the failure of the baseline algorithm on the BBC Arabic web site, we noticed

that—unlike the other BBC websites—it did not encode the headline in the first <h1> tag.

Hence, we can conclude that trusting a web site template to extract the headline of a web

page sometimes misleads us to incorrect results.

Considering the performance of TitleFinder, we can make the following observations in

Table 5.4:

• In 14 out of the 20 considered web sites, the TitleFinder algorithm shows an F1-measure

value of 1.0 which is indicative of the high accuracy of this method. Furthermore, in

17 out of 20, our proposed approach demonstrates an F1-measure value greater than

or equal 0.997, which is a considerable accuracy.
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• None of the four TitleFinder variations employing different similarity metrics has failed

completely on our data sets as observed, for instance, for the two baseline approaches

with a F1-measure of 0. This can be explained by the algorithm to be agnostic to-

wards structural properties of the documents and therefore being more independent of

template properties.

• The average F1-measure for all variants of the TitleFinder is no lower than 0.969. This

demonstrates a general stability of the approach.

• Considering the Macro-Average F1-measure, it can be seen that although TitleFinder

based on TF does not show the F1-measure equal to 1.0 in all cases, its reported Macro-

Average F1-measure value, 0.989 , is greater than the Macro-Average F1-measure value

of the other TitleFinder implementations. It seems that TitleFinder based on the TF

weighting scheme can be an appropriate method for the extraction of headlines from web

pages, since its Macro-Average F1-measure value, 0.989, is relatively high, although the

improvement of TF over the other TitleFinder methods is not statistically significant.

• For the web sites Republica, Spiegel, Wiki, and BBC Farsi, none of TitleFinder meth-

ods were able to find an average F1-measure value of 1.0. This behaviour is mainly

attributed to an error which occurs when the total number of headline tokens is smaller

than that of tokens related to name and specifications of the web site cited in the title

element. In this case, the TitleFinder starts from a sub-optimal candidate headline to

query the documents content elements and tends to extract name or specifications of

the web site instead of its headline.

When comparing the processing time of the approaches, TitleFinder is significantly slower

than the structural approaches. This can be attributed to the overhead of analyzing all text

elements and building their vector representations. In addition, identifying and extracting

all content tokens of HTML document using an HTML parser are far more time-consuming.

However, so far we did not tune our algorithm for fast processing and there is still potential

for streamlining the programs written.

5.5 Summary

In this chapter we proposed TitleFinder, a content based method for headline extraction

from web pages. The main idea is to use the content of the title element as a candidate

headline and then compute the similarity between this candidate and all text fragments in

the body of the HTML file. We implemented TitleFinder using four different similarity

metrics. The results obtained from implementation of four variations of the algorithms on

11,218 web pages indicated a high accuracy of our method. In many cases we observed an

perfect extraction-performance with an F1-value of 1.0.

In future work, we aim to overcome some minor weaknesses for particular settings observed

in evaluation data. One issue is to improve the quality of the initial selection of the candidate

headline. As one solution, name and specifications of a web page appearing in the title element

as well as other tokens present in the title element can be searched in a main content. Since
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name and specifications related to a web page are not present in the main content related

to a web page, it seems promising to remove tokens which are present in the title element

but not in the main content of a web page. Also, we will combine our headline detection

algorithms with content extraction algorithms to enhance accuracy of the content extraction

methods.
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Chapter 6

Applications of Main Content
Extraction

The extraction of MC from web pages and weblogs has numerous applications which are

addressed to some extent in the first chapter of this thesis. Some of these applications will

be briefly discussed here:

• Main content extraction can be applied in scenarios where a reduction of a document to

its main content is advantageous, e.g. on devices that have limited storage or bandwidth

capacity, such as mobile phones, screen readers, etc.

• Main content extraction can be considered as a preprocessing step for text mining and

web information retrieval.

• The identification of the MC is beneficial for web search engines: when crawling and

indexing the web, knowing the actual main content of each web page can be exploited for

the purpose of determining more precise and descriptive index terms for the document.

• Traditionally, building text corpora is a very expensive and time–consuming process.

By automatically downloading textual data from the web, extremely large corpora can

be built in a short period, at relatively low cost. Therefore, the idea of Web as Corpus

has been very attractive for many researchers in Natural Language Processing and

related areas (113).

In addition to the mentioned items, extraction of MC from web pages have another

applications which will be discussed in the future sections of this chapter. The last section

of this chapter deals with one of the research works implemented by the author of this thesis

with collaboration of other colleagues. The main goal of Section 6.6 is to provide one of the

applications of IR. However, the presented methodology can be combined with MC extraction

methods in the future in order to investigate trends in different fields using web pages and

weblogs as will be discussed in Section 6.5.
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6.1 Reading News Web sites for Visually Impaired

It is well known that there are software products which can read a text file for a user. Thus,

the text in the MC extracted from web pages can be given to these products to read the text

for blind people (125). Most web pages of news web sites including BBC and Spiegel contain

a number of related news inside each web page, which make it possible to access news relevant

to the current news. Thus, once links of the related news of each web page are identified, the

MC of the related news can be read after extraction.

