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Abstract

In this dissertation an approach is presented for the three-dimensional electrical resistivity
tomography (ERT) using unstructured discretizations. The geoelectrical forward problem is
solved by the finite element method using tetrahedral meshes with linear and quadratic shape
functions. Unstructured meshes are suitable for modelling domains of arbitrary geometry (e.g.,
complicated topography). Furthermore, the best trade-off between accuracy and numerical ef-
fort can be achieved due to the capability of problem-adapted mesh refinement. Unstructured
discretizations also allow the consideration of spatial extended finite electrodes. Due to a cor-
responding extension of the forward operator using the complete electrode model, known from
medical impedance tomography, a study about the influence of such electrodes to geoelectrical
measurements is given.

Based on the forward operator, the so-called triple-grid-technique is developed to solve the
geoelectrical inverse problem. Due to unstructured discretization, the ERT can be applied by
using a resolution dependent parametrization on arbitrarily shaped two-dimensional and three-
dimensional domains. A Gauss-Newton method is used with inexact line search to fit the data
within error bounds. A global regularization scheme is applied using special smoothness con-
straints.

Furthermore, an advanced regularization scheme for the ERT is presented based on unstruc-
tured meshes, which is able to include a-priori information into the inversion and significantly
improves the resulting ERT images. Structural information such as material interfaces known
from other geophysical techniques are incorporated as allowed sharp resistivity contrasts. Model
weighting functions can define individually the allowed deviation of the final resistivity model
from given start or reference values. As a consequent further development the region concept
is presented where the parameter domain is subdivided into lithological or geological regions
with individual inversion and regularization parameters. All used techniques and concepts are
part of the open source C++ library GIMLI, which has been developed during this thesis as an
advanced tool for the method-independent solution of the inverse problem.





Contents

1. Overview 7

I. Modelling 11

2. Geoelectrical forward problem 13
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Calculation of the total potential . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1. Finite element modelling . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3. Calculation of the secondary potential . . . . . . . . . . . . . . . . . . . . . . 19
2.4. Solving the system of equations . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5. Mesh generation and refinement . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1. Quality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2. Discretization for calculating the total potential . . . . . . . . . . . . . 22
2.5.3. Discretization for calculating the secondary potential . . . . . . . . . . 24

2.6. Modelling geometry effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1. A subsurface example . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.2. A complicated surface topography . . . . . . . . . . . . . . . . . . . . 28

2.7. Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8. Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Modelling finite electrodes 37
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2. The complete electrode model . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3. Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1. Influence on surface resistivity arrays . . . . . . . . . . . . . . . . . . 45
3.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1. Model tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2. Plate-shaped electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.3. Modelling a good conductor with CEM . . . . . . . . . . . . . . . . . 52
3.4.4. Vertical electrode chain . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5



Contents

II. Inversion 57

4. Inversion on unstructured meshes 59
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3. The three meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4. Inversion scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1. The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2. Sensitivity calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3. Solution of the inverse subproblem . . . . . . . . . . . . . . . . . . . 65
4.4.4. Choice of the regularization parameter . . . . . . . . . . . . . . . . . . 66
4.4.5. Line search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.6. Triple-grid inversion scheme . . . . . . . . . . . . . . . . . . . . . . . 68

4.5. A synthetic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1. Synthetic model and data . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2. Geometry effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.3. Inversion result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.4. Comparison with even surface . . . . . . . . . . . . . . . . . . . . . . 74

4.6. Application to field data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7. Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5. Advanced electrical resistivity tomography 81
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1. Generalized minimization approach . . . . . . . . . . . . . . . . . . . 83
5.2.2. Transformation functions . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.3. Region concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.1. Incorporating structural constraints from seismics . . . . . . . . . . . . 87
5.3.2. Demonstration of the region concept by an underwater survey . . . . . 89
5.3.3. Incorporating borehole parameter information . . . . . . . . . . . . . . 92
5.3.4. Solving a 1D inverse problem while modelling in 3D . . . . . . . . . . 95
5.3.5. Geological block inversion . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6. Summary and Outlook 101

A. Element integration and shape functions 103

Bibliography 109

6



1. Overview

The Electrical Resistivity Tomography (ERT) denotes an imaging technique for direct current
(DC) resistivity data and is a proven area of applied geophysics. The main purpose of ERT is the
non-invasive determination of the spatial distribution of the electrical resistivity. The electrical
resistivity respectively his reciprocal, the electrical conductivity, depends on several lithological
and petrophysical parameters, hence the knowledge about the conductivity distribution permits
assumptions about geological settings in the ground.

The field technique is rather simple in its basic application. Apparent resistivity data values are
obtained by using spatially distributed four-point measurements and depends on the measured
voltage, the injected current and a scaling geometric factor. Modern multi-electrode systems
have received a high technical standard nowadays and allow efficient two-dimensional (2D)
and three-dimensional (3D) surveys, which make the method today a practical geophysical ex-
ploration tool for environmental and engineering studies.

The interpretation of the geoelectrical data represents an inverse problem. The main task of
the inversion is to find a discrete distribution of the resistivity in the ground (the so-called
model), which can explain the data within their measured errors. Three-dimensional surveys
at all scales, subsurface voids and surface topography are challenges that have to be addressed
by modern inversion software to reconstruct the resistivity for realistic environments. Addition-
ally, the general problem of all inversion strategies is the ambiguity of the method. However,
often additional information or assumptions exists, which might be counteract the problem of
ambiguity but can be hardly incorporated by conventional strategies. The modelling, i.e., the
simulation of the data based on a given model, is the decisive element of the inversion process.
The main request for the modelling is to achieve at least the accuracy of the measured data with
minimized effort under consideration of arbitrary modelling geometries and possible sources of
systematic errors (e.g., electrode effects).

The central part for both modelling and inversion is the discretization of the area under inves-
tigation, which have to meet all requirements for a modern ERT software. Unstructured dis-
cretizations are suitable for the modelling as they allow the best trade-off between accuracy and
numerical effort and on the other hand they can be chosen problem-adapted for the inversion.
However, this requires new techniques that were developed during this work.
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1. Overview

In this thesis unstructured discretizations based on tetrahedrons are the fundamentals to develop
a forward operator, which acts for the modelling and have to fit all the needs mentioned before.
Unstructured discretizations allow also the considerations of spatial extended finite electrodes.
Due to a corresponding extension of the forward operator, a study about the influence of such
electrodes to geoelectrical measurements is possible for the first time.

Based on the forward operator a flexible inversion strategy is developed with close collaboration
with Dr. Thomas Günther (Leibniz Institute for Applied Geophysics, Hannover) as an efficient
ERT tool for arbitrarily shaped three-dimensional domains. An advanced regularization scheme
based on unstructured meshes allows for the incorporation of both structural and parameter
a-priori information into the inversion.

All used techniques and concepts are part of the open source C++ library GIMLI, which has
been developed during this thesis as an advanced tool for the method independent solution of
the inverse problem. The forward operator which is specially adapted for the DC resistivity
problem represents the basis for the application suite BERT (Boundless Electrical Resistivity
Tomography) which is increasingly used in the geoelectrical community (e.g, Ullrich et al.,
2008; Clément et al., 2009; Bock et al., 2010; Flechsig et al., 2010; Schütze et al., 2010; Doetsch
et al., 2010). However, the presented thesis does not show programming issues but the physical
and mathematical concepts and is divided into two main parts modelling and inversion and is
outlined in the following.

Geoelectrical forward problem This chapter presents the fundamentals for the three-dimens-
ional geoelectrical forward operator using the finite element method with linear and quadratic
shape functions on unstructured tetrahedral meshes. The unstructured discretization allows effi-
cient local mesh refinement and most flexible description of arbitrary model geometries. There-
fore, refinement strategies are investigated for the efficient calculation of the primary and the
secondary electrical potential. The influence of complicated topography on geoelectrical mea-
surements is shown by two examples and quantified by the so-called geometry effect. Further-
more, some approaches are compared for the solution of the resulting system of equations.
Essential parts of this chapter have been published in Rücker et al. (2006).

Modelling finite electrodes This chapter provides the physical and mathematical fundamen-
tals of the complete electrode model (CEM), which is known from medical impedance tomogra-
phy. The geoelectrical forward operator is extended by the CEM and the solution of the electri-
cal field is validated by an analytical model. The influence of spatial extended electrodes to geo-
physical measurements are quantified by the electrode effect and investigated for typical geo-
electrical survey arrays. The electrode effects are studied also for non typical plate electrodes.
Beside the capability of considering real current and potential electrodes, two additionally pur-
poses are demonstrated. The use of a passive electrode as a high conductive body within the
modelling domain and the realistic simulation of the effects of a drilling using ring electrodes.
Essential parts of this chapter are accepted for publication Rücker and Günther (2011).

8



Inversion on unstructured meshes This chapter introduces the triple-grid inversion tech-
nique for efficient determination of three-dimensional resistivity structures based on unstruc-
tured tetrahedral meshes and the forward operator described above. The eponymous meshes
are described as well as the inversion approach. A Gauss-Newton method is used with inexact
line search to fit the data within error bounds. A global regularization scheme is applied using
special smoothness constraints. The inverse sub-problem is calculated by an adapted conjugate
gradient solver. The technique is applied on a 3D synthetic example and a 3D field-dataset. Both
examples containing steep topography. Furthermore, an approach is given for reducing the sen-
sitivity matrix to cope with memory limitations of today’s standard PC. Essential parts of this
chapter has been published in Günther et al. (2006).

Advanced electrical resistivity tomography This chapter describes an advanced regulariza-
tion scheme for the flexible incorporation of a-priori information. Beside the theoretical back-
ground, transformation functions are introduced, which allow the restriction of the resulting
resistivity range by the use of logarithmic barriers. Furthermore, the so-called region concept is
developed. The inversion domain is thereby subdivided into lithological or geological regions
with individual inversion and regularization parameters. The regularization scheme as well as
the region concept is demonstrated on several field examples to show the capability of incor-
porating structural information (e.g., from refraction seismic surveys) and the considering of
discrete resistivity values (e.g., from borehole logs). Regions can also be treated as single pa-
rameters, which allows model reduction. This is demonstrated by two further examples. The
inversion of a 3D problem that is reduced to its 1D inversion-character and the interpretation of
a very sparse dataset. The publication of essential parts of this chapter is in preparation.

9



1. Overview

10



Part I.

Modelling
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2. Geoelectrical forward problem

Abstract

This section presents a technique for the efficient numerical computation of the elec-
trical potential with the finite element method in three dimensions and arbitrary topog-
raphy. The crucial innovation is, firstly, the incorporation of unstructured tetrahedral
meshes which allow efficient local mesh refinement and most flexible description of
arbitrary model geometry. Secondly, considerably more accurate results are achieved
by the implementation of quadratic shape functions. Exploiting a secondary poten-
tial approach, meshes are downsized significantly in comparison with highly refined
meshes for total potential calculation. However, the latter is necessary for the deter-
mination of the required primary potential in arbitrary model domains. To start with,
homogeneous models with different geometries at the surface and subsurface are sim-
ulated to quantify their influence. This results in a so-called geometry effect, which
is not only a side effect but may be responsible for serious misinterpretations. More-
over, it represents the basis for treating heterogeneous conductivity models with the
secondary potential approach, which is especially promising for the inverse problem.

It is addressed how the resulting system of equations is solved most efficiently us-
ing modern multi-frontal direct solvers in combination with reordering strategies or
rather traditional preconditioned conjugate gradient methods depending on the size of
the problem. Furthermore, a reciprocity approach to estimate modelling errors is pre-
sented, and it is investigated to which degree the model discretization has to be refined
to yield sufficiently accurate results.

2.1. Introduction

Numerical calculation of the electric field started in the late 1960s using the techniques of inte-
gral equations (Dieter et al., 1969), finite elements (Coggon, 1971) and finite differences (Mufti,
1976). A special variant based on integral equations is the boundary element method (Okabe,
1981). Finite difference (FD) calculations in three dimensions go back to Dey and Morrison
(1979). They were the methods of choice throughout the 1980s and 1990s and were refined

13



2. Geoelectrical forward problem

several times. Zhang et al. (1995), e.g., presented improved boundary conditions for a more
accurate potential approximation and Spitzer (1995), e.g., introduced efficient preconditioned
conjugate gradient solvers to decrease execution time.

By splitting up the total potential (TP) into a known reference potential of a background model
and a secondary potential (SP) due to conductivity deviations from the background model,
accurate numerical calculations of the secondary potential can be carried out on moderate
grids (Coggon, 1971). This technique is known as singularity removal (Lowry et al., 1989)
and was enhanced by Zhao and Yedlin (1996). However, it is used only for flat-earth problems
with analytically known potentials.

The finite difference method is restricted to orthogonal grids which limit its ability to reproduce
non-orthogonal geometries. In recent years, more and more finite element (FE) approaches ap-
peared which are generally not subject to these drawbacks. Besides the aforementioned paper
by Coggon (1971), FE formulations of the direct current (DC) resistivity problem are described
in Pridmore et al. (1981); Queralt et al. (1991); Li and Spitzer (2002); Zhou and Greenhalgh
(2001); Pain et al. (2003). Simulations with surface topography were presented in two dimen-
sions (2D) Coggon (1971); Fox et al. (1980) and three dimensions (3D) Holcombe and Jiracek
(1984); Sasaki (1994); Yi et al. (2001). However, the presented algorithms mainly work with
block-oriented (structured) discretizations using hexahedral or tetrahedral elements and, thus,
do not exploit the full power of the FE approach. Sasaki (1994) and Zhou and Greenhalgh
(2001) use tetrahedral grids but since they are derived from bricks the approach is still block-
oriented.

Figure 2.1 shows three possible grid types. The grids in (a) and (b) are of type regular (struc-
tured). The orthogonal hexahedral grid (a) is the one that is furthermost restricted with respect to
geometrical flexibility and local refinement. The local refinement of (b), a non-orthogonal reg-
ular hexahedral type, is still awkward and inefficient, but its geometrical adjustability is already
increased. The grid in (c) shows an unstructured or irregular tetrahedral type which is evidently
the most flexible discretization in this regard. Especially the refinement of regular grids results
in an immoderately increased number of nodes, which consequently expands the numerical ef-
fort. An unstructured discretization, commonly called mesh, is highly superior to the structured
types with respect to the geometrically flexibility and the expected numerical performance, the
ration between accuracy and effort.

In this work the C++ class library GIMLI has been developed, which provide the solution of fi-
nite element problems and applies the non-commercial mesh generator TetGen Si (2004) for the
generation of unstructured tetrahedral meshes. Therefore two subjects can be addressed. Firstly,
any model topography and electrode layout can be described flexibly, e.g., arbitrary electrode
positions can be represented by prefixed nodes within the mesh. Secondly, the node distribu-
tion can be controlled on demand by refining the mesh locally in the vicinity of electrodes or
at strong conductivity contrasts, i.e., where strong gradients of the simulated potential require

14



2.1. Introduction

a) b) c)

Figure 2.1.: Different grid types: a) Orthogonal cuboid, b) non-orthogonal hexahedral and c) unstruc-
tured tetrahedral grid

enhanced accuracy. In return, coarse grids toward the boundaries are sufficient to approximate
the rather smooth fields.

As a result of any discretization technique, a sparse system of equations has to be solved for
each current location. Spitzer and Wurmstich (1999) gave an overview on non-stationary itera-
tive equation solvers for DC resistivity problems. They suggest conjugate gradient techniques
with preconditioners. One very efficient, albeit memory consuming technique is obtained by
an incomplete Cholesky decomposition (Kershaw, 1978) as applied to DC modelling by Dey
and Morrison (1979) and Li and Spitzer (2002). In contrast to these iterative methods direct
equation solvers have made substantial progress in recent years. Multi-frontal decomposition
methods going back to Duff et al. (1986) seem to suit best for problems with many right-hand
sides, since the decomposition is done only once. The use of reordering techniques helps to
limit the memory requirements for direct methods as well as for the incomplete Cholesky pre-
conditioner.

Accuracy in DC resistivity modelling is enhanced not only by grid refinement strategies but also
by employing higher order base functions in the FE approach. It can be shown that a combina-
tion of both, mesh refinement and quadratic shape functions, yields most efficient solutions.

First an introduction to finite element modelling, unstructured mesh generation and refinement
is given. The homogeneous half-space is used to investigate how refinement strategies improve
the results for the calculation of the total potential. As a continuation, a conducting half-sphere
is used to demonstrate the geometric flexibility of the presented approach and to apply the
secondary potential modelling. With the help of two examples it will be shown how complicated
subsurface and surface geometry can be involved. A geometry effect is defined to appraise the
influence of any topography on DC resistivity measurements. Finally, the computational aspects
for the solution of the system of equations are discussed.

15



2. Geoelectrical forward problem

2.2. Calculation of the total potential

The boundary value problem for the direct current (DC) resistivity forward problem is given by
the equation of continuity with mixed boundary conditions:

∇ · (σ∇u) =−∇ · jjj in Ω⊂ IR3 (2.1a)

∂u
∂nnn

+αu = 0 on ∂Ω = ∂ΩS∪∂ΩI , (2.1b)

where σ(x,y,z) represents a given conductivity distribution in the ground, jjj the source current
density and u is the sought electrical potential. The electrical resistivity ρ , which is the most
widely used material parameter in DC geophysics, equals the reciprocal of σ . The classical
geoelectrical source term for the current density jjj reads

∇ · jjj = Iδ (rrr− rrrs) (2.2)

and assumes a current I being injected through a point-like electrode situated at rrrs = (xs,ys,zs).
The Dirac’s delta δ forces a singular current density at the source position. The formulation
(2.1a) allows point sources at arbitrary positions inside the domain as well as sources on the
boundary of the modelling domain. However, the expression does not take into account the
physical presence of finite electrodes that may influence practical measurements. Chapter 3
gives a detailed insight into the modelling of finite electrodes and their influence on geoelectrical
measurements.

The type of boundary condition for the geoelectrical problem in equation (2.1b) is specialized
by α . At the earth’s surface ∂ΩS (i.e. air/material interface) homogeneous Neumann conditions
(α = 0) are applied to avoid current flow through the boundary along the outward normal nnn.

To allow an asymptotic decrease of the potential on an artificial subsurface boundary ∂ΩI, Dey
and Morrison (1979) impose α = (nnn · rrr)/r2 for a current source at the earth’s surface, whereas
r = |rrr| is the radial distance between the current source and the corresponding boundary. A more
generally form for a buried current source inside the domain is given by (Zhou and Greenhalgh,
2001)

α =
r′3nnn · rrr + r3nnn · rrr′
(r3r′3(r + r′))

(2.3)

with r′ = |rrr′| where rrr′ denotes the image position of rrr regarding the earth’s surface. This type
of boundary condition is sometimes referred to as Robin type (Herwanger et al., 2004).

Note that on pure Neumann domains, e.g. α = 0 on the whole boundary as in modelling tanks,
there are two additional requirements ensuring a unique solution. First, the conservation of
charge

∫
∂Ω

jjj ·nnn = 0 (total current flow on the whole boundary ∂Ω is zero), which can simply be

16



2.2. Calculation of the total potential

achieved by using a reference electrode or dipole current pattern. Secondly, since only deriva-
tives of u are present on the boundary, the solution of equation (2.1) becomes ambiguous and
hence the system of equations becomes singular. This can be avoided by choosing an arbitrary
reference point on the boundary with the additional condition u = 0.

2.2.1. Finite element modelling

To find a unique solution for equation (2.1a) considering the boundary conditions (2.1b), the
finite element method (FEM) (Zienkiewicz, 1977) is applied.

There are two approaches to FEM, the variational formulation (Pridmore et al., 1981; Sasaki,
1994; Li and Spitzer, 2002) and weighted residuals (Zhou and Greenhalgh, 2001). Both ap-
proaches lead to the so-called weak formulation of the boundary value problem. This weak
formulation allows a piecewise approximation of the solution u but does not require the exis-
tence of a continuous second derivative.

The method of weighted residuals is more general and (in case of the DC problem) equivalent to
the variational formulation (Zhou and Greenhalgh, 2001). For a generalized partial differential
equation (PDG) D(u)+ f = 0 exists an approximated solution uh ≈ u which solves the PDG
with a residuum R, D(uh)+ f = R. Choose yet undetermined weighting function w which fulfil
the condition ∫

Ω

wR dΩ = 0 . (2.4)

Applying the weighted residuals approach (2.4) on the fundamental DC equation (2.1a) and
further partial integration to vanish the second derivatives, leads to the weak formulation of the
DC resistivity forward operator:∫

Ω

σ∇w∇u dΩ−
∫

∂Ω

σw
∂u
∂nnn

d∂Ω =
∫
Ω

w∇ · jjj dΩ . (2.5)

The 2nd term on the left side is a placeholder for the boundary conditions from equation (2.1b)
which are necessary to solve the equation. The Neumann boundary condition ∂u/∂nnn = 0 on the
boundary ∂ΩS is automatically satisfied hence their common name, natural boundary condition.
The Robin boundary condition on ∂ΩI is applied with ∂u/∂nnn = −αu so the complete weak
formulation can be read as:∫

Ω

σ∇w∇u dΩ+
∫

∂ΩI

σwαu d∂Ω =
∫
Ω

w∇ · jjj dΩ (2.6)

which has to be solved for a set of appropriate weighting functions w.
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2. Geoelectrical forward problem

The fundamental FEM principle provides the approximated solution uh belonging toN discrete
points (nodes) within the domain:

u≈ uh =
N
∑
i=1

Niuhi (2.7)

The base functions N represent interpolation rules for the sought potential uh in each node.
The subscript h can be interpreted as the smallest distance between two nodes hence converge
uh→ u for h→ 0.

