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Abstract:

The time coordinate is a common obstacle in the theory of non-
commutative (nc.) spacetimes. Despite that, this work shows how
the interplay between quantum fields and an underlying nc. space-
time can still be analyzed, even for the case of nc. time. This is done
for the example of a general Moyal-type external potential scattering
of the Dirac field in Moyal-Minkowski spacetime. The spacetime is a
rare example of a Lorentzian non-compact nc. geometry. Elements of
the associated spectral function algebra are shown to be operationally
involved at the level of quantum field operators by Bogoliubov’s for-
mula.

Furthermore, a similar task is attacked in the case of locally nc. space-
times. An explicit star-product is constructed by a method of Kont-
sevich. It implements a decay of non-commutativity with increasing
distance. This behavior should benefit the technical side — diverse
interesting formal attempts are discussed.

It is striven for unification of several toy models of nc. spacetimes and
a general strategy to define quantum field operators. Within the latter
one has to implement the usual quantum behavior as well as a new
kind of spacetime behavior. It is shown how this two-fold character
causes key difficulties in understanding.
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1 Introduction and summary

To those who do not know mathematics
it is difficult to get across a real feeling
as to the beauty, the deepest beauty, of
nature . ..

(Richard Feynman)

THE cited famous physicist is even more right today. Mankind reached an
enormous level of understanding of nature. Concerning the absolute funda-
mentals, real experiments barely keep up with theory. The issues discussed in this
thesis are probably far apart from producing statements that could be checked
e.g. in the recently popular Large Hadron Collider (LHC).

However, on the one hand this work can be seen as a source of creativity, making
some new theoretical progress in a specific field. And on the other hand it con-
tains attempts to arrange and tidy up things that are already almost explored.
Especially the last point is often merely a matter of mathematical beauty and
rigor. What makes this important and necessary? During the various attempts
of distinct groups of physicists of pushing the frontiers further into the unknown,
some of the even established theories suffer from a confusing variety of new al-
ternative formulations of themselves. Probably the biggest child of sorrow in
this regard is quantum field theory (QFT). Experimentally the predictions of the
theory are absolutely sound, just like those from general relativity, the other half
of the big two. Only exception is, when it comes to situations of extremely short
distances and high energies where both of them become equally important.

From a mathematical point of view, general relativity is quite clean and almost
easy. There is no need for many overly distinct approaches that are hard to
compare. Whereas quantum field theory always seems to make problems and
requests to be repaired in different ways. This makes it extra complicated to
extend the known and working theory and to compare and align it with principles
of the other.

In the big picture, the mathematical field of non-commutative (or better called:
spectral) geometry is a very promising candidate to help us out here. The idea is
to express differential geometry in a different “language” involving particularly
algebra and functional analysis. Geometric spaces are described equivalently by
so called spectral data, which are a set of objects, especially a certain function
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algebra over the spacetime, and many relations. Physically relevant can be a
specific option that opens up here. The option is to choose the function algebra
either commutative and obtain classical geometric spaces, or to choose it non-
commutative (nc.) and obtain something different. For physics the difference
finally results in a quantization of spacetime, which is a concept suggested by
various theoretical arguments nowadays. A nice motivation is given in [15].

The general and highly ambitious task is to understand the connection of space-
time quantization to the existing established theory of Einstein’s geometry and
the theory of quantum fields describing matter. In the thesis at hand this is
broken down quite drastically, aiming at examples. There are various toy models
(more or less physically reasonable) of nc. spaces around that will be conceptu-
ally reviewed in Section 5.1. Two of them are used and analysed in a much more
extended manner, namely the special Moyal-deformed Minkowski spacetime and
the more general concept of locally non-commutative spacetimes.

The main achievement of the thesis is covered in Chapter 2. It generalizes
the results of the paper [6] to a nc. spacetime structure that even involves the
time coordinate, which is quite nice. Time is an obstacle in a wider sense in nc.
geometry. Some of the toy models are constructed in a Riemannian setting and
even only for compact spaces. For those, Alain Connes (the founder of nc. geom-
etry, [11]) gave a sound framework in principle. But the more important models,
Moyal-Minkowski spacetime being one of them, need Lorentzian signature and
non-compact spaces, for which such a general framework is still under construc-
tion. Lacking such a framework of so called Lorentzian spectral triples (LOST’s),
the Moyal-Minkowski spacetime at least comprises an example for which spectral
data can indeed be constructed, according to [17].

The next question is how to construct a quantum field theory on such a space-
time. Again, no one knows the correct general strategy. Our choice is the most
obvious and natural one. Since the spectral data contains a Hilbert space and a
Dirac operator, this suggests usual CAR-quantization resulting in a Dirac field.
In the commutative case, the procedure actually corresponds exactly to the usual
approach of constructing the quantized Dirac field.

Then central emphasis is put on the construction of specific observables somehow
connecting to elements of the nc. function algebra. The idea is to mathemati-
cally express an interaction between matter quantum fields and the underlying
nc. spacetime. The easiest way to start with, is by external potential scattering.
In the classical Minkowski case this amounts to a simple pointwise multiplication
with a function ¢ € A as action of the potential operator V. The function algebra
A is given by real-valued Schwartz functions .(R" R) in 2 < n € N spacetime
dimensions together with the pointwise product. For the Moyal-Minkowski space-
time the product structure is exchanged by a non-commutative x-product and we
must restrict ourselves to even dimensions n € 2N.



Finally, the scattering process is described by a scattering morphism (. := Sy
(which exactly corresponds to the “unimplemented” well-known S-operator, just
at the level of an abstract field algebra). A rather old idea by Bogoliubov roughly
states: one obtains observable quantum fields by functional differentiation of the
S-operator with respect to the interaction strength. We use this to arrive at
a promising new concept of how to assign QFT observables to elements of the
nc. function algebra A. This concept could also be applied in a more general
context.

Compared to the paper [6], here it seems even more difficult to prove imple-
mentability of the S-operator because of the nc. time. However, this is not
necessary for many purposes. We can still prove Bogoliubov’s formula

d

P\ - Bav¥(f) =¥ (VRS),

and show the existence and (essential) self-adjointness of an observable ®(c) :=
¢ (V') that generates the derivation d,y, defined by

d

(5>\V\I/(f) . —_—

= o Awl).

A=0

“Generates” means

[1®(c), ¥ (f)] = o ¥(f).
The occurring symbols are: the abstract Dirac field operators ¥ (f) with f € %
(Schwartz, but compactly supported in time direction) and R = R™ — R~ the
difference of the advanced/retarded fundamental solutions for the free Dirac op-
erator. The potential V' is chosen to be ¢ x - x ¢ with Moyal product. There is no
indication that the choice c¢* -+ - % ¢ could not be carried out as well — this is just
a matter of taste.
This altogether gives some insight into the operational meaning of the elements
¢ of the nc. spacetime algebra at the level of quantum field operators.
Besides, note that the mentioned results for time-non-commutativity do not con-
tradict arguments stemming from [18]: the regularly cited lack of unitarity of the
S-operator and thus lack of existence of a proper Bogoliubov morphism describ-
ing the scattering process refers to a case of self-interaction. However, here we
deal with an issue of external potential scattering.
Concluding the chapter, also some attention is called to an interesting prob-
lem, occurring in the context of Rieffel’s deformed product, [31], together with
Bogoliubov’s formula from above. In some way this joins our results with the
“star-formalism” of those authors that usually start with a Langrangian. But it
reveals, that it is still quite difficult to compare different approaches and resolve
the two-fold nature of non-commutativity (QFT/spacetime).
The purpose here is just to try to establish some tidiness and understanding.

The next two Chapters 3 and 4 deal with the completely different concept of
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locally nc. spacetimes (invented in [3]), which will be introduced as detailed as
necessary at first. The idea is to make non-commutativity distance-dependent
and define star-products between functions on R™ x R™ instead of R™. So two
points are interrelated with each other, and nature should show its nc. effects
only at very short distances, thinking of Planck scale, and not as a whole static
background. This concept can in general be applied to different kinds of ex-
isting toy star-products. However, our construction of an explicit formula of a
local product in flat Minkowski spacetime has some similarity with a deformed
Moyal-product. The construction is based on a famous theorem of Maxim Kont-
sevich, [25], which is far from trivial.

Pushing the idea of distances further, one is inclined to consider two particles
instead of one. Since naturally the next degree of difficulty would be reached
when shifting from external potential scattering to two-particle/pair interaction.
Then the aim are again similar investigations and results as presented above. In
addition to the content of this chapter, especially also the later Section 5.3 sup-
plements some interesting aspects. It reveals key difficulties during attempts to
once more establish Bogoliubov’s formula from above. For technical reasons we
had to use cut-off functions as temporary auxiliaries in Chapter 2, that could be
removed again at the end. This time, a cut-off is naturally built in and physically
perfectly motivated. It implements the decay of non-commutativity for increas-
ing distances. The hope is then that this does an equally nice job on the technical
side again.

Unfortunately these ideas could not be brought to full conclusion and leave many
open questions. But nevertheless they give some interesting impulses for further
exploration for sure.

Chapter 5 reviews several toy models of nc. spacetimes and tries to put them on
equal footing. In order to find connections with a broader range of literature, an
explicit expression of the abstract field operator is proposed. The operator should
contain and combine both types of (anti-)commutation behavior: the one of quan-
tum field theoretic nature and the one caused by the new spacetime structure.
And it should also be general enough to suit various spacetime models. Some
connections are drawn to Weyl quantization and the approach of “DFR”, [15].

A short conclusion plus outlook then ends the journey through selected topics
and problems of quantum field theory together with non-commutative space-
times. This field of research has lots of potential, offers room to improve and
freedom of creativity and ideas. Although far from experiment, it still can help
to conceptually and technically bring existing theories to perfection and lay the
foundation for another breakthrough in the exploration of fundamentals.
Hopefully the one or other useful contribution could be made with this thesis.

10



2 Dirac field on Moyal-Minkowski
space coupled to a potential with
non-commutative time

2.1 Preliminaries

The Moyal-deformed Minkowski spacetime of even dimension n =1+ s €
2N, s > 1 will be described as R" with the Minkowskian metric

N = M)} —o = diag(l, —1,...,=1)

equipped with a non-commutative algebra of functions thereon whose product is
defined as follows. Let n = 2] for [ € N, and let § > 0. Then we define the
n X n-matrix

g | O I
M = M, = 5 (2.1)
=1 O
With this notation, the Moyal product
1 A
f*g(x):= o) //f(x — Mu)g(x 4+ v)e "™ d"ud"v, x € R", (2.2)
T n

is introduced for (complex-valued) Schwartz functions f, g € . (R™). By uwv = u-v
we denote the standard Euclidean scalar product of vectors u,v € R”. One can
show, either directly or by adapting the arguments of [17], that f x ¢ is again in
& (R™) and that the product f % g is jointly continuous in f and g with respect
to the usual test-function topology on .7 (R").

For convenience, operators of left- and right-multiplication with a function ¢ €

& (R™) are defined by

L.f = cxf (2.3)
R.f = fxc

Obviously M = My chosen as above is invertible, and one has

1

fxg(z) = ()"

// Flz—wg(z +v)e ™M v drudy, (2.4)

11



2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

which is the usual Moyal product investigated in several references (see [17],[19]).
The product fulfills (Lemma 2.12 of [17])

1 > gllze < (270) "2 fll22llg]l 2. (2:5)

Furthermore, the operator of left multiplication L., mapping the space of .#-
functions to itself, fits into the definition of a pseudo-differential operator, as we
recall

Definition 2.1.1 Let h € S (R™). A linear operator A is called a pseudo-
differential operator A € YDO on R", if it can be written as

An(@) = @) [[ olAl@, Ony)e I edy.

According to the symbol o[A], A falls into some class(es) ¥ := {A € UDO :
o[A] € S} of WDO's of order d € R, with

St = {0 € C®R" x R") :

3?350(96,6)\ < Crap(1+ €))7 for 2 € K7,

where K is any compact subset of R, o, € N" and Ckqp is some constant.
A € UDO is called smoothing (or regularizing), if A € U= := ;g ¥

Lemma 2.1.2 ([17]) Ifc € /(R"), then L. = c* - is a smoothing ¥ DO.

Proof Clearly olc x -|(z,§) = c(xv — M§) works as symbol and the required
estimates are fulfilled since ¢ € ., as it was already outlined in [17]. O

Analogously this can be transferred to the operator of right multiplication as
well.

For a subset G' of n dimensional (Moyal-deformed) Minkowski spacetime we
define, following usual convention, J*(G) as the causal future(+)/past(—) set
of GG, defined as consisting of all points that can be reached from G by smooth
future/past directed causal curves. And J(G) := JT(G)U J~(G).

With an eye on Dirac fields some more structure is needed. For any given n =
1+seN, s>1, weset

N := N(n) := 2n/? : n even (the only relevant case for our purpose) .
2=1/2: p odd
(2.6)
Then we refer to a collection (70,71, .,7s) of N x N-matrices as a set of Dirac

matrices if the relations

Yo + WY = 20wl (pv=0,1,...,5) (2.7)
Y=, T=— (k=1,...,3)

12



2.1 Preliminaries

are fulfilled. A set of Dirac matrices thus corresponds to an irreducible Dirac
representation of the complexified Clifford algebra Cl; 4; it exists for all n > 2.
Since we restricted ourselves to even dimensions n, it is possible to find a charge

conjugation operator C' : CV — C¥ for the Dirac matrices (70,71, --,7s);
this means that C' is an antilinear involution (C? = 1) satisfying
Cru = —71C. (2.8)

For details we refer to [12] and [13].

As opposed to previous discussions (see [6]) of the Dirac field onn = 1+s (s >
1) dimensional Moyal-deformed Minkowski spacetime we now want to drop some
of the simplifications. This mainly concerns the special choices of “potential
term” operator V' involving Moyal products in our Dirac operator

Dy :=D+V :=(—id+m)+V, (2.9)

acting on . (R™, C"), with m > 0 constant, & := v,0". From now on the time
dimension is no longer treated as being something special compared to the spatial
dimensions along the action of V.

Concretely the potential operator V : .7 (R",C") — . (R",C") is of the form

V= M,R.LM,, (2.10)

where ¢ € .7 (R™,R) and (M, f)*(z) := x(z) f*(z) is the multiplication operator
with a cut-off function

x € CF(R™ R) with maximum y(0) =1

(without loss of generality, the coordinate origin can be put into the center of
interaction), which means

(V) = x(ex (xf*) x ).
R, and L. acting on vector-valued functions are of course defined component-wise.
Remark

(a) Since x and ¢ are real-valued and R.L. = L.R. (associativity of x), it is
easy to see that the operator V is symmetric in L*(R", C") and commutes
with complex conjugation.

(b) The function y with compact support serves as “localization regulator”. It
it is questionable whether the following steps could be carried out without
X. At a later stage the limit x — 1 will be investigated.

Proposition 2.1.3 R.L. is a smoothing VDO.

Proof This follows easily from Lemma 2.1.2 and e.g. a Theorem in Hoermander’s
book [24, Theorem 18.1.8], that essentially says: Let P;, P, be WDO’s of orders
m and n respectively, then P, P, is a W DO of order m + n. O

13



2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

2.2 Review of the solution theory for the case VV = 0

We aim at presenting a solution theory for the Dirac operator coupled to a po-
tential of type (2.10). As a first step it is necessary to review the theory for the
“free” Dirac operator

D = —id+m,

which has been discussed comprehensively in [13] and [2] and just needs to be
adapted to the spacetime being Moyal-deformed. In our previous paper [6] this
has already been carried out even for a “non-free” Dirac operator and simplifies a
lot for the free case. In fact the product structure of the function algebra defined
on the underlying background manifold does not have any substantial influence
on the elementary solution theory of the Dirac operator. So almost immediately
we get the following analogue of Dimock’s Theorem 2.1 (a) from [13].

Theorem 2.2.1 There is a unique pair of linear maps
R* . C(R",CN) — C=(R"™,C")
having the properties

DR*f = f = REDf and
supp R*f C J*(supp f) (f € CZ(R",CY)).

R* are called advanced(+)/retarded(-) fundamental solutions of D. Ad-
ditionally we set R :== Rt — R™.

