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1. INTRODUCTION 

Avian influenza (AI) affects the respiratory, digestive and/or nervous system of many 

bird species. AI viruses are influenza A viruses belonging to the Orthomyxovirus 

family, and they are classified according to their pathogenicity and the antigenicity of 

the surface proteins haemagglutinin (HA) and neuraminidase (NA) of which 16 and 9 

variants, respectively, are known to date (FOUCHIER et al. 2005). Viruses containing 

subtypes H5 and H7 are highly pathogenic in poultry and cause outbreaks of highly 

pathogenic AI (HPAI), with mortality rates reaching 100 % (WEBSTER et al. 1992). 

HA-specific antibodies are protective as a result of their ability to prevent virus 

attachment and penetration of the host cell. HA is a homotrimer, each monomer is 

synthesised as a single polypeptide (HA0) that is cleaved by host proteases into HA1 

and HA2. HA1 contains receptor-binding pocket surrounded by antigenic binding 

sites (BAIGENT and MCCAULEY 2003; KREIJTZ et al. 2007; NAYAK et al. 2009; 

SHOJI et al. 2008; TONEGAWA et al. 2003). H5 and H7 subtypes emerge at 

irregular intervals and cause severe economic losses in poultry (HAMPSON and 

MACKENZIE 2006), furthermore, it was demonstrated that H5N1 subtype could 

directly cross the species barrier to replicate in humans and cause severe disease 

(HAMPSON and MACKENZIE 2006; KODIHALLI et al. 2000). Vaccination can be a 

powerful tool to support eradication programs if used in conjunction with other control 

methods. Adjuvanted killed vaccines can provide a strong humoral immune response 

and they provide an effective protection against homologous low pathogenic AI 

(LPAI) and HPAI challenges. One of the concerns in the use of the commercially 

available vaccines (consisting of inactivated AI virus) to control HPAI in poultry farms 

is the possibility that while these vaccines may protect from disease, they do not 

hinder infection. Thus asymptomatic virus circulation may continue, resulting in 

spread of infection to non-immunized birds, e.g. in other (neighbouring) farms 

(KODIHALLI. et al. 2000). Inactivated influenza vaccines will lead to development of 

antibodies not only to the protective epitopes on the HA and NA, but also to the 

internal proteins which make the differentiation between infected and vaccinated 

animals (DIVA) difficult (SUAREZ and SCHULTZ-CHERRY 2000). On the other 

hand, inactivated hetrologous vaccines are manufactured in a similar way to 

inactivated homologous ones. The use of hetrologous neuraminidase DIVA strategy 

is an acceptable approach but availability of diagnostics is an issue. Several 

recombinant fowl pox (FP) viruses expressing the H5 antigen have been developed 
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and one has been licensed in Mexico (SWAYNE and SUAREZ 2000). Other vectors 

have been used to successfully deliver the H5 or H7 antigens, such as constructs 

using infectious laryngotracheitis virus (ILT). Recombinant vectored vaccines also 

enable DIVA. However, their use is restricted to countries in which they are legally 

available. In addition, the use of these vaccines is also restricted to species in which 

the vector virus will replicate (SWAYNE et al. 2000). Peptide vaccination could be an 

alternative to commercially available vaccines. Subunit vaccines based on conserved 

antigens provide broader protection. Moreover, HA protein derived recombinant 

peptides would not elicit an immune response against internal viral proteins which 

facilitate DIVA. The HA1 antigenic domain of HA has been shown to induce an 

immune response equal to that of the full-size protein (TONEGAWA et al. 2003). 

Unfortunately, there is no effective and specific treatment of HPAI in poultry. The 

precise diagnosis of AI and effective vaccination, which has been shown to induce 

immune responses, can help control the spread of the disease. Hence, the on-site 

and rapid detection of AIV and surveillance of AI in flocks is significant for the 

economics of poultry production and human health (BECK et al. 2003).  Flocks are 

usually tested as a group, rather than testing all the individual birds. Often ten to thirty birds 

are randomly selected from suspect flock and the birds are tested with a type-specific 

influenza detection test. Serological methods are usually used for detection of type-

specific antibodies produced against nucleoprotein antigen (NP) and subtype 

antibodies against HA and NA. Agar gel immunodiffusion test (AGID) is used to 

detect circulating antibodies to type A influenza group-specific antigens, namely the 

NP and Matrix (M), regardless of subtype. It is preferred for its simple and fast 

realization and for the possibility of studying large numbers of samples. AGID test 

may not be suitable as a universal assay for some other species of birds; serum 

samples from water fowl do not contain good precipitin antibodies (CATTOLI et al. 

2006; SUAREZ and SCHULTZ-CHERRY. 2000). The HI test is more sensitive and 

rapid than the AGID test. However, it is allowed the titration of antibodies and it is one 

of the best technique to measure the level of protection in vaccinated chickens as 

well as to check the efficacy of vaccine (MEULEMANS et al. 1987). However, it is 

complicated due to the existence of 16 HA subtypes of AIV and it is laborious. 

The indirect Elisa (I-Elisa) using crude or purified viral antigen on the solid-phase to 

detect viral specific antibodies has been developed for detection of chicken and 

turkey antibodies to AIV (ABRAHAM et al. 1988; ADAIR et al. 1989). Several different 
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types of Elisa have been developed for chicken (ZHOU et al. 1998). The Elisa rely 

upon the detection of antibodies against NP (BECK et al. 2003).  Recently,  detection 

of NP, N3 and N7 antibodies to AI virus by indirect ELISA using yeast-expressed 

antigens revealed that these indirect Elisas are rapid, sensitive, specific and can be 

used as promising tests during serological surveillance (UPADHYAY et al. 2009). 

Furthermore, the recombinant protein-based serological tests may have higher 

sensitivity and specificity as the target antigen is immuno-dominant and devoid of any 

non-specific moities present in whole cell preparations (ERRINGTON et al. 1995; 

MOHAN et al. 2006). The yeast P. pastoris has the potential of rapid growth to very 

high cell densities in inexpensive media as strong promoters are available 

(ROMANOS et al. 1992). It can produce high-level of foreign proteins either 

intracellular or extracellular. In addition, it has the capability of performing many 

eukaryotic post-translational modifications, such as glycosylation, disulfide bond 

formation and proteolytic processing (CEREGHINO et al. 2002; DALY and HEARN. 

2005).  

Aim of the work: 

1. Expression of truncated sequences of influenza A subtype H5N1 in P. pastoris  

2. Studying the possibilities to be used for immunization of chickens against H5 

influenza virus 

3. Development of recombinant Elisa for detection of influenza A subtypes H5 

antibodies in chickens and ducks. 
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2. REVIEW OF LITERATURE 

2.1 Avian influenza virus 

AI, an infectious disease of birds that is caused by influenza virus type A strains, was 

identified first in Italy in 1878 (LIGON 2005). The causative agent was eventually 

isolated from chickens in 1902 (A / Chicken / Brescia / 1902, H7N7). Similar 

outbreaks were observed in Europe and then worldwide, with subsequent isolation of 

several fowl plague viruses (H7 subtypes). By contrast, the first human influenza 

virus was not isolated until 1933 (LAMB and TAKEDA 2001). Influenza virus was 

named in the 1960s because of their ability to bind to mucus and to distinguish them 

from another family of enveloped negative-strand RNA viruses (paramyxoviridae). 

However, influenza viruses belong to Orthomyxoviridae, a Greek word (orthos, 

“standard, correct” and myxo, “mucus”). Orthomyxoviruses appear as roughly 

spherical or filamentous particles 80–120 nm in diameter or cross-section. The 

Orthomyxoviridae are composed of about 1 % RNA, 70 % protein, 20 % lipid, and 5 

% to 8 % carbohydrate (LAMB and TAKEDA 2001). At present the Orthomyxoviridae 

family consists of five genera: influenzavirus A, influenzavirus B, influenzavirus C, 

ogotovirus, tick-borne viruses that occasionally infect mammals, and isavirus, the 

virus responsible for infectious salmon anaemia. These viruses are enveloped RNA 

with single-stranded genomes of negative sense (i.e. the virus RNA is 

complementary to the messenger RNA (ALEXANDER 2006, 2007). Influenza viruses 

are polymorphic particles with a host-derived lipid bilayer envelope covered by about 

500 projecting glycoprotein spikes with HA and NA activities (PEREZ et al. 2005). 

The viral genome of influenza A viruses consists of eight segments (Figure 1). To be 

infectious, a single virus particle must contain each of the eight unique RNA 

segments. Influenza A viral RNA segments encode 11 proteins as follow: polymerase 

B1 protein (PB1), polymerase B2 protein (PB2), polymerase A protein (PA), HA, NP, 

NA, matrix protein (M1), M2, non-structural 1 protein (NS1), NS2 and polymerase B1-

F2 protein (PB1-F2) (SWAYNE 2006a; WEBSTER et al. 1992). Influenza viruses are 

classified into types A, B, and C on the basis of the antigenic nature of M1 and NP 

proteins (CHEN and DENG 2009; SUAREZ and SCHULTZ-CHERRY 2000). Type B 

and C viruses generally only infect humans, but type A viruses infect humans, pigs, 

horses, mink, marine mammals and a wide variety of domesticated and wild birds 

(OLSEN et al. 2006; TAMURA et al. 2005). Type A viruses are further subdivided into 

subtypes based on the antigenic differences in the HA and NA molecules. At present, 
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there are 16 HA (H1–H16) and NA (N1–N9) subtypes (FOUCHIER et al. 2005). Each 

virus has one H and one N subtypes. All H and N subtypes of influenza A viruses in 

the majority of possible combinations have been isolated from avian species 

(ALEXANDER 2000; TAMURA et al. 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): Schematic  diagram of influenza A virus (SUBBARAO and JOSEPH 2007) 
 

 

2.2 Influenza virus proteins   

2.2.1 Polymerase subunits PB2, PB1, PA 

PB2 polymerase is encoded by RNA segment 1, the slowest-migrating RNA species 

by gel electrophoresis. It is a member of the protein complex providing viral RNA-

dependent RNA polymerase activity. It is known to function during initiation of viral 

mRNA transcription as this protein recognizes and binds the 5' cap structures of host 

cell mRNAs to use as viral mRNA transcription primers. Endonucleolytic cleavage of 

these cap structures from host mRNAs is also at least in part a function of PB2. The 

role of PB2 in the other virus-directed RNA synthetic processes (WEBSTER et al. 

1992). PB1 polymerase is encoded by RNA segment 2. It functions in the RNA 
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polymerase complex as the protein responsible for elongation of the primed nascent 

viral mRNA and also as elongation protein for template RNA and vRNA synthesis. 

PB1 proteins localizes in the nucleus of infected cells. Moreover, PA polymerase is 

encoded by RNA segment 3. It also localizes in the infected cell nucleus and is a 

member of the RNA-dependent RNA polymerase complex along with PB1 and PB2, 

but its role in viral RNA synthesis is unknown. There is evidence for possible roles as 

a protein kinase or as a helix-unwinding protein (WEBSTER et al. 1992). 

2.2.2 Nucleoprotein  

NP is the major structural protein that interacts with the RNA segments to form 

ribonucleoprotein (RNP). NP is one of the type specific antigens and also the major 

target of cross reaction cytotoxic T lymphocytes generated against all influenza virus 

subtypes in mice and humans (LATHAM and GALARZA 2001). NP functions in both 

viral assembly and RNA synthesis (BROWN 2000). 

2.2.3. Haemagglutinin 

The HA was originally named because of the ability of the virus to agglutinate 

erythrocytes (LAMB and CHOPPIN 1983). The HA protein is an integral membrane 

protein and the major surface antigen of the influenza virus. It is responsible for 

binding to host cell receptors and for fusion between the virion envelope and the host 

cell. It undergoes three kinds of post translational processing; proteolytic cleavage, 

glycosylation, and fatty acid acylation. Newly synthesized HA is cleaved to remove 

the amino-terminal hydrophobic sequence of 14 to 18 amino acids (aa), which are the 

signal sequence for transport to the cell membrane. Carbohydrate side chains are 

added, whose number and position vary with the virus strain. The HA (HA0) is 

cleaved into two disulfide-linked chains, HA1 and HA2 (MITNAUL et al. 2000; 

SKEHEL and WILEY 2000). This cleavage is accomplished by host-produced trypsin-

like proteases (KIDO et al. 1992) and is required for infectivity because virus-cell 

fusion is mediated by the free amino terminus of HA2 (LEWIS 2006; STEVENS et al. 

2006). The fully processed HA consists of HA1 (typically) of about 324 aa plus 

variable carbohydrate, and HA2 (typically) of about 222 aa plus variable carbohydrate 

and 3 palmitate residues. The three-dimensional structure of a complete HA trimer 

has been determined. Each HA molecule consists of a globular head on a stalk. The 

head is made up exclusively of HA1 and contains the receptor-binding cavity as well 

as most of the antigenic sites of the molecule. The stalk consists of all of HA2 and 

part of HA1. The carboxy-terminal region of HA2 contains the hydrophobic 
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transmembrane sequence and a terminal cytoplasmic anchor sequence where 

palmitate is attached (WEBSTER et al. 1992). The HA mediates attachment to and 

entry of virus into host cells by binding to sialic acid receptors at the cell surface. HA 

is also the main viral target of protective humoral immunity by neutralizing antibody 

(DE JONG and HIEN 2006; STEVENS et al. 2006) and the T - cell mediated immune 

responses (HORVATH et al. 1998). The binding affinity of HA to the sialic acid 

residues partly accounts for the host specificity of the various influenza A virus 

subtypes. The epitopes involved in receptor-binding show great variability due to 

mutations in the RNA causing amino acid substitutions at several sites on the HA1 

molecule (BROWN 2000; HORVATH et al. 1998). Influenza viruses from different 

hosts can differ with respect to specificity and affinities for the 2-3 or 2-6 linkage of N-

acetyl neuraminyl-galactose (SA 2,3 Gal; SA 2,6 Gal). These binding specificities 

correspond to the types of sialic acid linkages within these hosts and therefore avian 

strains preferentially bind SA 2,3 Gal, whereas human strains preferentially bind SA 

2,6 Gal (WOOD et al. 1993). Owing to error-prone viral RNA polymerase activity, 

influenza virus HA is subject to a very high rate of mutation. Selection for amino acid 

substitution is driven at least in part by immune pressure, as the HA is the major 

target of the host immune response. Several recent reports demonstrated that HA 

and HA1 fragment containing the majority of antigenic determinants are responsible 

for generation of virus-neutralizing antibodies and vaccines based on conserved 

antigens provide broader protection (KREIJTZ et al. 2007; SHOJI et al. 2008; 

TONEGAWA et al. 2003).  

2.2.4 Neuraminidase 

NA is also a type II integral membrane glycoprotein (MITNAUL et al. 2000) and a 

second major surface antigen of the virion. NA cleaves terminal sialic acid from 

glycoprotein or glycolipids. Thus, it is thought to be important in the final stages of 

release of new virus particles from infected cells, prevent the new virus particles 

agglutinating, thus increasing the number of free virus particle and hence spread of 

the virus from original site of infection (DE JONG and HIEN 2006). NA is glycosylated 

and possesses an amino-terminal hydrophobic sequence which functions both as 

signal for transport to the cell membrane and as transmembrane domain; it is not 

cleaved away. The distribution of NA has not been conclusively resolved; 

immunogold-labeling experiments suggest that the NA tetramers are not evenly 

distributed over the virion envelope, as is HA, but aggregate into patches or caps 
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(BROWN 2000). The complete three-dimensional structure of an NA tetramer, bound 

to antibody, has been determined. Like HA, NA is highly mutable with variant 

selection partly in response to host immune pressure. Nine subtypes of NA have 

been identified in nature; they are not serologically cross-reactive. Different variants 

of several subtypes are known (BROWN 2000; WEBSTER et al. 1992). Many studies 

have documented that influenza virus particles with low NA enzymatic activity cannot 

be efficiently released from infected cells, resulting in the accumulation of large 

aggregates of progeny virions on the cell surface (LIU et al. 1995; MITNAUL et al. 

2000). Inhibition of this important function represents the most effective antiviral 

treatment strategy to date (LEWIS 2006). The substrate binding site is in the middle 

of the head of tetramer, which is attached by a stalk to the membrane. Substrate 

analogues have recently been introduced for therapy of influenza virus infection. Anti-

drugs currently being used to treat infected patients are oseltamivir (Tamiflu). 

2.2.5 Non-structural proteins 

NS1 mRNA is collinear with the viral RNA. The NS1 protein forms a dimmer that 

inhibits the export of poly-A containing mRNA molecules from nucleus and is 

expressed in large amounts in influenza virus infected cells but it has not been 

detected in virions, hence the designation NS for non-structural. NS1 is a 

phosphoprotein, and the protein is found in infected cells associated with polysomes 

and also in the nuclease and nucleolus. The NS1 protein is required for virulence in 

mice (LIPATOV et al. 2005). When NS1 is absent or altered, the virulence of 

influenza A viruses is highly attenuated. NS1 protein functions as a type I interferon 

(IFN) antagonist raise the question whether this protein can also increase viral 

pathogenicity in vivo (LIPATOV et al. 2005). The NS1 protein of influenza A virus 

associates with p53 and inhibits p53-mediated transcriptional activity and apoptosis 

(WANG et al. 2010). The NS2 was originally misnamed but is not thought to exist in 

virions and to form an association with the M1 protein. NS2 is a small molecule. NS2 

functions in the nucleocytoplasmic export of RNP for assemble into virions and have 

been shown to posses a nuclear export signal. A new name has been proposed 

nuclear export protein (NEP) (ALEXANDER 2007). 

2.2.6 Matrix protein 

Segment 7 encodes two proteins, M1 and M2. The proteins encoded by these 

mRNAs share their initial 9 amino acids and also have a stretch of 14 amino acids in 

overlapping reading frames.  The M1 protein is a highly conserved 252-amino acid 
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protein. It is the most abundant protein in the viral particle, lining the inner layer of the 

viral membrane and contacting the RNP core. M1 has been shown to have several 

functions including regulation of the nuclear export of viral RNP (vRNPs), both 

permitting the transport of vRNP particles into the nucleus upon infection and 

preventing newly exported vRNP particles from re-entering the nucleus (MARTIN and 

HELENIUS 1991). M1 may also be involved in the inhibition of viral transcription in 

the late stages of infection and regulation of the switch from replication to viral 

assembly (PEREZ and DONIS 1998; WAKEFIELD and BROWNLEE 1989; 

ZVONARJEV and GHENDON 1980).  M1 binds RNA (SHA and LUO 1997; YE et al. 

1999; YE et al. 1989), vRNPs (YE et al. 1999) and lipids (GREGORIADES and 

FRANGIONE 1981) dimerizes with other M1 molecules (HARRIS et al., 2001); and 

interacts with both the HA and NA proteins (ALI et al. 2000; ENAMI and ENAMI 

1996). It is also involved in export to the cytoplasmic membrane, virus assembly, and 

budding (GOMEZ-PUERTAS et al. 2000; LATHAM and GALARZA 2001). It has been 

reported repeatedly that the virulence and growth of influenza viruses are influenced 

by changes in the internal proteins. M1 protein is a multifunctional protein which 

contributes to the control of virulence, growth, (ENAMI et al. 1993; SMEENK and 

BROWN 1994; YASUDA et al. 1994) and host specificity of influenza viruses 

(MURPHY et al. 1989). M2 is an integral membrane protein and a large number of 

M2 molecules are expressed at the plasma membrane of the influenza virus infected 

cell surface, with a ratio of approximately two M2 molecule per HA (ZEBEDEE and 

LAMB 1988). The 97-amino acid M2 protein is a homotetrameric integral membrane 

protein exhibits ion channel activity and is composed of 24 extracellular amino acids, 

and 54 cytoplasmic residues (BAUER et al. 1999; HOLSINGER and LAMB 1991; 

SUGRUE and HAY 1991; WANG et al. 1994). Disulfide bonds link the protein 

through cysteines located in the extracellular region (HOLSINGER and LAMB 1991). 

Amantadine and remantadine inhibit virus replication by blocking the ion channel 

formed by the M2 Protein. Certain mutations in the M gene lead to viruses that are 

resistant to antiviral drugs (positions 26, 27, 30, 31, and 34) within the 

transmembrane domain of M2 has been implicated in loss of sensitivity of M2 

blockers (HAY et al. 1979; PINTO et al. 1992). 

2.2.7 PB1-F2 protein 

PB1-F2 is encoded by an open reading frame within an alternative reading frame of 

PB1 (CHEN et al. 2001). This 87-residue protein seems to participate in the induction 
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of apoptosis and also functions to kill host immune cells responding to influenza virus 

infections. This protein was shown to be non-essential for virus replication in vitro 

(SIDORENKO and REICHL 2004). 

2.3 Virus replication 

Influenza virus particles attach to sialic acid containing cellular receptors via the viral 

HA glycoprotein. Virions penetrate into the cell by a clathrin-dependent receptor-

mediated endocytosis. Although several other entry pathways for influenza virus are 

also reported (SIECZKARSKI and WHITTAKER 2002) the endocytic pathway seems 

to be the most common. vRNPs are released from the endosome when the 

endosomal pH is decreased to  5.0,  which activates viral M2 ion channels and allows 

protons to enter the interior of the virus particle. As a result, the viral M1 proteins 

undergo conformational changes, followed by the disruption of M1- vRNP interactions 

and acid-catalysed conformational rearrangements of HA proteins. As a 

consequence, viral and endosomal membranes fuse and individual vRNPs are 

released into the cellular cytoplasm. The import into the nucleus, through nuclear 

pore complexes, is mediated by a nuclear localization signal (NLS), carried by NP. 

Since M1 proteins inhibit this import of vRNPs, its detachment from vRNP plays a 

crucial role at this step. Virus particles unable to fuse with the membrane, e.g., virions 

with defective M2 ion channels, are degraded by lysosomes. Three types of viral 

RNAs are synthesized in the cellular nucleus: viral mRNAs of positive polarity 

(vmRNA), viral genomic RNAs (vRNA) of negative polarity, and complementary 

RNAs (cRNA) of positive polarity. Influenza virus vmRNAs contain a cap structure at 

the 5´ end and a poly (A) tail at the 3´ end, which are taken from cellular precursor 

mRNAs. Their synthesis is governed by the viral polymerase complex and comprises 

several steps. Splicing of M and NS mRNAs, also occurs in the nucleus. It is 

regulated by NS1 proteins. Newly synthesized viral mRNAs are efficiently exported 

from the nucleus into the cytoplasm via nuclear pores. Genome replication involves 

the synthesis of full-length vRNA (–) and cRNA (+) strands. While transcription is 

carried out by PB1 and PB2 proteins, genome replication requires PB1 and PA 

subunits of the polymerase complex (CASSETTI et al. 2001). Experiments show that 

NP proteins bind to elongating strands. It is also known that NP proteins promote the 

initiation of unprimed transcription and block the synthesis of viral mRNAs. The 

cRNAs serve as templates for vRNA synthesis, while newly replicated vRNAs are 

used for the production of further vmRNAs and cRNAs as well as for the assembly of 
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vRNP complexes. The proteins PB1, PB2, PA, NP, NS1, NS2, and M1 are produced 

in the cellular cytoplasm. When influenza virus particles internalize into the cell, the 

rate of cellular protein production slows down. The hypothesis that the translation 

machinery of infected cells efficiently processes only mRNAs possessing the viral 

untranslated region was recently challenged (CASSETTI et al. 2001). However, there 

are three possible mechanisms for the inhibition of cellular protein synthesis (PARK 

and KATZE 1995). One of them involves the degradation of cellular precursor 

mRNAs in the nucleus. Another possibility is the inhibition of the translation of cellular 

mRNAs at initiation and elongation steps. Finally, cellular protein production can be 

suppressed by retarding the transport of cellular mRNAs to the cytoplasm. While 

cellular protein synthesis is at least partially inhibited, viral proteins are synthesized at 

a maximum rate by ribosomes organized in polysome complexes. Newly synthesized 

polymerases as well as nucleocapsid, M, and NS are then transported to the nucleus, 

where they participate in M and NS mRNAs splicing, transcription, and genome 

replication. Additionally, they are consumed for the production of new vRNP 

complexes. M2, HA, and NA protein synthesis is carried out by ribosomes bound to 

the membranes of the endoplasmic reticulum (ER). Newly synthesized envelope 

proteins are inserted into the ER, glycosylated, and transported to the Golgi 

apparatus. Finally, they are delivered to the membrane of the host cell to be 

assembled with vRNP complexes. Formation of vRNP complexes takes place in the 

nucleus. It results from the binding of newly synthesized PB1, PB2, PA, NP, and NS2 

proteins to vRNAs. M1 proteins attach to vRNPs, forming M1-vRNP complexes, and 

catalyze the transport of vRNPs to the cytoplasm. Nuclear export of vRNPs is also 

directed by NS2 proteins and nuclear export signals (NES) carried by NP proteins 

(PORTELA and DIGARD 2002). As stated above, M1 proteins also inhibit the import 

of vRNP complexes. Therefore, newly synthesized vRNPs associated with M1 

protein are unable to penetrate into the nucleus again. The vRNP-M1 protein 

complexes interact with the cytoplasmic tails of M2, HA, and NA proteins, that leads 

to the formation of a bud at the assembly site, e.g., the apical membrane of polarized 

epithelial cells. This bud separates from the cellular membrane and a virion is 

released to the extracellular medium. Most of the cellular membrane proteins are 

excluded from virus particles by NA proteins (LUO et al. 1993). 
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2.4 Antigenic shift and drift 

Two surface glycoproteins HA and NA, undergo gradual, continuous minor antigenic 

changes due to point mutations in the HA and NA genes, referred to antigenic drift. 

This phenomenon occurs in all influenza A viruses due to the lack of a proof reading 

system for the RNA polymerases. Due to the segmented nature of the viral genome, 

the exchange of RNA segments, called genetic reassortment, between two 

genetically different AI viruses infecting the same host cell may potentially result in 

the generation of a novel strain and / or subtype, which can lead to major antigenic 

changes in the HA or NA genes. This is referred antigenic shift. The emergence of 

resultant virus strains enhanced human infectivity and may lead to influenza 

pandemics (BOUVIER and PALESE 2008; SHOHAM 2006; TAMURA et al. 2005; 

WEBSTER et al. 1992). Animals, particularly the importance of pigs and poultry have 

a great role in the emergence of the new influenza viruses (MANUGUERRA and 

HANNOUN 1997). On the other hand, ducks are the "Trojan horses" of H5N1 

influenza (KIM et al. 2009). It is generally accepted that wild duck species can spread 

HP H5N1 viruses, but there is insufficient evidence to show that ducks maintain these 

viruses and transfer them from one generation to the next. 

