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ABSTRACT 
 

In recent years we see the continuing growth of the Internet. Not only is the number 

of internet users and websites increasing, but also the amount of information on the 

individual websites. Many websites are concerned with presenting their often very 

semantically versatile information in a concise and efficient way. This is especially true for 

large E-Commerce websites with large amount of product information. A frequently used 

technique to improve the presentation of data and navigation in these data is web 

recommendations. Web recommendations are hyperlinks, often augmented with short 

descriptive text and/or picture, which are shown on the website in addition to the usual 

content in order to lead users to potentially interesting information. The motivation for the 

use of web recommendations comes from both internet users and website owners. Internet 

users want to see interesting information; the website owners want their information to 

reach users quickly and to the full extent. Owners of commercial websites also employ 

web recommendations in order to sell additional products or services to the users and thus 

increase the sales turnover of their websites.  

Many algorithms have been developed in order to generate such potentially 

interesting web recommendations automatically. These approaches are based on different 

intuitions about what might be interesting for the given user in a given situation. In this 

dissertation we study these approaches and show that each of them has its own specific 

drawbacks. To overcome these drawbacks, we present a combined adaptive algorithm, 

which gathers potential recommendations from different recommendation algorithms, 

presents them to users and refines them based on whether the users accept them or not. We 

employ ontology graphs as a convenient way of storing highly diverse information about 

the website which is required to make a decision on which recommendations should be 

presented. We have implemented and evaluated our architecture on two real-world 

websites, one of which is commercial and another non-commercial. In this dissertation we 

further present a comparative analysis of our approach and several other recommendation 

approaches using these real-world evaluations and show, that our algorithm is more 

successful in attracting user interest in form of additional clicks and purchases.  

Based on the gained experience, we extend our approach to the case, when the data 

presented on a website are integrated from several data sources. This is a common case for 

large E-Commerce websites. In this setting we recognize an additional problem – the 

problem of data integration: we need to integrate both product data and additional semantic 

information, which we also represent as ontology graphs. We give special attention to the 

matching of the ontology graphs, since this problem needs to be solved for in order to 

present web recommendations. The integrated setting also gives us the possibility to 

explore some new types of recommendations. As a proof of concept, we have implemented 

an integrated E-Commerce web portal, which gathers data from several internet shops, 

represents them in integrated form and helps the web users to navigate through these data 

by presenting web recommendations.  
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Summary 
 

 

 

 

In recent years the Internet has continued its rapid growth. This growth involves not 

only the increase in the number of internet users and websites, but also in the increase of 

the amount of information on the individual websites. Many modern middle-sized to large 

websites become concerned with presenting their often semantically very versatile 

information in a concise and efficient way. One of the techniques which are often used to 

improve the presentation of the data and navigation in these data is the technique called 

“web recommendations”. Web recommendations are hyperlinks, often augmented with 

short descriptive text and/or picture, which are shown on the website in addition to the 

original content with the intention to lead the user to interesting information. The 

motivation for use of web recommendations comes both from internet users and from 

website owners. Internet users want to see interesting information; the website owners 

want their information to reach the user quickly. The owners of commercial websites also 

employ web recommendations in order to sell additional products or services to the users 

and thus increase the sales turnover of their websites. Probably the best-known example of 

such usage is the website http://www.amazon.com, which heavily relies on web 

recommendations in order to present its products to the users. Another example which 

shows the importance of web recommendations is the website www.netflix.com, owned by 

one of the largest US-based online movie rental companies Netflix. In 2006, Netflix started 

a contest which offers a prize of one million US dollars to the developers of a 

recommendation system which could outperform Netflix‟s own recommendation system 

Cinematch by 10% in terms of prediction accuracy
1
. 

A significant number of algorithms has been developed in order to generate 

potentially interesting web recommendations automatically. These approaches are based on 

different intuitions about what might be interesting for the given user in a given situation. 

The main drawback of such approaches is the fact that the intuitions may or may not be 

relevant in some particular situation and that we are often unable to precisely judge how 

good one or another intuition is before the recommendation is presented to the user. To 

overcome this drawback, in Part II of the thesis we present a combined adaptive approach, 

which gathers potential recommendations from the existing recommendation algorithms, 

presents them to users and refines them based on whether the users accept them or not. The 

combined adaptive approach allows us to optimize the selection of interesting 

recommendations in the long run. We have investigated different algorithms for the 

                                                 
1
 For additional information please see http://www.netflixprize.com/. Unfortunately, the system presented in 

this thesis is not suitable for use with data available from Netflix, since these data do not contain user 

feedback, which is required by our system as described in Part II of this thesis.  

http://www.amazon.com/
http://www.netflix.com/
http://www.netflixprize.com/
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optimization of the recommendations in a simulated environment. Furthermore, we have 

implemented and evaluated our recommendation architecture on two real-world websites, 

one of which is commercial and another non-commercial. We employ ontology graphs as a 

convenient way of storing highly diverse information about the website which is required 

to make a decision on which recommendations should be presented. In this thesis we 

present a comparative analysis of our approach and several other recommendation 

approaches using real-world evaluations. We show that our algorithm is more successful in 

attracting user interest in form of additional clicks and purchases.  