Applying the FEM approximation rule (2.7) to the weak formulation (2.6) and determining the
unknown weighting functions after Galerkin’s criterion (w j = N j) (Zienkiewicz, 1977) leads to
the finite element approximation for the DC forward problem:

N
∑
i=1

uhi

∫
Ω

σ∇N j∇Ni dΩ+
∫

∂ΩI

σαN jNi d∂Ω

=
∫
Ω

N j∇ · jjj dΩ for j = 1 . . . N . (2.8)

Dissecting the domain into C elements (hence the name finite element method) with element-
wise constant conductivity σ (e) and BI inner boundaries leads to a symmetrical system of equa-
tions:

Au = b , (2.9)

with A =
C
∑
e=1

σ
(e)S(e) +

BI

∑
b=1

σ
(b)

α
(b)M(b) ,

b =
C
∑
e=1

l(e)Iδ (rrr− rrrs)

and u = [uhi] , for i = 1 . . . N

that can be assembled from local element matrices:

S(e) =
∫

Ω(e)

∇Nk∇Nl dΩ , l(e) =
∫

Ω(e)

Nk dΩ for k, l = 1 . . .N (e)

and M(b) =
∫

∂Ω(b)

NkNl d∂Ω for k, l = 1 . . .N (b) . (2.10)

S(e) is referred to as the so-called local stiffness matrix for each element Ω(e), M(b) the local
mass element matrix for each boundary element ∂Ω(b) and l(e) the load vector for the respective
element Ω(e) that contains a current source. The contributions from these matrices depend on
the type of the element as well as on the base functions N. For details on the implementation
with linear and quadratic base functions refer to Appendix A.

18



2.3. Calculation of the secondary potential

2.3. Calculation of the secondary potential

The Dirac delta function δ in the source term of the DC equation (2.1a) leads to infinite poten-
tial gradients at the source position rrrs. Typically, this singularity is responsible for very poor
numerical approximations, particularly close to the electrode positions. The singularity can be
removed according to a procedure described by Coggon (1971) for FE and Lowry et al. (1989)
for FD. The total potential (TP) u is split up into a primary and a secondary part, u = up + us.
The primary potential up is a known electrical field for a given background conductivity struc-
ture σp and satisfies the source term: ∇ · (σp∇up) = −∇ · jjj. Usually the analytical solution for
the homogeneous half-space is used but also more complex background structures (vertical dike
or layered models) can be applied (Li and Spitzer, 2002).

The boundary value problem for the secondary potential (SP) reads:

∇ · (σ∇us) = ∇ · ((σp−σ)∇up) in Ω (2.11a)

∂us

∂nnn
+αus =

∂up

∂nnn
+αup = 0 on ∂ΩI , (2.11b)

where the singular current density jjj is vanished. However, the integral of equation (2.11a)
contains the gradient of the primary potential up. The precondition for it being regular is that
the conductivity in the direct vicinity of the electrode equals σp, as already mentioned by Zhao
and Yedlin (1996). To determine σp, the local conductivity at the electrodes has to be chosen
and not the mean conductivity as suggested by Lowry et al. (1989). Secondary sources appear
where the conductivity deviates from σp.

Both left-hand side and right-hand side differential operators are identical to that of the total
potential. By approximating the operators by matrices the system of equations can be written
as

Aσ us = Aσp−σ up . (2.12)

In order to avoid the assembling of Aσp−σ for each source conductivity σp, the linearity of A is
exploited by

Aσp−σ up = (Aσp−Aσ )up = A1upσp−Aσ up . (2.13)

Thus only one matrix A1 for a homogeneous conductivity of 1 has to be created additionally
to Aσ for the whole forward calculation with many sources and heterogeneous conductivity
distribution.
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2. Geoelectrical forward problem

2.4. Solving the system of equations

The boundary conditions and, thus, the corresponding matrix entries depend on the source po-
sition. In order to avoid the intense reassembling of the coefficient matrix for each individual
source of a multi-electrode system a constant average source position for the boundary condi-
tions is used, which is sufficiently accurate since the boundaries are generally far away from the
sources. Hence, the matrix A is constant.

For the total and the secondary potential a system of equations Aul = bl has to be solved for
each current source l = 1, . . . ,E , where E is the number of current sources, i.e. number of used
electrodes. Thus, the system of equations is solved E times. Given that the individual electrodes
usually used more than once in typical DC measurements, it is most efficient to calculate the
potential for each single electrode and superpose the results.

Matrix A is symmetrical, sparse, positive definite and of dimension N ×N ∈ R where N is
the amount of nodes used for the discretization of the modelling domain. With linear shape
functions generally between 3 and 20 non-zero entries per row, with a mean of around 14, are
obtained.

For the solution of such large systems of equations with sparse matrices, conjugate gradient
(CG) methods (Hestenes and Stiefel, 1952) prove to be very efficient (Spitzer and Wurmstich,
1999). Their convergence can be significantly improved by the use of preconditioners. A very
efficient preconditioner for many right-hand side vectors is achieved by incomplete Cholesky
(IC) factorization of A, because the preconditioning process is done only once and the number
of iterations per individual right-hand side vector is drastically reduced. There are two main
variants of the incomplete factorization (Saad, 1996; Zhou and Greenhalgh, 2001). One restricts
the non-zero elements to the sparsity structure of A (Dey and Morrison, 1979; Li and Spitzer,
2002; Wu et al., 2003). Another variant allows fill-in but neglects values smaller than a certain
threshold (Saad, 1996). In the following addressed as IC-nofill and IC-droptol.

The conjugate gradient method using IC-droptol is something like a hybrid between iterative
and direct methods. An IC decomposition with a threshold of 0 corresponds to a direct solver
since the iteration is stopped after 1 iteration step. Consequently, direct methods are the matter
of choice, if there is enough memory to save the complete Cholesky factor. In recent years multi-
frontal algorithms have been developed (Duff et al., 1986), which allow for efficient Cholesky
decomposition. The C library TAUCS (Toledo et al., 2001) as iterative solver based on the
multi-frontal method and the direct sparse Cholesky factorization package CHOLMOD (Chen
et al., 2009) were used.

The fill-in produced by the (complete or incomplete) Cholesky factorization can be significantly
diminished by reordering the matrix rows and columns. Historically, the oldest methods are
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Cuthill-McKee (CMK) and Reverse Cuthill-McKee (RCM). A detailed description of the indi-
vidual methods would go beyond this paper and can be found in mathematical literature (Saad,
1996). Generally, three classes exist:

• Nested dissection (ND) is based on geometrical node separation (graph partitioning). A
popular and very efficient implementation is METIS (Karypis and Kumar, 1998).

• Minimum degree (MD) methods try to reduce the neighbouring relations (degrees) of the
nodes. Popular methods are multiple minimum degree (MMD) and approximate mini-
mum degree (AMD) (Amestoy et al., 1996).

• Minimum deficiency (MF) is a much more extensive technique which successively elim-
inates the nodes with minimal fill-in (Davis et al., 2000).

2.5. Mesh generation and refinement

An initial partitioning of the modelling domain often incorporates the given electrode layout
as fixed nodes. However, an additional refinement has to be applied to obtain accurate forward
calculations due to the singular potential at the electrodes. The existing approaches use block-
oriented grids for both FD and FE calculations (Loke and Barker, 1996b; Wu et al., 2003; Yi
et al., 2001). To minimize the error of the forward calculation, grid lines between the electrodes
are introduced. Using between two and four additional grid lines all calculations end up in
around 4% relative error for a pole-pole configuration (Yi et al., 2001).

For a successive superposition of configurations with large geometric factors (such as dipole-
dipole) a further refinement is required since the relative error is amplified by the geometric
factor. However, since refining block-oriented grids always works in a global way, the number
of nodes increases rapidly. One main advantage of unstructured meshes is the facilitation of
refining grids within distinct regions. Thus in regions of varying potential gradients (close to
electrodes) the mesh can be chosen very fine whereas the cell sizes grow toward the boundaries
of the modelling domain.

It can be distinguished between a-posteriori and a-priori refinement. For the former, the dis-
cretization depends on an error estimation procedure in the solution process, whereas for the
latter, the information is introduced in advance. Since the critical regions are known, the a-
priori type is chosen to enforce a locally fine mesh by introducing additional supporting nodes
to the mesh generation process.
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2. Geoelectrical forward problem

2.5.1. Quality measures

In addition to the local node density, the approximation quality depends on the cell size growth
(or prolongation) factor. This can mainly be controlled by the ratio of the tetrahedral edge
lengths and the radius of the circumscribing sphere. Since sliver-shaped elements yield poor
approximation properties, so-called mesh generators try to minimize the radius-edge ratio. The
maximum ratio throughout the mesh can be used as a global mesh quality control.

The applied mesh-generator TetGen (Si, 2004) tries to force all radius-to-edge ratios below a
certain quality constraint. For all subsequent meshes a radius-to-edge ratio of 1.2 is chosen,
which, due to experience, provides sufficiently accurate results.

To create an unstructured mesh the domain has to be defined by points, polygons or faces, the
so-called piecewise linear complex (PLC) (Si, 2004). It includes the geometry of the domain and
the electrode locations as well as the boundary. By introducing nodes and creating tetrahedral
elements, the mesh generator creates the mesh of the desired quality.

In the following study, local and global refinement techniques are investigated to find a best
trade-off between accuracy and computational effort. In addition to the spatial mesh refinement
(h-method), the use of higher order shape functions (p-method) was taken into account.

2.5.2. Discretization for calculating the total potential

A uniform earth with a flat surface boundary offers the most simple analytical solution for a
homogeneous resistivity distribution ρ = 1/σ = 1Ωm with:

u =
Iρ

2π|rrr− rrrs|
(2.14)

at radial distance rrr(x,y,z) from source location rrrs(xs,ys,zs).

A straight line is defined containing 21 electrode nodes with 1 m spacing. The model boundaries
are placed at 5 km around the origin in order to minimize the effects of the boundary conditions.
The first mesh created by the mesh generator TetGen obtains 2047 nodes.

Figure 2.2 shows the relative deviations of a pole-pole sounding curve between analytical and
numerical solutions at the electrode locations. The numerical results can be read directly from
the FEM solution u at the given nodes for the electrodes. In the vicinity of the source electrode
quite large errors can be observed, whereas the error stabilizes at around 5% with increasing
distance.

To diminish the large errors at the sources, the discretization density is increased around the
source node. By adding supporting points at a fixed depth dz below the electrodes, the mesh

22



2.5. Mesh generation and refinement

5 10 15 20
Distance from source [m]

0

5

10

15

20

25

R
el

at
iv

e
de

vi
at

io
n

[%
]

dx = 0.0 m, 2047 nodes
dx = 0.1 m, 5179 nodes
dx = 0.01 m, 13074 nodes

Figure 2.2.: Relative deviation between analytical and numerical solutions of a pole-pole sounding for
three meshes with increasing local refinement around the source electrode (total potential
calculations).

generator is forced to apply a local refinement. In addition to the coarse unrefined mesh denoted
by dz = 0.0 m (2 047 nodes), Figure 2.2 shows the results for the locally refined meshes denoted
by dz = 0.1 m (5 179 nodes) and dz = 0.01 m (13 074 nodes). The error is almost constant for
dz = 0.1 m. The later local refinement (dz = 0.01 m) yields only a negligible improvement.
Therefore an a-priori mesh refinement of dz = 0.1 m is proposed sufficient and used in the
further.

Apparently, a global refinement is needed to enhance the global error level of ≈ 4%. The sim-
plest strategy is to bisect all tetrahedron edges (h-refinement) such that each tetrahedron disin-
tegrates into 8 smaller ones. The number of nodes is increased approximately by a factor of 8
(38 533 nodes). Alternatively, the second order polynomials are applied (p-refinement) by re-
placing the 4-node tetrahedron by a 10-node tetrahedron, with a new node at each edge centre.
Therefore, the resulting amount of mesh nodes is identical to those of the h-refined mesh.

Figure 2.3 shows the relative deviations for the intermediate mesh of Figure 2.2 of 5179 nodes
(top), after a global h-refinement to 38 533 nodes (centre), and with the use of quadratic shape
functions (bottom, also 38 533 nodes). By global h-refinement the error is halved to less than
2%, whereas quadratic shape functions yield errors around 0.1% and below. The computational
effort for solving the system of linear equations is nearly the same in both cases. However,
significantly more accurate results can be obtained by using the p-refinement method.

First investigations show that efficiency may not be improved any further by the use of even
higher polynomial order. Therefore, the use of moderately locally refined meshes with quadratic
shape functions is proposed for all calculations of the total potential.
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Figure 2.3.: Relative deviation between the numerical and analytical solutions of a pole-pole sounding
for different meshes and shape functions (total potential calculations).

2.5.3. Discretization for calculating the secondary potential

In order to show the flexibility of unstructured meshes a spherical anomaly was chosen, which
can hardly be discretized by block-oriented grids. The analytical solution for a conducting
sphere is known (Large, 1971; Zhdanov and Keller, 1994). However, instead of a sphere in
full-space, a half-sphere at the upper boundary of a half-space is considered, on which elec-
trodes are placed along a profile line. Since the half-space boundary is an axis of symmetry, the
solution can easily be obtained by doubling the calculated potential values.

The secondary potential is expected to be rather smooth so that the first calculation may start
with a quite coarse mesh. Figure 2.4 shows a section of the meaningful parts mesh. A half-
sphere with a radius of 2.25 m is placed at the origin. A line of 21 electrodes from x = −5 m
to x = 5 m with a spacing of 0.5 m is defined using fixed nodes. Note that the electrodes can
be placed independently of the nodes in general, however, defining fixed nodes in this example
avoids possible interpolation issues while collecting the resulting potentials.

The model boundary is also chosen away from the origin in each direction (1000 m). Using a
radius-to-edge ratio of 1.2 a mesh of 1769 nodes has been generated on which the secondary
potential is simulated. Defining the resistivity of half-sphere to 1 Ωm, whereas the half-space
has ρp = 10Ωm. The source electrode is set at rrrs = (−4;0;0) and the primary potential is
calculated with equation (2.14) assuming a background resistivity of 10Ωm.

Consequently, sources for the secondary potential occur only within the half-sphere. The cal-
culated potentials at the remaining electrodes are transformed into apparent resistivities using
pole-pole geometric factors. In Figure 2.5, the numerical results are compared to the analytical
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2.5. Mesh generation and refinement

Figure 2.4.: Section of the mesh used for the conducting half-sphere study. The dots denote electrode
positions.
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Figure 2.5.: Apparent resistivity of a pole-pole configuration over a conducting half-sphere: comparison
of analytical and numerical results using secondary potentials (A is the source position). The
right-hand axis denotes the relative deviation and the reciprocity measure r.

solution. Although the number of nodes is very small, the numerical and analytical values agree
very well. The relative deviation (right-hand axis) stays below 1% on the whole profile.

In the following a measure of accuracy is derived for cases where the analytical results are
not available. Going back to the idea of Coggon (1971), Günther (2004) suggests to appraise
the simulation results based on reciprocity. According to the reciprocity principle the measured
potential remains constant if current and potential electrodes are interchanged. A deviation from
this inevitably corresponds to simulation errors. The reciprocity measure is proposed as an
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2. Geoelectrical forward problem

indication for modelling errors:

r = 2
ρa

forward−ρa
reverse

ρa
forward +ρa

reverse
, (2.15)

where ρa
forward and ρa

reverse are the two simulated apparent resistivities with interchanged current
and potential electrodes. Figure 2.5 shows that in regions of increased errors the reciprocity
measure r rises. To appraise the accuracy of a multi-electrode simulation, the standard deviation
and the maximum value of the individual reciprocity measures can be regarded.

In order to compare the SP results with the solution for the total potential, a mesh has been
constructed for calculating the latter for the half-sphere model. The refinement factors have
been chosen such that the accuracy is just as good as the one depicted in Figure 2.5. This
proceeding ends up with 49 341 nodes which is almost 30 times more than for the secondary
potential (1 769 nodes). Thus, the secondary potential may be simulated on coarse meshes and
with small computational effort. However, if topography is present, the primary potential can
only be computed numerically. In the following, the calculation of the primary potential is
investigated for a constant resistivity on different non trivial model geometries.

2.6. Modelling geometry effects

In general, the measured electrical impedance ∆u/I is transformed into the apparent resistivity
ρa by means of the geometric factor k. The latter is chosen such that the apparent resistivity
equals the true resistivity in case of a homogeneous distribution. The geometric factor clearly
depends on both, the electrode layout and the surface geometry. If the topography is non-trivial,
k is unknown and can only be assessed numerically.

Usually an approximation ka is based on the half-space potentials (equation (2.14)) for surface
measurements. For buried current sources the analytical expression can easily be adapted by
introducing an image source position rrr′s using the earth’s surface as a mirror:

1
ka

= ua =
I

4π

(
1
rrrs

+
1
rrr′s

)
. (2.16)

It is important for any measurement, to distinguish between effects of the subsurface conductiv-
ity distribution and artefacts caused by using wrong geometric factors. Therefore, a geometry
effect t is defined as the ratio of the voltage differences for the given geometry ∆u and the ap-
proximation ∆ua. From the equality of the apparent resistivities the expression for the geometry
effect yields:

t =
∆u
∆ua

=
ka

k
. (2.17)
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2.6. Modelling geometry effects

If any surface topography is present, a homogeneous resistivity of ρ = 1 Ωm is assigned to
the model and the potential u is calculated numerically. Since ρa has to equal ρ the numerical
geometric factor can be obtained by k = Iρ/∆u. To appraise geometry effects, t can be plotted
for each datum. With a value of t = 1 the measurement is not affected by topography. Values of
t > 1 refer to increased apparent resistivities whereas values of t < 1 indicate a decrease.

2.6.1. A subsurface example

The following example originates from a DC resistivity survey inside a mining gallery. The
measurements were carried out at the side wall of the gallery. To interpret the measurements
it is of interest to determine whether half-space or full-space approximation has to be used.
The influence of the cavity is expressed by the value of the geometric factor k which may be
determined by simulating the electric potential for the gallery geometry within a homogeneous
conductivity.

The studied mining gallery is 500 m long and has a 5m×2m cross-section. To minimize poten-
tial nonconformities from the outer boundary conditions, the model boundaries are chosen at a
distance of 5 km from the gallery. A number of 50 electrodes with 1 m spacing are assumed at
one side wall.

Figure 2.6 shows the mesh surface used for the numerical calculations. The gallery itself is de-
scribed by an inner surface with (no-flow) Neumann boundary conditions (α = 0, cf. Chap. 2.2).
Alternatively, the problem could be solved by the approach of Queralt et al. (1991), since the
resistivity distribution is 2D and the array is parallel to the strike direction. However, this calcu-
lation is numerically unstable as mentioned by the author. Furthermore, a more general solution
is desirable that allows for involving real 3D geometry.

−2.5

x [ m ]

2.0

2.5
0.0

z [ m ]

Figure 2.6.: Surface mesh of the mining gallery model showing a part of the cavity. The dots denote
electrode positions
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2. Geoelectrical forward problem

A large number of mesh nodes are necessary to describe the model geometry and to approximate
the total potentials accurately. With local mesh refinement at the vicinity of the electrodes and
global quadratic shape functions the resulting mesh contains 128 169 nodes.

A resistivity of 1 Ωm is assigned to the model and a full-space geometric factor is used to
obtain the apparent resistivities ρa. Figure 2.7 shows the simulated ρa values as a function of
the distance between transmitter and receiver dipole (dipole-dipole sounding). The dipole length
is the electrode spacing of 1 m.

The curve starts at values around 2 Ωm for small separations, which may be considered as half-
space case and corresponds to a topography factor of t = 2. As the separation increases, the
curve is tending more and more to 1 Ωm which is associated with the full-space case of t = 1.
For practical applications, the geometry effect can be neglected if it falls below 10%. In the case
of the presented gallery this applies for a dipole separation of 15 m and more. However, it has
to be considered for small separations.
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Figure 2.7.: Full-space apparent resistivities of the dipole-dipole sounding as a function of the dipole
separation.

2.6.2. A complicated surface topography

To show a practical example with complicated surface topography, a structural investigation
at Merapi volcano was selected. Direct current measurements have been conducted in 1998
and 1999 at Merapi’s northern, southern and western flanks which show a pronounced topo-
graphy (Friedel et al., 2000). The northern profile comprises 16 electrodes at ≈ 200 m, a total
length of 2600 m, and altitude differences of up to 730 m. This profile is affected massively by
the volcano topography.
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Some preparation steps are necessary to construct a mesh that contains the complicated topog-
raphy as well as the nodes for the electrodes. First, a 2D surface mesh is needed to apply the
topography. Using the Triangle algorithm (Shewchuk, 2002) a 2D mesh was created that fits
the boundary dimension. To satisfy boundary conditions and to include the whole volcano into
the model, the boundary is chosen at a distance of 10 km outside the electrodes. The electrode
positions are placed with supporting points in a distance of 1 m to ensure local refinement at the
electrodes. The resulting 2D mesh (Fig. 2.8b) has only 4 000 nodes, a regular mesh with similar
refinement would obtain unlike more.

The TU Darmstadt (Gerstenecker et al., 2005) provides a high-resolution topography data for
the area containing more than 350 000 points (Fig. 2.8a). To every node of the 2D mesh an
altitude is associated by interpolation. Together with the lower boundary a 3D surface mesh is
obtained which is used by Tetgen (Si, 2004) to create the 3D mesh. As a result a tetrahedral
mesh of 79 611 nodes is created which reflects Merapi’s surface topography. The use of p-
refinement for quadratic shape functions yields a mesh with 566 736 nodes. Figure 2.8c shows
the mesh of Merapi’s northern slope and the position of the used electrodes(bullets). The size
of the tetrahedrons is small close to the profile (1 m) and reflecting the volcano’s topography to
a high degree. However, the cell size grows with distance such that the whole volcano can be
simulated at affordable costs.