2.5 Avian influenza pathogenicity 

Influenza A viruses are divided into two groups on the basis of their ability to cause 

disease in chickens which are HPAI and LPAI (PANTIN-JACKWOOD and SWAYNE 

2009). HPAI viruses have been restricted to subtypes H5 and H7, although not all 

viruses of these subtypes cause HPAI. All other viruses (LPAI) cause mild symptoms, 

which nevertheless, may be exacerbated by other infections or environmental 

conditions resulting in a much more serious disease. A crucial role in AI pathogenicity 

is played by HA. This is because HA0 requires post-translational cleavage by host 

proteases before the protein is functional and the virus particles are infectious. It has 

been demonstrated that the HA0 precursor proteins of AIV of low virulence for poultry 

are limited to cleavage by host proteases such as trypsin and trypsin-like enzymes. 

Thus AIV remains restricted to replication at sites in the host where such enzymes 

are found, i.e. the respiratory and intestinal tracts. In contrast virulent viruses appear 

to be cleavable by (a) ubiquitous protease(s). The remains to be fully identified but 

appears to be one or more proprotein-processing subtilisin-related endoproteases of 

which furin is the leading candidate (STIENEKE-GROBER et al. 1992). This enables 

these viruses to replicate throughout the animal, damaging vital organs and tissues 
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which brings about disease and death in the infected bird. Comparisons of the 

amino-acid sequences at the HA0 cleavage site of AIV of high and low pathogenicity 

revealed that while viruses of low virulence have a single basic amino acid (arginine) 

at the site, all HPAI viruses possessed multiple basic amino acids (arginine and 

lysine) adjacent to the cleavage site either as a result of apparent insertion or 

apparent substitution (CHEN et al. 1998a; SENNE et al. 1996; VEY et al. 1992; 

WOOD et al. 1993). The potential for LPAI virus appearing in meat of infected 

chickens is negligible, while the potential for having HPAI virus in meat from infected 

chickens is high, but proper usage of vaccines can prevent HPAI virus from being 

present in meat (SWAYNE and BECK 2005). Most HPAI viruses appear to have 

arisen as result of spontaneous duplication of purine triplets, which results in the 

insertion of basic amino acids at the HA0 cleavage site, and this occurs because of a 

transcription fault by the polymerase complex. However, this is clearly not the only 

mechanism by which HPAI viruses arise. Some appear to result from nucleotide 

substitution rather than insertion, whereas others have insertions without repeating 

nucleotides. H7N3 HPAI viruses show distinct and unusual cleavage site amino acid 

sequences (PASICK et al. 2005). The factors that bring about mutation from LPAI to 

HPAI are not known. In some instances, mutation seems to have taken place 

immediately after introduction to poultry from wild birds at the primary site, whereas in 

others, the LPAI virus has circulated in poultry, sometimes for months before 

mutating. The HPAI viruses do not show high virulence for all species of birds, and 

the clinical severity seen in any host appears to vary with both bird species and virus 

strain (ALEXANDER et al. 1978; ALEXANDER et al. 1986). In particular, ducks rarely 

show clinical signs as a result of HPAI infections, although there are reports that 

some of the Asian H5N1 viruses have caused disease (STURM-RAMIREZ et al. 

2005). Ostriches (Struthio camelus) also appear to have an unusual clinical response 

to HPAI infection. The clinical condition caused by HPAI is very similar to that caused 

by LPAI viruses (CAPUA and ALEXANDER 2006). Despite the application of control 

measures in most countries, infections of HPAI H5N1 continue to occur, and in 2008, 

outbreaks in poultry were reported in Benin, Egypt, Germany, Iran, India, Thailand, 

Turkey, Ukraine, and Vietnam, whereas infections of wild birds were reported in 

China, Hong Kong, and the United Kingdom. The  peak virus titres excreted and the 

time required for virus titres to reach a minimal chicken infectious dose may be the 

critical phenotypes influencing the transmissibility of highly pathogenicity AI viruses in 
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chickens (SUZUKI et al. 2010).  Moreover, H6N2 viruses can infect both chickens 

and ducks, but based on the number of birds shedding virus and on histopathology, 

these viruses appear to be more adapted to chickens. Virus shedding, which could 

go unnoticed in the absence of clinical signs in commercial chickens, can lead to 

transmission of the virus among poultry (JACKWOOD et al. 2010). The OIE adopted 

the following criteria for the classification of an AIV as HP: (1) any influenza virus that 

is lethal for six, seven or eight of eight 4– to 8-week-old susceptible chickens within 

10 days following intravenous inoculation with 0.2 ml of a 1/10 dilution of a bacteria-

free infective allantoic fluid; any virus that has an intravenous pathogenicity index 

(IVPI) greater than 1.2; (2) the amino acid sequence of the connecting peptide of the 

HA must be determined. If the sequence is similar to that observed for other highly 

pathogenic AI isolates, the isolate being tested will be considered to be highly 

pathogenic. 

2.6 Clinical signs 

Following an incubation period of usually a few days (rarely up to 21 days), 

depending upon the characteristics of the isolate, the dose of inoculum, the species, 

and age of the bird, the clinical presentation of AI in birds is variable and symptoms 

are fairly unspecific (ELBERS et al. 2005). The symptoms following infection with 

LPAI may be as discrete as ruffled feathers, transient reductions in egg production or 

weight loss combined with a slight respiratory disease (BARR et al. 1986; CAPUA 

and MUTINELLI 2001). Some LP strains such as certain Asian H9N2 lineages, 

adapted to efficient replication in poultry, may cause more prominent signs and also 

significant mortality (BANO et al. 2003). Both 1918 and 2009 H1N1 influenza viruses 

behave as LPAI in gallinaceous poultry (BABIUK et al. 2010). LPAI (H4, H6 and H9) 

can infect and be shed by chickens and turkeys. However, detection is difficult 

because these viruses don’t cause clinical disease or mortality, but only induce mild 

microscopic lesions and exhibit poor seroconversion (MORALES et al. 2009).  

In HPAI, the illness in chickens and turkeys is characterized by a sudden onset of 

severe symptoms and a mortality that can approach 100 % within 48 hours 

(SWAYNE and SUAREZ 2000). Spread within an affected flock depends on the form 

of rearing: in herds which are litter-reared and where direct contact and mixing of 

animals is possible, spread of the infection is faster than in caged holdings but would 

still require several days for complete contagion (CAPUA et al. 2000). Often, only a 

section of a stable is affected. Many birds die without premonitory signs so that 
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sometimes poisoning is suspected in the beginning (NAKATANI et al. 2005). It is 

worth noting, that a particular HPAI virus isolate may provoke severe disease in one 

avian species but not in another: in live poultry markets in Hong Kong prior to a 

complete depopulation in 1997, 20 % of the chickens but only 2.5 % of ducks and 

geese harboured H5N1 HPAIV while all other galliforme, passerine and psittacine 

species tested virus-negative and only the chickens actually showed clinical disease 

(SHORTRIDGE 1982). Individual birds affected by HPAI often reveal little more than 

severe apathy and immobility (KWON et al. 2005). Oedema, visible at feather-free 

parts of the head, cyanosis of comb, wattles and legs, greenish diarrhoea and 

laboured breathing may be inconsistently present. In layers, soft-shelled eggs are 

seen initially, but any laying activities cease rapidly with progression of the disease 

(ELBERS et al. 2005). Nervous symptoms including tremor, unusual postures 

(torticollis), and problems with co-ordination (ataxia) dominate the picture in less 

vulnerable species such as ducks, geese, and ratites  (KWON et al. 2005) 

2.7 Gross lesions  

The appearance of gross lesions is variable depending on the virus strain, the length 

of from infection to death, and the age and species of poultry affected (KOBAYASHI 

et al. 1996; SWAYNE et al. 1997). In general, clinical signs, lesions and death have 

been seen with domestic poultry of the order galliformes, family phasianidae, but not 

for birds of the orders anseriformes or charadriiformes when infected with HPAI 

viruses. In most cases peracute infections with death (days one to two of infection), 

poultry have lacked visible gross lesions (HOOPER et al. 1995). However, some 

strains, such as A / chicken / Hong Kong / 220 / 97 (H5NI) and A / chicken / Italy / 

330 / 97 (H5N2) have caused severe lung lesions of congestion, haemorrhage and 

edema in chicken, such that excised tissue exuded serous fluid and blood (SUAREZ 

et al. 1998). Edema of the brain has also been reported. During the acute stages of 

infection with death (days three to five post-infection) chickens have ruffled feathers, 

congestion and/or cyanosis of the comb and wattles and swollen heads, especially 

prominent from periorbital and intramandibular subcutaneous oedema (ACLAND et 

al. 1984; HOOPER et al. 1995; KOBAYASHI et al. 1996; SWAYNE et al. 1997). 

Some viruses produced hyperaemia and edema of the eyelids, conjunctiva and 

trachea (BARR et al. 1986). In birds which die, generalized congestion and 

haemorrhage may occur (HOOPER 1989). Lesions are common in the combs and 

wattles, especially in adult chicken, and include petechial-to-ecchymotic 
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haemorrhages, swelling from oedema and eventually depressed dark red-to-blue 

areas of ischemic necrosis as the result of vascular infarction. Subcutaneous 

haemorrhages and oedema may be present around the hock, on the shanks and feet 

and occasionally on feathered skin all over the body. Some HPAI viruses, such as A / 

Queretaro  / 14588-19 / 95 (H5N2), commonly caused thickening of the skin over the 

distal legs with gelatinous oedema (SWAYNE et al. 1997). Petechial – to- ecchymotic 

haemorrhages may be present in multiple visceral organs or on the serosal surface, 

such as the epicardium of the heart, serosa of small intestine ,abdomintal fat, serosa 

of sternum, caecal tonsils, Meckel's  diverticulum, Peyer's lymphoid patches of the 

small intestine, proventriculus around the glandular ducts or between glands, under 

the cuticle of the skeletal muscles primary lymphoid organs such as cloacal bursa 

and thymuses are severely atrophic, while the spleen may be normal in size or 

enlarged. Occasionally, spleens have white foci of necrosis and the pancreas may 

have red to light orange to brown mottling (HOOPER 1989). Ruptured ova with yolk 

peritonitis have been reported in layers and broilers turkey breeders. 

2.8 Vaccination 

Vaccination has proven to be a powerful tool for control of H5N1 HPAI outbreaks. 

Vaccination increases the bird resistance to field virus transmission (CAPUA and 

MARANGON 2007a; VAN DER GOOT et al. 2005; ELLIS et al. 2004). Vaccination 

and companion DIVA testing are highly recommended by OIE for control and 

prevention of HPAI (CAPUA and MARANGON 2007a). Wild birds and waterfowl play 

a potential role as reservoirs in AIV circulation and evolution (NORMILE 2005; 

OLSEN et al. 2006). However, the global distribution and persistence of LPAI viruses 

in wild bird populations is not fully clear (WEBBY and WEBSTER 2003). Influenza 

viruses can have numerous antigenic subtypes and rapidly evolve due to constant 

gene mutation and reassortment. These factors contribute to the fact that AI is a 

disease difficult to be eradicated in some circumstances. An ideal AI vaccine would 

provoke an immune response that protects against disease and prevents infection 

(SWAYNE and KAPCZYNSKI 2008). Current commercially available vaccines will not 

prevent infection completely, but experimental and field studies have shown that 

properly used vaccines can accomplish multiple goals: (1) protect against clinical 

signs and death, (2) reduce shedding of field virus if vaccinated poultry become 

infected, (3) prevent contact transmission of field virus, (4) protect against challenges 

by low to high doses of field virus, (5) protect against a changing virus, and (6) 
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increase a bird's resistance to AI virus infection (SWAYNE 2006b). If possible, 

selection of strains for inclusion in poultry AI vaccines should be based on an 

analysis of the field challenge virus in comparison with the licensed vaccine strains, 

which may require some flexibility in registration processes to allow for new products 

and re-formulation of existing vaccines to facilitate timely adjustments of vaccine 

formulation. Unlike human influenza A vaccines where antigenic drift of the field virus 

requires changing vaccine strains every few years, antigenic drift of poultry influenza 

viruses has not required a similar frequent need to change the vaccine strain 

(SWAYNE and KAPCZYNSKI 2008). In one study, an H5 vaccine strain provided 

broad protection against diverse H5 HPAI viruses collected during 38 years and 

differing as much as 12 % in amino acid sequence of the HA gene. The closer the HA 

gene sequence similarity between vaccine and field viruses, however, the greater the 

reduction in challenge virus replication and shedding from the respiratory tract 

(SWAYNE and KAPCZYNSKI 2008). The use of a poorly matched vaccine can result 

in clinical disease and increased virus shedding when vaccinated poultry are 

naturally infected (SWAYNE 2006b). The duration of effective immunity will vary 

based on the number of doses given, age of bird at time of vaccination, antigen 

quantity in each dose of vaccine, and avian species. Using traditional whole virus 

inactivated oil-emulsion vaccines in chickens, peak HI titres are observed 4-6 weeks 

post vaccination (BRUGH et al. 1979), with the same work indicating a much lower 

seroconversion rate in turkeys. Additional studies in turkeys indicate two doses of 

inactivated vaccine are necessary to reduce virus shedding and replication to levels 

needed to reduce viral spread (KARUNAKARAN et al. 1987). The immunogenicity of 

vaccines is correlated to antigen mass, its formulation and the age of vaccination (DI 

TRANI et al. 2003). The different levels of immune responses are due to antigenic 

quality and contents as well as the adjuvant composition (CRISTALLI AND CAPUA 

2007).  

2.8.1 Inactivated whole virus vaccine  

As early as 1971, inactivated oil emulsion vaccines were used to immunize chickens 

and turkeys against AI virus infection (ALLAN et al. 1971). Up to now, inactivated 

vaccines in chickens and turkeys against AI have been reported, subtypes H1 

(ABRAHAM et al. 1988; SWAYNE et al. 2001), H5 (CRAWFORD et al. 1998; 

SWAYNE 2006a; SWAYNE et al. 2001), H6 (CARDONA et al 2006), H7  

(CHERBONNEL et al. 2003; FATUNMBI et al. 1992; PHILIPPA et al. 2005) and H9 
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(PAN et al. 2009; SWAYNE 2006a). Inactivated vaccines are major vaccine type 

used in the poultry industry. They produce strong humoral immune response but they 

do not produce a strong mucosal immune response. In addition, Adjuvanted killed 

vaccines can provide a strong humoral immune response and they provide an 

effective protection against LPAI and HPAI challenges. The main disadvantage of 

inactivated full virus vaccines is that vaccinated birds will develop antibody not only to 

protective epitopes on the HA and NA proteins, but also to the internal influenza 

proteins as M1 and NP. Vaccinated birds could not be distinguished from naturally 

infected birds using the commonly used serological assays as Elisa and AGID 

(MARANGON et al. 2007; SUAREZ and SCHULTZ-CHERRY 2000). On the other 

hand, inactivated heterologous vaccines are manufactured in a similar way to 

inactivated homologous ones. The use of heterologous NA DIVA strategy is an 

acceptable approach but availability of diagnostics is an issue. Reverse genetics 

have been applied to develop improved vaccines against AI (LIU et al. 2003; 

NEUMANN et al. 2003; TIAN et al. 2005; WEBSTER et al. 2006). Conventionally 

prepared reassortant H5N1 vaccines developed by reverse genetics are currently 

being used in China and other Asiatic countries (SWAYNE. 2009; TIAN et al. 2005).  

In addition, H7 and H9 subtype vaccines developed by reverse genetics have been 

used experimentally (CHEN 2004; JOSEPH et al. 2008). These vaccines have similar 

performance to conventional inactivated vaccines. However the efficacy under field 

conditions is questionable. This technology does not solve the problem related to the 

egg-based production as production of vaccines in egg is cumbersome, lengthy, and 

costly (SWAYNE 2009; WANG et al. 2006). 

2.8.2 Live recombinant vector-based vaccine 

Recombinant vectored vaccines have been developed for poultry using viral vectors 

such as FP virus  (SWAYNE et al. 2000): vaccinia virus (CHAMBERS et al. 1988; DE 

et al. 1988; YEWDELL et al. 1985), retrovirus (ALTSTEIN et al. 2006; BROWN et al. 

1992; HUNT et al. 1988), adenovirus (GAO et al. 2006; Hoelscher et al. 2006; 

SARUKHAN et al. 2001), ND virus  (DINAPOLI et al. 2010; DINAPOLI et al. 2007; 

GE et al. 2007; KIM and SAMAL 2010; NAKAYA et al. 2001; NAYAK et al. 2009; 

PARK et al. 2006; ROMER-OBERDORFER et al. 2008; SCHROER et al. 2009; 

STEEL et al. 2008; VEITS et al. 2008; VEITS et al. 2006), ILT herpes virus 

(LUSCHOW et al. 2001; PAVLOVA et al. 2009a; PAVLOVA et al. 2009b). Several 

recombinant FP viruses expressing the H5 antigen have been developed (BOYLE et 
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al. 2000; BUBLOT et al. 2007; HGHIHGHI et al. 2010; KYRIAKIS et al. 2009; 

MINGXIAO et al. 2006; QIAO et al. 2009; STEENSELS et al. 2009; SWAYNE 2009; 

SWAYNE and SUAREZ 2000). These vaccines have been reported to be effective in 

reducing virus shedding and providing clinical protection. However, these vaccines 

are likely to be used only in birds that are susceptible to infection with the vector virus 

(CAPUA and MARANGON 2007b). Some studies with these vaccines appear to have 

shown evidence of a period of growth inhibition in chickens (MINGXIAO et al. 2006). 

Recently, recombinant ND virus vectors expressing HA of H5 or H7 HPAI virus, 

developed using reverse genetics, have been licensed for use in China and Mexico 

(SWAYNE 2009). However, maternal antibodies and active humoral immunity to ND 

virus vector will interfere with and reduce the protective efficacy. Additionally, 

biosafety and biosecurity of such live vaccines should be assessed (SWAYNE 2009).  

2.8.3 DNA- based vaccine 

DNA vaccines have been shown to elicit robust immune responses in various animal 

species, from mice to nonhuman primates (BARRY and JOHNSTON 1997; LUCKAY 

et al. 2007). In human trials, these vaccines elicit cellular and humoral immune 

responses against various infectious agents, including influenza, SARS, SIV and HIV. 

In addition to their ability to elicit antibody responses, they also stimulate antigen-

specific and sustained T cell responses (BARRY and JOHNSTON 1997; GARES et 

al. 2006; GURUNATHAN et al. 2000; RAVIPRAKASH and PORTER 2006). DNA 

vaccines have been used in chickens to generate antisera to specific influenza 

viruses and confer protection against the LP H5N2 strain (KODIHALLI et al. 1997; 

LEE et al. 2003, 2006). Trials to generate DNA vaccines were done in chickens and 

mice (BOT et al. 1996; CHERBONNEL et al. 2003; FYNAN et al. 1993; Olsen 2000; 

PENG et al. 2003; ROBINSON et al. 1997). On the other hand, A single 

immunization with HA DNA vaccine by electroporation induces early protection 

against H5N1 AIV challenge in mice (ZHENG et al. 2009). Multivalent HA DNA 

vaccination protects against highly pathogenic H5N1 AI infection in chickens and 

mice (RAO et al. 2008). DNA vaccines against AI in poultry have not been as 

efficacious and consistent as conventional inactivated vaccines. 

2.8.4 RNA- based vaccines 

To avoid the potential risk of DNA sequence integration into the host genome with 

DNA vaccination, RNA has been proposed as the expression vector (VIGNUZZI et al. 

2001). The mRNA construct encoding the foreign gene delivered intramuscular or 
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liposome-entrapped mRNA injection. However, antigen expression sufficient to 

stimulate an adequate immune response is a major problem facing such type of 

vaccines.  

2.8.5 Live vaccine  

The use of live influenza vaccines in poultry has never been seriously considered for 

several reasons. First, there is the possibility of bird-to-bird or farm-to-farm 

transmission. This may establish AI virus as an endemic infection. Second, the use of 

live vaccine may cause vaccine-induced respiratory disease in commercial poultry. 

Third, presumably the most important, there is a potential for recombination with 

newly introduced AI virus strains to create recombinant AI viruses, which are more 

pathogenic or has the capability of spreading to different hosts. However, with the 

advancement in the biotechnology, it may be possible to consider new vaccine 

approaches using genetically engineered live virus. For example, several 

experiments showed the possibility of attenuating influenza virus by introducing 

changes in the PB2 gene, exchanging the promoter region of the NA gene with a 

different promoter, and generating influenza viruses that have truncated NS1 genes 

(MURPHY et al. 1997; MUSTER et al. 1991). The study with TK / OR / 71- del, which 

has truncated NS1 protein, showed attenuation in pathogenicity and a decreased 

ability to replicate in chickens. The influence of the multi-basic cleavage site (MBS) of 

the H5 HA on the attenuation, immunogenicity and efficacy of a live attenuated 

influenza A H5N1 cold-adapted vaccine virus was studied in mice and results showed 

that restoring the MBS in the H5 HA of the vaccine virus improved its immunogenicity 

and efficacy, likely as a consequence of increased virus replication, indicating that 

removal of the MBS had a deleterious effect on the immunogenicity and efficacy of 

the H5N1 vaccine in mice  (SUGUITAN et al. 2009). 

2.9 The immune response to influenza infection 

To develop vaccines, it is important to understand the immune response against AI 

virus. The main protective humoral response against AI virus infection is the 

production of virus-neutralizing antibodies induced by the HA protein and to some 

extent by the NA protein. In chickens and turkeys, the primary antibody response is 

initiated by the development of IgM antibody, which can be measured as early as 5 

days post-infection. Subsequently, IgY (the mammalian counterpart of IgG) is 

produced. The mucosal antibody response against AI virus is not clear, but IgA, 

which is critical for local immunity in respiratory and intestinal tract will likely be 
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produced after the IgM response similar to what happens after other viral infection in 

chickens (SUAREZ and SCHULTZ-CHERRY 2000). Local mucosal immunity in avian 

species is dependent on lymphoid tissue of the head and tracheo-bronchial region. 

Secretory antibodies against AI virus in the upper respiratory tract are thought to be 

important for AIV immunity, especially in preventing virus spread since the initial 

infection usually begins in this area. The protective role of IgA has been shown 

against several respiratory viruses including ND virus and IB virus (JAYAWARDANE 

and SPRADBROW 1995; RAJ and JONES 1996). However, similar studies have not 

been conducted with the mucosal immune response in poultry against AI infection. 

Neutralizing antibodies, produced against the two surface proteins, HA and NA are 

the major determinants for a protective immune response. The presence of high titres 

of humoral antibodies to the HA protein correlates well with protection from clinical 

disease and with low levels of virus recovery from the trachea of infected birds. For 

HPAI virus, subtype-specific antibodies prevent viremia, which limits spread from the 

respiratory or intestinal tract to other susceptible organs such as the kidney and 

brain. The primary role of the HA protein for inducing protection is further highlighted 

by the protection of birds with subunit vaccines that contain only the HA protein or the 

gene that encodes the HA protein. For this reason, vaccination for influenza is 

targeted primarily toward the HA subtype in poultry. Another surface protein, NA, also 

elicits neutralizing antibody, and NA specific vaccines can provide some protection 

against an HPAI challenge in chickens (KAWAOKA and WEBSTER 1988). Although, 

antibody to the NA protein is thought to be less important than the antibody to the HA 

protein, the level of reduction in virus shedding after vaccination of mice with NA 

protein alone was much lower than vaccination with the HA protein. However, greater 

protection was achieved to mice that were vaccinated with a DNA vaccine that 

included both the HA and NA genes rather than HA gene alone (CHEN et al. 1998b). 

Although antibody to the NA protein is valuable for protection, typical killed whole 

virus vaccines do not induce a good antibody response to the NA protein because 

much less NA is present in the virion as compared to the HA protein. Detectable 

antibody responses are also observed against M1, M2, and NP proteins (CHEN et al. 

1998b; SLEPUSHKIN et al. 1995). In the mouse model, antibodies to the M2 protein 

provided some level of protection in terms of preventing virus shedding 

(SLEPUSHKIN et al. 1995). Although the host usually produces high antibody levels 

to the M1 and NP proteins, these proteins are not accessible on the surface of the 
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virion and anti-M1 or NP antibody in the body cannot bind and neutralize the virus. 

The approach using those influenza genes as a vaccine have attracted the attention 

of many researches because they are more conserved in amino acid sequence as 

compared to the HA and NA proteins, and could potentially be a target protein to 

develop universal or heterosubtypic influenza vaccines (NEIRYNCK et al. 1999). 

However, vaccines lacking the HA or NA and based solely on conserved internal 

proteins have not been shown to be protective in poultry. Cellular immunity plays a 

role in the clearance of the influenza virus (MCMICHAEL et al. 1983). However, 

reports concerning a role for cell-mediated immunity in protection against AI virus are 

limited. T cells are the most important cells that mediate the cellular immune 

response and the T cell subpopulations with diverse functions have been identified in 

chickens. Infection of BALB/c mice with the H5N9 virus A / Turkey / Ontario / 7732 / 

66 resulted in the induction of class-2 MHC-restricted CTL, which recognized an 

epitope on the H5HA (HIOE and HINSHAW 1989). Similar results were observed 

with immunization of mice with purified A/Hong Kong / 156/97 H5 recombinant 

proteins generated in insect cells which induced an H5 –specific CTL response that is 

primarily class 2-restricted (KATZ et al. 2000). Experiments with a CTL peptide, 

which consists of an 18 amino acid peptide encompassing the CTL epitope, indicated 

that a class 2-retricted CTL response, in the absence of HI antibody, was not 

sufficient to protect mice from death as a result of infection with a highly lethal 

H5N1virus. Although cellular immunity conferred by H9N2 virus provided some level 

of protection as measured by mortality rate against subsequent HPAI H5N1infection, 

all the H9N2 immunized chickens died after challenge with H5N1 influenza virus, but 

with a longer mean death time and the birds continued to shed virus in their faeces. 