Based on the gained experience, we extend our approach to the case when the data 

presented on the website are integrated from several data sources. This is a common case 

for modern large e-commerce websites. We handle this situation in Part III of this thesis. In 

this setting we recognize an additional problem – the problem of data integration: we need 

to integrate product data and additional semantic information, which we also represent as 

ontology graphs. Here, another beneficial function of web recommendations comes to 

light. Web recommendations can be used to help integrate the different data sources in one 

interactive website. We pay special attention to the matching of the ontology graphs, since 

this problem needs to be solved in order to present web recommendations. The integrated 

setting also gives us the possibility to explore some new types of recommendations. As a 

proof of concept, we have implemented an integrated e-commerce web portal which 

gathers data from several internet shops, represents them in an integrated form and helps 

the user to navigate through these data by presenting web recommendations. 
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1. INTRODUCTION  

In recent years web recommendations have become a technology familiar to most 

internet users. The usage of web recommendations has become particularly widespread on 

the e-commerce websites, such as internet shops. One well known example of use of a 

recommendation system is the online store Amazon.com. Such e-commerce websites use 

web recommendations to increase usability, customer satisfaction and commercial profit.  

The schema of interaction between the user, the website and the recommendation system in 

the general case is shown in Figure 2.1.  

The website shown in Figure 2.1 can be either a collection of HTML pages residing 

on a web server or a web application written in some programming language which serves 

content in form of HTML pages. The usage of web recommendations usually assumes that 

the technology employed on the web server allows dynamic generation of HTML content. 

The recommendation system obtains information from the website. This information can 

include data about different aspects of the current situation on the website and of the past 

situations, which are deemed to be relevant to the task of providing web recommendations. 

Based on this information, the recommendation system generates a set of so-called web 

recommendations. Each recommendation is usually represented as a hyperlink, 

accompanied by descriptive information. These recommendations are shown in specially 

defined areas on the website, as depicted in Figure 2.1.  

There are recommendation systems which do not follow the general schema shown 

in Figure 2.1. Examples of such systems are WebWatcher [JFM97] which operates as a 

proxy between the browser and the website and Letizia [Lieb95] where the presentation of 

recommendations is 

performed by an add-on to 

the browser. Such systems 

are however rare and have 

not attained recognition in 

commercial web 

applications. 

A number of 

algorithms were developed 

for generating web 

recommendations by 

applying different statistical 

or data mining approaches to 

some available information, 

for example on 

characteristics of the current 

page, product, web user, 

buying history etc. 

Figure 2.1. Schematic representation of the interaction 

between a website, a recommendation system and a web 

user  
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[Burk02][JKR02] However, so far no single algorithm uses the benefits of all the available 

knowledge sources and no single algorithm shows clear superiority over all others. 

Therefore, the need for hybrid approaches which combine the benefits of multiple 

algorithms has been recognized [Burk02]. 

In this part of the thesis, we present a new approach to creating a web 

recommendation system capable of combining many algorithms for generating 

recommendations (recommendation generators or simply recommenders). Our approach 

utilizes a central recommendation database for storing the recommendations coming from 

different recommendation generators and applies machine learning techniques to 

continuously optimize the stored recommendations. Optimization of the recommendations 

is based on how “useful” they are to users and to the website, i.e. how willingly the users 

click on them and how much profit they bring. The incentive for our optimization approach 

was the observation, that the popularity and perceived relevance of individual 

recommendations are not always well predicted by the recommendation generators. 

The information about the website and the users is represented in the 

recommendation database in the form of ontology graphs. This allows us to semantically 

enrich the recommendations and bring in the knowledge from the additional sources, for 

example geographical databases or publicly available ontologies. It is also practicable for 

the adaptation of the system to the different types of websites. 

The preliminary version of the architecture presented here was sketched in [GR04] 

and further developed in [GR05]. In this thesis we describe the architecture of the system, 

the prototype implementations of the system and present the evaluation results. 

The focus of our work lies on providing a generic recommendation system 

architecture for commercial websites, designed in particular for usage with internet shops 

but also suitable for other types of websites. 

We have implemented the prototype of our system on two real-life websites: a 

website of the Database Group, University of Leipzig http://dbs.uni-leipzig.de and an 

internet software shop http://www.softunity.com. The screenshots of the web pages 

presenting recommendations are given in Appendix 1. We have also performed 

experiments in a simulated environment modeled after http://www.softunity.com. To 

denote the origin of the examples and notions in this part of the thesis we mark them with 

EDU (educational) for the Database Group website, EC (e-commerce) for 

www.softunity.com or SIM for simulation. The detailed descriptions of our prototypes can 

be found in Chapter 4. We also use the examples taken from our prototypes throughout this 

part of the thesis to illustrate the incentives for our architecture. 

The main contributions of the research work described in this part of the thesis are: 

 The generic semantically-enriched recommendation architecture for  

e-commerce websites capable of combining different recommendation 

approaches. 

 The online optimization algorithm for web recommendations based on user 

feedback. 

 The evaluation of the architecture and the algorithm for real-life environments. 

http://dbs.uni-leipzig.de/
http://www.softunity.com/
http://www.softunity.com/
http://www.softunity.com/
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In the next chapter we explain the architecture of the system and its main 

components. We also describe some practice-driven incentives for choosing the described 

architecture, but leave the discussion in this chapter largely generic. The optimization 

techniques are presented in Chapter 3. In Chapter 4 we describe the implementation of our 

prototypes and the correspondence between the generic architecture and the design of the 

prototypes. In Chapter 5 we present the results of the experiments performed on real-life 

prototypes. Chapter 6 contains evaluations of different architectural decisions and 

optimization approaches obtained in the simulated environment. In Chapter 7 we provide 

an overview of the related work and discuss some selected approaches in more detail. 

