
tRNomics: Genomic Organization and
Processing patterns of tRNAs

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

DISSERTATION

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM

(Dr. rer. nat.)

im Fachgebiet Informatik

vorgelegt
von M. Sc. Clara Isabel Bermudez Santana

geboren am 11. Juni 1973 in Chiquinquira, Kolumbien

Die Annahme der Dissertation wurde empfohlen von:

1. Professor Dr. Peter F. Stadler (Leipzig, Deutschland)
2. Professor Dr. Eric Westhof (Straßbourg, Frankreich)

Die Verleihung des akademischen Grades erfolgt mit Beste-
hen der Verteidigung am 13.09.2010 mit dem Gesamtprädikat
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Preface

The RNA world hypothesis places RNA at center-stage during the origin of life, and has
received support from many authors. In spite of difficulties in need of further examination,
studies during the last ten years have demonstrated important aspects of RNA biology
that were not previously known. These studies support the idea of a critical role for RNA
in cellular function. Many catalytic functions for RNA are known, including translation
by ribosomal RNA processing of pre-mRNA by nuclear ribonucleoproteins (snRNPs), RNA
editing, and reverse transcription. In Eukaryotes, many other sorts of small RNAs have
recently received attention as key components of regulatory systems, as well as main players
in the RNA silencing mechanism.

No less important is the discovery of new functions and distributions of different sorts
of ncRNAs, such as small nucleolar RNAs (snoRNAs), which were initially associated with a
specific cellular compartment and were assumed to function exclusively as target ribosomal
RNAs, but which are now being associated with different functions and broader locations.
More intriguing have been recent findings indicating that snoRNAs can be processed to
yield microRNA-like RNAs, and that there is a plausible connection between RNA silencing
and snoRNA-mediated RNA processing systems.

Recent advances in the biology of transfer RNAs (tRNAs) have not only enriched our
knowledge about their functions in translation but also posit that these classical non-coding
housekeeping RNAs are key components of the small RNA-mediated gene regulation system.
As occurred for the understanding of snoRNA cellular location, the knowledge of tRNA
cellular location has expanded. Biosynthesis of tRNA was previously thought to occur solely
in the nucleus, with tRNA functioning only in the cytoplasm of eukaryotic cells. However,
based on recent findings demonstrating that pre-tRNA splicing can occur in the cytoplasm,
that aminoacylation is also possible in the nucleus, and that tRNA retrograde travel (from
the cytoplasm to the nucleus) is possible, it is clear that tRNA will be discovered to have
many unanticipated functions in diverse cellular processes. In the next decade, plenty of
surprises are expected, not only with regard to the nuclear-cytoplasmic dynamics of tRNA
but also for its importance in the global regulation of RNA silencing. Many respect of
tRNA biology is presented on chapter 1, some issues discused are part of the publication
Tanzer, T., Riester, M., Hertel, J., Bermudez-Santana, C, Gorodkin, J. Hofacker, I.
Stadler. P.F. Evolutionary Genomics and Systems Biology: Chapter: Evolutionary genomics

of microRNAs and their relatives. March 2010, Wiley-Blackwell.

tRNAs are among the most ancient genes and can be traced back to the putative RNA
World. They are ubiquitous in all organisms, but a comparative survey of genomic organi-
zation is not available in the literature. Although the diversity of tRNA genes in eukaryotes
has been previously reported for 11 eukaryotic genomes, and a comparison of 50 genomes
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from all three domains of life reveals domain-specific structural and functional features as
well as a suggestive diversity of tRNA function, less is known about their specific configu-
ration. Therefore, in chapter 2, we present a computational survey to gain insight into the
genomic locations of tRNAs on a genome wide scale. The main contributions are based
on the following publications: Genomic Organization of Eukaryotic tRNAs. Bermudez-
Santana C.I., Stephan-Otto, C., Kirtsten, T. Engelhardt, J, Prohaska, S., Steigele, S. and
Stadler, P.F. 2010, BMC genomics. In press., Homology-Based Annotation of Non-coding

RNAs in the Genomes of Schistosoma mansoni and Schistosoma japonicum Copeland, C.,
Marz, M., Dominic, R. D., Hertel, J., Brindley, P., Bermudez-Santana, C., Kehr, S.,
Stephan, C., Stadler, P.F. BMC Genomics 2009, 10:464. and Comparative Analysis of

Non-Coding RNAs in Nematodes Tafer, H., Rose, D., Marz, M., Hertel, J., Bartschat,
S., Kehr, S., Otto, W., Donath, A., Tanzer, A., Bermudez-Santana, C., Gruber, A.,
Juhling, F., Engelhardt, J., Busch, A., Hiller, M., Stadler, P. Dieterich, C. 2010. Submitted
to Genome Consortium.

Recent findings from transcriptome data analysis regarding the processing of tRNA-
derived small RNAs presented the opportunity to undertake a detailed comparison of plau-
sible patterns of tRNAs based on the analysis of deep sequencing libraries. Since recent
studies have revealed roles for tRNAs as plausible players in other diverse aspects of cellu-
lar biology, we present in chapter 3 a computational survey to identify and classify three
main classes of ncRNAs from a human brain library. This chapter is based on the following
publications: Identification and Classification of Small RNAs in Transcriptome Sequence

Data. Langenberger, D., Bermudez-Santana, C.I., Stadler, P.F., Hoffmann, S. Pac Symp
Biocomput. 2010:80-7 and Evidence for Human microRNA-Offset RNAs in Small RNA Se-

quencing Data. Langenberger, D., Bermudez-Santana, C., Hertel, J., Khaitovich, P.,
Hoffmann, S., Stadler, P.F. Bioinformatics. 2009 Sep 15;25(18):2298-301.

Finally, we extended our survey to analyze and classify patterns of small RNA derived
from tRNA families. We have developed a new approach based on the classification of
tRNA-short-read-block patterns from small RNA libraries from Bos taurus, Caenorhabditis

elegans, Canis familiaris, Drosophila melanogaster, Gallus gallus, Homo sapiens, Macaca

mulatta, Mus musculus and Rattus norvegicus. This study will be presented in the Four-
teenth Conference on Research in Computational Molecular Biology. Searching tRNA pro-

cessing patterns in transcriptome sequencing data. Bermudez-Santana, C.I., Langen-
berger, D., Hoffmann, S. Stadler, P.F. RECOMB. 2010. August, Lisbon, Portugal.

In summary, these chapters include findings of three novel aspects of tRNA biology:
genome organization, preliminary transcriptome data analysis, and the classification of a
novel class of tRNA-derived small RNAs from transcriptome data. In general, this survey
concluded that the genomic organization of tRNA is characterized by complex, lineage-
specific patterns with extensive variability that is in striking contrast to the extreme levels
of sequence-conservation in the tRNA genes themselves. Our comprehensive analysis of
eukaryotic tRNA gene distributions provides a basis for further studies into the interplay
of tRNA gene arrangements and genome organization in general. This tRNA processing
survey illustrated that patterns are generally conserved across species but that some super-
families are outliers. The analysis suggests that every tRNA has a specific pattern and thus
undergoes a characteristic maturation. The mechanism underlying the processing of these
tRNA shreds remains to be clarified, as do any related functional implications.
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Abstract

Surprisingly little is known about the organization and distribution of tRNAs and tRNA-
related sequences on a genome-wide scale. While tRNA complements are usually reported
in passing as part of genome annotation efforts, and peculiar features such as the tan-
dem arrangements of tRNAs in Entamoeba histolytica have been described in some detail,
comparative studies are rare. We therefore set out to systematically survey the genomic
arrangement of tRNAs in a wide range of eukaryotes to identify common patterns and
taxon-specific peculiarities. We found that tRNA complements evolve rapidly and that
tRNA locations are subject to rapid turnover. At the phylum level, distributions of tRNA
numbers are very broad, with standard deviations on the order of the mean. Even within
fairly closely related species, we observe dramatic changes in local organization. Consistent
with this variability, syntenic conservation of tRNAs is also poor in general, with turn-over
rates comparable to those of unconstrained sequence elements. We conclude that the
genomic organization of tRNAs shows complex, lineage-specific patterns characterized by
extensive variability, and that this variability is in striking contrast to the extreme levels of
sequence-conservation of the tRNA genes themselves. Our comprehensive analysis of eu-
karoyotic tRNA distributions provides a basis for further studies into the interplay between
tRNA gene arrangements and genome organization in general.

Secondly, we focused on the investigation of small non-coding RNAs (ncRNAs) from
whole transcriptome data. Since ncRNAs constitute a significant part of the transcriptome,
we explore this data to detect and classify patterns derived from transcriptome-associated
loci. We selected three distinct ncRNA classes: microRNAs, snoRNAs and tRNAs, all of
which undergo maturation processes that lead to the production of shorter RNAs. After
mapping the sequences to the reference genome, specific patterns of short reads were ob-
served. These read patterns appeared to reflect RNA processing and, if so, should specify
the RNA transcripts from which they are derived. In order to investigate whether the short
read patterns carry information on the particular ncRNA class from which they orginate, we
performed a random forest classification on the three distinct ncRNA classes listed above.
Then, after exploring the potential classification of general groups of ncRNAs, we focused
on the identification of small RNA fragments derived from tRNAs. After mapping tran-
scriptome sequence data to reference genomes, we searched for specific short read patterns
reflecting tRNA processing. In this context, we devised a common tRNA coordinate system
based on conservation and secondary structure information that allows vector representation
of processing products and thus comparison of different tRNAs by anticodon and amino
acid. We report patterns of tRNA processing that seem to be conserved across species.
Though the mechanisms and functional implications underlying these patterns remain to
be clarified, our analysis suggests that each type of tRNA exhibits a specific pattern and
thus appears to undergo a characteristic maturation process.
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Chapter 1

tRNA world and its link to RNAi
pathway

1.1 tRNA biology

RNAs have been found to participate in an ever-increasing number of pathways of cellular
functionality. It is well accepted that most RNA function relies on specific patterns of base
pairing and molecular interactions within a single RNA molecule or among sets of interact-
ing molecules, either RNA-RNA, RNA-protein or RNA-cofactors. However, RNA structure
can be considered at a number of different levels. Structured RNA can achieve its function
at the level of single-stranded ribonucleic sequences (small RNAs or long RNAs), patterns
of double-helical stretches interspersed with loops (RNA secondary structure), or complex
interactions between secondary structure elements forming three-dimensional functional
units (tertiary structure). Functional RNA molecules (tRNAs, rRNAs, snoRNAs, microR-
NAs, etc.) usually have characteristic spatial structures [101]. During the last decade, both
experimental and computational research approaches based on these structures have shown
that many important aspects of cell biology are dependent on structured RNAs. Transfer
RNAs (tRNAs) are among the most ancient of RNA genes. They can be traced back to
the putative RNA World [54], before the separation of the three Domains of Life. There is
clear evidence, furthermore, that all tRNA genes are homologs, deriving from an ancestral
“proto-tRNA” [42], which in turn may have emerged from even smaller components, see
e.g. [41, 147, 33, 51, 34]. tRNAs are essential molecules for protein biosynthesis that cou-
ple specific amino acids with corresponding codons. Thus, tRNA functions as an adapter
molecule that converts the genetic information stored in the genomic nucleotide sequence
into amino acid sequences [129]. This process is achieved through molecular interaction
between tRNA and aminoacyl-tRNA synthetases (aaRSs). This interaction assures trans-
lation fidelity through accurate recognition of aaRSs and discrimination between cognate
and non-cognate tRNAs by aaRSs. Recognition motifs, structural features required for
tRNA aminoacylation by aaRSs, play a major role in maintaining tRNA amino acid speci-
ficity [74, 29, 152, 73]. Later, recognition motifs are also required for highly coordinated
interactions with the ribosome.
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Figure 1.1: tRNA secondary structure. This structure is composed of four base-paired
stems (acceptor, anticodon, TψC and the D stem) and four non-base-paired loops: D,
anticodon, TψC and variable loop. Each structural element has specific functions in shap-
ing the three dimensional structure. The acceptor stem and TψC-arm stack together to
form a continuous alpha-helix, while the D-arm and anticodon arm stack to form another
continuous helix. The numbering correspond to the cannonical representation by Sprinzl.
[164]. Circles for nucleotide positions always conserved, in ovals non-conserved. I, II, III
and IV for loops. Letters a, b, c, d and e correspond to regions that shape double helices.

Structural elements are also of fundamental importance to tRNA biology. tRNAs are
highly differentiated nucleic acids comprised of 74-95 nucleotides that are folded into a
bi-dimensional pattern, known as a tRNA cloverleaf, which is believed to accommodate
most known tRNA sequences (see Fig. 1.1). This structure is composed of four base-
paired stems (acceptor, anticodon, TψC and the D stem) and four non-base-paired loops:
D, anticodon, TψC and variable loop. Each structural element has specific functions in
shaping the three dimensional structure. The acceptor stem and TψC-arm stack together
to form a continuous alpha-helix, while the D-arm and anticodon arm stack to form another
continuous helix. Two RNA double helices cross by 90◦ to form a characteristic L-shaped
tertiary structure. In addition to these interactions, nucleotide modifications are essential
for the tRNA to maintain its canonical L-shaped structure [129].

In addition to their current functionality, certain aspects of these structural elements
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1.1. TRNA BIOLOGY

point to one of the more surprising steps in the origin, diversification and maintenance of life.
The acceptor stem includes the 5’ and 3’ ends of the tRNA and the 3’ end harbors a 3’CCA
motive that is aminoacylated with a specific amino acid by cognate aaRSs. The anticodon
stem harbors the anticodon loop where the anticodon triplet is located. This triplet, through
the mediation of the ribosome and other enzymes, facilitates subsequent decoding of the
genetic code by inducing binding of the tRNA to its complementary anticodon sequences
on the mRNA [74]. This deciphering of the primary genetic code establishes the crucial
role of tRNA structure in the decoding of genetic information [74]. However, the existence
of a second genetic code, written into the structure of the tRNA and the aaRSs, has also
been widely documented. This code presumably recognizes determinants of tRNA identity
hidden in a highly conserved and compact common structure with L shaped architecture [74,
29]. Many efforts have been made to characterize the interaction between this sequence-
structure and aminoacylation steps [152]. Although the diversity and conservation of the
tRNA world is well documented [142], several fundamental biological questions remain open.
These include questions regarding aspects of tRNA identity, its role in the evolution of the
genetic code, and its role in nucleotide modifications, as well as the effect of structural
deviation of tRNA on aminoacylation [60] [73].

CCA

CCA

RNase P

RNase Z

CCA enzyme

precursor tRNA mature tRNA

modification

D

Gm

L
T

Figure 1.2: Summary of the more important steps of the biogenesis of functional mature
tRNAs.
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CHAPTER 1. TRNA WORLD AND ITS LINK TO RNAI PATHWAY

The biogenesis of functional mature tRNAs is an amazingly complicated process [189].
The tRNA is first transcribed by RNA polymerase III (in eukaryotes) as a precursor with
5’ leader and 3’ trailer extensions [129]. Thus, tRNA transcripts must be processed into
their standard length, but they then must also be posttranscriptionally modified. Three
main steps lead their maturation: (1) removal of the 5’ leader and 3’ trailer extensions, (2)
modification of some nucleic bases, and (3) addition of CCA to their 3’ ends. For the subset
of intronic tRNAs, an extra step, the splicing out of an intron (intervening sequence), is
also required.

The complexity of tRNA maturation requires a chain of interactions of diverse proteins.
The La protein autoantigen, which functions in the earliest stages of the biogenesis of
many noncoding RNAs [25], is the first protein in this chain. This phosphoprotein forms
a complex La-pre-tRNA that protects the pre-tRNA 3’ end from degradation and assists
in correct folding of certain pre-tRNAs. It is also the substrate of the ribonucleoprotein
enzyme RNase P, which removes the 5’ leader sequence through a single endonucleolytic
cleavage [25].

Processing of the 3’ end is more complicated. In E. coli, the 3’ end CCA is encoded
by its tRNA complement. RNase E carries out the first step of tRNA maturation through
cleavage at positions usually a few nucleotides downstream of the 3’ end of the tRNA, either
together with or after RNase P action. Then, many other exoribonucleases, mainly RNase T,
PH, D, II, etc., shorten the trailer. If the exonucleases trim the trailer sequence beyond the
amino acid attachment CCA sequence, a template-independent RNA polymerase, known as
CCA-adding enzyme, repairs the CCA terminus [129]. RNase Z endonucleolytically cleaves
the sequence 5’ of the CCA sequence, and then the CCA terminus is synthesized de novo
by CCA-adding enzyme. In eukaryotes, RNase Z cleaves after discriminator nucleotides in
tRNA precursors that are generally CCA-less. The addition of CCA to eukaryotic CCA-less
tRNAs is catalyzed by tRNA nucleotidyl transferase [107].

In a third universal step, maturation of tRNAs is accomplished by a set of enzymes
that act on multiple tRNA substrates, catalyzing the same base modification at a particular
position, or a defined set of positions [141]. tRNA modifications are divided into two main
categories. Modifications localized in the tRNA core region (D- and TψC) that contribute
to the stabilization of the L-shaped tertiary structure and modifications occurring within
the anticodon loop have the dual functions of precise codon pairing on the one hand and
accurate recognition by the cognate aminoacyl-tRNA synthetases on the other. [129]. See
Fig. 1.2. However, alterations to the mechanisms that assure tRNA structural stability
and the universality of tRNA modifications, which are normally extensively and extremely
stable, are also well documented [18, 25, 129]. Some tRNAs lacking specific modifications
are subject to degradation pathways [141] and to rapid tRNA decay.

Besides their primary ancestral function in translation, tRNAs appear to have acquired
several additional modes of employment throughout evolution. Several recent studies, for
instance, have reported tRNA-derived small RNAs in different Eukaryotic clades [106, 154,
19, 23, 98], which at least in part appear to be utilized in the RNAi pathway. Furthermore,
tRNA genes are a prolific source of repetitive elements (SINEs) [167], and of tRNA-derived
small RNAs such as the small brain-specific non-messenger RNA BC1 RNA [148, 80] and
other SINE-derived ncRNAs [132].

Multiple copies of functional tRNA genes, numerous pseudogenes, and tRNA-derived
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1.2. LINKING TRANSCRIPTOME ANALYSIS AND HTS TECHNOLOGY

repeats are characteristic byproducts of tRNA evolution throughout the Eukarya [49]. In
general, tRNA genes appear to evolve rapidly. In E. coli, the rate of tRNA gene duplica-
tion/deletion events is on the order of one per million years [187], and a recent analysis
of schistosome genomes revealed striking differences in the tRNA complement between the
closely related platyhelminths S. mansoni and S. japonicum [26].

Although the sequence and structural evolution of tRNAs themselves has received quite
a bit of attention [70, 58, 113, 114], much less is known about the genomic organization of
tRNA genes. Recent evidence, however, indicates that tRNA genes play a role in eukaryotic
genome organization [120], e.g. by acting as barriers that separate chromatin domains. In
trypanosomes, for example, tRNA genes mostly appear at the boundaries of transcriptional
units and may be involved in the deposition of special nucleosome variants in these regions
[173]. Furthermore, there is a link between tRNA loci, in particular clusters of tRNA genes,
and chromosomal instability [35, 93, 5, 31, 82]. A recent study showed that tRNA genes
may act as barriers to the progression of the DNA replication fork [120], providing a possible
mechanism for the formation of genomic fragile sites. The genomic evolution of tRNA genes
thus may be linked to the evolution of genome organization. Nevertheless, reports on clade-
specific features, such as the strong increase in tRNA introns seen in Thermoproteales [166],
are rare.

A peculiar feature of tRNA gene organization is the pattern of tRNA tandem repeats,
which so far has been reported only in the protistan parasite Entamoeba histolytica [177, 21].
MicroRNAs derived from a precursor in which an imperfectly matched inverted repeat forms
a partly double-stranded region, as observed in Chlamydomonas [123, 192], furthermore,
suggests that head-to-head or tail-to-tail arrangements of tRNA genes might be an evolu-
tionary source of small RNAs.

1.2 Linking transcriptome analysis and HTS technology

The transcriptome is defined as the complement of all RNA molecules, including mRNA,
rRNA, tRNA, miRNA, snoRNA, snRNAs, and many other types of non-coding RNA, tran-
scribed in one cell or a population of cells. More formal definitions include quantification
of this transcribed material and its relation to differential tissue expression [185]. Efforts to
understand the transcriptome have led to the identification of new regulatory elements and
the deciphering of key regulatory elements in developmental and disease biology as well dra-
matically improved sequencing techniques. Since the initial work of Sanger [150, 149], the
only sequencing method used 30 years ago, biology has benefited from huge improvements
in genome analysis affecting diverse research areas and applied fields. Over the years, the
increase in throughput demand for DNA sequencing has driven the development of next-
generation sequencing methods that have in turn led to the development of diverse new
fields within biology. Next-generation sequencing technologies are transforming the field
of genomic science and indeed the field of biology in general [153]. Hundreds of papers
have been published in these new fields, ranging from quantitative data on specific bio-
logical functions to characterization of the full genetic potential for the sustainable use of
ecosystems.