The cross-protective immunity is based on the presence of large number of killer T 

cells specific for influenza (SEO et al. 2002). Clearly, much more research should be 

done in analyzing the immune response to AI virus. Further understanding may lead 

to more rational design of vaccines to enhance the protective immune response. 

2.10 Host response 

The ability to cause disease and the ability of the host to respond to influenza varies 

greatly by species. For example, viruses that are highly pathogenic for chicken show 

either no disease or only mild disease signs in several different types of ducks 

(PHILPOTT et al. 1989b). Differences in pathogenicity between species have also 

been observed using experiential studies with LPAI and HPAI viruses in galliforms 
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(LAUDERT et al. 1993). For example in a study of two LPAI isolates in chickens and 

turkeys, the virus  was  asymptomatic in chicken but caused disease with 25 % 

mortality in turkeys (LAUDERT et al. 1993). Generally, the differences in disease do 

not appear to be the result of viruses either being able to infect or not infect a 

particular species, since evidence of infection occurred with most experimental 

inoculations of virus. The pathogenesis of AI in different species can also be very 

different, primarily when comparing ducks to chickens and turkeys. Replication of AI 

in ducks is believed to be primarily enteric, although respiratory disease has been 

reported in commercially raised and experientially infected ducks (ALEXANDER et al. 

1978). Even when generally characterizing the disease and replication patterns of 

influenza in ducks caution needs to be used since there are many different species of 

wild and domestic ducks that may have different response to influenza infection. 

Differences are also apparent when comparing the immune responses, primarily 

antibody titres, of different species to AIV infections. Several comparative studies of 

responsiveness in different species of birds using a variety of antigens suggest that 

antibody was greater for chicken >> pheasant >> turkey > quail > duck. A similar 

immunologic response was observed for both vaccination using killed influenza virus 

or experimental infection with AIV (BRUGH et al., 1979; HOMME and EASTERDAY 

1970). Ducks have been reported to develop poor antibody responses and lack HI 

antibody responses to natural and experimental AI infections (KIDA et al. 1980). The 

inability of ducks to produce haemagglutinating antibody is probably related to other 

deficiencies of duck antibody, including precipitation, complement activation, and 

opsonization. The HA protein has the two main functions of being the virus receptor 

binding site and containing the fusion domain necessary for the viral RNA to be 

released into the host cell. The HA protein is glycosylated integral membrane protein 

that forms a homotrimer on the surface of the virus. At least five antigenic sites have 

been determined for human influenza viruses, with each site being capable of 

producing neutralizing antibody (WILEY et al. 1981). Similar observations have also 

been made for H5 AIV (PHILPOTT et al. 1989b). HA titre in poultry strongly 

correlates with protection from challenge with virulent viruses of the same HA 

subtype. The NA protein is an enzymatically active protein that is thought to be 

important in cleaving sialic acid allowing the virus to be released from the cell 

surface. Antibody responses are also made to the internal virus proteins, especially 

the NP and M1 proteins. Both proteins are important antigens when used in 
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diagnostic tests because both have high sequence conservation that allows the 

detection of antibody from birds infected by any type A influenza virus. In poultry, the 

primary methods of detection of type specific antibody are the AGID test and Elisa 

(MEULEMANS et al. 1987; SNYDER et al. 1985). The mucosal immune response 

probably also has a role in protection from the HPAI infection because the initial 

exposure to the virus is through a mucosal surface. However, little direct work has 

been done with the mucosal immune response in chickens and turkeys.  

2.11 Diagnostic tests   

2.11.1 Virus isolation and Identification 

Basically, there are two approaches for diagnosis of AI: (1) isolation of the virus 

followed by subtyping using classical methods and (2) molecular characterisation by 

nucleic acid sequencing. Conventionally, AI virus is isolated by inoculation of swab 

fluid or tissue homogenates into 9- to 11-day-old embryonated chicken eggs, usually 

by the chorioallantoic sac route (WOOLCOCK et al. 2001). Depending on the 

pathotype, the embryos may or may not die within a five-day observation period and 

usually there are no characteristic lesions to be seen in either the embryo or the 

allantoic membrane (MUTINELLI et al. 2003). Eggs inoculated with HPAIV-containing 

material usually die within 48 hours. The presence of a haemagglutinating agent can 

be detected in harvested allantoic fluid. HA is an insensitive technique requiring at 

least 106.0 particles per ml. If only a low virus concentration is present in the 

inoculum, up to two further passages in embryonated eggs may be necessary for 

some LPAIV strains, in order to produce enough viruses to be detected by HA. In the 

case of HPAIV, a second passage using diluted inoculum may be advantageous for 

the optimal production of haemagglutination. Haemagglutinating isolates are 

antigenically characterised by HI tests using (mono-) specific antisera against the 16 

H subtypes and, for control, against the different types of avian paramyxoviruses 

which also display haemagglutinating activities. The NA subtype can be subsequently 

determined by neuraminidase inhibition (NI) assays, again requiring subtype-specific 

sera (AYMARD et al. 2003). In case isolates of the H5 or H7 lineages are 

encountered, their intravenous pathogenicity index (IVPI) needs to be determined to 

distinguish between LP and HP biotypes (ALLAN et al. 1971). This is achieved by 

intra-venous inoculation of ten 6-week old chickens with the egg-grown virus isolate. 

The chickens are observed over a period of ten days for clinical symptoms. Results 

are integrated into an index which indicates a HPAI virus when values greater than 



 37 

1.2 are obtained. Alternatively, a HPAI isolate is encountered when at least seven out 

of ten (75 %) inoculated chickens die within the observation period. The described 

classical procedures can lead to a diagnosis of HPAI within five days but may 

demand more than a fortnight to rule out the presence of AIV. In addition, high quality 

diagnostic tools (SPF eggs, H- and N-subtype specific antisera) and skilled personnel 

are a prerequisite. Currently, there are no cell culture applications for the isolation of 

AIV that can achieve the sensitivity of embryonated hen eggs (SEO et al. 2001).  

2.11.2 Molecular diagnosis 

A more rapid approach, especially when exclusion of infection is demanded, employs 

molecular techniques, the presence of influenza A specific RNA is detected through 

the reverse transcription-polymerase chain reaction (RT-PCR) which targets 

fragments of the M gene, the most highly conserved genome segment of influenza 

viruses  (FOUCHIER et al. 2000), or the nucleocapsid gene (DYBKAER et al. 2004). 

When a positive result is obtained, RT-PCRs amplifying fragments of the HA gene of 

subtypes H5 and H7 are run to detect the presence of notifiable AIVs (DYBKAER et 

al. 2004). When positive again, a molecular diagnosis of the pathotype (LP versus 

HP) is feasible after sequencing a fragment of the HA gene spanning the 

endoproteolytic cleavage site. Isolates presenting with multiple basic amino acids are 

classified as HPAI. Feather pulp was the best sample to detect and isolate HPAIV 

from infected chicks from 24 hours after inoculation onwards. Kinetic studies on the 

persistence of virus in infected carcasses revealed that tissues like muscle could 

potentially transmit infectious viruses for 3 days post-mortem. While other tissues 

such as skin, feather pulp and brain retained their infectivity as long as 5-6 days post-

mortem at environmental temperature (22 - 23 °C). T hese results strongly favour 

feather as a useful sample for HPAIV diagnosis in infected chickens as well as in 

carcasses (BUSQUETS et al. 2010). PCRs and other DNA techniques have been 

designed for the detection of Asian lineage H5N1 strains (COLLINS et al. 2002; 

PAYUNGPORN et al. 2004). Non-H5/H7 subtypes can be identified by a canonical 

RT-PCR and subsequent sequence analysis of the HA2 subunit (PHIPPS et al. 

2004). There are also specific primers for each NA subtype. A full characterisation 

might be achievable within three days, especially when real time PCR techniques are 

used. An exclusion diagnosis is possible within a single working day. The 

disadvantages of molecular diagnostics are economic issues, although, if available, 

many samples can be analysed by less personnel in grossly shorter times in 
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comparison to virus isolation in eggs. However, it should not be kept secret that each 

PCR or hybridisation reaction, in contrast to virus isolation in eggs, harbours an 

intrinsic uncertainty related to the presence of specific mutations in a given isolate at 

the binding sites of primers and/or probes which might render the assay false 

negative. Thus, a combination of molecular (e.g. for screening purposes) and 

classical methods (e.g. for final characterisation of isolates and confirmation of 

diagnosis of an index case) may help to counterbalance the disadvantages of the two 

principles. Rapid assays have been designed for the detection of viral antigen in 

tissue impression smears and cryostat sections by use of IF or by antigen-capture 

enzyme-linked immunosorbent assay (AC-ELISA) and dip-stick lateral flow systems 

in swab fluids. So far, these techniques have been less sensitive than either virus 

isolation or PCR, and therefore might be difficult to approve for a legally binding 

diagnosis, especially of an index case (CATTOLI et al. 2004; DAVISON et al. 1998; 

SELLECK et al. 2003). The use of pen side tests in the veterinary field is still in its 

infancy and needs further development. 

2.11.3 Serological diagnosis 

Group-specific antibodies (influenza virus type A) against the NP can also be 

detected by AGID and by ELISA (JIN et al. 2004; MEULEMANS et al. 1987). Various 

forms of enzyme immunoassays have recently been developed and prove to be more 

sensitive and specific than AGID and HI. The AGID test requires large quantities of 

reagents and 24-48 hours for results to be obtained. Furthermore, the AGID test may 

not be suitable as a universal assay for some other species of birds; serum samples 

from water fowl do not contain good precipitating antibodies. The HI test is more 

sensitive and rapid than the AGID test, but it is complicated due to the existence of 

16 HA subtypes of AIV.  
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3. MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Avian influenza virus 

A highly pathogenic influenza A subtype H5N1 (A / Thailand / 1 (Kan-1) / 2004) 

isolated from Thailand (PUTHAVATHANA et al. 2005) was obtained from Dr. 

Puthavathana, Department of Microbiology, Bangkok as a supernatant of infected 

MDCK-cells. The published sequence of this virus (Accession number: AY555150) 

was used for isolation of coding fragments of epitope based truncated sequences of 

HA. Also, this virus was used for preparation of inactivated H5N1 antigen to be used 

for vaccination and in serological tests.  

3.1.2. Bacteria 

XL10-Gold® ultracompetent cells (Stratagene, La Jolla, CA, USA) were used. These 

cells exhibit the Hte phenotype, which increases the transformation efficiency of 

ligated and large DNA molecules. The genotype of XL10-Gold ultracompetent® cells 

as follow: Tetr ∆(mcrA)183 ∆(mcrCB-hsdSMR mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lac Hte [F´ proAB lacIqZ∆M15 Tn10 (Tetr) Amy Camr]. 

3.1.3 Pichia pastoris strains 

Two P. pastoris strains, supplied by Invitrogen Life Technologies (Invitrogen, 

Karlsruhe, Germany) were used. GS115 (his4) strain is an auxotrophic mutant 

deficient in histidine dehydrogenase, while SMD1168 H (his4, pep4) is additionally 

defective in the vacuole peptidase A (pep4).  

3.1.4 Expression vector  

For recombinant protein expression, pGAPZαC vector (Invitrogen GmbH, Karlsruhe, 

Germany) was modified and designated pAOX. Briefly, the AOX promoter was 

amplified from SMD1168H genomic DNA with appropriate primers and used to 

replace the GAP promoter. 5´ AOX1 promoter region induces expression in the 

presence of methanol. The plasmid contains on α-factor signal sequence 

(responsible for secretion of target protein), multiple cloning sites (MCS) (to insert 

gene of interest) and polyhistidine (6xHis-tag to facilitate purification and protein 

detection). Moreover, Zeocin® She ble resistance gene is incorporated into the 

cloning vector and used as a selectable marker for transformation (Figure 1). 
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Figure (2): Schematic diagram of pAOX vector (modified pGAPZαC vector, 

Invitrogen) 

3.1.5 Cells 

Chicken red blood cells (RBCs) suspension  

Blood was collected from wing vein of chickens in sterile tubes containing 3.8 % 

sodium citrate solution. Equal volume of PBS was added and the erythrocytes were 

centrifuged at 1000 rpm for 10 min. After 3 times wash cycles, 1 % RBCs in PBS was 

used for haemagglutination and HI tests.  

Vero cells  

The Vero cells CCL 81, derived from kidney epithelial cells of the African Green 

Monkey were used for influenza virus propagation, virus titration and in micro-

neutralization test (µNT). 

3.1.6 Animals 

Mice 

Eight BALB/c Mice were used to study the immunogenicity of different recombinant 

polypeptides (P1, P2 and rHA1). 

Chickens  

Twenty- four inbred commercial layer chickens were purchased from Lohman Animal 

Health (Cuxhaven, Germany). Chickens had a history of immunization against 

salmonellosis, infectious bronchitis (IB), Newcastle disease (ND), infectious bursal 
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disease (IBD), avian encephalomyelitis (AE), and ILT. History of vaccination program 

was shown in the following table: 

 
3.1.7 Positive  and negative serum samples 

Positive chicken sera 

One hundred and seventy nine serum samples were obtained from Egyptian broiler 

chickens,  previously vaccinated once with commercial inactivated H5N2 (A / chicken 

/ Mexico / 232 / 94 / CPA) vaccine at 7-day-old. These chickens were vaccinated also 

against IBD, ND, Marek´s disease (MD) and IBV.  Blood samples were collected from 

wing vein or by slaughtering at 4 weeks post vaccination and kept in a slope position 

at 37 oC for one hour then at 4 oC overnight. Sera were then separated by 

centrifugation at 3000 rpm for 10 minutes and stored at -20 oC till tested.  

Negative chicken sera 

25 serum samples obtained from influenza non-vaccinated broiler chickens and 

tested negative by AGID, HI (using H5N1 Thailand antigens) and Western blot were 

used as negative control in Elisa. These chickens were vaccinated against IBD, ND, 

MD and IBV. 

 

 

 

 

Age  Vaccination 

1-day Salmonellosis 

2 weeks IB 

3 weeks ND 

4 weeks IBD 

5 weeks IB 

6 weeks ND 

7 weeks Salmonellosis 

9 weeks ILT 

11 weeks AE 

13 weeks IB 

14 weeks ND 

15 weeks Salmonellosis 
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Duck sera  

Five serum samples were obtained from vaccinated Egyptian duck, aged 20 weeks. 

Ducks were vaccinated 3 times with commercial H5N2 vaccine. Also, three negative 

serum samples were obtained from non vaccinated duck as a negative control. 

Ducks have a history of vaccination against duck virus enteritis (DVE) and duck virus 

hepatitis (DVH). These serum samples were analyzed by rHA1-Elisa and HI test. 

3.1.8 Media for bacterial and yeast cultures 

3.1.8.1 Media for bacterial culture 

Low salt LB broth medium (LS-LB) 

 1 % (w/v)                     Peptone (from casein)                 

 0.5 % (w/v)                  Sodium chloride  

 0.5 % (w/v)                  Yeast extract 

Peptone, NaCl, and yeast extract were dissolved in dH2O; pH was adjusted with 

NaOH to 7.5. After autoclaving, the medium was left to cool and zeocin® was added 

at a concentration of 25 µg / ml. 

Low salt LB agar medium (LS-LB agar) 

1 % (w/v)                      Peptone (from casein) 

0.5 % (w/v)                   NaCl 

0.5 % (w/v)                   Yeast extract 

1.5 % (w/v)                   Agar- agar 

Peptone, NaCl, yeast extract and agar were dissolved in dH2O, after autoclaving, the 

medium was left to cool and zeocin® was added at a concentration of 25 µg / ml. 

3.1.8.2 Media for yeast  

Yeast peptone dextrose (YPD) 

1 % (w/v)                      Yeast extract            

2 % (w/v)                       Peptone (from casein) 

2 % (w/v)                        Dextrose (D-Glucose) 

Yeast extract and peptone were dissolved in 900 ml dH2O. After autoclaving 100 ml 

20 % (w/v) sterile glucose solution were added.  

Yeast peptone dextrose agar (YPD-agar)  

1 % (w/v)                      Yeast extract 

2 % (w/v)                       Peptone 

2 % (w/v)                       Dextrose (D-Glucose) 

2 % (w/v)                       Agar agar 



 43 

Yeast extract, peptone and agar were dissolved in 900 ml dH2O. After autoclaving 

100 ml 20 % (w/v) glucose solution were added.   

Yeast peptone glycerol medium (YP-Gly) 

1 % (w/v)                      Yeast extract                           

2 % (w/v)                       Peptone 

1% (v/v)                         Glycerol  

Yeast extract and peptone were dissolved in dH2O. After autoclaving 2 % (v/v) 

glycerol were added just before use. 

Yeast peptone methanol, pH 8 (YP MeOH, pH8) 

1 % (w/v)                       Yeast extract 

2 % (w/v)                        Peptone 

60 mM                            Tris- HCl (pH 8.3) 

1% (v/v)                          Methanol 

Yeast extract and peptone were dissolved in dH2O. After autoclaving, sterile tris-Cl 

solution, pH 8.3 was added. Methanol was added just before use. 

Yeast peptone methanol, pH 6 (YP MeOH, pH 6) 

1 % (w/v)                         Yeast extract 

2 % (w/v)                         Peptone 

1.34 % (w/v)                    Yeast nitrogen base 

100 mM                            Potassium dihydrogen phosphate (KH2PO4, pH 6) 

1 % (v/v)                           Methanol 

Yeast extract, peptone and yeast nitrogen base were dissolved in dH2O. After 

autoclaving, sterile KH2PO4 (pH 6) was added. Methanol was added just before use. 

3.1.9 Buffers and solutions 

3.1.9.1 Buffers and solutions for E-coli transformation 

Tfb1 

300 mM                         Potassium acetate 

100 mM                         Rubidium chloride (RbCl) 

10 mM                           CaCl2 

50 mM                           MnCl2 

Dissolved in 300 ml dH2O and pH was adjusted with 10 % acetic acid to 5.8. 75 ml 

glycerine 99 % was added. The mixture was completed to 500 ml with dH2O and 

filtered with 0.2 µm bacteriological filter. This buffer was used for preparation of 

competent E-coli cells. 
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Tfb2 

10 mM                            Potassium acetate 

75 mM                            RbCl 

10 mM                            CaCl2 

Dissolved in 50 ml dH2O and pH was adjusted with 1 M KOH to 6.5. 15 ml glycerine 

was added. The mixture was completed to 500 ml with dH2O and filtered with 0.2 µm 

bacteriological filter. This buffer was used for preparation of competent E-coli cells. 

3.1.9.2 Buffers and solutions for DNA and protein a nalysis  

Anode buffer 

25 mM                            Tris- Cl   

Dissolved in dH2O, pH was adjusted to 8.9 with HCl 

Block buffer for Western blot 

4 % (w/v)                        Skim milk in 1 x PBS 

5x Cathod buffer 

100 M                             Tris-Cl 

 0.5 M                             Tricine 

1.73 mM                         Sodium dodecyl sulfate (SDS) 

Gel drying solution 

30 %                                Ethanol (96 %) 

10 %                                Glycerine 

This solution was used for drying of the silver stained gel (SDS-PAGE) to be used as 

documentation. 

10x PBS 

1.37 M                            NaCl                                                       

27 mM                            Potassium chloride                                                   

80 mM                            Di-sodium hydrogenphosphate          

18 mM                            Potassium di-hydrogen phosphate      

Dissolved in dH2O and pH was adjusted to 7.4 with NaOH or HCl. 

 

50x TAE buffer 

  2 M                              Tris   

5.71 % (v/v)                   Acetic acid 

100 mM                         Ethylenediamintetraacetic acid (EDTA) 

Dissolved in dH2O and pH was adjusted to 8.5 with NaOH  
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TNE Buffer 

 10 mM                            Tris-Cl 

  100 mM                         NaCl 

  1mM                              Ethylenediamintetraacetic acid (EDTA) 

Dissolved in dH2O and pH was adjusted to 7.4 with NaOH or HCl 

Transfer buffer 

25 mM                            Tris 

192 mM                          Glycerine 

20 % (v/v)                       Methanol 

in dH2O 

 

2x Tricine sample buffer 

5 % (w/v)                        SDS 

12.5 % (v/v)                    1 M Tris-HCl pH, 6.8 

20 % (v/v)                       Glycerine 

0.08 % (w/v)                    Bromophenol blue 

in dH2O 

3.9.3 Buffers and solutions for polypeptide purific ation 

Elution buffer (1) 

 100 -300 mM                  Imidazole  

 300 mM                          NaCl 

 50 mM                            Tris- Cl             

Dissolved in dH2O and pH was adjusted to 7 with NaOH or HCl 

Elution buffer (2) 

 300 mM                          NaCl 

  50 mM                           Tris- Cl             

Dissolved in dH2O and pH was adjusted to 2-3 with HCl 

Elution buffer (3) 

150 mM                           NaCl 

 10 mM                            PBS 

  0.4 M                            methyl α- D- manopyranoside 

 Dissolved in dH2O and pH was adjusted to 7.4 with NaOH or HCl 

Wash buffer (1) 

 10 mM                             Imidazole  
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300 mM                             NaCl 

50 mM                             Tris- Cl             

Dissolved in dH2O and pH was adjusted to 7 with NaOH or HCl 

Wash buffer (2) 

300 mM                            NaCl 

50 mM                             Tris- Cl             

Dissolved in dH2O and pH was adjusted to 6.5 with NaOH or HCl 

Wash buffer (3) 

150 mM                            NaCl 

 10 mM                              PBS 

Dissolved in dH2O and pH was adjusted to 7.4 with NaOH or HCl 

3.1.9.4 Buffers and solutions for Elisa 

Block buffer 

  1x                                   PBS 

  3 %                                Bovine serum albumin (BSA) 

 0.05 %                            Tween20 

Coating buffer 

 200 mM                          Sodium bicarbonate 

Dissolved in dH2O and pH was adjusted to 7.4 with NaOH or HCl 

Substrate 

Tetramethylbenzidin (TMB) stock solution   

1 mg TMB (w/v) dissolved in 1 ml Dimethyle Sulfoxide solution (DMSO) and stored at 

– 20 until used. 

Sodium acetate citrate buffer 

               0.1 M                            Sodium acetate 

               500 ml                           dH2O 

pH was adjusted with 0.1 M citric acid monohydrate to 6 and stored at – 20 until used 

Working substrate 

1 ml                                TMB stock solution  

9 ml                                Sodium acetate citrate buffer 

2 µl                                  H2O2 

Wash buffer 

1X                                     PBS 

                0.05 %                               Tween20 
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In Millipore water 

3.1.10 Reagents for molecular biology 

Reagent Supplier 

Ethidium bromide 

dNTP-solution 

10x Denaturating buffer 

10 GS buffer 

Hi-Di-Formamide 

HPLC- water 

Magnesium chloride solution 

 

Magnesium sulfate solution 

Ni-NTA 

Pfu 10x Buffer 

Polyethylene glycol solution 4000 

6X Loading dye 

Lectin peroxidise concanavalin 

Tunicamycin 

Zeocin 

Sigma, Germany 

Fermentas, Leon-Rot, Germany 

New England Biolabs, UK           

New England Biolabs, UK           

Applied Biosystem 

Roth, Karlsruhe, Germany 

Invitrogen life Technology, Karlsruhe, 

Germany 

Fermentas, Leon-Rot, Germany 

Quiagen, Helden, Germany 

Fermentas, Leon-Rot, Germany 

Fermentas, Leon-Rot, Germany 

Fermentas, Leon-Rot, Germany 

Sigma, Germany 

Sigma, Munich, Germany 

Invitrogen life Technologies, Karlsruhe 

 
3.1.11 Enzymes 

Enzyme Supplier 

Restriction enzymes 

Endoglycosidase 

Pfu polymerase 

Plantium- Taq polymerase 

T4-Ligase 

Fermentas, Leon-Rot, Germany 

New England Biolabs, UK           

Fermentas, Leon-Rot, Germany 

Invitrogen life technologies 

Fermentas, Leon-Rot, Germany 

 
3.1.12 Protease Inhibitors   

Pepstatin                                                      Sigma Aldrich, Munich, Germany 

Phenylmethylsalfonylfluorid  (PMSF)           Roth, Karlsruhe, Germany 

3.1.13 Standards  

Gene Ruler 1 kb DNA Ladder                       Fermentas, Leon-Rot, Germany 

Gene Ruler 100 bp DN A – Ladder               Fermentas, Leon-Rot, Germany 

SDS- PAGE protein marker                          Serva, Heidelberg, Germany 
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3.1.14 Antibodies 

Antibody Supplier 

FITC monoclonal anti-chickens 

FITC monoclonal anti-maus 

Goat anti-bird IgG HRP 

Influenza anti-nucleoprotein 

Maus anti Histag 

Polyclonal rabbit anti-maus IgG HRP 

Rabbit anti-chicken IgY HRP conjugate      

Fermentas, Leon-Rot, Germany 

 Fermentas, Leon-Rot, Germany 

 Biomol, Hamburg, Germany 

 Gift from Prof. Dr. Christian Gassoy 

 Dianova, Hamburg, Germany 

  Dako, Hamburg, Germany 

  Millipore, Schwalbach, Germany 

3.1.15 Reagents for cell culture 

Reagent Supplier 

Crystal violet 

Dulbecco’s modified eagle media   

(DMEM + GlutaMAX TM-1) 

Dimethyle sulfoxide solution (DMSO) 

Fetal calf serum (heat inactivated) 

PBS 10x (-Ca2+, Mg2+) 

Penicillin 

Streptomycin 

Trypan blue solution (0.4 %) 

Trypsin 

Sigma, Germany 

Gibco Invitrogen Corporation  

 

Sigma, Germany 

Biochrom, Berlin, Germany 

Gibco Invitrogen Corporation 

Jenapharm, Jena, Germany 

Sanavita, Germany 

Gibco Invitrogen Corporation 

 Gibco Invitrogen Corporation 

3.1.16 Kits  

Kit  Supplier  

Big dye terminator cycle sequencing kits 

Biorad protein assay 

Pichia easyCompTM Kit 

Wizzard SV® g el and PCR clean-up 

system 

Flock check commercial Elisa kits 

ZipTip® pipette tip 

Applied Biosystem, USA 

Biorad, Hercules, CA, USA 

Invitrogen life technologies, 

Promega, Mannheim, Germany 

 

Synbiotic, USA 

Millipore, Schwalbach, Germany 

 
3.1.17 Adjuvant 
Gerbu Adjuvant 10   

 

Gerbu Biotechnik GmbH, Gaiberg, 

Germany. 
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3.1.18 Fine chemicals 
 
Chemical Supplier 

Ammonium sulfate 

Aceton 

Acetic acid 

Acrylamide 

Agarose  

Agar agar 

Agarose 

APS 

Bromophenol 

BSA 

CaCl2 

Citric acid 

DEPC 

D-Glucose 

D-Sorbitol 

3,3´-Diaminobenzidin tetrachloride 

Disodium hydrogen phosphate 

EDTA 

Ethanol 

Formaldehyde 

Glycine 

Glycerol 

HCl 

Magnesium sulfate (MgSo4) 

MnCl2 

Peptone (from casein) 

Polyethylene glycol 1500 

Potassium acetate 

Potassium chloride 

Potasium dihydrogen phosphate 

Potassium sulfate 

Rubidium chloride 

Sigma ,Germany 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Applichem, Darmstadt 

Fluka, Swizerland 

Sigma, Germany 

Roth, Karlsruhe 

Roth, Karlsruhe 

Fluka, Swizerland 

Applichem, Darmstadt 

Applichem, Darmstadt 

Applichem, Darmstadt 

Applichem, Darmstadt 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

Merck, Darmstadt 

Applichem, Darmstadt 

Roth, Karlsruhe 

Roth, Karlsruhe 

Applichem, Darmstadt 

Applichem, Darmstadt 

Roth, Karlsruhe 

Fluka 
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SDS 

Silver nitrate 

Skim milk 

Sodium acetate 

Sodium carbonate 

Sodium chloride 

Sodium hydroxide 

Sodium thiosulfate – hydrate 

Sulfuric acid 

Sulfuric acid 0.5 M (Elisa stop sol.) 