Proof The proof is given in [13] within the more general setting of an arbitrary
globally hyperbolic manifold albeit for the non-Moyal-deformed case of course.
If one insists on using the Moyal product, it appears only in the definition of the
sesquilinear form

() = [ qoan(F 5 k) @)

= [ asfP@nt@ds (f,heC2®,CY)),
and has no effect at all due to the tracial property of the Moyal product (Lem-
ma 2.1 (v) in [17] resp. [19]). One of the crucial steps in the proof of Theorem 2.1
of Dimock’s [13] is the property
(R*h, f) = (h, R f) (2.11)

which we just need to mention for later usage. 0

14



2.3 Solution theory for the case V # 0

2.3 Solution theory for the case V = (

Our goal is an existence/uniqueness Theorem for fundamental solutions in the
general case, i.e. opting for the potential (2.10) in

Dy=D+V=—@d+m+V.
Some intermediate steps are necessary.

Definition 2.3.1 Obuviously

N

()2 = (0" Z/an

A=1

defines a scalar product on C*(R",CN) or #(R",C"), and

102 = V(s ez = (z [14 @) pdna ) N

1s the associated norm.

In Appendix A.1 we prove the following theorem as an auxiliary result.

Theorem 2.3.2 Let R* : C®*(R",CV) — C®(R",C"), n > 2 be the advanced
and retarded fundamental solutions of D = —id+m on n-dim. Minkowski space-
time:

DR*f = f=R*Df and
supp R* f C J*(supp f).

Let A :=3707, 502, be the n-dimensional Laplace operator and

=SR2 e R,
and

af = (1-2)7"'f,
bf = (1+M)'f

for f € L2(R™). Then there exist o, f € N, such that b%a® R*a*b” can be extended
to bounded operators on L*(R") (taking values C L*(R™)).

As a byproduct it is shown that the domain of R* can be extended to ./ (R™, CN).
We will make use of this a lot and take

R*: 7R, CY) — C=(R",CM).

15



2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

Remark Note that R and a® commute (easily shown with the help of explicit
formulas from the proof in the appendiz).

This result can easily be applied in the Moyal-Minkowski setting as well. The
product structure of the functions on the spacetime has no effect on the proven
analytical properties.

For technical reasons to come we need the following definition. It introduces
versions of R* which are restricted to time slices.

Definition 2.3.3 Let
M, = {(2",2) e R": |2°] < 7} (2.12)
with arbitrarily fired 0 < 7 € R, chosen once and for all from now on. Set
Fo(My) = CF ((-7,7)) @ S(R"™)

as the space of Schwartz functions that are compactly supported in the time di-
rection. Then define

RE . A (M, CN) — C°(M,,CY), REf:=xm R*f

1:2xeM.

€ S, CN) with =
Jor ol ) with xon, () {O:xER"\fmr

Definition 2.3.4 Further define the Dirac operator
D, :=D=—iJ+m
but restricted on (M., CN) and also
Vi=V =MR.LM,

being defined as in equation (2.10), but restricted to functions on M., along with
the requirement supp xy C ..

Then obviously the solutions RE from Definition 2.3.3 fulfill the usual properties

o RFD,f = f= D,.Rtf for the Dirac operator D, = —ig + m restricted on
f € Fy(,,CY)

e supp REf C J*(supp f) NN, (a restricted version of the ordinary). More-
over there exists a compact K, C R™ such that supp R f C K.

Furthermore Theorem 2.3.2 can be transferred from R* to RE as well in a
straightforward manner.

16



2.3 Solution theory for the case V # 0

Definition 2.3.5 Over Q = R" or Q = O, define the Sobolev space (and its
norm) of order l € N by

H' = H'(Q) = {f € L(Q) : [|flla := 10" fllz2 + [ £ 22 < o0},

with 0" denoting the sum of multi-index derivatives to a combined order of I,
! X
alf@) = Dl ety =l 8?&

1 ln *
7.t Oz

Proposition 2.3.6 Let V., = M, R.L.M, be defined as in equation (2.10), but
restricted to functions on M., along with the requirement suppx C IM.. Then
there is a constant € € R such that

(a)
IR Vellop <€ (2.13)

for RV as mapping from
(Lo, CY), |- ll22) = (L3R, CY)YN O, | - [12) -

Beyond that, REV, maps to functions, that are spatially compactly supported
mn IM,.

(v)
IV, RE ]y < (2.14)

for V.RE as mapping from

(Coo@, V), || - fl2) = (C2(@,CN), |- 12)

(¢) Both cases (a) and (b) can be generalized from || - ||zz to Sobolev norms
| - |z of arbitrary order | € Ny (with a different constant, also called € ).

Proof

(a) Let’s choose .7,(9M,, CY) as domain and write
REV. = 1R*1V, = b P’ REa®b b P a2V,

with the maps a, b from Theorem 2.3.2 and «, € N. Now V., like V, is a
smoothing pseudo-differential operator (smoothing ¥ DO), since this is the
case for R.L. according to Proposition 2.1.3, and M, is just a WDO (in the
set of WDO’s the smoothing ones form an ideal). With b=?a=2® being a
VDO, b=?a=22V, is also smoothing and therefore extends to a L?*-bounded
operator with (in our case) values in C2°(9,).

Furthermore Theorem 2.3.2 along with its remark tells us, that b” RXa?*b”
is L2-bounded.

17



2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

Due to the support property of R, that there is a compact K, C R™ such
that supp RTf C J*(supp f) N M, C K, C IM,, the final mapping b—"
ends up yielding L*-integrable functions as range and being L?-bounded.
Beyond that, the resulting functions are smooth and spatially compactly
supported.

Altogether this proves part (a).

(b) In this case it is not possible to choose .#,(9M,,CY) as domain. It has to
be C®(M,, CV) instead, since b=" rightmost in

V,RE = V. 1RF1 = V,a b 7o a®™ REb6°b 7

is only L2-bounded from C2°(9M,) to itself.

Then of course b?a?*REb? and V,a 2*b~7 are L?-bounded just like in part
(a). And everything is finally mapped into C>°(supp x, CV), supp x C M.,
which proves part (b).

(c) Let T be either the operator RV, or V,RE. From the proofs of (a) and
(b) it is apparent that also 0'T" is L?-bounded, since &' acts just on C°-
functions for both choices of 7T'.

1T e = NO'Tfllz + 1Tz < Cillfllzz + Cll fllzz = Cal fll 2
< Collfllz + 10" flle < Csllf |l
on IM,. ]
Definition 2.3.7 Let A € R and D, := D but restricted to (M, CN). Define

DT,)\V = D.,- + )\‘/‘r (215)

on (M., CN) as the Dirac operator coupled to potential V, with interaction
strength A\, restricted to the time-slice M.

Theorem 2.3.8 Let \ be a sufficiently small real parameter, more precisely |\ <
€1, where € is the constant from Proposition 2.3.6. Then

2F = RE " = (14 REAV,) ' RE
mapping So(M,, CN) — C®(M,, CN) are well-defined and fulfill
griDT,)\Vf = f

for f € S (M, CN).
And also (see Proposition 2.3.6, second part)

B = R Y = R A, R
mapping C(M,, CN) — C>=(M,,CY) are well-defined and fulfill
Dow2: f=f
for f € C(M,,CN).
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2.3 Solution theory for the case V # 0

Proof From Proposition 2.3.6 we know that |[REAV,|lo, < 1 for [N < €71,
and that in fact this holds between Sobolev spaces of arbitrary order. Hence
1+ RENV, is invertible in the sense of a Neumann series
(1+ REAV,) ™' = > (—REAV,)
=0
converging uniformly for derivatives of arbitrary order, guaranteeing smoothness
of the inverse. Then

LEDawvf = (1+ REAV,)'RE(D, +\V,)f
= (L+RAAV)TH(f + REAVLf) = f.

The statement for Z= is proven analogously with the help of the remaining part
of Proposition 2.3.6. O

Remark From now on, it is always implicitly assumed that |A| is chosen suffi-
ciently small in accordance to a prespecified situation of fixed 7 (setting up the
thickness of the time-slice 91,) and x (the cut-off function for the potential).

At a final stage we aim at 7 — oo and y — 1 of course.

Furthermore, |A| is assumed to be chosen sufficiently small in regard to the fol-
lowing Corollary 2.3.9 (For our practical purposes some fixed finite order [ of
differentiability will be sufficient there).

Corollary 2.3.9 Actually on their smallest common domain the left and right
fundamental solutions coincide for an arbitrary order | € N of differentiability:

Ri, =% =5 Cl(M,,CY) - C'(Mm,,C"). (2.16)
It holds
%q:—tDT,)\Vf = f = DT,AV*%;—E]C

and
supp Z, f C J*(supp f) N 9M.
for f e CY(M,,CN). Note that X = \(I) has to be chosen smaller and smaller

for increasing [.

Proof

ZLE = (1+ RINV,)'RE=Y(—REN,)RE

Jj=0

= Riz —\V,REY = %*,

since both of the appearing series are shown to converge on C°(9,, CY) w.r.t.
Sobolev norms of arbitrary order [ (see Prop. 2.3.6). O
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2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

2.4 Construction of the dynamics

On M, (see (2.12)) we have constructed fundamental solutions R, = %7 with
the properties of Corollary 2.3.9 for the Dirac operator D, yy = D, + AV, coupled
to AV, with a sufficiently small A € R, cf. also Definition 2.3.4.

Definition 2.4.1
Rrav = R;Av - RT_,,\V
or shorthand notation
Ky = Rr v
for AV #£ 0.

Remark on notation: In the following we will need the “free” versions (potential
AV =0) of R, v and D,y again a lot, and also a few other objects to be defined
with similar subscript notation.

The notational abbreviation then always goes like

R, = RT,07 D; = DT,O‘

We intend to get rid of the auxiliary 7, the restriction to the time-slice 9, in a
later subsection.

2.4.1 The CAR-algebra F(KJ'",C) of the free Dirac field on
M,

At first, the free (meaning no potential, \V' = 0) one-particle Hilbert space, going
to be called k7', needs to be constructed. The strategy is the same as in [6].
Although in this paper the construction from the beginning relied on the Dirac
operator coupled to a potential (in the commutative case as well as in the non-
commutative one), it is common and also simpler to carry this out for the free
case.

Therefore we take the free advanced/retarded fundamental solutions RE = R:fo
and R, := R' — R, defined on .7,(M,, CY) (compactly supported in time di-
rection, Schwartz in spatial directions, cf. Definition 2.3.3) for the free Dirac
operator D, = D,y = —iJ + m and set up the

Definition 2.4.2 Let f,h € (M., CN).

(o) = [ 0anf P @R @) = q0a5(f7 )1,

(f7 h)T = (f7 h)T,O = <f) ZRTh>7
K3t = completion of S(M,,C")/ker R,
w.r.t. the following scalar product:

(fl= h-) = (f; h)r,
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2.4 Construction of the dynamics

denoting the elements (equivalence classes) of K3 by [f]+ := [flro-

Proposition 5 in [6] shows (actually in a more general case with a Moyal-type
potential that slightly deforms the properties of the fundamental solutions) that
everything is well-defined and (ICSﬁT, (-, )) is indeed a Hilbert space.

Again, the Moyal product structure of our underlying spacetime doesn’t affect the
definition of (-, -) (probably a place, where one could argue to use the x-product),
because of its tracial property. Besides, it does not matter whether to integrate
over R" or 91, there.

Of course it holds

[f]+ = [h], & R.(f —h) = 0.

Remark One could easily choose the test-function space C2° (9., CV) instead of
(M, CV), which is absolutely common. We just try to be a bit more general
here. However, Schwartz w.r.t. all dimensions will not be possible, since we will
need to prepare future and past scattering states distinct from the region where
the potential is supported.

Definition 2.4.3 Generators of the CAR-algebra F(K3'7,C), C being the charge
conjugation from page 13, are the C-linear

BT([f]T) = BT,O([f]T)v [f]’?’ = [f]T,O S ’anT

Writing V. (f) == V. o(f) := B:([f];), we demand the relations

U(f) = U(CF)
{U(f), 0 (h)} = 2(f,h)1
U, (D,f) = 0.

2.4.2 The one-particle space dynamics

We rely on Lemma 4 (or 1) in [6], suitably adapted to the situation considered
here. First of all, the geometrical situation is extended like in the picture:

ANV AL

CSUPPX>
of J /L]

Figure 1: Definition of time-slices G
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2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

That is, in 9, we define two open time-slices
G+ = G+(7—7 X)7 G_ = G*(T7 X)

in the future (4) and in the past (—) of supp x, the cut-off localization of the
potential V.

Analogously as in Subsection 2.4.1 we can construct the spaces IC(? * and ICOG -
corresponding to the subspaces G, G_ C M, respectively.

ICS; * are a priori subspaces of K37, but in fact they coincide with KJ'" for func-
tions f € (G4, CY). We have unitary “embeddings” (in fact isomorphisms)

Gy
Ko

uo, +

Ko™

KS~

defined by
w15 = =1

for f € (G, CN), where we have written [f]5* for f mod ker RS*.
Now we define an operator

Uﬁ)\v : ’CgﬁT — ’CgﬁT
in analogy to equation (13) in [6] by

U, —

—1
Uray « [ 225 [fO+]6+ 2 [£6-16- 225 [P, (2.17)
omitting the subscript 0 for the vanishing potential to simplify the notation.
Actually, the role of wy s here is quite trivial and the interesting thing is the
action of w, where the potential AV comes into play. f¢+ is any element of
Cx(G4,CN) ¢ A(G,,CN) such that R, (f — f¢) = 0. Then w is defined as
follows: we take f¢- in (G _,CY) such that

R fOr = Repv f = RoofS =R, f% on G_. (2.18)
We must show that this is well-defined, provided |A| is sufficiently small (applies
to all statements made here; cf. Remark on p. 19). In particular it has to be

shown that Z, f¢+ is independent of the choice of f&+ in [f¢+]%+. This is shown
in the
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2.4 Construction of the dynamics

Proof Let [f¢+]%+ = [h¢+]%+ (& R.(f¢+ — h%+) =0). We have
R, = BRI —%-
= R+ Y (=) [REOVREY = Ry (AV,R; )] (2.19)
=1

The supports of f&+ and h®+ lie in the future of supp x and hence it follows that
V,RIf% =0=V,RhC+

and
V.R, [+ = —V,R, [ = —V,R,h% = V,RZhC+.

Inserting this in (2.19), one obtains %, f% = %, h+. O

The next step is to show that w is isometric (perhaps even unitary, but for our
purpose isometry is in fact sufficient).

Proposition 2.4.4 w is isometric.
Proof We know that ¢ := %, f¢+ is a solution of
D;ywe = (—id+m+ AV.)p =0 on M.
To show that w is isometric, we have to check that
(£, h9) % = ([£9104 (184 5) 7 = (wl s, wfn®]5+) "

for all fG+, h%+ in C2(Gy,CN) C F (G4, CYN). Since ¢ is at least C! (actually
smooth) we can apply the Gaussian formula for ¢ = %, f¢ and ¢ = %Z.hC+
(cf. Dimock’s paper on Dirac fields [13]): Let ¥4 be some Cauchy surfaces in G+
respectively, and note that ¢, solve the free Dirac equation on G, and G_.

(7, n9) % = (wlr®1%, wlp®e+) "

= | S @ @d e~ [ oW )y

= / oy pdo,,
oms_ 5,

where do, is the outer surface form of the boundary of My _x, = J7(X4) N
JHEL), O0My_x, = X4y UX_, and ¢* denotes the Dirac adjoint spinor (a
cospinor) ¢ = @10, We used 45 = 1°,07°; and that the spatial di-
rections are perpendicular to the surface normals. According to the Gaussian
theorem the last line of the above calculation equals

B /zmg_,z+ Ou (6™7"p) 'z = / [(0u™7") ¥ + Ty 0| d"a

Ms_x,

= [, @ervretau)

23



2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

because the definitions of the differential operator @ on spinors and cospinors
differ in the position of v*: Jp*t = 0,01 7*, P = v*0,1). This can be found in
Dimock [13] as well as the property dp™ = (Jp)*, clear from gp™ = 9,p7°y* =
Da@(Y)*Y° = 0u((v)T)7° = 0,(v*0)y° = (7v*0ap)™, which continues the in-
dented calculation

= [ (@) d

- /m+ (=i (m+ AVo) @l " 0 + o* [~ (m + AV,) ¢]) '

= i\ (Voo™ — otVew) d'z =0

Ms_ 5,

since V is L%-symmetric as shown in Lemma 3 in [6], because ¢ and y appearing
in V= M, R.L.M, are real-valued and V acts as a scalar. O

Altogether this concludes the construction of the isometric (and probably even
unitary) operator U,y : K™ — ICSJ?* which obviously commutes with the charge
conjugation C.