However, the goal of deciphering whole organisms’ genomes necessitated a dramatic
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CHAPTER 1. TRNA WORLD AND ITS LINK TO RNAI PATHWAY

increase in DNA sequencing throughput ability, and this requirement was met through the
impact of automated capillary electrophoresis. A major revolution in sequencing appeared in
2005 with the publication of shotgun sequencing and de novo assembly of the Mycoplasma

genitalium genome using open micro-fabricated high density picoliter reactors [116]. This
highly parallel sequencing system, developed by 454 Life Sciences, presented biologists with
a new technology to greatly reduce reaction volume requirements. Then, also in 2005,
George Church lab reported the development of the multiplex polony sequencing protocol,
used for the first time to resequence an evolved strain of Escherichia coli with an accuracy
of less than one error per million consensus bases [155]. Some other biological studies utilize
massive parallel sequencing systems like the Solexa 1G sequencing technology, developed
to map histone modifications in the human genome [11]. To map protein-DNA interactions
across entire mammalian genomes, another group developed the large-scale chromatin im-
munoprecipitation assay (ChIPSeq), based on direct ultrahigh-throughput DNA sequencing
[83]. RNA sequencing (RNA-seq), a revolutionary tool for deciphering the complexity of cell
biology expression, combines HTS technology and quantitative measurement of transcripts
and their isoforms (for a review see [185]). The RNA-seq approach has enabled the mapping
and quantification of mammalian transcriptomes [124], characterization of the transcrip-
tomes of stem cells, profiling of the HeLa S3 transcriptome [22, 117], understanding of
the transcriptional landscape of the yeast genome [127], development of highly integrated
single-base resolution maps of the epigenome in Arabidopsis [109], transcriptome-guided
characterization of genomic rearrangements in a breast cancer cell line [191], and charac-
terization of transcriptome-based aspects of many other human diseases. In addition, this
tool has enabled the emergence of one of the major areas for modern genetics: the study
of alternative promoters used for transcript production [165].

Mapping problem By the time of the appearance of the new sequencing methods, most
criticisms were mainly focused on the size of the read product; first read sizes rarely exceeded
25 bp. This was followed by skepticism founded on the needs to handle large volumes of
data, and is being addressed by the development of new sequencing hardware and compu-
tational models, still an ongoing process. Thus, biologists and computer scientists continue
to face new challenges to transform biology. In the words of Schuster [153], “this goal will

only be achieved through the development of structurally, biochemically, and biophysically

detailed computational models based directly on experimental data. Once developed, these

models can be simulated, analyzed, and understood through application of modern engi-

neering and computational approaches, and the knowledge gained from these analyses can

be applied to the design of additional experiments”. With the availability of more non-
Sanger sequencing methods, it is now becoming possible to assess both next-generation
sequencing accuracy and the curation of the vast majority of Sanger-based referenced se-
quences in the public databases [153]. This will allow exhaustive exploration of the vast
information derived from transcriptome data and the development of new computational
approaches.

Once the size of the reads produced by HTS increased to more than 400 bp, very
different error models were also faced for the new sequencing technology. For example in
Solexa, the more frequent read-error types are mismatches, whereas those of 454’s GS FLX
are insertions and delections [72].
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Later, demand for the development of new mapping methods was intensified, and newly
available methods are designed specifically to allow mismatch matching of short reads.
Some of them only fill the necessities of specific technologies; for instances SOAP [104] and
Maq [102] to map Solexa or SOliD reads, and longer reads cannot be mapped. SOAP can
perform both ungapped and gapped alignments, and has special modules for the alignment
of pair-end small RNA and mRNA tag sequences. In Maq, furthermore, the problem of
one or two mutations or sequencing errors in a short read leading to its mapping to the
wrong location is solved by keeping all of the reads that can be mapped and evaluating the
likelihood of incorrect positioning for each of them. With this approach, poor alignments
can still be discarded later. Other software, such as [108], are based on extension of the
multiple-spaced seeds method, in which different seeds are designed on different positions
of a read. The seeds designed only to address the issue of mismatches were demonstrated
to also have very high sensitivity when indels are present. Finally, segemehl is one approach
dealing simultaneously with insertions, deletions, and mismatches. This matching method
uses a variation of enhanced suffix arrays to allow a coherent treatment of these read error
sources through the modification of matching statistics in such a way that all of the error
sources are evaluated efficiently [72].

HTS and its importance to the study of the RNAi pathway The new DNA se-
quencing technologies have significantly improved throughput and dramatically reduced
cost compared with capillary-based electrophoresis systems [155] and have significantly in-
fluenced today’s biology. On the other hand, though the main problem of HTS was solved,
the new technologies have created new challenges for the study of the transcriptome, partic-
ularly the small RNA fraction. As a consequence, a new abundant class of small noncoding
RNAs was discovered. Thus, frontiers of knowledge have been expanded not only to in-
crease our comprehension of expression and regulation, but also to allow the discovery of a
tiny world that re-evaluates our comprehension of cellular functionality in many respects.

In transcriptome analysis, much attention is currently focused on understanding the role
of alternative promoters in generating transcript diversity, both for protein-encoding RNAs
(traditionally thought of as gene transcripts) and non-protein-encoding RNAs (ncRNAs).
Whole-transcriptome analysis of many species and cell types reveals massive expression of
ncRNAs. It is widely believed that ncRNAs act as regulators of transcription and trans-
lation. Recent investigations of whole RNA cDNA libraries generated by high throughput
sequencing (HTS) have shown that these libraries contain both primary and processed tran-
scripts. Further, recent mapping of functional sequence elements in the human genome has
corroborated the cDNA-based finding that ncRNAs compose a significant portion of the
transcriptome. Finally, numerous studies have illustrated how some mutant RNAs can cause
disease [134]. In response to these findings, comprehensive computational approaches are
emerging to characterize the vast repertory of ncRNA expression.

One of the major impacts of HTS on transcriptome studies is the characterization
of RNA interference (RNAi). This system, based mainly on three classes of small RNA
molecules, microRNA (miRNA), small interfering RNA (siRNA) and piwiRNA (piRNA),
was discovered in 1986 and 1990 through observations of transcriptional inhibition by an-
tisense RNA expressed in transgenic plants [38], and reports of unexpected outcomes in
experiments performed by plant scientists in the early 1990s [130]. Although the discov-
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ery of RNAi preceded HTS technology, today’s in depth studies of the roles of new small
RNAs in mammalian RNAi-related gene silencing pathways [67] are only possible due to
this technology.

Originally, RNAi described a variety of gene silencing processes which require small
RNA to mediate site specificity. The pathways including this small RNA machinery appear
to overlap to a certain extent. While they use distinct core proteins, they share several
components. There are three different mechanisms of regulation of gene expression:

1. Translational inhibition. Classes: miRNA. This small RNA binds to an mRNA and
causes translational inhibition. The degree of base-pairing between the miRNA and
the target sequence, together with protein components in related miRNPs (Ago1),
determines the mode of function. The so-called seed region (7nt on 5end of the
miRNA) mediates sequence specificity. RNA degradation requires almost perfect
complementarity, whereas translational inhibition allows a certain number of unpaired
bases.

2. RNAi: mRNA degradation. Classes: miRNA, siRNA, tasiRNA, natsiRNA, piRNA.
In contrast to translational repression, RNAi causes degradation of the target by
the RNA induced silencing complex (RISC ). Two factors determine this mode: the
composition of the RISC complex and the small RNA:mRNA binding pattern. RNAi
requires the presence of Ago2 and nearly perfect complementarity between the small
RNA and its target. Whereas metazoan miRNAs target the 3 end of the mRNA and
by some not yet fully understood mechanism cause blocking of translation, miRNAs
in plants target the coding region and cause degradation by an siRNA- like pathway
(reviewed in [47]).

3. Transcriptional gene silencing and Imprinting. Class: miRNA, rasiRNA, piRNA. Small
RNAs have been shown to promote de novo methylation as well as maintenance of
DNA methylation ([9]) in plants and animals ([89]). Several studies also give rise to
the idea that histone methylation of specific loci might be guided by small RNAs.
MicroRNAs target promoter regions of genes, whereas rasiRNAs shut down repeat-
rich regions in the genome.

Components of small RNA biogenesis include Type III RNases that bind and cleave dou-
ble stranded RNA (dsRNA), divided into three families. RNases of classes I and II are also
found in small RNA pathways. Drosha is a class II enzyme that requires Pasha as cofactor.
It cleaves pre-miRNAs from longer precursors, which are then further processed by Dicer, a
Class III enzyme that has an N-terminal DExD/H-box helicase and PAZ (Piwi/Argonaute/
Zwille) domains. It dices long dsRNA into 20nt-long duplexes with a typical 2nt overhang
at the 3 end. The family of Argonaute proteins (AGOs) comprises a multitude of different
members with various functions ([79]). AGOs consist of an N-terminal PAZ domain, also
found in Dicer, and a C-terminal PIWI domain. The exact functions of the domains remain
unresolved. However, the PIWI domain seems to bind to the 5 seed region of miRNAs,
whereas the PAZ domain interacts with the 3-OH. Vertebrates have four AGOs (Ago 1-4,
also known as eIFC1-4). Ago 2 is required for RNAi, whereas Ago1 acts in translational inhi-
bition. Both interact with Dicer ([126]). Polymerases associated with small RNA biogenesis
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include DNA polymerase II for miRNAs. Organisms with strong siRNA activity require an-
other enzyme in order to multiply their response to parasitic RNAs. In plants, protozoans,
and lower metazoans, RdRP (RNA dependent RNA polymerase) performs siRNA-primed
synthesis of dsRNA, which is then cleaved by RISC and Dicer homologs.

tRNA-derived RNA fragments (tRFs) tRNA cleavage products have been associated
with stress responses, development, alteration of tRNA structural stability, and other bio-
logical processes [105, 178, 179, 190, 76, 66, 19, 18, 25, 129]. However, it is only in the last
year, and through whole transcriptome analysis, that the identification of new tRNA-derived
small RNAs has increased [23, 98, 67, 52]. Deep sequencing of mixed HeLa cell extracts
revealed that the most abundant tRNA-derived small RNAs are products of processing of
Lysine, Valine, Glutamine and Arginine tRNAs. These tRNAs are almost exclusively pro-
cessed from the 5’ end, with cleavage by Dicer at the D-loop, resulting in small RNAs
approximately 19 nt in length [23]. From the analysis of the global expression profile of
small RNAs in human prostate cancer cell lines, three series of tRFs (tRNA-derived RNA
fragments) have been discovered: tRF-5, tRF-3 and tRF-1. These sequences were reported
as the second most abundant small RNAs (second only to miRNAs) and their names are
derived from their precise alignment to the 5’ and 3’ ends of mature tRNA. The tRF-1 series
is located downstream from the 3’ end of the mature tRNA sequence. The tRF-5 series
exhibits sizes ranging from 15 to 25 nt, tRF-3 ranges from 13 to 22 nt, and tRF-1 has a size
distribution that does not correlate with the theoretical distribution expected if the cleavage
of all pre-tRNAs gave rise to tRF-1 molecules [98]. A population of these small RNAs is
actively produced in Trypanosoma cruzi [52], and their production was found to increase
under conditions of nutritional stress. This population is preferentially restricted to specific
isoacceptors and to the 5’ halves of mature tRNAs. The importance of tRNA-derived small
RNA to the global regulation of RNA silencing through differential Argonaute association
suggests that small RNA-mediated gene regulation may be even more finely regulated than
previously realized [67]. These sets correspond to small RNA produced from the 3’ tRNA
arm and from the region downstream from the 3’ end of the mature tRNA. The precise
start and end sites for these sets, at or near the tRNA ends, together with their nonrandom
nature with respect to size and nucleotide composition at cleavage junctions, strongly sug-
gests that these small RNAs are derived from tRNA cleavage in a specific manner [98, 67].
Recent findings of competition between mammalian RNAi-related gene silencing pathways
shown that tRNA-derived small RNAs are involved in the global control of small RNA si-
lencing through differential Argonaute association. tRF levels have minor effects on the
abundance of miRNAs but more pronounced influence on the silencing activities of both
miRNAs and siRNAs [67].

Origin of other functional molecules from tRNAs Short interspersed elements (SINEs)
and long interspersed elements (LINEs) are transposable elements in eukaryotic genomes
that mobilize through an RNA intermediate. Most eukaryotic SINEs are ancestrally related
to tRNA genes, although the typical tRNA cloverleaf structure is not apparent for most
SINE consensus RNAs. In all cases, SINEs harbor in their tRNA-related segment an inter-
nal promoter (composed of A and B boxes) recognized by RNA polymerase III. A general
multistep model is available for the evolution of tRNA-related SINEs in eukaryotes [167].
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Another tRNA-derived functional molecule is the rodent BC1 RNA, a small brain-specific
non-messenger RNA. BC1 RNA is specifically transported into the dendrites of neuronal
cells, where it is proposed to play a role in the regulation of translation near synapses
[148]. A previous study demonstrated that the 5’ domain of BC1 RNA was derived from
Alanine tRNA. However, evidence indicates that changes accumulated during evolution
have created an extended stem-loop that does not fold into the predicted canonical tRNA
cloverleaf structure. BC1 RNA has been associated with fragile X syndrome (caused by
the functional absence of the fragile X mental retardation protein, FMRP). However, the
specific details of interactions between FMRP and BC1 RNA remain controversial, although
BC1 RNA has been proposed to repress translation initiation at the level of 48S complex
formation [148].

miR916 from Chlamydomonas reinhardtii Analysis of the transcriptome of the uni-
cellular algae C. reinhardtii led to the discovery of the existence of miRNAs in unicellular
organisms [123, 192]. These studies showed that C. reinhardtii contains putative evolu-
tionary precursors of miRNAs and species of siRNAs resembling those in higher plants,
indicating that complex RNA-silencing systems evolved before multicellularity and were a
feature of primitive eukaryotic cells [123, 192].

In a pilot study, we previously identified a set of microRNAs derived from pre-miRNAs
in which an imperfectly matched inverted repeat forms a partly double-stranded region, as
observed in Chlamydomonas. This suggests that head-to-head or tail-to-tail arrangements
of tRNAs might be an evolutionary source of small RNAs. See Tab. 1.1 and Fig. 1.3.

miRNA tRNA begin Bounds end tRNA type Anticodon S.Intron E. Intron Bounds end CS
02359 1 301 374 Ile AAT 0 0 75.27
02359 2 84 11 Ile AAT 0 0 75.27
mir916 1 69 142 Ile AAT 0 0 72.81
mir916 2 864 791 Ile AAT 0 0 72.81

Table 1.1: Identified tRNAs stretched on cre-miRNA 02359 and mir916, CS cover score
from tRNAscan-SE.

1.3 Computational identification of tRNA candidates

RNA sequence analysis using covariance models Presumably because the function
of noncoding RNAs is based on their three-dimensional secondary structure, RNA sequences
appear to be adapted to the maintenance of a particular base-paired structure rather than
the conservation of primary sequence [39]. In the preceding sections, we have mentioned
how pivotal RNA secondary structure is to RNA function. Strong pairwise correlations
in RNA sequence, usually manifested as Watson-Crick complementary pairing, correspond
to an intermediate three dimensional RNA structure. Making use of these correlations,
computational approaches and mathematical models aimed at the detection of RNA at
the genome-wide scale have been recently developed. Since the inference of phylogenetic
trees is based on multiple RNA sequence alignments, the demand for new automated RNA
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Figure 1.3: Stretch of the miR916 from C. reinhardtii over the Isoleucine tRNA.

detection methods, combining both structure prediction and multiple alignment approaches,
has been increasing over the course of the last two decades. By 1994, Eddy & Durbin
introduced a probabilistic model, called the “covariance model” (CM), for the detection
of tRNAs. This model cleanly describes both the secondary structure and the primary
consensus sequence of a tRNA. This new approach has helped to solve several RNA analysis
problems, including consensus secondary structure prediction, multiple sequence alignment,
and database similarity searching [39], and was later extended to the sequences of other
families of structured RNAs [64, 53]. CMs are a generalization of hidden Markov models
(HMMs), probabilistically rigorous models that were first described in a series of statistical
papers by Leonard E. Baum and other authors in the second half of the 1960s and were first
applied to speech recognition [143]. CM is a special case of profile stochastic context-free
grammar. Tools like Infernal (“INFERence of RNA ALignment”) or tRNAscan-SE are
sophisticated implementations of CMs developed for searching DNA sequence databases for
RNA structure and sequence similarities. Infernal is used to search nucleic acid sequence
databases for homologous RNAs, or to create new sequence- and structure-based multiple
sequence alignments of RNA families [131]. tRNAscan-SE is used to detect tRNA genes
and related sequences [111].

tRNA gene identification The tRNAscan-SE program [111] works in three phases.

Stage 1. The input sequence is analyzed using tRNAscan (an optimized version of tRNAscan
1.3 [46]) and the Pavesi algorithm. The latter is an implementation of the Pavesi
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search algorithm [137] known as EufindtRNA. Results from both programs are then
merged into one list of candidate tRNAs. The Pavesi algorithm is based on a modified
version of the general weight matrix procedure; their algorithm relies on the recog-
nition of two intragenic control regions, known as A and B boxes, a transcription
termination signal, and the evaluation of the spacing between these elements [137].

Stage 2. tRNAscan-SE is used to extract the candidate subsequences and pass these segments
to covels, a covariance model search program [39]. Covels applies a tRNA covariance
model (TRNA2.cm) that was made through the structural alignment of 1415 tRNAs
from the 1993 Sprinzl database [164] with some editions [39]. To improve intron
prediction, intron sequences were manually inserted into the Sprinzl alignment for 38
intron-containing tRNAs of known genomic sequence.

Stage 3. tRNAscan-SE takes predicted tRNAs that have been confirmed with covels, logs odds
scores of over 20.0 bits, trims the tRNA bounds to those predicted by covels, and
runs the covariance model global structure alignment program coves [39] to get a
secondary structure prediction. The tRNA isotype is predicted by identifying the
anticodon within the coves secondary structure output. Introns are identified from
this output as runs of five or more consecutive non-consensus nucleotides within the
anticodon loop.

Stage 4. tRNAscan-SE uses heuristics to try to distinguish pseudogenes from true tRNAs,
primarily on the basis of a lack of tRNA-like secondary structure. A second tRNA
covariance model (TRNA2ns.cm) was created from the same alignment, under the
constraint that no secondary structure is conserved (this model is effectively just a
sequence profile, or hidden Markov model). By subtracting a tRNA’s similarity score
(similarity to the primary structure-only model) from that using the complete tRNA
model, a secondary structure-only score is obtained. In Bayesian terms, this difference
can be viewed as the evidence for a complete tRNA model, as opposed to a sequence-
only pseudogene model (lacking secondary structure). We observed that tRNAs with
low scores for either component of the total score were often pseudogenes. Thus,
tRNAs are marked as likely pseudogenes if they have either a score of <10 bits for the
primary sequence component of the total score, or a score of <5bits for the secondary
structure component of the total score.

The sensitivity of tRNAscan-SE relies on the identification of 99-100% of transfer RNA
genes in a DNA genome while presenting less than one false positive per 15 gigabases. The
selectivity is measured by its ability to avoid misidentifying non-tRNA sequences as true
tRNAs. In human genomes, the program’s false positive rate is zero except for the cases
of tRNA-derived SINEs and tRNA pseudogenes [39].
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Chapter 2

Genomic Organization of Eukaryotic
tRNAs

2.1 Introduction

Understanding genome features is one of the major goals of computational genomics. Com-
putational analysis is being increasingly used to decipher biological information from genome
sequences and related data. The recently published literature points out the importance of
studying the vast array of ways in which organisms’ genomes are organized. For example, a
comparison of the genomic organization of six major model organisms shows size expansion
in parallel with the increase in complexity of the organism, e.g., the difference between the
genome size of yeast and mammals is more than 300-fold, but the difference in overall gene
number is only a modest 4- to 5-fold [92]. Many authors believe that studies of genomic
organization will be the basis for future understanding of epigenetic mechanisms.