Tetramethyl-ethylendiamine (TEMED) 

Tetramethylbenzidin (TMB) 

Trichloroacetic acid 

Tris base 

Tris-HCl 

Tween 20  

Urea 

Yeast extract 

Yeast nitrogen base 

Roth, Karlsruhe 

Vitalia GmbH, Sauerlach 

Applichem, Darmstadt 

Roth, Karlsruhe 

Applichem, Darmstadt 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Applichem, Darmstadt, Germany 

Serva, Heidelberg 

Roth, Karlsruhe 

Roth, Karlsruhe 

Applichem, Darmstadt 

Applichem, Darmstadt 

Roth, Karlsruhe 

Roth, Karlsruhe 

Fluka, Steiheim 

 

3.1.19 Instruments and measurements 

Instruments and measurements Supplier 

ABIPRISMTM 310 genetic analyzer Applied Biosystem, USA 

Autoclave Münchner Medizin Mechanik GmbH, 

Germany 

Balance 

- BP2100 S 

- BP 211 D 

 

  Sartorius, Göttingen, Germany 

 

Biostat C plus-C15-3 fermenter Sartorius BBI System GmbH, 

Melsungen,  Germany 

Block cycler 

- PTC 200 DNA Engine® thermal cycler  

 

Biorad, München, Germany 

Blotting apparatus (Mini Trans-Blot®) Biorad, München, Germany 
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Centrifuge 

- Eppindorf centrifuge 5417 R 

- Labor centrifuge 1K15 

- Rotina 46R 

- Vacuum centrifuge speed vac  

- Sorvall ® Ultraspeed centrifuge  

 

Eppindorf; Hamburg, Germany 

Sigma, Germany 

Hettich, Tuttlingen, Germany 

Savant 

Kendro, US 

Electrophoresis 

Agarose gel electrophoresis 

- Mini Sub® Cell GT 

- Wide Mini® Sub Cell GT 

- Electrophoresis chamber for 

polyacrylamide gel 

Power supply apparatus 

- Power Pac 300  

- Power Pac 3000 

 

 

 

 

 Biorad 

Gel documentation system  

MultimageTM Light Cabinet 

 

Alpha Innotech Corporation 

Heating block Eppendorf, Hamburg, Germany 

Ice machine  Scotsman, USA 

Incubators 

- Kelvitron®t  

- Incubator for yeast 

- Steri-Cult-HEPA filtered IR cell culture 

 

Heraeus, Hanau, Germany 

WTB Binder , Tuttlingen, Germany 

Forma Scientific 

Laminar Flow cabinet Heraeus Instruments  

Microwave (Panasonic Pro II 1400) Masushita electric industrial Co 

Microscopes 

- Fluorescent microscope DM IRB (inverse) 

- Fluorescent microscope DMRA 

- Fluorescent microscope DMRB 

- Inverse stereomicroscope DMIL 

 

 

 

Leica, Germany 

Refrigerators and freezers  

 -80 oC 

Liebherr, Ochsenhausen 

Thermo Scientific 

pH-Meter pH 540 GLP Wissenschaftlich- Technische 
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Werkstätten, Germany 

Thermo mixer compact Eppendorf, Hamburg, Germany 

Photo spectrometer 

NanoDrop® 

SmartSpecTM 3000 

 

peQLab Biotechnologie Gmbh 

Biorad, München, Germany 

Vortexer (Vortex Genie 2) Scientific Industries 

Water bath  GFL, Burgwedel, Germany 

 
3.1.20 Consumption materials 
 
Materials Supplier 

Cell culture plate  (96, 24, 8 wells) 

Cover  slides  

Cryo tubes 

Disposable canula syringe 

Elisa plates (microlon high binding) 

Falcon tubes  

Filter tip gilson (10, 20, 200, 1000 µl) 

Micro tube 2 ml with cap 

Nitro-cellulose membrane 

Parafilm 

Petri dish 

Pipette tips 

 

Plastic pipette 

Reactions containers (50, 15,1.5) 

Rotilab® Spritzenfilter, 0.45 µm 

Rotilab® Spritzenfilter, 0.2 µm 

Rotilab® Micro titre plates (U- shape) 

 Rotilab® Micro titre plates (V- shape) 

Slides 76 X 26 

Tissue culture plastic flasks   

Vivaspin20                                                

Greiner Bio one, Frickenhausen 

Braunschweig, Germany 

Greiner Bio-One, Frickenhausen,  

Braunschweig, Germany 

Greiner Bio- One, Frickenhausen,  

Bedford, USA 

Greiner Bio-One, Frickenhausen 

Sarstedt, Nümbrecht  

Millipore, Schwalbach, Germany  

Pechiney plastic Packaging, Chicago 

Greiner Bio-One, Frickenhausen 

Greiner Bio one, Frickenhausen 

Sartedt 

VWR International, USA 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Greiner Bio-One, Frickenhausen 

Sartorius-Stedim, Biotech GmbH, 

Göttingen, Germany 
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3.2 Methods 

3.2.1 Expression of truncated sequences of influenz a subtype H5 in P. pastoris 

3.2.1.1 Amplification of truncated sequences 

To identify regions within H5 protein that are highly conserved, protein alignments 

were performed using MacVectorTM 7.0. Four non-overlapping sequences of different 

functional domains of influenza A virus subtype H5 were chosen and designated P1, 

P2, P5 and rHA1 (the criteria of these epitopes are described in table 1, and 

appendix). RNA was extracted and cDNA of influenza A subtype H5N1 (A / Thailand / 

1 (Kan-1) / 2004) was synthesized. PCR was used to amplify 4 coding DNA 

fragments of epitope based truncated sequences of HA. Two primers for each coding 

sequence were used for a series of synthetic reactions. The primers were designed 

with specific restriction enzymes sites to create compatible ends (vector-PCR 

products). In the reverse primers, stop codons were not induced in order to fuse the 

coding sequence with 6xHis-tag (Table 1). PCR reaction was done in a 50 µl final 

volume containing 5 µl 10x polymerase buffer, 1.25 µl dNTP (10 mM), 1 µl of each 

primer (10 µM), 0.5 µl DNA polymerase (2.5 U / µl), 1 µl DNA template (200 ng / µl) 

and 10.25 µl deionised water. The block cycler (PTC 200 DNA Engine® Thermal 

Cycler) program was as follows: 95 oC, 3´; 5 X (95 oC, 3´; 55 oC, 20´´; 72 oC / 90´´; 

29X (95 oC, 30´´; 70 oC, 20´´; 72 oC, 90´´); 72 oC, 90´´ 

3.2.1.2 Agarose gel electrophoresis 

Agarose powder was added to 1X TAE Buffer to a final concentration of 0.8 % (w/v). 

The slurry was heated in a microwave oven until the agarose was dissolved. 5 µl 

ethidium bromide were added after cooling (70 oC) and the agarose solution was 

poured into the mold and the comb was properly positioned. After the gel was 

completely set, it was transferred into electrophoresis tank and covered with 1 X TAE 

Buffer, DNA samples were mixed with 6x DNA loading dye (5 vol. DNA solution plus1 

vol. DNA loading dye) and loaded into the slots of the gel. As a size standard, 50 bp, 

100 bp and 1Kb GeneRuler DNA LadderTM were used. The gel was run in TAE buffer 

under the voltage of 120 V for 30 minutes at RT. The gel was visualized by ultraviolet 

light and documented by MultilmageTM light cabinet with Chemilmager 4000 

computer program.  
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Table (1): Primers and peptide description 
 
aPeptide  bPrimer sequence  cPeptide description  

P1  Site E-sense: GTA CTC GAG AAG AGA 
GAG GCT GAA GCA GAT CTA GAT 
GGA GTG AAG CC 

Site E-as:  CAT GCG GCC GCC TTC 
TCC ACT ATG TAG GAC C 

corresponds to the neutralizing 
epitope of site E of H3 (WILEY 
et al. 1981), conserved in H5, 
40 amino acids residues long, 
molecular mass is 7.5 kDa.  

 

P2  RBS-sense:  GTA CTC GAG AAG AGA 
GAG GCT GAA GCA  AAT AAT ACC 
AAC CAA GAA GAT C 

RBS-as:  CAT GCG GCC GCG TCC 
CCT TTC TTG ACA ATT TTG 

consists of the receptor binding 
site, site D and parts of site B, 
conserved in H5,  97 amino acid 
residues long, contains a 
glycosylation site, molecular 
mass is  13.9 kDa 

 

P5  Site A-sense:  ´5 GTA CTC GAG 
AAG AGA GAG GCT GAA GCA TCA 
TTA GGG GTG AGC TCA GC 3´ 

Site A-as : 5´CAT GCG GCC GCG 
TAT GTA CTG TTC TTT TTG ATA 
AGC C 3´ 

conformational epitope in H5  
(PHILPOTT et al. 1989a),  not 
conserved in H5, 30 amino acid 
residues long, contains a 
glycosylation site, molecular 
mass is  6.5 kDa  

 

 rHA1 HA1-sense:  5´GTA CTC GAG  AAG 
AGA GAG GCT GAA GCA GAT CAG 
ATT TGC ATT GGT TAC C 3´ 

HA1-as:  ´5GAT GCG GCC GCT CTT 
TGA GGG CTA TTT CTG AGC C´3 

contains the majority of those 
antigenic determinants of HA 
that are responsible for 
generation of virus-neutralizing 
antibodies, 320 amino acid 
residues long, contains 5 
glycolsyation sites, molecular 
mass is 39.6 kDa  

 
 
aP1, P2, P5 and rHA1 coding DNA fragments of epitope based truncated sequences 

of HA influenza A subtype H5N1 (A / Thailand / 1 (Kan-1) / 2004). 
bBold sequences indicate the sequence of restriction sites (Xho1 in sense primers 

and Not1 in antisense primers) , the sequence of alpha factor is underline.  
cMolecular mass calculated for his-tag polypeptide when alpha factor is completely 

processed (secreted in supernatant). 

3.2.1.3 DNA purification  

PCR product was purified using Wizard SV® Gel and PCR Clean-Up system 

according to manufacturer. The Wizard® SV Gel and PCR Clean-Up kit is based on 

the ability of DNA to bind to silica membranes in the presence of chaotropic salts. 

Briefly, one SV Minicolumn® was placed in a collection tube for each PCR reaction. 
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PCR product was placed to the SV Minicolumn® assembly and incubated for 1 

minute at room temperature, followed by centrifugation at 16,000 ×g (14,000 rpm) for 

1 minute. The liquid in the collection tube was discarded and 700 µl of membrane 

wash solution was added, previously diluted with 95 % ethanol, followed by 

centrifugation for 1 minute at 16,000 ×g (14,000 rpm). Again, the liquid in the 

collection tube was discarded and 500 µl of membrane wash solution was added 

followed by centrifugation for 5 minutes at 16,000 ×g. The column assembly was re-

centrifuged for 1 minute with the micro-centrifuge lid open after empting the collection 

tube. Carefully SV Minicolumn® was transferred to a clean 1.5 ml micro-centrifuge 

tube and 50 µl of nuclease-free water (supplied with the kit) were added directly to 

the centre of the column without touching the membrane with the pipette tip, 

incubated at room temperature for 1 minute and centrifuged for 1 minute at 16,000 

×g. The eluted DNA was stored at 4 °C or at -20 °C. 

3.2.1.4 Cloning of PCR product 

Both DNA product and pAOX plasmid were digested by Xho1 and Not1 restriction 

enzymes. The reaction composition was shown as follows: 5.5 µl O-buffer, 50 µl 

purified DNA, 1 µl Xho1 and 1 µl Not1 restriction enzymes. The reaction mixture was 

incubated 37 °C for 2 hrs.  DNA was purified again using Wizard SV® Gel and PCR 

Clean-Up system as described before.  

3.2.1.5 DNA ligation  

DNA concentration was determined using NanoDrop®. The method is based on the 

spectrophotometric measurement of the absorption. The principle of NanoDrop® 

depends on the measurement of the absorbance at A260. The ratio of absorbance at 

260 and 280 nm is used to assess the purity of DNA. A ratio of ~1.8 is generally 

accepted as “pure”. Digested P1, P2, P5 and rHA1 DNA with Xho1 and Not1 were 

mixed with digested pAOX vector at a ratio of 1:6 in a 10 µl of ligation reaction 

containing 1 µl T4-DNA ligase (2U), 1 µl 10x ligation buffer, and 1 µl 50 % (w/v) 

polyethylene glycol (PEG) 4000 (supplied with the enzyme). The mixture was 

incubated at room temperature for 2 hrs.  

3.2.1.6 Preparation of competent E-coli 

Firstly, a fresh plate of cells was prepared by streaking out cells from a frozen stock 

and growing at 37 oC. An individual colony was set in 5 ml low salt LB – medium (LS-

LB) without antibiotic. 1 ml of overnight culture was inoculated in a flask containing 

100 ml LS-LB medium. The flask was incubated at 37 oC with aeration until the 
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culture reached an OD595 of 0.200 - 0.300 (approximately 2 hrs). Culture was 

incubated on ice for 5 minutes then transferred to two 50 ml falcon tubes and 

centrifuged 2500 rpm for 10 minutes at 4 oC. Pellets were gently resuspended in 20 

ml Tfb I (for each tube) and centrifuged 3500 rpm for 10 minutes at 4 oC. The pellet 

was resuspended in 4 ml Tfb II and incubated on ice for 15 minutes. Competent cells 

were divided into convenient aliquots with equal amount of glycerine and frozen at – 

80 oC. 

3.2.1.7 Transformation of competent E-coli 

For amplification of plasmid construct, XL10-Gold® ultracompetent E- coli was used. 

Five microlitres of ligation mixture was mixed by stirring gently with pipette tip into 

competent E. coli cells which thawed on ice just before transformation. The mixture 

was placed on ice for 30 minutes and incubated at 42 oC for 30 seconds then rapidly 

placed on ice for 2 minutes. Three hundred microlitres of LB liquid medium was 

added before shaking at 37 oC for 1 hour. Transformed cells were spread on LB agar 

plate containing 25 µg / ml ZeocinTM (100 µl / plate). Plates were incubated overnight 

at 37 oC.  

3.2.1.8 Plasmid isolation from E-coli 

Plasmid isolation was done by Zyppy™ Plasmid Miniprep kit according to the 

manufacturer. Plasmid DNA isolated by this method suited for ligation, sequencing 

and restriction digestion. It is a modified alkaline lysis method. All buffers were 

supplied by the manufacturer. Briefly, selected colonies were picked up and 

inoculated into 5 ml LS- LB liquid medium pH, 7.5 and incubated overnight at 37 °C.  

600 µl of bacterial culture grown in LB medium were added to a 1.5 ml micro-

centrifuge tube. 100 µl of 7X lysis buffer (blue) were added and mixed by inverting 

the tube 4-6 times. 350 µl of cold neutralization buffer (yellow) were added and mixed 

thoroughly. The sample was inverted an additional 2-3 times to ensure complete 

neutralization, followed by centrifugation at 11,000 – 16,000 xg for 2-4 minutes. The 

supernatant (~900 µl) was transferred into the provided Zypy-Spin™ IIN column. The 

column was placed into a collection tube and centrifuged at 16,000 xg for 15 

seconds. The flow-through was discarded and 200 µl of Endo-wash buffer were 

added to the column followed by centrifugation at 16,000 xg for 15 seconds. 400 µl of 

Zyppy-Spin™ wash buffer were added to the column and centrifuged at 16,000 xg for 

30 seconds. The column was transferred into a clean 1.5 ml micro-centrifuge tube 

then 30 µl of Zyppy™ elution buffer were added directly to the column matrix and let 



 57 

stand for one minute at room temperature, followed by centrifugation at 16,000 xg for 

15 seconds to elute the plasmid DNA. 

3.2.1.9 Analysis of plasmids 

The recombinant plasmids (designated pAOX H5-P1, pAOX H5-P2, pAOX H5-P5 

and pAOX H5-HA1) were analysed by restriction digestion and sequencing. pAOX 

H5-P1, pAOX H5-P2 and pAOX H5-HA1 plasmids were subjected to double digestion 

with Bgl II, whereas Bg1 II  and Xho1 were used for double digestion of pAOX H5-P5.  

3.2.1.10 Sequencing of the insert 

For this purpose, the plasmid was isolated from E- coli and its concentration was 

identified using NanoDrop®. PCR was performed using PGAPZ seq 1 primer (5´-

GTCCCTATTTCAATCAATTGAA-3´). The sequencing reaction consisted of 4 µl of 

dye-terminator reaction mix, 2 µl of 10 µM sequencing primer, 2 µl HPLC- H2O and 

200-500 ng (in 2 µl) of plasmid. The cycle sequencing reaction was performed by 

using the following thermal cycler program: 96 °C, 2´; 25 x (96 °C ,10´´; 55 °C , 5´´ ; 

60 °C, 4´); 60 °C, 4´. The PCR product was then pre cipitated by ethanol. 70 µl HPLC 

water and 10 µl 3 mM Na - acetate (pH 4.6-4.8) were added to 10 µl of the 

sequencing reaction in 1.5 ml ependorf. After addition of 250 µl 100 % ethanol, the 

sample was vortexed and centrifuged 14000 rpm / 35 min at 22 °C. Supernatant was 

discarded and 250 µl of 70 % ethanol was added followed by centrifugation 14000 

rpm / 35 min at 22 °C. Pellet was dried in speed va cuum for 10 min. The pellet was 

resuspended in 20 µl Hi- Di-Formamide. Sequencing the gene of interest was 

analyzed in an ABIPRISMTM 310 genetic analyzer. 

3.2.1.11 P. pastoris transformation 

P. pastoris competent cells were prepared according to Invitrogen manual and stored 

frozen until used. Native cells were prepared as follow:  50 ml YPD medium were 

inoculated with stationary culture (24 hrs) of native yeast cells grown in YPD medium 

to OD600= 0.02- 0.03. Cells were incubated for 18 – 20 hrs at 30 °C (250 rpm) until 

OD600 = 15-30. Aliquots were prepared (500 µl – 3-7x 108) cells) and stored at – 20 

°C until use. The shelf life is for several months.  Transformation was done according 

to EasyCompTM kits after some modifications described by Dr Kathrin Rall (Institute 

of Virology, Faculty of Medicine, Leipzig University, Germany). Briefly, after analysis 

of the insert, an amount of recombinant plasmid DNA was prepared. 5-10 µg (per 

transformation) were linearized by Bstx1, and dried in a vacuum centrifuge. One 

aliquot of competent cells (for one transformation) was thawed at room temperature 
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and added to tube containing dried DNA and mixed by pipetting. 200 µl of solution II 

(supplied with the kit) were added and mixed by vortexing. Cells were incubated at 30 

°C for I hr and vortexed every 15 minutes. Cells we re subjected to heat shock at 42 

°C for 15 minutes and 1 ml YPD medium was added. Af ter incubation at 30 °C for 1 

hr (vortex every 15 minutes), cells were centrifuged at 1500 xg for 5 minutes. Cells 

were washed with 500 ml solution III (supplied with the kit), and centrifuged at 1500 

xg for 5 minutes. The transformed cells were resuspended in 50 µl solution III. One 

aliquot of native cells (500 µl) of identical strain as competent cells was thawed, 

washed with 500 µl Solution III and centrifuged at 1500 xg for 5 minutes. Native cells 

were resuspended in 50 µl solution III and added to the transformed cells. After 

vortexing, the cell mixture was spread on YPD agar medium containing 100 µg 

ZeocinTM. Plates were incubated 2-4 days at 30 °C. 

3.2.1.12 Colony PCR  

Briefly, to perform colony PCR, primer seq2 (5´-GCAGCTCGCTCATTCCAATTCC-

3´) was used as promoter specific primer, however, specific sense primers for P1, 

P2, P5 and HA1 were used as antisense primers (Table 1). Swabs from selected 

clones were suspended in dH2O and heated 95 °C for 10 min, followed by 

centrifugation for 5 min at 4000 rpm. 10 µl of the supernatant was used to perform 

PCR. PCR reaction was done in a 20 µl final volume contains on 2 µl 10x polymerase 

buffer, 1 µl MgCl2, 0.5 µl dNTP (10 mM), 0.5 µl of each primer (10 µM), 0.25 µl DNA 

Taq polymerase (2.5 U / µl), 10 µl DNA template (200 ng / µl) and 5.25 µl deionised 

water.  The cycler program was 95 °C, 2´´, 30x (95 °C, 45´´; 56 °C, 45´´ ; 72 °C, 1´´), 

72 °C,10´´. PCR products were analysed by agarose g el electrophoresis. 

3.2.1.13 Small- scale expression   

Small scale expression was done to identify and confirm a recombinant pichia clones 

that express the correct protein and also to optimize the condition of expression. 

Primary culture was done from GS115 or SMD1168H Pichia cells in YP 2 % Gly 

using micro-titre plate 24 wells and incubated at 28 °C for 24 hrs at 250 rpm. An 

ensuing preparatory culture was initiated when OD600 = 0.8 - 1.0 and incubated at 28 

°C for 24 hrs at 250 rpm. Induction of expression w as done in YP 2 % MeOH either 

at pH 6 or 8 with OD600 = 30 - 70. Protein expression was analysed 12, 24, 48 and 72 

hrs after induction.  
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3.2.1.14 Mid-scale expression 

After confirming the desired protein in supernatant, the expression conditions were 

optimized. For production of large amounts of protein, expression was done in mid - 

scale using shaking flasks.  

3.2.1.15 Large scale expression  

Recombinant HA1 polypeptide was expressed in P. pastoris using BIOSTAT Cplus-

C15-3 fermenter to establish a high-density cell fermentation method. The culture 

temperature in pre-induced stage was optimised at 28 °C to adapt cell growth and 

recombinant protein expression in YP 2 % Gly at pH 6. Induction was done in the 

same media (at OD600 = 40) using 2 % methanol after adjusting pH to be 8.  

3.2.1.16 Protein extraction from yeast cells  

50 µl of yeast cells (nearly 109 cells) were resuspended in 1 ml cold distilled water 

followed by centrifugation 17900 xg for 1 min. Pellet was resuspended in 1 ml cold 

distilled water and 160 µl of a solution containing 1.85 M NaOH and 7.4 % mercapto-

ethanol were added. The tube was inverted and incubated on ice for 10 min. 160 µl 

50 % TCA were added and the tube was inverted and centrifuged 17900 xg for 5 

min. The pellet was washed with 1 ml cold acetone, centrifuged 17900 xg for 5 min 

and dried in speed vacuum for 2 min. For Western blot or SDS-PAGE, 80- 100 µl 2X 

tricine sample buffer was added and boiled for 5 min at 95 °C before loading the 

sample onto polyacrylamide gel. 

3.2.1.17 Purification of recombinant polypeptides  

All purification steps were performed at room temperature. The purification protocol 

was optimised for each polypeptide using nickel-nitrilotriacetic acid (Ni-NTA) or lectin 

affinity chromatography (lectin peroxidase concanavalin). Briefly, for nickel affinity 

chromatography, column was prepared according to the manufacture protocol using 

4 ml Ni-NTA agarose. The column was equilibrated by passing 10 ml equilibration 

buffer (wash buffer 1 or 2). Culture supernatant containing peptides of interest were 

passed through the column and washed with 10 ml washing buffer (wash buffer 1 or 

2). Elution was done by increasing the concentration of imidazole (elution buffer 1) or 

decreasing the pH (elution buffer 2). For lectin affinity chromatography, equilibration 

was done by wash buffer 3.  The unbound fraction was collected and the column was 

washed with 10 ml wash buffer 3. The bound fraction was eluted from the column 

with 0.4 M methyl α- D- manopyranoside in equilibration buffer (elution buffer 3). The 

fractions were dialyzed and concentrated by using vivaspin ultrafilter with a molecular 



 60 

weight cut-off of 5,000 – 50.000 Da according to the size of polypeptide. 

Alternatively, purification was done under native or denaturing conditions using 4 M 

urea and 1 mM PMSF. 

3.2.1.18 SDS- PAGE 

P1, P2, P5 and rHA1 were separated by SDS-PAGE and stained by silver stain 

according to Nesterenko and co-workers (NESTERENKO et al. 1994). Proteins were 

separated by SDS-PAGE 10 % gels (Tables 2). Briefly, the SDS-PAGE apparatus 

was assembled then the separating gel was prepared and poured into the chamber 

up to the desired mark; the rest of the chamber was filled by adding distilled water. 