Figure 2.9 shows the resulting pseudo-section of the topography effect. As expected, half-space
values of around t = 1 can be found on the left (electrode number 1–10) since the topography on
the lowest part of the profile is almost planar. Close to the upper right-hand corner an increase
of the resistivities of up to 50% can be observed. Since the current lines are compressed by
the valleys running parallel to the electrode line, the resulting voltages and, thus, the apparent
resistivities are increased. All readings associated with the last dipole (electrodes 15 and 16),
i.e., on a diagonal line from the upper right-hand corner of the pseudo-section to the lower
central value, are decreased by 20%. This may be caused by the steep dip of the dipole axis
toward the top of the volcano, since the last electrode is situated on top of a narrow ridge.

The potentials for a homogeneous conductivity can be used to determine the geometric factors.
Thus, the resulting apparent resistivities contain only the effect of the subsurface. Having cal-
culated the primary potential for arbitrary geometries it is now possible simulate the potentials
for arbitrary conductivity distributions using the secondary potential technique on a relatively
coarse grid. In Chapter 4, this will be exploited for inversion.

Note that the potentials at the electrodes may also be obtained by the boundary element method
(Xu, 2001). This results in solving a dense system of equations where the degree of freedoms
equals the number of nodes in the surface mesh. This may be more efficient in some cases.
However, to solve the secondary potential, the potential in the interior is needed, which can
only be achieved by numerical integration for each node, resulting in a huge numerical effort.
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a)

b)

0 2 4 km 8

c)

Figure 2.8.: a) Highly refined topographical data. b) Section of the 2D mesh with local refinement in
the vicinity of the electrodes, c) 3D surface mesh with topography at the northern slope of
Merapi volcano. The dots represent the location of the electrodes.
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Figure 2.9.: Dipole-dipole pseudo-section of the topography effect t along the profile at the northern
slope of Merapi volcano. The origin is at the foot of the mountain. The abscissa denotes
the electrode number, the ordinate reflects the dipole separation. The individual values are
plotted in the centre between the two dipoles involved.

2.7. Computational aspects

The meshes of the previous sections are now being reviewed with respect to the effort of solving
the system of equations. For iterative methods, a stopping criterion has to be defined depending
on the accuracy of the solution. Experience shows a relative residual value of 10−6 is sufficient
for practical purposes and was used in all computations. Table 2.1 gives an overview of the
mesh sizes used in the last two sections. The node numbers span a range of almost four orders
in magnitude.

Proceeding in the order of the mesh size and starting with the smallest example, the conducting
sphere with 1 769 nodes and 21 right-hand side vectors. The stiffness matrix contains 24 427
non-zero entries which is about ≈ 14 per row. Due to the small size, a direct equation solver
is appropriate. Once the factorization is done the back-substitutions for the individual sources
are obtained almost instantly. The Cholesky factor is computed in 1.85 s and contains 750 238
non-zero elements which need about 11.5 MB memory if 12 bytes/entry are considered.

Table 2.1.: Mesh sizes and number of non-zeros (nnz) in the stiffness matrix for the four meshes of the
preceding examples.

Example Half-sphere Half-space Gallery Merapi

Nodes 1769 38 533 128 169 566 736
nnz 24 427 542 459 1.86·106 7.74·106
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To reduce the amount of storage, the matrix rows and columns are reordered in such a way that
the number of non-zeros (nnz) in the Cholesky factor is being minimized. Different reorder-
ing strategies are compared in Table 2.2: Reverse Cuthill-McKee (RCM), Multiple Minimum
Degree (MMD) and Approximate Minimum Degree (AMD) (cf. Chap 2.4).

All methods of reordering can reduce the nnz drastically, also the computing time is decreased
by several decades. AMD performs best with a reduction factor of about 6. In Figure 2.10 the
sparsity structure is shown for the original and the reordered stiffness matrix. It can be seen that
the neighbouring relations of the elements have been changed such that the reordered entries
are located near the main diagonal.

The locally refined homogeneous half-space with quadratic shape functions (38 533 nodes) still
represents a moderate mesh with a stiffness matrix A of 542 459 non-zero elements. Without
reordering, the Cholesky factor obtains 6.84 · 108 elements corresponding to 780 MB RAM
which almost exceeds the memory limits of a current standard PC (1 GB). However, with AMD
reordering the allocation can be reduced to nnz = 1.07 · 107 or 120 MB. The AMD reordering
technique was used for all examples because of its great benefit.

The mining gallery (128 169 nodes, 1.8 Mio nnz’s in A, 50 electrodes) represents the next larger
problem. The (reordered) Cholesky factor obtains 6.38 · 107 nnz’s or 730 MB. On the present
PC with 1 GB memory, 200 000 nodes represent the upper limit for direct equation solvers. The
algorithm implemented in the CHOLMOD package needs about 3 s for the symbolic analysis
and 52 s for the multi-frontal factorization. The following back-substitutions are carried out in
111 s which is about 2 s for each electrode.

The Merapi mesh with 566 736 degrees of freedom cannot be solved with direct methods due
to memory limitations. Hence, conjugate gradient (library TAUCS) is chosen for solving the
system of equations. Nevertheless, it is worth to carefully choose the preconditioner since the
system is solved for each of the 16 electrodes. The incomplete Cholesky preconditioning, as
used by Li and Spitzer (2002), was selected and both variants (IC-nofill and IC-droptol, cf.
Chap. 2.4) were examined with different thresholds. As for the complete factorization, the nnz
can be drastically reduced by AMD reordering.

Table 2.3 shows the computer resources used for various threshold values. The number of iter-
ations and the run time can be decreased by a finer threshold. However, memory requirements

Table 2.2.: Computation time t and number of non-zero entries (nnz) for the Cholesky factor and different
reordering strategies (half-sphere).

Reordering None RCM MMD AMD

t (Chol) 1.85 s 0.06 s 0.09 s 0.09 s
nnz (Chol) 750 238 181 299 150 454 119 843
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Figure 2.10.: Sparsity structure of the original (upper) and AMD-reordered (lower) stiffness matrix for
the mesh of the half-sphere model.
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Table 2.3.: Computing time t, memory requirements and number of iterations of the ICCG method for
different preconditioners (Merapi mesh with 16 source vectors).

thresh. time(IC) memory iter. t/iter total t

nofill 201 s 104 MB 146 1.6 s 65.1 min
10-1 140 s 89 MB 170 1.6 s 74.8 min
10-2 144 s 120 MB 94 1.8 s 47.7 min
10-3 180 s 266 MB 45 2.9 s 37.9 min
10-4 393 s 561 MB 19 5.5 s 34.8 min

grow. An increase of run time for even smaller values than 10−4 is to be expected because the
back-substitution requires more time for a greater nnz (Günther, 2004).

To summarize, the numerical computations must always find a trade-off between the two re-
sources calculation speed and memory. Mesh size and available computer memory determine
the runtime of the solver. Direct methods should be used whenever it possible. Conjugate gra-
dient methods with incomplete Cholesky preconditioners are the alternative in most cases. The
threshold value of the incomplete factorization must be chosen carefully to meet memory lim-
its and to minimize calculation time. For very large meshes, the SSOR preconditioner is of
advantage since it allows preconditioning without additional storage memory (Spitzer, 1995).
However, convergence becomes slower.

2.8. Discussion and conclusions

In this section the simulation of DC resistivity data with finite elements has been addressed.
Special attention has been paid to the incorporation of three-dimensional surface and subsurface
topography. For this purpose unstructured tetrahedral meshes provide the highest flexibility for
describing arbitrary model geometries. The derived geometry effect helps to understand how
the physical fields are affected by the geometry of the modelling domain.

It has been distinguished between two techniques, the simulation of the primary potential and
the secondary potential. With the latter, accurate simulations can be carried out using small-
scale meshes. The main computational effort is associated with the simulation of the primary
potential. However, for all problems with several conductivity distributions, that require mul-
tiple forward calculations, a gain in efficiency can be achieved by exploiting the secondary
potential. This is an important benefit for the inverse problem.

Whereas the secondary potential can be obtained on a relatively coarse mesh, an accurate sim-
ulation of the primary potential requires a distinct mesh refinement. A local spatial refinement
in the vicinity of the electrodes (at least 1/10 electrode spacing) is suggested in combination
with the global use of quadratic shape functions. A further improvement of efficiency may be
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achieved by adaptive mesh refinement using an a-posteriori error estimator (Verführt, 1993).
The question remains whether the geometry effect or the primary potential can be calculated
more efficiently using the boundary element method (Xu et al., 1988; Blome, 2009).

Two ways are proposed to solve the arising systems of equations: Small-scale problems are
most efficiently solved by direct multi-frontal solvers. This is the case for all simulations of
the secondary potential. Regarding larger systems of equations, as arising mainly from primary
potential simulations, the method of choice are conjugate gradient methods with incomplete
Cholesky preconditioners. The trade-off depends mainly on the available computer memory to
store the Cholesky factor of the matrix. Matrix reordering techniques help to reduce memory
requirements drastically.

The presented techniques permit the simulation of complicated geometries and conductivity
distributions on standard computers within short time. Hence, the way to three-dimensional
inversion with arbitrary topography has been opened up and will be considered in Chapter 4.
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Abstract

Direct current resistivity measurements are usually done using electrodes with finite
extension and grounding resistance. However, in the modelling they are commonly
treated as ideal point sources. In the following section computations are presented
using the complete electrode model (CEM), known from medical imaging, to investi-
gate up to which electrode extension a point approximation is sufficient. The electrode
surface is thereby discretized and the partial differential equations are extended by
additional relations incorporating the electrodes extent, a (usually unknown) contact
impedance z and a condition for the current flow through the electrodes surface. The
modelling of the electrical potential is verified by using an analytical solution for a
perfectly coupled half-ellipsoid current source (z = 0). The potential for a non-zero
contact resistance cannot be proved analytically but it behaves as expected for current
and potential electrodes. For surface measurements of typical extend, the electrode
effect, i.e., the ratio between CEM and a point solution for a homogeneous model,
is in the order of the measuring accuracy for an electrode length/spacing ratio lower
than 0.2. However, the effects become more noticeable for closed geometries such as
modelling tanks or lysimeters. A comparison with different replacement points along
the electrode shows the best agreement at about 60% of the electrode length.

Beside penetrating electrodes, plate electrodes with galvanic or capacitive coupling
are investigated where effects in the same order can be observed. However, a non-
homogeneous resistivity distribution clearly increases the size of these effects, which
is also demonstrated by sensitivity computation.

Apart from the ability of considering electrodes, CEM can be used to simulate the
behaviour of a good conductor. It is shown exemplary how an injection through a
borehole casing can increase a measured anomaly. Finally, an example of a buried
vertical electrode chain is presented where CEM can be useful to calculate notable
effects caused by the geometrical disturbances due to a drilling.
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3. Modelling finite electrodes

3.1. Introduction

Electrical resistivity tomography (ERT) is a popular geophysical technique since the electrical
conductivity is a key parameter for many applications. The used scales range from a few cen-
timetres in soil probe investigation (Binley et al., 1996; Igel, 2007) to some kilometres for large
scale experiments. In geophysics, four-point measurements are mostly used in order to separate
contact resistances from ground resistivity. It consists of inputting a current I through two elec-
trodes C1 and C2 while registering a potential difference ∆u between two other electrodes P1

and P2.

From a practical point of view, in most surface measurements steel sticks are plugged into the
soil. If the soil cannot be penetrated (e.g., roads, hard rock) plate electrodes (Athanasiou et al.,
2007) coupled galvanic or capacitively (Kuras et al., 2006) can be used. Ring electrodes are
frequently used in borehole applications (Ridd, 1994). Sometimes even a steel borehole casing
can be used for current injection (Daily et al., 2004). Lysimeters for soil investigation use small
screws on the boundary. In all cases mentioned above, electrodes show a finite extend and the
contact surface is part of the electrical system.

Figure 3.1a shows an equivalent electrical circuit for a four-point measurement that is com-
monly used in geophysics. It can be seen that the grounding resistors ZC1 and ZC2 only affect
the amount of injectable current. Assuming a notable higher (compared to ZEarthi+1) internal
resistance of the measuring device, the grounding resistors ZP1 and ZP2 do not affect the mea-
sured voltage. However, this idealized view of a four-point measurement does not consider the
physical presence of the electrodes.

The enhanced equivalent electrical circuit in Figure 3.1b takes into account the physical exten-
sion of the electrodes as well as their contact area to the surrounding material. Therefore, the
cumulative grounding resistor Z is subdivided into a constant part ZE, the electrode’s ground-
ing resistor, and ZC the resistor caused by the contact area. ZE is an intrinsic property of the
electrode itself and depends only on the shape of the electrode, i.e., their surface area. ZE is rep-
resented by the minimal potential surface during current injection. For simple electrodes shapes
(spheres, ellipsoids) ZE can be determined analytically (Militzer and Weber, 1985).

U

I
-+

P1 P2C1 C2

Z C1

Earth iZ Earth i+1Z Earth i+2Z

Z P2 Z C2Z P1

U

I

P1 P2C1 C2
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Z P2Z P1

ZE

ZC ZC

ZE

ZC ZC
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ZC ZC

-+

Z C2

a) b)

Figure 3.1.: a) Equivalent electrical circuit of a 4-point measurement used in DC resistivity measure-
ments and b) including finite electrodes with contact resistance ZC.

38



3.1. Introduction

The contact resistor ZC depends on the electrode surface area and the physical and electro-
chemical setting between the electrode and the surrounding material. In the sense of the equiva-
lent electrical circuit, the injected current on the finite electrode flows through multiple contact
resistors from the electrode into the ground in the vicinity of the electrode. Small contact resis-
tors will therefore provide shortening circuits on parts of the ground, whereas high values for
ZC increase the overall contact resistance.

The presence of finite electrodes is largely neglected in geophysics. Modelling and inversion
schemes use infinitely small injections, the point electrode model (PEM), i.e., a singular Dirac
function for the current source within the modelling domain. Three expected effects are being
ignored by PEM: (i) the spreading of the current density, (ii) the missing electrode volume from
penetration, and (iii) the contact impedance influencing the local current flow and potential
distribution around the electrode. So there are some questions to be answered:

• Up to which electrode size is a point assumption valid?

• Does the shortening caused by the contact impedance significantly affect the measure-
ments?

• Which types of measurement arrays are affected most?

There are some electrode models in EIT literature that help to answer these questions.

The shunt electrode model (SEM) presented by Wang et al. (1999) allows the consideration of
the electrodes extend and the shortening circuit due to a perfectly coupled electrode (ZC = 0). It
accounts for the real spatial extension by discretization of the electrode surface and forces the
potential at the electrode surface to be equal.

A more sophisticated model, the so-called complete electrode model (CEM), was introduced
in medical impedance tomography (EIT) by Cheng et al. (1989) and account for the electrode
extend as well as the contact resistance ZC by using a usually unknown contact impedance z.

The CEM formulation is briefly presented in the following as an extension of the Finite Element
(FE) resistivity modelling described in Chapter 2. In order to verify the accuracy of the mod-
elling, the results are compared with the analytical solution for an half-ellipsoidal electrode.
The influence of the contact impedance and the electrode thickness are investigated by using
two half-ellipsoids. Followed by a study on the influence of the electrode length on different
electrode array types commonly used in geophysical ERT.

Several examples will show how the method is used for applications. Firstly, a model tank
(lysimeter) of small dimensions is considered as a purely geometrical dependence. Secondly,
the behaviour of plate electrodes and capacitively coupled line electrodes is investigated taking
different contact impedances into account. In example three a borehole casing is used as a cur-
rent electrode to improve the response of high conductive body which is modelled by a passive
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3. Modelling finite electrodes

CEM electrode. Finally, a vertical electrode chain with mounted ring electrodes is simulated
which is used for monitoring ground water salinity.

3.2. The complete electrode model

The classical geoelectrical source term from equation (2.2) provides a singular current source
but does not recognize the spatial extension of a physical electrode, e.g., the shape of a steel
stick or any kind of electrode with a planar surface.

Assuming a highly conductive, e.g., metallic, surface of an electrode, the potential in the vicinity
of the electrode surface appears to be constant as U . Cheng et al. (1989) provide an advanced
boundary condition for an electrode boundary ∂ΩE to recognize this shorting or shunting effect
and the finite electrode surface:

zσ
∂u
∂n

+u = U on ∂ΩE , (3.1)

as well as an additional current source condition (total current flow):∫
∂ΩE

σ
∂u
∂n

ds = I . (3.2)

Equations (3.1) and (3.2) are called the complete electrode model (CEM) (Cheng et al., 1989).
The usually unknown contact impedance z[Ωm2] between the electrode surface and the ground,
caused by a very thin high resistive layer, has to be assumed since a pure shunting effect with
u = U on ∂ΩE would not provide a sufficient explanation practical EIT measurements (Cheng
et al., 1989). Equation (3.2) describes an advanced current injection compared to the singular
current equation (2.2) such that the current from the electrode flows through the entire electrode
surface into the ground.

It is necessary to extent the previous finite element description (Sec. 2.2.1) to find a unique
solution for the main DC equation (2.1a) including CEM (3.1, 3.2). The weak formulation
of the DC resistivity forward operator can be obtained by applying the method of weighted
residuals, partial integration followed by the specialization of the boundary condition with the
CEM expression. Depending on arbitrary weighting functions w and E independent electrodes,
the weak formulation can be read as:∫

Ω

σ∇w∇u dΩ+
∫

∂ΩI

σαwu d∂Ω+
∫

∂ΩEl

1
zl

wu d∂Ω−
∫

∂ΩEl

1
zl

wUl d∂Ω = 0 for l = 1 . . . E .

(3.3)
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Applying Galerkin’s criterion (w = N) leads to the finite element formulation:

N
∑
i=1

uhi

∫
Ω

σ∇Ni∇N j dΩ+
∫

∂ΩI

σαNiN j d∂Ω+
∫

∂ΩI

1
zl

NiN j d∂Ω

 (3.4)

−Ul

∫
∂ΩI

1
zl

N j d∂Ω = 0 for j = 1 . . . N

with the additionally CEM source function:

∫
∂ΩEl

σ
∂u
∂n

ds =
∫

∂ΩEl

1
zl

(Ul−u) d∂Ω =
N
∑
i=1

uhi

∫
∂ΩEl

− 1
zl

Ni d∂Ω+Ul
1
zl
|El|= Il . (3.5)

The resulting system of equations reads:

Au = b with A =
C
∑
e=1

σ
(e)S(e) +

BI

∑
b=1

σα
(b)M(b) +

1
zl

BEl

∑
b=1

M(b)− 1
zl

BEl

∑
b=1

l(b) (3.6)

− 1
zl

BEl

∑
b=1

l(b)T
+diagN+l

1
zl
|El|

and u = [uhi,Ul] ,b = [bi, Il],bi = 0 for i = 1 . . . N and l = 1 . . . E
(3.7)

and can be assembled from the known local element matrices S(e), M(e) and l(b) described in
Appendix A.

Note that the global system of equations (3.6), with the exception of the additional bound-
ary condition for the inner surface, is equivalent to the result of the variational based descrip-
tion from Vauhkonen et al. (1999). An alternative approach to the finite element formulation
that leads to an asymmetrical system of equations is described by Paulson et al. (1992). The
system of equations (3.6) is solved by using the direct sparse Cholesky factorization package
CHOLMOD (Chen et al., 2009). The resulting array u contains the potential distribution uh for
each node within the mesh as well as the sought potential values Ul for each electrode itself. The
latter can be directly read and requires neither interpolation nor integration along the electrode
surface.

The shapes of the electrodes used for medical EIT applications are limited to non-invasive flat
surface pads, whereas in DC geophysics electrodes usually have a spatial extension and are
plugged into the area of investigations. For the latter fortunately exists an analytical test case to
validate the finite element solution.
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3. Modelling finite electrodes

3.3. Verification

The electrical field of an elliptical electrode is equal to the field of a line electrode with the length
2e which connects both foci (Sommerfeld, 1967). In analogy to the electrostatic problem of the
electric field in the vicinity of a loaded elliptical object, the line source yields the following
potential field (Militzer and Weber, 1985; Igel, 2007):

u =
I

4πe
ln

z+ e+
√

x2 + y2 +(z+ e)2

z− e+
√

x2 + y2 +(z− e)2
(3.8)

and e =

√
l2− d2

4

with the potential u at distance (x,y,z) from an ellipsoidal electrode with the diameter d and the
length l. The half-space solution for a half-ellipsoid at the surface is achieved by replacing 4π

with 2π .

A half-ellipsoidal electrode with a length of l = 0.5m and a thickness d = 0.1m were chosen to
verify the numerical approximation of the electrical field. It’s true that these proportions may be
too big and far from reality, but the example is suitable for evaluating the solution and studying
the electrode effects as the problem is freely scalable.

To generate a suitable finite element discretization the 3D Delaunay mesh generator TetGen Si
(2004) is applied. Initially, a set of piecewise coplanar facets is created in which the facets are
connected via common nodes, the Piecewise Linear Complex (PLC), reflecting the geometry of
the electrode. The PLC for the electrode is further subtracted from the main modelling domain.
After applying the mesh generator the resulting mesh contains only elements of the modelling
domain and the electrode surface, the inner electrode domain is not part of the problem and
hence not discretized. If a valid PLC is given, this approach has no limitation to the complexity
of the electrode shape.