Chapter 8 summarizes this part of the thesis. 
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2. THE GENERIC RECOMMENDATION SYSTEM ARCHITECTURE  

In this chapter we propose and discuss the generic recommendation system 

architecture. We give an overview of the architecture and some relevant notions in Section 

2.1. In the subsequent sections we discuss the selection of recommendations using the 

ontology graphs (Section 2.2) and the generation of the recommendation rules (Section 

2.3).  

2.1 Overview 

The architecture of our recommendation system is shown in Figure 2.2. In this 

section we briefly describe each of the components depicted in Figure 2.2. More detailed 

descriptions follow in the subsequent sections. The website interacts with the web user, 

presents recommendations and gathers the feedback. The web data warehouse stores 

information about the content of the website (e.g., products and product catalog, HTML 

pages, etc.), users, and the usage logs generated by the web server or the application server. 

It serves as an information source for the recommendation generators and ontology 

generators and allows evaluations of the user behavior and the efficiency of 

recommendations using OLAP tools. The recommendation database stores the semantic 

information in form of ontology graphs and the recommendations in form of 

recommendation rules, which are described in the next section. The set of ontology 

generators is responsible for generating the ontology graphs. The set of recommendation 

generators generates the recommendations using the data from the web data warehouse. 

The combination of different recommendation generators which use different algorithms 

for generating recommendations makes our system a hybrid recommendation system. The 

combination of different recommendation generators is applied to avoid the drawbacks 

which most popular recommendation algorithms are known to have when used alone. The 

recommendation rules specify, which content items should be recommended in which 

situation, the situation being expressed using concepts contained in the ontology graphs. 

The ontology graphs and recommendation rules can also be created and edited by a human 

editor. The optimizer refines the recommendation database based on the feedback obtained 

from the website using machine learning. The refinement is done by adjusting the weights 

of the recommendation rules according to an optimization algorithm. The study of different 

optimization algorithms is an important aspect which is addressed in detail in Chapters 3, 5 

and 6. 

In our recommendation system we distinguish the generation loop and the 

optimization loop. The generation loop is represented by a larger ellipse in the background 

of Figure 2.2. It includes the website, the web data warehouse, the ontology and 

recommendation generators and the recommendation database. The generation loop is 

executed at regular intervals of time. It involves updating the web data warehouse using 
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Figure 2.2. Generic recommendation system architecture 
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the data from the website and subsequent generating/updating of the ontology and the 

recommendation rules utilizing the information on the content and recent usage 

information from the web data warehouse. The optimization loop is executed continuously. 

It selects and presents the recommendations from the recommendation database. After the 

presentation system gathers the user feedback, i.e. user reactions to presented 

recommendations. The optimizer uses this information to refine the recommendations in 

the database and to influence the selection of future recommendations. The detailed 

descriptions of the components of the generation loop are presented further on in this 

chapter. The discussion of the optimization loop is presented in Chapter 3. 

The online, i.e. real-time optimization of the recommendations is a distinctive 

feature of our architecture. Although a number of recommendation system architectures 

adjust or update their recommendation model at regular intervals of time, for example 

every night, we argue that online optimization and the resulting quicker reaction to the 

changes in the user interest can be significantly more beneficial in many cases. The direct 

incentive for implementing the online optimization was the buyer behavior observed on the 

e-commerce website http://www.softunity.com (EC) which we used for one of our 

prototypes. The buyer activity on this website is distributed very unevenly in time, 

featuring some dramatic activity peaks from time to time. This can be attributed to the fact, 

that many of the computer games and software products offered on the website are sequels 

of previously popular computer games and products. The release of such sequels is long 

awaited by the prospective buyers and the first release day usually brings overwhelmingly 

http://www.softunity.com/
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successful sales. For several successful products on the website the revenue generated on 

the first release day constituted up to 75% of the sales in the subsequent 12 months. In fact, 

30% of the revenue generated by the website is generated by the products on their 

respective release day. In contrast, the second and third day bring only 1% of the revenue 

each. So, it is very important to optimize recommendations on http://www.softunity.com in 

terms of hours and minutes, for the most popular products even in terms of seconds. More 

information about the website http://www.softunity.com can be found in Section 4.1. 

An even stronger incentive for the online optimization can be assumed for news 

websites. Indeed, although the content of news articles can stay on such websites for years, 

the peak of the interest is usually the first day or even several hours. The recommendation 

systems on such websites should therefore be able to learn the user interests and optimize 

the presented recommendations within this time span as well.  

Since we intend to create a generic recommendation system architecture which can 

be used for many types of websites, we pay attention to separating the components which 

need to be implemented specifically for each website from the components which stay the 

same for all websites. So, the web data warehouse, the ontology generators and 

recommendation generators depend on the concrete website, since their implementation 

depends on the entities and entity attributes which are specific to each website (for 

example, software products or clothes or news articles). The recommendation rule database 

is generic and its structure can remain the same for all websites. The optimization loop is 

also generic, but can be configured via a set of parameters described in Chapter 3  to suit 

the needs of the concrete website. 

The ontology graphs give our architecture the independence from the concrete 

website and the possibility to encompass the recommendations coming different 

recommendation algorithms, as discussed in the next section.  

Some important notions which we use to describe different aspects of our 

recommendation system include web user, item, page view, session, acceptance rate, 

session acceptance rate
2
. Web user is a human which uses a web browser to access the 

website. Sometimes the web users are required or allowed to register on the website and 

enter some descriptive information about themselves. More often, however, web users 

remain anonymous and the information about them is obtained indirectly. The web users 

usually view one or more pages on the website. During each such page view the web user‟s 

browser sends a series of HTTP requests
3
 to the website. Each request contains the 

information about the IP address of the user, the used browser and some other descriptive 

information.  A series of page views coming from the same user in a limited interval of 

time is called session. Sometimes websites let users log in and log out on the website. 