After polymerisation, the gel was dried by soaking with filter paper. The collecting gel 

was prepared and poured up on the separating gel. The selected comb was 

introduced to make the required numbers of slots. The gel is allowed to stand at room 

temperature until polymerisation. The gel was transferred into the electrophoresis 

chamber and running buffers (anode and cathode buffers) were added. Protein 

samples were mixed at a 1:1 ratio with 2x tricine sample buffer and heated 95 °C for 

5 minutes. 10-30 µl of the test sample along with the marker were loaded in 

respective slots with a special 100 µl syringe and a needle. Then the electrophoresis 

container was connected with a power source at 160- 180 V for 45 min -1 hr. After 

electrophoresis, the gel was either subjected to silver stain (Table 3) or Western blot. 

 

Table (2): Composition of polyacrylamide gel 

Solution Separating gel (10 %)  Stacking gel (4 %) 

Acrylamide (30 %) 

Tris  / Cl / SDS pH 8.45 

Dist. H2O 

Glycerine  

10 % APS 

TEMED 

1.63 ml 

1.67 ml 

1.17 ml 

0.53 ml 

16.67 µl 

3.4 µl 

0.27 ml 

0.52 ml 

1.3 ml 

- 

8.3 µl 

3.4 µl 
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Table (3): Silver staining of recombinant polypepti des 

Step Treatment  Time 

Fixation 

 

Rinsing 

Washing 

Rinsing 

Pre-treatment 

Pre-treatment 

 

Impregnation 

 

Rinsing 

Development 

 

Stopping 

Rinsing 

60 ml acetone (50 %), 1.5 ml TCA (50 % w/v) and 25 µl 

formaldehyde 37% 

dH2O 

dH2O 

dH2O 

60 ml acetone 50 % (v/v) 

100 µl sodium thiosulfate (10 % w/v) in 60 ml dH2O 

dH2O 

0.8 ml silver nitrate (2% w/v), 0.6 ml formaldhye 37 % in 

60 ml dH2O 

dH2O 

1.2 gm sodium carbonate, 25 µl formaldhyde and 25 µl  

sodium thiosulfate (10 %) in 60 ml H2O 

60 ml acidic acid 

dH2O 

5 min 

 

3X 5s 

5 min 

3X 5s 

5 min 

1 min 

3 X 5s 

 

8 min 

2X 5s 

 

10- 20s 

30s 

10s 

 

3.2.1.19 Western blot  

For western blot, proteins were transferred on nitrocellulose membrane (Roti®- 

PVDF) according to Towbin and co-workers (TOWBIN et al. 1979). The blotting was 

performed in transfer buffer at 160 mA for 1 hr followed by 3 times washing with 1X 

PBS, pH 7.4. The membrane was blocked by incubation in 1X PBS containing 4 % 

skim milk powder for 15 min at room temperature. For analysis of His-tag, the 

blocked membrane was incubated overnight with 1:200 mouse anti-His-tag. After 

washing with 1X PBS, the membrane was incubated with secondary antibody in a 

concentration of 1: 1000 (polyclonal rabbit anti-mouse IgG HRP conjugate) at room 

temperature for 2 hrs. The membrane was washed with 1X PBS and developed with 

1X PBS containing 5 mg of DAB and 10 µl H2O2 30 %.  

3.2.1.20 MALDI-TOF 

The ZipTip pipette tip is a 10 µl pipette tip with a bed of a chromatography media 

fixed at its end. It is intended for concentration and purifying peptide to be analyzed 

by MALDI-TOF. Sample preparation was done according to manufacturer, briefly; the 

pH of protein sample (10-20 µl) was adjusted to be less than 4 using 0.1 % TFA in 
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Milli Q®. The ZipTip pipette tip was equilibrated twice in 100 % ACN followed by twice 

in 0.1 % TFA. Protein was aspirated and dispensed 7-10 cycles. The ZipTip pipette 

tip was washed twice by aspirate and dispensing 0.1 % TFA. Elution was done by 

using varying concentrations of ACN (20 %, 30 %, 50 % and 70 %). The sample was 

dried by vacuum centrifuge and analyzed by MALDI-TOF in Institute of Biochemistry, 

Faculty of Medicine, Leipzig University. 

3.2.1.21 Glycosylation analysis 

3.2.1.21.1 Blot with concanavalin 

Glycosylated polypeptides (P2, P3 and rHA1) were separated by SDS – PAGE and 

transferred to nitrocellulose. The membrane was blocked by incubation in 1X PBS 

containing 2 % (v/v) Tween20 for 2 minutes. The blot was rinsed twice in 1X PBS 

followed by incubation with 10 µg / ml of lectin peroxidase (lectin from concanavalin) 

in PBS containing 0,05  % (v/v) Tween20, 1 mM CaCl2, 1 mM MnCl2, and 1 mM 

MgCl2 for 16 hrs at 20 °C.  The blot was rinsed in 1X PB S and developed using DAB 

as described in Western blot. 

3.2.1.21.2 Deglycosylation with endoglycosidase 

Deglycosylation was done using Endoglycosidase H kit (Endo Hf). Briefly, 1 µl of 10X 

glycoprotein denaturating buffer  (supplied with the kit) was added to 9 µl of purified 

HA1 then denatured at 100 °C / 10 min. 4 µl 10X GS reaction buffer (supplied with 

the kit) was added. Deglycosylation was done by incubation of the mixture with Endo 

Hf at a concentration of 1: 500. Deglycosylation was analysed after 0 min, 15 min, 30 

min, 1 hr, 2 hrs, 3 hrs and 4 hrs by SDS-PAGE, Western blot and blotting using 

concanavalin.  

3.2.1.21.3 Expression of rHA1 in the presence of tu nicamycin 

rHA1 was expressed in YP 2 % MeOH (v/v) in the presence of tunicamycin (1 to 100 

mg / ml). In vitro characterization of protein expression was done by SDS-PAGE 

followed by Western blot. 

3.2.1.22 Protein precipitation  

3.2.1.22.1 TCA protein precipitation  

To concentrate proteins for analysis by Western blot, 10 % (v/v) of TCA 100 % was 

added to yeast culture supernatant and incubated on ice 1 hr at - 20 °C followed by 

centrifugation at 17900 xg / 5 min. The pellet was washed with cold acetone 100 % 

and centrifuged at 17900 xg / 5 min. The sample was dried under vacuum to 
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eliminate any acetone residue. For Western blot, 2X tricine sample buffer was added, 

sample and boiled 95 °C for 5 min before loading on to polyacrylamide gel. 

3.2.1.22.2 Acetone precipitation 

Four parts of 100 % acetone were added to protein sample and incubated 4 °C for 1 

hr followed by centrifugation at 4000 rpm / 45 min / 4 °C. The sample was dried 

under vacuum (speed-vac) to eliminate any acetone residue. For Western blot, after 

addition of 2X tricine sample buffer, the sample was boiled 95 °C for 5 min before 

loading onto polyacrylamide gel. 

3.2.1.22.3 Ultracentrifugation 

Yeast culture supernatant was concentrated using vivaspin ultrafilter. Different sizes 

of ultrafilters were used (5,000 – 60,000 Da) according to the protein size. 

3.2.1.22.4 Ammonium sulfate precipitation 

For purification, protein was precipitated using ammonium sulfate. Slowly, solid 

ammonium sulfate was added to a final concentration of 80 % (470 g / litre of 

solution) and stirred at 4 °C for 15 min. The sampl e was centrifuged by 

ultracentrifugation (Surespin Rotor, 11000 xg / 30 min / 4 °C). The pellet was 

resuspended in an appropriate volume of equilibration buffer that used in purification.  

3.2.1.23 Determination of protein concentration 

Protein quantitation was determined by colorimetric method, using BradfordTM assay 

kit. BSA with known concentration was used as a standard. Briefly, 25 µl of standard 

BSA or unknown sample was pipetted to 25 µl millipore H2O and serial dilution was 

done. 10 µl of each dilution was added to a 96 - micro-titre plate containing 200 µl of 

diluted dye with millipore water at a ratio of 1:4. Plates were incubated for 30 minutes 

at room temperature in dark place. The absorbance was measured at OD590 nm. The 

protein concentration was calculated by comparing with the protein standard curve. 

3.2.1.24 Cell passage 

Vero cells were grown in 25 or 75 cm2 plastic flasks in DMEM + GlutaMaxTM, 

supplemented with 5 % FCS at 37 °C in a 5 % CO 2 humidified incubator. When 

monolayer was confluent in the flask, the media was removed and the cells were 

washed with sterile 1X PBS  (PBS 10x - Ca2+, - Mg2+), then 3 ml of 0.05 % trypsin-

EDTA were added to the 25 cm2 flask and incubated 2 - 5 minutes at 37 °C to 

dislodge the cells from the flask. Trypsin was inhibited by addition of 7 ml DMEM + 

GlutaMaxTM containing 5 % FCS. The cells were passaged as before using a split 

ratio of 1: 10. 
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3.2.1.25 Virus propagation 

Influenza A subtype H5N1 (A / Thailand / 1 (Kan-1) / 2004) was propagated in Vero 

cells. When the Vero cells formed a monolayer, the medium was discarded and the 

cells were washed with sterile 1X PBS (3 ml / 25 cm2 flask and 6 ml / 75 cm2 flask). 

Aliquots of 50 - 150 µl of diluted influenza virus in 2-5 ml DMEM medium (DMEM + 

GlutaMaxTM) were inoculated onto monolayer cells. Cells were incubated for 60 - 90 

minutes at 37 °C in a 5 % CO 2 humidified incubator, followed by addition of 8 - 25 ml 

DMEM medium containing 5 % FCS. The cells were incubated at 37 °C in a 5 % CO 2 

humidified incubator for 5 days and observed daily for cytopathic effect (CPE). Virus 

growth was confirmed by virus haemagglutination.  

3.2.1.26 Virus titration 

Serial 10 fold dilutions of influenza A subtype H5N1 (A / Thailand /1 (Kan-1) / 2004) 

stock solution were made in DMEM + GlutaMaxTM medium. Titration was done in 96- 

well cell culture plate containing Vero cells monolayer. The medium was discarded 

and cells were washed with sterile 1X PBS (PBS without Ca2+ and Mg2+). 100 µl 

diluted virus was added to each well and incubated for 1 hr at 37 °C in a 5 % CO 2 

humidified incubator. 100 µl of DMEM + GlutaMaxTM containing 5 % FCS was added 

and incubated 37 °C in a 5 % CO 2 humidified incubator for 5 days. The medium was 

removed and cells were stained by 0.1 % crystal violet. The titre was expressed as 

50 % tissue culture infective dose / 0.1 ml (TCID50) and was calculated by the 

method of Reed-Muench (REED and MUENCH 1938) 

3.2.1.27 Virus inactivation and purification  

H5N1-virus was propagated on  Vero cells. After 5 days, supernatant was harvested, 

clarified (340 xg / 10 min.) and inactivated using ultraviolet irradiation (30 W / G30T8) 

for 1hr. The clarified supernatant was layered in 25 % sucrose cushion in TNE buffer 

and centrifuged by ultracentrifugation (Surespin Rotor, 11000 xg / 4 °C / 4 hrs). The 

pellet was resuspended in TNE buffer and the virus (100 TCID50 / 100 µl) was tested 

for its safety in Vero cells. Fractions were pooled and the virus was titrated by 

haemagglutination test using 1 % chicken red blood cells (RBCs). This preparation 

was used for chicken vaccination and as antigen in serological tests. 
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3.2.2 Immunogenicty of recombinant polypeptides in mice and chickens 

3.2.2.1 Immunogenicity of recombinant polypeptides in mice 

The immunogenicity of P1, P2 and rHA1 was evaluated in BALB/c Mice. Three 

groups of 2 mice were immunized subcutaneously with 50 µl Gerbu adjuvant. Two 

immunization protocols were used as shown in the following table. Another group of 2 

mice was injected with adjuvant in 1xPBS. Sera were obtained from euthanized mice 

one week after the 2nd and at the end of experiment from orbital sinus. Evaluation of 

the immune response was done by recombinant Elisa (using recombinant 

polypeptides), whole H5N1 Elisa and IFA.   

 
3.2.2.2 Immunogenicity of recombinant polypeptides in chickens 

The immunogenicity of P1, P2, P5 and rHA1 polypeptides was evaluated also in 

inbred commercial layer chickens in comparison with prepared inactivated H5N1 (A / 

Thailand / 1 (Kan-1) / 2004) antigen. Groups of 4 chickens were injected 

intramuscularly with 100 µg of recombinant polypeptide mixed with 100 µl Gerbu 

adjuvant. Two weeks post priming; chickens were boosted 3 times, at weekly 

intervals using the same amount of antigen and adjuvant that used for the initial 

immunization. Chickens immunized with inactivated vaccine were injected with a 

dose of 8 HA unit (HAU) mixed with 100 µl Gerbu adjuvant. Control chickens were 

injected with adjuvant only. Sera were obtained at day 0 as well as 4, 5, 6 and 8 

weeks post primary vaccination from wing vien and analyzed for specific antibodies 

with recombinant Elisa (using the same antigen used in vaccination), whole H5N1 

Elisa (using whole H5N1 antigen), AGID, IFA and µNT. Moreover, IgY was analysed 

in egg yolk collected at day 0 as well as 4, 5, 6 and 8 weeks post primary vaccination 

by recombinant Elisa, whole H5N1 Elisa and IFA. 

Immunization Immunization protocol  
                     (IP1) 

Immunization protocol  
                     (IP2) 

Priming 0 0 

1st booster 14 21 

2nd booster 21 28 

3rd booster 28 35 

4th booster 35 42 

5th booster 42 49 

Final Bleeding 45 52 
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Table (4): Experimental design for assessment of im munogenicity of 

recombinant polypeptides in chickens compared with inactivated H5N1  

Vaccination regime Group 

No 
Vaccine type Vaccine 

dose 

Frequency 

Assessment of immune 

response 

1 

2 

3 

4 

5 

6 

rHA1 

P1 

P2 

P5 

Inactivated H5 

Adjuvant 

vaccinated 

100 µg 

100 µg 

100 µg 

100 µg 

8 HAU 

- 

4X 

4X 

4X 

4X 

4X 

4X 

rElisaa 

whole H5 Elisab 

AGIDc 

Microneutralizationd 

IFAe 

 

 
aElisa plates were coated with homologous antigen used in vaccination (50 ng / well). 
bElisa plated were coated with inactivated  H5N1 (A / Thailand / 1 (Kan-1) / 2004) 

antigen (1 HAU / well). 
cAGID was done according to  (BEARD 1998) using H5N1 (A / Thailand / 1 (Kan-1) / 

2004) antigen.  
dMicroneutralization test was done according to (ROWE et al. 1999) using H5N1 (A / 

Thailand / 1 (Kan-1) / 2004) virus. 
eImmunofluorescence assay was done on Vero cells infected with H5N1 (A / Thailand 

/ 1 (Kan-1) / 2004) virus. 

3.2.2.3 Extraction of IgY from eggs 

Extraction and purification of IgY was done according to (POLSON et al. 1980). 

Briefly, individual yolk was separated from the egg white and washed with PBS. 400 

µl of egg yolk was obtained and mixed with 800 µl PBS. Polyethylene glycol (PEG), 

molecular weight 1500, was added to a final concentration of 3 % (w/v). After 

incubation for 20 min at room temperature the mixture was centrifuged at 14,000 xg 

for 10 min. The fatty layer was removed and the water soluble supernatants with the 

pellet were collected in another tube. PEG was added to a final concentration of 12 

% and the mixture was centrifuged at 14,000 xg for 10 min. The pellet was 
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resuspended in ethanol 50 % (v/v in dist. H2O). After centrifugation at 10,000 xg / 30 

min / 4 °C, the pellet was resuspended in 200 µl di st. water. Extracted IgY was 

analysed by SDS-PAGE. H5 specific antibodies were analyzed by recombinant Elisa, 

whole H5N1 Elisa and IFA. 

3.2.2.4 Elisa 

Recombinant peptide (50 ng / well) or inactivated whole H5N1 (1 HAU / well) was 

coated in duplicate onto 96–well microtiter plate (microlon high binding). The working 

dilution of HRP-conjugate rabbit anti-mouse IgG and HRP rabbit anti-chicken IgG  in 

PBS, pH 7.4  supplemented with 0.05 % (v/v) Tween20, 3 % (w/v) BSA) were 1:2,000 

and 1: 20,000, respectively. For Elisa, plates were coated with 50 µl antigen solution 

diluted in coating buffer (200 mM sodium bicarbonate, pH 9.6) and incubated 

overnight at 4 °C. Plates were washed (30 seconds) five times with washing buffer 

(PBS, 0.05 % Tween20) and blocked for 1 hrs at 37 °C with 300 µl / well blocking 

buffer (PBS, 0.05 % Tween20, 3 % BSA). Sera were diluted in blocking buffer and 50 

µl of the dilution was added to each well in duplicate. After 2 hrs incubation at 37 °C, 

and 5X washing, 100 µl HRP-labelled (anti-mouse or anti-chicken IgG) antibody was 

added and incubated 37 °C for 90 minutes. Plates we re then washed 5X and colour 

development was accomplished by adding 100 µl / well of 

3,3´,5,5´tetramethylbenzidin (TMB) in sodium acetate-citrate buffer with 2 µl 30 % 

hydrogen peroxide (H2O2). After 20 minutes incubation in the dark at room 

temperature, the reaction was stopped by addition of 50 µl Sulfuric acid (H2SO4, 0.5 

M). The optical density (OD) was read at 450. Antibody titres were expressed as the 

serum dilution at which half-maximal OD450 readings of serum (half-maximal OD450). 

3.2.2.5 Agar gel immunodiffusion test  

The test was performed as described by Beard  (BEARD 1998).  The test was carried 

out using 1 % (w/v) agarose and 8 % (w/v) NaCl in 1X PBS, PH, 7.2. The medium 

was poured to a thickness of 2- 3 ml in petri dishes. Six peripheral wells surrounding 

a central well in a hexagonal form were made in the agar medium, the well size was 

4 mm in diameter, and the distance between the central well and the evenly spaced 

peripheral wells was 4 mm. Thailand H5N1 virus was used as antigen. Sera to be 

tested for precipitating antibody were placed into the peripheral wells while the 

antigen was placed into the central well. Final readings were recorded as negative (-) 

or positive (+) after 48 hrs. 
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3.2.2.6 Micro neutralization test ( µNT)  

µNT was carried out according to Rowe and coworkers (ROWE et al. 1999). Briefly, 

serum samples were diluted with cell culture medium in two fold steps. The dilutions 

were mixed at a ratio of 1:1 with H5N1 influenza virus (10 TCID50 per well), incubated 

for 1 hr at room temperature and transferred to a microtiter plate with a Vero cell 

monolayer. Plates were incubated 18 hrs at 37 °C. A fter removal of medium, plates 

were washed with PBS and fixed with 80 % acetone in sterile dist. H2O for 30 min.  

After blocking with PBS containing 1 % BSA and 0.1 % Tween20, 50 µl of influenza 

anti-nucleoprotein was added and incubated 1 hr at 37 °C. IgG HRP rabbit anti-

mouse antibody (1: 2,000) was added and plates were incubated 1 hr at 37 °C. 

Freshly prepared substrate was added and incubated 30 minutes at room 

temperature in the dark. Stop solution (H2SO4
, 0.5 M) was added and the absorbance 

OD of the wells was read at 450 nm. The endpoint titre was expressed as the 

reciprocal of the highest dilution of serum with OD450 value above the mean + (3 x 

standard deviation) of the negative control. 

3.2.2.7 Immunofluorescence assay (IFA)  

For detection of influenza-H5 specific antibodies, Vero cells were propagated on 

cover slips in a 6-well plate and infected at 0.01 multiplicity of infection (m.o.i.) with A 

/ Thailand / 1(Kan-1) / 2004 isolate. After 24 hrs incubation at 37 °C, in a 5 % CO 2 

humidified incubator, cells were fixed for 30 minutes with ice cold 80 % acetone in 

sterile distilled water at -20 °C. Fixed cells were  blocked for 30 minutes with 5 % 

PBSA (PBS, pH 7.4 contains 5 % BSA) followed by incubation for 90 minutes with 

diluted chicken sera or mouse sera at 37 °C. After washing with 0.5 % PBSA, cells 

were incubated for 45 minutes with FITC labelled monoclonal anti-chicken IgY or 

anti-mouse IgG (at a dilution of 1: 100). After 5 times washing with 0.5 % PBSA, cells 

were rinsed again in dH2O. The cover slip was inverted, mounted onto a glass slide 

using mounting fluid (1x PBS, 10 % glycerine) and observed for fluorescent staining 

under fluorescence microscopy. 
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3.2.3. Development or recombinant Elisa for detecti on of influenza subtype A 

H5 antibodies 

3.2.3.1 Experimental design 

For this purpose 179 serum samples were obtained from commercial broiler chickens 

(see materials 3.1.7). The work design is shown in the following diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3): Flow chart to study the validity of recombinant Elisa for detection of H5 

antibodies in chicken sera. 
aHI was done using homologous commercial H5N2 (A / chicken / Mexico / 232 / 94 / 

CPA) antigen.  
bHI was done using heterologous H5N1 (A / Thailand / 1 (Kan-1) / 2004) antigen 
cAGID test was done using heterologous H5N1 (A / Thailand / 1 (Kan-1) / 2004) 

antigen. 

 

 

179 serum samples from chickens 
vaccinated with commercial 
inactivated H5N1 and analysed by HI 
using homologous antigena 

 

rP1- Elisa 
rHA1- Elisa 

cAgar gel immunodiffusion test 

Single dilution rHA1-Elisa (serum dilution 1:100) 
Commercial Elisa 
Negative serum samples by the Elisa were 
confirmed by neutralization test. 

25 Serum samples from 
influenza non-vaccinated 
chickens (HI and Western 
blot negative) 

25 selected HI positive serum 
samples were tested with HI 
using heterologous antigenb 
and Western blot 
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3.2.3.2 Haemagglutination inhibition test  

Chicken sera were examined for haemagglutination inhibiting antibodies by HI test, 

according to OIE manual (OIE 2005), using commercial H5N2 antigen (A / chicken / 

Mexico / 232 / 94 / CPA) or H5N1 (A / Thailand / 1 (Kan-1) / 2004) antigen. 

Haemagglutination test 

HA test was used for the titration of commercial and H5N1 Thailand isolate antigen 

before the HI test. Lyophilized H5N2 (A / chicken / Mexico / 232 / 94 / CPA) antigen 

was dissolved by 1 ml sterile PBS (pH, 7.2).  For titration of influenza antigens, 25 µl 

of PBS were placed into each well of a plastic V-bottomed microtitre plate. 25 µl of 

virus suspension were placed in the first well and a two-fold dilution of virus 

suspension was done. A further 25 µl of PBS were dispensed to each well then 25 µl 

of 1 % (v/v) chicken RBCs were added to each well and the RBCs was left to settle at 

room temperature by which time control RBCs should be settled to a distinct button. 

The titration was read to the highest dilution giving complete HA, representing 1 HA 

unit (HAU). 

Haemagglutination inhibition test  

25 µl of PBS was dispensed into each well of a plastic V-bottomed microtitre plate. 

25 µl of serum was added to the first well of the plate and a two-fold dilution of the 

serum was done across the plate. 4 HAU of tirtrated influenza antigen in 25 µl was 

added to each well and plates were incubated for a minimum of 30 minutes at room 

temperature. 25 µl of 1 % (v/v) chicken RBCs was added to each well and after 

gentle mixing, RBCs was left to settle, by which time control RBCs should be settled 

to a distinct button. The HI titre is the highest dilution of serum causing complete 

inhibition of 4 HAU of antigen. The HI titres were determined as reciprocals of highest 

serum dilutions in which inhibition of haemagglutination was observed. 

3.2.3.3 Western blot for analysis of antibodies in serum 

For analysis of individual serum by Western blot, HA1 polypeptide was separated by 

SDS-PAGE and transferred on nitrocellulose membrane as mentioned before. After 

blocking, the membrane was cut into strips and incubated with 1:100 dilution of 

serum at 4 °C overnight. After washing with 1xPBS, the membrane was incubated 

with IgY HRP rabbit anti-chicken conjugate in a concentration of 1: 10000 at room 

temperature for 2 hrs. The membrane was washed with 1xPBS and developed as 

mentioned before. 
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3.2.3.4 Recombinant Elisa 

Recombinant Elisa was done as described in 3.2.2.4 using 2 recombinant 

polypeptides (P1 and rHA1).  

3.2.3.5 Commercial Elisa  

The test was employed for detection of AI antibodies in chicken sera using 

commercial ELISA kits as described by manufacturer. For individual bird 

interpretation, titres ranging from 0 to 269 considered negative and ≥ 300 were 

considered positive. Valid AI-ELISA were obtained when the average optical density 

value of the normal control serum is less than 0.200 and corrected positive control 

value range is between 0.250 and 0.900. Samples testing with a sample / positive 

value (SP) value of less than or equal to 0,150 received a 0 titre value. Under optimal 

conditions (room temperature 21-24 C), the optical density values ranges from 0.060 

to 0.080 for AI normal control serum and 0.400 to 0.750 for AI positive control serum.  

3.2.3.6 Neutralization test  

Serum samples which are negative by both rHA1 and/or cElisa were analyzed by NT 

according to Rowe and co-worker (ROWE et al. 1999). After 3 days incubation at 37 

°C, plates were inspected as positive or negative a ccording to the presence or 

absence of cytopathic effect (CPE). Positive control sera were included as positive 

control. 

3.2.3.7 Validity of rHA1 Elisa for detection of H5 antibodies in duck serum 

Duck sera were tested using rHA1 in comparison with HI. rHA1-Elisa was performed 

as described before; however, goat anti-bird IgG HRP was used as a secondary 

antibody. 

3.2.3.8 Statistical analysis 

Relative sensitivity and specificity of rElisa in comparison with other performed 

serological tests were calculated according to Mohan and co-workers (MOHAN et al. 

2006). 

 

 

 

 

 

 

 



 72 

 

Calculation of relative sensitivity and specificity  

Test B Test A 

 Positive Negative 

Total 

 

Positive a b a+b  

Negative c d c+d  

Total a+c b+d a+b+c+d 

 

Relative sensitivity = a / a + c  

Relative specificity = d / b + d  

Determination of agreement ratio 

The formula of JIN et al. (2004) was employed to compare differences among the 

Elisa (either commercial or recombinant) and HI test in evaluating sera obtained from 

experimentally vaccinated commercial broiler. The formula is given by the function: 

                   Agreement ratio =   
DC

xBA

+
+ %100

  

Where: A = the total number of positive sera examined by HI test subtracted from the 

total number of positive sera   examined by Elisa test. 