Then by standard arguments, like used in Lemma 4 (or 1) in [6] (based on
Araki [1], or [7], [8]), there is a C*-algebraic endomorphism (probably automor-
phism, if U, v is unitary)

Brav : F(KG', C) = F(KG", C)

defined by
BT,AV (BT([f]T)) = BT(UT,)\V [f]ﬂ')v (220)

which we call the Bogoliubov scattering morphism. Note that 5. v (B;)|,_, =
B;.

2.4.3 Bogoliubov’s formula

Carefully checking the arguments of Chapter 8 in [6] one realizes that they apply
here as well, thanks to the localization of V' by x. Moreover, the situation at hand
here is actually better behaved, because of the ordinary propagation property of
the fundamental solutions in Corollary 2.3.9.

We can hence define the derivation

d
orav (B-([f]7)) == Py B (Urav[f]-) (2.21)
A=0
and get indeed the expected result
5T,>\V (BT([f]T)) = BT([‘/;'RTf]T) (222)
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2.4 Construction of the dynamics

2.4.4 Getting rid of the dependence on 7

We want to extend the results on 91, to the whole R™. The potential cut-off x
still remains fixed. For 7/ > 7 one has the canonical isomorphism

s FETT,C) = FKY )

given by
et Bo([f1e) = Boo[f)e).
With
orav (Br([f]7) = B:([V: R+ f]+)
one has

5T’,AVaT’,TBT([f]T) = aT’,T(ST,)\VBT([f]T)-

So in fact, 0,y defines already all 4, yi». Hence, we have a derivation

wB([f]) = acedravas, B((f]) = B(VRf]), (2.23)

where

Ao 1 - %(’CgﬁTa C) — S(K:Oa 0)7

with ICo = K7 for all of Moyal-Minkowski spacetime. And it doesn’t matter
which 7 one takes as long as supp x is compactly contained in 9, .

2.4.5 Final step: Removing the cut-off y for the potential

Due to the special choice of x, see the lines below equation (2.10), we can take
the limit y — 1 e.g. in the form a — oo for x,(z) := x (%x), replacing x by x,
everywhere.

The problem which arises is that one must check that lim, [V, Rf] exists as an
element in ICy. Put differently, one must show that the limit

lim i(V,Rf, RV, /)

exists, or whether i(cx Rf x ¢, R(c x Rf % ¢)) makes sense formally.

The problem here is that Rf is not contained in .¥’; probably Rf is bounded.
Finally, when we manage to check that the integral can be formed or the limit
exists, we would have

o B([f]) = lim dxv, B([f]),
and this should be a derivation since it is the limit of derivations.

Actually, all of this can indeed be carried out, since it is possible to prove the
following
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2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

Proposition 2.4.5 Let f € S (R",C") and c € . (R",R). Then it holds
(c* (Rf)® *c, (R(C*Rf*c))A)L2 < 0.

Proof The paper [17] (Lemma 2.12 and text below) tells us that x can be ex-
tended to L? x L?, or .¥ x L', or .¥ x FL' and even, which is the key to our
result, . x L>; and thereby always mapping to L? (at least). Together with
Lemma A.2.3, showing that Rf is indeed bounded, this implies cx (Rf)Pxc € L.
It is easy to see that this is also still smooth and Lemma A.2.4 can be applied,
ensuring the existence of the integral (g, Rg)rz2, with g := cx Rf xc € L* N C>.[]

So finally Bogoliubov’s formula holds true in the following form.

Theorem 2.4.6
v (f) =Y(VRSf),

with VRf = ¢x Rf x¢, ¢ € (R",R), * denoting the ordinary Moyal product
(implying non-commutativity also in time direction), R = Rt — R~ the difference
of adv. /ret. fundamental solutions for the free Dirac operator D = —id+m, and
U(f), f € HMR",CYN), the CAR-quantized abstract free Dirac field operators
§(Ko, C), and finally dyyv a derivation defined by

d d
(5>\V\Il<f) = a o BAV\IJ(][) = a o \D(U)\Vf>
Proof Result of the stepwise construction in this chapter. 0

2.4.6 Existence of an operator generating the derivation

To complete the picture, we want to establish the existence of an operator ®(c),
that generates the derivation d,y. Confer Theorem 2.4.6 for a summary of nota-
tion and context. Generating in this sense means that

[1®(c), U(f)] = o ¥ (f) (2.24)

should hold, where ®(c) exists as an essentially self-adjoint operator in the algebra
of the CAR-quantized abstract free Dirac field operators §(/Co, C'). In other words
®(c) then describes an observable quantum field, and Bogoliubov’s formula takes
the form

Theorem 2.4.7 [t exists an essentially self-adjoint operator ®(c) in §(Ko, C),
such that
[1@(c), ¥(f)] = W(VR[) (2.25)

holds. The assumptions are the same as in Theorem 2./.6.
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2.4 Construction of the dynamics

Proof The proof completely relies on the strategy of [6], specifically Prop. 7,
its Proof and the explanations in between. The essential criterion for the ex-
istence of ®(c) is [dT), py] being Hilbert-Schmidt (cf. Sec. 10 in [34]). Here
ATV g = —i%h:o
fined on functions g € . (%, CY) on a Cauchy surface ¥ = R*, with s =n — 1.
TMV) is the analogue of Uyy introduced in subsection 2.4.2 and finally connected
to Byy there. Let Hy : (R5,CY) — #(R*,C") be the Hamiltonian of the
free Dirac equation (when put in Hamiltonian form), on n = s + 1-dimensional
(Moyal-)Minkowski spacetime. Then finally p, is the spectral projection of Hy
corresponding to the spectral interval [m, 00) (the positive spectral subspace),
p-=1—p,, m>0.

However, in our case with the time-coordinate being involved, it will be neces-
sary to understand the functions f € . (R", CV) as functions y € .7 (R*,C") for
each fixed “time” ¢, with x(z) := x¢(z) := f(t,z) = f(z), where z = (z,..., z°)
and t = 2V,

Paper [6] deals with the following explicit expression for p, dT)p_, an operator
acting on . (R*, CV) C L?(R*,C"), for which it is sufficient to show the Hilbert-

Schmidt property:

T g, and TMY) denotes the scattering transformation de-

ppdTV)p_ = —/ ety yoa(t, 21)? Ly Ryp_e~ "ot dt.
R

Back then the Moyal multiplication L.R. was split due to ¢(z) = a(t)b(z) — a
simplification that we want to drop now while adapting the expression to the
actual situation at hand.

Let, for x € ./ (R%,CN),

S x(t,z) = (¢ X) (2), (tE€R,zeR), (2.26)

i.e. ¢, y is the (weak) solution of the free Dirac equation (in Hamiltonian form)
with initial datum ¢, ,(0,2) = p_x(z) at t = 0.

Let ¢ € /(R",R), then L.R.¢, , = c* ¢, _, x ¢ denotes the Moyal product of
c from left and right with ¢,_,.

One can then form the operator G (which is just —p,dT.")p_) defined by

(Go)(@) = [ pre™ (e x 0, ) (E ) (2.27)

Here, pye ! acts on fi(-) = (c* ¢ , * ¢)(¢,-) which (as needs to be shown) is
in L?(R*,CN) for all ¢.
We wish to prove

o G, is a well-defined operator G, : L?(R*,CY) — L*(R*, CV)
e G, is Hilbert-Schmidt (w.r.t. the Hilbert space L?(R*, CY)).
This rather technical part is shifted to the Appendix A.3. 0
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2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

2.5 Connection to Rieffel’s deformed product

In [6] we investigated the Dirac field on Moyal-deformed Minkowski spacetime

coupled to a potential, which acts by Moyal-multiplication with respect to spatial

coordinates (commutative time). This Chapter updated the essentials to the

general case of non-commutative time. Already due to the former work we got

some enlightening insights concerning the operational meaning of elements of the

non-commutative spacetime algebra at the level of quantum field operators.
One step was to obtain observables

P(c) := —id/dN|,_q Sxe

labeled by elements ¢ of the non-commutative function algebra. This idea stems
from a principle of Bogoliubov, obtaining observables by functional differentiating
the resulting scattering operator S). with respect to the interaction strength.

The paper then proves the proper existence of the objects ®(c) as (essentially)
self-adjoint operators and beyond that derives the relation

[1®(c), ¥ (f)] = L (VR),

showing the derivative action of these objects on the generating elements v ( f)
of the field algebra (in Fock-vacuum representation, and to some extent also at
the abstract level). Here R = R™ — R~ is the advanced minus retarded Green’s
operator of the free Dirac field. And V is the external potential, an operator
chosen to be L.+ R, or L.R,. alternatively. The left and right Moyal multiplication
is defined almost like in eq. (2.3), but with commutative action w.r.t. the time
instead and also an accordingly simplified space for c.

Finishing this very sketchy overview of past results, we end up at the relation

[ ' (0),9(f)] = —(cRf) (2.28)

with the Wick-ordered absolute squared field strength (see appendix of [6] for
precise definition and proof). Actually it turned out that this is the same object
as ®(c) =: ¥ : (c), but at first only in the case of classical Minkowski spacetime
with a classical potential, acting as multiplication operator V f(z) = ¢(z) f(x).

Now we want to extend this equation (2.28) to the non-commutative case, an
interesting possibility overlooked beforehand. First note that

1 .
@n) //(TMuf)(Tvg)em”d"ud"U, (2.29)
with translation map (7, f)(z) := f(z —v), v € R* and f, g € .#(R"), coincides

with our common definition of the Moyal product (2.2)

1
(2m)"

fxg:=

fxg(x)= // flz — Mu)g(x +v)e ™ d ud™.
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2.5 Connection to Rieffel’s deformed product

Starting from Y (VRf) = ¢ (cx (Rf)+ (Rf) * ¢) a formal computation yields for
the first term

b(ex (Rf)) = ¢< o) / / —_— Tva)ei“vd”ud"U>

—  (@n)™" / (Tare€) (o Rf)) € dud™

= 0 [[ (O R f) e d ud'y
em) ™ [[i [ vl s (o), w(mf)] e d ud o
= [[ifoan 01 (@, 0 ()] e d ud
=i (s (@) xr () = D ()rx 0T ()
= il (0,0(h)]

with Rieffel deformation products xz and g* at quantum field operator alge-
bra level, corresponding to the Moyal-x at nc. spacetime function algebra level.

Be careful, that the definition [-, -] is not a commutator in the well-known sense:
The meaning of xg (and also of gx) is two-fold. It multiplies the field operators
not only in the sense of the nc. spacetime but also in the sense of the quantum
operators. With respect to the product xz in the sense of spacetime, the first
factor is always : 1) : (c), that is why the notation zx is used to denote the
product “from right to left” in the second last line. [-, -] is a commutator only in
the quantum operator sense.

To summarize it once again, we actually have non-commutativity at two levels
going on here at the same time, firstly at the usual quantum operator level, and
secondly at the spacetime level.

The calculation for the second term results in

G((RE) *¢) = —i [, vt ()] =i [ty (0,000
defining [-,-]”, which does not equal [-,-]’. And altogether
[t (@, 00] + [0 (0.0 = —ivlex (Rf) + (Rf) % o). (2:30)
It is possible to pair the four terms on the left hand side in another way:
FeTes @ (D], [t (@.0()] = —iv(ex (RF) + (Rf)xe), (2:31)
with the properly defined commutators

(), ¥(@sn = ¢(f)*r
[w(f)uqu)(g)]za* = ¢(f)R*

(9) —¥(g9) xr ¥ (f) (2.32)
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2 Dirac field on Moyal-Minkowski space coupled to a potential with nc. time

These are more natural, since when the composition order of the operators is
changed, the xi product type stays the same and hence changes order of action
w.r.t. spacetime as well. Note, that the terms of the sums in eq. (2.31) on the
left hand side do not individually correspond to the ones on the right. This is
only the case in eq. (2.30), with the definitions (not commutators)

W), ()] = ©(f)*r¥(g) = ¥(g)r*U(f) (2.33)
W), ()] = v(f)rxv(g) —(9) xr ¥(f).

Of course we restricted ourselves to a purely formal derivation. The mathematical
rigorous justification is provided by Rieffel’s work [31]. The three critical points
are

(a) Commuting ¢ and integration.
(b) Existence of a, corresponding to 7,.
(c) Commuting R and T,.
The last one is easily proven in the following Lemma.
Lemma 2.5.1 (Vv € R")(R*7, = 7,R*).
Proof Using the explicit forms of R* from [6] (Proof of Prop. 5.(b)),
(REf)ta) = %0 [0 =) fuwlz—v)dt

= in® [ O = o~ ) furlz — v)dt”
(TvRif) (tvi)'

O

So far about how one can handle the case Y(VRf) = (c* (Rf) + (Rf) * ¢).
Unfortunately for ¢/ (VRf) = ¢(cx (Rf) % c) it is not that easy. There is a rough
idea, but we will not take any risks to make a conjecture regarding the shape of
a possible formula.

However, this section shows the danger in mistakenly mixing up the two different
natures, the field operators have to fulfill in the setting of nc. spacetimes.
Except here, everywhere in this work we avoided defining a star-product at the
field operator level. For those who are more familiar with such approaches, this
section can perhaps serve as some interface.

Recently appeared literature worthy to point out in this regard is [23] and [10].
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3 Locally non-commutative
spacetimes

It has been shown in Chapter 2 that the results of [6] can also be obtained without
the restriction of time-space-commutativity (i.e. for a Moyal matrix of full rank).
Although this is quite an achievement, it is too hard to see even the least serious
physical drive for the usage of Moyal-type spacetime non-commutativity. That
is one reason why we do not want to follow traditional Moyal spacetimes here
anymore. The other reason is that a really nice new approach to nc. spacetimes
by D. Bahns and S. Waldmann [3] has attracted attention. Their reasonable
argument is to expect effects of spacetime non-commutativity only at very small
distances, where one commonly is tempted to think of Planck scale. So the idea
is to define a star-product between functions on R™ x R™ instead of R". Of course
in [3] this is done for general manifolds. However, the main ingredient then is to
introduce a suitable decay of non-commutativity with respect to the increasing
distance between two points.

We are still only interested in the simple case of flat spacetime. There we can
neglect the dependence on the “center of mass”-coordinate of the two points,
because the non-commutativity should not depend on absolute positions in a flat
universe. Of course one could (probably should, as a second step) also think of
generalizing this according to variations of curvature.

But here we restrict ourselves to R™ where the framework of locally nc. spacetimes
can be described most vividly and is introduced technically as follows.

3.1 Basics

The setting to start with is just Minkowski spacetime (R™, 7). The tangent bundle
is TR™ = R® x R™ = R?", and the exponential map for p € R” has the simple
form exp, : T,R" — R", exp,(v,) = p + v,. What will be essential in order to
implement locality (of the nc. spacetimes) later, is the introduction of an open
neighbourhood U of the zero section of TR™, that is TR™ O U O R" x {0},
where 0 is an element of the typical fiber R™ (think of “short” vectors being
attached to spacetime points). Furthermore let V C R™ x R"™ be a suitable open
neighbourhood of the diagonal Agn := {(p,p)|p € R"}, i.e. R" xR" DV D Agn,
such that the following map ® acts as a diffeomorphism between &/ and V:

QU S v, = P(vy) = (exp,(—vp),exp,(vp)) = (p — vy, p +v,) € V.
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3 Locally non-commutative spacetimes

Of course for our flat case scenario ® is a global diffeomorphism, and there is no
need to restrict to regions & and V from a mathematical point of view. But it
is done anyway in order to localize non-commutativity later, when the supports
of Poisson structures, used to define star-products, will be chosen to be compact
within these open neighbourhoods.

Now set (z1,%2) := (p — vy, p+v,) and view it as an arbitrary pair of points in
Y € R" xR"™. For such a point-pair one is interested in the distance perpendicular
to the diagonal Agr~, which is obviously related to the extension of V. To this end
it is helpful to consider the mirrored point (x2, z1). Using just the ordinary vector
space structure of R™ x R™ one realizes that the midpoint 3 ((z1, z2) + (22, 21))
coincides with (p,p). And so does 3 ((x1,22) — (22, x1)) with (—vp, v,). Besides,
putting together only the second components of the last two equations this also
gives us the inverse of ®.