6.2 Removing Advertisements from Web Pages

With rapid growth of advertisements in web sites and web pages, it is seen that a major

part of a news web page is allocated to advertisement and just a small part of that web page

contains the news. Many individuals certainly feel dissatisfied with this situation and may

prefer to see only the MC on the news web pages. This could be made possible for the users

by the combination of MC extraction algorithms and web browsers. Thus, only the MC in

the news web page will be seen in the web browser (94).

6.3 Main Content Extraction and Opinion Mining

Opinion mining is another application of extracting MC from web pages and especially MC

extraction from posts in weblogs. There are millions of weblogs in the web space with

hundreds of new weblogs being created every day. Each of these weblogs usually contains

several posts. By extraction of the posts in weblogs and the MC in these posts, it will be

possible to explore ideas and opinions of various people among millions of posts extracted

from weblogs in the virtual space of the web (59).

6.4 Main Content Extraction and Question Answering

One other very useful application of MC extraction from web pages and weblogs can be

observed in Question Answering (QA) systems. QA systems can be divided into two general

categories below:

• Not Web Based Question Answering Systems (NWBQAS),

• Web Based Question Answering Systems (WBQAS), (37, 52)

In NWBQAS, a great number of documents, which will be used to extract the answers,

are first stored in the system. Then, the user puts forward a question. At this step, the

QA system provides the user with the document which contains the best answer for this

question. Indeed, there are some additional parts in the architecture of a QA system (102),

though these are not going to be discussed here. On the other hand, WBQAS does not need

to prepare the documents which contain the answers. Thus time, money, labor force, etc.

can be stored. These systems try to find answers for the questions put forward by the user

from existing documents in the web. A part of these documents can surely be web pages and
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weblogs which exist in the web. Therefore, MC extraction algorithms can be combined with

the QA systems to create WBQAS (96).

6.5 Trend Analysis

Trend analysis is one of the most interesting issues in most scientific and research fields.

However, manufacturers and suppliers of products benefit much from trend analysis because

of the numerous applications in product survey, customer relationship and marketing. Based

on the statistics of the “Technorati” web site which is a blog search engine, about 1.2 million

new entries are added to this web site every day with its volume being duplicated in six

months. Thus, it can be said that the blogsphere is an appropriate source for studying the

trend of many subjects (31).

6.6 Revealing Trends Based on Defined Queries in Biological
Publications Using Cosine Similarity

Massive volumes of scientific data are being produced every day by scientists in all disciplines.

Similarly, the number of scientific journals is growing, with many new sub-disciplines launch-

ing their own journals. For example, SciVersc Scopus stores 18,500 peer-reviewed journals

alone.

To the best of our knowledge, fields and interests of scientific journals are traditionally

specified by their titles, aims and scopes. Moreover, journals are categorized and clustered

by their scopes and aims to different groups using information stored in databases. However,

the core interest of journals may change and evolve over time.

From the time point of view, the appearance and disappearance of the core scope is a

dynamic process, rather than a purely random process, but with more underlying principles.

Gradual or abrupt changes in the core scope of a scientific journal can be explained by internal

and external causes. Typical internal causes include the changing of the editorial board or

publisher of a journal. External causes include scientific breakthroughs and opening new

directions and sub-disciplines or themes. Furthermore, it is quite possible that different core

topics converge or diverge over time periods among or within journals. Understanding the

dynamics of a research theme is essential especially for analysts and decision makers for being

able to identify emerging and disappearing trends and topics or rapid changes in the body of

scientific knowledge. In the rest of this section, an approach, TrendFinder, will be described

to analyze the trends of several given queries in collected data sets. For doing this, first

we represent Abstracts and queries based on a vector space model and afterward by using

Cosine similarity metric we compute the similarities between selected query and a group of

Abstracts.

6.6.1 Related Work

One of the first approaches to analyze trends and discover emerging patterns from text

documents was presented by Feldman et al. (40). They implemented a new system for
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Journal Num. of Abs. From(year) To(year)
Conservation Biology 4004 1987 2010
Ecology 10004 1964 2010
The American Naturalist 5002 1960 2010

Table 6.1: Three Journals with Number of Abstracts and Published Date

Tag Description
TY Type of Text, Proceeding or Book or Journal
AU Author
TI Title
JO Name of Journal
VL Volume
IS Issue
PB Publisher
SN Serial Number
UR URL
SP Start Page
EP End Page
PY Published Date
AB Abstract

Table 6.2: List of Tags in one of Selected Raw Paper

Knowledge Discovery in Text (KDT), in which documents are labeled by analyzing the co-

occurrence frequencies of the expert-defined keywords.

Temporal Text Mining (TTM) is another line of research related to the present work. Mei

et al. (82) introduced a probabilistic approach to discover and summarize the evolutionary

patterns of themes in a text stream. Another approach to analyze the temporal trends of a

given topic in a time stamped document set which works based on time series segmentation

is described by Chen et al. (29). They consider topics containing multiple keywords and

use a fuzzy set based method to compute a numeric value in order to measure the relevance

of a document set to a given topic. The measure of relevance is then used to assign a

discrepancy score to a segmentation of time period associated with the document set. The

discrepancy score of the segmentation represents the likelihood of the topic across all segments

in segmentation.