Determining the user session in such cases is straightforward. More often, however, there‟s 

no possibility for the user to explicitly end the session and the end of the session has to be 

determined by timeout, i.e. time interval during which no HTTP requests are obtained from 

                                                 
2
 Definitions of some additional terms which are used to describe web activity can be found here: 

http://www.w3.org/1999/05/WCA-terms/ 
3
 Protocol HTTP is specified in RFC2616 ( ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt ) 

http://www.softunity.com/
http://www.softunity.com/
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
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the web user‟s browser.  The page views can contain presentation of the recommendations 

as illustrated in Figure 2.1. The user may click on such recommendation, i.e. accept it. The 

ratio of the number of times a recommendation has been accepted to the number of times a 

recommendation has been presented is called acceptance rate of the recommendation. 

Session acceptance rate is a ratio of the number of the sessions in which a 

recommendation was accepted to the number of sessions in which it was presented. We 

can speak about the acceptance rate or session acceptance rate for a single 

recommendation, for  the entire recommendation system or for a group of 

recommendations unified by some common characteristic such as the recommendation 

algorithm used to generate them or the user group for which these recommendations are 

relevant.  

2.2 Recommendation Selection Using Ontology Graphs 

The information which the recommendation system needs in order to provide 

relevant recommendations can be manifold and complex. We do not deem it feasible to 

specifically name all possible reasons and consideration which can influence the 

recommendation decisions in different web applications. Obviously, an e-commerce 

website which sells automobiles would operate in different concept space when thinking 

about its users and its products than a website which sells clothing. A news website and an 

educational would also need their own concept spaces different from e-commerce 

websites. Striving to create generic recommendation system architecture, we have decided 

to introduce a special semantic layer between the website and our recommendation system. 

This architectural decision answers the following needs: 

 To be generic, our architecture needs to be isolated from the implementation details 

of a given website.  

 The concept spaces which contain knowledge about content, users, time and other 

relevant information often exhibit a complex structure. This complex structure 

needs to be represented in a way which allows the recommendation system to 

reason about it.  

 The human editors of the website need a human-friendly view of the concepts 

which influence the presentation of recommendations. Very often the owners of the 

website need to impose business rules onto the recommendation system. The 

recommendation system needs to be able to represent these business rules internally 

in a way understandable both for the recommendation system and for humans.  

 In cases when the recommendation system is unable to find recommendations for 

specific concepts on the website, it may be a meaningful decision to search for 

some similar, related or more general concept and present the recommendations 

relevant to these concepts.  

An additional discussion about the role of ontologies in recommender systems and 

personalization can be found in [BMC+06]. 
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In our system this semantic layer is represented using so-called ontology graphs. 

The ontology graphs are directed acyclic graphs. The concepts are represented with nodes 

and provided with labels.  The edges can be provided with labels and weights. In the 

general case, we assume that three ontology graphs are relevant for making 

recommendations, one graph respectively for content, users and time. In some cases more 

or fewer graphs may be adequate. So, in our prototype EC we use three graphs and in the 

prototype EDU two graphs, as discussed in Section 4.2.2. 

The ontology graphs are automatically generated by ontology generators and can be 

edited manually by the editors of the website. The ontology graphs for the website content 

can often be extracted with ease, since the navigation on a website is usually hierarchically 

structured. 

Figure 2.3 shows the process of selection of recommendations using ontology 

graphs. To request recommendations to present, the website specifies the current website 

context and the desired number of recommendations. The website context is a set of 

parameters, which characterize the currently viewed website content, current web user and 

present point in time. An example of a website context is given below:  

WebsiteContext{ ProductID=”ECD00345”; UserCountry=”DE”;  

UserOperatingSystem=”Windows”; Date =”21.03.2005”;...} (EC). 

Obviously, the choice of suitable parameters in the website context depends on the 

specific website, especially with respect to the current content. 

The recommendation system maps the provided website context into a semantic 

context, which consists of nodes of the three ontology graphs {ContentNodes, UserNodes, 

TimeNodes}. After the semantic context has been determined, our recommendations 

system is using a so-called selection policy to select the recommendations associated with 

the relevant nodes of the ontology graphs for the presentation on the website. This two-step 

selection process aims at supporting the application-oriented recommendation strategies 

and high flexibility. Assigning recommendations to semantic concepts is expected to be 

more stable than assigning them directly to the low-level website contexts whose values 

may change frequently (e.g. due to website restructuring). The selection policies may be as 

simple as selecting recommendations which are directly referencing the given context 

Figure 2.3. Selecting recommendations using semantic context 
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nodes. It is however also possible to do a more complex selection by traversing the 

ontology graphs and taking additional relevant context nodes into consideration. The 

algorithms for more complex selection policies should be tailored to the needs of the 

specific website.  

Figure 2.4 shows an example of an ontology graph for website content. Ontology 

graphs for web users and time are built in a similar way. We use directed edges to point 

from more specific concepts to more general concepts, from subcomponents to aggregated 

components, etc. Recommendations can be assigned to any node in such a graph. 

Highlighted with thick lines in Figure 2.4 is an example of how the semantics stored in the 

ontology graph can be used to search for additional recommendations for Product4. We are 

able to retrieve the recommendations directly for Product4 as well the recommendations 

that are bound to some common property that Product4 possesses (in our case Hardcover) 

and the recommendations to some product catalog topics that Product4 belongs to (History, 

Books).  