However, we want to slightly differ from this convention and use the coordinate
transformation s instead of ®:

)1V D (w1, 10) = (11 + 29,11 — 20) =: (h,v) €U, (3.1)

h+v h—wv
55 )z(xl,xg)EV.

So v denotes the so called vertical or relative coordinate between the points 1, x5,
which will play the most crucial role in the process of defining so called wvertical
and local star-products.

%:L[th::(h,v)l—)<

3.2 Star-products

Star-products in general got an axiomatic foundation by [4]. For a review con-
fer [33], written by D. Sternheimer. At first this was proposed for symplectic
manifolds, whereas more recent results allow a more general setting of Poisson
manifolds. It is the latter that will finally be of main interest for us, but let’s
briefly sketch the original axioms for (R w) symplectic: A C[[A]]-bilinear! map

x 1 C(RY[A] x C=(RY[[N] = C=(RY)[[N]
that can be written as formal power series
[xg:= i)\’“Bk(f,g)
k=0

for f, g € C*(R?) and bidifferential operators By, : C*°(R%) x C*(R%) — C>=(R?),
is called star-product, if and only if for all f,g € C®(R%)[[\]] the following
properties are fulfilled:

LX[[\]] denotes polynomials in A with coefficients in space X.
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3.2 Star-products

(a) « is associative

(b) Bo(f,g) = fg (x is a deformation of the usual pointwise product)
(¢) Bi(f,9) — Bi(g, f) = {f, 9} (deformation of the Poisson bracket)
() frl=f=1xf

(e) supp(f *g) C supp f Nsupp g in every power of \.

In our setting, we will finally need a star-product * defined on C*°(R" x R")-
functions (from now on we omit the [[A]]-dependence), which is locally non-
commutative in a sense still to be made explicitly clear. To this end it is more
convenient to start with using the function space C*°(TR") instead (because the
coordinate in vertical direction v is more directly accessible). Of course actually
TR™ = R* xR™ = R?", and the diffeomorphism ¢ simply transforms the variables
(h,v) +— (21, x2) into each other.

Let f,g € C®(TR"), then on the way towards “locality” the intermediate
notion of a vertical star-product « is simply defined by (fxg)(h, v) not containing
any 0/0h derivative within the bidifferential operators By at all, i.e. they are
required to differentiate exclusively w.r.t. the vertical direction v. This amounts
to the corresponding differentiation

9] d = 1,0 0\ -
o) = (o) = 5 (5 = o ) Flona)

for functions f € C°(R" x R™).

Seeking a generalization of the Moyal-Minkowski case, the star-product is de-
fined as follows: With the Minkowski spacetime dimension n = 2l € 2N, where
coordinates are indexed from 0 to n — 1, set

Orx1 1;
0= (3.2)
L O

and X := 4,6 >0 (i.e. N\Q = M = M, along the definition in Section 2.1). Then
define

f*g(h,v) (3.3)
)k oF oF
ooy o e 2

k=0 k! 1,Je{0,...n—1}k
[e's) (Z/\)k n—1 o o ak ak

= Qll]l A Qlk]ki h - . . h
kz:%) k! Z'l,.%c:(] ovit - - - ik f(hv) it - - - pik 9(h,v)
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3 Locally non-commutative spacetimes

for f,g € C®(TR"), (h,v) = v, € R*™ where h plays a passive role compared to
v. One can also obtain an equation of nicer form:

n—1
fxg= MO eXp (2)‘ Z Qijavi ®8vj) (f ®g>7 (34)

1,j=0

with u(f ® g) := fg. This can be translated easily into
_ i\ y .
f*G = poexp (4 D (0 — 0y) ® (0, — %)) (f®39),
12

for f,§ € C°(R™ x R™). Note that in the following the *-signs above the function
symbols are dropped, since the associated spaces do not differ significantly. Using
Fourier transformation and its inverse, one can also arrive at an integral form of
the last equation for f,g € C*°(R" x R"):

f;g(xlv C5‘2)

— (27T)—2n //// eixl(k1+u1)+ix2(k2+u2)€—%(kl—kg)ﬁ(ul—iu) .

A

f(k/’l, ]{Jg)g(ul, u2)d”k1dnk2dnu1d"u2

= (2n)™™" //// f (1)1 - iﬂ(ul —ug), T + i\Q(ul — U2)> :

T1 + U1, Lo + v9)e M e 22 yu d M uad M v d 0.
b

This looks quite similar compared to the more familiar version of the Moyal
product on f,g € C*(R"):

frglx)=02m)™" // f(z = XQu)g(z + v)e ™ d"ud™v.
For the sake of completeness here comes the analogue of (3.4) (f,g € C*(TR")):
[*xg(h,v)=(2m)™" // f(hyv = XQu)g(h, v +w)e ™ d" ud"w,
which for f,g € C*(T,R™) could also be written as
frgv)=(2m)™ // f(v = AQu)g(v + w)e " d" ud"w.
Now what’s still missing is the implementation of “locality”. The most straight-
forward idea, which we will stick to, is to start with the Moyal special case and

make a transition from the constant symplectic matrix 2 to a v = 7 — xo-
dependent

Q(0) = x ()2 (3.5)
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3.3 Kontsevich star-products

with a suitable cut-off C°(B,, [0, 1])-function y, where B, := {z € R"|||z|| < €}
for some fixed € > 0. But of course it is not that easy. You cannot just artificially
plug in such a y and expect all the properties of a star-product still to hold. The
most crucial problem is associativity, as there is absolutely no obvious way to
repair or prove this. But a glimpse at the theorem appearing at the end of the
next section reveals that in fact a solution for this problem exists. To understand
this, one at first has to learn something about a beautiful and famous piece of
theory constructed by M. Kontsevich.

So even though it does not yet seem to be mathematically well-defined at the
moment (after the next two sections it actually will be), we understand the notion
of locality of the nc. spacetime in our concrete example precisely as the carried
out transition from €2 to €2,.

3.3 Kontsevich star-products

The question is, whether there still exists an associative star-product, if the con-
stant symplectic structure is replaced by a Poisson structure and beyond that
depends on spacetime points (in our case only on relative distances). M. Kontse-
vich gave a solution in [25] for any finite dimensional Poisson manifold. One of
the more comprehensible short explanations can be found e.g. in [14], which we
will use to get started.

Let (RY, 7) be a Poisson manifold, i.e. 7(f,g) = {f, g} is the Poisson bracket
for f,g € C*(R?). A global coordinate chart at hand, we can write

d
{f,9} = Z Wijaifajga

,5=1

where 79 € C*°(R?) Vi, j (components of the Poisson tensor) and 9; is the deriva-
tive in a’-direction. Ultimately Kontsevich’s formula for his star-product f *x g
will depend on nothing else except derivatives of f, g and 7, combined in a
complicated combinatorial way. Now let’s define all the ingredients one by one.

Let k € Ny. To each k there is assigned a family of graphs GGx. And to each
graph I' € G}, one associates a bidifferential operator Br and a weight w(I") € R.
Then -

Frig=3 N 3> wl)Br(f.9), f.g€C™RY,
k=0 reGy

will finally give the formula for the star-product.

An oriented graph I' belongs to Gy, iff

(a) T consists of k + 2 vertices labeled {1,2,... k, L, R} and 2k oriented edges
labeled {i1, j1,2, Jo, - - - ik, jr}, L, R stand for “Left”, “Right”

(b) The ordered pair of edges (i, jm), 1 < m < k, starts at vertex m
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3 Locally non-commutative spacetimes

(¢) T has no loop (edge starting and ending at the same vertex) and no parallel
multiple edges (edges starting at the same and also ending at the same
vertex).

To deepen the understanding of what these graphs look like, let us count the
number of possible graphs in one family Gj: Obviously Gy contains only one
element, the graph having just two vertices {L, R}. For k > 1 the first edge
starting at some arbitrary vertex different from {L, R} (since from there never
starts any edge) has k + 1 possible ending vertices (all except the starting vertex
itself), while the second edge then has only k possible ends left (no parallels).
Since there are k possible vertices having an ordered pair of edges starting from,
this results in ((k + 1)k)* different graphs in Gj.

Given a graph I' one associates a bidifferential operator Br acting on the func-
tions f, g by the following algorithm:

1. View a vertex m € {1,...,k} as symbolically standing for 7/ (compo-
nent function of the Poisson tensor), and view vertices L and R as the
functions f and g respectively.

2. Put derivatives in front of 7%/m and f and g with respect to coordinate-
indices named like the edge-labels of edges (if any) ending in the associated
vertex.

3. Multiply the resulting k + 2 terms and sum over 1 < 4y, 71, ..., 0, Ji < d.

An example helps best: Let I' € G5 consist of the vertices {1,2, L, R} and the
edges i1, J1, 12, jo ending in 2, L, R, L respectively:

11
—_—

1 2
Ji i2
L R

Then I'' — Br along the algorithm results in

d
BI‘(f, g) = Z it 8i17rm28j1j2f6i2g. (36)

11,J1,42,J2=1
What remains, is the definition of the weight w(I"). Let H := {z € C|Im(z) > 0},
Hy = {z,...,2 € H|z # zj for i # j} and ¢ : Hy — R/277Z be the function
defined by
1 (222 — Zl)(ég — Zl)
= —L
¢(Z1, 22) 2 Og(22 _ 51)<§2 _ 21)
= arg((z1 — 22)(21 — 22))
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3.4 Finally: a vertical, local star-product *x on R™ x R"

and extended to the real line 21, 29 € R, 27 # 25, by continuity.

The symbolic associations used this time for I' — w(I") are that each vertex m €
{1,...,k} stands for the variable z,, € H, and the vertices L, R are translated
into the numbers 0 € R, 1 € R respectively. Define

wll) = - %/H (dd(2ms L) A (2, Tim)) (3.7)

k 1<m<k

where I, J,, denote the variables or numbers {0, 1} associated with the ending
vertex of the edges 7,,, j, respectively. Within our recent example of [' € G5 from
above one has to integrate the 4-form d¢(z1, 2z2) A dp(z1,0) A dp(z2, 1) A dp(zs,0)
over H.

Remark It seems very sophisticated to do the calculations for as many graphs
as ((k+1)k)*. It is, but there are some benefits, too: Many graphs are similar in
the way that permutations of edges or vertices yield the same term w(I")Br(f, g),
since these permutations just amount to sign-flips in both factors w and B at
once. Also there are “bad” graphs that have not a single edge ending in one of
the vertices L or R; for those the weight w vanishes. Actually e.g. in G5 there are
only 3 graphs out of overall 36 that need to be calculated and that just contribute
multiple times.

Note also that the weights w(I") are universal in the sense that they do not
depend on 7 and not even on the dimension d.

This ends all the definitions necessary to understand (without trying to prove)
the statement of the following

Theorem 3.3.1 (Kontsevich) For any Poisson structure = on R?
frr g = Z NS w(T)Bre(f,9), f.g€CT(RY, (3:8)
k=0 T'eGy,

defines an associative product, which we call Kontsevich star-product.

3.4 Finally: a vertical, local star-product *; on
R" x R"

Recall the problem that we had with non-constant Poisson structures at the

end of Section 3.2 to properly define a vertical and local star-product on twice

the Minkowski spacetime R™ x R™. Now Theorem 3.3.1 suddenly opens up the

opportunity to use such Poisson structures that depend smoothly on spacetime

coordinates rather than being constant like the default symplectic matrix §2.
Thus we are going to take

7= QU = xQ (3.9)
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3 Locally non-commutative spacetimes

as Poisson tensor (components), with 2 and x (the cut-off function) defined like
in Section 3.2. Also like before A remains to be set to #/2 and in analogy to the
Moyal case we use i\ instead of A in the series expansion. Note that the term
1/k! appearing in the series of equation (3.3) is now implicitly contained within
the weights w(I").

Since we would like to check all the premises carefully, recall that a Pois-
son structure on R? is defined by a bilinear mapping (also called the Poisson
bracket)

{-,-}: C°(RY) x C*(R?) — C=(RY),

such that
(a) {f,9} = —{g. f} (antisymmetry).
(b) {f:{g,n}} +{h,{f, 9}} +{g,{n, f}} = 0 (Jacobi identity).
(c) {fg,h} = f{g,h} + g{f, h} (derivation).

In local (here also global) coordinates

d

{f.9}@) = > 77(2)0:f(x)0;9(x)

,7=1

holds, where 7(x) are the components of the so called Poisson tensor, that
have to fulfill 7% (z) = —7/%(x) Vz, 1, j and a differential equation imposed by the
Jacobi identity. The derivation property is built in trivially.

Proposition 3.4.1 Let d € 2N, xy € C>®(R?) and Q be the default symplectic
d x d-matriz of (3.2), then 7% (x) = x(2)Q¥, x € R, 1 < i,5 < d, properly
defines a Poisson tensor.

Proof Obviously 7% (z) = —n/"(z) Vz,i,j. Hence what needs to be shown, is
the Jacobi identity. Consider

d

{f,9}(x) = > x(2)QV0:f ()0;9(x) = x(2){f, g} (), (3.10)

2,7=1
where {-, -}’ denotes the well-known usual Poisson bracket. Calculate
{0000} + (B ()} + (0. 10, 1)
= x({Fxdg 1Y +{hodf gbY + {9, x{h, £1Y)

= x(x{f, {g,h}Y} +{f,x}{g, h} +w.rt. f,g,h cyclic exchanged terms)
= xOC0+{fx g, Y + {h, x3{ S, 93 + 19, x3{h 1),

where (3.10) and then the derivation- and Jacobi-properties of {-,-}’ have been
used. Now it suffices to show that {f, x}'{g,h} + {h,x}{f, 9} + {9, x}{h, [}
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3.4 Finally: a vertical, local star-product *x on R™ x R"

vanishes, which will be done by induction on [ := d/2 € N. For [ = 1 this
expression equals explicitly

O1 [Oax0190sh — 0o fO1X01902h  — Oy fOax02901h + O 31X32981h4
1 2 3
+ 01hOyx01f0ag — 02hO1xO1fO2g — 01hODax 02 f01g + Ooh0) X0 fOy
3 5 6 2
+  0190x01hOy f  — 0901 x01h0y L 1902 XhOy [ + 02901 xX02h0) [,
6 1 5

containing 6 pairs of terms adding up to zero each. Since being quite cumbersome,
we abandon writing down an explicit expression again. We just remark that for
“l = I"4+1” the expression differs from the one for “I = ’” (which vanishes because
of the induction premise) only additively by an expression looking exactly like
the one above for [ = 1 with only 1 replaced by 2I' — 1 and 2 replaced by 2/,
which obviously forces it to vanish anyway again. 0J

Now we have everything at hand, necessary to properly define a star-product for
functions f,g € C*(X), with X € {R" x R", TR", T,R"}, which is not only
vertical but also local in the sense defined within Section 3.2. Let’s recall the no-
tations of our main setting: Proceeding from n = 2] € 2N dimensional Minkowski
spacetime equipped with coordinates {z°,..., 2" '} in a Lorentz frame, we in-
troduced coordinates (h,v) on TR™ = R?>"  respectively v on T,R" = R", and
(71, 72) on twice the spacetime R™ x R™ = R?". The spaces/coordinates were
brought into relation with each other due to the diffeomorphism s, cf. (3.1).

Definition 3.4.2 (& Corollary) Let x € C>*(R"), A = 0/2 > 0 and Q be
the default symplectic n x n-matriz like (3.2). Setting 7 (v) := x(v)QY for all
veR" 0<14,5<n—1, as Poisson tensor, then

o0

frxr gn = DN S w@)Br(fa, gn)s  fnrgn € C(THR™),

k=0 T'eGy

defines a vertical and local star-product for every h € R (we write xg, = *k,

since there is actually no dependence). One can also formulate the same product

for functions f,g € C°(TR") by setting f(h,v) := fr(v), g(h,v) := gp(v), Yh,v.
Example for one of the graphs I'., € Gy:

n—1

Brew(f’ g)(h’ U) = Z Wiljl (U)ai17ri2j2 (U)aﬁjzf(h? U)aizg<hv U)’

11,J1,%2,j2=0

where 0; = 0y = % denotes the derivative into the direction of the mth compo-
nent of the relative/vertical coordinate v.
Last but not least the final form of the product for f,g € C°(R™ x R"):

o

frrg = Y_(iN)" 3~ w(D)Br(f, 9), (3.11)

k=0 IedGy,
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3 Locally non-commutative spacetimes

where B defers from B by a change of variables (through sc) within its constituents

«o __ 1 o _ 0 \»
ovt T 2\ axt oz},

7 (v) = 7 (xy — x3) and the derivatives

Since (3.11) is an extremely complicated series expansion, for selected practical
calculations one would be contented with the formula up to 2nd order:

[rrg(x1,22) = fg(xr,22) + i)\Qin(xl - $2)5z‘féj9($17 T3) (3.12)
. T1 ~ ~
+(i>\)QQlllezzj2 [2X<5U1 - $2)2aili2faj1jzg($17 372)
1 - ~ - .
+ox(@ = 22)0, (00 = 22) (85152 £ 0,9 + 05,105, 120) (w1, 32)
1~
+0 ((iN)?)