Though most efforts to study epigenetics have focused on the genome organization of
protein-coding RNA, attention has lately been aimed at the organization of small non-coding
regulatory RNAs. Although the most extensively studied among these are microRNAs,
transfer RNAs (tRNAs) are among the most ancient genes. Mainly known as housekeep-
ing RNAs, tRNAs have a pivotal function in protein translation. Progress in nucleic acid
sequencing, especially in large-scale automated DNA sequencing of whole genomes, along
with different algorithms that allow tRNA gene identification on a wide genome scale, now
allow access to more detailed information regarding the number and the organization of
tRNA genes at the genome level.

The diversity of tRNA genes in eukaryotes has been previously reported for 11 eukaryotic
genomes [58]. In addition, a comparison of 50 genomes from the three domains of life (7
eukarya, 13 archaea, and 30 bacteria) [113] reveals domain-specific structural and functional
features as well as a suggestive diversity of tRNA function. For example, the eukarya exhibit
tRNA redundancy, with two or more proteins encoded by the same anticodon, in contrast to
both archaeons and bacteria, in which the trend is evidently a low level of tRNA redundancy
[113]. In spite of these advances in understanding tRNA diversity, little is known about the
organization of tRNA in the genome.

The limited body of knowledge in this area includes surveys that point out the impor-
tance of tRNAs and genome organization. These studies include laboratory experimentation
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that has shown how tRNA gene locations interfere with replication forks [35, 93, 5, 31, 82].
In addition, retrotransposable elements frequently target the vicinity of tRNA genes in or-
der to avoid gene disruptions upon retrotransposition [20], indicating that tRNA genes are
selected as chromosomal integration sites. Finally, this view is also supported by the dy-
namic of genomic rearrangements, losses and additions. Sites of gene gain and evolutionary
breakpoints both tend to be associated with tRNA genes, as revealed by the comparison of
an extinct ancestral yeast and S.cerevisiae [59]. Clearly, tRNA genome organization is an
intriguing issue in RNA biology.

tRNA: relation of structure and aminoacylation

Experimental studies have shown that mispairs and tRNA helix irregularities are significantly
more important for aminoacylation and translation than previously thought. The importance
of tRNA helix irregularities shaped by G:A, C:A, and U:U mispairs has been documented
through the use of site-directed mutagenesis studies [118, 13, 119]. Interestingly, tRNA
sequence comparisons between genomic DNA and cDNA obtained from unprocessed pri-
mary transcripts has revealed nucleotide discrepancies in mitochondrial tRNAs from Acan-

thamoeba castellanii, the protist Seculamonas ecuatoriense, and plants [110, 115, 45, 100].
Those editing events correct mismatched C:A and U:U base pairs, which appear when
folding the gene sequence into the standard cloverleaf structure. Then those introducing
sequence changes and some specific studies of tRNA aminoacylation would be important
to the identification and re-evaluation of more potential functional tRNA pseudogenes from
Genomic sequences.

tRNA tandem array in Entamoeba

Clustering of tRNA genes is considered rare and tandem arrays of tRNA genes have been
reported to date only in the amoeba E. histolytica. In the most related organism, the
soil-living amoeba Dictyostelium discoideum, the tRNA genes are dispersed throughout the
genome [40]. The unique organization of tRNA genes in E. histolytica [21] was discovered
because 29% of all sequence reads were excluded from the raw E. histolytica HM-1:IMSS

genome assembly [16] due to their repetitive nature. Analysis revealed that approximately
two-thirds of these were derived from the ribosomal DNA episome, but that the rest were
derived from tRNA arrays. This tRNA gene organization, in tandem arrays, makes up over
10% of the genome, with 25 distinct arrays having been described. They are composed
of tandemly repeated units encoding between 1 and 5 tRNA acceptor types. It has also
been reported that three of the arrays also encode 5S RNA and one encodes another RNA
suspected to be a small nuclear RNA (snRNA) [21]. In addition to the high copy number,
the tandemly arrayed organization of the tRNA genes is unprecedented and its origins are
still unknown [21]. To detail this unique gene organization, studies of four other species
of the genus Entamoeba, E. dispar, E. moshkovskii, E.terrapinae, and E. invadens, have
been undertaken. This survey revealed that tRNA arrays appear to be a general feature of
Entamoeba, but many questions regarding their origin and function remain [177].
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Synteny

Synteny means “same thread” (or ribbon), a state of being together in location, as syn-
chrony would be together in time. More strictly, in genetics, synteny refers to gene loci on
the same chromosome, regardless of whether or not they are genetically linked by classic
linkage analysis. Although the term was introduced in 1971 by John H. Renwick, of the
London School of Hygiene and Tropical Medicine, at the 4th Internationall Congress of
Human Genetics in Paris, the term synteny nowadays is often used to refer to gene loci
in different organisms located on a chromosomal region of common evolutionary ancestry
[135]. For modern comparative genomics, it is a well-established inference that human
and mouse species share around 200 homologous segments, i.e., chromosome chunks that
contain a linear stretch of the same gene homologs in the two compared species. Based on
the definition of synteny, the term “conserved synteny” corresponds to the (local) mainte-
nance of gene content and order in certain chromosomal regions of related species [27, 99].
The increasing number of genome sequences and the improved analytical approaches being
used today are clarifying angiosperm evolution and revealing patterns of differential gene
loss after genome duplication and differential gene retention associated with evolution of
some morphological complexity [175].

In the following section, we present a methodology for a comprehensive and exhaustive
search of tRNA locations on a genome-wide scale. This is followed by an exploration of the
genomic dynamics of tRNAs by searching for tRNA-bearing loci, especially addressing the
issue of whether tRNAs can be found in syntenic locations. Finally, we will touch on the
many questions arising from our results, particularly those about the sorts of forces that
might give rise to the long-range patterns seen in these tRNA genomic distributions.

2.2 Methodology

Sequence data We retrieved 74 eukaryotic genome mainly from the following public
resources: NCBI, Ensemble Genome Browser and Joint Genome Institute. For a detailed
list of the individual genome assemblies we refer to [4]

tRNA detection Detection of tRNAs was performed by using tRNAscan-SE v.1.23 (April
2002) with default parameters, i.e., the TRNA2.cm covariance with strict filter parameter
−32.1 was used to screen each genome for tRNAs and tRNA pseudogenes. All analyses
were performed using both the set of all intact, putatively functional tRNAs identified by
tRNAscan-SE and using all tDNA loci, i.e., the union of tRNA genes and tRNA pseudo-
genes.

The distinction of tRNA genes and pseudogenes necessarily relies of a set of heuristics
implemented in tRNAscan-SE. These are well-founded in what is known about functional
tRNA genes [74, 29, 152, 73, 60, 142]. Processing and recognition of specific tRNAs
imposes stringent constraints on the sequence (and secondary structure) of tRNAs; several
nucleotides of mature tRNAs need to chemically modified in most species, imposing further
constraints on the primary sequence. tRNAscan-SE’s consensus models implement these
contraints with reasonable accuracy but by no means perfectly. In the absence of detailed
experimental information on the expression and the functionality of a particular tDNA it
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is of course impossible to distinguish between tRNA genes and tRNA pseudogenes with
absolute certainty. For the statistical evaluation of genome-wide comparison reported here,
however, the accuracy of tRNAscan-SE appears to be sufficient [111, 58, 172]. There are,
however, several sources for errors, in particular in the presence of RNA editing e.g. in the
mitochondrial tRNAs of many plants and the protist [110, 115, 45, 100]. Such organellar
data are not considered in this contribution, however.

tRNA-geo pipeline The tRNA-geo pipeline is a Perl program that parses tRNAscan-SE

output and produces summary information as well as overview graphics such as those shown
in Figs. 2.1 and 2.7. First tDNA locations are sorted in consecutive order along each input
sequence, distances are measures (see below for exact definitions), tDNA pairs and tDNA
clusters are identified, summary statistics are computed. Graphics are produced using
PSTricks macros and LaTeX.

tRNA-geo pipeline description

• String definition. Every tDNA is represented by a quadruple P = (a, b, o, t), where
a < b are the start and end positions within each input sequence (chromosome,
scaffold, or contig), and o ∈ {+,−} is the orientation of the tRNAs. We say that
two tDNAs are of the same type t if they belong the same isoacceptor family, i.e., if
they code for the same aminoacid.

• Distance definition: The tRNA loci are ordered such that Pi ≺ Pj if and only if
ai < aj . The distance between two consecutive loci Pi and Pi+1 is defined as
δi = ai+1 − bi.

• Cluster definition: A cluster C is a maximal sub-sequence of loci C = (Pi, Pi+1, . . . , Pj)
such that δk < 1000 for i ≤ k < j. The cut-off of 1000 was chosen because the
overwhelming majority of consecutive tDNA pairs in the random control have larger
distances while a large fraction of the tDNA pairs in the real data have smaller dis-
tances than this cut-off value, see Fig. 2.5 here.

• Cluster class definition: A cluster is called homogeneous if all its tDNAs are of the
same type tk; otherwise, it is called heterogeneous. A sub-sequence consisting of two
consecutives loci located within a cluster C is called a pair. The pair (Pi, Pi+1) is
homogeneous if ti = ti+1 and heterogeneous otherwise. A pair has parallel orientation
if oi = oi+1. For anti-parallel pairs, oi = −oi+1, we distinguish head-to-head oi = +
and oi+1 = − (←→), and tail-to-tail oi = − and oi+1 = + (→←) orientations.

Simulations In order to investigate the statistical significance of the tDNA pairs we
compare the genomic tDNA organization with randomized configurations. To this end,
we remove the collection of tRNA genes and pseudogenes from the genome and re-insert
them at positions chosen from a uniform distribution on the remaining sequence. Empirical
p-values, defined as

p = #{i|y(i) ≥ x}/N , (2.1)
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where y(i) is the number of clustered tRNAs in replicate i, x is the number of clustered
tRNAs in the genome, are determined from N = 50 to N = 1000 random replicates.
For large (insignificant) p-values, simulations were terminated at fewer replicates to save
computer time.

Statistical tests Were performed using the R statistics environment [1]. In particular,
Fisher’s exact test [48] with 2× 2 contingency tables was used in order to test whether the
observed proportion of homogenous and heterogeneous pairs depends strongly on whether
tRNA pseudogenes are included in the analyis or not.

Synteny To analyze the synteny between species, we utilized two different pipelines de-
pending on available genomic data and their interrelations in public data sources. The
BioFuice [91] integration platform is used to analyze the synteny in eight different ver-
tebrate species Homo sapiens, Pan troglodytes, Pongo pygmaeus, Macaca mulatta, Mus

musculus, Monodelphis domestica, Gallus gallus, and Xenopus tropicalis. The analysis runs
in several steps. Firstly, the Ensembl data source (version 53) is utilized to create the
genomic mappings between the tRNAs and/or tRNA pseudogenes and at most five consec-
utive protein-coding flanking genes in both directions, up- and downstream. The number
5 was chosen pragmatically as a trade-off between the need to evaluate local information
and the unavoidable incompleteness of genome annotations, whence homologs of many
genes are missing in individual genomes. These genomic mappings are chromosome- and
strand-specific, i.e., the resulting genes are located on the same chromosome and strand as
the input tDNAs. Next, the resulting genes are associated to protein-coding genes of other
mammalian species using the homologous data available in Ensembl Compara (version 53).
These homology relationships between genes in different species are then filtered to focus
on those genes flanking tRNAs. Finally, tDNAs of different mammals can be associated
based on the genomic mappings to their flanking genes (gene-tRNA) and the homology
relations between those (gene-gene).

We consider two alternatives for creating such tDNA relationships:

1. Two tDNAs are associated by the single-sided linkage relation if there is at least
one homology relationship between their pre-selected flanking genes. Here we do
not require that the homologous genes have the same relative orientation or relative
location w.r.t. to the tDNAs.

2. Two tDNAs are associated by the two-sided linkage relation if there is at least one
pair of homologous genes in both the up-stream and the down-stream region. Again,
relative orientations are not taken into account. The tDNAs need to be located
between the two homologous gene-pairs, however.

The Single-sided linkage relation turns out to be not very informative because many-to-many
homology relations for large gene families and the relatively large regions used to define the
synteny relation severely limit the sensitivity. We therefore limit a details discussion to the
two-sided linkage relation.

For invertebrate genomes, synteny information was extracted directly from genome
annotation using a custom-made pipeline based on Perl and awk scripts. For the nematodes
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C. elegans, C. briggsae, C. japonica, C. brenneri, C. remanei we considered a region of
40.000nt up- and downstream of the tRNA loci. A pair of tDNAs was defined as syntenic
if we could found in this range at least two orthologous proteins between them. The
flanking proteins were taken from the genome annotation gff-files from Wormbase WS204.
A list of orthologous proteins was computed using OrthoMCL [103] to determine if two
proteins are ortholog. Tab. 2.4 summarizes the prevalence of tRNA synteny within the
genus Caenorhabditis. The tDNAs in the genus Drosophila were analyzed in the same way.
The flanking proteins were take from Flybase (release FB2009 09). Since a sufficiently
complete orthology annotation was not readily available, we used ProteinOrtho [96] for
this purpose. The results are compiled in [4].

The fraction of syntenically conserved tDNAs was compared to the evolutionary dis-
tances for each pair of genomes in the three data sets described above. The evolutionary
distance for the Vertebrates and Nematodes is gathered by the tree model underlying the
UCSC 28-way alignments [121]. For the genus Drosophila the evolutionary distances are
genomic mutation distances computed from 4-fold degenerated sites in all coding regions
corrected for base composition as in [174].

Codon bias usage Codon bias usage was done by using the codon usage table from
[128]. A total of 52988 codons corresponding to 217 CDS from S. japonicum, 8160 codons
of 13 CDS from S. mediterranea and 161225 codons of 369 CDS from S. mansoni were
analyzed.

RepeatMasker RepeatMasker [159] is a program that screens DNA sequences for inter-
spersed repeats and low complexity DNA sequences. Sequence comparisons in RepeatMasker
are performed by so-called cross match program [63], an efficient implementation of the
Smith-Waterman-Gotoh algorithm [160, 61]. The general purpose of this utility is to com-
pare any two sets of DNA sequences. In our survey we have compared the set of detected
tRNA genes against libraries of repeats [159].

2.3 Results and Discusions

For each of the 74 genomes included in our survey we collected summary statistics on
the number of tRNA gene and tRNA pseudogenes as well as on their genomic clusters.
To simplify the language, we will use the term “tDNA” to refer to both tRNA genes and
tRNA pseudogenes, while “tRNA gene” will be reserved to loci with probably intact tRNA
sequences. In practise, we use tRNAscan-SE to distinguish between tRNA genes and tRNA
pseudogenes (see Methods for details).

We define two adjacent tRNA gene or tDNAs as “clustered” if their distance is less
than 1000 nucleotides. This threshold is motivated by a statistical analysis of the distances
between adjacent tDNA loci, which shows that at this distance we have to expect very few
or no tDNA pairs in the genomes under investigation (see Methods for details). We then
distinguish between homogeneous clusters, consisting of tDNA with the same isoacceptor
family (i.e., coding for the same aminoacid), and heterogeneous clusters. Within clusters,
we separately consider the three relative orientations →→, ←→, and →←. Data have
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Figure 2.1: Summary of tRNA gene and tDNA statistics A Distribution of tRNA genes and
tRNA pseudogenes
X Natural logarithm of the total of tRNA pseudogenes X tRNAs. B Fraction of tR-

NAs and tRNApseudogenes in clusters: ||| homogeneous clusters // heterogeneous

clusters X not in clusters. C Fraction of Homogeneous pairs: XX →→, \\ →←,

≡ ←→: tRNA pairs. XX →→, \\ →←, ≡ ←→: tRNApseudogenes pairs. C’

Fraction of Heterogeneous pairs: XX →→, \\ →←, ≡ ←→. In D and D’ and E
and E’ holds the same rules as C and C’ but the raw data is the result of filtering tRNAs
or tRNAs pseudogenes respectively. D and D’ fraction for pairs of tRNA pseudogenes and
E and E’ fraction for tRNAs.

been analyzed for putatively functional tRNA gene (as classified by tRNAscan-SE), and for
all tDNAs. Fig. 2.1 shows a sample of a graphical representation of the survey results. The
full figure comprising all 74 genomes is provided at Appendix A. Complete lists of tDNAs
in gff format can be found at the website [4].

Despite an overall correlation with genome size, there does not seem to be a general
trend in the number of tRNA genes. Although some mammals, for instance, exhibit tens
or even hundreds of thousands of tDNA copy numbers, other mammalian genomes harbour
only a few hundred copies. For instance, old world monkeys and great apes have about
616± 120 tDNAs, while the related bushbaby (Otolemur garnetti) exhibits 45225 tDNAs.
The highest counts are reached for the cow and rat genomes with more than 100000
tDNAs. For the 12 sequenced Drosophila species, we find 320 ± 73 tDNAs. Trichoplax

adhaerans, one of the most basal animals has no more than 50 tRNA genes, while the
cnidaria Nematostella vectensis has more than 17000. Within teleosts, tDNAs range from
about 700 in Tetraodontiformes to 20000 in zebrafish.

Variations by about an order of magnitude are also common in other major clades.
Naegleria gruberi, for example has 924 tDNAs, while Kinetoplastids (Leishmania and Try-

panosoma have only 91 and 65 copies).

Surprisingly, the variation is very small in the “green lineage”. Spermatophyta show
little variation with 706±96 loci, the basal land plants Physcomitrella patens (432 tDNAs)
and Selaginella moellendorffii (1290 tDNAs) and even the unicellular algae Volvox carteri

(1051 tDNAs) and Chlamydomonas reinhardtii (336 tDNAs) have similar numbers.
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Despite the often large variation among even closely related lineages, we observe the
expected correlation between the number of tDNAs with genome size, Fig. 2.2. The correla-
tion is significant, with correlation coefficient ρ ∈ (0.71 . . . 0.76), but subject to a high level
of variation reflecting large differences in the evolutionary history of different lineages. While
the total number of tDNAs scales approximately linearly with genome size, α = 0.93±0.10,
the growth in the number of intact, probably functional tRNA genes is much slower, consis-
tent with N2/3. The number of tRNA pseudogenes, on the other hand, grows faster than
linearly, ∼ N1.61±0.18. The reasons for this difference in scaling remains unclear. One may
speculate that selective forces maintain only a limited number of functional tDNA copies
causing the sub-linear growth of intact tRNA genes with genome size, while the duplica-
tion/deletion mechanism acts towards a uniform coverage of the genome with a rate that is
to a first approximation constant throughout eukaryotic genome, accounting for the linear
growth of the total number of tDNAs.

Several selective forces could act on the tRNA genes and/or all tDNA loci to cap their
number. The bias towards small deletions over insertions observed in [92] is one potential
candidate that is independent of special properties of tRNAs. Variations in codon usage
might provide another selection-based explanation for the variation of tDNA copy numbers.
In eubacteria, a correlation between tRNA abundance, tRNA gene copy number, and codon
usage is well established [146]. Whether codon bias causes tDNA copy number variation
or vice versa remains topic of an intense debate, however. A mechanistic explanation
describing the coevolution of codon usage with tRNA gene content is given in [69]. It
remains unclear to what extent the correlation of tRNA copy numbers and codon usage
carries over to eukaryotic genomes. A detailed investigation in Schistosoma mansoni and
Schistosoma japonicum finds no correlation between tRNA gene numbers and codon usage,
while a statistically significant but still very weak correlation is observed in Schmidtea

mediterranea [26]. In Nasonia, the correlation of codon usage and the copy numbers
of tRNA genes appears to be restricted to highly expressed genes. The strength of this
correlation decreases with GC-content in plant genomes [125].
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Figure 2.3: Distribution of
tDNA clusters sizes for sev-
eral lineages for which mul-
tiple sequenced genomes are
available as well as some ex-
amples of individual genomes.
Most tDNA clusters are small,
and the frequency of long clus-
ters rapidly decreases.

In any case, codon usage cannot be employed to explain the observed differences in
tDNA copy numbers that span several orders of magnitude. These huge fluctuations,
which are observed both within some lineages and between closely related lineages, argues
against a mechanism that relies on selection on the tRNAs. Instead, the more than linear
scaling of tRNA pseudogenes with genome size suggests a faster tDNA turnover in larger
genomes — after all, pseudogenes and gene relics are steps in the evolutionary degradation
of genes.

Survey on Nematode

Nevertheless, only little is reported about genome-wide distribution and organization of
tRNA loci in most species. Nematodes are no exception, we investigated the organization
of tDNAs in more detail including four species of different Nematode genus.