Naveed et al. (92) proposed a probabilistic approach, ATTention, which analyzes the

evolution of users’ interests with respect to produced content over time using the Bayesian

modelling of relationships between authors, latent topics and temporal information.

6.6.2 Data sets, Queries

As an evaluation data set, some 19,010 papers were collected from three different journals,

namely “Conservation Biology”, “Ecology”, and “The American Naturalist” (see Table 6.1).

These three journals have been selected for this analysis because of free accessible data

available for a long period of time. In the second column of Table 6.1, the numbers of

Abstracts are given for each journal which are 4004, 10004, and 5002, respectively. Columns

3 and 4 in Table 6.1 represent the period of selected journals, for example, the period of

“Ecology” was from 1964 to 2010.
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Cosine Similarity

Listing 6.1 represents one selected original paper. The description of each tag is explained

in Table 6.2. For fast retrieval of data sets, the preprocessor of TrendFinder converts all

collected original papers with a different structure to a standard XML file format (Listing 6.2).

Table 6.3 summarizes four queries with their expert-knowledge keywords, which are selected

by the expert of the relevant field. The names of queries are shown in left column while all

keywords of each query are listed in the right column. It should be noted that the numbers

of keywords in the four queries were not exactly the same.

Listing 6.1: Sample of Original Paper in Conservation Biology Category

TY - JOUR

AU - MEINE , CURT

AU - S O U L , MICHAEL

AU - NOSS , REED F.

TI - ‘‘A Mission -Driven Discipline ’’: the Growth of Conservation Biology

TI - ‘‘Una Disciplina Dirigida por una M i s i n ’’: el Crecimiento de Conservation Biology

JO - Conservation Biology

VL - 20

IS - 3

PB - Blackwell Publishing Inc

SN - 1523 -1739

UR - http ://dx.doi.org /10.1111/j.1523 -1739.2006.00449.x

DO - 10.1111/j.1523 -1739.2006.00449.x

SP - 631

EP - 651

PY - 2006

AB - Abstract: C o n s e r v a t i o n biology emerged in the mid -1980s, drawing on established

disciplines and integrating them in pursuit of a coherent goal: the protection

and perpetuation of the Earth ’s biological diversity.

ER -

Listing 6.2: Sample of an XML File

<?xml version =‘‘1.0’’ encoding="utf -8"?>

<!DOCTYPE note SYSTEM "Note.dtd">

<research >

<journal >

Wiley

</journal >

<title>

‘‘A Mission -Driven Discipline ’’: the Growth of Conservation Biology

</title>

<date>

2006

</date>

<abstract >

A b s t r a c t : C o n s e r v a t i o n biology emerged in the mid -1980s, drawing on established

disciplines and integrating them in pursuit of a coherent goal: the protection and

perpetuation of the Earth’s biological diversity.

</abstract >

</research >

6.6.3 TrendFinder

To explain how TrendFinder calculates the content-based trends over selected data sets and

defined queries, the provided algorithm was divided into the following three steps:
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Queries Keywords
Vector1-
Biodiversity

diversity biodiversity species richness abundance abundant gradient geography
geographical biogeography interaction interact abiotic biotic dispersal functiona
functional environment

Vector2-
Evolution

evolution macroevolution extinction extinct hybridization divergence diver-
gent sexual sex population niche phylogeny phylogenetics phylogeography trait
adaptive adaptation diversification speciation sympatric sympatrically specia-
tion gene flow genetic drift mutation natural selection reproductive isolation

Vector3-
Conservation

protected areas climate change global warming conservation conserve reserve
planning management endemic endemism hotspot hot spot fragmentation
ecosystem habitat change land-use deforestation bioindicator

Vector4-
Genome

genomics metagenomics genome gene genetics system biology informatic bioin-
formatic mining sequence sequencing metadata

Table 6.3: List of Four Queries with Selected Keywords

6.6.3.1 Preprocessing

A common problem for processing papers taken from different journals is that each journal has

its own structure, so the information we need can not be detected accurately. In Section 6.6.2,

it was suggested to transform all original papers with a different structure to a standard XML

format using a preprocessing step. By this approach, it was not required to rewrite the core

section of TrendFinder.

6.6.3.2 Representing Documents Using a Vector Space Model

We know the following notation represents a vector space model of a document:

~dj = (w1,j , w2,j , ..., wt,j) (6.1)

Each dimension of this vector corresponds to a unique term in which its value is greater than

zero if it occurs in the document. To compute the values of the terms, named weights, there

are several different ways. Two of most used weights are tf and tf-idf. In this section, the

first schemes, tf , will be used for calculating similarity (108).

As discussed in Section 6.6.2, there are three representations of the journal documents

and four representations of the queries. Hence, it is possible to consider 12 representations

of documents and queries based on the VSM, named REP1 to REP12. Each of the four

sequential representations i.e. REP1-REP4, REP5-REP8, and REP9-REP12, will be used for

computing Cosine similarities and drawing similarity graphs of each journal. For simplicity,

the process of building REP1 has just been explained here.