_681'2?((1'1 - $2)5j1X(371 — x2)5i1féigg(x17 552)

1 0 _ 0 \»
2 \ 0z} o,

Note that the desired distance behavior of the star-product at its heart is
regulated by the function y. The idea is that, due to this physically reasonable
cut-off, the product is analytically sufficiently nice behaved, such that one can
reach similar results like in Chapter 2.

with summation convention, and “0; :=
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4 Pair-interaction for Dirac fields

In the previous chapter a star-product xx was constructed that implements the
principle of locality in a nc. spacetime. This means that non-commutativity is
equipped with some fall-off behavior for growing distances. Speaking of distances
it seems natural to consider the interaction between two particles/points, instead
of scattering only one particle in an external potential. That is why we now want
to deal a bit with many-particle quantum mechanics and pair-interaction first.

Let n = 14 s € Nxg be the (Minkowski) spacetime dimension and N(n) an ap-
propriately chosen spinor dimension, like (2.6). We take H := <L2(]R”, CcM), <|>>
as one-particle Hilbert space, with

(pl) == /Rn Sap@” (2)YP (z)d"x,

A,B=1
for spinors ¢, € H. Consider the following many-particle Dirac-Hamiltonian
HN = H) + VvV,

acting on ¢ € DV = & ((R”)N, ((CN)N) C HY and mapping into HY, where
N € Ny is the particle number (becoming a variable later due to usage of the
occupation number representation):

(HN(;S)A“AN (X1, ..., TN)

N
. A B; 0 A
=2 <ny0 B,k ¢, Ok + %0 ‘7ij> PN (24, .. )
j=1 j

. Ar-A
+ Z <V(Jk)gz5> rrew (z1,...,zx) (and implicit summations),
1<j<k<N

with two-particle operator VU*) defined by

. AjAn

(Ve %) (@1, an) = clzg,ap) - oM (2, o)
, AyA - N | GNApAp

(V(gk)qb) 1 An (z1,...,5x7) = (c*K¢(Jk) veAN ¢(Jk) 1 N*KC) (w5, 21)
. ApAn _ ONAL AN L

(‘/(gij)k)(ﬁ) 1 (@1, on) = (C*K¢(]k) 1 N*KC> (25, xx)
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4 Pair-interaction for Dirac fields

either-way, with ¢ € .7(R" x R™,R). Here ¢U® : R* x R® — (CV)V is declared
to be equal to ¢ but treating all the coordinates as parameters, except x; and
x1. The latter two coordinates are the only ones acted upon by cxg- and *gc.

Since H is separable one can choose a complete, orthonormal basis {¢y }ren C
H. Thus (p;|lor) = 6k, 2 |ej) (@l = 1 = idy, when using common physics
notation |py) := ¢ and (@i for the functional in L(H,C) “canonically” induced
by . Of course every so-called state vector ¢ € H can then be expanded in a
series |p) = >, ajle;) = X (p;l@) ;). And furthermore a basis transformation
onto {Yytreny € H is given by |U) = X (@;|tr)|¢;). Just remember, that for
our concrete space H = L*(R",CY), a representation by functions defined on
spacetime, also the notation |z, A) = ¥, |p;)(@;lz, A) = ¥, |e;) @i (), A =
1,..., N, enjoys popularity, as well as short forms like |k) := |pg).

The next step is to introduce a Fermionic Fock space §) = Fp(H) with its
scalar product denoted also by (-]-), and vacuum vector |0) := Q € §. This
shall correspond exactly to the so called vacuum representation space, if we
had started with the algebraic approach to qu;antum field theory. For every one-

particle basis state ¢y, a creation operator a; := a;fok and annihilation operator

ap = ay, are defined on §) in the usual manner (¢¥; € H,j7=1,...,n):
ab (DA AN a) = R AL A Ay
Ao (Y1 A Athp) o= > (=) k| A A i A N,
j=1

obeying {a;,al} = 6, {a}, al} =0 = {a;,ar}. A vector i) € § in Fock space is
denoted in various ways: 1) = |¢)) = |ningy - --) with ny particles in state @y, such
that e.g. a}|0) = |010---). Or even shorter one writes e.g. a}aMO) = a;-\k> =
|7k) for |0--- 01,440+ 01pn0---), resp. @; A @k, which would be 0 for j = k,
modeling the Pauli principle. Now point-dependent creators and annihilators are
introduced according to the transformation law between bases:

UA@) = Ylpsle, Al =Y o (@)al, a@)]0) = |z, 4),

V() = Y el

which are also called field operators.

So what was done is essentially a transition from H*, the many-particle prod-
uct space, to £, the Fock space with arbitrary particle number. Both are possible
choices of state spaces to work with — the major drawback in case of ## being
that one would have to take care of anti-symmetrization by hand permanently.
Finally this transition must be made also for operators, especially the Hamilto-
nian HV, resulting in the following operator

H=Hy+V (4.1)
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on Fock space $:

H:/ U (2) (HoW)A (2)d " + = /2 W (1)U () (V) AE (2, o) d o d"
n Rn

(4.2)
with

0
() 0) = (3050 e+ e ) 90

\IJQAB(x, 2') = U (z) TP ()

and V is one choice out of

(‘/(0)\1!2)AB (z,2') = (c : \I'2AB) (x,2)
(V(i)\I’Q)AB (v,2") = (C;K\I’QAB + ‘I’ZAB*KC) (x, )
(V(ﬁ)\Ifz)AB (z,2') = (C;K\IJZAB;KC) (x,2'),

c € S(R" x R",R). In case of the commutative potential operator V(g the
notation is not necessarily that ugly:

(Vigy¥?) B (2, 2') = c(x, 2" )0 (2) WP (2") =: V (2, 2" )T (2) VB ().

Note that the field operator ¥ conceptually still originates from the free field, de-
spite constructing the two-particle interaction operator V with its help. One more
remark on notation: the hat = above one-particle operators A is sometimes used
to denote their second quantization just like in more modern manner dI'(A) = A.

The origin of equation (4.2) and all the fundamentals of this chapter can be
comprehended at lecture level e.g. in [9].

Now let’s try to connect these things, stemming more likely from physicists’
literature, to the language used in more rigorous mathematical approaches —
despite still leaving out diverse technical difficulties. Consider the definition of
the field operator U4(z) = 22, ¢ (x)a;, A, ..., N from above. In physics [21]
it is common to use the plane-wave solutions

{90@,7") (x)}B€R3,r€{1,...,4}
of the Dirac equation as a complete orthonormal basis, labeled by (p, ) instead of
just j € N, i.e. continuously by momentum and discretely by r. Where r = 1,2

means “positive energy” and spin +1/2, —1/2 resp., and r = 3,4 “negative
energy” and spin —1/2, +1/2 resp. Then the field operator reads

Z ,z) A(p,r nd’p.
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4 Pair-interaction for Dirac fields

A

Defining CLA(% r) = Jgs Plpr)

(x)agyd®p, this becomes

How does this relate to a version “smeared” with f € C®(R",CV) C L? = H,
as in [34]: W(f) = b(eyf) + di(e_f), where ey are resp. the projectors onto
positive and negative energy solutions and b is a particle annihilation and d' an
antiparticle creation operator? Actually

4

W = X [ vt

= X [ S aenlen + e ot
= 5 [ (@) 4 0ae2) (e
A

+(aa(@,3) + aa(x,4) (e- ) (x)) d'z,

since e, o7 )y =0for " € {3,4}, 6_9024 n =0 for " € {1,2}, which equals

(Bvrl p,r
- XA: /R4 (bk(q:)(eJrf)A(x) + dA(llf)(eff)A(x)) d*x
— bifen )+ d(e_f),

with obvious definitions (implying also U4(x) = bTA(:E) + d*(x)). This deviates
from the convention in Thaller’s book [34], where f — W(f) is chosen to be
antilinear instead of linear. The latter shall be our choice (so the definitions of
U (f), U*(f) are interchanged compared to [34]!). Please note that b, b are to be
viewed to make sense only for arguments e, (particles) and d,d' only for e_-
(antiparticles), i.e. otherwise they are defined to vanish.

Since very fitting in this context, we would also like to opt for Araki’s so-
called “self-dual” form of quantization (originating in the quantization at alge-
braic level), like in [6], which means (here already at the level of Fock space
operators)

() = (),
{(w(n- vy = 20/, (4.3)

Here C'f := f denotes complex conjugation, and (-,-) := (-, ‘)(r) is some ap-
propriate scalar product on solution space (R := Ry denoting the difference of
advanced and retarded solutions as usual) defined with the help of (-|-). And it
holds

U(Dof) =0,

44



with the free Dirac operator Dy, in connection with the free field operator. To
fully reconstruct our conventions in [6], new creation and annihilation operators

AT, A are defined by
Aley f) = bles f) and AY(Ce_f) :=d'(e_f)

for all f € C2°, and likewise for their adjoint versions, which results in

U(f) = A(e+Cf) + Al(er f). (4.4)

These are also consistent with the earlier definitions of a,a (¢; € C* C H,j =
L,...,n):

AN Q)WL A Ahn) == @APL A Aty
A(@)(wl/\/\wn> = Z(_)jJrl((P?wj)wl/\"‘/\l/;j/\'--/\iﬂn,

j=1
with A being antilinear and A linear. And for consistency it has to hold
{Af(ey f), Alesh)} = (f,h) 1 as well as “{A4, A} =0 = {Al AT}".

For comparison, we list the non-vanishing anti-commutators in alternative nota-
tion:

)} (f,h)1
)po= (C f Ch) 1
)} (f,Ch)1
(Cf,h) 1.
To illustrate the interpretation of the field operator in eq. (4.4) we depict by

the “Dirac sea” of negative energy solutions on the left hand side of “|” and the
space of positive energy solutions on the right, both spaces empty so far (resulting
in total energy set to zero by convention, just as a first choice, see the remarks
concluding this illustration further below). Then

corresponds to a particle (or state, just using these notions interchangeably for
simplicity) of positive energy,
-0 _‘_ - -

to an antiparticle or hole of positive energy,
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4 Pair-interaction for Dirac fields

to an unphysical “particle” of negative energy (a potential slot for an antiparticle),
and finally

---’—o-

corresponding to an unphysical “particle” of effectively negative energy.
Af(e, f) does the following:

b o ehes=e,

i.e. it creates a particle called e, = e, f (oL means a e on the left (—) or on the
right (+) of “|”, same then for o). But since e, f = Ce_C'f, this can also mean
to create an antiparticle

-o-|---=Ce_Cf

called o_ = Ce_Cf, which illustrates a missing “particle” e_ of negative energy
on the left and hence actually a positive energy contribution to the world, just
the existence of a so-called antiparticle or hole o_. This naturally incorporates
the idea of pair creation

- — -o-|-e-

Or perhaps with - - -|- - - replaced by e e e|- - - (not the same, but a shift to
infinitely more negative energy) the process

soel--- —» ooo‘-o-,

provides a nicer view of that. To complete this first part of the illustration
consider next to Af(e, f) = AT(Ce_Cf) also for a moment A(e_C'f) (which is
not the same as the right hand side of the last equation) describes

e Cf=-0---- — ---|---
(annihilation of negative energy “particles”) or also
C€+f—-—’—o— — ___‘___

(annihilation of unphysical negative energy “particles” as well) since e_C'f =
Ce, f. The latter two illustrate the physically not so vivid side of the mirror.

The other term in eq. (4.4), A(e+Cf) deals with a possibly different particle
e, g, with g := C'f, which obviously gets annihilated:

erg=--bo- — -
The remaining alternate meaning according to

Alerg) = A(Ce_Cy),
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and for completeness also the two effects of AT(e_Cg) = AT(Ce,g), are illustrated
by

Ce_Cg=-o0-|--- — -]
- -- —  -e-|---=¢Cy
b o=Cey,
from top to bottom: annihilating antiparticle or hole o_ = Ce_Cyg (completing
the picture of pair annihilation); creating unphysical negative energy “particle”
o = e (g = e_f; creating unphysical “hole” (in effect negative energy) o, =

Ce, g in the world of positive energies.

We could also write W(f) = Af(e_f) + A'(ey f), which means possibly creating
e_’s, i.e. physically annihilating antiparticles o_, or creating e, ’s, i.e. physically
creating particles.

An interesting question is from which kind of ground state or vacuum state
one should start. It seems a bit difficult to imagine and describe a process of
spontaneously creating twice some positive energy out of zero. Unless in nature
this is of course somehow realized as experimentally approved. Therefore the
idea came up by Dirac to provide an infinitely exhaustible reservoir of already
occupied negative energy states. Because these can explain pair creation just by
excitation (quantum jump) of at first unphysical states. The second and even
more important reason for that concept is of course the desire of a lower bound of
energy. That is, we need some o_’s to start with, which are able to spontaneously
“climb” twice the energy distance (towards zero) to their corresponding physical
particles of inverse energy, thereby leaving one half of the freed energy for a
particle and the other for its antiparticle. To stress our picture further one last
time:

eee|--- — ‘“e-0¢---7 — ece|-e-

Of course a ground state like that (leftmost above) assumes an always equal
number of particles and antiparticles in the world, which is somehow debatable.

Since we do not want to get even further involved into things that are pretty
much standard, let us get back to the second quantized version H, of the Hamilton
operator Hy. Actually (4.2) does not represent the physically correct choice yet.
Beyond that it is also not very useful even from the mathematical point of view
because it only admits Hamiltonians H, that are trace-class, see [34, Sec. 10.2.4].
To be brief, one wants the vacuum expectation value of H, to vanish (same e.g.
for charge and number operators), implement the lower boundedness of energy
according to our foregoing illustrating remarks, and one also wants to resolve
ambiguities concerning operator ordering — a fundamental quantum mechanical
issue. The solution for that is normal ordering of an operator A on Fock space,
defined by

c A= A—(0]A)0),
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4 Pair-interaction for Dirac fields

or equivalently (can be shown using the anti-commutation relations) in words:
to obtain : A : from A, anti-commute all creation operators to the left of all
annihilation operators (get a minus sign for each commutation), i.e. just omit
the additional terms that normally arise from non-vanishing anti-commutators.

So let us keep that in mind and choose the normal ordered version : H :, and
with it also : V/ :, whenever appropriate.

4.1 Remarks on time-evolution

Please mind that this section serves as a rough sketch only, its content is still
vague.

For the free field governed by the free Hamiltonian H,, resp. by its second
quantized version dI'(Hy) = H,, Heisenberg’s equation of motion

.0
—i5, U(f) = [dT(Ho), U (f)] (4.5)

should hold. What is also true, is the axiomatic relation W(Dy f) = 0, for the free
Dirac operator

Dof = (—iv, 0" +m)f = (—zgt + H()> f.

When we add —W(D,f) (i.e. nothing) to the left hand side of (4.5), this results
in

[dF(Ho)a ‘I’(f)] = _‘I’(Hof)-

This equation is consistent with one that could have also been obtained from
the basic principles/definitions of second quantization of one-particle operators
(see [34, Sec. 10.2.4]).

In case of a wide range of types of external potentials, realized by simple
multiplication operators (vf)(z) := v(x)f(z), f € dom(Dy), one expects still the
same

[dF(HO + U)? ‘I/v(f)] = _\Pv((HO + U)f)’

among ¥, ((Dy +v)f) = 0.
Just as an observation at this point, consider

[ dl(v) 5, Wo(f)] = =Wu(vf)
and compare it with a central relation
[ W0y 2 (v), Uo(f)] = = Vo (viRo f)

of [6], where Ry was the difference of advanced/retarded solutions of Dy. And

: U, ¢ (v) was defined as some coincidence limit, described in detail in the
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4.1 Remarks on time-evolution

appendix of [6].
The dynamical connection between these two equations does not get clear in this
context.