For the genus Caenorhabditis, the total number of predictions (including pseudogenes)
is 1, 126 ± 314.39. After removing pseudogenes, the numbers reduce to 833.4 ± 194.28
standard deviation, varying from 606 in C. elegans to 1,139 in C. brenneri . For other
nematodes B. malayi , P. pacificus, M. hapla and M. incognita the total is 643±611.43 and
is reduced to 527.75± 520.61 after removing pseudogenes. Compared to D. melanogaster

(299 tRNAs genes; 5 tRNA pseudogenes) these numbers are much higher.

Most tDNAs in Caenorhabditis are isolated genes, although ∼20-41% of the total tDNA
predictions are organized in clusters. For comparison, in other nematode species only ∼11-
23% tRNA genes occur clustered, 84% in the planarian S. mediterranea, and 66% in the
insect D. melanogaster. An indirect measure of cluster structure is seen on C and C’ in
Fig. 2.4. It turned out, that 50% of pairs have the same orientation (direct duplication)
or the opposite orientation (inverse duplications). The exception to this feature is shown
for the species P. pacificus and B. malayi where more than 70% of pairs are in the same
orientation.

tDNA clusters

In order to investigate the propensity for the formation of tDNA clusters, we consider the
cumulative distribution of consecutive tDNA pairs as a function of their genomic distance.
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Figure 2.4: Summary of tRNA gene and tDNA statistics A Distribution of tRNA genes and
tRNA pseudogenes
X Natural logarithm of the total of tRNA pseudogenes X tRNAs. B Fraction of tR-

NAs and tRNApseudogenes in clusters: ||| homogeneous clusters // heterogeneous

clusters X not in clusters. C Fraction of Homogeneous pairs: XX →→, \\ →←,

≡ ←→: tRNA pairs. XX →→, \\ →←, ≡ ←→: tRNApseudogenes pairs. C’

Fraction of Heterogeneous pairs: XX →→, \\ →←, ≡ ←→. In D and D’ and E
and E’ holds the same rules as C and C’ but the raw data is the result of filtering tRNAs
or tRNAs pseudogenes respectively. D and D’ fraction for pairs of tRNA pseudogenes and
E and E’ fraction for tRNAs.

Based on a statistical evaluation of the distances between adjacent tDNAs (see Methods)
and Fig. 2.5, we define two tDNAs to be clustered in the genome if they are located within
1000nt.

Not surprisingly, in species with small tDNA copy number, clusters typically are rare.
In Trichoplax adherens, for instance, all tDNAs are isolated. There is no clear-cut relation
between tDNA copy number and clustering, however. In Nematostella vectensis 89% of
the tDNAs appear in clusters. In mammals, which have even larger tDNA copy numbers,
less than a quarter of the tDNAs appear in clusters. Again, there do not appear to be any
large-scale phylogenetic regularities. In teleost fishes, for example, the stickleback Gasteros-

teus aculeatus has 87% clustered tDNAs, in zebrafish this number reaches 65%. On the
other hand, pufferfishes and medaka (Oryzias latipes) have predominantly isolated tDNAs.
Similarly, large variation appears in other clades, see Figs. 2.1 and [4]. Higher primates
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Figure 2.5: Cumulative distribution of tDNA pairs distances. Measured data are shown
in red, random expectation from randomly placed tDNAs are shown as gray background.
At a distance of 1000nt the vast majority of clusters cannot be explained by the random
background.

have 17% to 36% of their tDNAs in clusters, with the exception of the bushbaby Otolemur

garnetii, with only 5.6% of its 45225 tDNAs located in clusters. In plants there are also
no clear regularities. The fraction of clustered tDNAs stays below 25% in Spermatophyta,
while the chlorophyceae Volvox carteri and Chlamydomonas reinhardtii have 41% and 56%
of their tDNAs localized in genomic clusters.

Most tDNA clusters are small, containing only a few co-localized tRNA genes. Typically,
the frequency of larger clusters quickly decreases, at least approximately following an expo-
nential distribution. This is particularly obvious in the case of mammals and drosophilids.
In some cases, however, longer clusters are more abundant. Exceptionally large tDNA gene
clusters, with fifty and more members, are observed for example in Nematostella and in the
genomes of teleost fishes, Fig. 2.3.

The internal structure of tDNA clusters also differs widely between lineages. Fig. 2.1
and Appendix C, summarize the relative abundances of homogeneous and heterogeneous
clusters, respectively. More precisely, we record the fraction of adjacent tDNA pairs coding
for the same aminoacid. While Tetrahymena, Monosiga, and the drosophilids exhibit mostly
homogeneous pairs, we observe mostly heterogeneous pairs in kinetoplastids, Nematostella,
clawed frog, and zebrafish, see Fig. 2.6 for an example.

In order to further investigate the structure of heterogeneous clusters we determined
how often combinations two isoacceptor families appear in adjacent pairs. These data
are conveniently represented in triangular matrices such as those in Fig. 2.7. Homoge-
neous clusters populate the main diagonal, whereas heterogeneous pairs are represented
by off-diagonal entries. As for other features of the genomic tRNA distribution there are
neither strong common patterns among all organisms investigated, nor are there systematic
phylogenetic patterns. While Monosiga, for example, has almost exclusively homogeneous
pairs, other species exhibit a wide variety of heterogeneous pairs. In Danio, for instance,
K-N, K-S, and R-T are most frequent. In the cow genome, many clusters involve tRNA
pseudogenes, which are much less prevalent in the other three examples. In the cow, C-C
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Figure 2.6: Example of heterogeneous tDNA cluster consisting of multiple copies of tRNA-
Arg(TCT) and tRNA-Thr(AGT or TGT). Two tRNA pseudogenes with anti-codon TCT are
interspersed.
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Figure 2.7: Relative abundance tRNA isoacceptor families located consecutively within
tRNA clusters. Four data points are shown for each combination of amino acids: Top:
pairs in the same reading direction; below: pairs in opposite reading direction. Left: pairs
of presumably functional tRNA, right: pairs of tRNA pseudogenes. The last three rows
and columns refer to putative Suppressor, SeC, and tRNA pseudogenes of undetermined
isoacceptor class, resp.

pseudogenes account for more than 30% of the pairs.

A comprehensive collection of co-occurrence tables is provided in [4]. See in Appendix
B an example for Drosophila genus. Not surprisingly, there is a general trend towards more
complex co-occurrence matrices for species with larger numbers of tDNAs.

Most adjacent tDNA pairs in both homogeneous and heterogeneous clusters have par-
allel orientation. If the arrangements were random, we would expect that 50% of pairs
are of this type. In many cases, e.g. Arabidopsis, Selaginella, Xenopus, or Danio, nearly
all pairs are in parallel. Among the anti-parallel pairs, some species have a strong bias for
either head-to-head (e.g. primates, and Cryptococcus) or tail-to-tail arrangements (Oryza

and Caenorhabiditis). Even within primates, the ratio of head-to-head and tail-to-tail pairs
varies considerably.

In most species with very large tDNA copy numbers we can expect some tDNA clusters
to appear by chance. We tested this by randomizing the tDNA locations (see Methods for
details). The results for eutherian mammals are compiled in Tab. 2.1 and in the Appendix
C, a full list of random pair configuration is given in [4]. In most genomes, there are
significantly more tDNA pairs than expected, suggesting a mode of tDNA evolution of
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2.3. RESULTS AND DISCUSIONS

favours the formation of local clusters. Local DNA duplications, also underlying the copy
number variations within many populations (see e.g. [133, 138] and the references therein),
are of course the prime suspects.

We observe significant under-representations of tDNA pairs only in a few species with
very high tDNA counts: Dasypus novemcinctus, Felis catus, and Loxodonta africana. At
present, we have no biological explanation for this observation. See Tab. 2.1

Table 2.1: Comparison of observed and expected number of tRNA pairs. The expectation
values are computed by placing the tRNAs at uniformly random position in the genome.
Empirical p values are computed from 50 to 1000 replicates.

Species Observed Expected p-value
B. taurus 28452 22790 0
C. familiaris 4858 4271,27 0
D. novemcinctus 7918 11498,56 1
M. domestica 7402 914 0
E. telfairi 49 9.35 0
E. caballus 72 4.42 0
F. catus 8792 11816.7 1
G. gorilla 40 0.08 0
H. sapiens 97 0.27 0
L. africana 1645 3553.2 1
M. mulata 168 0.23 0
M. murinus 42 0.06 0
M. musculus 1001 425.5 0
O. anatinus 27015 25008 0
O. lemur 1364 1285 0
P. troglodytes 78 0.25 0
P. pygmaeus 83 0.28 0
O. cuniculus 118 37.15 0
R. rattus 28198 16148 0

Clusters of tDNAs have been implicated in interfering with the DNA replication forks
[35]. The tDNA clusters might thus be instrumental in orchestrating the timing of DNA
replication. On the other hand, replication fork pause sites are associated with genomic
instability [93, 5, 31, 82] and hence may contribute to the rapid evolution of these tDNA
clusters. Furthermore, retrotransposable elements tend to select tRNA genes as chromoso-
mal integration sites [20], appearently in order to avoid gene disruptions upon retrotranspo-
sition. A recent comparison of yeast genomes associated genomic rearrengements, losses,
and additions with tRNA genes [59]. Taken together, tDNA clusters thus appear as highly
dynamic unstable genomic regions.

Synteny

Transfer RNAs have been reported to behave similar to repetitive elements as far as their
genomic mobility is concerned. They appear to evolve via a rapid duplication-deletion
mechanism that ensures that copies of tRNA genes within a genome are usually more similar
to each other than tRNA gene of different species [187, 186]. In E. coli, for example, the
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Teleosteo Ho-pairs raw Ho-pairs filtered He-pairs raw He-pairs filtered P-value ODDS
D. rerio 5124 5895 9543 7743 ¡1E+4 0.71
T. rubripes 93 94 38 29 0.39 0.76
G. aculeatus 1987 2033 1157 1027 0.01 0.87
O.latipes 166 169 120 96 0.19 0.79
T. nigroviridis 66 66 51 40 0.41 0.79

Table 2.2: Fisher test results for Teleosteos species. Ho-pair and He-pair for Homogeneous
and Heterogenous pair total counts. Raw without filter. P-value for independece test.
ODDS of proportions.

rate of tRNA gene duplication/deletion events has been estimated to be about one event
every 1.5 million years [187]. We are not aware of (semi)-quantitative estimates from
eukaryotes. Our analysis is consistent with this mechanism (see below).

Since tRNA genes with the same anticodon are typically nearly identical, the only way
to estimate rates of tRNA gene turnover is to determine, for each tRNA-bearing locus,
whether tDNAs can be found in a syntenic locations in evolutionarily related species. We
have determined such data here for eight selected species, including six mammals, namely
the Catarrihni Homo sapiens, Pan troglodytes, Pongo pygmaeus, and Macaca mulatta, the
rodent Mus musculus, and the Marsupialia Monodelphis domestica. The data set includes
also more distant vertebrates Gallus gallus and Xenopus tropicalis to investigate whether
there are tDNAs with very stable genomic locations.

Tab. 2.3 shows the results for the one- and two-side linkage analysis (see Section Meth-
ods). The number of related synteny regions based on the single-side linkage analysis is
significantly higher than the region number created by the two-side linkage analysis. Since
the latter analysis approach is more restrictive, the results between both analysis approaches
also differ. While synteny regions in related species are mostly assigned by the single-side
linkage analysis, the results of the two-side linkage analysis are more differentiated. There-
fore, we discuss only the results of two-side linkage analysis in the following.

Within Catarrhini, tDNA locations are quite well conserved. For instance 80% (394/493)
of human tDNA regions are conserved in the chimp, and there are still 63% (284/450) of
the rhesus tDNA locations recovered in chimp. Somewhat surprisingly, there is also a large
fraction of syntenic loci between mouse and opossum (80% [19,466/24,352] of the mouse
loci and 76% [16,634 of 21,810] of the opossum loci). We suspect that the large fraction is
confounded by the large overall number of tDNA loci and the rather larger intervals of five
flanking genes used to define synteny, which taken together cover a substantial fraction of
the genome. A second group of comparisons identified only a small number of syntenically
conserved loci. Asymmetric results, which large retention in one direction is observed when
the tDNA numbers are dramatically different. This concerns the comparisons between
Catharrini, on the one hand, and opossum and mouse on the other hand. Between frog
and Catharrini, finally, there is only a small number of syntenically conserved tDNAs.

We also analyzed the tDNA mobility in two invertebrate clades, drosophilids and nema-
tode genus Caenorhabditis. Within these nematodes, we observe a rather high degree of
syntenic conservation, ranging from 45% between C. elegans and C. japonica up to 84%
for the most closely related pair C. remanei and C. brenneri. In general, conservation levels
are consistent to the known phylogeny of the Caenorhabditis species [90]. For the genus
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2.3. RESULTS AND DISCUSIONS

Table 2.3: Quantity structure of linkage analysis results in vertebrates: The upper right
triangle quantifies the single-sided linkage results whereas the lower left triangle represents
the number of two-sided linkage analysis results.
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Each table entry is organized as follows
# associations

# dom # ran
cov(d) cov(r)

The top row lists the number of synteny associations; # dom and # ran are the sizes of domain and range, i.e., the numbers

of tDNAs in the two species. Below the coverage, i.e., the fraction of syntenically conserved tDNAs in the two species, is

indicated.

Table 2.4: Syntenic conservation of tDNAs: The table shows the fraction of tRNA loci
between pairs of species. Every field contains the fraction of tDNAs of the species in the
column, for which we could find a syntenic position in the row species.

tDNA C. briggsae C. remanei C. brenneri C. elegans C. japonica

C. briggsae 958 - 0.84 809 0.82 788 0.72 691 0.68 647
C. remanei 958 0.74 712 - 0.73 696 0.63 603 0.55 528
C. brenneri 1587 0.61 962 0.63 997 - 0.49 783 0.48 763
C. elegans 820 0.77 629 0.75 617 0.73 602 - 0.68 558
C. japonica 1307 0.46 607 0.48 633 0.49 634 0.45 589 -
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Figure 2.8: Correlation of syntenic conservation of
tDNA loci with genomic distance. Estimates for
each pairwise comparisons (◦) and averages over
the two comparisons for each pair of species (×)
are shown. For vertebrates and nematodes dis-
tances were extracted from trees provided through
the UCSC browser, for Drosophilds, corrected mu-
tation distances were used (see Methods for de-
tails). Because of the large number of tDNA loci
Mus musculus and Monodelphis domestica were
not used for the correlation.

Clade ρ slope
Vertebrates -0.968 -0.41 ± 0.02
Drosophila -0.678 -0.21 ± 0.02
Caenorhabditis -0.638 -0.55 ± 0.16

Drosophila with the twelve common representatives, on the other hand, there is much less
syntenic conservation. The lowest value is 17% (D. wilistoni and D. persimilis). The best
conserved tDNA arrangements are observed between the two closely related species D. sim-

ulans and D. sechellia with 78%. On average, the percentage of conservation is just around
50% or less. Full data are shown in Tab. 2.4 for nematodes and in [4] for Drosophila.

The sequence conservation of syntenically conserved tRNAs is consistent with the dupli-
cation/deletion mechanisms. In [4] shows a neighbor-joining tree of the tRNA-Ala sequences
of nematodes, which includes also a few additional species that are not part of the genome-
wide survey. We find that syntenically conserved tRNAs genes are typically conserved with
an identical sequence across species, even though some tRNAs with the same anticodon
located elsewhere in the genome show small sequence variations.

The fraction of syntenically conserved tDNAs correlates with the divergence of the
genomes at sequence level, Fig. 2.8. The correlation is significant even though the data
is rather noisy, a fact that can be explained at least in part by the unavoidable artifacts
resulting from our approach. Utilizing annotation data directly to determine local synteny
is problematic, for instance, near members of very large recently duplicated gene families.
In principle, syntenic conservation could be inferred more accurately from genome-wide
alignments. Since tDNAs are treated like repetitive elements in the currently available
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pipelines, this strategy cannot be employed in practice. Nevertheless, the method provides
at least a crude estimate of the tDNA turnover rate, indicating the tDNAs are relocated at
time-scales only 2-5 times slower than background mutation rate, i.e., at an evolutionary
distance of 1 mutation per site, 20% to 60% of the tDNAs have been deleted or relocated
in one lineage.

These values should be regarded as upper bounds of syntenic conservation, i.e., tDNA
turnover is probably even faster. For example, the identity of the tDNA (i.e., its anticodon)
was not used in the analysis. Despite of the high mobility of tDNAs there are some
ancient conserved loci. We further investigated two of the 77 syntenic loci conserved
between Xenopus and Human in which tDNAs with the same anticodon were retained.
Manual inspection of the flanking protein coding genes confirmed synteny. Neither locus is
syntenically conserved in stickleback, lamprey or lancet, however.

Codon bias usage in Platyhelminth

The variation of tRNA gene numbers might also be explained by the codon usage-tRNA
optimization that has been fiercely debated. However, it is not clear whether codon usage
drives tRNA evolution or vice versa and the codon bias specie-specific is still widely debated.
A survey in bacterial genomes [69] has established a theory that describes the coevolution
of codon usage with tRNA gene content however still remains to be evaluated whether this
theory could explain the variations observed across Eukaryotic genomes. In this order of
ideas we have used for comparison three free-living platyhelminth to search for codon usage
bias.

Candidate tDNAs were predicted with tRNAscan-SE in the genomes of Schistosoma

mansoni, Schistosoma japonicum and Schmidtea mediterranea. After removal of trans-
posable element sequences (see below), tRNAscan predicted a total of 713 tRNAs for S.

mansoni and 739 for S. mediterranea, while 154 tRNAs were found in the S. japonicum

sequences. These included tRNAs encoding the standard 20 amino acids of the traditional
genetic code, selenocysteine encoding tRNAs (tRNAsec) [156] and possible suppressor tR-
NAs [8] in all three genomes. The tRNAsec from schistosomes has been characterized, and
is similar in both size and structure to tRNAsec from other eukaryotes [78].

The tRNA complements of the three platyhelminth genomes are compared in detail in
Fig. 2.9. The amino acids are represented in approximately equal numbers in S. mansoni and
Schmidtea. Nevertheless, there are several notable deviations. S. mansoni contains many
more leucine (86 vs. 46) and histidine (27 vs. 8) tRNAs, while serine (51 vs. 94), cysteine (21
vs. 44), methionine (21 vs. 44), and isoleucine (17 vs. 42) are underrepresented. In addition,
there are several substantial differences in codon usage. In most cases, S. mansoni has a
more diverse repertoire of tRNAs: tRNA-Asn-ATT, tRNA-Arg-CGC, tRNA-His-ATG, tRNA-
Ile-GAT, tRNA-Pro-GGG, tRNA-Tyr-ATA, tRNA-Val-GAC are missing in Schmidtea. Only
tRNA-Ser-ACT is present in Schmidtea but absent in Schistosoma. The tRNA complement
of S. japonicum, on the other hand, differs strongly from its two relatives. Not only is
the number of tRNAs decreased by more than a factor of four, S. japonicum also prefers
anticodons that are absent or rare in its relatives, such as tRNA-Ala-GGC, tRNA-Cys-ACA,
and Lys-CTT. On the other hand, no tRNA-Trp was found. Since the UGG codon is present
in many open reading frames we interpret this a problem with the incompleteness of the
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genome assembly rather than a genuine gene loss. The reduction in the number of tRNAs
is also evident by comparing the number of tRNAs with introns: 27 in S. mansoni versus 5
in S. japonicum.

It has been shown recently that changes in codon usage, even while coding the same
protein sequences, can severely attenuate the virulence of viral pathogens [24] by “de-
optimizing” translational efficiency. This observation leads us to speculate that the greater
diversity of the tRNA repertoire could be related to the selection pressures of the parasitic
life-style of S. mansoni. The effect is not straight forward, however, because there is
no significant correlation of tRNA copy numbers with the overall codon usage in both
S. mansoni and S. japonicum, Fig. 2.9C. In contrast, a weak but statistically significant
correlation can be observed in Schmidtea mediterranea. It would be interesting, therefore,
to investigate in detail whether there are differences in codon usage of proteins that are
highly expressed in different stages of S. mansoni ’s life cycle, and whether the relative
expression levels of tRNAs are under stage-specific regulation.