The mapping between website and semantic contexts is specified by mapping 

clauses. Mapping clauses are statements written in a simple predicate language which may 

be attached to nodes in the ontology graphs. The predicate language supports logical 

operators (AND, OR, NOT), comparison operators (<, >, =, <>, >=, <=) and the operator 

LIKE, which does string matching with wildcard, similar to the SQL-operator with the 

same name. Some of the nodes in the ontology graphs immediately correspond to a certain 

set of parameters and can be mapped using mapping clauses. Other nodes represent 

abstract notions. Such nodes can be reached only by traversing the ontology graph and 

have no associated mapping clauses. The predicate language is chosen to be compatible to 

SQL in order to be able to implement the mapping of the website context to the semantic 

context as SQL query over a table in a relational database. In combination with indexes 

created on the relevant columns this allows quick mapping even in case of very large 

number of nodes in the ontology graphs.  

Each of the three ontology graphs is mapped separately. In our EC application, the 

ontology graphs are created by ontology generators using the product catalog, common 

properties of products and the business logic of the website. The application EDU uses the 

manually specified website content hierarchy and user groups determined by data mining. 

Most mapping clauses are automatically determined by the ontology generators together 

Figure 2.4. A sample ontology graph for content 

dimension (EC) 
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with the creation of the ontology and simply use an equality operator. Manually specified 

mapping clauses may be more complex. Examples of the mapping clauses are: 

ProductID=”ECD00345” -> ContentNode=1342 (EC) 

UserCountry=”DE”-> UserNode=3 (EC) 

UserDomain LIKE „%.edu‟ OR UserDomain LIKE „%uni-%‟ -> UserNode =2 (EDU) 

The recommendations associated to nodes in the ontology graphs are represented 

by the recommendation rules stored in the recommendation database. The recommendation 

rules have the form: 

RuleContext{Content, User, Time}  ->  RecommendedContent, Weight 

RuleContext refers to nodes in one or several of the three ontology graphs. These 

values can also be set to NULL, denoting that the rule does not depend on the 

corresponding dimension. RecommendedContent is the pointer to the content being 

recommended, e.g. recommended product or URL. The Weight is used as a criterion for 

the selection of the recommendation rules for presentations. 

We have implemented and tested several recommendation selection policies in our 

prototypes. These policies include the default straightforward policy ”direct match” and 

some more complex selection policies which use the additional semantic information 

contained in the ontology graphs. We discuss these policies in Chapter 4 in more detail. 

The ontological structure which we present here can also be used to implement the 

ontology-based policies proposed by other researchers. Some of these ontology-based 

selection techniques are discussed in Section 7.6.  

2.3 Generating Recommendation Rules 

The recommendation rules are generated by the recommendation generators and 

stored in the recommendation database. We think of recommendation generators as 

belonging to the website-specific part of our recommendation architecture. The algorithms 

used in the recommendation generators may be specific for the given website or generic. 

However, even the generic algorithms need tailoring to the data structures and peculiarities 

of the specific website so that the recommendation generators should in our opinion be 

considered in general website-specific.  

The most popular approaches for generating web recommendations are content-

based approaches and approaches based on collaborative filtering.  

The content-based approaches exploit the content of the items to provide 

recommendations. A common example of the content-based approach is the 

recommendation generators based on text similarity between the items. Items with similar 

titles and/or descriptions are assumed to be good recommendations. 

The approaches based on collaborative filtering attempt to match the current user to 

the other users based on the gathered information about the user preferences. The 
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preferences of these other users are then used to generate the recommendations for the 

current user. 

When used alone, each of these algorithms exhibit certain drawbacks. So, the 

collaborative filtering algorithms require statistical information about the items and the 

users to be gathered before the recommendations can be generated. This leads to the so-

called “new user” and “new item” problems, which arise when such information is not yet 

available. Content-based recommendation approaches do not cause the mentioned 

problems. However, they are based on the assumption that the information contained in the 

content of the items is sufficient to generate good recommendation. This assumption may 

or may not be the true depending on the concrete items. Algorithms other than 

collaborative filtering and content-based, for example algorithms based on the domain 

knowledge, usually generate very specific types of recommendations and cannot be used 

alone as well. For more information about the different recommendation algorithms and 

their respective benefits and drawbacks please see the surveys [Burk06], [JKR02], 

[PSF02], [AT05]. By gathering the recommendations generated by different algorithms in 

one recommendation rule database and subsequent optimization of this database we intend 

to combine the benefits and avoid the drawbacks of the different recommendation 

algorithms. 

A recommendation generator may supply an initial weight for every generated 

recommendation rule. The weight of a recommendation rule is a real number in the interval 

[0 .. 1]. If the recommendation generators generate a rule which already exists in the 

recommendation rule table with a different weight, the weight in the recommendation rule 

table takes preference over the weight supplied by the recommendation generators. We 

have explored two approaches to setting the initial weights of the newly generated 

recommendation rules. In the first approach, we simply set all initial weights to zero. The 

second approach uses normalized recommendation generator specific weights or relative 

priorities for the respective contexts. When several recommendation generators generate 

the same recommendation we use the maximum of their weights. The initial weights are 

expected to be relevant primarily for new recommendations since the weights for presented 

recommendations are continuously adapted in the optimization loop. In Chapter 4 we 

discuss the possibility of setting the weights for the new recommendations to stimulate 

their presentation in the initial period. 