For the verification test case a unit half-sphere (d(x,y,z) = 1 m) is created and scaled by x,y =
0.1 and z = 0.5. The main domain is represented by a cube with an edge length of 1000 m
to avoid errors from the mixed boundary conditions that are based on a fixed point source
position. Figure 3.2 shows a part of the resulting mesh boundary including the surface of the
half-ellipsoidal electrode as well as parts of the earth’s surface. The complete mesh contains
44 815 nodes, 31 025 quadratically shaped tetrahedrons and 3 858 boundary triangles.

Figure 3.3a shows the potential distribution with logarithmic equipotential lines. Due to the
cylindrical symmetry a slice is chosen at the x-z-plane through the major axis of the ellipsoid.
The dashed line corresponds to the point source solution u = 1V/2π at a distance of 1 m.

Figure 3.3b shows the numerical result compared with the analytical solution (3.8) for the el-
lipsoidal electrode shape within a homogeneous half-space along the probe line in Figure 3.3a.
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3.3. Verification

Figure 3.2.: Part of the mesh boundary with an ellipsoidal shaped electrode used for finite element mod-
elling including CEM. Light grey triangle facets used for current injection (electrode), dark
grey triangles represents the earth’s surface with a homogeneous Neumann boundary condi-
tion.
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Figure 3.3.: a) Numerically calculated potential distribution for an electrode source with very low con-
tact impedance. b) Direct comparison between the analytical solution for the ellipsoidal
shaped electrode and the FEM solution along the probe line in (a).

There is a maximum misfit of 0.5% between the numerical and analytical solution close to the
source electrode which is reduced to below 0.1% at a distance of 0.2 m. The comparison to the
point source solution shows a difference of ≈ 2.4% at the reference position (x = 1.0,z = 0.0)
for the layout given in Figure 3.3.

The effect of the contact impedance z can be studied by adding a second electrode. Figure 3.4
shows the potential distribution for two different values of z. Unfortunately the analytical solu-
tion is limited to a perfectly coupled source electrode, i.e., vanishing contact impedance, making
only numerical comparisons available. The potential electrode with a low contact impedance
(Fig. 3.4a) shows the electrode as a conductive inhomogeneity, whereas the high impedance in
Figure 3.4b forces the potential lines to be orthogonal to the electrode surface as on the earth’s
surface or on a cavity.

The influence of the electrode can be quantified as an electrode effect uCEM/uPEM, comparable
to the geometry effect in Chaper 2.6, as the ratio of the numerically calculated potential uCEM

using CEM and the potential uPEM for a point source. This electrode effect can be expressed
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Figure 3.4.: a) Potential distribution for electrodes with low and b) high contact impedances.

by means of a trivial transformation as a percentage deviation in respect to uPEM. The potential
uPEM can be calculated either analytically for some simple cases or numerically by using the
conventional FEM approach.

Figure 3.5 shows the electrode effect for the electrode layout given in Figure 3.4 using two
different electrode shapes and varying electrode diameters as a function of contact impedance.
To get a generally valid comparison, unit values (1) are chosen for the distance between the
electrodes, the background conductivity and the injected current.

For z→ ∞, i.e., without shunting on the electrode surface, the effect of both electrode shapes
converges to the pure length effect and is about 5% and 7%. For high contact impedances the
contribution of the electrode thickness to the effect seems to be very small. However, for small
z a maximum contribution of d and z is about 3%. Surprisingly, there is a significant difference
between the very similar sized electrode shapes caused by their contact angles that focus the
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Figure 3.5.: Electrode effect for several electrode diameters and contact impedances for two different
electrode shapes: a) ellipse and b) cylinder .
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current. Whereas for a small d the electrode effect is maximized for the ellipse, it is minimized
in case of the cylinder. The main change in contact impedance is between Z = 0.01 and 1 Ωm2

for a homogeneous conductivity distribution of 1 Ωm.

For z→ 0 the effect converges to the perfectly coupled grounding resistance ZE of the electrode.
Therefore, a side-effect of the CEM solution is that ZE within a homogeneous medium (σ0) can
be easily obtained for an arbitrarily shaped electrode (also systems of electrodes are possible):

ZE(σ0) =
Ul(σ0,zl)

Il
− zl

|El|
= const for El (3.9)

with the potential Ul(Il), represented by the solution of (2.9) at electrode l with contact area |El|.

The contact impedance of an electrode may vary over time and cannot by directly determined
by measurement (Heikkinen et al., 2002), thus a small uncertainty remains when simulating real
measurements. Anyway, the effect of the contact impedance is small in comparison to the effect
of the electrode shape itself, especially when assuming imperfectly coupled electrodes.

3.3.1. Influence on surface resistivity arrays

Practitioners might want to know how different electrode arrays are affected by finite electrodes.
To answer this question, a line of 7 electrodes is considered using a spacing of 1 m suitable for
2 or 3 separations of the typical Wenner, dipole-dipole and pole-pole arrays. The electrode
thickness is chosen to be 1 cm and the length is varied with the values of 10, 20, 30 and 40 cm.
The electrodes are discretized by a prism with 8 segments and the contact impedance is defined
to z = 10−2 Ωm2.

Table 3.1 shows the results. Small but systematic effects can be found for an electrode size
comparable to the spacing. A maximum effect of 11% and 8% is found for an electrode length
of 0.4 m on the first separation using α and β type measurements, respectively. The effect
vanishes rapidly for higher separations A rule of thumb can be derived, assuming the electrode
length to be the plug-in depth of the steel sticks into the ground, so a plug-in depth of less than

Table 3.1.: Relative (negative) deviation of the CEM solution compared to the point solution (in %) for
different electrode lengths and electrode arrays: Wenner-α (WA), Wenner-β (WB), dipole-
dipole (DD) and pole-pole (PP). The number behind the array name denotes the separation
factor.

Array WA 1 WA 2 WB 2 DD 1 DD 2 DD 3 DD 4 PP 1 PP 2
l = 0.1 m 0.69 0.21 0.24 0.91 0.31 0.17 0.1 0.42 0.15
l = 0.2 m 2.5 0.68 0.89 3.3 1.2 0.64 0.41 1.4 0.42
l = 0.3 m 5.1 1.4 1.9 6.8 2.5 1.4 0.86 3 0.86
l = 0.4 m 8.3 2.4 3.2 11 4.3 2.3 1.5 4.9 1.4
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3. Modelling finite electrodes

20% to the electrode spacing should be a save choice to avoid systematic artefacts due to the
electrode effect.

3.4. Examples

3.4.1. Model tank

ERT has been increasingly applied to investigate solute transport in porous media such as soils
(e.g., Binley et al. (1996)). Either cylindrical or cubic lysimeters are used in which the soil
is permanently installed. Electrode distances of a few centimetres are typical. So the relation
of the electrode extend to the distance can be easily larger than for surface measurements.
Furthermore, large geometry factors can occur since usually dipole-dipole measurements are
applied using subsequently ordered electrodes. Up to now, only point electrodes have been
considered. The electrodes have to possess a finite length and width to ensure a proper current
injection and coupling for potential measurements.

A unit lysimeter of size 1× 1× 1 m3 is simulated to describe the influence of extended elec-
trodes. The electrodes, 3 cm long and 1 cm thick, are mounted at the four vertical sides of the
cube. The spacing between the electrodes is 20 cm, starting 10 cm from the boundary for all
directions such that in total 4×5×5 = 100 electrodes have been simulated. Every electrode is
discretized by a regular prismatic cylinder with 8 segments. Figure 3.6 combines the input for
the mesh generator with the electrodes as regular prisms orthogonal to the outer faces and the
resulting mesh, which was obtained by TetGen (Si, 2004) using a quality constraint of 1.25 and
comprised 346 868 nodes within 239 045 quadratic tetrahedrons.

For comparison reasons, a second tank model was created with point sources at the outer sur-
faces. According to Chapter 2.5.2, a local refinement of 1 cm at the electrodes was applied and
quadratic shape functions were used. This resulted in a mesh of 136 219 nodes and 92 543 cells.
A further refinement achieved almost identical results.

Figure 3.7 shows a logarithmic histogram of the obtained electrode effect for a complete dipole-
dipole dataset containing 4 753 values. The maximum distribution occurs at an effect of ±1%,
i.e., both solutions are nearly identical within measuring accuracy. However, there is a signif-
icant number of deviations, both increases and decreases. The relative differences range from
−57% to +1214%, the standard deviation is 25.4%. More than 70% of the data show a deviation
of less than 1%. However, there are a few outliers that are mainly related to dipoles crossing the
electrode planes which show high absolute geometric factors. About 2% of the data are differ
more than 10% in each direction. Deleting data with absolute geometric factors above 1 000 m
entails a loss of 5% of the data, but effects between −44% and +11% remain with a standard
deviation of only 2.8%.
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Figure 3.6.: Piece wise linear complex (upper half) and parts of the resulting mesh (lower half) of the tank
model. The cylindrical electrodes are approximated by regular prisms with 8 side segments.

It could be argued that the point on the surface is not the perfect position for an equivalent
replacement point source. For comparison, the replacement nodes were placed on different dis-
tances δx from the boundary along the axis of the electrode. Table 3.2 shows how the CEM
solution can be approximated by these different point locations.

If only geometric factors k <1000 m are considered, the best values, below 1%, are obtained for
the intermediate positions between 50% and 66% of the electrode length. However, there are still
errors above 10%. Note that whereas for the complete data the biggest absolute differences move
towards the negative deviations, they seem to move towards the positive for the filtered data.
Therefore, a replacement approximation point should be placed at about 60%. However, the
behaviour suggests that systematic, albeit small, electrode effects are still being not considered
by the replacement approach.

The previous study was carried out using large contact impedances (z > 106) to avoid the shunt-
ing effect. A computation with z = 10−6 yields results very close to those with high z except for
a few critical values with large geometric factors. For two values even the sign of the simulated
values changed. This can happen, if the measured dipole is nearly parallel to the equipotential
lines.
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Figure 3.7.: Logarithmic histogram of the geometric effect in %, i.e., the distribution of the deviation
between CEM and point solution, for the tank model.

Table 3.2.: Minimum, maximum and standard deviation of point source error (in %) for different re-
placement positions of the point along the electrode axis. All data (left) and geometric-factor
corrected data with |k|<1000 m (right).

Complete data Filtered data
δx in % min max std min max std

0 -56.8 1214.4 25.4 -43.6 11.0 2.8
33 -39.2 843.6 17.6 -29.9 7.6 1.9
50 -17.2 373.1 7.7 -12.6 3.4 0.8
66 -290.6 13.8 6.1 -2.6 11.7 0.7

100 -2192.4 101.0 45.7 -19.6 79.0 4.7

Reliable results as a first order approximation are most probably obtained by an inversion with
appropriate replacement point source positions, particularly if differences in time are regarded.
However, since the remaining deviations are systematic, artefacts are still expected to appear.
Note that the presented spacing between the electrodes are still rather big. If the spacing are
a = 10 cm or less, or if bigger electrodes or other arrays are being used, then the CEM effects
must be considered in the inversion process. As experience showed, the effects are smaller for
cylindrical lysimeters, however large geometric factors can occur as well.

48



3.4. Examples

3.4.2. Plate-shaped electrodes

For obvious reasons non-penetrating pad electrodes are the electrodes of choice for medical EIT
measurements. While in geophysical resistivity surveys generally stainless steel sticks are pre-
ferred, there are also several cases in which plate electrodes are applied (Pagliara and Vignoli,
2006; Athanasiou et al., 2007). A simulation of a dipole-dipole sounding above a two-layer
case is performed to investigate how such plate electrodes affect measurements. The first layer
thickness of 0.5 m equals half of the electrode spacing. The reference solution was obtained
analytically (Telford et al., 1976).

Figure 3.8 shows the electrode effect for a dipole-dipole sounding using a fixed electrode spac-
ing (1 m) between 13 quadratic plate electrodes. The plate length (e = 0.1, 0.25 and 0.5 m) as
well as the resistivity contrast between the two layers are varied (1/10,1/1,10/1). While the
dimension for electrode extent and spacing are scalable the effects remain equal. Each model
is calculated with a high (zi = 100Ωm2, Fig. 3.8a–c) and a low (zi = 10−5 Ωm2, Fig. 3.8d–f)
contact impedance.

Investigating Figure 3.8b (homogeneous conductivity distribution and no shunting effect due to
high contact impedance) a maximum electrode effect of 5% can be found for the first dipole-
dipole separation with plates extending to half of the electrode spacing. The effects for smaller
electrodes can nearly be neglected. However, Figure 3.8a and c show quite different results for
the heterogeneous models, e.g., up to 14% for the large plates with the resistive layer below the
array. To the contrary, a conductive first layer reduces the electrode effect drastically.

The behaviour of the effects differ otherwise by considering the shunting effect (Fig. 3.8c–
e) caused by a low contact impedance. For the homogeneous model as well as for the higher
resistive first layer, a maximum effect at the 2nd separation of up to 30% can be found. The
reason for this is the shortening effect of the unused electrode between the source and the
transmitter dipole that significantly disturbs the electrical field.

The notable differences of the electrode effects for heterogeneous models can be expressed by
the sensitivity function which is based on the current density distribution (Geselowitz, 1971).
Hence, a simple correction of the apparent resistivity using a pre-calculated electrode effect can
be misleading. The sensitivity distribution has to be considered for the inversion of the measured
data using larger plate electrodes. However, unless the plate electrodes extend to more than
20% of the electrodes spacing the assumption of point like electrodes should be sufficiently
accurate.

According to Kuras et al. (2006), a capacitively coupled line electrode can be regarded as an
equipotential surface for static or slowly varying electrical fields. Besides the excellent resis-
tivity mapping capability of such capacitive resistivity measurements such data should be eval-
uated using modern inversion strategies. Due to the fact that a suitable inversion code is not
available that is able to recognize line electrodes geometry, a replacement point approximation
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Figure 3.8.: Electrode effect for a dipole-dipole sounding using square plate electrodes with varying plate
length e above a two-layer case with a 1st layer thickness 0.5 m. The left column (a,b,c)
uses a high contact impedance (z = 100Ωm2) and the right column (d,e,f) a low contact
impedance (z = 10−5 Ωm2). The resistivity ratio changes row-wise from 0.1/1Ω m, 1/1Ω m
to 10/1Ω m.

for the line antennas are suggested at the outer ends of the line (Geometrics, 2001), the centre of
each line (Kuras et al., 2006) or at 80% (Neukirch and Klitzsch, 2010). However, the sensitivity
distribution remains unattended. Neukirch and Klitzsch (2010) tried to simulate the sensitivity
response for such a line array by super-positioning a huge amount of point sources along the
electrode extent.

Assuming a non-galvanic contact to the ground, such capacitive electrodes may be simulated by
using CEM plate electrodes with high contact impedance. Simulating a line electrode dipole-
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dipole array using CEM plate electrodes with a size of 0.95× 0.01 m, the geometric factor
equals less than 1% with the analytical values from Kuras et al. (2006). The sensitivity can be
easily calculated numerically using the element stiffness matrices and the potential distribution
obtained from the FEM modelling (cf. Sec. 4.4.2).

Figure 3.9 shows the potential distribution and the electric current paths for a injection dipole
using CEM line electrodes with low (a) and high (c) contact impedance as well as for point
electrodes (e). The potential distribution between point and line mainly differs directly below
the electrodes. The shortening effect for the electrodes with low contact impedance (Fig. 3.9a)
can be clearly seen where the current is partially forced to flow into the passive electrodes.

The shortening nature of the perfectly coupled line electrode produces large differences in sen-
sitivity (Fig. 3.9b) compared to the non-shunting line or the point electrode. Considering capac-
itive coupling for inversion, the differences in sensitivity between high contact impedance and
point source are relevant. The area of negative sensitivity is smaller and the contrast of the sen-
sitivity near the electrodes is smoother for the line electrode. A notable difference is the change
of sign below the electrode. For the point source the change of sign matches the electrode posi-
tion whereas for the line electrode there is no symmetry. This may result in a lack of accuracy
by using a fixed replacement point approximation for the inversion of capacitive line electrode
data, particularly for shallow structures.
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Figure 3.9.: Potential distribution (left) and sensitivity function (right) for a dipole-dipole array using line
electrodes with low (a,b) and high (c,d) contact impedances and point electrodes (e,f). The
lines (left) represent the current path, and the black lines at the surface denote the electrodes
extend.
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3. Modelling finite electrodes

3.4.3. Modelling a good conductor with CEM

As seen before, in case of a small contact resistance a passive electrode behaves as good con-
ductor. This can be used to avoid discretization problems and inaccuracies at the resistivity
contrast of a conventionally discretized conductivity model. In the following example, a con-
ductive body (10×200×50 m, rotated 45◦) is assumed about 100 m below a current injection,
e.g., this could be an ore body, graphite or a water-filled fault. Pole-dipole measurements are
simulated with 10 m electrode spacing and a surrounding resistivity of 100 Ωm.

Figure 3.10a shows the potential distribution and the current paths from a point source. The
latter are drawn into the good conductive body and disturb the potentials measured at the sur-
face. As a result the influence of the body to the apparent resistivity of a dipole registration
(Fig. 3.10b) is about ≈ 4% and is thus close to the measuring accuracy. Furthermore, the mini-
mum is very broad and far from injection and body.

Additionally to the passive electrode, a steel casing of a 150 m deep borehole (diameter 0.2 m)
is assumed as a CEM electrode and used for current injection. The potential (Fig. 3.10b) in the
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Figure 3.10.: Logarithmically spaced equipotential lines (white) and current paths (black) for a) a point
source and b) for injecting the current into a borehole casing. c) Apparent resistivity of a
pole-dipole sounding using both variants.
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vicinity of the borehole is smaller due to the increased surface area and thus decreasing the cur-
rent density. On the other hand, the potential is significantly bigger at greater depth and distance.
The conductor, now in a region with a higher potential, changes the potential distribution of the
whole subsurface. Consequently, the resulting apparent resistivity curve (Fig. 3.10c) shows a
much bigger anomaly. Note that the geometric factors needed for the apparent resistivity values
are calculated with the same electrode layout but omitting the passive body.

3.4.4. Vertical electrode chain

Surface ERT measurements are often unable to image slight changes in resistivity at greater
depths. To monitor the salt/fresh-water boundary on a North Sea island, so-called vertical elec-
trode chains were installed (Südekum et al., 2010). The whole is a combinable plastic cylinder
with a 48 mm diameter. In a distance of 25 cm metal take-outs are mounted with a width of
25 mm. There are two significant differences to point electrodes in the full-space: Firstly, the
electrodes are extended but only to 10% compared to the spacing. Secondly, the plastic void,
where the cables are situated, cannot be used by the current to flow.

Additionally to the deep installed variant with a = 0.25 m, a shallow variant with a spacing of
a = 0.1 m is considered for the monitoring of water saturation in the vadose zone. Usual geo-
electric measuring configurations can be applied. A mesh was generated with an appropriate
cylindrical borehole and 7 ring electrodes that are adapted by regular prisms with 12 segments.
The inside of the electrodes and the drilling holes were defined such that homogeneous Neu-
mann boundary condition are applied on the cylinder boundary. Figure 3.11 displays a section
of the mesh used for the computation. It consists of 74 493 nodes and 53 403 tetrahedrons.

Table 3.3 shows the deviation to the point source solution for different electrode arrays for an
undisturbed modelling domain. All simulated voltages are below the point source solution. The
effect is surely bigger for small separations and slightly bigger for β than for α type measure-
ments. For the deep variant effects of up to 7% occur, whereas for the shallow variant deviations
of more than 17% can be observed.

The extension of the electrodes surface is small compared to the electrode spacing. According
to the results of the plate-shaped electrodes example no notable contributions from the electrode
shape to the results in Table 3.3 are expected, hence the main contribution to the effect stems

Table 3.3.: Relative (negative) deviation of CEM solution compared to point solution (in %) for elec-
trode arrays Wenner-α (WA), Wenner-β (WB), dipole-dipole (DD), and pole-pole (PP). The
number behind the array name denotes the separation factor.

Array WA 1 WA 2 WB 2 DD 1 DD 2 DD 3 DD 4 PP 1 PP 2
a=0.25 m/d=48 mm 5.2 1.9 2.4 7.0 3.2 1.9 1.3 3.2 1.1
a=0.10 m/d=40 mm 14.5 7.2 8.8 17.2 10.3 7.2 5.6 10.5 5.1
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Figure 3.11.: Section of the mesh through the axis of the simulated vertical electrode chain. The dark
grey cylinder pieces show the mesh discretization of the electrodes, and the plastic tube is
situated in-between.

from the drilling hole. However, CEM is essential for a realistic simulation of such drilling
effects, because using point electrodes instead (i.e., mounted at the boreholes boundary) will
break the cylinder symmetry.

3.5. Conclusions

The complete electrode model (CEM) is a useful extension to the DC resistivity forward prob-
lem that is able to account for finite extend and contact impedance of electrodes by additional
equations. The implementation into a finite element discretization allows for the computation
of arbitrarily shaped electrodes.

Electrodes can play three roles: (a) active current injection, (b) measuring potentials over the
whole electrode surface and (c) they can act as high conductive bodies within the potential
field. The accuracy of the presented approach was proved by comparing the potential field of
an ellipsoidal shaped electrode as for (a) with the analytical solution from the electrostatic
equivalent problem that neglects (b) and (c). Therefore, the latter is only valid for a vanishing
contact impedance and only for measuring point potentials. However, from a point of quality
the calculated potential and current distribution are plausible.