The most difficult task is of course the issue of a two-particle interaction. We
are in quest of operators ¥y (f) obeying

Uy (Dof) + |V, Uy (f)] =0,
but WUy (Dyf) not vanishing in general. Due to the two-particle interaction, 14
is in general not the second quantization of a one-particle operator. From the
scattering theoretical point of view one would like to start from a picture like

Uy (00, 2)x == ¥ (00, ) Xout
t—>ooT
\I/V(t,@)x Sy

t%ool

Uy (=00, z)x == ¥(—00,2)Xin

with Sy being the S-operator, x, xx € $ vectors in Fock space, where Y, is
assumed to be of even particle number with non overlapping velocity supports.
On suitable spaces of asymptotic states perhaps o S\ Xas = ans can
hold, A € R parameter.
However, these are just some sketchy ideas. It seems to be a very difficult task
to find some way to proceed. The general hope is that the cut-off y in the
construction of the Kontsevich star-product *x of Chapter 3, which is used in the
potential V, does an equally well job like the diverse cut-offs that were introduced
for the Moyal-Minkowski case in Chaper 2. In the latter these were just temporary
tools for technical purposes. Admittedly, this time the cut-off would always be
present. But in return it is physically perfectly motivated.
Section 5.3 makes some further suggestions that could perhaps help.

a
dX |y
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5 An attempt to define quantum
field operators on
non-commutative spacetimes

5.1 Overview of non-commutative toy spacetimes

We review some of the most common toy models for nc. spacetimes by just listing
their basic structures for a comparison on equal footing.

The initial point for these models is usually the motivation and then postulation of
some special kind of commutation behavior for the quantum mechanical position
operators X* 1 =0,...,s (here including the time as well). As you know, this
is also equivalent to imposing specific uncertainty relations between them. The
general setting is classical n = 1+ s € N>, dimensional Minkowski spacetime. In
quantum mechanics, these X* are unbounded operators in some Hilbert space,
e.g. L2(R",CY). They are defined on a dense domain and act by just multiplying
real numbers z* (coordinate functions) corresponding to X*. Hence they all easily
commute with each other. Things are getting difficult, when these operators X*
are also elements of some nc. spacetime algebra, call it Ay. Such a scenario
is conveniently realized by changing the product structure for functions on the
spacetime manifold to a star product, hence also affecting the coordinate chart
functions z#. That is, the classical algebra A = (C*>°(R™, C), -) of functions on the
spacetime is replaced for example by the algebra A, = (C°(R™, C), ). Actually
this kind of algebra (whatever choice) is understood as exactly the one that is
associated with the notion of a spectral triple. Be careful not to mix up A, with
A, their correlation will be made clear later. We use upper case X* for elements
in Ay, and lower case z* € A,.

Some of the common models are:

e (lassical commutative spacetime
[X* X" =0.
As a first step into the direction of defining field theories uniformly in all
the following cases, it became convenient to consider the so called Weyl
form (see [16] and references therein; also [15] for precise technicalities,
that we want to omit here as far as possible)

W(k) = e X" ke R", (5.1)
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5 An attempt to define quantum field operators on non-commutative spacetimes

Obviously it holds
W(EW () =W(k+k), Wk =W(k)=W(k)"
o Moyal-Minkowski spacetime (first introduced in [22] and [30])
(X, XY =iM™,
with M = SQ, 6 > 0 and

Q=

011 1; ]

L O
n = 2l € 2N the even spacetime dimension. Again define W (k) := e=*"hu

like above. Here we get the relations
W (k)W (K) = W(k+ K)e 2K W(k)* = W (—k) = W (k)"
e Lie algebra structure

[X#, X7] = iCm X7,
Cr e C. Define W (k) := e=*X"*u_ Then

W)W ) =W (k Sy ;g(k, k’)) . Wk =W(—k) =Wk,

with g just abbreviating the terms coming from the Baker-Campbell-Haus-
dorff formula.

o k-Minkowski spacetime (see [26], [28])
[XO?Xj] = _in7
k>0, j=1,...,s. Define W(k) := e ™"k As k-Minkowski is only a
special case of a Lie algebra structure, the relations are the same.

e Quantum space structure, here especially the Manin-plane, n = 2 (see [29])
XOX! = XX,
¢ € C. Here one defines
W(f(X%, X)) = f(X% XY,
with some normal ordering of functions f of the coordinates. For details
cf. [27].
e “DFR” (Doplicher, Fredenhagen, Roberts, see [15])
X0 = X0, [X0,Q0] = 0, Q7Q,, = 0, JXO,... X2 =1,
where iQ" = [X*, X¥] and [X°,..., X*] ;= —2Q"(%Q),. As usual the
Weyl form W (k) := e~*"*» is introduced and fulfills
W (k)W (K) = W (k + K)e 25¥  W(k)* = W(=k) = W (k)"

As one can see, the classical commutative spacetime is a special case of all the
others.
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5.2 Quantum field operator candidate

5.2 Quantum field operator candidate

We try to define a reasonable expression for a quantum field operator on non-
commutative backgrounds. At least this should reproduce the suggestion, that
was already made in the DFR-paper [15] for the special model there. For the
Klein-Gordon field they propose, f € C>*(R"™, C),

Do (f) = /]R k(X +al)f(a)d"a, (5.2)

where X +— $kq(X) is formally just the usual plane-wave expansion of the Klein-
Gordon field, except for the tensor product signs ® to appear, and with possibly

non-commuting variables X*:
d°p

(DKG<X) _ (271’)_8/2 /S (e—iX”pu ® a(ﬂ) + ez’X“pu ® a’T(B))

Po=wp 20)8 ’

where w, = / QQ +m2, and a, a! are the bosonic annihilation, creation operators.
So we have ®xa(f) € Ag ® L(F). Since the idea is, that ®xe(f) is not just a
linear operator in some Fock space F. It should also contain another part, which
is an element of the nc. algebra of spacetime elements X € A”.

We want to stick with the Klein-Gordon field for a while, just for the sake of
notational simplification. But the transition to Dirac fields will actually be easy
and straightforward.

In the foregoing section some emphasis has been put on the Weyl form W (k) =
e~ X" ke R", X € A". This will be the key element for the definition of the
field operator. It will allow us to treat all the nc. toy spacetimes in an equal
manner. As an intermediate step let’s define

(Qwi)(a) == (2m) ™2 [ e ww (k) f()d"E, (53)

for f € C*(R",C), where f = Ff here denotes Fourier transformation with
Minkowski product.

A

fky = @m=2 [ e flaydta

and f = F~1f the inverse one. Hence formally “(Qw f)(a) = f(al — X)” holds,
which helps to see the coincidence between the DFR-proposal (5.2) and the fol-
lowing one:

DL (Qu f) = /]R Q) (a) ® Py (a)d"a € Ay @ L(F). (5.4)

Here the tensor product splitting is made clearer, and ®k¢ is exactly just the
usual field operator (the pointwise version). The Dirac field analogue is

2(Qu f) - Z/ Qw (@) ® Ua(a)d®a, feC=R",CY).  (5.5)
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5 An attempt to define quantum field operators on non-commutative spacetimes

Shortly we will mention some nice facts related to the objects Qy f, which then
motivates their introduction in retrospect. The field operator itself could have
been defined nicely without them, too:

Wowlf)i= [ Wk @ fR)bra(b)d™k = 95e(@w ), (5.6)

n

as one easily checks.
The definition of Qyw f is very similar to Weyl’s quantization, associating an
operator with a function of classical (commuting) variables (see [35], [36]):

W(f) = (2m) "2 |

which is again in Ay like Qw f and W (k); it is quite common to suppress the
actual dependence on X in the notation. One could write 20(f) = f(X), known
from functional calculus, which provides the precise mathematical background.
The analogue is (Qw f)(a) = f(al — X) for all a € R™.

Now, like already indicated in the foregoing section, it is convenient to associate
a star product with each of the nc. model structures. In [27] this is done for
Moyal, the Lie algebra structure and the Manin-plane, where the strategy always
builds upon implementing the relation

X f (k) dk = (2m) 2 / W(—k) f(k)d"k,  (5.7)

n n

W(f)W(g) = W(f +9). (5.8)
It is easy to show, that then also
(Qw)(Qwg)(a) = (Qw(f *g))(a) YaeR" (5.9)

holds. If one quickly wants to check this e.g. just for Moyal (note: here just for
once defined with Minkowski product in the exponential),

(@) = @0 [[ emr @ = Mu) glo+ o)d ud"
=y [ e g )k

will be useful.

Let f = f(z), f € C*(R") = A, be a function of spacetime variables z,
respectively coordinate functions x, equipped with either the classical or some
non-commutative product. And let F' = F(X), F': A% — Ay be the correspond-
ing map to f for the abstractly postulated (non-)commuting spacetime variables
X (upper case). Then, when we take a look at the definition (5.7) of Weyl quan-
tization, we see that the transition from a function f with f = f(z) to F with
F = F(X) =2(f) is just realized by inverse Fourier transformation followed by
an ordinary one and besides just “renaming” z into X. In the preceding para-
graphs the same symbol was used for f and F', which is reasonable, since the
distinction was made sufficiently by the use of upper and lower case x’s.
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5.3 Field operators for tensor product function spaces

But to avoid confusion, let’s use the case-sensitive notation for the mappings
(f, F') one last time, namely for the purpose of explaining the relation between
[XH, XY = XFXY — XVX# and [2#, 2], = ot xa¥ — a¥ x 2. Let F(X) :=
X# = pr,, G(X) := X” = pr, be the projections onto components X L X,
X4 x Y and f,g the corresponding ones for the lower case x € R". Now
W(XHM)W(XY) = W(z#" x 2¥) holds, which can be expressed as X*( X)XV (X) =
(x#*2")(X), too. Furthermore it is quite common to write X* instead of X*(X),
Le. XFrXY = (at+x”)(X). And (z#*2")(X) arises from (ztxz")(z) = xH*z” just
by the renaming-process x — X due to 20U, like explained within the foregoing
paragraph.

Remark The article [15] makes some interesting further suggestions. They de-
fine states on the algebra of operators ®xg(X), which, when localized properly,
are interpretable as analogues of classical spacetime points.

We will not exploit this further. But it is worth mentioning and could still be a
valuable ingredient for alternative strategies.

5.3 Field operators for tensor product function
spaces

A general question, that was already thoroughly discussed in Chapters 3 and 4,
is how to apply principles of locally non-commutative spacetimes to quantum
field theory. This section suggests another probably useful idea of a technical
interface to combine these two things. With an eye on the sketchy ideas of
the pair interaction topic from Chapter 4, we want to make in fact two slightly
deviating proposals of how to define field operators for this special purpose.

5.3.1 Option 1

The idea is to take the usual test function space (smooth compactly supported
spinors in case of the Dirac field) normally used to label field operators W(f),

f e xR, CY) = ™",

n, N € N appropriately chosen (cf. also Section 2.1), and tensor-multiply it with
an auxiliary space, doubling the count of spacetime coordinates n. Define

SN = (R, CVY),
and let this auxiliary space be .#™!. Obviously

@n,N ®yn,1 g <yn,N ® yn,l ~ <y2n,N
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5 An attempt to define quantum field operators on non-commutative spacetimes

holds, and with h € ™! we have f ® h €¢ 9™V @ /™t C 72N 2N then
arises as the “label-space” for a new kind of field operator (already represented
on vacuum-Fock-space H"*¢), defined by

Uf@h): 2/ Wa(@)(f o2 W) (@)d"e = W(f 0. h). (5.10)

with the last equality showing its connection to the ordinary well-known field
operator. Where o, : 2™V @ /™1 — 9™ is defined as follows:

(f o WYM(a) = fA(@) [ 3clw = y)h(y)d"y. (5.11)

N

—_z_
2

with 4. € Z(R",R), 0 < ¢ € R, being Gaussian functions 6.(z) = sf :
fulfilling [z» 0-(x)d™z = 1 and approaching the Dirac delta peak measure

lim [ g(y)d.(x —y)d"y = g(x)

e—0 Rn

for some g € .. This amounts to
VE(f @ h) = U(f 0. h) —= U(fh)

with pointwise product fh.
In the next step we need to adjust the definition of the potential operator to
the new setting. That is V := V® . 2N 20N g chosen to be one out of

O (V(for)* = (Vol(foh)* =cx(f*@h)+(f*@h)*c
(i) (V(f@h)* = (Vi(f@h)* =cx(fA®@h)*c,

where ¢ := ¢®@ € .#(R?",R) is an element of the algebra A% = (Z(R*",C), )
in the sense of spectral triples, and * = * is the vertical, local Kontsevich star-
product from Section 3.4. Alternatively for a given h € ™! one could consider
Vh B4 N an,N ’

V) = (V(f @)%,
understood as composition of maps f+— f®@h+— V(f ® h).

One central object of interest is an expression like W(V(MRyg), g € 2™V,
with V(Y being some one-particle external potential and Ry the difference of free
advanced /retarded solutions of the free Dirac operator. This object is involved
in promising operational relations, namely Bogoliubov’s formula (to be found as
a result of Chapter 2 and the paper [6]). It reveals some hint at possible methods
to analyse effects of spacetime non-commutativity at the level of quantum field
operators.

When we try to establish similar things for field operators ¥ (f @ h), a quite
obvious starting point could be the consideration of the correctly defined expres-
sion U(VWRy(f 0. h)). But our potential V = V) is defined on the tensor

56



5.3 Field operators for tensor product function spaces

product of function spaces, respectively on .#?™"  shifting the focus to an ex-
pression like V2 (V(Rof @ h)).
Where however, it is not clear whether V(Rof ® h) or VR[()2)( f ® h) is needed,

with some unknown R((JQ).

U2V (Ryf®h)) could possibly correspond to an expression W (P, (V(Rof®h))o.
Py(V(Rof ® h))), with P;, P, being projectors on the two factors of the tensor
product, respectively on the first or second half of the 2n coordinate dependencies.
This is probably hard to “compare” with W (V1 Ry(f o, h)).

5.3.2 Option 2

Define ~
VA (f @ g) = U (f)¥(g) (5.12)

at the level of vacuum-Fock-representation space H', for f,g € 2™ (defined
in Sec. 5.3.1). V := V@ . 2N _, 2N* i chosen to be one out of

O V(feg)' = (Valf@g)' =cx(f0g") + (f@g") xc
(i) (V(feg)' = (Va(feg)' =cx(ftog%)*c

where ¢ := ¢®@ € .Z(R?",R) is an element of the algebra A% = (Z(R*",C), )
in the sense of spectral triples, and * = *g is the vertical, local Kontsevich
star-product from Section 3.4.

Let §vG) € L(HY) be the algebra generated by the elements U (f®g) and
1. And define dy : FGE) — Syz by derivation-property on products and by

ov (VO (f©g)) == 0P (Vo (Ry @ Ro)(f ® 9)) (5.13)

on single elements. The question arises whether there exists an operator G(V') €
L(H*?°), such that

GV, 92 (fog)| =6 (¥P(foyg).

This equation would then represent an analogon to
[io(VD), w(f)] = BV Rof)

formerly derived for the case of Moyal-Minkowski spacetime, with ®(V®1)) :=
P(c) = —id/d\|,_, S\, the S-operator differentiated with respect to the inter-
action strength. In case of implementability; otherwise ®(c) is just seen as the
generator of the derivation and the property of its (essential) self-adjointness is
desirable to be shown.

However, the tough task at this stage is to show the existence of G(V'). But this
will not be investigated further here.
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6 Conclusion and outlook

APART from inventing something completely new, like e.g. string theorists
do, we take well-known concepts of quantum field theory completely serious.
The new ingredient of non-commutative spacetimes is physically reasonable mo-
tivated and mathematically anyway without a doubt.

Using tools and ideas of solid foundation, it was indeed possible to construct an
operational connection between quantum fields and the underlying nc. spacetime
structure. This was even achieved for the general case of even the time coordi-
nate being non-trivially involved. Although carried out for the special example
of Moyal-Minkowski spacetime, the strategy could well be a pattern for more
general situations.

Locally nc. spacetimes are probably better candidates. For those some ground-
work could be established.

However, the level of difficulty in this field of research leads to many distinct
tentative approaches. These are often quite far apart from their conceptual point
of view, or let it just be a notational one. So it is important to invest some energy
in translation. This is unfortunately by no means easy, and we made only modest
progress in this regard.