The most striking result of the tRNAscan-SE analysis was the initial finding of 1,135
glutamine tRNAs (Gln-tRNAs) in S. mansoni in contrast to the 8 Gln-tRNAs in S. japonicum

and 65 in S. mediterranea. Nearly all of these (1,098 in S. mansoni) were tRNA-Gln-TTG.
In addition, an extreme number of 1,824 tRNA-pseudogenes in S. mansoni (vs. 951 in S.

japonicum and 19 in S. mediterranea) was predicted. Of these, 1,270 were also homologous
to tRNA-Gln-TTG. These two groups of tRNA-Gln-TTG-derived genes (those predicted to
be pseudogenes and those predicted to be functional tRNAs) totaled 2,368. These high
numbers suggest a tRNA-derived mobile genetic element. We therefore ran the 2,368 S.

mansoni tRNA-Gln-TTG genes through the RepeatMasker program [159]. Almost all of
them (2,342) were classified as SINE elements. Further BLAST analysis revealed that these
elements are similar to members of the Sm-α family of S. mansoni SINE elements [161].
Removal of these SINE-like elements yielded a total of 63 predicted glutamine-encoding
tRNAs in S. mansoni. About 650 of 951 pseudogenes in S. japonicum derived from tRNA-
Pro-CGG.

Homology-based analysis yielded similar, though somewhat less sensitive, results to those
of tRNAscan-SE. For instance, a BLAST search in S. mansoni with Rfam’s tRNA consensus
yielded 617 predicted tRNAs compared to the 663 predictions made by tRNAscan.

2.4 Conclusions

We have developed a pipeline based on tRNAscan-SE [111] to extract and analyze the
locations of tRNA genes and pseudogenes of eukaryotic genomes. In our analysis, we
focus not only on the number of tRNA genes, but also on their relative genomic locations,
and in particular on the formation of tDNA clusters. Surprisingly, we found no distinctive
clade-specific features or large scale trends, with the exception of the rather straightforward
observation that the larger metazoan genomes typically tend to harbour large numbers of
tDNAs.

In some species, large clusters of tDNAs occur. This effect has first been reported in
Entamoeba histolytica. The origin of this gene organization in the genus Entamoeba clearly
predates the common ancestor of the species investigated to date. Their function of the
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Figure 2.9: Comparison of the tRNA complement of Schistosoma mansoni, Schistosoma

japonicum, and Schmidtea mediterranea. A: Comparison of anti-codon distributions for
the 20 amino acids. Numbers below each pie-chart are the total number of tRNA genes
coding the corresponding amino acid. Left columns: S. mansoni ; middle columns: S.

mediterranea; right columns: S. japonicum. B: Number of tRNAs encoding a particular
amino acid. red: S. mansoni, blue: S. japonicum, green: S. mediterranea. Abbreviations:
Sup: putative suppressor tRNAs (CTA, TTA); Scys: Selenocysteine tRNAs (TCA); Pseu:
predicted pseudogenes; Und: tRNA predictions with uncertain anticodon; likely these are
also tRNA pseudogenes. The Gln-tRNA derived repeat family (see text) is not included
in these data. C: Comparison of codon usage and anti-codon abundance. No significant
correlation is observed for the two schistosomes. For S. mediterranea there is a weak, but
statistically significant, positive correlation: t ≈ 2.0.
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array-like structure remains unclear [177]. We report here that this phenomenon is not
restricted to a particular clade of protists but rather appears independently in many times
throughout eukaryotes.

In most eukaryotes, tRNAs are multi-copy genes with little or no distinction between
paralogs so that orthology is hard to establish, in particular in the presence of tRNA gene
clusters. As a consequence, the evolution of genomic tRNA arrangements is non-trivial to
study over larger time-scales. Upper bounds on syntenic conservation can be estimated,
however, by considering small sets of flanking protein coding genes for which homology
information can be retrieved from existing annotation. We found that tRNAs change
their genomic location at time-scales comparable to mutation rates: syntenic conservation
fades at roughly the same evolutionary distances as sequence conservation in unconstrained
regions.

The absence of large numbers of partially degraded tRNA copies in many of the in-
vestigated genomes provides a hint at the mechanisms of tRNA mobility: At least in part
the relocation events appear to be linked to chromosomal rearrangements rather than mere
duplication-deletion of the tRNA genes themselves. The latter mechanism, which appears
to be prevalent e.g. in mitochondrial genomes [144], certainly also plays a role, since tRNA
pseudogenes are readily observed in many species, as do tRNA retrogenes [183]. A link
between tRNA loci, and in particular tRNA clusters, and chromosomal instability has been
pointed out repeatedly in the literature, showing that tRNA genes can interfere with the
replication forks [35, 93, 5, 31, 82]. The data collected here provide a basis to investigate
this connection more systematically in the future.

Overall, the tRNA complement of Eukaryotes is highly dynamic part of the genomes
whose organization evolves rapidly and in a highly lineage specific manner — a behavior
that is in striking contrast to the extreme conservation of sequence and function of the
tRNAs themselves.
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Chapter 3

non-coding RNA identification from
transcriptome data

3.1 Introduction

In recent years, several classes of small RNAs with a length of about 20 nt have been
discovered. The most prominent of these are microRNAs (miRNAs), Piwi-interacting RNAs
(piRNAs), and variants of endogenous small interfering RNAs (siRNAs) [122, 176]. In
addition, small RNAs have been found to be associated with mRNA transcription start
and stop sites [86, 169, 171]. Several studies have reported that well-known ncRNA loci
are also processed to give rise to small RNAs. MicroRNA precursor hairpins, for instance,
are frequently processed to produce additional “off-set RNAs” (moRNAs) that appear to
function like mature miRNAs. These moRNAs were discovered in Ciona intestinalis [157],
where they form an abundant class of processing products. At much lower expression levels,
they can also be found in the human transcriptome [94]. Specific cleavage and processing
of tRNAs has been observed in the fungus Aspergillus fumigatus [19] and later also found in
human short read sequencing data [87]. Small nucleolar RNAs (snoRNAs) are also widely
used as a source for specific miRNA-like short RNAs [44, 151, 170]. The same holds true
for vault RNAs [162, 139].

The ENCODE project, focusing on high resolution on the analysis of 1% has also shown
that RNA transcripts serve as a high source of new regulatory ncRNAs [14]. This focus by
the ENCODE project should lead to future efforts to conduct studies to identify new ncRNAs
in a variety of organisms and to elucidate their regulatory functions in the cell. Increasing
attention directed to miRNAs as regulatory factors shaping cellular and organismal life,
along with the discovery of many new miRNAs from deep sequencing data, has spurred the
study of complete small ncRNA transcriptomes. These complete transcriptome studies have
dated from those of kinetoplast mitochondria of Leishmania tarentolae and Caenorhabditis

elegans, from which genomic features and new ncRNAs were reported as stem-bulge RNAs
(sbRNAs) and snRNA-like RNAs (snlRNAs). These initial reports found that the majority
of the C. elegans ncRNAs showed developmentally variable expression [30]. The same holds
for Aspergillus fumigatus; an experimental screening of ncRNAs found that the majority
were expressed under various growth conditions or during specific developmental stages [19].
In recent years, studies of this kind have extended to the investigation of small ncRNAs

35



CHAPTER 3. NON-CODING RNA IDENTIFICATION FROM TRANSCRIPTOME DATA

associated with ribonucleoprotein particles (RNPs) from two different cellular systems and
organisms: brain and HeLa cells from mouse and human, respectively [145]. Several current
studies have focused on the detailed analysis of tRNA derived from transcriptome data. This
topic will be addressed in the next chapter.

RNA quality control in Eukaryotes: source from which comes the transcriptome
Eukaryotic cells have numerous RNA quality controls that are important for shaping their
transcriptomes [36]. The complexity of these systems implies a diversity of mechanisms in-
volving nuclear and cytoplasmic RNAs that safeguard cells from abnormal mRNA function
[81]. One example is messenger RNA surveillance systems, which monitor proper transla-
tion termination [6]. Another includes the many mechanisms that have evolved to degrade
aberrant and nonfunctional RNAs. For instance, the exosome is a highly organized and reg-
ulated macromolecular machine that has only a few enzymatically active components and is
present in both the nucleus and cytoplasm,. The exosome continuously works to ensure ad-
equate quantities and quality of RNAs by facilitating normal RNA processing and turnover,
as well as by participating in more complex RNA quality-control mechanisms [112]. Thus,
mRNA surveillance mechanisms play important roles both in depleting aberrant transcripts
from cells and in maintaining the proper level of normal transcripts [6]. Ribosomes play a
central role in some mRNA surveillance systems, but, for the production of the vast majority
of ncRNAs in eukaryotes, ribosomes are not involved in quality control. One example of
nuclear RNA surveillance for ncRNA is the tRNA surveillance pathway in Saccharomyces

cerevisiae. This pathway utilizes polyadenylation to degrade hypomethylated tRNAiMet
through the function of a new poly(A) polymerase, Trf4p, along with the nuclear exosome
[85]. The TRAMP (Trf4/Air2/Mtr4p Polyadenylation) pathway has recently also been
shown to be associated with the degradation of rRNA and small nuclear/small nucleolar
RNAs as well as the regulation of transcription from unannotated and/or silenced regions
of the genome [17]. The topic of tRNA-associated degradation will be addressed further in
the next chapter.

Mechanisms for stable RNA degradation under starvation conditions have been reported
for bacteria [32] and some consequences of RNA quality control suggest that “normal”
RNAs are subjected to degradation by quality control mechanisms. One key aspect of
these pathways is that they could be seen as kinetic competitions between the normal
rate of reaction in the life of an RNA and the quality-control event targeting the RNA for
degradation. In short, the RNA processing creates a diverse pool of transcripts and only
those that survive quality control accumulate to substantial levels [36].

The next section will summarize our efforts to define new features for use in the char-
acterization and classification of three main classes of ncRNA (microRNA, snoRNA and
tRNA) from a brain-tissue transcriptome library, based on deep-sequencing methods.

3.2 Methodology

Non-coding RNA identification and classification methods from transcriptome
data Since next-generation sequencing technology is the current choice to determine
content and class of ncRNA in the cell, several new methods have been developed that
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contribute to the identification of ncRNAs. The first involves the mapping of transcrip-
tome data to a reference genome. These tools include segemehl [72] a recently developed
method based on a variant of enhanced suffix arrays that efficiently deals with both mis-
matches and insertions/deletions (indels). The authors of this method have introduced
a matching model for short reads that can, in addition to mismatches, also cope with
indels. Segemehl also addresses different types of error models encountered in transcrip-
tomics. For example, it can handle the problem of leading and trailing contamination
caused by primers and poly-A tails or length-dependent increases in error rates. In these
contexts, it thus simplifies the tedious and error-prone trimming step. For efficient searches,
this method utilizes index structures in the form of enhanced suffix arrays [72]. Another
method, MicroRsazerS, is a read mapping tool based on the rapid alignment of small
RNA reads [43]. However, tools designed to detect or even to classify ncRNA are rare.
The miRNA detection and analysis tool miRanalyzer [65] allows detection of all known
miRNAs, finds all perfect matches against other libraries of transcribed sequences, and pre-
dicts new miRNAs. However, a comprehensive method for the classification of a complete
set of known ncRNAs is not yet available. One tool that is available uses profiles of short
sequence reads [84] to identify ncRNAs using two features derived from profiling data.

The dataset analyzed here was produced according to standard small RNA transcrip-
tome sequencing protocols in the context of other projects and will be published in that
context. In brief, total RNA was isolated from the frozen prefrontal cortex tissue using
the TRIzol (Invitrogen, USA) protocol with no modifications. Low molecular weight RNA
was isolated, ligated to the adapters, amplified, and sequenced following the Small RNA
Preparation Protocol (Illumina, USA) with no modifications. All small RNAs, 17-28nt long,
were mapped to the human genome (NCBI36.50 Release of July 2008) using segemehl

[72], a method based on a variant of enhanced suffix arrays that efficiently deals with both
mismatches as well as insertions and deletions. We required small RNAs to map with an
accuracy of at least 80% thus only the best hit was selected. Reads mapping multiple
times to the genome with an equivalent accuracy were discarded. After filtering the ef-
fective accuracy was > 97%. Subsequently, all hits were sorted by their genomic position.
Two reads were assigned to the same putative ncRNA locus, i.e. cluster, if separated by
less than 100nt or 39nt. Clusters consisting of less than 10 reads were discarded because
of their low information content.

Cluster definition The mapped reads were then sorted by genomic position. Two reads
were assigned to the same putative ncRNA locus if they are separated by less than 39nt
based on the following cluster definition:

Definition 1 : A string S is a read, i.e. is a sequence that in the data library comprises a
number of times the read was sequenced. Every S has a length l, 17 ≤ l ≤28, where
l = 17 (l = 28) represent the minimum min (maximum max) string length. Since
every S has a starting point a and an ending point b, then S is represented by (a, b)
and l = b− a +1.

Definition 2 : Given a sorted set of strings C={Sn}n, (Sn = (an, bn)) we define the
distance δn+1 between two consecutives strings Sn, Sn+1 as δn+1= an+1 − bn.
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Definition 3 : A cluster is a sorted set of strings C={Sn}n (with at least 10 elements Sn)
such that the distance δn+1 satisfies δn+1 ≤ 39 for each Sn ∈ C. This bound 39 is
obtained by adding 11 (the maximum difference between the length of two strings)
and 28 the max length of a string. See Fig. 3.1 for a visual representation of the
bound definition. For defining cluster including flanking regions of 100 nt the bound
was increased to 100.

Blockbuster Once ncRNA loci were defined, we faced the problem of dividing consecutive
reads into blocks to detect specific expression pattern. Note that this task is different from
the segmentation of e.g. tiling array profiles [77] since we cannot a priori restrict ourselves
to non-overlapping blocks. Due to biological variability and sequencing inaccuracies, the
read arrangement does not always show exact block boundaries. We have developed the
blockbuster tool that automatically recognizes blocks of reads. In the first step, a mapped
read u with start and end positions au and bu is replaced by a Gaussian density ρu with
mean µu = (bu+au)/2 and variance σ2

u. We set σu = s|(bu−au)/2|, where s is a parameter
that is used to tune the resolution. For each locus, these gaussian densities are added up
separately for the two reading directions. The resulting curves f+ and f− that exhibit
pronounced but smooth peaks centered at blocks of reads with nearly identical midpoints,
Fig. 3.10, middle panel. Now we use a greedy procedure to extract the reads that belong
to the same block:

1. Determine the location x̂ of the highest peak.
Set B = ∅ and δ = 0.

2. Include in the block B all reads u such that
x̂ ∈ [µu − (σu + δ), µu + (σu + δ)].
Set δ to the standard deviation of the µu, u ∈ B and repeat step (ii) until not further
reads are included in u

3. Compute fB =
∑

u∈B ρu, output B, remove the reads in B, and set f → f − fB.

This procedure iteratively extracts blocks in an order that intuitively corresponds to their
importance, Fig. 3.10. Since the area under a peak equals the number of reads in the block
the height of the peaks provides a meaningful trade-off between the coherence of a block
and its expression level. We therefore suggest to use the height of the peak to define the
stop condition for blockbuster. Here, we used s = 0.5, a value that requires blocks to
be well separated to be recognized as distinct.

We remark that block-detection could alternatively be performed using Gaussian de-
convolution approaches, which are commonly used e.g. in chromatography [182] and many
areas of spectroscopy. For the present application, the additional computational efforts
do not seem justified, however. Furthermore, we still would need a heuristic to associate
individual reads to peaks.
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Classification and description based on Random Forests approach The Random
Forest approach is a machine learning approach developed by Leo Breiman [15] and Adele
Cutler. Random Forests R©is the original implementation of the algorithm. The Random
Forest approach has also been implemented in WEKA [3]. Random Forests, a meta-learner
comprised of many individual trees, was designed to operate quickly over large datasets
and, more importantly, to be diverse, by using random samples to build each tree in the
forest [136]. In short, Random Forests is a combination of tree predictors such that each
tree depends on the values of a random vector sampled independently and with the same
distribution as the other trees in the forest. Generalization errors depend on how large
the forests become, the strength of the individual trees in the forest, and the correlation
between them [15]. Random Forests grows many classification trees. To classify a new
object from an input vector, the input vector is added to each of the trees in the forest.
Each tree presents a classification, and we say that the tree ”votes” for that class. The
forest chooses the classification having the most votes (out of all the trees in the forest).
Each tree grows as follow: if N is the number of cases in the training set, sample N cases
at random - but with replacement, from the original data. This sample will be the training
set for growing the tree. Then, if there are M input variables, a number m << M is
specified such that at each node, m variables are selected at random out of the M and the
best split on these m is used to split the node. The value of m is held constant during the
forest growing, then each tree is grown to the largest extent possible. There is no pruning
[2].

Two data objects generated by random forests are important for the classification, oob
(out-of-bag) and proximities. When the training set for the current tree is drawn by sampling
with replacement, about one-third of the cases are left out of the sample. This oob data
is used to get a running unbiased estimate of the classification error as trees are added to
the forest [15, 2]. It is also used to get estimates of variable importance. After each tree
is built, all of the data are run down the tree, and proximities are computed for each pair
of cases. If two cases occupy the same terminal node, their proximity is increased by one.
At the end of the run, the proximities are normalized by dividing by the number of trees.
Proximities are used in replacing missing data, locating outliers, and producing illuminating
low-dimensional views of the data. Prototypes are a way of getting a picture of how the
variables relate to the classification. The final output of prototypes showed at the screen,
for continuous variables are the result of standarize by subtracting the 5th percentile and
dividing by the difference between the 95th and 5th percentiles. In words of Breiman [2]
“For the jth class, the model find the case that has the largest number of class j cases
among its k nearest neighbors, determined using the proximities. Among these k cases the
median, 25th percentile, and 75th percentile for each variable is predicted. The medians
are the prototype for class j and the quartiles give an estimate of is stability. For the second
prototype, we repeat the procedure but only consider cases that are not among the original
k, and so on”.

In order to investigate whether the short reads patterns carry information on the par-
ticular ncRNA class from which they originate, we selected three distinct ncRNA classes
tRNAs (n = 87), miRNAs (n = 218) and snoRNAs (n = 129) and set up a machine learn-
ing approach based on the WEKA [188] implementation of the Random Forest learning
scheme[188, 15] with the number trees set to 100.
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To define input data we have defined descriptors that represent features from the tran-
scriptome profile. Based on a visual inspection of the mapped reads, ten features were
selected to train the random forest model:

• Number of blocks within a cluster (blocks),

• Length of a cluster (length).

• Number of nucleotides covered by at least two blocks (nt overlap),

• Number of overlapping blocks (block overlap).

• Maximum and minimum block height in a cluster (max and min block height).

• Mean block height in a cluster (mean block height).

• Maximum and minimum distance between consecutive blocks (max and min dis-

tance).

• Mean distance between consecutive blocks (mean distance).

Two different training sets were built by randomly sampled of the original data set. The
Random Forest was training with training sets of size 250 and 150.

3.3 Results

Cluster detection By cluster definition, two consecutive reads were assigned to the same
putative cluster if they are separated by less than 39nt. See in methods cluster definition.
This bound was defined based on the maximum max and minimum min read length. See
Fig. 3.1 for schematic representations. In order to further investigate the hidden structure
of the brain-tissue transcriptome library we determined how often clusters appear into some
specific range of height (number of reads), distances of adjacent clusters and Cluster length.

For our purpose, we have explored the robustness of the mapping of segemehl [72]. this
tool uses a variant of enhanced suffix arrays that efficiently deals with both mismatches as
well as insertions and deletions. Thus it is expected that the structure of the mapped library
varies when the number of allowed operations increased, when allowing more deletions
and/or mismatches and/or insertions. Therefore we explore the library structure for K0, K1
and K4 segemehl operations i.e. 0 (for not operations), 1 (at least one operation) and 4
(four operations).

We observe that the number of clusters increased as the segemehl operations increase
K0 < K1 < K4. See Tab. 3.1 and Fig. 3.2. The more abundant height is 2 to 10 reads
corresponding to ≈90% of clusters. Only the 6% of the clusters gather reads that can
be comparable with some intensity signal of experimental RNA expression and one small
fraction (≈ 0.25%) of clusters comprise more that 50 reads. Then about ≈7240 clusters
might correspond to annotated loci and to new loci candidates.

We also counted how often two consecutive clusters are located to some thresholds
of distance, see Tab. 3.2 and Fig. 3.2. Some clusters are overlapping in opposite sense
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Figure 3.1: A. Bound definition δ. This bound 39 is obtained by adding 11 (x the maximum
difference between the length of two strings) and 28 themax length of a string. B. Different
patterns of blocks. δ is the bound determining whether a read belongs to a cluster or not.
C1, C2 and C3 are different cluster patterns.

(negative distance) ≈4-5% or are adjacent (0 distance) or are colocated in a distance over
100nt. Cluster overlapping in negative sense might correspond to loci that probably regulate
on trans. About 13% of the cluster are located on a boundary less than 100 nt. The more
frequently observed length was from 16 to 49 nt, followed from 50 to 99nt. The longest
cluster corresponds to a repetitive motive region.