In order to quantify the effect an electrode effect is defined as the ratio between CEM and the
point solution or its percentage deviation. The contact impedance plays a subordinate role for all
considered four-point measurements over a wide range of magnitudes. However, it is of utmost
importance for the potential disturbance in role (c).
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For surface resistivity arrays the electrode length becomes practically interesting only for elec-
trode lengths/spacing> 0.2, e.g., for small-scaled soil measurements. The effects can signifi-
cantly increase if measurements on closed objects such as soil probes are considered which can
exhibit large geometric factors.

As alternative to sticks, non-penetrating plate electrodes with galvanic or capacitive coupling
can also be simulated using CEM. The effects are generally very low even for large plate sizes.
As for penetrating electrodes a ratio of electrode extend/spacing > 0.2 is the limit where the
electrode effect can be larger as the accuracy of up-to-date measuring devices. However, the
effects increase when considering an inhomogeneous resistivity distribution which is also illus-
trated by the sensitivity function.

Apart from the ability to consider finite electrodes for ERT, CEM with low contact impedance
allows for the simulation of good conductive bodies. A synthetic experiment shows that if bore-
holes are used for current injection, anomalies can be amplified. The vertical electrode chain
example shows that even if the pure electrode effects can be neglected, CEM can be useful to
calculate notable effects of a geometrical disturbance due to a drilling.

The meshes used in this section obtain a huge number of nodes since they were created fine
enough to avoid numerical problems and ensure accuracy. The discretization of electrodes, e.g.,
by cylinder segments, represent a substantial additional cost with regard to modelling prepa-
ration and leads to increased numerical effort due to additional elements. However, due to the
finite electrode surface the singularity of the point current source is avoided and can possibly
be treated by just moderate refinement. That opens up a couple of possible solutions to incor-
porate CEM into inversion which can be easily done using the triple-grid scheme presented in
Chapter 4.

A first-order solution can be to avoid the effort of a CEM discretization. The lysimeter example
shows a replacement point source for a penetrating electrode at about 60% of the electrodes
cylinder axis may be a sufficient approximation for data with moderate geometric factors. How-
ever, experience from the plate electrode example shows that there can be a strong dependency
on the conductivity distribution. As second-order solution is the use of a primary mesh con-
taining CEM, thus a more accurate primary potential can be incorporated. The probably most
accurate third-order solution would be incorporating the CEM electrodes into the inverse mesh
as well and thus incorporating sensitivity calculation that depends on CEM. An example is given
in Chapter 5.3.4

The presented technique is a very general solution and could be used for a wide range of applica-
tions where point approximations are not accurate enough. For example, sample holders for lab
measurements can be computed. Borehole resistivity tools could be calibrated and designed but
additional equations for focusing conditions would have to be implemented. A main improve-
ment of the technique could be achieved by incorporation of complex resistivity to account for
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IP effects. A realistic simulation should incorporate a Warburg type contact impedance but lab-
oratory studies of electrodes and the coupling effect are needed for realistic assumptions. Much
stronger effects on the phases can be expected, particularly for varying contact impedance.
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4. Inversion on unstructured meshes

Abstract

A novel technique is presented for the determination of resistivity structures associ-
ated with arbitrary surface topography. The approach represents a triple-grid inversion
technique that is based on unstructured tetrahedral meshes and finite element forward
calculation. The three grids or respectively meshes are characterized as follows: A
relatively coarse parameter mesh defines the elements whose resistivities are to be de-
termined. On the secondary field mesh the forward calculations in each inversion step
are carried out using a secondary potential approach. The primary fields are provided
by a one-time simulation on a highly refined primary field mesh at the beginning of
the inversion process. A Gauss-Newton method is used with inexact line search to fit
the data within error bounds. A global regularization scheme is applied using special
smoothness constraints. The regularization parameter is determined by compromising
data misfit and model roughness by an L-curve method and is finally evaluated by
the discrepancy principle. To solve the inverse subproblem efficiently, a least squares
solver is presented.

The technique is applied to synthetic data from a burial mound to demonstrate its
effectiveness. A resolution-dependent parametrization helps to keep the inverse prob-
lem small to cope with memory limitations of today’s standard PC’s. Furthermore, the
secondary potential calculation reduces the computation time significantly. This is a
crucial issue since the forward calculation is generally very time-consuming. Thus,
the approach can be applied to large-scale three-dimensional problems as encountered
in practice which is finally proved on field data.

4.1. Introduction

The direct current (DC) resistivity method gains information about subsurface conductivity
structures by injecting electric currents into the ground and measuring electric voltages at dif-
ferent locations. Since the measured data do not provide the desired information directly, in-
version techniques have to be formulated to reconstruct the spatial distribution of conductivity.
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Although uniqueness has been proved by Druskin (1998), the inverse DC resistivity problem is
generally ill-posed with respect to data errors and incomplete data sets.

While initially resistivity soundings used to be applied to determine horizontal layers of varying
conductivity, nowadays profile measurements using pre-installed multi-electrode lines are state
of the art to investigate two-dimensional (2D) structures. However, many objects of investiga-
tion exhibit three-dimensional (3D) features which limit a 2D interpretation.

As a result of the development of modern field equipment it is now possible to obtain several
thousands of data per day. Thus, a target area can be covered by large electrode arrays or a
large number of parallel profile lines to make feasible 3D investigations. Fortunately, computer
facilities and numerical techniques are developing rapidly as well, allowing for the development
and application of 3D modelling and inversion software.

Three-dimensional inversion of resistivity data is non-linear and usually solved in an iterative
process that applies a forward modelling routine for nearly arbitrary resistivity distributions in
every inversion step. The forward operator is generally obtained by finite difference (FD) or
finite element methods (FE). The 3D FE forward operator presented in Chapter 2 is used as the
forward operator for the modelling in the following. The calculation of the secondary potential
may be carried out on coarse meshes which is particularly advantageous for the inversion. How-
ever, the reference primary potential must be determined once. This is obtained most efficiently
on a locally refined unstructured mesh using quadratic shape functions, which represents the
initial point of the inverse approach described here.

The first three-dimensional inversion scheme was published by Park and Van (1991) followed
by Ellis and Oldenburg (1994); Zhang et al. (1995); Loke and Barker (1996b). Most of the in-
version schemes are based on Gauss-Newton techniques, some avoid the storage of the Jacobian
matrix (Zhang et al., 1995). In contrast, Ellis and Oldenburg (1994) introduced a non-linear con-
jugate gradient method, see also Zhdanov and Keller (1994). In all these approaches the model
parameters are represented by orthogonal grids and the forward calculation is carried out using
finite differences.

The first inversion scheme using a finite element forward calculation was presented by Sasaki
(1989, 1994). However, like Brecque et al. (1995); Yi et al. (2001); Pain et al. (2003), they
use structured grids of rectangular block orientation even if blocks are decomposed into tetra-
hedrons. There are very few references to unstructured tetrahedral meshes (Sugimoto, 1999).
Zhdanov (2002) gives an overview on existing approaches.

In the following, a full 3D DC resistivity inversion scheme is presented, that involves three
different unstructured tetrahedral meshes and is able to deal with arbitrary surface topography.
It is shown that the parametrization can be adopted to the resolution properties of the inverse
problem. Thus, the number of model parameters can be reduced significantly to save computing
time and memory.
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4.2. Motivation

One of the main problems to deal with is the mesh transformation between the inverse and
the forward procedure. On the one hand, the parametrization mesh has to be relatively crude
to limit the degrees of freedom and the ill-posedness of the inverse problem. On the other
hand, the forward calculation requires a very fine mesh to provide sufficiently accurate results.
In order to save computing time, the secondary potential (SP) technique has to be used for
which the primary potentials are needed. If topography is present, those can only be assessed
by numerical modelling on a highly refined mesh. However, this work has to be done only
once in the beginning of the inversion. These considerations lead to the triple-grid technique as
presented in the following.

The formulation of the mixed boundary condition for the solution of the geoelectrical for-
ward problem (2.1) requires boundaries at the modelling domain that are generally far from
the sources and parameter contrasts. This is often accomplished by adding cells of increasing
size toward the boundaries. In contrast to the forward modelling mesh, the model parameters
are usually represented in a parameter mesh restricted to the neighbourhood of the sensors. Its
number of cells, i.e., the degrees of freedom, must not be too large due to limitations in run
time and computer memory since the Jacobian matrix is dense. At best, the appropriate ele-
ment size should be defined by the physical resolution. Resolution measures can be obtained
by resolution analysis as pointed out by Friedel (2003). In summary, the meshes of the param-
eter representation and the forward calculation are connected by a refinement and prolongation
operation (Fig. 4.1). The primary field mesh is independent of these but locally refined at the
electrodes positions.

Figure 4.1.: The three meshes of inversion for a two-dimensional discretization: parameter mesh (left),
secondary field mesh (centre) and primary field mesh (right). Arrows indicate the position
of the electrodes.

4.3. The three meshes

The three meshes needed in the inversion procedure are constructed with respect to the in-
put parameters. The mesh generation itself is a very complicated procedure. Therefore Tet-
Gen (Si, 2004) is applied, a non-commercial and flexible software for the generation of tetrahe-
dral meshes.
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The parameter mesh describes the cells whose resistivities are to be determined and includes
the topography of the target area. The lateral model extension is determined by the electrode
layout plus a small surrounding region in the dimension of several electrode spacings. To de-
termine the model depth, the idea of Roy and Apparao (1971); Barker (1989) is extended to
multi-electrode data. A 1D-sensitivity function for a homogeneous half-space is calculated and
summed up for all data. A cumulative value of 90% depicts a reasonable model depth and can
be applied to arbitrary electrode configurations (Günther, 2004). As an advantage of unstruc-
tured meshes their element size can be varied flexibly. An a-priori resolution analysis (Friedel,
2003) helps to get an idea of resolution radii as a function of space. Thus, the smallest elements
appear near the electrodes and have typical edge lengths of 0.5−1 times the electrode distance.
The element size increases with depth such that the largest elements are created at depth or near
the boundaries and have extensions of several electrode distances.

On the secondary field mesh the forward calculations are carried out for the secondary po-
tential. It is obtained through a global h−refinement of the parameter mesh. To avoid effects
of the boundary conditions, a mesh prolongation has to be applied. Additional boundaries are
suggested with the size of a few times the electrode layout are suggested.

The primary field mesh is used to calculate the primary potentials as needed for the SP tech-
nique. A constant conductivity of σ = 1S/m is assumed and the potential is scaled with the
individual value of σ0. To cope with the large potential gradients, the mesh needs to be highly
refined near the electrode positions to obtain accurate results. Additionally, higher order poly-
nomial shape functions are used. This also increases the degrees of freedom but turns out to
be more effective than purely spatial refinement (cf. Section 2.5.2). Consequently, the primary
field mesh usually has a huge number of nodal points but the associated system of equations has
to be solved only once at the beginning of the inversion process. The primary potential values
for the related nodes of the secondary mesh are obtained by interpolation according to the FEM
base functions of the primary mesh.

4.4. Inversion scheme

4.4.1. The objective function

A Gauss-Newton scheme with global regularization is used as described in the following. Let
m be the model vector ofM single model parameters m = (m1,m2, . . . ,mM)T. The individual
m j denotes the physical properties of the individual tetrahedrons or a function of it. To ensure
positivity of the resistivities ρ j, the logarithms m j = logρ j are used

In the same manner the logarithms of the measured apparent resistivities log(ρai) = di are used
to build up the data vector of D single data d = (d1,d2, . . . ,dD)T. Each data is associated with
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4.4. Inversion scheme

an error εi, which is used for weighting. Using an `2-norm of the weighted residual between
data and model response f(m) = ( f1(m), f2(m), . . . , fD(m)) obtained by the forward operator,
the data functional Φd to be minimized is defined by

Φd(m) =
D
∑
i=1

∣∣∣∣di− fi(m)
εi

∣∣∣∣2 = ‖D(d− f(m))‖2
2 with D = diag(1/εi) .

If the errors are not measured, they have to be estimated appropriately. Following Friedel (2003)
the errors are assumed to be composed of a percentage error of several (p)% and a voltage error
δU ,

δρa

ρa
= p%+

δU
U

. (4.1)

Note that the use of logarithmic apparent resistivities ρa leads to the error estimate εi = log(1+
δρai/ρai) for i = 1 . . .D (Friedel, 2003).

Since the minimization of Φd represents a highly ill-posed problem, a regularization is imposed
by introducing an additional model functional Φm (Tikhonov and Arsenin, 1977). It is weighted
by the regularization parameter λ yielding the functional to be minimized

Φ = Φd +λΦm→min . (4.2)

Equation (4.2) can also be obtained by the minimization of Φm while fitting the data down to the
error level Φ∗d = N. Thus, the regularization parameter has to be chosen to satisfy Φd = Φ∗d .

Φm is a squared norm of a product of a constraint matrix C and the difference between the
model m and a reference model m0

Φm(m) = ‖C(m−m0)‖2
2 . (4.3)

From here two ways are possible: If m0 is a model containing a-priori information and C is the
identity or a diagonal weighting matrix, the model is kept close to m0. The other way is to treat
m0 as a constant vector and to use C to control the model characteristics. Since the problem
is highly under-determined and the measurements are usually carried out at the surface, the
application of smoothness constraints (Constable et al., 1987; de Groot-Hedlin and Constable,
1990) seems to be the method of choice. Both methods may also be combined, e.g., if a layered
half-space is given as reference model m0 and the inhomogeneities are expected to be smooth.

For a regular mesh the smoothness matrix C represents a discrete approximation of a partial
differential operator of first or second order. Here, special smoothness constraints for an un-
structured mesh have to be defined taking into account the neighbouring relations. Two tetrahe-
drons i and j are referred to being neighbours, if they share a common triangle face. For each
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4. Inversion on unstructured meshes

face f C f ,i = −1 and C f , j = +1 are set, instead of 1 the face area size may be inserted. Thus,
C ∈ RB×M is a sparse matrix with 2M entries, where B is the number of boundaries.

The model vector is updated in an iterative procedure,

mk+1 = mk + τ
k
∆mk , (4.4)

with the line search parameter τk, the superscript denotes the iteration number.

The application of the Gauss-Newton scheme on minimizing Φ leads to (Park and Van, 1991)(
STDTDS+λCTC

)
∆mk = STDTD(d− f(mk))

− λCTC(mk−m0) , (4.5)

where S is the Jacobian matrix.

4.4.2. Sensitivity calculation

The sensitivity or Jacobian matrix S ∈ RD×M contains the partial derivatives of the model
responses fi with respect to the model parameters m j

Si, j(mk) =
∂ fi(mk)

∂m j
. (4.6)

There exist several methods to obtain sensitivities or Frechet derivatives (McGillivray and Old-
enburg, 1990). Sensitivity studies have been extensively carried out to obtain concepts of detec-
tion and resolution properties. Spitzer (1998) described sensitivities for various configurations
and gave an overview on methods for the numerical calculation.

From the reciprocity theorem by Geselowitz (1971) can be derived an analytic expression for
the sensitivity of the impedance Z with respect to a conductivity change δσ

δZ =−δσ

∫∫∫
Ωi

∇uS

IS ·
∇uR

IR d3r , (4.7)

where Ωi is the anomalous region. uS is the potential caused by the source electrodes and uR is
the one obtained from interchanging source and receiver electrodes. The corresponding currents
are denoted by IS and IR.

The potential gradients are known from the finite element forward simulation and are constant
within each element for linear shape functions. In the following the formulation of Kemna
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4.4. Inversion scheme

(2000) is adapted, going back to Sasaki (1989)

∂u
∂σ (e) =− 1

σ (e)I ∑
i

∑
j

S(e)
i, j uS

i uR
j ,

in which the sensitivity is obtained by summation over the potentials and the entries in the
element stiffness matrix S(e) that is introduced in Chapter 2.2.1

However, problems arise for elements adjacent to electrode positions. The infinite potential on
this node has to be replaced by a finite one to restrict the sensitivity values. Note also that the
formulation approximates the potential by piecewise linear functions, which is satisfying for the
secondary but not for the total potential on the moderate secondary field mesh.

In the course of iterations, the sensitivity matrix can be recalculated. Alternatively, quasi-
Newton methods may be applied that use a rank-one update mechanism (Broyden, 1972). Since
the difference is negligible, Broyden’s method is used in the following examples to save com-
puting time.

4.4.3. Solution of the inverse subproblem

The system of equations (4.5) has to be solved in every iteration step. In contrast to ray tomog-
raphy the matrix S is dense. For large-scale problems it is sometimes useful to neglect small
absolute values to represent S as a sparse matrix.

To avoid the storage of the left-hand side matrix and the transpose of the Jacobian, conjugate
gradient techniques are used for solving equation (4.5) approximately. The presented algorithm
denoted as CGLSCD is an adaptation of the CGLS algorithm (Press et al., 1992) introducing
data weighting and model constraints (Günther, 2004). For the solution of

(ŜTŜ+λL)x = ŜTb−λLδx

it reads in the initialization (x0 - initial guess)

z0 = b− Ŝx0

p0 = r0 = Ŝz−λLδx
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4. Inversion on unstructured meshes

and computes in every iteration k +1

qk = Ŝpk

αk+1 =
∥∥rk
∥∥2

/(qT
k qk +λpT

k Lpk)

xk+1 = xk +αk+1pk

zk+1 = zk−αk+1qk+1

rk+1 = ŜTzk+1−λL(xk+1 +δx)

βk+1 =
∥∥rk+1

∥∥2
/
∥∥rk
∥∥2

pk+1 = rk+1 +βk+1pk

until the residual vector rk falls below a given limit. In every occurrence, Ŝ is replaced by DS,
the vector b is initialized with D(d− f(mk)), δx = mk−m0 and L = CTC. The result is the
sought model update ∆mk. Note that all scalars and vectors may be overwritten in each iteration.
The only exception is to save

∥∥rk
∥∥2 before rk+1 is computed. A further improvement may be

achieved by preconditioning (Haber, 2005).

4.4.4. Choice of the regularization parameter

The regularization parameter λ is a trade-off between data fit and model roughness and must
therefore be chosen accordingly. Small values lead to highly rough-textured models with good
data fit, whereas large values correspond to smooth models with weak data fit (Tikhonov and
Arsenin, 1977). There exist several methods to compromise data fit and model constraints (Far-
quharson and Oldenburg, 2004). A very simple but not always stable method is referred to as
L-curve method ((Hansen and O’Leary, 1993), see Vogel (1996) for instabilities). By plotting
the data misfit Φd against the model roughness Φm for a series of λi a curve is constructed,
which has often an L-shaped appearance. Figure 4.2 shows such an L-curve as arising from
the first synthetic example of Chapter 4.5.1. A reasonable trade-off between Φd and Φm occurs
near the ‘corner’. The location may be determined, e.g., by estimating the curvature Li and
Oldenburg (1999).

Since the system is better conditioned for strong regularization, the solving of equation (4.5)
is starting using a relatively large λ and decrease it successively by a fixed factor until the
curvature of the L-curve begins to decrease again. This point indicates the optimum λ . Since
solutions ∆m corresponding to neighbouring λi yield similar results, the result for one value of
λ is used as starting vector x0 for the next smaller value. This reduces the number of iterations
in the CGLSCD algorithm drastically (Frommer and Maass, 1999). In order to construct the
global L-curve, the forward responses are needed for all values of λ . To avoid this, the L-curve
is investigated of the linearised inverse problem.
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Figure 4.2.: L-curve (data fit against model roughness) derived from the synthetic example of
Chaper 4.5.1. The optimum regularization strength may be determined searching the maxi-
mum of the curvature.

Note that finally the discrepancy principle (fitting data within error bounds) dictates the regular-
ization strength. However, in non-linear inversion many runs would be necessary to iterate until
Φd = Φ∗d . On the other hand, data errors are seldom known accurately and have to be estimated.
In practice, values of 1 to 5 for the chi-squared misfit χ2 = Φd/D show reliable results without
over-fitting or under-fitting the data.

4.4.5. Line search

In each iteration the step length parameter τk has to be determined to prevent the model from
overshooting due to non-linearity. Initially, the forward response is computed for the full step
length f(mk +∆mk). To avoid the forward calculation for many values τk

i , a linear interpolation
is used between the old and the new model response

f(mk + τ∆mk)≈ f̃(τ) = f(mk)+ τ[f(mk +∆mk)− f(mk)] ,

which is a poor approximation but sufficient to obtain an appropriate step length Günther (2004).
The parameter τk is determined such that Φd(f̃(τ))+ λΦm(τ)) is minimized. Then, the model
is updated mk+1 = mk + τk∆mk and the forward response f(mk+1) is calculated exactly. Thus
at least two forward runs are needed per iteration step.
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4. Inversion on unstructured meshes

4.4.6. Triple-grid inversion scheme

Figure 4.3 displays the inversion scheme. The following steps are passed through:

1. Read data & topography, estimate errors

2. Triangulate topographical surface

3. Generate parameter mesh by resolution estimates

4. Generate secondary field mesh by prolongation and global refinement

5. Generate primary field mesh

6. Calculate primary potentials for σ = 1 and interpolation to the secondary mesh nodes

7. Determine geometric factors and apparent resistivities

8. Choose starting model and constraints

Inversion

Sensitivity

Inverse subproblem

Constraints

Forward operator

Check

Solution

Topography

Parameter mesh Primary field mesh

Electrodes Data

Geometric factor

Apparent resistivitySecondary field mesh Primary potential

Figure 4.3.: Inversion scheme. The topography is used to build the meshes. The primary potential defines
the geometric factors and thus the apparent resistivities. The forward calculation is carried
out on the secondary mesh. The frame indicates the central loop of the forward and inverse
step until the stopping criterion is reached and a solution is obtained.
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4.5. A synthetic example

9. Approximate Jacobian matrix from potential

10. Calculate model update vector by solution of equation (4.5), use L-curve criterion to
determine λ at a first step

11. Determine step length by inexact line search

12. Update model and calculate forward response

13. Repeat last four steps until the stopping criterion is fulfilled

The stopping criterion applies if (a) the functional Φ stagnates or (b) the data are fitted within
errors, i.e. χ2 = Φd/N ≈ 1. If necessary, the regularization parameter λ may be adjusted and
the inversion is continued.