Further, one has to ask, how far examples can be a guidance towards general
principles and methods. They can surely help to dig one’s way through the con-
fusing variety of non-commutative geometry. But in a way this field seems like
such a powerful toolbox that some day it should inspire a new idea from a more
“philosophical” point of view that simplifies things again. Probably one cannot
expect spectacular experimental predictions and explanations so soon. So the
main drive is almost one of mere mathematical beauty.

For a detailed summary of the discussed topics and the content I refer back to
the Introduction, Chapter 1.

29






Appendix A
Technical details

A.1 Continuity of the fundamental solutions with
respect to Schwartz norms

A.1.1 Klein-Gordon case

For the sake of less notational effort, the following theorem is proven for the
Klein-Gordon case first.

Theorem A.1.1 Let E* : C*(RY) — C®(R?) be the advanced and retarded
fundamental solutions of 4+ m? on 4-dim. Minkowski spacetime:

(O+m*)EEf = f = EXO+m?f and
supp E* f C J*(supp f).

Let A\ = 22:0 02, be the 4-dimensional Laplace operator and

Mf(y) = E_: yaf(y) (y € RY),

and

af = (1-A)7'f,
bf = (1+M)7f
for f € L2(R*). Then there exist a, B € N, such that b%a®E*a“b® can be extended

to bounded operators on L*(R*) (taking values C L*(R*)).
As a byproduct it is shown, that the domain of E* can be extended to .7 (R*).

Remark The statement can be proven for arbitrary dimensions R", n > 2, as
well.

Note also, that EX and a® commute (easily shown with the help of explicit for-
mulas from the following proof).

Proof
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62

1. Notation. For p,z € R* define:

Minkowski product plz] = pua* =nup's’ =p’a® —p -z

Euklidean norm [p|* := pg +p2 4 p2 + pg,
for f € S(R?):
r 1 —iplz] j4

the Fourier transform with Minkowski product.

. Fourier space representation of E*. According to [32]

E* li 1 e e d*
(z,y) = lim (27r)4/ m? = plp F ipoc

holds, i.e. for f,g € S/ (R%):

) L f®0)g(=p)
(f, EZg)r2re) = Eli%i m2 —p? F ipgsd b

Remark According to the definition of E* in the assumptions of the the-
orem the limit exists for the time being for f,g € C>°(R*). If it exists also
for all f,g € (R?), then f,g — (f, Eig)Lz(R4) is a sesquilinear form on
S (RY) C L*(R*).

. Let F' € .#(R*). For the spatial coordinates p = (p1,p2, p3) we introduce

spherical coordinates:
F(p) = F(po,r,$), with Q = (9, ) € S*.
~—~—
P

Set

F
7H(F) := lim 5 gp) —d*p.
e=0+J m? — p? —ipge
In spherical coordinates:

F Q
7H(F) = lim (po, 1 €2)

2
drdQdd
L e s g iposr raliapo

with dQ = sin ¥diddyp, integration over r € (0,00), Q € S?, py € R. Partial
integration w.r.t. r:
1
7H(F) == lim [ 0, (rF(po,r,))In (m*+r* — pt — ipoe)drdQdpy,
2 e—0+
with complex logarithm In z = In |z| + i arg z. Here the limit can be taken:
. . v
El_l)%l_i_ In(m*+7r2—pi—ipec) = In |m2+r2—pg|+§ (1 —sgn (m* 4+ 1% — pg)) :

taking into account the complex logarithm Inz = In |z| + i arg 2.



A.1 Continuity of the fundamental solutions with respect to Schwartz norms

4. Tt holds | — imsgn po| = 7, and r,pg — In|m? + r* — p?| is locally L' on
R; x R (follows from ¢°Inp —, 0+ 0 Ve > 0). Further

A)*KLA ﬂKJmVﬁ*”J—Pde@oSC@ﬂl+hﬂ%mﬂ+¢%FW
r—r 0—p§| <

holds true for arbitrary m,n > 0. This implies: It exists v € N, such that
1 2v
: 2 .2 .2
{.r,p0|—><1+T2+p3> (’1n|m +r p0|‘+05>,

Ce € {0,7}, is in L' ((0,00) x R, drdp,). Hence we get the estimation

‘T+<F)) < C) sup
po,T,$2

e (rF(po, 7, 2) (1417 +pg)™

with Cqy = [|&(r, po)|drdpedSQ.

5. Now consider the case F(p) = f(p)g(—p). Then

On(rF)(p) = r0:.F(p)+ F(p)
= [(0:5®) a-p) + F@0.3(-p)] + F D3P

and

0:(rF)(p)] < (14722 [|F(0)| +

which implies

sup [0, (rF)(po, 1, Q)| (1 + 1% +pg)* < N(f)N(9)

po,7,$2
with N(f) = supyeps (1+ pP)(1 + [pP)* (£ ()] + |0-F(0)]).
6. It holds

o)) < |w)| +r|o.7 )

3
< [fw)|+ @+ P Z] (),

and ;
V() < s+ 12 (0] + X fonf)] )

pe k=1
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Moreover we have

1+mv+g\ (p)|
ggj%(rwmwv N+2Km +1p2)" ") f(p)

< C(Q) [( + |p\ V+1 ‘ ) + Z ‘8” ( + |p‘2>y+1f(p))” .

This implies

L+ pP"fp) = ((1—2)"f)"(p) and
(2m)? Jra )] dx

=
S
IA

one obtains

N(f) <

< 0(4) /]R4<1 + |1‘|2) ‘(1 — A)V—Hf(x)‘ dr

1/2
< Cp) (/ 1+ o) |0 = 2)* ()] d%) )
R4
by a standard argument. So altogether it has been shown:
(£, ETg)r2| < Clo) (1 4+ MY (1= 2) 7| |1+ M) (1= £)Fg

for all f,g € (R*). The argument for £~ works along the same lines and
results in the same estimate. With a := v + 1, 8 := u, v = b Pa=f,
w = b Pa"%g, this implies

(a°6%u, E*ab"w) [ <

for all u,w € . (R*),which is basically the statement of the theorem. [

5 [ foa] o fo] + Jas) (1= A) 4 (@) d'a
R4

L2

A.1.2 Dirac case
Theorem A.1.2 Let R : C°(R*, C*) — C®(R*,C*) be the advanced and re-

tarded fundamental solutions of D = —ig +m on 4-dim. Minkowski spacetime:
DR*f = f=R*Df and
supp R* f C J*(supp f).
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Let N\ := Zi:o 02, be the 4-dimensional Laplace operator and

= Z yaf(y) (y € RY),

and

af = (1-0)7,
bf = (1+M)'f

for f € L2(R*). Then there exist a, B € N, such that b’a®R¥a“b? can be extended
to bounded operators on L*(R*) (taking values C L*(R%)).
As a byproduct it is shown, that the domain of R can be extended to . (R* C*).

Remark The statement can be proven for arbitrary dimensions R™, n > 2, as
well.

Note also, that R* and a® commute (easily shown with the help of explicit for-
mulas from the following proof).

Proof We want to restrict ourselves to just pointing out the few differences
compared to the proof of Theorem A.1.1. Apart from those, the Dirac case works
exactly along the same lines.

The explicit formula for the fundamental solutions is replaced by

Rip(z,y) = (i, + m)apE* (z,y)

(see [5]; which is the same as derivating with 7, instead) resulting in

((2p/+m ABGP (—p )d4p.
m —p F ipoE

Paragraphs 3. and 4. of the Klein-Gordon proof can be transferred completely
unchanged.

Then consider the Schwartz function F'(p) = fA(p)(,p’ +m)a BgAB(—p). Calculate
|0 (rF) (p)]
r|(0.540)) W+ m)ang” ()

—I—fA(p)(% sin ¥ cos @ + vy, sin ¥ sin ¢ + 3 cos ¥) 45G% (—p)
+ A (0) W+ m)apd,9” (—p) | + [ (0)(# + m)ang” (—p)
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< 3 o] cilml +r4 )|+ [P0)] 6ot )

fﬂp)\clﬂm +1+1)[0.0°(p)|| +|70)| €l +7+ 1) |57 (=)
< Ai;a +712)Cs(lpo| + 7+ 1) [|[FA()] + |0 F4®)|] |97 (—)| + |0:5% (=p)|
< Oié(lﬂpﬁf 1) + 0720 [[87(=)| + |67 =)

due to |(p+ m)as| < Ci(|po| +r+ 1) and other straightforward estimates, |p|* =
pg+ 1%, v =|p|. This leads to

sup {0 (rF) (po, 7 )| (1 + PP < N(fIN(3)
po,7,

with N(f) = Ca S0, sup,eps (1+ [p[2) (| F4(0)| +
Along the lines of paragraph 6. of proof A.1.1 this s
till

0. f4(p))).

ight deviation carries over

N ) 1/2
N(f) < 0(5)04 (Z /R4<1 + |x|2)2# ‘(1 — A)V—&-lfA(x)‘ d4l’>
A=1

= CCi|(1+ My (1 - n)*f

2’
which then proves the Dirac case in the same manner. 0

A.2 Further analytical properties of the
fundamental solutions

A.2.1 Klein-Gordon case
Lemma A.2.1 Let E* : #(R") — C*®(R") be the advanced and retarded funda-

mental solutions of 0+ m? on n-dim. Minkowski spacetime like in Thm. A.1.1,
defined on .7 -functions.
Then it holds

sup
reR”™

Proof We take the explicit formula for E* from the proof of Thm. A.1.1, f €
& (R™), and calculate:

Efa) = [ B )iy = [ i oo [

Rn e—0+

el f(p)
nm?2 — p? Fipoe

Eif(x)’ < 00.

e~ f(y)

d"pd”
nm?— g2 Fipee Y

= lim (2%)_"/2/
R

d?’L
e—0+ b,
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f denoting the inverse Fourier transform with Minkowski product. To simplify
notation for the introduction of spherical coordinates we restrict ourselves to the
case n = 4 from now on (without loss of generality). Then

E*f(x)
efipomoJrir(xl cos ¥ cos p+xa cos ¥ sin p+x3 sin ) § r. 9
= lim (2m)2 [ i 0 f(po, 70, 0)
e—0+ RxR x 52 m? — pg + 12 F ipee
r? sin Vdpdddrdp.

Similar as in the proof of Thm. A.1.1 this equals

—ipozo+ip(r Nz f 2 2 2 in
/RxR+st 0, (re~morot iz f(py 7, Q) <ln‘m +r p0\+{0 )derdpo,

omitting the analytical meaningless prefactor %(27?)*2.

a?“ (re_ip0x0+iE(T:Q)£.fv(po’ T, Q))
= 6—ip0xo+ig(r,(2)gfv(p0, r, Q)
+re” PoroH(Z; (1) cos 1) cos @ + oy cos ¥ sin g + z3sind) f(pg,r, Q)

+7“e—ipowo+ig(“mzarf(l)07 T Q)

With these three terms E* f(x) splits up into six integrals Z?:1 I; that are going
to be investigated separately now.

(a)
I, = e~ oro (e £ O)imdQdrdp,

/
n o< f

f(PoJ’, Q)’ wdedddrdp, < co.

I, = /re_ipoz”@(“m% (21 cos ¥ cos ¢ + xg cos ¥ sin @ + 3 sin 1) -

f(po, r, Q)imdQddrdpy.

Define g :=r f , which is still € .. Then the Fourier transforms, i.e. the
integrals w.r.t. py and r can be carried out:

I, = /(—xlcosﬁcosgo—xgcosﬁsimp—xgsinﬂ)-

g(xo, —x1 cos ¥ cos p — x5 cos ¥ sin p — x3sin v, Q)wdS2,

=z
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where ¢ is still Fourier transformed with respect to ). We can define

h(zo, z,Q2) := zg(xo, 2z, 2), which is still Schwartz. Then of course
| < /‘ﬁ(xg,z(Q,xl,xg,xg),Q)’WdQ - /H(Q)mm < o0,

with H(Q) := sup,cps | (20, 2(Q, 21, 29, 23), )| < 0oL

(c)

r

I; = /re_ip°$°+iB(T’Q)£3rf(po,r, Q)imdQdrdpy

&f(po, T, Q)’ wdpdddrdpy < oo.

Iy = /e_ipox“i?(r’mgf(po, r, Q) In ‘mz +r? — pg‘ dQddrdpy

Ll < [ [F o (1424 p2)>

(1+7r*+p5)~%

In ’m2 + 7% — ng depdddrdpy < oo,

since there exists a v € N such that

Jar )

In ‘mz + 7% — ng dedddrdpy < oo;

and sup,, .o ’f(po,r, Q)’ (14 7%+ p2)* < oo due to f € . (cf. proof of
Thm. A.1.1).

(e)

I; = / re Moot (1) cos 1) cos p + a4 cos U sin @ 4 w3 5in 1Y) -

.f(pOJ T, Q) In ‘m2 + T2 - pg‘ de’f’dpo
3
15| < /TZ |4 ‘f(Pm T, Q)’ ‘IH ‘m2 +r? — pSH dpdidrdpy,
j=1
where then again (1 +r% + p2)? (1 + r* + p3) = is inserted, yielding
3
‘I5| < Cl Z |xj|7
j=1

with some constant C; € R™.
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A.2 Further analytical properties of the fundamental solutions

Iy = /re’i””o*@(r’mg&«f(po, r, ) In ‘mz N pg‘ dQ)drdp,

15| < /r

again by the same argument.

Grf(po, r, Q)‘ ‘ln ‘mQ +r?— ng dedddrdpy < oo,

Altogether we have
3

[EXf(@)| < C+Cr Y.

J=1

At least this shows sup, e |[E= f(z)| is finite for every & = (21,22, 23). For the
spatial coordinates our estimate was actually to rough. Because [2] tells us that
E*f is indeed spatially compact, i.e.

e JK compact such that supp EXf C J*(K) and
e the global hyperbolicity of the spacetime

imply for every Cauchy surface S C R* that supp E*f|g C SN J*(K), which is
compact according to Corollary A.5.4 in the book [2]. This implies

sup |E* f(x)] < oo,
rER4

and generalizes easily to arbitrary dimensions 2 < n € N. O

Lemma A.2.2 Again let E* : /(R") — C®(R") be the advanced and retarded
fundamental solutions of O+ m?, m > 0, on n-dim. Minkowski spacetime like in
Lemma A.2.1.
Then it holds

(f’ Eig)fﬁ < 0

even extended to functions f,g € L*(R™) N C*(R™).

Proof (only for n = 4) Let f,g € L*(R") N C*°(R™). Explicitly

A

. f()d(p)
E* =1 d"p.
(f, B gz = lim | s 7 — T ipoet P

We make a case differentiation
(a) [m?+p* —p5| <m?

(b) |m?+p* —p§| > m?
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and split the integral

A

li ( ) it >’ d I I
< lim / +/ "p =: + I
e=0+ \ J(a) ‘mQ p - pO T Zpoé‘ (a) (b)

Case (b) is the easier one. The Limit can be carried out immediately:

|(f, E*g)12

- Fwyitr) ) [ 1
= "p<m” / P
) (b) ’mQ + p? — p%‘ (b)

< m2 [ 1))

The calculation for part (a) starts with some coordinate transformations/substi-
tutions:

g(p)|d"p

d"p < m”?||f2llgll 2 < oo.

A

fp )é(p)

I,y = lim / "p
(a) e—0+ J(a) \/ m2 +p +p 22
F(po,m, g (po, Q)| r
— lim / drdepO
o0 \/ m?2 + 12 — p2)2 + pie2
L. 2 . Z
- 5 El_l)%1+ (@) f(p07 2, Q)g(p07 2 Q)’ \/ m2 4o p2)2 +pg€2 dZdepo
1 . 2
= 15141)%14’ “ fu, z,2)g(u, z,Q) ’\/ 2 —u) dzdQddu,

with Q € [0,47], u € RY, 2 € RY, combined with the condition (a): |m?+2z—u| <
m?. We disentangle (a) into two subcases:

1)m?>+2z—-u >0 u<m?+z2 (a)e u > 2 Finally this implies
0<z<u<m?+z

(2) m*+z—u<0&u>m?+2z (a)e u < 2m?+ 2. Finally this implies
0<m?>+2z<u<2m?+z.

This suggests to split the u-integration as follows:

47 24+2m?2
I(a) — hm / </ )
4 e—0+ 2+m?2

dudzdSQ.