Since we required small RNAs to map with an accuracy of at least 80% , only the best
hit was selected. Reads mapping multiple times to the genome with an equivalent accuracy
were discarded. After filtering the effective accuracy was increased to 97%. Finally, to
assign clusters or co-located clusters to a locus we increased the bound to 100 nt. Clusters
consisting of less than 10 reads were discarded. Once clusters were annotated and linked,
434 of 852 clusters were found within regions of annotated miRNA, tRNA and snoRNA
loci. See Tab. 3.4
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Operations Cluster size: read numbers

2 to 10 11 to 49 Over 50

K0 93.7 6.05 0.25
K1 93.54 6.1 0.35
K4 92.71 6.78 0.51

Table 3.1: Fractions of clusters and size of the cluster

Operations Cluster distance in nucleotides

<0 0 1 to 49 50 to 99 100 to 199 Over 200

K0 5.25 0.17 6.17 7.92 9.51 70.98
K1 5.23 0.17 6.12 7.85 9.48 71.16
K4 4.03 0.14 4.98 6.56 8.56 75.73

Table 3.2: Fractions of Clusters and their distance locations.

Operations Cluster length in nucleotides

16 to 49 50 to 99 100 to 199 200 to 299 Over 300

K0 87.04 11.59 1.31 0.06 0.004
K1 86.88 11.7 1.36 0.07 0.005
K4 88.77 10.04 1.12 0.06 0.01

Table 3.3: Fraction of Clusters length.
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ncRNA characterization from the Brain libray We have recently developed the tool
blockbuster [94] to simplify the task of identify pattern of block expression in genome-
wide analyzes. The program merges mapped HTS reads into blocks based on their location
in the reference genome (Fig. 3.3a). After the assembly of blocks, specific block patterns
for several ncRNA classes can be observed. For example, miRNAs typically show 2 blocks
corresponding to the miR and miR* positions (Fig. 3.3b). A similar processing can be
observed for snoRNAs (Fig. 3.3c). On the other hand, tRNAs show more complex block
patterns with several overlapping blocks (Fig. 3.3d).

Here, we used a width parameter of s = 0.5, a value that requires blocks to be well
separated to be recognized as distinct. We required a cluster to have at least 2 blocks. In
the following we refer to the number of reads comprised in a block as the block height.
Using the cluster definition we identified 852 clusters across the whole human genome. By
using blockbuster 2,538 individual blocks and 85,459 unique reads were identified. 434
clusters were found within annotated ncRNA loci [miRBase v12 (727 entries), tRNAscan-SE
(588 entries) and snoRNAbase v3 (451 entries)], see Tab. 3.4.

We then computed secondary structures (using RNAfold [71]) to assess the relationship
of reads and structure. For each read, the base pairing probabilities were calculated for the
sequences composed of the read itself and 50nt of flanking region both up- and downstream.
These data were also collected separately for reads found within annotated miRNA, tRNA,
and snoRNA loci, respectively.

Little is known, however, about the mechanisms of these processing steps and their
regulation. Here, we show that the production of short RNAs is correlated with RNA
secondary structure and therefore exhibits features that are characteristic for individual
ncRNA classes. The specific patterns of mapped HTS reads thus may be suitable to identify
and classify the ncRNAs from which they are processed. We explore here to what extent
such an approach is feasible in practice. The 5’-ends of reads arising from known snoRNAs
preferentially map just upstream of the C- and ACA-boxes. This indicates the correlation
of mapping patterns with processing steps and thus with structural properties of snoRNAs
(Fig. 3.5). Based on earlier findings that miRNA-like products are derived from snoRNAs
[170] and the observation that miRNA transcripts tend to have higher blocks (Tab. 3.4),
the two peaks shown in the Figure 3.5 (left) probably represent small RNAs produced from
the 5’- and 3’-hairpins of the HACA (see also Fig. 3.3c). CD-snoRNAs show, in contrast
to the HACA-snoRNAs, only a single prominent peak at the 5’-end (Fig. 3.5, middle). An
increased number of 5’-ends of HTS reads is also observed just upstream of loops of tRNAs
(Fig. 3.5 (right)).

RNA class source loci found blocks/cluster (mean) reads/cluster (median)

microRNAs miRBase v12 218 2.42± 1.04 4535.33
tRNAs tRNAscan SE 87 3.22± 1.92 183.95
snoRNAs snoRNAbase v3 129 2.60± 1.66 127.5

Table 3.4: In total 434 of 852 clusters were found within regions of annotated miRNA,
tRNA and snoRNA loci. While the average number of blocks is similar for all three ncRNA
classes, the number of reads differs significantly among the classes.
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Figure 3.3: Non-coding RNAs exhibit specific block patterns. (a) Distribution of short reads
at the hsa-mir-370 locus. There are three clearly distinct blocks of reads: they correspond
to moR (5’-end), miR* (center) and miR (3’-end) transcripts. The conservation pattern
is shown below. (b) The class of miRNAs often shows a block pattern of two or three
separated blocks. (c) snoRNAs tend to have miRNA-like mature and star blocks at their 5’
and 3’ hairpins with minor overlaps, while a series of overlapping blocks is striking for the
tRNA class (d).

The pairing probabilities of bases covered by HTS reads are significantly increased
(Fig. 3.4b). Just upstream the 5’-end of these reads, the median base pairing probability
increases sharply and reaches a level of > 0.9. At the 3’-end the base pairing probability
drops again. However, median base pairing probabilities of bases covered by the center of
reads drop down to 70%. Although this effect is boosted by reads found within miRNA loci,
it can also be observed unambiguously for reads within snoRNA and tRNA loci (Fig. 3.4a).

The observation that blocks reflect structural properties of ncRNAs was exploited to
train a random forest classifier to automatically detect miRNAs, tRNAs and snoRNAs.
After visual inspection of block patterns for some representatives of these classes, ten
features were selected. Their evaluation reveals significant statistical differences among the
chosen ncRNA classes (Fig. 3.6). As expected, the number of reads mapped to miRNA loci
(minimum and maximum block height) clearly distinguishes miRNAs from other ncRNA
classes. In contrast to tRNAs and snoRNAs the maximum block distance of miRNAs shows
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Figure 3.4: Base pairing probabilities increase at the 5’-end and decrease at the 3’-end of
reads mapped to ncRNA loci. (a) The 3’- and 5’-ends are indicated by dashed lines. The
median base pairing probability increases sharply at the 5’-ends (upper left) and drops again
at the 3’-ends of reads mapped to miRNA loci (upper right). A similar – but attentuated
– effect is observed for snoRNAs (middle panel) and tRNAs (lower panel). (b) The median
base pairing probabilities at 5’- (left panel) and 3’- ends (right panel) for all reads within
the 852 clusters. The 5’- and 3’-ends are indicated by dashed vertical lines.

a very narrow distribution around 40nt, reflecting the distance between miR and miR*
transcripts. Furthermore, the class of tRNAs frequently shows more block overlaps than
snoRNAs and miRNAs. The distance of blocks is an important feature for snoRNAs: the
maximum block as well as the minimum block distance is higher compared to both tRNAs
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Figure 3.5: HTS data reflects structural properties of ncRNAs. Upper panels show the
number of 5’-ends of mapped HTS reads (bars) relative to aligned the 5’-ends (dashed
vertical lines) of 27 ACA boxes (left), 81 CD boxes (middle) and 87 tRNAs (right). The
area in the lower panel represents the number of boxes and tRNAs present at the distance
relative to their aligned start sites. In accordance with Taft et al. [170] a sudden and
sharp increase of 5’-ends is seen just upstream of the snoRNAs’ ACA and C boxes, resp.,
indicating that read blocks reflect structural properties of snoRNAs. Similarily, the number
of 5’-ends increases just upstream of the tRNA and the relative start sites of its three loop
regions (dotted lines). Downstream the start sites there is a sudden drop in the number of
reads.

and miRNAs.

The random forest model was repeatedly trained with randomly chosen annotated loci
and different training set sizes in order to determine predictive values (PPV) and recall
rates. For the training sets comprising 150 clusters the random forest model shows a
positive predictive value > 0.7 for all three ncRNA classes. The recall rate for miRNAs
is well above 80%. However, with a rate of ≈ 0.55 the recall of snoRNAs and tRNAs
is relatively poor (Tab. 3.5). For larger training sets containing 250 clusters, the positive
predictive value (PPV) is > 0.8 for all classes. For miRNAs the classification achieves
recall rates and PPVs of > 0.9. Likewise, the recall rates for snoRNAs and tRNAs rise to
0.7-level. In summary, for both training set sizes and all classes the random forest model
achieves PPVs and recall rates of ≈ 0.8.

We applied the classifier to unannotated ncRNA loci. A list of miRNA, snoRNA, and
tRNA candidates predicted is available from the supplementary page [95]). This resource
includes the original reads, their mapping accuracy and their mapping location in machine-
readable formats. Furthermore, the page provides links to the UCSC genome browser to
visualize the block patterns. For microRNAs and snoRNAs, we also indicate whether the
candidates are supported by independent ncRNA prediction tools.

The 29 miRNA predictions contained 3 miRNAs (hsa-mir1978, hsa-mir-2110, hsa-mir-
1974) which have already been annotated in the most recent miRBase release (v.14), as
well as a novel member of the mir-548 family, and another locus is the human ortholog
of the bovine mir-2355. In addition, we found two clusters antisense to annotated miRNA
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Figure 3.6: Box plots for 8 different features selected to train the random forest classifier.
The number of reads mapped to miRNA loci alone (max block height and min block height)
effectively distinguish miRNAs from other ncRNAs. Likewise, the distribution of block
distances seems to be a specific feature for miRNAs. Compared to other regions, tRNA
loci frequently show block overlaps of two or more blocks. The minimum block distance
shows a median overlap of ≈5nt for blocks in within tRNA loci. SnoRNAs typically have
longer block distances than the other classes.

loci (hsa-mir-219-2 and hsa-mir-625). Such antisense transcripts at known miRNA loci
have been reported also in several previous publications [55, 163, 12, 181], lending further
credibility to these predictions.

For the tRNAs and snoRNAs we expect a rather large false positive rate. The 78 tRNA
predictions are indeed contaminated by rRNA fragments, but also contain interesting loci,
such as sequence on Chr.10 that is identical with the mitochondrial tRNA-Ser. SnoReport
[68], a specific predictor for HACA snoRNAs based on sequence and secondary features,
recognizes 44 (20%) of our 223 snoRNAs predictions.

To help to understand and use the various options implemented in RandomForest model,
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PPV recall
#loci mean sdev mean sdev

Training size 250
all 852 0.889 0.015 0.799 0.015

miRNA 227 0.932 0.020 0.918 0.023
tRNA 287 0.860 0.040 0.683 0.046

snoRNA 143 0.819 0.032 0.694 0.060
other 195

Training size 150
all 852 0.827 0.020 0.698 0.027

miRNA 236 0.900 0.027 0.847 0.041
tRNA 348 0.755 0.044 0.580 0.062

snoRNA 115 0.733 0.057 0.525 0.071
other 153

Table 3.5: Positive predictive values (PPV) and recall rates for training sets of size 150
and 250. For each set size means, medians and standard deviations are calculated from 20
randomly sampled training sets.

Figure 3.7: A. Parallel coordinate displays are used to represent input variables on the
Random Forest approach. Green for microRNA, blue for snoRNA and red for tRNAs. B.
Prototypes showing a view of how the variable relate to the classification by each class.

we use an example to visualize proximities and some other steps of the RadomForest as it
was originally implemented by Breiman [15, 2]. In this example the model was repeatedly
trained with the complete set of the 434 annotated loci. The outcome is similar to the
classification when the model was trained with a size of 150. Since the classes tRNAs
and snoRNAs showed a recall mean around 0,525 and 0.580 respectively we intended to
explore further information about how they are computed. In our example, Fig. 3.8 darker
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Figure 3.8: Heatmaps used to represent the votes for each class and proximity matrices.
The cells are colored according to the true class. In green microRNA class, red for tRNA
class and blue for snoRNA. Plot at the left correspond to votes to classify ncRNAs. A darker
cell indicates that a higher percentage of trees voted for that case, when it was out-of-bag.
Plot at the right shows a heatmap of the proximity matrix. The cells are colored according
to the true class. Darker cells indicate higher proximities.

cell indicates that a higher percentage of trees voted for that case for each class. See for
example that snoRNAs and tRNAs receive votes for misclassified cases and the proximity
matrix shows that true classes are composed of higher proximities indicated by darker cells.
Prototypes are a way of getting a picture of how the variables relate to the classification.
See the prototypes for our test depicted in Fig. 3.7.

Identification of other structured ncRNAs Short RNAs are processed from virtually
all structured ncRNAs. Complex read patterns are observed, for instance, for the 7SL
(SRP) RNA and the U2 snRNA. Y RNAs, which have a panhandle-like secondary structure
produce short reads mostly from their 5’ and 3’ ends, see Fig. 3.9.

In a recent study, [158] found that in the tunicate Ciona intestinalis, half of the identified
miRNA loci encode up to four distinct, stable small RNAs. These additional RNAs, termed
miRNA-offset RNAs (moRs), are generated from sequences immediately adjacent to mature
miR and miR* loci. Like mature microRNAs, they are about 20nt long, developmentally
regulated, and appear to be produced by RNAse III-like processing from the pre-microRNA
hairpin. This observation prompted us to specifically search for analogous pattern in human
small RNA sequencing libraries. In the brain libraries we found 78 annotated microRNA
loci that exhibit blocks of reads at positions characteristic for moRNAs. See the locus
mir-125b-1 with expression on mor sequences Fig. 3.10.
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Figure 3.9: Short reads are produced from a wide variety of structured ncRNAs. Green
arrows indicate the ncRNA gene and its reading direction, individual short reads are shown
as orange lines. The same scale is used for all examples.

3.4 Discussion

In extension of previous work establishing that various ncRNA families produce short pro-
cessing products of defined length [87, 157, 170], we show here that these short RNAs are
generated from highly specific loci. The dominating majority of reads from short RNAs
originates from base paired regions, suggesting that these RNAs are, like miRNAs, pro-
duced by Dicer or other specific RNAases. For example, specific cleavage products have
recently been reported for tRNAs [180]. In this work we show that the block patterns are
characteristic for three different ncRNA classes and thus suitable to recognize additional
members of these classes. For instance, the random forest trained with loci annotated in
the mirBase v12 predicted five additional miRNAs reported in the mirBase release 14 as
well as two “antisense microRNA”.

Comparison with other ncRNA classification approach from transcriptome data
Since the identification of non-coding RNAs using small RNA libraries is a new issue in
computational science we first aimed to classify three already known and well annotated
ncRNAs. After preprocessing and data reduction steps, a set of different variables, i.e.
features, was chosen to describe the short read data in a compact fashion.

To reduce the amount of data but simultaneously keeping as much information as
possible, consecutive hits were condensed to blocks using an automized approach. The
block definition relies on the representation of read hit locations as gaussian distributions.
An iterative statistical procedure is used to merge neighboring gaussians. All hits merged
via the gaussian approach are represented by a single block. The block height represents
the number of reads that have been consolidated in a block.
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Figure 3.10: Decomposition of the cluster of reads at the mir-125b-1 locus [97] on chr.11
(bottom panel) The blockbuster algorithm replaces each read by Gaussian profile centered
at the midpoint of the read. The middle panel shows the superposition f(i) of these profiles
for four different width of the Gaussian, here chosen to be fraction of the read lengths L.
Clusters (top) panels are identified as sets of reads whose midpoints are located is close to
the peaks of f(i). Clusters 2 and 3 correspond to the miR-125b-1 and miR-125b-1*.

After each addition of gaussians, the standard deviation of the resulting gaussian ”de-
cides” if further gaussians have to be included. Thus, the algorithm automatically adjusts
the blocks to hit pattern. The user defined parameter s tunes the resolution of the merger
[94].

A different approach by [84] is based on the assembly of contiguously overlapping
consecutive tags into tag-contigs (TC). Thus, only a single distance parameter definition
allows a static and genome-wide scaling of the blocks.

The blocks are the basis and starting point for the classification approach. Compared
to [84], the number of features is significantly larger.

The afore mentioned features block-height and block-lenght are somewhat similar to
tag-depth (maximum number of overlaying sequence reads per each base) and tag-length
(lenght of the tag-contig) in [84]. However, the approach here uses additional features such
as number of nucleotides covered by at least two blocks, number of overlapping blocks,
mean distance between blocks etc.

In terms of accuracy, the presented approach using a Random Forest classifier [15] seems
to be more robust since positive predictive values and recall rates can be calculated for the
clasification

Compared to other machine learning techniques, the Random Forest classification ex-
hibits a good accuracy. It automatically selects a set of variables in an essentially unbiased
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way. It is furthermore efficient to run on large data bases [2]. In contrast, [84] presents a
classification of ncRNAs based on visual comparison of scatter plots for only two features.

3.5 Conclusions

The block patterns for the evaluated ncRNAs show some interesting characteristics. Al-
though miRNA loci accumulate far more reads than tRNAs and snoRNA loci, the reads
are extremely unevenly distributed across the blocks. For tRNAs we observe series of over-
lapping blocks that are specific enough to separate this class from other classes with high
positive predictive values.

However, the successful prediction of miRNAs heavily depends on the height of the
blocks, i.e. the number of reads that map to a potential locus. In comparision tRNAs and
snoRNAs show significantly lower positive predictive values and recall rates. A relatively
large training set is required to achieve PPV’s > 80%. Obviously, the selection of appropri-
ate features is crucial for the success of the presented approach. Hence, the random forest
classifier is not sufficient as it stands and the identification of other characteristic features
is subject to further research. The integration of secondary structure information of cluster
regions is likely to enhance the prediction quality.

Beyond the classification by means of soft computing methods, this survey shows that
HTS block patterns bear the potential to greatly improve and simplify ncRNA annota-
tion. Given the striking relationship of HTS reads and secondary structure for some ncRNA
classes, block patterns may also be used in the future to directly infer secondary struc-
ture properties of non-coding RNAs from transcriptome sequencing data. In this context,
although not shown here, block patterns may also help to identify new classes of RNAs
directly from transcriptome sequencing data.
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Chapter 4

Computational analysis of
tRNA-derived small RNAs

4.1 Introduction

Whole transcriptome analysis has greatly facilitated the identification of new small regula-
tory RNAs. Recent filtering of deep sequencing data has revealed the existence of abundant
small RNAs derived from tRNAs [23, 98, 67, 52]. However, the history of tRNA-derived
products date from its biogenesis per se [140] to multiple mechanism of degradation stress
related and general RNA quality control in eukaryotes [36]. The first small product is
produced through pre-tRNA transcript processing, during which 5’ leader and 3’trailer se-
quences must be removed and/or intervening sequences must be spliced (for review see
[189, 129, 75]). Products of tRNA cleavage have been associated with responses to stress
[105, 178, 179, 190] or phosphate deficiency in Arabidopsis [76]; the regulation of devel-
opment in bacteria Streptomyces coelicolor [66]; and conidiation in Aspergillius fumigatus

[19]. These responses involve alterations to the mechanisms that assure tRNA structural
stability and the universality of tRNA modifications, which are normally extensively and
extremely stable [18, 25, 129]. Some tRNAs lacking specific modifications are subject to
degradation pathways [141] and to rapid tRNA decay. These degradation pathways do not
leave intermediate tRNA products, as has been reported for the degradation of an endoge-
nous tRNA species at a rate typical of mRNA decay. This demonstrates a critical role for
nonessential modifications conferring increased tRNA stability and cell survival [184, 7].
However, aside from eukaryotic quality control, much tRNA cleavage is regulated according
to tRNA type and tissue expression. Newly discovered small RNAs exhibit unique charac-
teristics suggesting independent pathways of tRNA processing, and are unlikely to be the
result of non-specific degradation [88]. Furthermore, tRNA has been shown to produce
a Dicer-dependent small RNA [10, 23, 88] and recently discovered human tRNA-derived
small RNAs have been shown to interact with the RNAi machinery, mainly with Argonaute
and Dicer [67]. All of these data favor the idea that tRNA cleavage is unlikely to be the
consequence of non-specific degradation but instead is probably a controlled process, the
biological significance of which remains to be elucidated.