The individual recommendation rules may also be easily created, edited and deleted 

by a human editor. Trivial as it may seem, this possibility is very important for the 

operation of the recommendation systems on e-commerce websites. An example of 

situation where lack of such direct control over the presented recommendations has lead to 

a breakdown of the entire recommendation system is presented in [Flyn06]. In this New 

York Times article the author describes an incident with the recommendation system 

deployed at the website of the large US Company Wal-Mart. To commemorate the 

anniversary of Martin Luther King‟s birth, the company has brought out a boxed set of 

movies related to Afro-American themes and presented it in a prominent position on their 

web-site. In addition, the company employed automatic cross-selling recommendation 

system on their website which proposed a number of automatically selected products to be 
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bought together with this special product. Some of the product combinations proposed by 

this recommendation system to the described commemorative movie set have been 

perceived as very offensive by the potential Afro-American customers. According to the 

New York Times article, the entire cross-selling recommendation system on the Wal-Mart 

website had to be taken down. If the recommendation system used by Wal-Mart provided 

the possibility of the manual control of the presented recommendations, the problem would 

have been solved by simply deleting the offending recommendations without the need to 

switch off the entire recommendation system.  
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3. FEEDBACK-BASED OPTIMIZATION 

In the previous chapter we have discussed our approach of generating 

recommendation rules and storing them in the recommendation rules database. The 

recommendation generators provide the recommendation rules basing on different 

assumptions about the interests of the web users, more specifically about the correlation 

between the observable information and the web user preferences. These assumptions may 

or may not be true either in general or for some of the generated recommendations. In 

particular, none of the available single (i.e. non-hybrid) techniques of generating 

recommendations is able to use all possible information that is available. This leads us to a 

suggestion that all available recommendation models are too coarse when being used 

alone.  

We can obtain a more fine-grained recommendation model in our architecture by 

gathering the recommendation rules from different recommendation generators and storing 

them in the central recommendation rule database. However, such recommendation rule 

database contains both the “tops” and the “flops” of any available recommendation 

generator.  Now we can start using the recommendation rules and separate the “tops” from 

the “flops” by observing the user reaction to presenting recommendations. We do this 

using feedback-based optimization. We represent the user feedback in numerical form 

(reward value) and use it for adjusting the weights of the recommendation rules in such a 

way that the total reward is maximized. In this chapter we describe the model which we 

employ for our optimization, the issues which we have to solve in our optimization 

algorithms and the different approaches to solving these problems. 

3.1 Modeling the Problem of Optimizing Web Recommendations as Markov 

Decision Process and Applying Reinforcement Learning 

We model the process of selecting recommendations for presentation as a Markov 

Decision Process (MDP). The Markov Decision Process is a generic model of a sequential 

decision process which serves as a foundation for a large number of methods for solving 

optimization problems. Markov Decision Process assumes the existence of an agent which 

interacts with the environment. At any moment, the agent is deemed to be in some state s 

which belongs to the set of all possible states S. In any state s the agent may perform an 

action a from the set of possible actions A. After performing the action a, the agent‟s state 

may change from state s to state s´∈ S. The agent may also receive a feedback from the 

environment, feedback being expressed numerically.  Several terms are used in the MDP 

literature to describe the numeric value of feedback, such as “reward”, “cost”, “penalty” 

(cost and penalty being negative of reward). We use the term “feedback” to describe the 

user‟s reaction to the agent‟s action and the terms “reward” or “feedback value” to denote 
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the numerical value which describes the feedback.  The feedback is used by the agent for 

making decisions about taking one or another action in the future. In our case the 

recommendation system acts as the agent.  

An MDP model is a four-tuple <S, A, R, TR>. In this tuple, S is the set of possible 

states and A is the set of possible actions. R(s, a, s´) is the reward function on <S, A, S> 

which describes the immediate reward which is obtained from the environment if the agent 

performs the action a in the state s and appears in the state s´ afterwards. TR(s, a, s´) is the 

transition function which describes the probability of transition from the state s to the state 

s´ after performing the action a. By performing actions, the agent usually strives to 

optimize some function of the received reward values. An MDP model is called finite 

MDP in case when the state and action spaces are finite [SB98]. We use a finite MDP to 

represent the task of making web recommendations. 

The MDP states often correspond to combinations of different characteristics of the 

environment. In such cases the states are represented via a number of state variables. In our 

architecture we have three state variables respectively for the content, user and time parts 

of the context. Each of the variables can contain a reference to the node in the 

corresponding ontology graph or the value “NULL”. 

An MDP model should satisfy the so-called Markov property. The Markov property 

of the sequential decision task means that the conditional probability distributions of the 

future states depend only on the current state and not on any past state. The non-markovian 

learning tasks can sometimes be converted into MDP by using states of the form  

 

 Sn*={Sn-m, Sn-m+1 ,…, Sn}, 

 

i.e. by representing the sequence of last m states as a single state. An MDP which 

takes the last m states into account when making decisions is called an m-th order MDP. 

An MDP for which the Markov property holds without converting the sequence of states 

into one state is called first-order MDP. The use of the MDPs of higher order has been 

proposed to solve the problem of presenting web recommendations in [SBH02][SHB05]. 

The incorporation of the past states of the agent, however, leads to an explosion in the 

number of possible states in the resulting higher order MDP.  