              B = the total number of negative sera examined by HI test subtracted from 

the total number of negative sera examined by Elisa test. 

              C = total positive number of sera examined by Elisa test. 

              D = total negative number of sera examined by Elisa test 
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4. RESULTS 

4.1 Expression of recombinant polypeptides in P. pastoris 

4.1.1 PCR 

The coding sequences of genes of interest were isolated and amplified from 

influenza A subtype H5N1 (A / Thailand / 1(Kan-1) / 2004) using primers designed 

with Xho1 and Not1 restriction sites (Figure 4).  The size of the H5-P1, H5-P2, H5-P5 

and H5-HA1 coding sequences were 159, 329, 128 and 1007 bp, respectively. 

 

 

  

 

 

 

 

 

 

 

 
 
Figure (4): PCR amplification of truncated sequences of influenza A subtype H5N1 (A 

/ Thailand / 1(Kan-1) / 2004). Lanes (1 and 2): amplification of P1, lane (3): negative 

control. Lanes (4 and 5): amplification of P2. Lane (6): amplification of P5. Lane (7): 

amplification of HA1.  

4.1.2 Molecular cloning 

PCR products were digested using Xho1 and Not1, purified and ligated with pAOX. 

After transformation of pAOXH5-P1, pAOXH5-P2, pAOXH5-P5 and pAOXH5-HA1 to 

E-coli cells, many colonies arose on selecting plates. Single colonies were cultured in 

liquid medium (LS-LB) for plasmid isolation. Double digestion of pAOXH5-P1, 

pAOXH5-P2, pAOXH5-P5 and pAOXH5-HA1 resulted in large segments (2614, 

2400, 2454 and 2799 bp, respectively) and small segments (1224, 1206, 1183 and 

1716 bp, respectively) (Figure 5). Plasmids containing genes of interest were 

sequenced to confirm the presence of desired sequences. Linearized plasmids were 

analyzed on agarose gel electrophoresis (Figure 6). 

 

bp     M 1  2   3   4   5          6   M       bp           7       M      
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Figure (5): Analysis of plasmids containing gene of interest. 

A) Double digest of pAOX-HA1 using Bgl II restriction enzyme resulting in a large 

segment (2799 bp) and a small segment (1716 bp). Lanes 1-4 different clones 

subjected to double digest. Lane 5: intact pAOX-HA1 plasmid. B) Double digest of 

pAOX-P5 using Bgl II and Xho1 restriction enzymes resulting in a large segment 

(2453 bp) and a small segment (1183 bp). Lanes 1-7 are different clones. 

 

 

 

 

 

 

 

 

 

 

Figure (6): Plasmids linearization. A) Linearized pAOX-P5 after restriction digest with 

BstX1 (size 3636 bp). B) Linearized pAOX-HA1 after restriction digest with BstX1 

(size 4515 bp). 

4.1.3 Pichia pastoris transformation  

Linearized plasmids were transformed successfully into P. pastoris either SMD1168H 

or GS115 strains. The colonies appear circular with a size of 1- 5 mm. The number of 

colonies ranged from 80 - 108 colonies in GS115 yeast cells and in case of 

SMD1168, the colonies number ranged from 10 – 20 colonies. Presence of the 

respective gene of interest was verified by colony PCR using gene specific primers 

and promoter specific primers (Figure 7). 
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Figure (7): Verifying the gene of interest in positive selected transformants by colony 

PCR using gene specific and promotor specific primers. 

A: Colony PCR of different P1 clones grown on SMD1168H (lanes 1-6) and GS115 

(lanes 8-13). Lanes (7 and 14) are untransformed SMD1168H and GS115, 

respectively. Positive P1 transformants result in a 160 bp fragment.  

B): Colony PCR of different P2 clones grown on SMD1168H (lanes 2-7) and GS115 

(lanes 9-14). Lanes 1 and 8 untransformed SMD1168H and GS115, respectively. 

Positive P2 transformants result in a 330 bp fragment.  

C): Colony PCR of different P5 clones grown on SMD1168H (lanes 1-5). Lanes (6 

and 7) untransformed SMD1168. Positive P2 transformants result in a 251 bp 

fragment.  

bp  M      1    2    3    4    5     6    7    8    9   10   11   12   13   14       

bp   M     1     2     3     4     5     6     7     8      9    10   11  12   13  14 
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4.1.4 Expression and analysis of recombinant polype ptides 

P1 and P2 polypeptides were expressed in YP 2 % methanol, pH 8 for 24 hrs / 29 °C 

/ 250 rpm. Purification was carried out using Ni-NTA chromatography under natural 

condition (Figure 8.A). For P1 polypeptide, washing and elution were achieved by 

increasing imidazole to 100 mM (wash buffer 1 and elution buffer 1). Washing of P2 

polypeptide was done by lowering pH to 6.5 and eluted at pH of 2-3 (Wash buffer 2 

and elution buffer 2). P5 polypeptide was demonstrated in cell lysate of both GS115 

and SMD1168H Pichia cells by SDS-PAGE and Western blot after induction in YP 2 

% methanol, pH 6. The expected band was detected in supernatant of SMD1168H 

after expression in YP 2 %, pH 8. For purification, P5 polypeptide could not bind to 

Ni-NTA, neither under natural nor under denaturing condition. It was purified by lectin 

affinity chromatography using wash buffer 3 and elution buffer 3 (Figure 8.A). P1, P2 

and P5 polypeptides were analyzed in culture supernatant 24 hrs after induction by 

Western blot using anti-His-tag antibodies (Figure 8.B). rHA1 polypeptide was 

demonstrated in cell lysate and supernatant of SMD1168H cells by SDS-PAGE and 

Western blot 24, 36 and 48 hrs after induction of expression, some protein 

degradation was observed as demonstrated by Western blot. Addition of 2 µg 

Pepstatin / ml prevented protein degradation. For purification, rHA1 polypeptide could 

not bind to Ni-NTA under natural condition; however, it binds under denaturing 

condition using 4 M urea. 1 mM PMSF was added to prevent the degradation during 

purification of rHA1 polypeptide. Washing was done using 10 mM imidazole (wash 

buffer 1).  However, the desired rHA1 polypeptide was eluted using 100 mM 

imidazole (elution buffer 1). Analysis of rHA1 polypeptide by SDS-PAGE and 

Western blot showed a broad smear above the expected size (above 39.6 kDa). 

Analysis of rHA1 polypeptide treated with Endo Hf by SDS-PAGE and Western blot 

showed a band which is in accordance with the expected size (Figures 8.C). It 

reacted with lectin from Con A which reveals the presence of glycosylation (Figure 

8.D). Expression of rHA1 in the presence of tunicamycin lead to partial 

deglycosylation but reduced the expression level. On the other hand, other 

glycosylated polypeptides (P2 and P5) could not react with Con A and could not 

deglycosylated with Endo Hf. MALDI-TOF analysis of P1 polypeptide showed a 

molecular weight of 7592.1 Da [M+ H]
+
 compared to the theoretical mass: 7591,52 

Da (Figure 9) 
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Figure (8): Analysis of recombinant polypeptides by SDS-PAGE and Western blot. 

A and B): SDS-PAGE and Western blot analysis of purified P1, P2 and P5 

polypeptides expressed in P. pastoris cells (strain SMD1168H) and secreted into 

supernatant, respectively. Lane 1): P1 polypeptide purified by nickel affinity 

chromatography, theoretical molecular mass 7.5 kDa. Lane 2): P2 polypeptide 

purified by nickel affinity chromatography, theoretical molecular mass is 13.9 kDa. 

Multiple bands are due to different glycosylation as P2 contains a glycosylation site. 

Lane 3) P5 polypeptide purified by lectin affinity chromatography, theoretical 

molecular mass is 6.5 kDa. The increase in size is attributed to presence of a 

glycosylation site.  

C): Western blot analysis of rHA1 polypeptide. Lane 1: purified rHA1, Lanes 2, 3, 4, 

5, 6 and 7 are purified rHA1 and treated with Endo Hf  for 15 min, 30 min, 1hr, 2 hrs 

3 hrs and 4 hrs, respectively.   
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D): Blot of rHA1 polypeptide using concanavalin. Lanes (1, 2 and 3):  purified rHA1 

polypeptide.  Lanes 4 and 5: rHA1 treated with Endo Hf for 15 min and 2 hrs, 

respectively, and blotted using concanavalin. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (9): MALDI-TOF analysis of P1 polypeptide. The molecular mass of P1 

polypeptide is 7592.1 Da  [M + H]+ (theoretical mass: 7591,52 Da). 

 

4.1.5 Expression of rHA1 in pichia pastoris by high-density cell fermentation 

rHA1 was expressed in large scale using high-density cell fermentation. Analysis of 

rHA1 at 12, 24, 36 and 48 hrs after induction revealed that expression of rHA1 at 28 

°C for 36 hrs is the best cultural condition for ob taining better expression level. The 

expression level of rHA1 produced with optimized fermentation process reached 80 

mg / L, which is ten-fold higher than the one produced in regular shaking flask. The 

best method for concentration of rHA1 before purification was with ammonium sulfate 

80 % at 4 °C. Concentration of rHA1 with ammonium sulfate fac ilitates the purification 

of large volumes of rHA1. 
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4.2 Immunogenicity of recombinant polypeptides 

4.2.1 Immunogenicity of recombinant polypeptides in  mice 

Vaccination of mice with recombinant polypeptides P1, P2 and rHA1 induced 

influenza H5 specific antibodies based on recombinant Elisa, whole H5N1 Elisa, as 

well as IFA. Elisa titres were calculated as half-maximal OD450. Elisa plates coated 

with the same antigen that was used in vaccination showed higher titres than plates 

coated with inactivated H5N1 (Figures 10, 11 and table 5). Sera of vaccinated mice 

were positive by IFA performed on Vero cells infected with H5N1 virus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0,5

1

1,5

2

2,5

3 3,5 4 4,5 5 5,5 6

Log 10 serum dilution

O
D

45
0

2 boosters 5 boosters pre-immune

0

0,5

1

1,5

2

2,5

3

3 3,5 4 4,5 5 5,5 6

Log 10 serum dilution

O
D

45
0

2 boosters 5 boosters pre-immune
A 

B 



 80 

 

 

 

 

 

 

 

 

 

 

Figure (10): Optical densities (OD450) of mice sera vaccinated with rHA1 polypeptide. 

Sera dilutions were expressed as reciprocal log10. A: Mice were vaccinated with rHA1 

polypeptides using immunization protocols 1 (IP1) Elisa plates were coated with P1 

polypeptide (50 ng / well). Elisa titres calculated as half-maximal-OD450 were 57517 

and 98356 after 2 and 5 boosters, respectively. B: Mice were vaccinated with rHA1 

polypeptides using immunization protocols 2 (IP2) Elisa plates were coated with P1 

polypeptide (50 ng / well). Elisa titres were 18880 and 103898 after 2 and 5 boosters, 

respectively. C: Mice were vaccinated with rHA1 polypeptide using IP1 and IP2. Sera 

were analyzed after 5 boosters with Elisa plates coated with rHA1 polypeptide (50 ng 

/ well). Elisa titres were 140325 and 158622, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure (11): Elisa titres of mice vaccinated with rHA1 polypeptide. Elisa plates were 

coated with different antigens (rHA1, P1 and whole H5N1). Elisa titres were 

expressed as reciprocal log10. 
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Table (5): Immunogenicity of recombinant polypeptid es in mice using Elisa  

      Elisa titres  Antigen used in 
vaccination 

Immunization 
protocol 

Homologous Elisa 
antigen   

(50 ng / well) 

Whole H5N1 Elisa 
antigen 

(1 HAU / well) 

IP1           12,378 151 P1 polypeptide 

IP2 133,705 2,542 

IP1 71,619 2,237 P2 polypeptide 

IP2 >204,800 6,188 

IP1 140,325 13,935 rHA1 polypeptide 

IP2 158,622 12,346 

 

IP1 and IP2 are two different immunization protocols (see materials and methods). 

Elisa plates were coated with homologous antigen (the same antigen used in 

vaccination) or whole H5N1 antigen. Titres were calculated as half-maximal OD450. 

4.2.2 Immunogenicity of recombinant polypeptides in  chickens  

Immunogenicity of P1, P2, P5 and rHA1 polypeptides was also evaluated in inbred 

commercial layer chickens in comparison with prepared inactivated H5N1 Thailand 

virus (3.2.127). Analysis of sera with Elisa showed H5 specific antibodies when Elisa 

plates coated with the same antigen used in vaccination or with whole inactivated 

H5N1 (Table 6). Serum samples obtained from chickens vaccinated with P1, P2 and 

rHA1 were positive by IFA performed on Vero cells infected with H5N1 Thailand 

isolate. Seroconversion of chickens immunized with P1 and rHA1 polypeptides was 

significant (p < 0.0001) at 4th week post primary vaccination, as analyzed by rElisa 

(Figure 12.A and B) and IFA (Figure 13). P2 polypeptide induced specific 

seroconversion at 5th week post primary vaccination. However, P5 polypeptide 

induced no significant seroconversion at any time of serum analysis. AGID was 

positive only in chickens vaccinated with inactivated H5N1. Moreover, µNT revealed 

presence of low neutralizing antibody titres in chickens vaccinated with P1, P2 and 

rHA1 polypeptides compared with inactivated H5N1 (Table 7). IgY could be detected 

in egg yolk of chickens immunized with rHA1 and P1 polypeptides at 4th and 5th week 

post primary vaccination, respectively, as assessed by recombinant Elisa using 
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homologous antigen that used in vaccination or whole H5N1. Analysis of IgY in egg 

yolk of chickens vaccinated with rHA1 revealed a lower titres than in serum based on 

whole H5N1 Elisa at 8 weeks post primary vaccination (Figure 12.C).  Egg yolk 

analysis of chickens vaccinated with P1 and rHA1 polypeptides tested positive by 

IFA. However, H5 specific antibodies could not be detected in egg yolk of chickens 

immunized with P2 and P5 polypeptides 

 

Table (6): Results of Elisa in commercial layer chi ckens vaccinated with 

recombinant polypeptides 

 
bMean Elisa titres (range) 

Homologous antigen H5N1 antigen  

Antigen aNo of 

chickens  

6- weeks cPV 8- weeks PV 8- weeks PV 

P1 4 205 (152 -319) 1924 (470- 2500) 907 (650- 1200) 

P2 4 130 (98- 378) 318 (218- 413) 133  (79 – 213) 

P5 4 89 (81- 93) 145 (87- 218) dn.d. 

rHA1 4 1059 (418-
1395) 

6157 (1220 – 
9173) 

1840 (1120-
3200) 

Inactivated H5N1 4 670 (340- 1212) 2415 (1870-2960) 

Control 4 72 (67 – 87) 84 (83- 89) 
 

aEach bird vaccinated with 100 µg of respective polypeptide mixed with 100 ug 

Gerbu adjuvant. Chickens vaccinated with inactivated H5 received a dose of 8 HAU. 
bElisa titres were calculated as half-maximal OD450 

cPV: Post primary vaccination 
dNot done. 
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Figure (12): Immunogenicity of recombinant polypeptides in commercial layer 

chickens. A and B): Mean log10 Elisa titres of chickens (sera and egg yolk) 

vaccinated with rHA1, and P1 polypeptides at intervals post primary vaccination, 

respectively. Elisa plates were coated with homologous antigen used in vaccination. 

Asterisks (*) indicate significant increase antibody levels compared with negative control. C): 

Analysis of IgY in serum and egg yolk of chickens immunized with rHA1 at 8 weeks 

post primary vaccination. Elisa plates were coated with whole H5N1 antigen.  
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Table (7): Summary results of humoral immune respon se of chickens vaccinated 

with recombinant polypeptides 

 

Vaccination 

aIFA 

(Positive No. / 

examined No.) 

bAGID  

(Positive No. / 

examined No.) 

cµNT 

P1  4/4  0/4 16-32 

P2  4/4  0/4 2-8 

P5   0/4 0/4 dn.d. 

rHA1  4/4 0/4 32-64 

Inactivated H5N1 4/4 4/4 132-264 

Control 0/4 0/4 n.d. 

 
aIFA was don on Vero cells infected with  H5N1 (A/Thailand/1/ Kan-1/2004) virus. 

 bAgar gel immunodiffusion test performed using prepared H5N1 (A/Thailand/1/ Kan-

1/2004) antigen.  
cMicroneutralization test, the average OD450 was determined for triplicate wells of 

virus-infected and -uninfected control wells. The endpoint titre was expressed as the 

reciprocal of the highest dilution of serum with OD450 value above the mean + (3 x 

standard deviation) of the negative control.  
dNot detected. 

 

 

 

 

 

 

 

Figure (13): Analysis of chicken serum with IFA performed on Vero cells infected with 

H5N1 (A / Thailand / 1 / Kan-1 / 2004) virus. A): Sera were obtained from chickens 8 

weeks post primary vaccination with rHA1. B): Sera were obtained from chickens 8 

weeks post primary vaccination with P1 polypeptide. C: Negative control  
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4.3 Development of recombinant Elisa for detection of influenza A subtype H5 

antibodies 

4.3.1 Analysis of serum with HI test  

All serum samples (179) were analyzed by HI using commercial homologous (H5N2 

(A / chicken / Mexico / 232 / 94 / CPA) antigen. Out of 179 serum samples, 109 were 

positive by HI. Twenty five of these positive serum samples were retested by HI using 

heterologous (A / Thailand / 1/ Kan-1 / 2004) H5N1 antigen to be used for 

determination the validity of rElisa. Haemagglutination inhibiting titres ranged from 4 - 

8 log2 (geometric mean = 6.1) and 3 - 6 log2 (geometric mean = 4.7) using 

commercial homologous and hetrologous antigen, respectively (Table 8). All 25 sera 

obtained from influenza non-vaccinated chickens showed no Haemagglutination 

inhibiting titres using commercial homologous H5N2 or hetrologous H5N1 Thailand 

antigens.  

 

Table (8): Distribution of haemagglutination inhibi ting antibodies in chickens 

vaccinated with commercial inactivated H5N2 vaccine  using 2 different HA 

antigens  

 

AI-HI log2 Antigen Sera 

No 1 2 3 4 5 6 7 8 

Geometric 

Mean 
aHomologous    3 6 10 3 3 6.1 
bHeterologous 

25 

25   3 9 5 8   4.7 

 
aCommercial H5N2 (A / chicken / Mexico / 232 / 94 / CPA) 
bH5N1 (A / Thailand / 1 / Kan-1 / 2004) antigen 

4.3.2 Reactivity of rHA1 with chicken sera 

To study the reactivity of chicken serum samples with rHA1 antigens, twenty five 

serum samples that proved to be positive by HI using homologous and hetrologous 

antigen were analyzed by Western blot. Results showed that antibodies of chicken 

sera were reacted with rHA1 polypeptide. Sensitivity and specificity of Western blot 

were 100 %. All sera obtained from non vaccinated chicken sera were negative by 

Western blot (Table 9).  
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4.3.3 Recombinant Elisa  

Twenty five serum samples that proved to be positive by HI using homologous and 

heterologous antigen as well as by Western blot were analyzed by rHA1 and P1 

Elisa. At serum dilution of 1:100 and above, the optical densities of the negative sera 

plateaued whereas the positive sera continued to show a high optical densities value 

(Figure 14). Accordingly, serum dilution 1:100 was selected as an optimum dilution to 

be used in single dilution Elisa. To analyse the validity of recombinant Elisa, these 

serum samples were tested by single dilution Elisa (using P1, rHA1 and full H5N1 

antigens) and the results were compared with HI, Western blot and AGID. Summary 

results were shown in table (9). The specificities of rHA1-Elisa, rP1-Elisa and whole 

H5N1 Elisa were 100 %, 72 % and 100 %, respectively, and the sensitivities were 

100 %, 80 % and 100 %, respectively. AGID showed low sensitivity (52 %) but high 

specificity (100 %).  

Table (9): Overall sensitivity and specificity for recombinant Elisa compared 

with other serological tests  

aSensitivity: the probability of correctly identifying true positive (vaccinated). 
bSpecificity: the probability of correctly identifying true-negative (non vaccinated). 
cElisa plates were coated with rHA1 polypeptide (50 ng / well). 
dElisa plates were coated with P1- polypeptide (50 ng / well). 
eElisa plates were coated with whole inactivated H5N1 (A / Thailand / 1 / Kan-1 / 

2004) antigen (1HA U/ well). 
fHI was performed using commercial H5N2 (A / chicken / Mexico / 232 / 94 / CPA) 

and H5N1 (A / Thailand / 1 / Kan-1 / 2004) antigen. 

 gWestern blot was performed using rHA1 polypeptide as antigen. 
hAgar gel immunodiffusion test was done using H5N1 (A / Thailand / 1 / Kan-1 / 

2004) antigen. 

Test Non vaccinated 

positive No / 

examined No. 

Vaccinated 

positive No / 

examined No. 

aSensitivity % bSpecificity % 

crHA1-Elisa 0/25 25/25 100 100 
drP1-ELisa 7/25 20/25 80 72 
eWhole H5N1-Elisa 0/25 25/25 100 100 
fHI 0/25 25/25 100 100 
gWb 0/25 25/25 100 100 
hAGID 0/25 13/25 52 100 
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Figure (14): Analysis of chicken sera with rHA1- Elisa. Plates were coated with rHA1 

(50 ng / well). Positive sera were obtained from commercial broiler chickens (n = 25) 

immunized once with commercial inactivated H5N2 vaccine at 7-day-old. Negative 

sera were obtained from influenza non- vaccinated chickens (n = 25). Serum dilutions 

were expressed as reciprocal log10. 

 

 

4.3.4 Agreement between rHA1-Elisa and commercial E lisa and HI  

To study the agreement between rHA1-Elisa and cElisa and HI, all serum samples 

(179) were analysed by rHA1-Elisa, cElisa and HI (using Thailand isolate antigen). 

Out of 179 serum samples, 109, 139 and 130 positives were obtained by HI test, 

cElisa and rHA1-Elisa, respectively, (Table 10). The relative sensitivity and specificity 

between rHA1-Elisa, and cElisa were 93.5 % and 100 %, respectively (table 11). 

Relative sensitivity and specificity between rHA1-Elisa, and HI was 100 % and 82.8 

%, respectively (Tables 12).The agreement ratio between rHA1-Elisa and HI was 

84.9 % whereas between cElisa and HI was 76.5 %. Negative serum samples by 

rHA1-Elisa were confirmed by neutralization test (NT) using H5N1 (A / Thailand / 1/ 

Kan-1 / 2004) virus. 
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Table (10): Agreement ratio between rElisa and cEli sa and HI 

Test Sera No Positive Negative Positive 

ratio 

Negative 

ratio 
arHA1- Elisa 179 130 49 72.6 27.3 

cElisa 179 139 40 77.7 22.3 

HI 179 109 70 60.9 39.1 

 
aElisa plates were coated with rHA1 polypeptide 50 ng / well in coating buffer. 
bCommercial Elisa (Synbiotic Corporation 11011 VIA San Diego, CA 92127). 
cHaemagglutination inhibition test was done using hetrologous H5N1 (A / Thailand  / 

1 (Kan-1) / 2004) antigen. 

Table (11): Overall relative sensitivity and specif icity between rHA1-Elisa, and 

commercial Flock check Elisa 
bc Elisa  arHA1 Elisa 

 Positive Negative 

Total 

 

Positive 130 a 0b 130 a+b  

Negative 9c 40d 49 c+d  

Total 139a+c 40b+d 179 a+b+c+d 

 
aElisa plates were coated with rHA1 polypeptide.  
bcElisa: Commercial flock check Elisa 

Relative sensitivity = a / a + c = 93.5 %. Relative specificity = d / b + d = 100 %. 

Table (12): Overall relative sensitivity and specif icity between rHA1-Elisa, and 

HI 
bHI  arHA1- Elisa 

 Positive Negative 

Total 

 

Positive 109 a 12b 121 a+b  

Negative 0c 58d 58 c+d  

Total 109a+c 70b+d 179 a+b+c+d 

 
aElisa plates were coated with  50 ng / well rHA1 polypeptide  
bHI was done using homologous commercial H5N2 (A / chicken / Mexico / 232 / 94 / 

CPA) antigen. 

Relative sensitivity = a / a + c = 100 %. Relative specificity = d / b + d = 82.8 %. 
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4.5 Validity of rHA1 Elisa for analysis of duck ser a 

HI analysis of duck sera showed that all samples obtained from ducks vaccinated 

with commercial inactivated H5N2 showed a Haemagglutination inhibiting titres 

ranged from 4 log2 – 8 log2 (geometric mean 5 log2) using H5N1 (A / Thailand / 1/ 

Kan-1 / 2004) antigen. Sera obtained from non- vaccinated ducks showed no 

Haemagglutination inhibiting antibodies. Analysis of duck sera with rHA1-Elisa 

showed that rHA1 could react with H5 antibodies in duck sera (Figure 15).   