The basic idea of a VSM is depicted in Figure 6.1 (78). The main hypothesis is that each

query has m terms, so a dictionary of m terms is kept in the first column of Figure 6.1 which

will be sorted alphabetically. On the other side, the Abstract of each paper can be viewed as

a vector with one component to each term in the dictionary, along with a weight w for each

component that could be between one and zero. For dictionary terms which do not occur
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in an Abstract, this weight is zero and for dictionary terms that occur in an Abstract, this

weight is greater than zero. For simplicity, it has been supposed that each Abstract has a

unique serial number, known as the Abstract identifier (ID). If there are n Abstracts in each

journal, then all n vectors corresponding to n Abstracts will be kept in the VSM, starting

from the second column to column n+ 1.

Dictionary Abs. 1 Abs. 2 Abs. n

term 1 4 3 … 1

term 2 0 1 … 0

term 3 1 0 … 7
 . .
 . .
 . .

term m 5 0 … 1

Figure 6.1: Example of a Vector Space Model

6.6.3.3 Cosine Similarity

In order to compute the Cosine similarities between one query and all n Abstracts of a specific

journal, the following notations must be considered:

• −→V (ai) = {w1,i, w2,i, ..., wm,i}, 1 ≤ i ≤ n : the vector derived from Abstract ai, with one

component in the vector for each dictionary term.

• −→V (qj) = {w1,j , w2,j , ..., wm,j}, 1 ≤ j ≤ 4 : the vector derived from query qj , the compo-

nents of this query make up the dictionary in the first column of VSM.

Now, Formula 6.2 calculates the Cosine similarity between the query vector, qj , and a sample

Abstract vector, ai, as a measure for the score of the Abstract in that query.

score(qj, ai) =

−→
V (qj).

−→
V (ai)

|−→V (qj)||
−→
V (ai)|

(6.2)

Table 6.4 demonstrates the Cosine similarities for four queries and all n Abstracts of

“Conservation Biology”, as defined in this section considering the published dates. After

having calculated the Cosine similarities between selected query and all Abstracts in a specific

year, for example 1987, the averages of all these scores are saved in Table 6.4. Due to the

fact that the Cosine similarity will range from 0 to 1, each score in this table is multiplied

by 1000 for the purpose of simplicity. For example, the Cosine similarity score between first

query and all published papers in year 2000 is 0.727, while that of query four and published

papers in 2010 is 0.071.
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Year Query 1 Query 2 Query 3 Query 4
1987 350 392 567 98
1988 455 336 491 84
1989 580 382 481 66
1990 530 377 525 122
1991 458 376 565 64
1992 528 379 605 58
1993 555 300 512 47
1994 581 380 587 40
1995 687 374 570 63
1996 596 376 538 79
1997 705 393 556 63
1998 502 212 341 48
1999 706 360 583 60
2000 727 281 593 62
2001 572 299 628 60
2002 711 332 721 72
2003 800 252 635 45
2004 716 261 600 52
2005 760 264 772 72
2006 614 304 739 79
2007 754 281 782 59
2008 763 242 808 36
2009 775 240 746 62
2010 674 236 863 71

Table 6.4: Similarity Values in Conservation Biology Journal (Multiplied by 1000)

6.6.4 Results

The features of TrendFinder with a case study on pioneer journals in the field of ecology and

evolution including “The American Naturalist”, “Ecology”, and “Conservation Biology” have

been demonstrated. Aims and scopes of the two first journals are evolution and ecology, re-

spectively. “Conservation Biology”, however, focuses on biodiversity conservation. The main

emphasis is only on gradual or abrupt changes in core scope of the journals. The dataset

included 19,010 abstracts during a 51 year period of time (1960 - 2010) for “The American

Naturalist”, 47 years for “Ecology” and 24 years (1987 - 2010) for “Conservation Biology”.

Four vectors of words were designed as four queries. These queries contained 17, 31, 23,

and 13 expert-knowledge keywords, respectively, selected by the expert of the relevant field.

These keys represented a certain subtopic within the science of ecology and evolution, includ-

ing “biodiversity”, “evolution”, “conservation”, and “genetics”. These subtopics (scopes)

are somehow related to the missions of the selected journals. In other words, except for

“genetics” each vector represents one of the scopes declared by journals. Keywords were

unique for the respective vector and were not repeated in other vectors. The results, shown

in Figures 6.2, 6.3, and 6.4 reveal some interesting points:

1. One vector alone may not explain the scope and mission of a journal through time. “The

American Naturalists” and “Conservation Biology”, for example, show close scores for

two subtopics across the time. In contrast, the biodiversity vector differs significantly

from other vectors of the“Ecology” journal.

2. All four subtopics remain active for all three journals. No vector has decreased to zero,
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Figure 6.2: Trends Over Conservation Biology Journal

Figure 6.3: Trends Over Ecology Journal
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Figure 6.4: Trends Over The American Naturilist Journal

indicating that the journals, although they define a narrow mission, cover additional

subtopics.