Less is known about the patterns of tRNA products from different species. Nowadays,
there are various approaches to the identification and classification of small RNA in tran-
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scriptome data [95]. Although numerous tools are available for the detection of microRNAs
[50, 43, 65], no tools are available for the exploration of the repertory of cleaved tRNA
products. Thus, in order to analyze and classify patterns of small RNA derived from tRNA
families, we have developed a new approach based on the classification of tRNA-short-
read-block patterns found in small RNA libraries from Bos taurus, Caenorhabditis elegans,

Canis familiaris, Drosophila melanogaster, Gallus gallus, Homo sapiens, Macaca mulatta,

Mus musculus and Rattus norvegicus. First, RNA libraries are mapped to the reference
genome using segemehl [72], a method based on a variant of enhanced suffix arrays, and
blockbuster, a tool for the detection of blocks associated with specific expression pat-
terns [94], until every mapped tRNA is associated with a unique common system. Once the
tRNA products have been associated with a vector of block patterns, a distance measure
is defined to determine a comprehensive classification system for block patterns of tRNA
families across the referenced genomes.

4.2 Methodology

Small RNA Libraries The following high-throughput genomic libraries has been used in
this survey whose repository is at Gene Expression Omnibus (GEO), NCBI.

• B. taurus (cow): small RNA libraries prepared from cell line derived from the adult
bovine kidney under normal conditions and upon infection of the cell line with the
bovine herpesvirus, GSE15450 [57].

• C. familiaris (dog): small RNAs were sequenced from domestic dog lymphocytes,
GSE10825 [50].

• C. elegans (worm): small RNAs were sequenced from mixed-stage, GSE5990 [62].

• D. melanogaster (fly): mixture of tissues from GSE9389.

• G. gallus (chicken): embryon tissue, GSE10686 [56].

• M. musculus (mouse): mouse embryonic stem cells, GSE12521 [10].

• H. sapiens (human) and M. mulata (monkey): brain libraries was produced according
to standard small RNA transcriptome protocols. See [94].

• R. rattus (rat): rat hepatocytes, http://web.bioinformatics.cicbiogune.es/ [65].

Reference genome B. taurus NCBI Build 4, C. familiaris NCBI Build 2, C. elegans

WS204, D. melanogaster Flybase, dm3, G. gallus NCBI Build 2,1, H. sapiens NCBI36.50,
M. mulata NCBI Build 1, M. musculus NCBI Build 37, R. rattus NCBI Build 4.
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Mapping and tRNA loci detection The first step to define tRNA specific reads was
the identification of tRNA loci from a collection of mapped HTS reads. Reads were mapped
to every reference genome using segemehl ([72]). Our study makes use of the near-perfect
sensitivity and specificity of tRNAscan-SE, which reliably determines the complete tRNA
complement of eukaryotic genomes. After the mapping, the subset of tRNA loci that
registered expression signal were selected to further steps. We required small RNAs to map
with an accuracy of at least 80% and normalized the read occurrence so that the reads
mapping to multiple tRNA loci get equally weight distributed across all their loci.

Common coordinate system for tRNAs For making a reliably comparison of tRNA
block patterns across species we have defined a common coordinate system to normalize
the mapping positions of the reads. Since our main major was to identify block pattern
associated to the proccesed tRNAs and to the canonical tRNA secondary structure then
intronic, Sup and SeC sequences were excluded. A total of 2171 sequences were used to
built the common system. This common system was set to compare the block patterns of
different tRNAs by a combination of structure and sequence alignments as is implemented
in Infernal 1.0 [37]. This approach allowed us to have scored both primary sequence
and tRNA secondary structure conservation in conjunction with the covariance model cor-
responding to tRNA RFAM family RFAM database 9.1. In Fig. 4.2 the common system
output is depicted. tRNA structural elements are highly differentiated by colors in the com-
mon system see Fig. 4.2A. The total length of the common system is 112 nt. We have also
depicted our common system into the canonical enumeration proposed by Sprinzl [164].

Block patterns Individual reads were combined into blocks using blockbuster [94] as
was described in chapter 3. We used a width parameter of s = 0.2, a value that requires
blocks to be well separated to be recognized as distinct. A Perl pipeline was deviced to map
the original locations of reads and blocks onto the common set of coordinates for tRNAs.
The final step of the pipeline produces tRNA-superfamily expression profiles by plotting new
common locations. The plots are the results of an authomatized combination of PSTricks
macros and LaTeX. Profile plots of the tRNA superfamilies for the nine reference genomes
are available from http://www.bioinf.uni-leipzig.de/∼clara/Transcriptome0 2/

tRNA superfamilies To define the superfamilies, we clustered tRNA sequences (amino
acids-specific) by using BLASTClust. To merge only highly similar tRNAs to families we
used a quite stringent set of parameters (97% sequence similarity and a coverage of 100%).

Once superfamilies were defined, the expression of individual locus was merged to have
a complete profile of expression by tRNA superfamily. We then used blockbuster to
re-calculate tRNAsuperfamily-derived block patterns.

Superfamilies patterns characterization In order to quantify processing patterns simi-
larity and to establish conservation across the species we have defined a set of block pattern
descriptors to represent each tRNA superfamily similarities by using a Hierarchical cluster
analysis [28]. The idea is to show which of a set of tRNA superfamilies are more similar
to one another and to group these similar tRNA superfamilies in the same limb of a tree.
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Figure 4.1: A. Common system B. Representation of common system using the canonical enumeration by Sprinzl [164]. C. Tridimen-
sional representation of the tRNA structure.

56



4.2. METHODOLOGY
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Figure 4.2: Block expression visualization of Asparagine tRNAsuperfamily1 for Chicken. In
orange reads, in blue their corresponding blocks calculated by blockbuster. The common
system output scheme separates reads and blocks.

Groups of tRNA superfamilies that are distinctly different are placed in other limbs. Then
each of the tRNA superfamilies can be though of a sitting in a m-dimensional space, defined
by m descriptors characterizing a block pattern:

• Total expression by tRNA superfamily.

• Number of blocks within a tRNAsuperfamily.

• Maximum and minimum of expression fraction.

• Average of block expression.

• Maximum and minimum distance between consecutive blocks.

• Average of distance between consecutive blocks.

• Average of non-overlaping consecutive blocks.

• Average of overlaping consecutive blocks.

• Number of nucleotides overlaping by consecutive blocks.

Then we defined similarity on the basis of the Euclidean distance between two tRNA su-
perfamilies in this m-dimensional space. The quantitative dissimilarity structure is stored
in a matrix. Then initially each tRNA superfamily is assigned to its own cluster, and then a
clustering algorithm proceeds iteratively, at each stage joining the two more similar clusters,
continuing until there is just a single cluster.

We have also performed a test for assessing the uncertainty in hierarchical cluster anal-
ysis. For each cluster in hierarchical clustering, p-values are calculated via multiscale boot-
strap resampling. We have used AU (Approximately Unbiased) p-value which was computed
by multiscale bootstrap resampling (resampling size = 1000). AU p-values are a better ap-
proximation to unbiased p-value than BP value computed by normal bootstrap resampling
[168]. Values on the edges of the clustering are AU p-values (%). Clusters with AU larger
than 95% are highlighted by red, which are strongly supported by data. Hierarchical cluster
analysis and p-values calculations were performed using the packages hclust and pvclust
from R statistics environment [1].
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4.3 Results

Mapped tRNA loci From the highest tRNA counts reached for the cow and rat genomes
(with more than 150000 tRNAs and tRNA pseudogenes) just only its 0,25% and 0.01%
are detected to show expression signal. Despite the large variation among all the species,
for worm, fly, chicken, human and monkey more than its 50% of tRNAs shown expression
signal. In Tab. 4.1 the corresponding counts and fraction for every species is summarized.
Since our main major was to identify block pattern associated to the proccesed tRNAs
and to the canonical tRNA secondary structure then mapped tRNA discarded correspond
to mapped intronic, Sup and SeC tRNA loci that were filter out to define the common
coordinate system.

species Cow Worm Dog Fly Chicken Human Mouse Monkey Rat

tRNAscan-SE 207156 820 87435 304 242 622 26200 520 172474
% Fraction of Total mapped tRNAs 0.25 47.2 0.05 46.38 59.92 55.14 1.82 78.65 0.01
Mapped tRNA non-discarded 430 347 36 139 138 309 403 354 15
Mapped tRNA discarded 85 40 5 2 7 34 75 55 8
tRNAsuperfamilies 129 60 22 33 51 98 143 132 8

Table 4.1: Counts of tRNAscan-SE predictions and fraction of mapped tRNAs for each
species. Mapped tRNA discarded correspond to mapped intronic, Sup and SeC tRNA loci
that were filter out to define the common coordinate system.

tRNA superfamilies To define tRNAsuperfamilies, we clustered tRNA sequences by each
corresponding amino acid family. To merge only highly similar tRNAs to families we used
BLASTClust with a quite stringent set of parameters (97% sequence similarity and a cover-
age of 100%). See an schematic representation of the output Fig. 4.3. Not surprisingly, in
species with more mapped tRNAs the stringent non-redundant tRNA sequence set is bigger
with some outliers as is observed in worm. See Tab. 4.1.

Thus far we have been able to proceed without difficulty to merge mapped HTS reads of
individual mapped tRNAs into a super-read repository by tRNAsuperfamily. Further filtering
steps allowed us to re-calculate with blockbuster block patterns of these supersets.

The new common system is also represented into the canonical numbering scheme
proposed by Sprinzl [164], see Fig. 4.2B. The four base-paired stems: acceptor (in purple),
D stem (in red), anticodon (in blue), TψC (in dark green) are depicted. Colors in gray
represent non-paired regions and anticodon triplet. The variable loop is drawn in light
green. In orange the 3’CCA end is also shown, although it is not part of the common
system definition due that 3’CCA ends are added in the pre-tRNA proccesing steps. Further
representation of this secondary structure into three-dimensional structure is depicted in
Fig. 4.2C. Each structural element from the cloverleaf maps into its three-dimensional
representation. The acceptor stem and TψC-arm stack together to form a continuous
alpha-helix, while the D-arm and anticodon arm stack to form another continuous helix.
Two RNA double helices cross by 90◦ to form a characteristic L-shaped tertiary structure
[129].
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�
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�

�hsaM SerTGA

Figure 4.3: BLASTClust output example. The output consists of a file, one cluster to a
line, of sequence identifiers separated by spaces. The clusters are sorted from the largest
cluster to the smallest.

Patterns comparison The common coordinate system defined across the mapped set of
tRNAs and the profiling visualization of tRNAsuperfamily expression allowed us to identify
at first glance some interesting patters resembling features observed in recent publications
[23, 98, 67], see Fig. 4.4. Different sorts of tRNA-derived small RNAs seem to be classi-
cal processing products of pre-tRNA transcripts, i.e. products of the removal of 5’ leader
and 3’ trailer extensions, see as example, evidence of 3’ trailer products in Arginine tR-
NAsuperfamilies from human and chicken in Fig. 4.4. It is also appreciable to observe
opposite examples of block patterns, ladder-type matching for Arginine tRNAsuperfamilies
and semi-paired block patterns in Asparagine and Lysine tRNAsuperfamilies in human.

The analysis of the distribution of block expression for either the tRNA general model

or individual tRNA amino acid family model also show similar patterns resembling the latest
publications on tRNA-derived small RNAs [23, 98, 67, 52].

After merging individual tRNAsuperfamilies blocks into a big and unique tRNA reposi-
tory of block expression tRNA general model or into tRNA amino acid family model, it is
observed expression signal over tRNA regions previously reported as source of tRNA-derived
fragments. At tRNA general model expression (see Fig. 4.5.) the number of 5’-ends in-
creases just upstream of the tRNA and the relative start sites of its three hairpin regions
(red, blue and green). Downstream of the the relative end sites of the loops there is a
sudden drop in the number of reads. However the highly enrichment at 5’ ends upstream
of the tRNA has not previously reported. Surprisingly an even distribution at 3’-ends just
downstrem of the tRNA is not observed albeit there is low expresion signal. Interestingly
it is also observed an increased number of 5’-ends matching to the acceptor tRNA region
either 5’ arm or 3’ arm. These regions have been also identified as regions from which small
tRNA fragments might be derived.
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(((((((.,.,..<<<<---..---....->>>>,...<...<.<.<<-..-.--.---.>>>.>>,,.............,..,<<<<<------->>>>.>..))))))):

gccccug.U.A..GcucAaU..GGU....AgagCa...u...u.g.gaC..U.uu.uAA.ucc.aaag.............g..ugugGGUUCgAaUCCca.c..caggggcA

(((((((.,.,..<<<<---..---....->>>>,...<...<.<.<<-..-.--.---.>>>.>>,,.............,..,<<<<<------->>>>.>..))))))):

gccccug.U.A..GcucAaU..GGU....AgagCa...u...u.g.gaC..U.uu.uAA.ucc.aaag.............g..ugugGGUUCgAaUCCca.c..caggggcA

human lysine

(((((((.,.,..<<<<---..---....->>>>,...<...<.<.<<-..-.--.---.>>>.>>,,.............,..,<<<<<------->>>>.>..))))))):

gccccug.U.A..GcucAaU..GGU....AgagCa...u...u.g.gaC..U.uu.uAA.ucc.aaag.............g..ugugGGUUCgAaUCCca.c..caggggcA

human asparagine human arginine

(((((((.,.,..<<<<---..---....->>>>,...<...<.<.<<-..-.--.---.>>>.>>,,.............,..,<<<<<------->>>>.>..))))))):

gccccug.U.A..GcucAaU..GGU....AgagCa...u...u.g.gaC..U.uu.uAA.ucc.aaag.............g..ugugGGUUCgAaUCCca.c..caggggcA

human arginine

(((((((.,.,..<<<<---..---....->>>>,...<...<.<.<<-..-.--.---.>>>.>>,,.............,..,<<<<<------->>>>.>..))))))):

gccccug.U.A..GcucAaU..GGU....AgagCa...u...u.g.gaC..U.uu.uAA.ucc.aaag.............g..ugugGGUUCgAaUCCca.c..caggggcA

cow arginine

(((((((.,.,..<<<<---..---....->>>>,...<...<.<.<<-..-.--.---.>>>.>>,,.............,..,<<<<<------->>>>.>..))))))):

gccccug.U.A..GcucAaU..GGU....AgagCa...u...u.g.gaC..U.uu.uAA.ucc.aaag.............g..ugugGGUUCgAaUCCca.c..caggggcA

chicken arginine

(((((((.,.,..<<<<---..---....->>>>,...<...<.<.<<-..-.--.---.>>>.>>,,.............,..,<<<<<------->>>>.>..))))))):

gccccug.U.A..GcucAaU..GGU....AgagCa...u...u.g.gaC..U.uu.uAA.ucc.aaag.............g..ugugGGUUCgAaUCCca.c..caggggcA

human asparagine

Figure 4.4: Different proccesing patterns for some tRNAsuperfamilies. In Orange reads and
in Blue block detection by blockbuster.
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((((((.(..,.,<<<<---..---..->>>>,<<<<<-..--.-....--->>>>>,,..............,..,<<<<<------->.>>>.>...))..).).).)):

gccccu.g..U.AGcucAaU..GGU..AgagCauuggaC..Uu.u....uAAuccaaag..............g..ugugGGUUCgAaUC.Cca.c...ca..g.g.g.gcA

Figure 4.5: Block expression distribution for all the merged blocks. tRNA general model
expression. The number of 5-ends increases just upstream of the tRNA and the relative
start sites of its three hairpins regions (red, blue and green). Downstream of the the relative
end sites of the loops there is a sudden drop in the number of reads. It is also observed an
increased number of 5-ends matching to an acceptor tRNA region either 5’ arm or 3’ arm.

Distribution analysis by tRNA amino acid family model provides detailed visualization
of patterns by specific family. Comparison of distribution of number of 5’ends among
all the tRNA amino acid family let us to identify quite differentiable pattern types. See
Fig. 4.6. For Alanine, Methionine, Glycine, Leucine, Phenyalanine and Proline families, the
signal expression increases at the 5’ end. These tRNA families exhibit an increased 5-ends
upstream of the tRNA 5’ end too. Over the 3’ arm region there is an increased number of
5’ ends for Serine, Threonine, and Cysteine families as well as increased lower expression
downstream of the 3’end. For the remainder families the expression signal increases either
5’ ends or 3’ ends. Non well defined patterns are shown for Aspartic acid, Phenylalanine and
Histidine families. Histidine family is the only example showing an expression enrichment
at both regions outside of the 5’ and 3’ ends suggesting a processing type of an extended
hairpin that might be shaped by extensions of both ends of the tRNA acceptor stem.
Surprisingly there was not signal detection for any locus of Tyrosine tRNAs.
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Figure 4.6: Block expression distribution for merged blocks. tRNA model expression by
tRNA amino acid isoaceptor family. Not signal was detected for any locus of Tyrosine
tRNAs. Y-axis for block expression in terms of number of 5’ends of the reads by position
in X-axis. The system is anchored to the tRNA 3’end.

tRNA superfamily similarities In order to quantify processing patterns similarity and to
establish conservation across the species we have defined a set of block pattern descriptors
to represent each tRNA superfamily similarities by using a Hierarchical cluster analysis [28].
The idea is to show which of a set of tRNA superfamilies are more similar to one another
and to group these similar tRNA superfamilies in the same limb of a tree. For all the species
the test for assessing the uncertainty in hierarchical cluster analysis using p-values shows
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4.4. DISCUSSION

p-values over the 80 %. Clusters with AU larger than 95% are highlighted by rectangles,
which are strongly supported by data. Different main groups corresponds to tRNAs that
have specific proccesing patterns. Some just only gather tRNA superfamilies with two or
three blocks of expression. Some others gathering more intriguily block expression patterns.
See Figs. 4.7, 4.8 and 4.9 for some classification examples.

4.4 Discussion

In a first step, reads that correspond to an specific expression value were mapped to its
corresponding reference genomes by using segemehl [72], a method based on a variant
of enhanced suffix arrays and matching statistics that efficiently deals with mismatches,
insertions and deletions. We required small RNAs to map with an accuracy of at least 80%
and normalized the read occurrence so that the reads mapping to multiple tRNA loci get
equally weight distributed across all their loci. The program tRNAscan-SE was used to
identify tRNA loci. Only reads, which overlapped with predicted tRNA loci were used for
all the previous analysis.

We have shown that read blocks reflect secondary structure properties of different non-
coding RNAs [95]. Specially for tRNAs we showed that the number of reads increases just
upstream of the 5-ends of the tRNA and the relative start sites of its three loop regions
(See the Fig. 3.5) however, downstream the start sites there is a sudden drop in the number
of reads, implying that a double stranded sequence is needed for the tRNA processing.

To compare the block patterns of different tRNAs, we defined a common system to
normalize the mapping positions of the reads. The common system was defined by a
combination of a structure and a sequence alignment of all the tRNA predictions (from
tRNAscan-SE) using Infernal 1.0.

Different schematic visualizations were employed in this survey to identify most of the
latest tRNA-derived fragments. Although tRNA fragments are generally considered to be
random degradation products [23], here it was shown that enrichment at some specific tRNA
regions presumably indicated that tRNAs can produce stable small RNAs. In first place,
the significant number of the sequences that are derived from precise processing at the 5’
or 3’ ends of mature or precursor tRNAs were detected. Previously, it has been reported
by [98] three series of tRFs (tRNA-derived RNA fragments), their names are derived from
their precise alignment to the 5’ and 3’ ends of mature tRNAs: tRF-5 (over the 5’ end),
tRF-3 (over the 3’end), and tRF-1 series (3’ trailer sequences). Those series were also
detected in our survey. The 3’ trailer sequence of Serine tRNAs that are trimmed during
tRNA maturation, albeit low expression, was also detected in our survey, indicating that
our results are in agreement with [98]. However, intermediate block of patterns associate
to regions within the tRNA structure but offset of the regions covered in tRF-5 and tRF-3
fragments are observed. Those ladder-type patterns suggest the reads are the result of
random degradation of tRNAs. However, rest to experimentally validate whether other
regions are prone to produce functional small RNAs as for instance, it was reported in the
analysis of the transcriptome of the unicellular algae C. reinhardtii [123, 192]. These studies
showed that C. reinhardtii contains putative evolutionary precursors of miRNAs and species
of siRNAs resembling those in higher plants, indicating that complex RNA-silencing systems
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Figure 4.7: Hierarchical cluster analysis with p-values for block expression patterns in rat. Values on the edges of the clustering are
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evolved before multicellularity and were a feature of primitive eukaryotic cells [123, 192].
In a pilot study, we previously identified a set of microRNAs derived from pre-miRNAs in
which an imperfectly matched tRNA inverted repeat forms a partly double-stranded region,
as observed in Chlamydomonas. The location of the processed region correspond to a
partial end of the TψC loop, the variable loop and the 3’ end arm of the anticodon stem.
A detailed location is shown in Tab. 1.1 and Fig. 1.3.