4.5. A synthetic example

4.5.1. Synthetic model and data

The following example is derived from the investigation of a burial mound and illustrates the
flexibility of handling a complicated geometry. The topography is built up by intersection of an
ellipsoid with a plane. Its footprint is an ellipse of 20× 15 m extent, the top of the mound is
located 5 m above ground level. It is shown in the following, that the steep topography, partic-
ularly at the foot of the slopes, affects the direct current measurements severely and cannot be
neglected in the inversion process.

Figure 4.4 shows the topography and the electrode layout. 9 profiles are placed in x-direction
and 13 profiles in y-direction. The electrode distance is 1 m on all profiles, the profile distance
is 2 m. 487 electrodes are used in total.

The mound itself is supposed to have a resistivity of 200 Ωm whereas for the underground
100 Ωm are assumed. Additionally, a cavity inside the mound is considered. It has an ellip-
soidal shape with half-axes of 1.5, 1.0 and 0.5 m in x, y and z direction, respectively, and is
described by Neumann boundary conditions. Its centre is located 2.5 m below the top of the
mound. Figure 4.5 shows the synthetic model and the mesh used for calculating the synthetic
data. The positions of the electrodes are clearly indicated by the high refinement. According to
Chapter 2.5.2 quadratic shape functions are used on a mesh with 634 242 nodes to calculate the
synthetic data.

Dipole-dipole configurations are considered on all profiles. To counteract the growing geometric
factor and redundancy, the dipole lengths are enlarged with increasing separation factor n. In
fact, the dipole length is calculated by ∆e = (n+3 mod 4)a, where a is the initial dipole length
and n = 1,2,3, etc. A total of 3 439 single data is simulated. The synthetic data are noisified
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Figure 4.4.: Topography and electrode layout of the synthetic example. The two red profiles will be
discussed in the following.

Figure 4.5.: Synthetic model of a burial mound of 200 Ωm over a homogeneous half-space of 100 Ωm.
An ellipsoidal cavity is located in the centre of the mound.
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4.5. A synthetic example

with Gaussian random values. According to equation (4.1), a standard deviation is used of 3%
plus a voltage-dependent noise of 100 µV at an assumed current of 100 mA for both noise and
weighting. The two profiles at x = 0m and x =−10m are further investigated in the following.

4.5.2. Geometry effect

The influence of the topography on the response along the example profiles is shown in Fig-
ure 4.6. Note that this is done only for illustration since the geometric factors are known due to
numerically calculation. The wrong flat-earth geometric factors are used for the calculation of
the apparent resistivities ρa (Figure 4.6a) on purpose. Strong anomalies can be seen both in the
profile aside the mound (top) as well as in the central profile (bottom), which are mostly caused
by the topography as can be seen right away.

To eliminate the geometry effects, the real geometric factors were derived from the primary po-
tentials. The effects are very strong and produce an increase as well as a decrease in the apparent
resistivity of a factor of 3 to 4. The mound shows up with increased apparent resistivities at the
central part of the profile, whereas decreased values are indicated at the slopes. Compared to the
raw data in (Fig. 4.6a) nearly identical structures can be seen. Hence, the data are dominated by
the geometry effect.

Using the simulated geometric factor the data can then be transformed such that the geometry
effect is removed (Fig. 4.6c). The remaining anomalies can be clearly associated with the pa-
rameter structure. In the central part of the central profile (Fig. 4.6c bottom) the pseudo-section
shows the resistivity of the mound (200 Ωm), whereas the data at both ends of the profile repre-
sent the background resistivity of 100 Ωm. Additionally, the high-resistive cavity can be clearly
observed in the data by isolated high resistivities in the central part.

4.5.3. Inversion result

An automated mesh generation is used merely based on the topographical information. The
meshes created in the following are independent of the one used for producing the synthetic
data set in Chapter 4.5.1 to avoid an inverse crime (Wirgin, 2004). The parameter mesh con-
tains 23 109 parameter cells whose resistivities are to be determined. The secondary field mesh
obtains 112 040 nodes and the primary field mesh 421 157 nodes so that the first one may be
solved directly by Cholesky decomposition and the latter iteratively by conjugate gradients.

Figure 4.7 shows the parameter mesh and the secondary field mesh. The primary field mesh is
similar to the one shown in Figure 4.5 but lacking the cavity and therefore not shown.
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Figure 4.6.: Topography effect for two example profiles x = −10 m (left) and x = 0 m (right) of the
synthetic model from Figure 4.5: ρa based on flat-earth geometric factors (a), geometry
effect (b) and ρa using simulated geometric factors (c).

The inversion is initiated with a starting model of a homogeneous resistivity of 200 Ωm. The
regularization parameter has been chosen according to the L-curve criterion in the first itera-
tion (Fig. 4.2) to be λ = 55. Table 4.1 shows the inversion facts for each iteration. The chi-
squared misfit (weighted data functional per data) was decreased from 117 to 1.1 in 5 steps.
The line search procedure indicates an essential non-linearity. The main reduction of the mis-
fit is achieved by just one iteration. Due to the global regularization technique the maximum
model parameter range (column 3 and 4 of Table 4.1) does not increase in the further course of
inversion. Finally, the inversion stagnates at the expected level of 1, i.e. the data are fitted within
the (known) noise level.
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4.5. A synthetic example

a)

b)

Figure 4.7.: Meshes used for the inversion. a) The parameter mesh is embedded into b) the secondary
field mesh which is globally refined and prolonged.

Figure 4.8 displays the inversion result. An iso-surface with the value of 300 Ωm clearly depicts
the location of the cavity. Also, the resistivity contrast between the mound and the underground
is clearly visible.
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Table 4.1.: Line search parameter τ , model range and chi-squared data fit in the course of iterations

Iteration τ min(ρ) max(ρ) χ2 misfit

0 - 110 110 117.0
1 0.93 77 524 3.1
2 0.90 73 508 2.0
3 0.75 77 513 1.5
4 0.36 77 516 1.3
5 0.05 77 514 1.1

Resistivity in Ωm

72 95 126 166 219 288 380

Figure 4.8.: Inversion result of the synthetic model data. The iso-surface is determined by a value of
300 Ωm.

4.5.4. Comparison with even surface

The question arises if the data might be explained without incorporation of topography. There-
fore, the locations of the electrodes are projected onto a horizontal surface at z = 0m (ground
level) and the same approach as before is used except that the primary potentials were calculated
analytically. Due to the simpler geometry the number of parameter cells reduces to 7 448. The
inverted the apparent resistivities based on flat-earth geometric factors. However, the inversion
process became unstable and parameter values exceeded the range of 1 to 100 000 Ωm without
reaching a data fit of less than 20%. Therefore, these results are not shown.

Thereafter, the flat parametrization is used to invert the apparent resistivities based on the sim-
ulated geometric factors since they already include the topography effect. Consequently, the
data can be fitted approximately (χ2 = 2.5). Figure 4.9 shows a section of the corresponding
inversion result.

It shows the main features of the resistive mound in conductive background and the cavity can
also be seen. However, the latter anomaly is weaker and smeared over a larger region. Moreover,
stronger artefacts arise at the surface. To summarize, although the simulated geometric factors
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Resistivity in Ωm

72 95 126 166 219 288 380

Figure 4.9.: Inversion result using the calculated apparent resistivities on even parametrization.

allow for easy inversion methods, the topography needs to be involved into the parametrization
to obtain a geometrically reliable model. Note that the determination of geometric factors by
calculating the primary potentials is already the main portion of runtime (see Table 4.2).

Presupposing the topography is sufficiently smooth so that their effects can be neglected, block-
oriented grids are usually used for inversion. In order to compare the results from the triple-grid
technique with a block-oriented discretization, an equidistant grid is created with dx = dy = 1m.
Using 8 layers a number of 34×28×8 = 7616 parameters are obtained which is comparable to
the size of the unstructured parameter mesh. However, with the latter the model can be described
more accurately since the elements are smaller at the surface where the physical resolution is
better. Hence, the unstructured meshes seem more efficient even for a flat surface, particularly
if refinement and prolongation of the forward mesh is considered.

4.6. Application to field data

As a field example, the technique is applied to the investigation of an abandoned mining dump
which contains slag material originating from steel production1. The deposition has been ceased
in 1995. Hardpans formed when the dump material was exposed to precipitation and evapora-
tion thus leading to alteration of the material and the development of silicate gels. DC resistivity
measurements have been carried out by the Federal Institute for Geosciences and Natural Re-
sources, Hannover. The aim of the survey was to delineate the hardpan thickness, its function
as a sealing agent, and, furthermore, to determine internal structures of the dump.

1The data were kindly provided by U. Noell, M. Furche and C. Grissemann from Federal Institute of Geosciences
and Natural Resources, Hannover
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The dump is about 200 m long, 70 m wide and the maximum height is 14 m above ground level.
Figure 4.10 shows the topography and the used electrode layout. The top profile has an electrode
separation of 1 m, whereas the 13 cross profiles have electrode separations of 2 m. The profile
distance is 10 m, which is five times the electrode separation and, thus, just sufficient to try a
three-dimensional reconstruction of the dump’s interior.

Summing up 4 245 data have been collected with the Wenner array using in total 577 different
electrode positions. Figure 4.11 shows the raw data (a), the topography effect (b) and the ap-
parent resistivities (c) obtained by the simulated geometric factors for the profile at x = 220m.
Some of the main features in the raw data can be recognized by the geometry effect which shows
deviations from the flat earth case of up to 30% in both directions. For example, the low values
of the topography effect along the lower left-hand flank of the pseudo-section in Figure 4.11b
show up as high values in the flat earth apparent resistivities of Figure 4.11a. They do not appear
in the apparent resistivities with simulated geometric factors (see Figure 4.11c). Although the
topography effect is not very pronounced it will account for possible misinterpretations. Hence,
the topography is included in the inversion.

The parameter mesh contains a number of 62 045 tetrahedrons. This is far more than the number
of data but it is needed to describe the topography sufficiently. 422 980 nodes are obtained for
the primary mesh with quadratic shape functions. Such a large number requires an approximate
solution of the system of equations for which the ICCG method Kershaw (1978) is chosen. The
primary field calculation needs about 18 seconds for each electrode on a 2.4 GHz PC such that
the whole calculation is done in 3 hours and 18 minutes including the preconditioner.

In contrast, the secondary mesh contains only 111 096 nodes. The resulting system of equations
can thus be solved directly. The multi-frontal Cholesky decomposition takes about 21 seconds.

Figure 4.10.: Topography and electrode layout of the mining dump. Electrodes were located along 13
cross profiles and one along the top.
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One back-substitution for a single source is carried out in less than a second such that the total
forward modelling procedure needs about 8 minutes.

For the error weighting according to equation (4.1) p = 5% is used and a voltage uncertainty of
δU = 50 µV. By the application of the L-curve criterion a regularization strength of λ = 22.5
can be obtained. After 7 inversion steps the chi-squared misfit was decreased from 1433 to
4.7 which corresponds to a relative root mean square between data and model response of
7%. Table 4.2 assembles the time needed for the individual inversion parts. The number of 14
forward calculations is due to the inexact line-search procedure in every iteration. Note that for
any further run, e.g., with changed regularization type or strength, only the last two tasks in
Table 4.2 have to be carried out.
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Figure 4.11.: Sample of the field data in terms of a) flat earth apparent resistivity data, b) geometric
effect and c) apparent resistivities taking the topography into account for the cross profile
at x = 220m.
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Table 4.2.: Runtime needed for the inversion of the field data for an abandoned mining dump

Procedure Runtime Multiplied by Total time

Mesh generation 18 min 1 18 min
Primary potential 3 h 18 min 1 3 h 18 min
Sensitivity 1 h 42 min 1 1 h 42 min
Inverse subproblem 13 min 7 1 h 31 min
Forward calculation 8 min 14 1 h 52 min
Total 8 h 41 min

Figure 4.12 shows the inversion result. Two iso-surfaces delineate the conductive dump material
(< 6Ωm) and a resistive dump cover (> 20Ωm), possibly due to hardpan development. In
regions of missing or thinner hardpan, bulges in the low resistivity body are noticeable. No
obvious internal structure of the dump is revealed which at this stage is interpreted as a hint for
a homogeneous dump body as far as resistivity is concerned.

The large amount of data and parameter cells goes beyond the capacity of standard PC’s to store
the values of the sensitivity matrix. Since many of the values are expected to be very small, e.g.,
small cells at large distance from the four electrodes used, the absolute values below a certain
threshold can be neglected to save memory. Consequently, S is stored as a sparse matrix. Note
that 12 bytes are used for the indices and the value of each non-zero element in contrast to 8 byte
for a full matrix element.

The threshold value is decreased logarithmically from 10−2 down to 10−6. To avoid effects of
the forward calculation the difference is computed between the first iteration model (without
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Figure 4.12.: Inversion result of the abandoned mining dump. An iso-surface of 20 Ωm is used to delin-
eate the hardpan formation. The dump body is indicated by resistivities below 6 Ωm.
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line search) with and without sensitivity sparsing. Table 4.3 shows the non-zero values and
the model difference as a relative root mean square. A very good accordance is observed for
a threshold tol = 10−5 or below. Thus, accurate results can be obtained with 10 to 20% of the
memory requirements, which is supported by comparing the final models for various data sets.

Table 4.3.: Effect of sparsing the sensitivity matrix on the result of the inverse subproblem for different
threshold values. The number of non-zero elements is also given as the fraction of the full
matrix and required memory. Model rms is the relative root mean square of the first iteration
model with and without sparsing.

Threshold Non-zeros Fraction RAM Model rms

10−2 81 809 0.02% <1 MB 35.7%
10−3 1 661 792 0.5% 19 MB 13.7%
10−4 9 104 548 2.8% 104 MB 4.0%
10−5 28 134 833 8.5% 322 MB 1.0%
10−6 61 528 436 18.7% 704 MB 0.1%
0 329 649 720 100% 2.5 GB 0

4.7. Discussion and conclusions

An inversion strategy is presented for the reconstruction of the resistivity from DC measure-
ments for arbitrary topography. It is an enhancement of existing techniques and combines the
fast convergence of regularized Gauss-Newton methods with accurate finite element forward
calculations. Unstructured tetrahedral meshes are used in order to describe the topography of
the measurement area with high accuracy. Special attention is paid to an efficient forward sim-
ulation using a secondary potential approach. Therefore, the forward process is split up into
two parts: the time-intensive calculation of the primary potential and the fast calculation on the
moderate secondary field mesh.

A Gauss-Newton approach is used with inexact line search for solving the inverse problem. Thus
a solution is guaranteed after a small number of iterations. To stabilize the solution first-order
smoothness constraints are applied. However, other regularization methods have already been
implemented such as second order smoothness constraints. The introduction of a-priori infor-
mation as well as weighting mechanisms for different model regions will be given in Chaper 5.
A further enhancement may be obtained by active constraint balancing (Yi et al., 2003). A type
of focused inversion (Portniaguine and Zhdanov, 1999) may also be introduced to obtain models
with sharp boundaries.

The strategy was applied to noisified synthetic data as well as to field data. The run time is
strongly decreased by the singularity removal technique and the use of fast direct equation
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solvers. In addition, the use of unstructured meshes provides a resolution-dependent parametriza-
tion which finally saves computing time and memory. Thus, the approach is especially interest-
ing for surveys with steep topography or large geometry contrasts. Moreover, the approach is
well suited well for complicated model geometries, e.g., underwater surveys, model tank exper-
iments or measurements on cylindrical geometries.

In cases of strong conductivity contrasts, particularly near the electrodes, errors arise in the for-
ward calculation that can only be diminished by further refinement. In order to achieve high
speed and low memory consumption, the refinement should be carried out adaptively such that
only regions of weak approximation are locally refined. Another possibility of improving the
forward calculation is a grid hierarchy used for multi-grid solvers or preconditioners. Since
in the presented technique the Jacobian matrix needs to be stored, the memory capacities of
standard PCs may by the limiting factor for many large-scale problems. Thus, methods are
sought that avoid the explicit storage of the Jacobian matrix. One solution could be the tech-
nique of Zhang et al. (1995) or the non-linear conjugate gradients (NLCG) method (Ellis and
Oldenburg, 1994). Due to the slower convergence of NLCG much more iterations are needed
to find the minimum of the objective function. However, since the forward calculation is very
fast once the primary potential has been calculated, this technique is particularly promising for
large-scale problems. Other memory-saving techniques are quasi-Newton methods as proposed
by Haber (2005) where the Jacobian is approximated by a sum of rank-two update matrices each
stored by two vectors. Thus, the method starts with the slow convergence of gradient methods
and ends up with the quadratic convergence of Newton-type methods.

The method can be further developed by incorporating induced polarization effects using com-
plex conductivities Kemna (2000). Since the imaginary part is generally small, the primary
potentials may remain real, only the secondary potentials have to be obtained complex. More-
over, the use of electric in-hole, hole-to-surface and cross-hole measurements can restrict the
ambiguity of the surface data. Finally, appraisal techniques as presented by Alumbaugh and
Newman (2000) or Friedel (2003) may help to find the reliability of the models.
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Abstract

ERT is a widespread technique but has limitations due to the ambiguity of the poten-
tial field problem. Therefore, additional information or assumptions are required. So
far, smoothness-constrained schemes lack resolution and are too inflexible to include
information.

A very flexible regularization scheme based on unstructured meshes is presented that
is able to include both structure and parameter information into the inversion. In-
formation about the model structure such as known material interfaces known from
other geophysical techniques, e.g., reflection seismics or ground penetrating radar,
are incorporated as allowed sharp resistivity contrasts. Additionally, the global model
smoothness can be weighted individual to allow anisotropic constraints, e.g., to pre-
fer horizontal structures. The Parameter behaviour can be controlled individual by
logarithmic transformations to allow lower and upper resistivity boundaries. Model
weighting functions can define the allowed deviation of the final resistivity model
from given start or reference values.

As a consequent further development, the region concept, is presented where the pa-
rameter domain is subdivided into lithological or geological units, called regions. The
inversion behaviour and all regularization parameters can be controlled individually
on these regions. In Addition, a region can be treated as a single parameter, which can
reduce the amount of unknown parameter for the inversion.

Several examples from engineering and hydrology demonstrate that the definition of
interfaces such as seismic lines and regions, e.g., containing borehole information,
can significantly improve the ERT images. A further example shows how a compli-
cated three-dimensional problems with a limited dimensionality of the inverse prob-
lem can be treated efficiently be using the region concept. Finally the concept is ap-
plied to invert a very sparse dataset that is usually not interpretable by classical inver-
sion strategies.

81



5. Advanced electrical resistivity tomography

5.1. Introduction

Electrical resistivity tomography (ERT) is a very popular geophysical technique since resistiv-
ity is related to lithological and hydrological parameters and shows often sufficiently large con-
trasts. The rapid development of multi-electrode equipment in the 1990s lead to a wide spread-
ing of ERT and made it a fast standard method for engineering problems (e.g., Knödel et al.,
2007) and hydrogeophysical questions (e.g., Binley and Kemna, 2005). Applications reach from
the cm-dm scale on soil probes (e.g., Binley et al., 1996) over typical near-surface targets with
some tens of meters investigation depth (e.g., Loke et al., 2003) to large-scale investigations
(e.g., Flechsig et al., 2010).

With the increasing amount of gained data the demand for inversion software grew. There are
numerous papers on the inversion of 2D profiles on the basis of finite difference (FD) forward
calculation and discretization (e.g., Tripp et al., 1984; Loke and Barker, 1996a). Comparable,
FD-based 3D inversion techniques developed as first data sets were available (Park and Van,
1991; Loke and Barker, 1996b). Finite elements (FE) calculations (Coggon, 1971; Zhou and
Greenhalgh, 2001) were introduced later and were used in 2D (Kemna, 2000) and 3D (Sasaki,
1994) inversion. All have in common that the subsurface is being discretized by a large num-
ber of model cells. However, up to now they are mostly regularly arranged even if FE forward
calculations are used (e.g., Kemna, 2000; Sasaki, 1994). Alternatively, irregularly distributed
triangles (2D) or tetrahedrons (3D) allow a more flexible incorporation of topography (Gün-
ther et al., 2006). Most algorithms use smoothness constraints (Constable et al., 1987; Brecque
et al., 1995) in order to overcome the ambiguity of the inverse problem. However, although the
results are very stable, the smooth nature of the results can make the interpretation inaccurate.
Moreover, artefacts can appear due to the regularization technique (e.g., Clément et al., 2009).

There are several approaches to overcome overly smoothed models. Yi et al. (2003) use active
constraint balancing to enhance the resolving power. A model-side robust, so-called blocky,
minimization scheme based on L1 minimization (Farquharson and Oldenburg, 1998) can yield
models with accentuated gradients (Loke et al., 2003). Portniaguine and Zhdanov (1999) and
Blaschek et al. (2008) use focusing techniques to obtain sharp interfaces. Clément et al. (2009)
observe much more reliable time-lapse results when incorporating structural constraints and
Lelièvre and Oldenburg (2009) investigate options to incorporate structural orientation infor-
mation into the inversion. In a cross-borehole experiment, Doetsch et al. (2010) use completely
decoupled model parts to remove smoothing between borehole drilling fluid and subsurface,
which leads to a significantly improved image. In all cases mentioned above, a-priori informa-
tion is added to the inverse problem and thus improves the resolution (Pous et al., 1987).