3. Subtopics may dramatically change during a short period of time or very slowly during

a long period of time. Some subtopics are growing rapidly for one journal and decreas-

ing for another journal, which can be attributed to the growing interest on specific

topics. For example, the biodiversity vector increased simultaneously for both “Ecol-

ogy” and “The American Naturalist” journal during the sixties and seventies, while

the vector decreased for both during eighties and once again increased sharply since

the nineties only for “Ecology”. In “Conservation Biology”, values of two biodiversity

and conservation vectors have experienced an increase since 1987. Evolution vector,

however, reveals a gradual continuous decrease. Figures 6.2, 6.3, and 6.4 show that

trends of subtopics vary with time, although the rank or importance of the subtopics

remain almost the same.

4. Three examined journals do not show a substantial shift in their major aims and mis-

sions. At the small time scale, however, there are repeating shifts between priorities. In

“Conservation Biology”, for example, one of two biodiversity and conservation vectors

is considered as the prime vector alternatively.

6.6.5 Summary

This chapter concentrates on the study of trend changes and their applications on web sci-

entific literature search. More specifically, we provided an understanding for the dynamic

and structural characteristics of the trends within different scientific journals and we demon-

strated the potentiality of a new and rather easy approach to the visualization and analysis

of trends of certain topics within a specific web source (scientific journal). This approach
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can easily be applied for any other types of web sources. Nevertheless, the current version

of TrendFinder is only for text based sources, developed to test the concept. We need to

develop it in some ways. For example, it would be interesting to know how the similarity

values are related with the “quality” of keywords selected by different experts or even differ-

ent algorithms (68). Furthermore, it is important to estimate and show how often abstracts

contain no keyword belonging to the list of preselected keywords.

In future studies, we are going to investigate how topics (vectors) interact over time.

Scientific topics are developed and expanded through time and are repeatedly broken or

diverged into small, new emerging topics. These new topics, however, can connect at some

points during their evolution and development. It would be important to know how often

a scientific topic (a field of work) breaks or diverges to new topics and how often and when

these new topics emerge. These trends can be also recognized from the scientific literature.

We will furthermore focus on various practical issues in order to detect emerging trends and

abrupt changes in transient research fronts. Detecting and understanding emerging trends

and abrupt change is important because it can significantly improve the ability of the scientists

to deal with changes in a timely manner.
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Chapter 7

Conclusions and Future Directions

For this thesis we performed research on a number of topics related to information retrieval

from web documents. In particular, navel solutions in the field of main content extraction

from HTML documents have been studied, developed, and evaluated. In this chapter we

summarize the contributions and formulate the conclusion which can be drawn from the

results. Afterwards we will take a look at possible directions in which to drive future courses.

7.1 Conclusions

The first part of this work, i.e. chapters one to four, has been focusing on the “main content

extraction” from web documents. Our text started by outlining the context of my research

in Chapter 1, which was expanded in Chapter 2, where we have discussed four basic topics,

i.e. :

• Understanding Text and Web Page Documents

• Information Retrieval

• Content Extraction

• R2L Languages, Unicode, and UTF-8 Encoding Form

As we have compared our novel main content extraction algorithms with previous ap-

proaches in this field, a comprehensive survey of content extraction methods has been ad-

dressed in Chapter 3. All main content extraction methods have been classified by several

aspects including:

• Single Document based Approaches vs. Multi Document Template Detection Ap-

proaches

• Stand-alone vs. Integrated Approaches

• Heuristic Techniques vs. Machine Learning Approaches

• Methods Based on DOM Tree Structure vs. Methods Based on HTML Source Code

Elements
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These could give researchers the opportunity to concentrate on a special category or even

compare all categories with each other. in Chapter 4, we introduced two valuable data sets

and evaluation methodology which can be used for the evaluation of main content extraction

algorithms. Afterward, a novel main content extraction algorithm, R2L, and its three exten-

sions DANA, DANAg, and AdDANAg have been addressed in this chapter. In the following

we summarize all these approaches:

• The first proposed algorithm, R2L, very accurately extracts the main content from

web documents with an F1 score > 0.929. This algorithm has two further technical

advantages: 1) It is DOM tree and HTML-format independent; therefore, errors or

non-standard compliant HTML documents do not pose a problem. 2) We do not need

to use a parser for our algorithm. This improves runtime efficiency over many of the

previous MCE methods which employed the DOM tree structure or used other output

of HTML parsers for their purpose. On the contrary, the R2L algorithm is not able to

achieve an F1 score closer to 1 in the case of documents where there are some Non-R2L

characters among words in the main content area.

• To overcome the problem of R2L, we introduced DANA which feeds entire lines of an

HTML file with an outline of the identified MC to an HTML parser. The output of our

parser is exactly the main content of selected regions highlighted in the third phase of

DANA. The first extension of R2L determines the main content with previously unseen

accuracy. Achieving an average F1 score > 0.935 on the test corpus used in this thesis,

it outperforms all previous methods. Also, DANA succeeded to achieve an F1 score

greater than 0.96 on over six web sites and a perfect value of 1 on BBC Urdu.

• The second extension of R2L, DANAg, is a language-independent version of DANA,

with considerable effectiveness. Results show that DANAg determines the main content

with high accuracy on many standard data sets. Achieving an average F1 score > 0.90

on the test corpora used in this thesis, it outperforms the state of the art methods in

MCE.