A

fu, 2,2)g(u, 2, Q)

\/[(m2 +z— u) +ue?|u
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A.2 Further analytical properties of the fundamental solutions

However, one has to take care of the singularity at u — m? + z before sending
e to 0. Therefore it is necessary to introduce a § > 0 sufficiently small, in fact
§ <m?/2, to proceed with

47 z+m?2 —6 z4+2m? z+m2+68
W= f
() 4 < z+m2+5+ +m2-4§
4
2P dudzdo = //I Ty + Liag))dzdS2,
|m2+z_u|\/7uz (1) + L2 + Laz)dz

1 Z
o) m T
() m2+2z—u|Vu

The most critical integral is I(,3). We will see, that its Cauchy principal value
exists and hence justifies the limit ¢ — 0+. But let’s investigate the integrals one
after another.

f(u, z, M) g(u, z,9)

and define

[ ] I(a,1)3

z4m2—6 | ~
Iy = / f(u,z,Q)é(u,z,Q)‘T(z,u)du

/z+m2 -0 | 2
z

applying the mean value theorem for integration with & € [z, 2z +m? — 4].
Then even for all z € [0, 00) it holds

(u, z,Q)g(u, z, Q)‘ duT(z,&),

1
z —_—— <C
T(z:8&) = |m2 4+ z — & a
And of course the u-integration in I, 1) converges, leaving some L'-function
in z and §2.
[ ] I(ag)i

sy

24+2m2

I =
(a,2) m2s
/erQm2
z+m24+68

with & € [z +m? + 6,z + 2m?]. Then even for all z € [0, 00) it holds

(u, z,92)g(u, z, Q)‘ T(z,u)du

a2, (0,2, ) T (2, 2),

1

- < C
Im? + z — & >

T(z,&) =

And again the u-integration in I(, ») converges, leaving some L'-function in
z and ).
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o ] (a73)2
Here we have to start the calculation from scratch and postpone the appli-
cation of the absolute value to a later step. L.e. the starting point is

A

f()ip .
[()—hrn 5 5)(2) —d"p.
e=0+ J(a) M* + P — Py F 1PoE

Then all the steps are the same, till we arrive at

- z4+m2+48 Q Q
I3 = lim f(uz (v, \/7(1

e=0+ Jotm2—s m2 + z—uq:z\/_&t
_][z+m+5f(uz§2 uzQ\/7d
N z4+m2—§ +z—u
2+m24+8
- f (€2 (62,9,

+m2—5 M2 +2z—u

again applying the mean value theorem (just for a different factor in the
integral), with & € [z + m? — §,2 + m? + §]. Now the Cauchy principal
value is computed:

z+m2448
T
+m2—-§ M*+ 2z —Uu
z4+m2—n z4+m248 1
= lim </ + ) \/?du
n—=0 \ Jz+m2—6 ctm2in ) mEP+z—uVu
2
= lim —arcoth, /1 — — artanh omitE
n—0 z+m2—90
N " h/ m2+ z + artanh m2+z 2z
—artanh{/ ————— + artan )
Z2+m2+9 n+m?+z [(m? + 2)z

This simplifies to

[ m2 2
= 2artanh + — 2artanh me Atz
(m2 + 2)z Z+m?+6
+1n ( ! ) o ( )) .
m?+ z m2+ z

Investigating the terms for z € [0, c0) one by one:

z

: _ 1
(1> \/(m2+z)z o \/m2/z+1

— 1 for z — oo. For z — 0 I'Hospital helps:

m2+2)z .. e
mzizz 2 n§2+2+z) — 0 for z — 0. Continuity and positivity then
2v/(m2+z2)z
imply
0< ——— <Gy
(m?+ 2)
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A.2 Further analytical properties of the fundamental solutions

(ii) ap == 24 = — 13 — € (1,2), since 775 € (0, 3), since z € [0, 00)
and 0 < d <m?/2. And ay := Z_T;ﬁilg = 5— € (2,1). Hence

z+m

0<Cy < 2artanhy/a; — 2artanh,/ay < Cj.

(iii) Set [ := ——. In(=l) —Inl = In| — | +iarg (=) — In|l| —iarg(l),

m2+z°
which equals just ir.

Altogether

Tas = |Tas)| < ‘f(&%za 2)g(&s, 2, Q)’ C3(Cy + ).

Putting it all together

]_ 47 [e'e)
Iy = 7 /0 /O (La1) + La2) + L(a3))dzd

< 1/04”/000(01+02+03(C4+7r))/000

< Q.

F w2, 2)§(u, 2, Q)’ dudzd

A.2.2 Dirac case

The results of the last subsection can be transferred to the Dirac case as well.

Lemma A.2.3 Let R : Z(R",CY) — C®(R",C") be the advanced and re-
tarded fundamental solutions of —id+ m on n-dim. Minkowski spacetime like in
Thm. A.1.2, defined on . -functions.

Then it holds

sup
z€R™

(B ) ()] < co.

Proof (only for n = 4) The strategy is exactly the same as for the Klein-Gordon
case in Lemma A.2.1, hence we will only give a rough sketch. Starting point is

(R @) = [ B w)d'y

—ip|z] A B
= lim (2m)72 / et ) B ) g,
e—0+ n m2 — p2 T 1poe

The only differences to Lemma A.2.1 are an additional term

re” oot (1) o519 cos @ 4 o cos U sin p + 3 sin ) f(po, , Q)
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in the derivative 0, (re_ipowr@(r’ﬂ)@(,p’—i- m) f (po,r, Q)) and the factor (p'+ m),
which can always be estimated by Co(|po| + r + 1). Finally we get

(RENM @) < C+ Cry_lal,

=1

which then again together with the argument from the book [2] proves the Lem-
ma. 0

Lemma A.2.4 Again let R : Z(R",CY) — C°(R",CN) be the advanced and
retarded fundamental solutions of —i@+m, m > 0, on n-dim. Minkowski space-
time like in Lemma A.2.3.

Then it holds

(1, R*g),, < o0
even extended to functions f,g € L*(R") N C(R").

Proof (only for n = 4) Let f,g € L*(R™) N C*(R"). Explicitly

(f, Rig)m = lim fA(p)(,p’+ m)ABgB(P)

d"p.
e—=0+ JRrn m2 — p2 F ipog p

In other words, the connection to the Klein-Gordon case is given by (f, R¥g).2 =
(f, (@ + m)E*g) 2 = ((i700° — im0* + m)f, E£g) 2, note id = ingd° + iy,0F.
Since (i790° — iv,0* + m)f is again in L?*(R") N C*(R") Lemma A.2.2 can be
applied (componentwise). O

A.3 Proof of the technicalities of Theorem 2.4.7

The context is given within the abovementioned theorem and its proof.
Proposition A.3.1 For the operator G. defined in (2.27) it holds

o G, is a well-defined operator G, : L*(R*,CY) — L*(R*,CN)

e G, is Hilbert-Schmidt (w.r.t. the Hilbert space L*(R*,C")).
Proof

(a) Preliminaries. The proof works along the same lines as the one of Prop. 7
in [6]. With the help of Fourier transforms F'F and smooth unitary
matrices U(k)'U(k) the operator expression (2.27)

(Co)(a) i= [ pec™(cx @y x )t 2)dt
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is brought into a more conveniently calculable shape. Here the Fourier
transform F := F, for £ € L?(R%,C") is given by

E(k) = (FE)(k) == (F)(k) == (QW)_5/2/ e g (z)d . (A1)

s

U(k) is a family of smooth unitary matrices that exists due to properties of
Hy, that diagonalizes its Fourier transform Hy(k) = FHoF '(k). As you

know Hoy(k)*Ho(k) = |Ho(k)[*Tnxn holds with |Hy(k)| = \/k* + m2. The

diagonalization reads

U (k) Ho(k)U (k)™ = ( _|H§<k)| yﬁoo(ml ) |

For the Fourier transforms of pi, i.e. FpiF (k) = pi(k), we have the

properties
0 0
< 0 1 ) =

U(k)efo®ty (KU(k)™ = e iHWItp,
U(k)p_(k)e Ho®iy(k) = = e-ilfo®itp._

U EUE = § § ) = P U@ U

with 1 = :ﬂN/2><N/2~ Then

During later calculations within the expression of G. we will implicitly
insert some U~'U to make use of the above relations, without explicitly
mentioning them again.

Dealing with the Moyal product on fully n-dimensional spacetime we will
also need the following notation of the Fourier transform F,, for functions

f e LX(R",CN):

Fk) i= (Faf) (k) i= 2m) ™02 [ e f(a)dna. (A.2)

Note that the scalar product in the phase factor is always the FEuclidean
scalar product. Note also that underscored letters like k& will be used
throughout to denote elements in R*, while those lacking an underscore
denote elements in R™. We will also write (ko,k) = k as is customary,
understanding that kg € R and k£ € R*. A further convention will be used
to avoid having to write down factors of (27)~#?2 in the integrals: we will
denote arbitrary factors in that sense by the same symbol C'.

Fourier integral expression for cx gxc. Let g € (R, CY). Then we
have that F,(cx g xc) = F,L.R.F,;'g, where L./R. denotes left/right
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multiplication by c¢. On iterating the Fourier integral expression for Moyal
multiplication (cf. equations (75), (76) in [6]), one obtains

.ﬂLﬂJﬁ?@):Cﬁﬁm M=)y — ek — w)§(w)d wd k.

Carrying out the k-integration yields for this expression, up to a constant
factor, the convolution

[(F ' (00),)) * (Fr )] (M(y — w)),

where we have used

(0h)(q) := h(=q), hy(q) :=h(g —y).
Using the antisymmetry of M, the last expression becomes equal to
Cr // VM e(y 4 M(y — w))e(u)e™ ™V g(w)d ud™w
R® xRR"™
= Cr [ ey — w)g(w)d"w,
where ‘
Y. (v) == / c(u+ Mv)c(u)e™"™d"u

is in .7 (R", C).
In summary, we have found: There is a function ¢, € . (R", C) so that

(Falexgxe)(y) =Cx | "M (y — w)g(w)d"w (A.3)

for all g € (R, CY). Since 9. € .7(R",C), one can clearly extend this
to a greater set of g, even certain distributions, and we will use this in the
next steps.

Inserting ¢,  for g. It is not difficult to see that ¢, ,, defined in (2.26),
is C* jointly in ¢t and z. This follows from the following observations and
usage of the Sobolev lemma:

e H, is elliptic
e p_Y is in the C*°-domain of H

® ¢, , is in the C*°-domain of 6,52 + HjHy and hence in the C*°-domain
of ARn.

We note that F,,¢, = FoFs¢p_, where Fy is the Fourier transform with
respect to t. One has

(fs¢p_x> (tak) - F <€iH0tp7X> (E) _ (fsefi\Ho\tfsflm) (E)
(e—ilﬁo(k)ltp_x) (k),
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using that Hop_ = —|Hp|p_. Performing now also the Fourier transform
w.r.t. t, one obtains

(‘F"¢P—X> (ko,E) = (f0f8¢p_x) (ko’ =C, / —ikot *Z\Ho( Ntﬂ(@)dt
= Crd(—(ko + |Ho(k)]))p—x (k),

which is a distribution in .#/(R™, CV).

Now we can insert F,,¢, , for g in the expression obtained in (A.3) for the
Fourier transform of ¢ x g x ¢. This yields that

(Fulex dpsx ) (ko k)
= O [ Mk — o,k — w)3(—(wo + [ Ho(w) ))pX(w)d"w

= C, [ etoRM(-Ho@lw)y (k4 |Hy(w)], k — w)px(w)d*w

Rs

It is easy to see that the function is in C*°(R",C") and also bounded.
Moreover, for each fixed kg, k > (.Fn(c* Pp_x * c)) (ko, k) is in L*(R*, CN).

Now we can form (]-"S(c * Op_y Kk c)) (t,k) by forming
(f61fn(0* Pp_x * )) (t, k) = Cx / Zkot Fu(Cx dp_y * )) (Ko, k)dko.
The result is of the form
Cr [ @9 (Fov(t + Rlw), k — w)e 5 (w)d"w,

where Q(k,w) is C*° and R(w) is C*° and the latter is of order |w| for
large |w|. This shows that for fixed ¢, k (]:S(c*gbp_x*c)) (t,k) is in
L*(R*,C") and therefore, z — (c* ¢,  * ¢)(t,z) is in L*(R*,CY). Thus,
pre” ot can be applied on (¢ ¢,  *¢)(t, ).

Final analysis of G.. The next step is to form (2.27)

(CoX)(@) = [ pre ™ 50(cx @y x)(t )
We will instead try to inspect
(FsGex) (k) = Cy /]:Sp e Mt FAy Fo(ex ¢y xc)(t, k)dt.
One has

(Fipse™lg) (k) = (Fopyre MIFg) (k) = po(k)e oG (k),
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for all g € L?(R*, CV) with some bounded, continuous, matrix-valued func-
tion py (k). Hence we obtain'

(F.Gox)(k) = Cy / P (k)e~ 1Bl F (cue b % )(t k)t

= pr+(/€)%? (C*% * ) (| Ho(k)|, k)

= pr(k)Cy [ IOy (| Fy ()] + | Ho(w)], k- w)
P-(w)X (7)d w,

where similarly as above, we have used that p_y(w) = p_(w)x(w) with a
bounded, continuous, matrix-valued function p_(w).

Now the important observation is: since
e Y. € S(R",C)
e |Hy(k)| > 0 and |Hy(k)| being of order |k| for large |k|,

the function (k,w) — . (]HO( )| + | Ho(w)], k — w) is in L?(R* x R*,C).
And consequently,

FGFI2W) = [ Kk wiwdw

with K € L?(R*xR*, CN*V). However, this shows that F,G.F, ! is Hilbert-
Schmidt on L*(R*, C"), which in turn shows (even though somewhat indi-
rectly) that G. is well-defined as an operator on L*(R*,C"), and also that
G, is Hilbert-Schmidt. O

'Remark Actually, the Fourier integral of the following computation exists only weakly in ¢
— one would actually have to insert a sequence of . (R)-testfunctions j,(¢) with j, 71 as
n — oo and control the limit, showing that the last integral of the computation is obtained
in the limit.
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Notation

B.1 Abbreviations

QFT Quantum field theory
nc. non-commutative

B.2 On index-placement

space-time coordinates 0. .. 3
space-time coordinates 1...3
abstract tensor indices
spinor indices 1...4

from alphabet-
greek lower-case letters -middle
latin  lower-case letters -middle
latin  lower-case letters -beginning
latin  upper-case letters -beginning

Summation convention is used throughout (pairwise occurring indices, one in
upper and one in lower position, are implicitly summed over).

B.3 Symbols

L(X,Y)
B(X,Y)
Bsa(%)
C(A, B)
Cy(A, B)
C*=(A, B)

Cp°(A, B)
(A, B)

Set of linear maps (=:operators) between vector spaces
Xand Y, L(X) := L(X, X)

Set of bounded operators between normed spaces X, Y
Self-adjoint operators subset B(s¢), # Hilbert space
Set of continuous maps between topological spaces A
and B

Set of continuous and bounded maps between metric
spaces A, B

Set of infinitely-times continuously differentiable maps
between normed spaces A, B

C>°(A, B) and bounded

C*>(A, B) with compact support (“test-functions”)
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LP(A, B) Equivalence class of measurable maps f, for which |f[?
(1 < p < o0) is integrable w.r.t. the Lebesgue-measure
(A, B measure spaces)

L>*(A,B)  Equivalence class of essentially (almost everywhere)
bounded maps

S (R™,C)  Set of Schwartz-functions from R" to CV

Some operator norm, specifically defined by the sur-

rounding context

|| ’ ||0p

As a rule, above sets are considered as normed spaces (equipped with usual
norms). Other symbols:

K Interior of a subset K of a topological space
K Closure of K

oK Boundary of K

f Complex conjugation of a CV-valued function

supp f Support, i.e. closure of the set of points at which f
(e.g. as map between topological vector spaces) doesn’t
vanish

K™*™  Set of m x n-matrices with elements out of field K

Remark
(a) For every sesquilinear form, linearity is demanded for the 2nd component.

(b) Integrals without explicit specification of the domain of integration are con-
sidered as stretched over the whole domain of the integrand.

(c) If marked by anything at all, spacial R" !-vectors get an underscore: z.

(d) For the Dirac delta-distribution §, € (C2°)’, defined by o,f = f(v),
more often than not we use the usual physicist-notation

[ F@)3 = yydz = 1),

“0(y—x) = d(x—y)". The discrete Kronecker-delta is declared by (m,n € Z)

5mn::{0 m#n

1 :m=n
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