Table (13): Distribution of Haemagglutination inhib iting antibodies in duck 

vaccinated with commercial inactivated H5N2  

AI- HI log2 Sera Sera 

No 0 1 2 3 3 4 5 6 7 8 

GM 

Vaccinated  5      3 1   1 5.0 

Non-vaccinated 3 3          0.0 

 

HI was performed using commercial H5N2 (A / chicken Mexico / 232 / 94 / CPA) 

antigen 
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Figure (15): Analysis of duck sera with rHA1-Elisa. Plates were coated with rHA1 (50 

ng / well). Positive sera were obtained from ducks (n = 5) immunized 3 times with 

commercial inactivated H5N2 vaccine. Negative sera were obtained from influenza 

non- vaccinated ducks (n = 3). Serum dilutions were expressed as reciprocal log10. 
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5. DISCUSSION 

Highly virulent H5 influenza viruses have been isolated from several recent outbreaks 

in poultry (BAHGAT et al. 2009; BEAN et al. 1985; CAPUA and ALEXANDER 2009; 

HORIMOTO et al. 1995; TANG et al. 2009). H5N1 influenza virus was transmitted 

from chickens to humans. Viruses isolated from humans and from birds were very 

similar in their genetic content and phenotypic features, including virulence for 

mammals (CLAAS et al. 1998; SUAREZ et al. 1998). Outbreaks of AI in poultry plays 

an important role in the generation of pandemic viruses for humans (CAPUA and 

ALEXANDER 2007; CAUTHEN et al. 2000; LAHARIYA et al. 2006). Emergency 

vaccination for AI has become an acceptable tool, in conjunction with other 

measures, for combating the spread of AI. Using emergency vaccination to reduce 

the transmission rate could provide an alternative to pre-emptive culling to reduce the 

susceptibility of healthy flocks at risk. The effectiveness of such program depends on 

variables such as the density of poultry flocks in the area, level of biosecurity and its 

integration into the industry, characteristics of the virus strain involved, and practical 

and logistical issues such as vaccine availability and adequate and speedy 

administration (CAPUA et al. 2009). The traditional egg-based vaccines have been 

successfully used for more than 50 years to prevent influenza. They are reliable, 

effective (if there is a good match), and affordable. However, the production cycle of 

the egg-based vaccines is lengthy and heavily dependent on egg supply and unable 

to be developed quickly in response to the urgent need in an influenza pandemic 

(COX 2005; OSTERHOLM 2005). To meet the challenge of a potential influenza 

pandemic, however, a reliable expression system and a quick, efficient downstream 

purification process are needed.  In the present study, truncated sequences were 

expressed in Pichia pastoris to be used in vaccination and diagnostic purposes. 

Immunogenic regions of H5 influenza 

HA, a homotrimeric class I membrane glycoprotein, is quantitatively the major surface 

protein of influenza virus and the major antigen against which neutralizing antibodies 

are elicited. Therefore, recombinant HA is favourable antigen as a candidate 

influenza vaccine. HA mediates the attachment of the virus to the target cell through 

specific binding with sialic acid-containing determinants and, following internalization, 

the release of the viral content into the attacked cell (WHITE et al. 1982; WILEY and 

SKEHEL 1987). HA-specific antibodies are protective as a result of their ability to 

prevent virus attachment and penetration of the host cell, and presumably by 
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interfering with the low-pH-induced conformational change of the HA molecule 

needed for fusion (KIDA et al. 1982; KIDA et al. 1985). Because of the immune 

selection pressure, HA is the viral component which is most important in antigenic 

drift. The HA monomer is synthesized as a single polypeptide chain which undergoes 

post-translational cleavage at two sites: the N-terminal signal sequence is removed 

and, depending on the host cell and virus strain, the molecule is cleaved, with the 

removal of one or more intervening residues, resulting in two polypeptide chains 

called HA1 (36 kDa) and HA2 (27 kDa), linked via a disulfide bridge (SINGH et al. 

1990; SKEHEL et al. 1982). A c-terminal stretch of hydrophobic amino acids anchors 

HA to the viral membrane and, though not essential for secretion, this sequence 

plays a major role in the trimerization process (SINGH et al. 1990). The immunogenic 

potential of yeast derived HA may be appropriate for the development of an easily 

adaptable, safe and economic alternative to the currently used influenza vaccines. 

Furthermore being a recombinant expression system, it may be possible to improve 

its protective properties by genetic engineering. Recombinant protein vaccine was 

found to be a feasible approach to a variety of pathogens in poultry for improvement 

of new vaccines; i.e  IBD (OMAR et al. 2006), IB (YANG et al. 2009), Coccidiosis 

(DING et al. 2008; LILLEHOJ et al. 2000), ND (LEE et al. 2010), Runting Stunting 

Syndrome (SELLERS et al. 2010), Reo virus (WU et al. 2009), AI  (LIN et al. 2008; 

XIE et al. 2009). Peptide vaccination has many advantages and could be an 

alternative vaccine to commercially available vaccines. Subunit vaccines based on 

conserved antigens provide broader protection (TOMPKINS et al. 2007). The 

influenza HA glycoprotein is the primary target of neutralizing antibodies (Wiley et al., 

1981). The H3 structure was initially used to characterize the antigenic structure of 

H5 (PHILPOTT et al. 1990). In this study truncated HA polypeptides were expressed 

to analyze their potential use in vaccination and for diagnostic purposes. Five 

neutralizing epitopes were identified (designated A-E) and their location was mapped 

on the three-dimensional model of the H3 HA molecule (WILEY et al. 1981). The 

sequence and three-dimensional structure of the HA antigenic epitopes has been 

characterized in detail only in the H3 subtype of influenza A (WILEY et al. 1981). The 

H3 three dimensional model has since been used in studies of the H1 subtype 

(CATON et al. 1982), the H2 subtype (TSUCHIYA et al. 2001) and, to a limited 

extent, the H5 subtype (PHILPOTT et al. 1990). The region 136-141 corresponds to 

site A in the H3 structure (140±145 in H3 numbering) and to site Ca2 in H1 (CATON 
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et al. 1982), forming a loop at the side of the HA molecule. One amino acid change in 

this region (position 145, H3 numbering) was demonstrated in an H5 escape mutant 

by (PHILPOTT et al. 1990). The amino acid changes at positions 152 and 153 (156 

and 157 in H3 numbering) correspond to the area involved in the formation of site B 

in the H3 molecule (PHILPOTT et al. 1990) showed a change in the H5 molecule at 

position 156 (H3 numbering). The H5 area 124-129, which corresponds to 129-133 in 

the H3 sequence, is located outside any site in the H3 HA structure recognized by 

virus-neutralizing mAbs (WILSON et al. 1981b) but partially overlaps a region 

involved in the antigenic site Sa in H1 HA (CATON et al. 1982). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (16): Structural identification of the antibody- binding sites of influenza H3 and 

H5 according to WILSON et al. (1981b) and KAVERIN et al. (2002), respectively.  

A): HA contains 5 antigenic sites designated A (140-146), B (187-196 and 155-160), 

C (275- 278 and 53 - 54), D-(201-202), and E (60-83). 

 B): Structural identification of the antibody- binding sites of influenza H5. Site A is a 

conformational epitope but not conserved in H5 (136- 141) and 140- 145). Site B is 

described as a discontinuous epitope (152- 153) and 156-157 and 124-129 and 129-

133.  
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In this study, four regions were chosen for production of recombinant polypeptides 

and designated P1, P2, P5 and rHA1 (Table 1 and Figure 17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (17): Crystal structure of influenza A subtype H5 virus monomer 

(1JSM.pdb). The location of coding sequences used for expression within HA1 was 

coloured with WebLab ViewerLite program.  

 

P1 polypeptide, corresponds to the neutralizing epitope of Site E of H3 (WILEY et al. 

1981). Alignment of H5 revealed that this sequence is conserved in H5 viruses (40 

amino acids residues long). It is worthy to mention that H5 site that is equivalent to 

site B of H5 appears to be more complex in H5 than in H3. Site B in H5N2 (A / 

Mallard / Pennsylvania / 10218 / 84) contains not only the region present in H3 site B 

but also the region 124- 129 (KAVERIN et al. 2002), which partially overlaps site Sa 

of H1 (CATON et al. 1982). Accordingly, P2 epitope was chosen as it consists of the 

receptor binding site, site D and parts of site B, conserved in H5, 97 amino acid 

residues long, contains a glycosylation site.  P5 is a conformational epitope in H5 

(KAVERIN et al. 2002), not conserved, 30 amino acid residues long and contains a 

glycosylation site. Also, rHA1 which contains the majority of antigenic determinants 

P2 
P5 

P1 

HA1 

HA2 
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are responsible for generation of virus-neutralizing antibodies, 320 amino acid 

residues long and contains 5 glycolsyation sites. 

P. pastoris expression 

Recombinant HA proteins can be produced in different ways such expression in 

insect cell system (JOHANSSON 1999; LAVER and WEBSTER 1976; POWERS et 

al. 1995; TREANOR et al. 2001; 2006) or in the recombinant baculovirus expression 

system in insect larvae (SUGIURA et al. 2001). Previous baculovirus / insect cell 

systems have been used to express HA genes isolated from AI subtypes. However, a 

protein band corresponding to rHA1 from baculovirus infected cells was not observed 

by SDS-PAGE of total cell protein. This could have been due to a low level of 

expression or alternatively incorrect glycosylation of the polypeptide in insect cells or 

toxicity of insect cells (POSSEE 1986). HA1 was expressed in monolayer or 

suspension culture insect cells by infection with the recombinant baculovirus (NWE et 

al. 2006). Although E. coli expression system is not complicated and high amount of 

recombinant protein could be produced when comparing to other production system, 

E. coli often leads to production of the expressed proteins in insoluble inclusion 

bodies (TSUMOTO et al. 2003). Accumulation of expressed foreign protein in E. coli 

in the discrete form of the inclusion bodies is the greatest drawback of bacterial 

expression system (MARSTON. 1986). P. pastoris has the potential of high-level 

expression and rapid growth to very high cell densities in inexpensive media 

(ROMANOS et al. 1992). In addition, P. pastoris is a highly successful system for the 

production of a variety of heterologous proteins. Choosing of this particular 

expression system can be attributed to several factors. P. pastoris has the ability to 

produce foreign proteins at high levels, either intracellular or extracellular. In addition 

P. pastoris has the capability of performing many eukaryotic post-translational 

modifications, such as glycosylation, disulfide bond formation and proteolytic 

processing. Moreover, P. pastoris system strong promoters are available to drive the 

expression of a foreign gene(s) of interest thus enabling production of large amounts 

of the target protein(s) with a relative lower cost than most other eukaryotic systems 

(CEREGHINO et al. 2002; DALY and HEARN 2005). Yeast is the favored alternative 

host for expression of foreign proteins in research, industrial or medical use 

(HITZEMAN et al. 1981; WEIDNER et al. 2010). As a food organism, it is highly 

acceptable for the production of pharmaceutical proteins. Additional advantages of P. 

pastoris are the availability of complete genome sequences, the stable high copy 
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numbers of nuclear plasmids and ability to secrete the target protein (HITZEMAN et 

al. 1990). Accordingly, P. pastoris was chosen as an expression system to be used in 

this study. Coding DNA fragments of full length or epitope-based truncated 

sequences of influenza A subtype H5N1 (A / Thailand / 1 (Kan-1) / 2004) were cloned 

in to pAOX vector for recombinant production using gene specific primers. 

Appropriate expression cassettes were used for transformation of P. pastoris cells 

(strains GS115, SMD1168H). E- coli provide a well defined simple system for stable 

storage of the construct as well as for isolation of large quantities for verification of 

the inserted sequence. Accordingly, before transformation to yeast genome, pAOX 

plasmids containing inserts were transformed into XL10®-Gold ultracompetent E-coli 

cells and plasmids were isolated for analysis. Plasmids were subjected to double 

digestion with restriction enzymes. For further analysis, the gene of interest was 

sequenced. Transformation is a crucial step in hetrologous protein expression barrier 

such as cell walls and cell membrane restrict effective uptake of foreign DNA. 

Moreover the expression cassette has to integrate by homologous recombination, 

resulting eventually in stable transfromants (CEREGHINO et al. 2002; ORR-

WEAVER et al. 1981). To study several clones for their protein production capacity, it 

is necessary to obtain sufficient large numbers of transformants. The pAOXα vector 

integrates at the AOX1 site of the Pichia genome. With the developed improved 

transformation protocol described in by Dr. Kathrin Rall (Virology institute, Leipzig 

University), coding DNA sequences of P1, P2, P5 and rHA1 were cloned in frame 

downstream of the alpha factor leader into pAOXα. The insert length varied from 159 

to 1007 bp. In our transformation protocol many colonies of transformed cells arose 

either GS115 or SMD1168H. Our own experience shows that not all transformed 

clones express the desired peptide or protein at high levels. Consistently, several 

clones completely failed in recombinant protein production and growth of such clones 

is not helpful. Selected clones were used for secretory expression of polypeptides 

fused to his-tag facilitating detection in culture supernatants using Western blot. The 

four developed polypeptides were identified by SDS-PAGE followed by Western blot 

in both cell lysate and culture supernatant. Secretion requires the presence of a 

signal sequence on the foreign protein to target it to the secretory pathway. While 

several different secretion signal sequences have been used including the native 

secretion signal present on some heterologous proteins, success has been variable. 

However the secretion sequences from S. cervisae factor PrePro peptide have been 
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used with the most success. S. cervisae factor prepro peptide consists of a 19 aa 

signal pre-sequence followed by a 66- residue pro sequence (KURJAN and 

HERSKOWITZ 1982). Signal processing starts with the removal of the pre signal by a 

signal peptidase in the endoplasmic reticulum followed by cleavage of the pro leader 

sequence between aa Arginine and Lysine by kex2 endopeptidase. Finally Glu-Ala 

repeats are cleaved by ste13 protein (BRAKE et al. 1983). The close proximity 

proline residues can influence cleavage efficiencies of Kex2 and Ste3 proteins and 

the tertiary structure formed by a foreign protein may protect cleavage sites from 

these proteases. 

Glycosylation analysis 

P. pastoris has the potential of performing post-translational modifications including 

N-glycosylation. It begins in the endoplasmic reticulum (ER) with the transfer of a 

lipid-linked oligosaccharide unit Glc3Man9GlcNAc2 (Glc: Glucose GlcNAc: N. 

acetylglucosamine) to Asparagine Asn-Xser / Thr. (CEREGHINO et al. 2002; DALY 

and HEARN 2005). Analysis of the N-linked carbohydrates showed the presence, 

predominantly, of (N-acetylglucosamine)2 Man8–10 residues (SAELENS et al. 1999). 

This result is in agreement with the reported average 8–14 mannose residues added 

post-translationally by P. pastoris residues (SAELENS et al. 1999) and is in striking 

contrast with the observation of the rather exceptional hyperglycosylated nature of 

soluble recombinant neuraminidase containing N-glycans with 30–40 mannose 

residues, from the same organism (MARTINET et al. 1997). Although the molecular 

mechanisms determining the outcome of the glycosylation pattern of a glycoprotein in 

a particular eukaryotic host organism remain enigmatic, one might speculate that the 

folding kinetics play a role. Glycoproteins that spend longer in the early exocytic 

vesicles might be more susceptible as a substrate for glycosyltransferase activity. 

Recognition of P. pastoris-secreted HA0s by a panel of mAbs implies that at least 

part of the molecule is correctly folded (SAELENS et al. 1999).  

In this study, rHA1 has a theoretical molecular mass of 39.67 kDa but when the 

protein was expressed in P. pastoris it gave a broad smear above the expected size 

as analyzed by SDS-PAGE and Western blot.  Endo Hf is a recombinant protein 

fusion of Endoglycosidase H and maltose binding protein. Endo Hf cleaves within 

chitobiose core of high mannose and some hybrid oligosaccharides from N-linked 

glycoprotein (ESHAGHI et al. 2005). It is used to get information about carbohydrate 

groups attached to glycoproteins and glycopeptides. After removal of mannose 
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residues, the proteins were analyzed using SDS-PAGE and Western blot. Treatment 

of purified rHA1 with Endo Hf revealed that its aberrant migration resulted from post-

translational glycosylation. Although the exact structure of the oligosaccharides did 

not analyzed, the most commonly observed N-linked glycans in P. pastoris secreted 

recombinant protein are short Man8GlcNAC and Man9 GLCNAc (MONTESINO et al. 

1998). The N-glycosylation appears to be important in correct protein folding, 

conformational stability and resistance to protease degradation during synthesis 

(ZHU et al. 1998). However, the site of glycosylation should be determined carefully; 

it should not interfere with the folding of the protein and should not cover the active 

site of the molecule (SAGT et al. 2000). N glycosylation containing only the first 

residue, GlcNAc, would be sufficient to maintain the conformational stability (ERBEL 

et al., 1999; ERBEL et al., 2000; WELLER et al. 1996; WILSON et al. 1981a). It is 

worthy to mention that lectins are extremely useful tools for the investigation of 

carbohydrates on cell surfaces as well as for the isolation and characterization of 

glycoproteins. Numerous lectins have been isolated from plants as well as 

microorganisms and animals (SHARON and LIS 2004). Lectins bind principally to 

oligosaccharides and cell surface glycoproteins and glycolipids that contain 

appropriately linked mannose residues (CHAN and REES 1975; GRODECKA et al. 

2010; SAINZ-PASTOR et al. 2006). rHA1 could be analyzed by blotting with 

concanavalin A. Analysis of P2 polypeptide by Western blot showed multiple bands 

due to different glycosylation pattern as it contains a glycosylation site. Analysis of 

culture supernatant of P5 by Western blot revealed that P5 polypeptide is secreted in 

a very low amount (detected only after concentration by ultraconcentration). Analysis 

of P5 polypeptide in cell lysate by SDS-PAGE and Western blot showed a size of 

about 21 kDa. This is attributed to the glycosylation of alpha factor. The pro 

sequence of alpha factor contains three N-linked- glycosylation sites and a dibasic- 

kex2–endopeptidase. P5 polypeptide could not bind with Ni-NTA affinity 

chromatography either under natural or denaturing condition. As optimal purification 

using Ni-NTA is dependent on the amount of 6x his-tagged protein, possibly, P5 

polypeptide hist-tag in the N-terminal might be removed by proteolysis. Eshaghi and 

others (ESHAGHI et al. 2005) mentioned that His-tag in N terminal of expressed 

proteins was suspected to proteolytic removal in sf-9 cells. P2 polypeptide contains 

one glycosylation site and its theoretical mass is ~14 Kda, however, analysis by 

SDS-PAGE and Western blot resulted two bands (about 10 and ~22 kDa). Presence 
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of multiple bands is attributed to not all the protein glycosylated. Endo Hf could not 

remove the glycosylation residues of P2 and P5 polypeptide. Furthermore, both P2 

and P5 polypeptides did not react with concanavalin A. Posttranslational 

modifications are also important in determining the efficacy of secretion of a protein, 

since the overall fold will affect the processing of the signal sequence. Expression of 

rHA1 in the presence of tunicamycin, was lead to partial deglycosylation but 

decrease in the amount rHA1 secreted in supernatant.  

Immunogenicity of recombinant polypeptides 

The need for vaccination of poultry is highly controversial. Anyway, speculation about 

potential problems of vaccine use must be balanced with the real problem of 

outbreaks in susceptible poultry. Vaccination of chickens against HPAI must be 

considered complement to other control measures. Vaccination of chickens with 

recombinant polypeptides P1, P2 and rHA1 showed H5 subtype specific antibodies 

as analyzed with Elisa, and IFA. Elisa titres were lower than that obtained in 

immunized mice which indicate that the vaccination regime in chickens should be 

optimized. The µNT revealed presence of neutralizing antibodies in chickens 

vaccinated with P1, P2 and rHA1 but with low titres as compared with inactivated 

vaccine. At present time we can not determine the reason for the low neutralizing 

activity of our polypeptides. Several reports (CHIU et al. 2009; PORTOCARRERO et 

al. 2008; SPITSIN et al. 2009; TREANOR et al. 2006; WEI et al. 2008) mentioned 

that selection of virus strain (s) and / or the epitope of HA polypeptides, expression 

system, choice of adjuvant, dosage, peptide folding may have an impact on the 

ability of HA to generate a protective antibody response. However, rHA1 polypeptide 

purification required denaturation which might be the reason for low neutralizing 

activity, hence, in a recent study (CHIU et al. 2009) it was found that the best method 

for generating HA1-specific neutralization determinant is on-column oxidative 

refolding procedures with Glutathione. On the other hand the effect of glycosylation 

of our developed polypeptides on the immune response should be studied in details. 

Glycolsyation may change the function and characteristics of the recombinant protein 

(KREIJTZ et al. 2007). It was mentioned that removal of structurally non essential 

glycans on viral surface glycoproteins may be a very effective approach for vaccine 

design against influenza and other human viruses (WEI et al. 2008). HA glycosylation 

affects the function of influenza HA (WAGNER et al. 2002). Interestingly, as the level 

of glycosylation on influenza H3N2 has increased since 1968, the morbidity, 
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mortality, and viral lung titres have decreased (VIGERUST et al. 2007). HA with a 

single GlcNAc attached to the glycosylation sites showed relaxed specificity but 

enhanced affinity to α 2,3 sialosides suggests that the N-glycans on HA may cause 

steric hindrance near the HA–receptor binding domain. The high specificity for 

receptor sialosides may prevent the virus from binding to some other specific glycans 

on the human lung epithelial cell surface. On the other hand, HA with truncated 

glycans can recognize α 2, 3 receptor sialosides with higher binding affinity and less 

specificity, suggesting that reducing the length of glycans on HA may increase the 

risk of avian flu infection. It is, however, unclear how the changes of HA–receptor 

interaction via glycosylation affect the infectivity of the virus and the NA activity in the 

viral life cycle. HA with a single GlcNAc is a promising candidate for influenza vaccine 

because such a construct retains the intact structure of HA and can be easily 

prepared (e.g., via yeast). It also can expose conserved epitope hidden by large 

glycans to elicit an immune response that recognizes HA variants in higher titre (SUI 

et al. 2009). This strategy opens a new direction for vaccine design and, together 

with other different vaccine strategies and recent discoveries of HA neutralizing 

antibodies should facilitate the development of vaccines against viruses such as 

influenza, hepatitis C virus, and HIV (EKIERT et al. 2009; HOFFMANN et al. 2005; 

HULEATT et al. 2008; KASHYAP et al. 2008; SCANLAN et al. 2007; SCHEID et al. 

2009; STEVENS et al. 2006; SUI et al. 2009; YANG et al. 2007). Glycans near 

antigenic peptide epitopes interfere with antibody recognition (OHUCHI et al. 1997) 

and glycans near the proteolytic activation site of HA modulate cleavage and 

influence the infectivity of influenza virus (DESHPANDE et al. 1987). Mutational 

deletion of HA glycosylation sites can affect viral receptor binding (GUNTHER et al. 

1993). However, little is known regarding how the structure and composition of its 

glycans affect HA activity, including structure, receptor binding, and immune 

response. The use of immunogenic peptides has been proposed as a means of 

developing defined vaccines. Once a potentially protective peptide has been 

identified, it must be delivered to the immune system in a form which elicits anti-

peptide antibodies that will recognize and neutralize the infectious agent. As a 

consequence of the small size of P1 (7.5 kDa), P2 (13.9 kDa) and P5 (6.5 kDa), it 

has been suggested that peptides require chemical coupling to a carrier as tetanus 

toxoid, to enhance their immunogenicity. But, chemically coupling short peptides to 

carrier proteins can result in poor immunogenicity. However, the immunogenicity 
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could be dramatically improved by synthesizing peptides consisting of tandem 

repeats of the epitope (BROEKHUIJSEN et al. 1987; DIMARCHI et al. 1986).  AGID 

was positive in chickens immunized with inactivated H5 and negative in chickens 

vaccinated with recombinant polypeptides indicating that the peptides could not elicit 

immune response towards precipitating antibodies, this in accord with (SNYDER et 

al. 1985; SUAREZ 2005) who mentioned that AGID test targets M protein and NP 

and subunit vaccines did not elicit immune response towards these proteins and this 

could help in DIVA. But the sensitivity of AGID should be considered as this test has 

high sensitivity but low specificity. Four DIVA strategies have been proposed for AI to 

overcome this limitation. All four DIVA strategies have advantages and 

disadvantages, and further testing is needed to identify the best strategy to make 

vaccination a more viable option for avian influenza. The most common is the use of 

unvaccinated sentinels. The main disadvantage is in the management of the sentinel 

birds, because they must either be marked or caged separately from the other birds 

in the house. There is also concern that these naıve birds may increase the risk of 

infection of the flock  (SUAREZ 2005). A second approach is the use of subunit 

vaccines targeted to the HA protein that allows serologic surveillance to the internal 

proteins. Because antibodies to the HA and neuraminidase proteins provide the 

primary protection against avian influenza virus challenge, it is possible to protect 

birds by having only these proteins in a vaccine. Antibodies to the HA protein in 

particular are critical for protection, and many experimental subunit vaccines have 

included only the HA protein. Many different types of subunit vaccines, including virus 

vectored vaccines and vaccines using protein expressed in different culture systems, 

have been shown to provide protection from HPAI challenge. However, only the fowl 

pox-vectored recombinant vaccine for the H5 subtype is available commercially (LEE 

et al. 2006). The subunit vaccines provide the most flexibility to work with existing 

type A serologic surveillance tests, specifically the AGID and commercial ELISA tests 

that target the M or NP structural proteins. Vaccinated birds will not develop 

antibodies to the internal proteins, providing a clear distinction between infected (has 

antibodies to HA, M and NP) and vaccinated birds (has antibodies to HA but no 

antibodies for M or NP). As previously mentioned, the only commercially available 

subunit vaccine for AIV is the fowl pox recombinant vaccine, and this vaccine is only 

available for the H5 subtype. This vaccine contains the A/Turkey/Ireland/83 H5 HA 

gene, and experimentally this vaccine has been shown to be protective for many 
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HPAI viruses (SWAYNE and SUAREZ 2000; TAYLOR et al. 1988). A third strategy is 

to vaccinate with a homologous HA to the circulating field strain, but a hetrologous 

neuraminidase subtype. Serologic surveillance can then be performed for the 

homologous NA subtype as evidence of natural infection (CAPUA et al. 2003). The 

fourth strategy is to measure the serologic response to the non-structural protein 1 

(NS1). This DIVA approach was demonstrated previously with equine influenza 

viruses in horses using an Elisa format (BIRCH-MACHIN et al. 1997). Experimentally, 

the approach also works with chickens with purified killed vaccines. However, 

commercial AI vaccines are made with allantoic fluid from infected embryonating 

chicken eggs and are only partially purified. Therefore, they contain small amounts of 

NS1 protein in the vaccine as a contaminant from the lysed cells in the allantoic fluid, 

and vaccinated chickens will develop some antibodies to the NS1 protein, particularly 

after repeated vaccinations. This small amount of NS1 antibody does make it more 

difficult to use the NS1 DIVA strategy, but infected birds appear to have higher levels 

of antibody as compared to vaccinated birds. By diluting the sera before testing, a 

clear distinction, at least experimentally, can be made between vaccinated and 

infected birds (TUMPEY et al. 2005). Our recombinant polypeptides could not elicit 

immune response towards precipitating antibodies. Accordingly, Elisa coated with 

internal proteins and AGID test could be used as DIVA tools. It is worthy to mention 

that the molecular mass of the antigen was an important factor in eliciting antibodies 

in hens as reflected in the titre of the antibodies in their yolk. Antigens with molecular 

mass equal to or higher than that of human IgG appear to produce a good responses 

in hens whereas antigens of lower molecular mass and less appear to be poor 

antigen (POLSON et al. 1980). The tendency of antigenic response of hens on 

molecular size of the antigen is not unique but is a well-known phenomenon which is 

frequently observed when mammalian species were hyperimmunized with antigens 

of low molecular weight. The only difference being that the responses of low 

molecular weight is poorer in hens (POLSON et al. 1980). In addition, there are 3 

classes of antibodies in chickens, namely IgY, IgA, and IgM. Chicken IgA and IgM 

are similar to mammalian IgA and IgM in terms of molecular weight, structure, and 

immunoelectrophoretic mobility (LILLEHOJ et al. 2000). Although structural 

differences exist between IgY and mammalian IgG, IgY is considered the avian 

equivalent to mammalian IgG. In eggs, IgY is present predominantly in the egg yolk 

(LILLEHOJ et al. 2000), whereas IgA and IgM are present in the egg white as a result 
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of mucosal secretion in the oviduct (ROSE et al. 1974). In chickens, the transfer of 

IgY from the dam to her offspring takes place in a 2-step process. In the first step, 

IgY is taken up into the egg yolk by the IgY receptors on the ovarian follicle from the 

dam’s blood (LOEKEN and ROTH 1983). In the second step, IgY is transferred from 

the egg yolk to the offspring via the embryonic circulation. Yolk IgY is transported at a 

low rate across the yolk sac into the embryonic circulation as early as embryonic day 

7 (KRAMER and CHO 1970). The rate of transfer started to increase by embryonic 

day 14 and by embryonic day 19 to 21, there was a steep rise in the rate of transfer 

of IgY from the egg yolk to the embryonic circulation  (KOWALCZYK et al. 1985). The 

amount of IgY transferred to the egg yolk has been reported to be proportional to 

maternal serum IgY concentrations (AL-NATOUR et al. 2004; LOEKEN and ROTH 

1983). As reported by Kaspers and coworkers (KASPERS et al. 1991), maternal 

antibodies to AI should be considered. IgY was analysed in egg yolk of chickens 

immunized with our recombinant polypeptides. In the present study, the amount of 

IgY of chicken, immunized with P1 and rHA1, transferred to the egg yolk has been 

reported to be proportional to maternal serum IgY concentrations which is in 

accordance with (Al-NATOUR et al. 2004; LOEKEN and ROTH. 1983). However, no 

detectable antibodies in egg yolk of chickens immunized with P2 and P5. This may 

attributed to their low immunogenicity.  