A-priori information can be about structural character of the model, e.g., by reflection seismics
or ground penetrating radar (GPR) data or from borehole descriptions. However, it can also
represent resistivity data, e.g., from borehole logs or from other measurements. Even if the true
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resistivity of a unit is not known, its range can be limited based on experience or petrophysical
considerations. This additional constraint can be achieved by additional regularization terms
or a transformed model function. For example, the logarithm is often used to ensure positive
resistivity. It can be further restricted by combining different log functions (Günther, 2004).
However, this knowledge may only related to specific parts of the model. In order to incorporate
all present information, a very specific regularization scheme is required.

A very flexible regularization approach is presented based on regions created by structural inter-
faces. Unstructured meshes (Shewchuk, 2002; Si, 2004) are used to incorporate arbitrary lines
(2D) or faces (3D). The subsurface can so easily be subdivided into regions whose behaviour
can be controlled very flexibly. Several applications with real data demonstrate how the inver-
sion results can be improved by a-priori information. The introduction of a seismic reflection
into a bedrock detection leads to a very simple model. A 2D measurement on the bottom of a
shallow lake demonstrates how regions (the water and the sediments) can be treated specifically.
An application with borehole resistivity data demonstrates how both structural and resistivity
information significantly improve the interpretation of the resistivity image. The 3D nature of
a basically 1D inverse problem from vertical electrodes is solved by the region concept. Fi-
nally, the region concept helps to find a very coarse resistivity model for a sparse data set that
represents a highly under-determined inverse problem.

5.2. Method

5.2.1. Generalized minimization approach

The presented inversion scheme represents an extension of the triple-grid ERT inversion de-
scribed in Chapter 4. A very common global minimization scheme is used (Menke, 1989):

||D(d− f(m))||22 +λ ||Cm−h|| →min (5.1)

where d is the vector of D individual data di, m is the sought model vector with M model
parameters mi and f(m) its forward response calculated for 3D cases using the forward operator
described in Chapter 2 and 3. For the presented 2D cases, the model response is calculated ac-
cording to Kemna (2000) and adapted for the triple-grid technique by using mixed unstructured
triangle/quadrangle meshes. Assuming uncorrelated data variances δdi

2 the misfit between the
latter is weighted by a data weighting matrix D = diag(1/δdi).

Very common regularization schemes are smoothness constraints (Constable et al., 1987) where
C is a derivative matrix and h = 0. Figure 5.1 shows a minimalistic 2D mesh containing both
triangles and rectangles. It consists of six model cells with six inner boundaries between them.
Unstructured meshes can be used flexibly to describe surface or subsurface topography and
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Figure 5.1.: Minimalistic model consisting of four triangles and two rectangles.

are more efficient for boundary prolongation. Furthermore, the element sizes can be controlled
according to the resolution properties and thus an intrinsic regularization is achieved already.
In some cases, structured meshes may be advantageous, e.g., to follow horizontal layering.
However, a combination of structured and unstructured meshes can also be used.

The corresponding derivative matrix for the minimalistic mesh example in Figure 5.1 reads:

C = C1 =



−1 +1 0 0 0 0
0 −1 0 +1 0 0
0 −1 +1 0 0 0
0 0 −1 0 +1 0
0 0 0 −1 0 +1
0 0 0 0 −1 +1


(5.2)

and has a line for each boundary and a column for each model cell.

Another common scheme is to use minimum length, i.e. the deviation from a reference model
mr is minimized. In this case, C = C0 is the identity matrix and h = mr. In cases like process
monitoring, the difference to a reference model may be constrained by smoothness. Different
parts of the model can have different constraints by vertically appending their Cn matrices and
h vectors.

In order to control boundaries and cells individually, the scheme is expanded by multiplying
the basic constraint matrix C1 with two diagonal weighting matrices (Günther and Rücker,
2009):

C = diag(ws
i )C1 diag(wm

j ) for i = 1 . . .S, and j = 1 . . .M . (5.3)

The model weight wm = diag(wm) holds a weight for all M model cells. So the degree of
smoothness or the difference to a reference model can be controlled individually. Higher values
will enforce a locally smoother (or less deviating) model, whereas lower values allow for a more
contrasted (more deviating) model.
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On the other hand, the structural weight ws = diag(ws) holds weights for S individual structural
constraints, i.e. model boundaries in case of smoothness constraints, and 1 otherwise. There are
various ideas where a locally modified structural weight can represent the expectations to the
model:

• Anisotropic constraints, associate a lower weight to horizontal compared to vertical
boundaries. A vertical weight wz for the boundary is defined which is αz/αx in the sense
of Constable et al. (1987). For each boundary with the normal vector nnn = (nx,ny,nz) the
structural weight can be determined by a linear function of its vertical component nz:

ws = 1+(wz−1)|nz| . (5.4)

For the mesh in Figure 5.1 and wz = 0.1 the values of ws = [0.1, 0.27, 0.27, 0.1, 0.1, 1.0]
can be calculated.

• A known sharp contrast between lithological units may be known from boreholes, seis-
mics or GPR measurements. The interface I, consisting of inner cell boundaries, is in-
cluded into the mesh and ws

i = 0, or a small quantity, is assumed for all i ∈ I.

• Sharp interfaces at unknown positions may be enforced iteratively using a robust weight-
ing scheme (Farquharson and Oldenburg, 1998) using ws = IRLS(Cm) with the L1/L2

mapping function

IRLS(rl) =
|rl|/∑ |ri|
r2

l /∑r2
i

= ∑c2
i

cl ∑ |ci|
, (5.5)

such that large gradients obtain a low weight and vice versa.

Note that a multiplication from the left, ws simply amplifies the strength of the smoothness
constraints. A multiplication from the right, however, between different model weights leads to
an unsymmetrical smoothness and would enforce model gradients. Therefore, wm is only used
within separated parts of the model (regions) or for minimum length constraints.

5.2.2. Transformation functions

In most ERT inversions, the logarithm of the resistivity ρ is inverted. This represents a-priori
information about the valid range, e.g., prohibit negative resistivity and is often supported by the
statistical distribution or interpretation schemes. Instead of zero, the lower boundary of ρ l can
be restricted by using log(ρ −ρ l). In the same manner, an upper boundary ρu can be defined
and even combined with ρ l using the model transformation

mi = log(ρi−ρ
l)− log(ρu−ρi) , for i = 1 . . .M (5.6)
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with the individual resistivity ρi for model mi. Note that a transformation of the model param-
eter affects the elements of the sensitivity or Jacobian matrix which has to be divided by the
derivative of the transformation function.

The Gauss-Newton minimization scheme is applied for equation (5.1) to solve the inverse sub-
problem

(STDTDS+λCTC)∆mk+1 = STDTD(d− f(mk)+λCT(Cmk−h) (5.7)

for every iteration k for the model update ∆mk+1 = mk+1−mk.

The inverse subproblem is solved by a modified version of the CGLSCD solver (cf. Chap. 4.4.3.
Neither the Jacobian S nor the constraint matrix C are formed explicitly. The multiplication of
a matrix A is extended by the left and right vectors l and r multiplication such that

[diag(l)Adiag(r)] ·x = [A · (x∗ r)]∗ l , (5.8)

where ∗ denotes an element-wise multiplication and · a matrix-vector multiplication. This ap-
plies to both the Jacobian matrix and the constraint matrix. Since vector-vector multiplications
are of lower order, the performance of the solver is not slowed down significantly.

5.2.3. Region concept

Since for large-scale problems the properties of individual cells cannot be controlled efficiently
due to practical reasons, the so-called region concept is applied. A region is a sub-mesh mesh of
the model discretization and is created by incorporating fixed separation interface lines/facets
into the mesh generation process. Alternatively, regions can be defined by clustering mesh cells
of previously generated meshes. Regions have the following (constant) properties as inversion
control parameters:

• starting (and possibly reference) model m0 and model weighting wm

• lower and upper resistivity bounds ρ l and ρu

• vertical weight wz

• constraint type (smoothness or minimum length)

• individual model transformation

Additionally, a region can be defined as a single region, i.e., the cells within the region are
treated as one parameter by summing up the Jacobian elements. The resistivity of a single region
can be constrained against a reference or not. Another special type is a background region whose
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cells are excluded from inversion but used in the forward calculation. The background region
corresponds to the prolonged part of the secondary field mesh described in Chapter 4.

Additionally to the regularization terms within the individual regions so-called inter-region con-
straints can be easily appended to the constraints, i.e., smoothness terms for cell boundaries
between the regions. For smoothness constraints between regions with different model control
the ±1 values in equation (5.2) changes to 1/wm in order to prevent an asymmetric gradient.
For example, the triangles and rectangles in Figure 5.1 are treated as two separate regions. Then
the lines 4 and 5 of C from equation (5.2) vanish unless inter-region constraints are defined.
Together with a vertical weight wz = 0.1 and a large model control wm = const. = 5 in the
quadrangle region the resulting constraint matrix is

C =


−0.1 +0.1 0 0 0 0

0 −0.27 0 +0.27 0 0
0 −0.27 +0.27 0 0 0
0 0 0 0 −5 +5


In case of minimum lengths constraints in the triangle region (a) or its use as single region with
inter-region constraints (b) C changes to

C(a) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −5 5

 and C(b) =


1 0 0
0 −5 5
−1 1 0
−1 0 1

 , respectively.

The GIMLI software library provides a method-independent region manager which assembles
the matrix C, the various transformation (tm, td ) and the weighting vectors (wm, ws) which are
controlling the inverse solver and are needed by the inverse subproblem. The forward calcula-
tion can be done on a hierarchical derivative of the parameter domain as described in Chapter 4
or on a completely independent mesh by using conformal mapping of the parameter distribu-
tion.

5.3. Examples

5.3.1. Incorporating structural constraints from seismics

Often there are ideas about the rough structure of the subsurface. The information for this might
be derived from reflection seismics or GPR measurements in form of piece-wise continuous
lines. These lines can be interpreted as material interfaces which represent high velocity/density
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or permittivity/conductivity contrasts. It might be expected that high resistivity contrasts appear
at such material interfaces. Such interfaces can also be derived from borehole lithology or logs
where the resistivity is expected to jump at least in the neighbourhood of the borehole.

The following example1 was taken from a bedrock detection, a typical task for shallow geo-
physical techniques ahead of digging activities or within stability investigations. The ERT data
comprises 392 points measured with Wenner-α array at 50 electrodes with a spacing of 10 m.
The data noise was approximately 2%. Additionally to the geoelectric measurements, seismic
refraction data were acquired with a geophone spacing of 10 m and 8 shots with 50 m interval.
Refraction is a standard tool for bedrock detection, however, in case of heterogeneous overbur-
den many shots are needed to carry out a tomography. Fortunately, it was easy in this case to fit
the data by a two-layer model with a varying interface between a depth of 20 and 50 m.

Figure 5.2a shows the result of the resistivity inversion without additional information. The
bedrock is clearly shown high resistive, however, a very clear distinction of the correct depth
cannot be made with the resistivity alone.

1The data were kindly provided by Thomas Schicht (K-UTec Sondershausen)
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Figure 5.2.: Inversion result without (a) and with (b) refractor (black line) as a known boundary. The
opacity of the used colours corresponds to the coverage of the measured data, i.e., the row-
wise summation of the absolute entries of the Jacobian matrix which decrease with increas-
ing depth. The dots denote electrode positions.
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The seismic interface is now included as a structural information in order to obtain a more
reliable resistivity model. The polygon is added as a constraint to the piece-wise linear complex
(PLC), the input of the mesh generator Triangle (Shewchuk, 2002). As a result, the complete
polygon consists of known edges between each two triangles. Since a marker is incorporated to
the input of the edges, they can be easily identified and their corresponding structural weights
ws

i can be set to zero such that resistivity contrasts are admitted (but not forced).

Figure 5.2b shows the resulting resistivity model. The most dominant change coincides with the
seismic refractor (black line). It shows abrupt jumps from about 100 to a few 1 000 Ωm at the
main part of the interface. However at the left part, the sediments seem to be divided into two
layers, presumably silt and sand. A horizontal change between the same sediments happens at
the right margin of the interface, where the jump was already visible in the normal inversion
(Fig. 5.2a). At about x = 300 m the depth of the refractor might be slightly too deep causing in
an increase of the resistivity above.

Note, the model response for both inversion results fits the measured data within the data error
(χ2 = 1.0), hence both models are in the sense of inversion equivalent.

5.3.2. Demonstration of the region concept by an underwater survey

In order to investigate sediments to give hints of the historic vegetation on the alleged site of
the Varus Battle the LIAG institute carried out ERT measurements on the bottom of a shallow
lake. Two borehole electrode cables were combined each with 24 take-outs and 2 m electrode
spacing across the lake. The first and last two electrodes were coupled to steel sticks on the
shore, whereas the other take-outs were laying in the water on the bottom of the ≈2 m deep
lake. The resistivity of the water was measured at 22.5 Ωm with only few lateral and vertical
variations.

A combined data set, consisting of 657 values, using Wenner-α and Wenner-β array was ac-
quired in order to improve the resolution. 2% were added to the stacking error for weighting the
individual data. Despite lacking reciprocal measurements this choice turned out to be very plau-
sible and controlled all subsequent inversions such that the data was fitted within noise (χ2 = 1).
In order to enhance sedimentary, i.e., more or less layered structures, the vertical weight wz was
chosen to be 0.1.

Figure 5.4a shows the normal inversion result with only one inversion region. It shows a con-
ductive (≈ 30Ωm) lake over a medium resistivity subsurface with the highest values on the left.
The meaning of the individual anomalies will not be discussed here, but it will be shown how to
improve the image by using the region concept. The water table shows far too high resistivities
due to the symmetry with respect to the electrode line. Apparently the lake itself must be treated
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differently. Thus, the model is subdivided into two regions along the lake bottom line, the lake
region (1) and the sediment region (2).

Figure 5.3 shows a section of the used PLC. The inverse box is created inside the bigger outer
box and the line across the electrode nodes (dots) is the region separator. Note that the electrodes
are refined locally by a quarter electrode distance to account for the higher resolution in their
vicinity. There is one region marker in each of the three regions so that the elements of the
resulting mesh (Fig. 5.3) obtaining them. Note that the mesh stays the same for the following
computations but different from the normal inversion since the lake bottom was not discretized
there.

The outer region (3) is used as background for the forward calculation. The sediment region
(2) has constant properties with the bounds ρ l = 10Ωm and ρu = 1000Ωm, a constant starting
model of m0 = 30Ωm, smoothness constraints with wz = 0.1 and a constant model weight
wm = 1. The behaviour of the lake region is changed step by step by the parameters summarized
in Table 5.1. In total six parameter variants are selected which produce the inversion results in
Figure 5.4b-g. Note that for all variants λ was chosen such that the model fits the data with
χ2 = 1.
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Figure 5.3.: Input PLC for the mesh generator whereas the bold black lines denote region separators and
the blue dots represents fixed electrode nodes. The resulting mesh elements differentiate the
regions 1–3.

Table 5.1.: Lake region (1) parameters for different regularization strategies: region type, lower/upper
resistivity bound ρ l/ρu, model control MC and inter-region control IRC.

Variant Subfigure Region type ρ l[Ωm] ρu[Ωm] wm (const. ) IRC

0 a no regions
1 b multi 10 1000 1 0
2 c multi 20 30 1 0
3 d single 10 1000 1 0
4a e single 22 23 1 0
4b f single 10 1000 10 0
5 g single 10 1000 10 0.1
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Figure 5.4.: Inversion results of different regularization strategies according to Table 5.1.
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At first, variant 1, both regions are assumed to be equal what corresponds to a decoupling at the
bottom line as in the structural example (Fig. 5.2). Consequently, in Figure 5.4b sharp contrasts
appear but the lake still shows anomalous resistivity. Hence, in variant 2 the lake water resistivity
is limited to 10 – 30 Ωm and Figure 5.4c is obtained. In doing so, the symmetry artefacts are
being avoided while variability is still present. The resistivity range could of course be limited
further by using even tighter bounds. Alternatively (variant 3, Fig. 5.4d) the lake could be treated
as a single region but with identical resistivity bounds as in variant 1. This results in a constant
water resistivity of about 30 Ωm which is slightly too high. Two ways are possible to incorporate
the directly measured resistivity values of the water, Variant 4a (Fig. 5.4e) restricts the resistivity
to the interval 22–23 Ωm and variant 4b (Fig. 5.4f) uses a large model control to constrain the
resistivity to a starting model of the lake region of m0 = 22.5Ωm. Both results are practically
identical since the same information is added just by two different technical variants.

It could now be argued, that there is no sharp interface between pure water and the mud at the
bottom which is supposed to have a resistivity similar to the water. Therefore, additional (inter-
region) constraints can be put in to allow for slight changes across the lake bottom line. Variant
4a cannot serve as a basis as it uses different model transformations. Therefore, variant 4b is
used and altered by defining an IRC value of 0.1 for the lake/sediment boundary, corresponding
to wz. The resulting model (Fig. 5.4g) is similar to variant 4a (Fig. 5.4f) but some of the higher
resistivity values at the lake bottom, e.g., at x = 20 m, are vanished. Finally, all images are
similar and the interpretation of the sediment layers does not change significantly among the
variants. However, an improved model can be found by incorporating additional information or
expectations, respectively.

5.3.3. Incorporating borehole parameter information

External information are not always available for the whole extended region as in the case
of the water body resistivity from the preceding example. Boreholes are frequently present in
order to support or calibrate imaging of geophysical surface data. On the one hand, the borehole
lithology can provide structural information about existing layers, at least in the vicinity of the
borehole. Small interface lines can improve the result as shown in Figure 5.2. On the other hand,
measurements can either be extended to use sensors in boreholes or to drive logs.

In the following, a DC resistivity measurement is presented originating from a bedrock detection
problem2. A total of 1 223 single data were acquired with Wenner-α/Schlumberger array using
64 electrodes with a spacing of 5 m. Data errors were estimated using a 2% fixed error plus
100 µV voltage error. Additionally, a resistivity probe was conducted in the middle of the profile
with a two-point array every 0.25 m. Figure 5.5 shows the measured distribution as a function of
depth (blue). The profile starts with a fairly conductive (10 Ωm) clayey overburden. At a depth

2The data were kindly provided by Thomas Schicht (K-UTec Sondershausen)
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Figure 5.5.: Resistivity measured in the borehole (blue), results of a normal inversion (red) and using
borehole region boxes (green), the dashed blue line denotes the region boundaries with the
written numbers.

of 15 m follows a highly variable, mostly resistive fresh-water sand. Then the resistivities go
back to about 10 Ωm before the bedrock is reached with resistivities beyond 200 Ωm. The log
is subdivided by four interfaces at 6, 14.5, 23.5 and 32.5 m depth (dashed lines in Fig. 5.5) into
five regions which represents the most obviously resistivity changes.

First, a normal inversion with a vertical weight of wz = 0.1 was done yielding Figure 5.6a.
Upper and lower resistivities were set to ρ l = 8Ωm and ρu = 500Ωm, respectively. The data
were fitted within noise level (χ2 = 1). The clayey overburden can by clearly seen as well as the
sand below and the bedrock at the depth but not the conductive clay layer in-between. At the
borehole position, the bedrock is too deep and seems to be over-thrusting which is probably an
artefact from the extremely anisotropic regularization. To improve the model, the structural and
parameter knowledge from the borehole is incorporated into the inversion by defining regions
as 10 m wide boxes at the borehole position. Table 5.2 shows their parameters additionally to
the global ρ l/ρu.
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Table 5.2.: Parameters for the borehole regions.

Region Depth z = Type Constraint type m0 (const.) wz wm (const. )

1 0 – 75 m multi 1 200 0.01 1
2 6 – 14.5 m single 0 15 - 2
3 14.5 – 23.5 m multi 1 60 0.01 2
4 23.5 – 32.5 m single 0 15 - 5
5 32.5 – 42.0 m single 0 300 - 2
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Figure 5.6.: a) Standard inversion result and b) result with a-priori borehole data.

The outer region (1) adopts all parameters from the normal inversion. Regions 2, 4 and 5 are
fairly constant and are treated as single regions constrained against the absolute deviation from
the starting model of 15, 15 and 300 Ωm, respectively. Region 3 is defined as a multi-region
like region 1 because variations in its resistivities are expected. Since it is to be expected that
the model in the borehole neighbourhood will be affected by the several borehole regions, inter-
region constraints are defined with IRC = 1 between all boxes and region 1. An IRC = 0 is set
between the boxes because they should not affect each other. Additionally to the boxes, small
vertical interfaces are installed at the left and right side at the borehole for each region boundary
to support the idea of layering. Figure 5.6b shows the resulting resistivity image.

The mostly resistive fresh-water sand layer at depth = −20 m is visible in the neighbourhood
of the borehole but disappears with increasing distance. This could be real or just a problem
of the low resolution of the relatively thin resistive layer within a high conductive background.
At the left part of the profile, the fresh-water sand layer seems to reappear at a lower depth but
it is not clear whether the layers are connected. In contrary to the normal inversion, the low
resistive layer above the bedrock, which is known from the borehole log, is now clearly visible.
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The bedrock itself can now be better followed and is slightly ascending to increasing x values
as expected from other measurements, which is a clear improvement over the normal inversion
due to the borehole data. On the left hand side of the profile, the image tends more to the normal
inversion.