For practical purposes it is often useful to assume the Markov property to hold even 

when it is not the case in the reality. A reasonable prerequisite for such an assumption is 

that the current states have a much larger influence than the past states. The preliminary 

experiments with our prototype data have shown that we have relatively few situations 

where we could benefit from taking previous states into account. The majority of sessions 

in our prototypes has only one page view
4
; for the sessions which have two page views the 

first page view is usually the starting page of the website. In our system we use only the 

first-order MDP and take into account only the current state. We have not implemented or 

tested higher order MDPs in our prototypes. However with our generic architecture this 

could be implemented with little effort. The states in our system are defined on the nodes 

                                                 
4
 More details on the session length distribution for the EC prototype are given in Section 4.3 
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of the ontology graphs. The nodes can be configured to represent the combinations of 

current and past states. 

In an MDP, the agent is usually taking one action in every state. In our case an 

action is equivalent to the presentation of a certain recommendation. A recommendation 

system, however, usually presents a list of several recommendations. A straightforward 

way to represent this behavior of the recommendation system in MDP would be to 

consider each combination of recommendations as one action. This however would lead to 

an explosion of the number of possible actions. To avoid this, we have made a simplifying 

assumption that the probability of a recommendation being clicked in our system does not 

depend on the other recommendations presented simultaneously. This allows us to treat the 

simultaneous presentation of N recommendations as N independent learning episodes in 

the sense of MDP. Such a simplifying assumption is often found in the literature, as 

discussed in Section 7.5. 

The problem of learning the optimal behavior of the agent by learning from 

feedback provided by the environment using the framework of Markov Decision Process 

constitutes the reinforcement learning problem. There are several families of methods 

which can be used to solve this kind of optimization problem. Examples of such families of 

methods are dynamic programming [Bell57] and reinforcement learning [KLM96] 

[SB98]
5
. 

Dynamic programming requires a complete model of the environment, in particular 

the transition probabilities and the reward function should be known a priori.  The most 

prominent examples of dynamic programming are value iteration [Bell57] and policy 

iteration [Howa60]. Dynamic programming has been widely studied in application to a 

wide range of optimization problems, not only those expressed as an MDP. Dynamic 

programming is computationally expensive since it requires re-calculation of the entire 

state-action space after each step. There are synchronous dynamic programming 

algorithms which require waiting for the re-calculation of the transition probabilities after 

each step and asynchronous methods where the agent does not have to wait until the 

calculation of the entire state-action space completes. Although with asynchronous 

algorithms our system may be able to propose next action quicker, the total computation 

load the asynchronous dynamic programming algorithms put on the computer is still very 

large. Therefore, both synchronous and asynchronous dynamic programming methods are 

computationally prohibitive for online optimization. 

In contrast to dynamic programming, reinforcement learning algorithms do not 

require the complete model of the environment and can implicitly learn the transition 

probabilities during optimization. In the task of making web recommendations, exact 

                                                 
5
 There seems to be a dual understanding of the term reinforcement learning in the literature[KLM96]. In the 

broader sense, this term relates to the set of problems which involve learning from feedback and the 

algorithms which can be used to solve these problems. Such algorithms include genetic programming and 

dynamic programming. In the narrower sense, the term relates to the set of approximative algorithms which 

focus on online learning (i.e. algorithms allowing realtime computation) without requiring the complete 

model of the environment. 
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transition probabilities are unknown and need to be learned. The reinforcement learning 

can be applied incrementally. The recalculations of the entire space-action space are 

therefore not necessary, making the online optimization possible. These characteristics 

make reinforcement learning algorithms particularly interesting for the task of optimizing 

the web recommendations. The most popular reinforcement learning algorithms are Q-

Learning [Watk89] and SARSA [RN94]. The transition function is usually not learned 

directly but estimated using for example state-action value function Q(s,a), which assigns 

weights to combinations of states and actions. In our recommendation system the state-

action value function corresponds to the weight of recommendation rule Q(r), since the 

recommendation rules contain information about both the state (i.e. recommendation 

context) and the action (i.e. recommended item). 

The goal of the reinforcement learning optimization is to maximize the total amount 

of reward. Many of the reinforcement learning algorithms including Q-Learning and 

SARSA deal with delayed rewards. That means, that the agents decisions may be rewarded 

not only immediately after performing the action (“immediate reward”) but also when a 

reward is received in some of the subsequent steps (“delayed reward”). This reward is 

usually discounted, i.e. multiplied by the discount ratio γ (0≤ γ≤1). In the task of making 

web recommendations, however, our goal is to obtain the reward immediately. Indeed, the 

web recommendations are supposed to shorten the navigation paths which lead to 

interesting content. The low usefulness of the delayed reward in application to our 

prototypes is illustrated by the session length distribution of the EC prototype as described 

in Subsection 4.3. The number of the observed sessions with a given length falls at 

exponential rate as the session length increases. This leads to the intuition that the web 

users are reluctant about continuing navigation when they do not see the interesting content 

immediately. Because of this characteristic of our task, we are able to employ the simple 

single-step reinforcement learning approaches in our prototypes. However, our generic 

architecture can also support the usage of delayed rewards. Web recommendation systems 

utilizing reinforcement learning approaches with delayed rewards have been studied in 

[MR07][MR07a] and subsequent works from the same research group and also on 

[TKG07][TK07]. The first series of works utilizes Policy Iteration and the second 

Q-Learning. Both systems are discussed in Section 7.5 in more detail. 