However, there is also some interesting patterns showed here, suggesting that many
tRNA-derived reads do not correspond to random degradation products as has been sug-
gested by [98, 65]. Not all the tRNA families are processed to produce small RNAs evenly
distributed. The fact that some specific loci are able to produce small RNA in an specific
fashion suggest to us that previous tRNA-derived small RNAs are more diversified that
previously though.

We has been also able to identify new sets of tRNA isoacceptors able to produce tRF1
besides Serine tRNA families. For example, Cysteine or Threonine tRNA families. These
type of tRF-1 has been associated to cell proliferation in mammals as a different pathway
of pre-tRNA transcript processing by the tRNA 3’endonuclease ELAC2 in the cytoplam [98]
or cytosolic RNase Z [67]. Some remarkable is that function of 3’ trailers sequences has
been previously reported in Bacteria [107] thus it is expected that other tRNA loci might
be prone to produce functional tRF-1. A population of small RNAs is actively produced
in Trypanosoma cruzi [52], and their production was found to increase under conditions of
nutritional stress. This population is preferentially restricted to specific isoacceptors and to
the 5’ halves of mature tRNAs. We also have identified intermediate products of cleavage
tRNA as previously reported for stress conditions or/and some other biological pathway
[105, 178, 179, 190, 76, 66, 19, 10]. These products have been reported as stable products
opposite to the rapid degradation of preexisting Valine tRNA reported by [7]. However still
rest to identify many pathways related to both tRNA processing and degradation functions
as was mentioned above.

4.5 Conclusions

After mapping short read data to tRNAs, merging consecutive reads to blocks, normalizing
these blocks based on a common system for tRNAs, we were able to show that our block
patterns are characteristic for some tRNA families within one species and even conserved
between species. Furthermore we present an classification approach based on block patterns
descriptors, in order to build a tree that shows which tRNA families are similar.

In agreement with previous classification system [95] our survey shows that HTS block
patterns bear the potential to greatly improve the identification of tRNA-derived small
RNAs from whole transcriptome data. From the analysis of the global expression profile
three series of tRFs (tRNA-derived RNA fragments) have been detected: tRF-5, tRF-3
and tRF-1 in agreement with previous results. These small RNAs were reported as the
second most abundant small RNAs (second only to miRNAs). The importance of tRNA-
derived small RNA to the global regulation of RNA silencing through differential Argonaute
association suggests that small RNA-mediated gene regulation may be even more finely
regulated than previously realized [67].
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Chapter 5

Conclusions and outlook

5.1 Conclusions

In this thesis are discussed new findings of three novel aspects of tRNA biology: genome
organization, preliminary transcriptome data analysis, and the classification of a novel class
of tRNA-derived small RNAs from transcriptome data.

New aspect about the tRNA genomic organization were widely dicussed. In our anal-
ysis, we focus not only on the number of tRNA genes, but also on their relative genomic
locations, and in particular on the formation of tDNA clusters. Surprisingly, we found no
distinctive clade-specific features or large scale trends, with the exception of the rather
straightforward observation that the larger metazoan genomes typically tend to harbour
large numbers of tDNAs. In some species, large clusters of tDNAs occur and we discussed
here that this phenomenon is not restricted to a particular clade of protists but rather
appears independently in many times throughout eukaryotes.

In most eukaryotes, tRNAs are multi-copy genes with little or no distinction between
paralogs so that orthology is hard to establish, in particular in the presence of tRNA gene
clusters. As a consequence, the evolution of genomic tRNA arrangements is non-trivial to
study over larger time-scales. Upper bounds on syntenic conservation can be estimated,
however, by considering small sets of flanking protein coding genes for which homology
information can be retrieved from existing annotation. We found that tRNAs change
their genomic location at time-scales comparable to mutation rates: syntenic conservation
fades at roughly the same evolutionary distances as sequence conservation in unconstrained
regions.

The absence of large numbers of partially degraded tRNA copies in many of the investi-
gated genomes provides a hint at the mechanisms of tRNA mobility. The data collected here
provide a basis to investigate the connection of of tRNA gene arrangements and genome
organization in general.

Recent development of deep sequencing technologies allows to identify small regulatory
RNAs. Here, we focus on the identification of small ncRNAs. Our transcriptome survey
results also discribe new insights of ncRNAs. The block patterns for the evaluated ncRNAs
show some interesting characteristics. Although miRNA loci accumulate far more reads than
tRNAs and snoRNA loci, the reads are extremely unevenly distributed across the blocks.
For tRNAs we observe series of overlapping blocks that are specific enough to separate this
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class from other classes with high positive predictive values.

Beyond the classification by means of soft computing methods, this survey shows that
HTS block patterns bear the potential to greatly improve and simplify ncRNA annota-
tion. Given the striking relationship of HTS reads and secondary structure for some ncRNA
classes, block patterns may also be used in the future to directly infer secondary struc-
ture properties of non-coding RNAs from transcriptome sequencing data. In this context,
although not shown here, block patterns may also help to identify new classes of RNAs
directly from transcriptome sequencing data.

The analysis of tRNA-derived small RNAs also presents results of tRNA processing pat-
terns not previosly described in a comparative way, neither for tRNA families or comparison
across species. Here, we focused on the identification of small RNA fragments derived from
tRNAs. After mapping transcriptome sequencing data to reference genomes we searched
for specific short read patterns reflecting tRNA processing. In this context, a common
tRNA coordinate system based on conservation and secondary information has been de-
vised. That allows a vector representation of processing products and thus a comparison of
different tRNAs. We report patterns of tRNA processing that seem to be conserved across
species. The analysis suggests that every tRNA has a specific pattern and thus undergoes
a characteristic maturation. It remains to be clarified how these tRNA shreds are processed
and if they have any functional implications.

5.2 Outlook

tRNA genomic organization The genomic organization of tRNAs shows complex lineage-
specific patterns characterized by and extensive variability that is in striking contrast to the
extreme levels of sequence-conservation of the tRNA genes themselves. Our comprehen-
sive analysis of Eukaroyotic tRNA distributions provides a basis for further studies into the
interplay of tRNA gene arrangements and genome organization in general.

tRNA-derived small RNA fragments To compare the block patterns of tRNA-derived
small RNAs, we plan to define a greedy alignment model. We aim at to use δ as a distance
function between blocks δ(B′, B′′) = |b′ − b′′|+ |e′ − e′′|+ q|logh′ − logh′′| where b is the
start position of the common tRNA coordinate system, e the end position, h the fraction
of reads in a particular block and q a scaling factor for expresion of each block. However
using the definiton above, blocks may be cross aligned. We then greedily exclude a block
or keep the block when we move from the left l to right r.

To extract a matching between the blocks of the two loci T by simply greedily choosing
the pair with minimal δ(B′, B′′), removing B′ and B′′ from the list and repeating the
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procedure. Sum up the contributions for the individual pairs of blocks. For any left-overs
just use a fixed extra penalty.

T1 T2 T3 T4
T1 ∆11

T2 ∆21 ∆22

T3 · · · · · · · · · · · ·
T4 ∆m1 ∆m2 · · · ∆mn

→

Since the steps described above give us a distance measure ∆(T’,T”) between any two
tRNAs T’ and T” now we plan to use this matriz distance to cluster the tRNA-short-read-
block patterns for each species, and also for the entire dataset of a few different species.

In the future we want to present a way of how these block patterns can be aligned, in
order to build a tree that shows insight which tRNA superfamilies are similar under this
criteria.
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B. Fraction of tDNAs in clustersA. Distribution of tRNA gene and tRNA pseudogenes

Natural logarithm of the total of
tRNA pseudogenes

tRNA genes

Homogeneous clusters

Hetorogeneous clusters

Not in clusters

C.Fraction of homogeneous pairs C’.Fraction of heterogeneous pairs

In D and D' and E and E' holds the same rules as
C and C' but the raw data is the result of filtering
tRNA genes or tRNA pseudogenes respectively
D and D' fraction for pairs of tRNA pseudogenes
and E and E' fraction for tRNA genes.
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Appendix C

Species Counts and fraction of Cluster and cluster structure

Total Pse. tRNA GS O. R. P Ho++ Ho+- Ho-+ He++ He+- He-+ RHo++ RHo+- RHo-+ RHe++ RHe+- R He-+

Teleosts

Danio rerio 25194 9986 15208 1.48×109 14667 679.69 0 4994 105 25 7994 795 754 26.17 12.77 12.77 313.72 157.12 157.13
Tetraodon nigroviridis 707 154 553 3.67×108 117 1.95 0 60 2 4 38 5 8 0.04 0.02 0.02 0.94 0.47 0.47

Takifugu rubripes 716 131 585 3.93×108 131 1.96 0 82 7 4 31 4 3 0.05 0.02 0.02 0.93 0.46 0.46
Gasterosteus aculeatus 4046 1274 2772 4.62×108 3144 57.18 0 1982 4 1 1078 39 40 3.05 1.32 1.32 25.58 12.97 12.95

Oryzias latipes 4695 3919 776 8.69×108 286 35.41 0 158 8 0 72 25 23 4.38 2.19 2.19 13.32 6.67 6.67

Mammalians

Ornithorhynchus anatinus 206915 203073 3842 2.01×109 27015 25008.22 0 8227 1484 2396 9446 2090 3372 4951.19 2475.69 2475.35 7552.34 3777.16 3776.48
Monodelphis domestica 36542 35408 1134 3.61×109 7402 914.11 0 99 34 23 7169 36 41 121.01 60.58 60.49 336.05 167.92 168.05
Dasypus novemcinctus 137797 93845 43952 4.82×109 7918 11498.56 1 1741 192 448 3849 607 1081 2447.66 642.51 643.47 5089.8 1337.31 1337.8
Oryctolagus cuniculus 7324 6466 858 3.47×109 118 37.15 0 11 3 2 63 9 30 5.8 2.9 2.9 12.77 6.39 6.39

Mus muscullus 26264 23401 2863 2.72×109 1001 425.51 0 250 78 75 343 122 133 77.96 38.99 38.97 134.86 67.37 67.35
Rattus norvegicus 172474 145265 27209 2.72×109 28198 16148.13 0 3512 929 1022 13927 4303 4505 1689.01 844.74 844.69 6385.04 3191.61 3193.04
Echinops telfairi 3426 2255 1171 3.83×109 49 9.35 0 4 1 1 29 6 8 0.38 0.19 0.19 4.3 2.15 2.15
Canis familiaris 88179 71169 17010 2.53×109 4858 4271.27 0 426 157 178 2332 829 936 339.71 169.5 169.75 1796.13 898.29 897.88

Felis catus 117583 59100 58483 4.06×109 8792 11816.7 1 1604 246 234 4808 886 1014 1435.56 717.16 717.98 4473.48 2237.22 2235.3
Bos taurus 225600 190329 35271 2.92×109 28452 22790.52 0 6151 697 876 12716 3721 4291 2125.85 1063.02 1063.46 9269.66 4634.56 4633.98

Equus caballus 2656 1752 904 2.47×109 72 4.42 0 7 5 2 32 9 17 0.4 0.2 0.2 1.81 0.9 0.9
Loxodonta africana 57804 42827 14977 4.18×109 1645 3553.2 1 204 70 85 751 207 328 387.44 193.65 193.96 1389.3 694.93 693.93
Otolemur garnettii 45225 43155 2070 3.43×109 1364 1285.4 0 531 133 162 314 101 123 394.91 197.63 197.6 247.71 123.82 123.73
Microcebus murinus 354 55 299 2.91×109 42 0.06 0 4 2 0 23 2 11 0 0 0 0.03 0.01 0.01

Macaca mulata 706 116 590 3.10×109 168 0.23 0 67 4 2 70 13 12 0 0 0 0.11 0.06 0.06
Pongo pygmaeus 659 119 540 3.44×109 83 0.28 0 9 5 3 37 14 15 0.01 0 0 0.13 0.07 0.07

Gorilla gorilla 409 64 345 2.34×109 40 0.08 0 3 1 0 23 6 7 0 0 0 0.04 0.02 0.02
Pan troglodytes 643 111 532 3.52×109 78 0.25 0 9 6 1 35 13 14 0.01 0 0 0.12 0.06 0.06
Homo sapiens 663 75 588 3.67×109 97 0.27 0 8 5 2 45 16 21 0.01 0 0 0.13 0.07 0.06

Table 5.1: Summary of counts and fractions of Clusters in Teleosts and Mammalian species. Pseu: tRNA pseudogenes, GS: genome size,
O: Observed pairs, R: pairs of the random simulation, P: p-value, Homogeneous configurations and He: Heteorgeneous configurations,
++: →→, +-: →←, and -+: ←→
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CHAPTER 5. CONCLUSIONS AND OUTLOOK

Appendix D

100

101

102

 0  5  10  15  20  25  30

lo
g(

fr
eq

.) C. intestinalis

100

101

102

103

 0  50  100  150  200  250  300

lo
g(

fr
eq

) N. vectensis

100

101

102

103

 0  5  10  15  20  25  30  35  40  45

lo
g(

fr
eq

) X. tropicalis

100

101

102

 0  2  4  6  8  10  12  14  16  18

lo
g(

fr
eq

) L. gigantea

100

101

102

103

 0  50  100  150  200  250

lo
g(

fr
eq

) D. rerio

100

101

 0  10  20  30  40  50  60  70  80

lo
g(

fr
eq

) A. thaliana

100

101

102

103

 0  50  100  150  200  250

lo
g(

fr
eq

)

Cluster size

C. elegans

100

101

102

 0  10  20  30  40  50  60  70  80
lo

g(
fr

eq
)

Cluster size

D. melanogaster

Distribution of tRNA clusters sizes for several species for which multiple sequenced genomes
are available as well as some examples of individual genomes. Most tRNA clusters are small,
and the frequency of long clusters rapidly decreases.

74



List of Figures

1.1 tRNA secondary structure . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Stretch of the miR916 from C. reinhardtii . . . . . . . . . . . . . . . . . . 13

2.1 Summary of tRNA gene and tDNA statistics . . . . . . . . . . . . . . . . 21
2.2 Correlation of the number of tDNAs with genome size. . . . . . . . . . . 22
2.3 Distribution of tDNA clusters sizes for several lineages . . . . . . . . . . . 23
2.4 Summary of tRNA gene and tDNA statistics . . . . . . . . . . . . . . . . 24
2.5 Cumulative distribution of tDNA pairs distances . . . . . . . . . . . . . . 25
2.6 Example of heterogeneous tDNA cluster . . . . . . . . . . . . . . . . . . 26
2.7 Relative abundance tRNA isoacceptor families located consecutively . . . . 26
2.8 Correlation of syntenic conservation of tDNA loci with genomic distance. . 30
2.9 Comparison of the tRNA complement of Platyhelminth . . . . . . . . . . . 33

3.1 Cluster detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Distribution of frequency of clusters by size, distance and length. . . . . . 42
3.3 Non-coding RNAs exhibit specific block patterns . . . . . . . . . . . . . . 44
3.4 Base pairing probabilities of reads mapped to ncRNA loci . . . . . . . . . 45
3.5 HTS data reflects structural properties of ncRNAs . . . . . . . . . . . . . 46
3.6 Box plots for 8 different features selected to train the random forest classifier 47
3.7 Parallel coordinate displays on the Random Forest approach . . . . . . . . 48
3.8 Heatmaps used to represent the votes for each class and proximity matrices 49
3.9 Short reads are produced from a wide variety of structured ncRNAs. . . . . 50
3.10 Decomposition of the cluster of reads at the mir-125b-1 . . . . . . . . . . 51

4.1 Common system definition for tRNAs . . . . . . . . . . . . . . . . . . . . 56
4.2 Block expression visualization of Asparagine tRNAsuperfamily1 for Chicken 57
4.3 BLASTClust output example . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Different proccesing patterns for some tRNAsuperfamilies . . . . . . . . . 60
4.5 Block expression distribution for all the merged blocks . . . . . . . . . . . 61
4.6 Block expression distribution for merged blocks . . . . . . . . . . . . . . . 62
4.7 Hierarchical cluster analysis with p-values for block patterns (rat) . . . . . 64
4.8 Hierarchical cluster analysis with p-values for block patterns (chicken) . . . 65
4.9 Hierarchical cluster analysis with p-values for block patterns (dog) . . . . . 66

75



List of Tables

1.1 Identified tRNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Comparison of observed and expected number of tRNA pairs . . . . . . . . 27
2.2 Fisher test results for Teleosteos species . . . . . . . . . . . . . . . . . . . 28
2.3 Quantity structure of linkage analysis results in vertebrates . . . . . . . . . 29
2.4 Syntenic conservation of tDNAs . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Fractions of clusters and size of the cluster . . . . . . . . . . . . . . . . . 42
3.2 Fractions of Clusters and their distance locations . . . . . . . . . . . . . . 42
3.3 Fraction of Clusters length . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 In total 434 of 852 clusters were found within regions of annotated ncRNA

loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Positive predictive values (PPV) and recall rates for training sets . . . . . 48

4.1 Counts of tRNAscan-SE predictions and fraction of mapped tRNAs . . . . 58

5.1 Summary of counts and fractions of Clusters in Teleosts and Mammalian . 73

76



Bibliography

[1] The R project for statistical computing. http://www.r-project.org/.

[2] Random forests. http://www.stat.berkeley.edu/∼breiman/RandomForests/.

[3] Random forests weka. Weka 3.5, University of Waikato,
http://www.cs.waikato.ac.nz/ml/weka/.

[4] Supplementary data in machine-readable form, 2009.
http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/09-050.

[5] A. Admire, L. Shanks, N. Danz, M. Wang, U. Weier, W. Stevens, E. Hunt, and
T. Weinert. Cycles of chromosome instability are associated with a fragile site and
are increased by defects in DNA replication and checkpoint controls in yeast. Genes

& Dev., 20:159–173, 2006.

[6] N. Akimitsu. Messenger RNA surveillance systems monitoring proper translation
termination. J Biochem, 143(1):1–8, 2008.

[7] A. Alexandrov, I. Chernyakov, W. Gu, S. L. Hiley, T. R. Hughes, E. J. Grayhack, and
E. M. Phizicky. Rapid tRNA decay can result from lack of nonessential modifications.
Mol. Cell, 21:87–96, Jan 2006.
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[156] K Sheppard, P M Akochy, and D. Söll. Assays for transfer RNA-dependent amino
acid biosynthesis. Methods, 44:139–145, 2008.

[157] W. Shi, D. Hendrix, M. Levine, and B. Haley. A distinct class of small RNAs arises
from pre-miRNA-proximal regions in a simple chordate. Nat. Struct. Mol. Biol.,
16:183–189, Feb 2009.

[158] W. Shi, D. Hendrix, M. Levine, and B. Haley. A distinct class of small RNAs arises
from pre-miRNA-proximal regions in a simple chordate. Nat Struct Mol Biol., 16:183–
189, 2009.

[159] A. F. A. Smit, R. Hubley, and P. Green. RepeatMasker. version, open-3.2.5 [RMLib:
20080611], http://www.repeatmasker.org/.

[160] M.S. Smith.T.F., Waterman and W.M. Fitch. Comparative biosequence metrics. J.

Mol. Biol, 18, 1981.

[161] L D Spotila, H Hirai, D M Rekosh, and P T Lo Verde. A retroposon-like short repet-
itive DNA element in the genome of the human blood fluke, Schistosoma mansoni.
Chromosoma, 97:421–428, 1989.

[162] P. F. Stadler, J. J. Chen, J. Hackermuller, S. Hoffmann, F. Horn, P. Khaitovich,
A. K. Kretzschmar, A. Mosig, S. J. Prohaska, X. Qi, K. Schutt, and K. Ullmann.
Evolution of vault RNAs. Mol. Biol. Evol., 26:1975–1991, Sep 2009.

[163] A. Stark, N. Bushati, C. H. Jan, P. Kheradpour, E. Hodges, J. Brennecke, D. P.
Bartel, S. M. Cohen, and M. Kellis. A single Hox locus in Drosophila produces
functional microRNAs from opposite DNA strands. Genes Dev., 22:8–13, Jan 2008.

88



BIBLIOGRAPHY

[164] S. Steinberg, A. Misch, and M. Sprinzl. Compilation of trna sequences and sequences
of trna genes. Nucl. Acids Res, 21:3011–3015, 1993.

[165] R. Strausberg and S. Levy. Promoting transcriptome diversity. Genome Res,
17(7):965–8, 2007.

[166] J Sugahara, K Kikuta, K Fujishima, N Yachie, M Tomita, and A. Kanai. Compre-
hensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the
order thermoproteales. Mol Biol Evol., 25:2709–2716, 2008.
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