• AdDANAg, the third extension of R2L, is a combination and variation of DANAg and

the preprocessing of ACCB with considerable effectiveness. Results show AdDANAg

determines the main content with high accuracy on many web documents. AdDANAg

shows a previously unseen excellent performance, especially on the difficult to handle

hyperlink rich web documents.

In comparison to DANAg, AdDANAg does not show major drawbacks. Furthermore,

AdDANAg and DANAg deliver the best results for most documents. When focusing

on the set of Wikipedia web pages, which have been observed to be extremely difficult

for main content, we can observe that AdDANAg clearly outperforms DANAg and all

other approaches. The overall average F1 score for both DANAg and AdDANAg are

0.8099 and 0.8284, respectively.

The subsequently research activity, i.e. Chapter 5, has been focused on the study of the

“Headline Extraction” from HTML documents. In this chapter, we proposed TitleFinder,

a content based method for headline extraction from web pages. The main idea is to use
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the content of the title element as a candidate headline and then compute the similarity

between this candidate and all text fragments in the body of the HTML file. We implemented

TitleFinder, using four different similarity metrics. The results obtained from implementation

of four variations of the algorithms on 11,218 web pages indicated a high accuracy of our

method. In many cases we observed a perfect extraction-performance with an F1-value of

1.0.

In Chapter 6, the application of main content extraction from HTML documents and

weblogs have been discussed. In addition, we have concentrated on the study of trend changes

and their applications on web scientific literature search. We know, extracting valuable

information in terms of number and content of published papers in any field of research will

simplify decision making for future researches and investments. As a result, a novel and simple

text mining approach, called TrendFinder, has been developed in this chapter to reveal the

content-based trends of expert-defined queries in selected biological published papers during

the last five decades. Therefore, in order to evaluate the results, three different data sets,

including a total number of 19,010 papers, were collected and four vectors of selected keywords

were considered as the four queries. In order to show the trend between each query and the

Abstract of each paper, Cosine similarity method was used by TrendFinder. Afterwards,

three diagrams demonstrated the content-based trends of the four defined queries on the

three provided data sets.

7.2 Future Directions

Considering the anarchic structure of web pages which was mentioned in the First and Second

Chapters of this thesis and taking into consideration the ambiguity of main content location

in web pages, the issue of main content extraction from web pages is still interesting for

researchers. In other words, the researchers try to implement the algorithms which extract

the main content in web pages at a great accuracy. Some novel ideas are addressed here

which can surely be useful in main content extraction from web pages.

7.2.1 Identification of Upper and Lower Bound of Main Content Area

As was mentioned before in Section 4.3, the R2L Algorithm (in addition to DANA, DANAg

and AdDANAg) in its third phase, i.e. what was discussed in Section 4.3.4, looks for the

first area in the web page where the number of content characters is more than that of code

characters. This area can be comprised of just one line or several lines. Having initially found

that area of the web page which contain part of the main content, the R2L Algorithm (and

its next versions) moves up and down the area at the same third phase with a length of 20

lines (gap = 20) in order to find other areas containing the main content in the HTML file.

This threshold might fail to reach the final goal which is main content extraction with a very

high accuracy since it is possible that some parts of the HTML file which do not contain main

content may incorrectly be considered as the main content. Therefore, when it is possible

to identify both the upper and lower limits of the main content area, other main content

regions can also be found with no need for the threshold. In this case, the accuracy of the

main content extraction will be increased significantly. An algorithm is fortunately proposed
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in Chapter 5 of this thesis which is able to identify and extract a headline from web pages.

It is well known that the headline of each web page can be taken as the upper limit of the

main content area. Thereby, R2L (and of course DANA, DANAg and AdDANAg) can be

combined with TitleFinder to implement new algorithms which are capable of extracting the

main content at a considerably higher accuracy. However, the TitleFinder algorithm can also

be combined with other algorithms discussed in Chapter 3 including CCB, CETR, Density,

DSC and BTE. It is expected that such a combination would improve the accuracy of main

content extraction from web pages. After specification of the upper limit of the main content

area, one may bear in mind the question of whether or not it is possible to identify the lower

limit. It is well known that the main content area is often regarded as a sub-tree of the

HTML DOM tree so one can search for the smallest sub-tree in the DOM tree which contains

headlines of that main content area. The lower limit of main content area could be easily

recognized by finding this sub-tree. In other words, all content characters in this sub-tree

would be considered as the main content characters.

7.2.2 Posts Identifications and Main Content Extraction from Weblogs

It is clear that a great deal of data is placed on the web every day in the forms of text,

image, video or audio. Part of this information is recorded by bloggers in personal weblogs,

which could be never seen or accessed in other places. Therefore, the ability to extract this

information could be significantly useful. All weblogs are comprised of some posts which

are archived in the form of reverse-chronological order. Furthermore, in many weblogs it is

possible to write comments for the existing posts there. These comments are also placed in

the form of reverse-chronological order under each post. Now, one can address the following

issues with respect to all this useful information in weblogs:

• How can one find out the number of posts in each weblog? When the number of posts

in weblogs is known, it would be possible to get a trend of growth for the number of

posts in continuous years. Meanwhile, since weblogs usually concentrate on a special

subject, i.e. sports, politics, economics and other events, the interest of bloggers of

various subjects can be determined in specific years.