The results of the two inversions are plotted together with the borehole log in Figure 5.5. The
normal inversion shows only a very smooth curve that tends to the log, the region-based inver-
sion does a much better job. For the latter, the resistivity is constant at the starting values in
regions 2, 4 and 5. Region 3 shows a maximum value that is similar to that from the log.

5.3.4. Solving a 1D inverse problem while modelling in 3D

ERT is three-dimensional by nature but can sometimes be interpreted only one- or two-dimen-
sionally. If the forward calculation cannot be reduced to lower dimensions, a model transforma-
tion has to be sought between a 3D forward mesh and a 1D/2D inverse mesh. The presented ex-
ample uses data from a vertical electrode chain with extended electrodes and a complicated 3D
subsurface lacking the space used by the installed tool (cf. Chap. 3.4.4). Südekum et al. (2010)
installed a fixed system with ring electrodes in order to monitor changes of the fresh/salt-water
interface below the North Sea island Borkum.3 78 electrodes with a = 0.25 m spacing gained
917 data values using Wenner-α array.

For a static resistivity image, the 3D geometry of the electrodes as well as the borehole geometry
has to be considered. A fine tetrahedral primary mesh for the forward calculation is needed to
ensure accurate responses and to include the ring geometry. The forward calculation is carried
out using the CEM model described in Chapter 3 which exactly simulates current injection
and potential shunting along the electrode faces. The primary mesh contains 116 582 nodes
and 695 889 tetrahedrons. To keep the number of unknowns for the inversion within reasonable
limits a coarse parameter mesh was generated with 1 792 nodes and 10 349 tetrahedrons.

The current source positions within the parameter mesh are represented by nodes at replacement
positions for the ring electrodes. The lacking drilling inside the parameter mesh leads to differ-
ent geometries which both meshes span over. Therefore, the parameter mesh has to be mapped
onto the primary mesh. The nearly 700 000 primary mesh cells must be clustered to match the
ten thousand parameters cells. Each cluster will be used accordingly as a single region for the
inversion. This allows for an accurate forward response that incorporates the finite electrodes as
well as the borehole geometry.

Some additional effort is needed for mapping the parameter cells. Every cell of the parameter
mesh is numbered consecutively representing the marker for the resulting model cluster. For

3The data were kindly provided by Wolfgang Suedekum from Leibniz Institute for Applied Geophysics, Han-
nover
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every cell of the primary mesh the corresponding (resp. primary cell centre) parameter cell, i.e.,
the marker of the model cluster, has to be found. Therefore, a search of nearly 700 000 search
requests has to be done within a search pool of 10,000 elements. To make this search efficient,
a kd-tree nearest neighbour search (Bentley, 1975) was applied reducing the total search time
drastically. After the search, all cells of the primary mesh with an identical marker are clustered
into single parameter regions. Figure 5.7 shows parts of the used primary mesh, the parameter
mesh, and one resulting cluster as example. Note, the presented clustering approach is similar
to the clustering methods described in Blome (2009). However, the approach of mapping the
two meshes seems to be more flexible.

Figure 5.8a shows the result of the inversion. The transition zone from fresh-water (80 Ωm)
down to the salt-water saturated sand (3 Ωm) is interrupted by clay layers that are known to be
at depths of 48.5–49.7 m, 52.4–53.8 m and 56–62.3 m. However, the model is cylindrically sym-
metric because the data from one borehole array cannot differentiate between directions. Only
a few unknowns per layer can be resolved representing different distances from the borehole.
As a consequent continuation, a 2nd parameter mesh was created that only contains 78 layered
cylindrical discs (one for each electrode) representing a 1D parameter distribution.

Figure 5.8b shows the resulting resistivity distribution as a function of depth together with two
resistivity probe lines extracted from the tetrahedral model at distances of 0.1 and 2 m from
the borehole axis, respectively. Generally, the same behaviour can be observed, but while the
2 m line from the borehole is very smooth the line at the borehole over-accentuates the real
distribution. The 1D model shows a distribution that agrees best with the lithological description
containing sand (white) and clay (grey) layers. Since the 1D result does not lack regularization
artefacts, the resistivities are much more reliable and can be used to derive fluid conductivities
using Archie’s law and thus salt concentrations, whose temporal behaviour can describe the
hydraulic system of the island.

Figure 5.7.: Part of the highly refined primary mesh containing CEM electrodes (left), coarse parameter
mesh that reflects a simple discretization for inversion without electrodes (middle) and a
selected single region based on clustering (right).
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Figure 5.8.: a) 3D inversion result for the tetrahedral parametrization including borehole geometry and
CEM. b) Vertical probe lines at distance 0.1 m and 2 m from the borehole and the result from
1D single region inversion. Lithological description containing sand (white) and clay (grey)
layers.

5.3.5. Geological block inversion

In 2008, a regionally scaled DC resistivity survey was carried out by the University of Leipzig
in the Cheb Basin, located in the western Eger (Ohře) Rift, Czech Republic. The measurements
were designed as a feasibility study for a continuing study to image the conductivity distribu-
tion of the upper crust with an investigation depth of 4–5 km (Flechsig et al., 2010). The main
purpose of this test was to check whether and in what quality artificial electrical signals are
detectable over distances of about 15 km within the western Eger region, which is characterized
by high industrial electrical noise.

The data acquisition was performed using dipole-dipole configuration. A current of up to 8 A
was injected at three transmitter dipole locations (T1, T2 and T3) using three different feed-
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ing dipole lengths (200 m, 400 m and 600 m). The potential signal was measured at 9 different
receiver dipoles (P1 . . .9) with a length of 500 m and 1000 m. The transmitter and the receiver
dipoles were spatially distributed and do not follow a survey line. In total 91 different measure-
ments were obtained, whereas only 27 usable data values remained after signal processing with
a maximum dipole separation of 14.5 km.

The region concept is applied to obtain a coarse model of the resistivity distribution. A pa-
rameter domain with a few geological units is created based on a-priori knowledge about the
geological situation, i.e., a few main tectonic faults (Mariánské Lázně Fault Zone (MLF), SW
and SSW Eger Rift and its flanks), the sedimentary structure of the Cheb Basin and deposits
of granites and phyllites in the subsurface (Škvor and Sattran, 1974; Švancara et al., 2000;
Špičáková et al., 2000; Bankwitz et al., 2003; Mlčoch and Skácelová, 2009).

This results in 8 regions, 1 background plus 7 parameter regions, clustered from the tetrahedrons
which build up the unstructured forward mesh and contains the boundary of the geological units
as well as the electrode positions. All region were assumed as being single parameter regions.

Figure 5.9a shows the regional setting, the transmitter and receiver positions as well as the
boundary used for the regions. The resistivity model (Figure 5.9b) consists of seven blocks with
inherent resistivity values. One of the blocks is located below the sedimentary fill of the Cheb

Figure 5.9.: Left: Digital elevation model with the seven selected parameter regions according to geo-
logical, geomorphological and geoelectrical a-priori information. The locations denoted as
T(1–3) for the three transmitter dipoles(red) and P(1–9) for the nine receiver dipoles (yel-
low). Right: The result of the single region inversion.

98



5.4. Conclusions

Basin. The mica schists of the southwest part of the Eger Rift and the granites are characterized
by high resistivities, whereas the (weathered?) phyllites in the north eastern and the sediments
in the Cheb Basin are both represented by lower resistivity values. The high conductivity of the
southern part of the Cheb Basin is predominately influenced by the river (Ohře).

Its true that, the very coarse 3D resistivity model does only permit a rather rough first impression
of the regional resistivity setting. However, the model structure might gradually be improved
and refined by incorporating the results of further geoelectrical investigations and structural data
(seismic, velocity models, geology).

5.4. Conclusions

A very flexible regularization scheme is presented that applies individual weights for each cell
and each boundary within flexible unstructured meshes. The boundary weight is controlled by
an anisotropic smoothness factor or by predefined interfaces in the mesh generation. Those
interfaces could be derived from reflection data or borehole data and can be arbitrarily shaped.
By lowering the weight to zero, much more contrasted models are obtained that are less affected
by smoothness artefacts and whose parameters can be interpreted more easily. However, by
neglecting boundary weights, high resistivity gradients can be enhanced but not enforced, if
they are not supported by the data.

Contrary to boundary information, the model can be separated into so-called regions. Regions
are created in the mesh generation process and reflect a-priori knowledge on the behaviour
of specific lithological units of the subsurface. For each region, a model weight and also a
vertical smoothness factor, the starting value as well as upper and lower resistivity bounds can
be defined. The latter are achieved by using a model transformation function that combines two
logarithmic functions. Regions can either be constrained by a spatial derivative (smoothness) or
by the absolute deviation to a reference model. The resistivity of a region can be fixed either by
the use of very close lower/upper bounds or by applying large model weights. Furthermore, a
region can be condensed to a single unknown parameter, e.g., a constant resistivity of a water
body. A limited number of single regions can be used to find a three-dimensional model in case
of a highly under-determined inverse problem (e.g., Flechsig et al., 2010). On the other hand,
single regions can reflect expectations about the model, e.g., simulate 1D resistivity behaviour
depending on a 3D environment.

Regions are decoupled to avoid smoothness where changes occur, e.g., in case of borehole flu-
ids (Doetsch et al., 2010) or other sharp contrasts (Clément et al., 2009). However, regions can
be coupled using inter-region constraints. By the latter, resistivity information can be incor-
porated from boreholes using borehole boxes and neighbouring structural constraints. Further
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applications in ERT could be particularly found in hydrogeophysics, where the main units (un-
saturated zone, saturated zone and aquiclude) may be known but changes in the aquifer are of
interest. Time-lapse ERT is frequently applied in order to monitor hydraulic processes (Kuras
et al., 2009; Oldenborger et al., 2007) or tracer flows (Singha and Gorelick, 2005). After invert-
ing for the initial step, resistivity changes could easily be restricted to an aquifer region.

In all presented cases, the resistivity images are improved by introducing additional information,
either about structures or parameters. This information represents a-priori information, assump-
tions or expectations. However, the inversion result can only be as good as the included data
and the preciseness of the a-priori data. It has to be investigated how sensitive the data are with
respect to inaccuracies. Furthermore, the effect of additional information has to be quantified
by resolution analysis (Friedel, 2003; Günther, 2004).
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In this work modelling and inversion techniques are presented for the three-dimensional elec-
trical resistivity tomography (ERT) using unstructured discretizations. It is shown that the com-
bination of the described techniques fulfils the requirements for nowadays DC geoelectrical
interpretation software. Both, modelling and inversion can be applied to arbitrarily shaped ge-
ometries, which allows three-dimensional resistivity surveys at all scales for realistic environ-
ments.

Part I describes the modelling of the geoelectrical forward problem, which is solved by the
finite element method for tetrahedral meshes with linear and quadratic shape functions. It is
shown that the unstructured meshes are suitable for modelling domains with complicated sur-
face and subsurface topography. A moderate problem-adapted a-priori based mesh refinement
with global quadratic shape functions allows the best trade-off between accuracy and numeri-
cal effort. It is addressed that the resulting system of equations is solved most efficiently using
modern multi-frontal direct solvers in combination with matrix reordering strategies. Unstruc-
tured discretizations also allow the consideration of spatial extended finite electrodes. Due to a
corresponding extension of the forward operator using the complete electrode model, a study
about the influence of such electrodes to geoelectrical measurements is given. It is shown that
for the most classical ERT survey designs an electrode extent of less than 20% of the electrode
spacing allows a valid interpretation by using the common point like electrode approximation.
However, the effects become more noticeable for closed geometries such as modelling tanks or
lysimeters.

Part II describes the inversion of the geoelectrical data using the previously developed for-
ward operator. The so-called triple-grid-technique is introduced to solve the geoelectrical in-
verse problem by using a resolution dependent parametrization on arbitrarily shaped three-
dimensional domains. Its effectiveness is shown on two examples. An advanced regulariza-
tion scheme is presented as an extension for the ERT, which allows the flexible incorporation
of a-priori information. Structural information such as material interfaces known from other
geophysical techniques (e.g., reflection seismics or ground penetrating radar) are included as
allowed sharp resistivity contrasts. Model weighting functions can define the allowed devia-
tion of the final resistivity model from given start or reference values. As a consequent further
development, the region concept is presented where the parameter domain is subdivided into
lithological or geological regions. The inversion behaviour and all regularization parameters
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can be controlled individually on these regions. It is shown on several examples how the incor-
poration of a-priori information can significantly improve the resulting ERT images.

The presented modelling and inversion strategies can be improved by further development.
A a-posteriori mesh refinement for the forward operator may enable an increase in efficiency
and better scalability for accuracy needs in the future. Automated self-adapted parametrization
based on resolution analysis will increase the effectiveness of the inversion procedure. To ex-
ploit the tendency to increasingly multi-core architecture of nowadays PCs, the efficiency of the
modelling and inversion will enormously profit from parallelization.

The method independent inversion framework GIMLi that is originated during this work al-
lows a further way to decrease the ambiguity of the inverse problem, the so-called joint inver-
sion. The incorporation of complete datasets from multiple geophysical disciplines can simple
be achieved by the combination of the forward operators to reconstruct a common material
parameter, e.g., electrical resistivity from ERT and electromagnetic methods. The advanced
regularization scheme provides the basics for the structurally constrained joint inversion, e.g.,
refraction seismics and ERT by using the structural weights of the gradients from one model as
the weight for the other and vice versa. Together with the model transformations, it opens the
way to a petrophysical joint inversion for combined parameters, e.g., ground penetrating radar
and ERT can be jointly inverted for water content or porosity. By the use of the region concept
this can be restricted to predefined regions, e.g., the aquifer.
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A. Element integration and shape
functions

The contributions for the local element matrices are sought:

stiffness matrix S(e) =
∫

Ω(e)

∇Nk∇Nl dΩ and

load vector l(e) =
∫

Ω(e)

Nk dΩ for element (e) with k, l = 1 . . .N (e) as well as

the mass element matrix M(b) =
∫

∂Ω(b)

NkNl d∂Ω for boundary (b) with k, l = 1 . . .N (b)

for tetrahedral elements and the according triangle boundary facets whereN (e) denote the num-
ber of nodes for element (e) and N (b) the number of nodes for boundary (b), respectively.

The global base functions Nk for a global node Pk are represented by the linear combination of
polynomial interpolation rules, the shape functions Ni

(e) (i.e., local base functions) which are
given for a node Pi of the element (e):

Nk =

{
∑Ni

(e)∀(e) for Pk = Pi
(e)

0 else
for k = 1 . . .N and i = 1 . . .N (e) .

The assembly of the local element matrices are based on three major steps. Firstly, a coordinate
transformation, secondly the definition of the shape functions and finally a numerical integra-
tion.

Coordinate transformation

The shape functions can be easily described in local element coordinates ζ that can be obtained
by a coordinate transformation from the Cartesian coordinates of the element shape. For a tetra-
hedron (IR3) with the node positions Pi(xi,yi,zi) with i = 1 . . .4, the relation between Cartesian
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and natural or local coordinates ζ are given by:
1
x
y
z

=


1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4




ζ1

ζ2

ζ3

ζ4

 . (A.1)

Note, the transformation for a triangle is straight forward but not needed for the sought mass
element matrix. The local coordinates of an arbitrary tetrahedron can easy be obtained by the
solution of the system of equations (A.1) and provide some interesting properties:

Let f be the minimal value of the local coordinates ζi(x,y,z) of an arbitrary point P(x,y,z) for
an tetrahedron with the node positions Pi with i = 1 . . .4. The position P

1. is outside the tetrahedron of if f < 0 and inside for f > 0

2. is on the boundary facet (Pi,Pj,Pk) if f = 0 for ζl

3. equals Pi for ζi(x,y,z) = 1 and ζ j = ζl = ζk = 0.

Shape functions

Shape functions are linear independent functions that are defined on the nodes of an element
with the major property that the value of the functions is 1 for the corresponding node and 0 for
the remaining nodes:

Ni =

{
1 at Pi

0 at Pj
for i, j = 1 . . .N (e) and j 6= i . (A.2)

Note that, the superscript (e) for the shape functions N (i.e., local base functions) is avoided in
the following for convenience.

The shape functions are interpolation rules for the function behaviour within the element. Linear
interpolation in local coordinates reads:

Ni(ζ1,ζ2,ζ3,ζ4) = ζi for i = 1 . . .4 for a tetrahedron (A.3)

Ni(ζ1,ζ2,ζ3) = ζi for i = 1 . . .3 for a triangle . (A.4)
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The corresponding quadratic shape functions reads for a tetrahedron :

Ni =ζi(2ζi−1) for i = 1 . . .4

N5 =4ζ1ζ2, N6 = 4ζ2ζ3, N7 = 4ζ3ζ1 (A.5)

N8 =4ζ1ζ4, N9 = 4ζ2ζ4, N10 = 4ζ3ζ4 ,

and for a triangle:

Ni(ζ1,ζ2,ζ3) = ζi(2ζi−1) for i = 1 . . .3

N4(ζ1,ζ2,ζ3) = 4ζ1ζ2, N5(ζ1,ζ2,ζ3) = 4ζ2ζ3, N6(ζ1,ζ2,ζ3) = 4ζ3ζ1 . (A.6)

Due to the defined shape functions, a function value u can be easily interpolated for an position
(x,y,z) within a tetrahedral element by applying the fundamental FEM principle (2.7):

u(x,y,z) =
NN

∑
i=1

Ni(ζ1(x,y,z),ζ2(x,y,z),ζ3(x,y,z),ζ4(x,y,z))u(xi,yi,zi) , (A.7)

with NN the amount of shape functions for the element and u(xi,yi,zi) the known potential
values for the corresponding element nodes. In the same manner the gradients of a function can
be determined inside an element:

∂u(x,y,z)
∂x

=
NN

∑
i=1

∂Ni(ζ1(x,y,z),ζ2(x,y,z),ζ3(x,y,z),ζ4(x,y,z))
∂x

u(xi,yi,zi) . (A.8)

The partial derivatives of the shape functions in Cartesian coordinates can be obtained by the
chain rule:

∂Ni(ζ1(x,y,z),ζ2(x,y,z),ζ3(x,y,z),ζ4(x,y,z))
∂x

=
4

∑
j=1

∂Ni

∂ζ j

∂ζ j

∂x
, (A.9)

and correspondingly for y and z.

Numerical integration

The integration of the element contributions can be done analytically for the most basic element
types. However, a numerical integration is more general and based on the Gaussian quadrature
rule: ∫

(e)

f (x,y,z) dx dy dz = |(e)|
n

∑
i=1

wi f (xi,yi,zi) , (A.10)
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using n weights wi and discrete function values for the sampling positions f (xi,yi,zi) whereas
|(e)| denotes the volume of the element or the area of the boundary, respectively

The Integration is exact to an order of 2(p−m) whereas p is the polynomial degree of the
base function and m denotes the order of the differential operator within the integrand. For
tetrahedrons an integration order of 1 for linear and 2 for quadratic base functions are sufficient
for the Stiffness matrix and an order of 2 for the load vector. The integration of the mass element
matrix for triangle shaped boundary elements needs an integration order of 2 and 4 for linear
and quadratic base functions, respectively.

The assembling of the load vector and the local matrices is done element wise according to their
shape functions and applying equation (A.10):

l(e) =
∫

Ω(e)

Nk dΩ with [lk] = |(e)|
n

∑
i=1

wiNk(i) (A.11)

M(b) =
∫

∂Ω(b)

NkNl d∂Ω with [mkl] = |(b)|
n

∑
i=1

wiNk(i)Nl(i) (A.12)

S(e) =
∫

Ω(e)

∇Nk∇Nl dΩ with

[skl] = |(e)|
n

∑
i=1

wi
∂Nk(i)

∂x
∂Nl(i)

∂x
+

∂Nk(i)
∂y

∂Nl(i)
∂y

+
∂Nk(i)

∂ z
∂Nl(i)

∂ z
. (A.13)

with k, l = 1 . . .N (e) and N(i) denotes the shape function N(ζ1i,ζ2i,ζ3i,ζ4i) for the ith integra-
tion sample points in local coordinates. The Integration values that are necessary for the 3D
geoelectrical problem using quadratic shape functions are given in Table A.1.

Due to the special nature of the Dirac’s delta:∫
f (x)δ (x) dx = f (0) , (A.14)

a specific handling of the load vector l(e) which is associated to the DC point source term is
necessary:

l(e) =
∫

Ω(e)

Nkδ (r− rs) dΩ with [lk] = Nk(ζ1(rs),ζ2(rs),ζ3(rs),ζ4(rs) (A.15)

This allows node independent source positioning for the total and primary potential calculation.
Note, if the source position rs equals a node Pi of the element (e), the entry for l(e) can be simple
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expressed as:

[lk] =

{
1 for rs = Pk

0 else
for k = 1 . . .N (e) , (A.16)

due to the fundamental property (A.2) of the shape functions.

Table A.1.: Integration weights and abscissas for the tetrahedron and the triangle

Tetrahedron:
Order Weights w Coordinates (ζ1,ζ2,ζ3,ζ4)

1 1 n = 1 1.0 a,a,a,a a = 0.25

2 1 n = 4 0.25 a,b,b,b a = 0.585410196
b,a,b,b b = 0.138196601
b,b,a,b
b,b,b,a

Triangle:
Order Weights w Coordinates (ζ1,ζ2,ζ3)

2 1 n = 3 1/3 a,a,b a = 0.5
b,a,a b = 0.0
a,b,a

4 2 n = 6 0.109951743 a,b,b a = 0.816847572
b,a,b b = 0.091576213
b,b,a

0.223381589 a,b,b a = 0.108103018
b,a,b b = 0.445948490
b,b,a

1Zienkiewicz (1977)
2Dunavant (1985)
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