The Use of recombinant polypeptides to improve a di agnostic method for AI 

The use of live culture Elisa, and HI assay has biosafety implications (STEPHENSON 

et al. 2009)  and the solution to these problems is to use a standardized recombinant 

antigen created using recombinant technology (WANG et al. 2010). Conventional 

subtype-specific methods for serological investigations as HI, and NT have significant 

limitations (PRABAKARAN et al. 2009). Other assays, such as complement fixation, 

neuraminidase-inhibition test or microneutralization assay require special equipments 

and complex procedures. The indirect Elisa (I-Elisa) using crude or purified viral 

antigen on the solid-phase to detect viral specific antibodies has been developed for 

detection of chicken and turkey antibodies to AIV (ABRAHAM et al. 1988; ADAIR et 

al. 1989). The recombinant AI NP expressed in E- coli was purified, coupled with 

latex beads, and used as an antigen for the latex agglutination test (LAT) test. LAT 

test proved to be useful for monitoring AIV infection in the field (HORIE et al. 2009). 

Serologic testing of wild birds for AIV surveillance poses problems due to species 

differences and nonspecific inhibitors that may be present in sera of wild birds. Two 
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commercial competitive Elisas detect AI antibodies in experimentally infected 

partridges, whereas HI was negative (ZHOU et al 1998). Both Elisas detected AIV-

antibody-positive samples were negative by specific HI against 9 of the 16 existing 

HA subtypes. Presumably this may reflects higher sensitivity of competitive ELISA 

when compared to HI. A competitive Elisa was developed as a serologic diagnostic 

tool to detect antibodies against NA subtype 3 of AIV. The NA antigen used in this 

ELISA was obtained by pronase treatment of allantoic fluid of specific-pathogen-free 

(SPF) eggs infected with AIV. The NA specific monoclonal antibodies were produced 

from purified NA. N3 c-ELISA could detect the antibodies from SPF chickens or 

commercial chickens vaccinated with H9N3 subtype of AIV. The sensitivity and 

specificity of the N3 c-ELISA were 83.7 % and 95.6 %, respectively (KIM et al. 2010). 

A recombinant HA of A / Vietnam / 1203 / 04 (H5N1) was expressed in mammalian 

cells, purified, and used for generation of H5-specific monoclonal antibodies (MAb). 

The purified H5-Bac was used to develop a competitive Elisa to detect H5 antibodies. 

Comparison of the results of the competitive Elisa with results obtained by HI showed 

a gradient of the sensitivity (turkeys > ducks > chicken). The described results 

showed that H5-specific antibodies in sera can be detected in a species-independent 

approach by using a recombinant protein (DLUGOLENSKI et al. 2010). An indirect 

ELISA was developed using baculovirus, purified, recombinant N1 protein from A / 

chicken / Indonesia / PA7 / 2003 (H5N1) virus. The N1-ELISA showed high selectivity 

for detection of N1 antibodies, with no cross-reactivity with other neuraminidase 

subtypes, and broad reactivity with sera to N1 subtype isolates from North American 

and Eurasian lineages. N1-ELISA can facilitate a vaccination strategy with 

differentiation of infected from vaccinated animals using a NA hetrologous approach 

(LIU et al. 2010). Because the NS1 is expressed in influenza virus-infected cells, and 

it is not packaged in the virion, it is an attractive candidate for a DIVA differential 

diagnostic test (AVELLANEDA et al. 2010). Active surveillance for AIV has expanded 

from chicken to various poultry species including duck. An alternative to serum, 

antibody monitoring of laying breeder duck using egg yolk with competitive ELISA is 

feasible and is recommended (JEONG et al. 2010). In addition, the results reflect the 

necessity of validation Elisa for individual species or at least families (PEREZ-

RAMIREZ et al. 2010). The use of chicken egg yolk antibody as an alternative to 

serum has shown a high degree of correlation among AGID, HI and ELISA 

approaches (BECK et al. 2003). Detection of NP, N3 and N7 antibodies to AI virus by 
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indirect ELISA using yeast-expressed antigens revealed that these indirect Elisas are 

rapid, sensitive, specific and can be used as promising tests during serological 

surveillance (UPADHYAY et al. 2009). Hence recombinant Elisa was superior to 

other serological assays because Elisa based on recombinant antigens are well 

known to offer higher reproducibility’s, lack of cross-reactivity,  easy to optimize, less 

labor intensive and do not require the cultivation of virus (MOHAN et al. 2006). In the 

present study, P1 and rHA1 polypeptides were used to study the possibility to use 

them in indirect rElisa for detection of antibodies towards H5. rHA1- Elisa proved to 

be highly sensitive and specific, as compared with HI, AGID and Western blot. 

Although Western blotting is sensitive (100 % in this study), blotting for large number 

of samples would be tedious, time consuming and precise quantification of antibody 

levels would not be feasible. In this study AGID test revealed to be less sensitive to 

detect H5 antibodies which in accordance with the results obtained by (MEULEMANS 

et al. 1987; SNYDER et al. 1985). Whole H5N1 antigen based Elisa showed high 

sensitivity to influenza A subtype H5 but it does not fulfil our purpose to produce safe 

antigen. Serial dilution Elisa was done to choose the best serum dilution for single 

dilution Elisa, hence, the use of single dilution Elisa reduces reagents, costs and time 

and the error inherent to serial dilution Elisa.  It is worthy to mention that, negative 

sera was obtained from chickens with a history of vaccination against ND, IBD, IB 

and MD and there were no cross reactivity with rHA1- Elisa (antibodies towards ND 

and IBD were analyzed with HI and Elisa respectively. Elisa based on recombinant 

polypeptides, especially if these polypeptides are conserved in H5 might offers a 

considerable a advantages for detection of viral antibodies.The low sensitivity of P1 

polypeptide (sensitivity 80 %)  may be attributable to its small size (only 40 amino 

acid). However, the immunogenicity of such small polypeptides could be improved by 

cloning with different copies of insert which called tandem peptide (BEACHEY et al. 

1987). The increase in the copy number of the coding sequence was important for 

antibody binding activity (WANG et al. 2010). 

Elisa test was adopted as a sensitive method for the detection of antibodies to AIV 

and the results of Elisa test should be interpreted on a flock and not on individual bird 

bases. In case of H5N1 HPAI outbreaks, chickens shows clinical signs very severely 

and then die which mean that Elisa might has no significant value in eradication 

program. However, vaccination of chickens against HPAI must be considered to be a 

complement to other control measures, as part of a science-based influenza control 
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strategy (CAPUA and MARANGON 2003). rHA1-Elisa could be used for the 

surveillance immune responses by detecting antibodies to AIV. On the other hand, 

HPAI viruses do not show high virulence for all species of birds, and the clinical 

severity seen in any host appears to vary with both bird species and virus strain 

(ALEXANDER et al. 1978; ALEXANDER et al. 1986). In particular, ducks rarely show 

clinical signs as a result of HPAI infections. Ostriches (Struthio camelus) also appear 

to show mild clinical response to HPAI infection. rElisa significantly improves the 

ability for quickly detection of the antibody levels of AIV during field outbreaks and 

providing key information for disease control decision making, thus it has great 

application potential in long-term prevention and control of AIV as recommended. 

rHA1- Elisa shows high OD with positive duck sera (positive also by HI) as compared 

with OD of negative duck serum which indicate the validity of rHA1-Elisa to detect H5 

antibodies in duck sera.  

In conclusion; our findings recommend the use of the rHA1-Elisa as a tool for 

improvement of serological diagnosis of influenza A subtype H5 in chickens and 

ducks. But it remains a question of value whether rHA1-Elisa is specific for influenza 

A subtype H5?  Additional studies are needed to further evaluate the rElisa in 

different avian species. The possibilities to use these recombinant polypeptides as a 

vaccine against H5 influenza should be further studied.  
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6 SUMMARY  

  Awad Ali Ali Shehata 

Truncated Sequences of Influenza Subtype H5 Haemagg lutinin for Vaccination 

and Diagnostic Purposes 

Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University of 

Leipzig and Institute for Virology, Faculty of Medicine, University of Leipzig  

 

97 pages, 13 tables, 17 figures, 333 References, appendix 

Keywords: Avian influenza, Yeast expression, Peptide vaccination, recombinant Elisa 

 

The highly pathogenic Avian Influenza subtype H5N1 can lead to 100 % mortality in 

chickens. The main issue in prevention of H5N1 is the development of efficient 

poultry vaccines. Influenza haemagglutinin (HA) derived recombinant polypeptides 

would not elicit an immune response against internal viral proteins. Thus HA 

polypeptide use facilitates differentiation between infected and vaccinated animals 

(DIVA). Serological tests using recombinant immune-dominant proteins devoid of 

non-specific moieties present in whole cell preparations might have higher sensitivity 

and specificity. In the present study, four non-overlapping sequences of different 

functional domains of influenza A virus subtype H5 virus (A / Thailand / 1 (Kan-1) / 

2004) designated P1, P2, P5 and rHA1 were cloned and expressed in Pichia 

pastoris for vaccination and diagnosis purposes.  

- The four polypeptides were expressed successfully in P. pastoris using peptone 

methanol (1 % (w/v) yeast extract, 2 % (w/v) peptone, 2 % (v/v) methanol). P1, P2 

and rHA1 polypeptides were purified using nickel affinity chromatography, whereas, 

P5 was purified using lectin affinity chromatography. Correct expression was 

analysed by SDS-PAGE and western blot, glycosylation analysis and MALDI-TOF. 

- The immune responses of P1, P2 and rHA1 polypeptides were assessed in 

BALB/C mice. To enhance antibody response, recombinant polypeptides were mixed 

with the Gerbu adjuvant and injected subcutaneously. Vaccination of mice induced 

high subtype specific antibody titres in mice as analysed by Elisa (using recombinant 

antigens or whole H5N1 antigen) and Immunofluorescence assay (IFA) performed 

on Vero cells infected with H5 (A / Thailand / 1 (Kan-1) / 2004). 

- The immunogenicity of P1, P2, P5 and rHA1 polypeptides was determined in 

commercial layer chickens. Results showed that P1, P2 and rHA1 polypeptides 
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induced high subtype specific antibody titres in chickens as analysed by Elisa (using 

recombinant antigens or whole H5N1 antigen), IFA (performed on Vero cells infected 

with H5N1 A / Thailand / 1 (Kan-1) / 2004) and microneutralization test (µNT). 

However, P5 polypeptide was not immunogenic in chickens. Neutralizing antibodies 

could be detected in chicken sera immunized with P1, P2 and rHA1 polypeptides as 

analyzed with microneutralization test. 

-IgY was analysed in egg yolk of chickens immunized with recombinant 

polypeptides. The IgY of chicken immunized with P1 and rHA1, transferred to the 

egg yolk was proportional to maternal serum IgY. However, IgY could not be 

detected in egg yolk of chickens immunized with P2 and P5 recombinant 

polypeptides 

- The more immunogenic polypeptides P1 and rHA1 were used in an recombinant 

Elisa (rElisa) for detection of influenza A subtype H5 in chickens and duck sera.The 

optimal antigen for the concentrations of rHA1, P1 was 50 ng / well, 50 ng / well. 

- Analysis of 25 positive sera and 25 negative sera to H5 antibodies revealed that, 

the sensitivity of Western blot, whole H5N1 Elisa, agar gel immunodiffusion test 

(AGID), P1-Elisa and rHA1-Elisa was 100 %, 100 %, 52 %, 80 % and 100 %, 

respectively, while the specificity was 100 %, 100 %, 100 %, 72 %, and 100 %, 

respectively. Moreover, duck sera, with haemagglutination inhibiting titer ranged from 

4 - 8 log2, were tested positive by rHA1 Elisa compared with negative duck sera. 

-Further analysis of 179 serum samples with rHA1-Elisa in comparison with  

haemagglutination inhibition (HI) and commercial Elisa  proved to be highly sensitive 

and specific. The agreement ratio between rElisa and HI was 84.9 % and between 

commercial Elisa (Flock check) and HI was 76.5 %.  

In conclusion, P. pastoris may allow development of an effective recombinant 

influenza vaccine based on truncated sequences of HA that might provide broader 

protection against H5 influenza viruses. The possibilities to use rHA1, P1 and P5 

recombinant polypeptides as a vaccine against H5 influenza should be further 

studied. Also our study demonstrates the potential utility of recombinant Elisa as a 

tool for improvement of serological diagnosis of influenza A subtype H5 in chickens 

and ducks. 
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Die hochpathogene aviäre Influenza des Subtyps H5N1 erreicht beim Ausbruch von 

Infektionen in Nutzgeflügelbeständen Mortalitätsraten von bis zu 100 %. Effektive 

und kostengünstige Impfstoffe werden benötigt, die möglichst auch eine 

Differenzierung zwischen geimpften Tieren und mit Wild-Virus infizierten Tieren 

zulassen. In diesem Zusammenhang könnten Peptid-Vakzine eine mögliche 

Alternative zu den herkömmlichen Impfstoffen darstellen, bei denen unter 

Verwendung des Vollvirus Antikörper gegen mehrere Virusproteine induziert werden. 

Außerdem, könnten rekombinante Antigene in serologischen Tests zur Diagnose von 

H5 Virus in Nutzgeflügel eingesetzt werden. Von dem Einsatz spezifischer 

rekombinanter Antigene ist eine Verbesserung der Serodiagnostik zu erwarten. In 

dieser Arbeit, wurden vier verkürzte Sequenzen des Hämagglutinins (P1, P2, P5 und 

rHA1) von Subtyp H5 (A / Thailand / 1 (Kan-1) / 2004) rekombinant in Pichia Pastoris 

exprimiert. 

- Dazu erfolgten zunächst eine Klonierung in der Expressionsvektor pAOX und die 

Transformation von Pichia Pastoris. Die Expression wurde durch Methanol induziert. 

Der Nachweis der rekombinanten Fusionspeptiden mit C-terminalen Histidin-Tag 

erfolgte durch SDS-PAGE, Western Blot, Glycolysierungsanalyse, und MALDI-TOF. 

Der Histidin-Tag ermöglichte die Reinigung von P1, P2 und rHA1 mit Metall-

Affinitätschromatographie. Polypeptid P5 hingegen wurde mittels Lectin-Affinitäts- 

chromatographie gereinigt. 

- Balb/c Mäuse wurden mit Polypeptid P1, P2 bzw. rHA1, versetzt mit Gerbu Adjuvans, 

immunisiert. Zur Untersuchung der Immunantwort wurden die murinen Seren mittels  

Elisa (unter Verwendung rekombinanter Antigene oder Voll-H5N1 Antigen) sowie IFA  
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(durchgeführt in Vero- Zellen infiziert mit A / Thailand / 1 (Kan-1) / 2004) analysiert. 

Dabei wurde die präferentielle Induktion von H5-spezifischen Antikörpern detektiert. 

- Die Immunogenität der P1, P2, P5 und rHA1-Polypeptide wurde in kommerziellen 

Legehennen bestimmt. Seren wurden mit ELISA, IFA, und Mikroneutralizationstest 

(µNT) analysiert. Die ELISA-Ergebnisse zeigten, dass die Polypeptide P1, P2 und 

rHA1 hohe Subtyp-spezifische Antikörpertiter in Hühnern induzierten. Im µNT konnte 

nur ein niedriger neutralisierender Antikörpertiter nachgewiesen werden. Das P5- 

Polypeptid ist bei Hühnern nicht immunogen.  

- Im Eigelb von Hühnern, die mit den rekombinanten Polypeptiden P1 und rHA1 

immunisiert wurden, konnten H5-spezifische IgY Antikörper detektiert werden.  

Hühner, die mit P2 und P5 immunisiert wurden, zeigten keine IgY im Eigelb. 

- Die rekombinanten Antigene P1 und rHA1 wurden im ELISA auf ihre potenzielle 

Eignung für die Serodiagnostik untersucht. Die optimale Antigenkonzentration war 

50 ng / well. Die serologische Analyse von 25 positiven und 25 negativen Seren auf 

Antikörper gegen H5 zeigte, dass Sensitivität und Spezifität von Western Blot, Voll-

H5N1 ELISA und rHA1-ELISA bei jeweils 100 % lagen. Bei Agargel- 

Immunodiffusiontest (AGID) lagen Sensitivität und Spezifität bei 52 % und 100 %, 

während im P1-Elisa lediglich eine Sensitivität von 80 % und eine Spezifität von 72 % 

erreicht wurden. Somit eignet sich rHA1 für die Anwendung in der Serodiagnostik. 

- Bei der serologischen Untersuchung von 175 Hühnerseren wurde eine 

Überbestimmung zwischen rHA1-ELISA und Hämagglutinationshemmungstest (HAI) 

84.9 % festgestellt, während diese zwischen dem kommerziellen ELISA (Flock Check) 

und HAI 76.5 % betrug.  

- Die Ergebnisse zeigten, dass das Expressionssystem P. pastoris als 

Produktionssystem rekombinanter Antigene für die Serodiagnostik von H5 Influenza  

geeignet ist. Challenge-Versuche sind nötig, um die Eignung von rekombinanten 

Antigenen als möglichen Impfstoff gegen H5 Influenza zu untersuchen. 
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APPENDIX 

 

 

 

 

 

 

 

 

 

 

The coding sequence of P1 polypeptide cloned to pAOX vector. 

P1 – sequence including alpha factor, gene of inter est and histag 
 
M R F P S I F T A V L F A A S S A L A A P V N T T T E D E T A Q I P A E A V I G Y 
S D L E G D F D V A V L P F S N S T N N G L L F I N T T I A S I A A K E E G V S L 
E K R E A E A D L D G V K P L I L R D C S V A G W L L G N P M C D  E F I N V P 
E W S Y I V E K A A A S F L E Q K L I S E E D L N S A V D H H H H H H 
 
Alpha Factor: underlined 

P1 sequence: bold 

His tag and remains of MCS: Italic 

Theoretical pI / Mw: 4.40 / 16912.92 (Da) 

P1 polypeptide when it is completely processed 

D L D G V K P L I L R D C S V A G W L L G N P M C D  E F I N V P E W S Y I V E K 
A A A S F L E Q K L I S E E D L N S A V D H H H H H H 

Theoretical pI / Mw: 4.88 / 7591.53 
 
 
 
 
 
 
 
 

pAOX-H5 Site E histag

3666 bp

H5 Site E

P(TEF1)

P(EM7)

P(AOX)pUC origin

AOX1 TT

CYC1 TT

Zeocin

alpha factor

myc epitope

6xHis

BstXI (707)

NotI (1330)

XhoI (1185)

pAOX-H5P1 histag 
3666 bp 

H5P1 
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pAOX-H5 RBS histag

3837 bp

H5 RBS

P(TEF1)

P(EM7)

P(AOX)pUC origin

AOX1 TT

CYC1 TT

Zeocin

alpha factor

myc epitope
6xHis

BstXI (707)

NotI (1501)

XhoI (1185)

pAOX-H5P2 histag 
3837 bp 

H5 P2 

 
 
 
 
 
 
 
 
 

 

 

 

 

The coding sequence of P2 polypeptide cloned to pAOX vector. 

P2 – sequence including alpha factor, gene of inter est and histag 
 
M R F P S I F T A V L F A A S S A L A A P V N T T T E D E T A Q I P A E A V I G Y 
S D L E G D F D V A V L P F S N S T N N G L L F I N T T I A S I A A K E E G V S L 
E K R E A E A N N T N Q E D L L V L W G I H H P N D A A E Q T K L  Y Q N P T T 
Y I S V G T S T L N Q R L V P R I A T R S K V N G Q  S G R M E F F W T I L K P N 
D A I N F E S N G N F I A P E Y A Y K I V K K G A A A S F L E Q K L I S E E D L N 
S A V D H H H H H H 
 
Alpha Factor: underlined 

P2 sequence: bold 

His tag and remains of MCS: Italic 

Theoretical pI / Mw: 5.09 / 23272.92 (Da) 

P2 polypeptide when it is completely processed 
 
N N T N Q E D L L V L W G I H H P N D A A E Q T K L  Y Q N P T T Y I S V G T S T 
L N Q R L V P R I A T R S K V N G Q S G R M E F F W  T I L K P N D A I N F E S N 
G N F I A P E Y A Y K I V K K G A A A S F L E Q K L I S E E D L N S A V D H H H 
H H H 
 
Theoretical pI / Mw: 6.46 / 13951.53 (Da) 
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The coding sequence of P5 polypeptide cloned to pAOX vector. 

P5- sequence including alpha-factor, gen of interest and his-tag 
 
M R F P S I F T A V L F A A S S A L A A P V N T T T E D E T A Q I P A E A V I G Y 
S D L E G D F D V A V L P F S N S T N N G L L F I N T T I A S I A A K E E G V S L 
E K R E A E A S L G V S S A C P Y Q R K S S F F R N V V W L I K K  N S T Y A A 
A S F L E Q K L I S E E D L N S A V D H H H H H H 
 
Alpha Factor: underlined 

P5 sequence: bold 

His tag and remains of MCS: Italic 

Theoretical pI / Mw: 5.10 /15843.67 (Da)  

P5 polypeptide when it is completely processed 
 
S L G V S S A C P Y Q R K S S F F R N V V W L I K K  N S T Y A A A S F L E Q K L 
I S E E D L N S A V D H H H H H H 
 
Theoretical pI / Mw: 7.98/ 6522.28 (Da) 
 
 
 

pAOX- H5P5 histag 
3636 bp 

H5P5
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The coding sequence of rHA1- polypeptide cloned to pAOX vector. 

 

HA1- sequence including alpha-factor, gen of intere st and histag 
M R F P S I F T A V L F A A S S A L A A P V N T T T E D E T A Q I P A E A V I G Y 
S D L E G D F D V A V L P F S N S T N N G L L F I N T T I A S I A A K E E G V S L 
E K R E A E A D Q I C I G Y H A N N S T E Q V D T I M E K N V T V T H A Q D I L 
E K T H N G K L C D L D G V K P L I L R D C S V A G  W L L G N P M C D E F I N 
V P E W S Y I V E K A N P V N D L C Y P G D F N D Y  E E L K H L L S R I N H F E 
K I Q I I P K S S W S S H E A S L G V S S A C P Y Q  R K S S F F R N V V W L I K 
K N S T Y P T I K R S Y N N T N Q E D L L V L W G I  H H P N D A A E Q T K L Y 
Q N P T T Y I S V G T S T L N Q R L V P R I A T R S  K V N G Q S G R M E F F W T 
I L K P N D A I N F E S N G N F I A P E Y A Y K I V  K K G D S T I M K S E L E Y G 
N C N T K C Q T P M G A I N S S M P F H N I H P L T  I G E C P K Y V K S N R L V 
L A T G L R N S P Q R  A A A S F L E Q K L I S E E D L N S A V D H H H H H H 
  
Theoretical pI / Mw: 5.82 / 48996.22 

HA1- polypeptide when it is completely processed 

D Q I C I G Y H A N N S T E Q V D T I M E K N V T V T H A Q D I L E K T H N G K 
L C D L D G V K P L I L R D C S V A G W L L G N P M  C D E F I N V P E W S Y I V 
E K A N P V N D L C Y P G D F N D Y E E L K H L L S  R I N H F E K I Q I I P K S S 
W S S H E A S L G V S S A C P Y Q R K S S F F R N V  V W L I K K N S T Y P T I 
K R S Y N N T N Q E D L L V L W G I H H P N D A A E  Q T K L Y Q N P T T Y I S V 
G T S T L N Q R L V P R I A T R S K V N G Q S G R M  E F F W T I L K P N D A I N 
F E S N G N F I A P E Y A Y K I V K K G D S T I M K  S E L E Y G N C N T K C Q T 
P M G A I N S S M P F H N I H P L T I G E C P K Y V  K S N R L V L A T G L R N S 
P Q R A A A S F L E Q K L I S E E D L N S A V D H H H H H H 
  
Theoretical p I/ Mw: 6.80 / 39674.8 
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