• How can one identify and extract the existing main content in each post (30)? This issue

has also been explored previously (120) (101), but since R2L algorithms and their next

versions were more successful in main content extraction compared to other algorithms,

using the algorithms proposed by this thesis (R2L, DANA, DANAg, AdDANAg) is

expected to be done successfully for the extraction of main content from weblogs.

• How can one identify and extract the comments written for each post of a weblog? It is

evident that the posts which are more important than others would contain a greater

number of comments. Another idea suggested here is the classification of the comments.

However, the extraction of the comments written for each post can be useful. It seems

interesting to note that these comments are often classified under the same sub-tree of

the DOM tree with the main content in that post. As a result, one can easily access to

the comments of that post by the identification of the main content in each post using

the relevant sub-tree which involves the post.
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Finally, it must be noted that the weblogs have a more anarchic structure than web pages.

Thereby, the algorithms which are going to be implemented for each of the above mentioned

issues for weblogs become more complicated than those of web pages.

7.2.3 Extracting the Main Content of Web pages using Similarity Methods

Most of the algorithms proposed for the extraction of main content from web pages utilize

some features such as tag density, character encoding and/or DOM tree structure in order to

find and extract the location of main content. Thus, they have rarely used semantics of the

HTML annotations for main content extraction. Based on what was mentioned previously

in Chapter 5 of this thesis, the issue of main content extraction from web pages can be in-

troduced as below:

It is obvious that by removing stopwords and running of stemming algorithms on the

content tokens in a web page, one can expect that the sentences and paragraphs which

comprise the main content to be similar to each other in terms of semantics. Therefore,

by application of a proper similarity metric (such as cosine similarity or overlap scoring

similarity), it would be possible to extract the main content from web pages at a great

accuracy regardless of HTML DOM tree structure and HTML source code elements. It is

clear that each similarity metric can use different weighting schemes (such as tf or tf-idf).

Thus, appropriate selection of the weighting scheme can also contribute to the accuracy of

the algorithm for main content extraction. Fortunately, this algorithm has been implemented

to some extent with its results being promising.
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Abbreviations

Recurring abbreviations used throughout the text, in alphabetical order:

ACCB adapted content code bluring

AdDANAg adapted DANA general

BM boolean model

BTE body text extraction

CBN content base node

CCB content code blurring

CCR content code ratio

CCV content code vector

CE content extraction

CETD content extraction via text density

CETR content extraction via tag ratio

CRF conditional random field

DANAg DANA general

DOM document object model

DSC document slope curve

FE FeatureExtracter

GSA gaussian smoothing algorithm

GSWCE gaussian smoothing-based Web content extraction

IR information retrieval

K-FE K-FeatureExtracter

KDT knowledge discovery in text

LCS longest common subsequence

LQF link quota filter

MCE main content extraction

MCEA main content extraction algorithms

MDTDA Document Template Detection Approaches

MEHH maximum-entropy markov model

MSO maximum subsequence optimization

MSS maximum substring segmentation

NLP natural language processing

NWBQAS non-web based question answering system

PCT potential content token

PCE primary (main) content extraction
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QA question answering

QAS question answering system

R2L right to left

SDBA single document based approaches

SMLM supervised machine learning methods

SMO sequential minimal optimization

SSLM statistical sequence labeling models

SVM support vector machines

TCCB token based content code blurring

TD template detection

TL tokens list

TTM temporal text mining

TTR text-to-tag ratios

UCS Unicode character set

VIPS VIsion-based Page Segmentation

VSM vector space model

WBQAS web based question answering system

WCMS Web content management system
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This appendix is devised to eliminate the ambiguity in some special words and phrases used

in this thesis.

Body text extraction (BTE): An MCE algorithm in which the tokens in Web documents

are tokenized into a number of content tokens and tag tokens. Then, a continuous subse-

quence, which contains the most content tokens and the least tag tokens, will be introduced

as the MC in this sequence of tokens.

Adapted content code blurring(ACCB): ACCB algorithm is an adapted version of a

Content Code Blurring (CCB) algorithm. Before Web documents are processed for MC

extraction, all hyperlinks are removed from them in this algorithm. This version of a CCB

algorithm makes it possible to extract MC from the Web pages which contain a great number

of hyperlinks with a much higher accuracy.

Content code blurring(CCB): An MCE algorithm which uses a technique similar to

Gaussian Blurring Filters for MC extraction from Web pages. The blurring filter is utilized

on the content code vector made in this algorithm. Meanwhile, its purpose is to select the

regions with a homogenously formatted text as the MC.

Web page: A Web page in this thesis is taken as a resource which is published on Web

and is usually accessed through a Web browser. When a request is issued from a client via

a Web browser, the user will be provided with a set of information in the form of an HTML

file which contains images, CSS codes, Script codes, etc.

Web document: An HTML file, the MC of which has been attempted to be identified and

extracted by this thesis.

Data set: A set of Web documents which are usually collected from several domains of

Websites.

Noise; Extraneous items: Includes all unwanted information retrieved by an MCE al-

gorithm together with relevant information. MCE algorithms try to remove the unwanted

information during MC extraction and stop displaying them in the output. The most common
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noises in extraction of MC from Web pages are navigation menus, advertisements, interaction

elements and references to other information sources.

Main Content extraction (MCE): Includes the process of MC identification in a Web

document. The algorithms which are usually employed for MC extraction are either cate-

gorized under machine learning based algorithms or heuristic algorithms. The later involves

more algorithms in comparison with the former.

Crunch: It is a DOM-based CE framework which employs an heuristic method for filtering

the Web pages. The main purpose of this framework is to improve accessibility for screen

readers or small screen devices.

Document Slope Curve (DSC): It is a function for displaying the distribution of content

tokens and tag tokens in a Web document. A number is attributed to the existing i − th
token in the sequence of tokens, which is equal with the number of tag tokens observed so

far. It is evident that in the region where MC is located, tokens, i.e. content tokens, have

the same values. Afterwards, in the DSC algorithm, the region with the shape of a plateau

in the curve which is calculated and generated by the DSC function is taken as MC.

F1-measure: F1-measure is used to measure the quality of IR methods. F1-measure is

obtained from the combination of Recall and Precision.

FeatureExtractor: This MCE algorithm is based on dividing a Web document into several

blocks and then attributing certain features to each of these blocks. These features can be

indicative of the number of words or images in a block and even the number of hyperlinks.

Later on, the algorithm will look for blocks which have the desired features. The desired

features include text in the field of MCE.

K-FeatureExtractor: This algorithm is an extended version of the FeatureExtractor algo-

rithm. However, this algorithm selects K blocks as the MC instead of selecting one block.

For this purpose it benefits from an adaptive k-means clustering.

Link quota Filter (LQF): It is a heuristic algorithm for extracting MC from Web pages.

This algorithm looks for regions which include a high ratio of hyperlinks to identify noises in

a Web page because these regions probably contain a navigation menu and link lists. Thus,

removing them from one Web page will cause MCE to be accomplished with a much greater

accuracy.

Longest common subsequence (LCS): The longest common subsequence (LCS) problem

is to find the longest subsequence common to all sequences in a set of sequences (often just

two).

Precision: Precision is used to measure the quality of IR methods. It includes the attribution

of relevant items to a result set.
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Recall: Recall is used to measure the quality of IR methods. It includes attribution of

relevant retrieved items to all relevant items.

R2L: R2L is a new and simple approach to extract the main content of Right to Left language

Web pages. Independence of DOM tree and HTML tags is one of the most important features

of the proposed algorithm. In practice, HTML tags have been written in English and we know

that the English character set is located in the interval [0,127]. In most languages which are

written from Right-to-Left (R2L) such as the Arabic language, however, a definite interval

of the Unicode character set is used that is certainly not in this interval. In the first phase

of R2L, this distinction is applied to separate the R2L character set from the English ones.

Then for each HTML file, the density of the R2L character set and the density of the Non-

R2L character set is determined. That part of the HTML file with a high density of the R2L

character set and a low density of the Non-R2L character set contains the main content of

the Web page with high accuracy.

DANA: DANA is a novel approach for extracting the main content from Web documents

written in languages not based on the Latin alphabet and it is the new version of R2L.

In practice, the HTML tags are based on the English language and, certainly, the English

character set is encoded in the interval [0,127] of the Unicode character set. On the other hand,

many languages, such as the Arabic language, use a different interval for their characters. In

the first phase of our approach, this distinction is used for a fast separation of the Non-ASCII

from the English characters. After that, some areas of the HTML file with a high density of

the Non-ASCII character set and a low density of the ASCII character set are determined.

At the end of this phase, this density is used to identify the areas which contain the main

content. Finally, we feed those areas to our parser in order to extract the main content of

the Web page.

DANAg: DANAg a novel language-independent method for extracting the main content of

web pages and it is the new version of DANA. The extraction process of DANAg is divided

into four phases. In the first phase, we calculate the length of content and code of fixed

segments in an HTML file. The second phase applies a naive smoothing method to highlight

the segments forming the main content. After that, we use a simple algorithm to recognize

the boundary of the main content in an HTML file. Finally, we feed the selected main content

area to our parser in order to extract the main content of the targeted web page.

AdDANAg: AdDANAg is a language-independent approach to extract the main content

of web documents and it is a new version of DANAg. This combination of techniques brings

together two pre-processing steps, e.g. to normalize the document presentation and reduce

the impact of certain syntactical structures, and four phases for the actual content extraction.

TrendFinder: TrendFinder is a novel and simple text mining approach that has been de-

veloped to reveal the content-based trends of expert-defined queries in selected published

biology papers during the last five decades.
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. GLOSSARY

TitleFinder: TitleFinder is a content-based and domain-and language-independent ap-

proach for unsupervised extraction of the headline of web articles. TitleFinder starts by

using an heuristic to select a candidate headline. In a second step the contents of each text

fragment in the HTML file are compared to the candidate headline. Four types of similarity

are implemented for this comparison: two variations of the cosine similarity based on tf and

tf-idf weighting schemata, an overlap scoring similarity and an aggregated metric combining

the scores of the previous three similarities.
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Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige fremde
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