An interesting research direction in the field of reinforcement learning is 

generalization of feedback. A common problem in the feedback-based optimization is that 

the amount of feedback received by the system is small in comparison to the total number 

of possible states. Generalization attempts to alleviate this problem by employing the 

observation that the state space often exhibits some kind of internal structure or relation 

between states. These relations can be used to generalize the feedback obtained in a single 

state to the neighboring or similar states in the state space. A number of different 

approaches can be used to perform this generalization, including artificial neural networks, 

decision trees and multivariate regression [SB98]. Our recommendation system 

architecture provides an ontological representation of the state space which can be used to 

perform the feedback generalization. Currently, however, we use this representation only 

to perform the selection of recommendations and not for the feedback generalization. The 
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study of the different feedback generalization methods in the context of our 

recommendation systems remains a matter for future research. Several other 

recommendation system architectures based on reinforcement learning use the 

generalization of feedback as discussed in Section 7.5. 

There are formal proofs of convergence to the optimal values for a number of basic 

reinforcement learning algorithms like SARSA. However, as noted in [KLM96], the proofs 

of convergence for the reinforcement learning algorithms are of little practical value. Such 

formal proofs usually assume an infinite number of visits of each state. Practically, 

however, an algorithm that is proven to converge to the optimal values may be less 

interesting that an algorithm that achieves only near-optimal values but at a faster pace. So, 

the learning speed becomes the practically important metric for assessing the quality of a 

reinforcement learning algorithms. In Subsection 6.1.5 we present the comparative study of 

learning behavior in time for the optimization algorithms implemented in our 

recommendation system. 

3.2 “Drift of Interest” 

One of the characteristics of the problem of optimizing web recommendations is 

that this problem is a non-stationary problem. That means that the transition probabilities 

in the corresponding MDP do not stay constant over time. This is caused by the changes in 

the interests of the web user with respect to the recommended items.  Products or content 

items may become obsolete, put into obscurity by new products or events happening in the 

world. Sometimes, on the contrary, old product or content may become interesting again 

due to some events. We can handle these temporal changes in the user‟s interest, the so-

called “drift of interest” in several ways: 

– Ignore the „drift of interest“. We can consider older rewards and newer rewards to 

be equally important. In this case, the weight of the recommendation rule Q(r) is 

calculated using the formula for arithmetic average: 

𝑄 𝑟 =
 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑟)

𝑁𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 (𝑟)
           (3.2.1) 

where  𝑅𝑒𝑤𝑎𝑟𝑑(𝑟) is the sum of rewards received by the recommendations r 

since its creation and Npresented(r) is the number of times the recommendation r was 

presented. The “drift of interest” is not taken into account here. In case when we use 

Reward=1 when a recommendation is clicked and Reward=0 when a recommendation is 

not clicked, the Q(r) becomes equivalent to the acceptance rate of the recommendation 

rule. 

 

– Consider only the last n reward values for each recommendation rule and generate 

the weights of the recommendation rules from them by using one of the following 

formulae:  

 



Mykola Golovin Web Recommendations for E-Commerce Websites 

 

3 Feedback-based Optimization 23 

 

𝑄𝑡 𝑟 =
 𝑅𝑒𝑤𝑎𝑟𝑑 𝑡−𝑘(𝑟)𝑛−1
𝑘=0

n
= 𝑄𝑡−1 𝑟 +

𝑅𝑒𝑤𝑎𝑟𝑑  𝑟 −𝑅𝑒𝑤𝑎𝑟𝑑 𝑡−𝑛 (𝑟)

𝑛
  (3.2.2) 

 

or  

 

𝑄𝑡 𝑟 =
 𝑤𝑘𝑅𝑒𝑤𝑎𝑟𝑑 𝑡−𝑘 𝑟 
𝑛−1
𝑘=0

n
, where  wk = 1n−1

k=0    (3.2.3) 

 

In the formulae above, Qt(r) is the weight of the recommendation rule r after the 

presentation t, Rewardt(r) is the reward the recommendation system receives after 

the presentation t, n is the number of last presentations which have impact on the 

weight of the recommendation rule. The first formula is known in the literature as 

simple moving average, the second as weighted moving average. In the first 

formula all n participating reward values have equal impact on the weight of the 

recommendation rule. In the second formula the impact which the reward from 

each presentation has on the recommendation rule weight can be controlled using 

the weights wk. In practice, the weights wk are chosen in such a way that for every k 

wk< wk-1. 

These simple moving average and weighted moving average approaches, however, 

have drawbacks. So, the calculation of the recommendation rule weights is possible 

only after first n presentations of each recommendation. Both approaches also 

require additional memory in case of online optimization, since the last n reward 

values need to be stored for calculation. 

We are not using the simple moving average  and weighted moving average 

approaches in our system, since the next approach handles the „drift of interest“ 

starting from the first presentation and without an additional memory overhead. 

 

– Use aging by division (also called exponential smoothing, exponential decay or 

exponential moving average in the literature). Here, with every presentation the 

original weight of the recommendation rule is decreased by a fraction of its value: 

 

𝑄𝑡 𝑟 =   1 −
1

𝑇
 ∗ 𝑄𝑡−1 𝑟 +

𝑅𝑒𝑤𝑎𝑟𝑑  𝑟 

𝑇
   (3.2.4) 

 

In this formula, Qt(r) is the weight of the recommendation rule r at step t, T is the 

aging parameter (T>1). Reward(r) is the numerical value which describes a user‟s response 

to the presentation of the given recommendation. Multiplying the current weight by (1-1/T) 

implements the aging, since this way the latest presentations have the most impact on the 

resulting weight value while the contribution of past presentations decreases exponentially 

with each next presentation. Lower values of T lead to a decrease in the impact of the older 

recommendations presentations in comparison to the older presentations. The impact of the 

value of parameter T on the acceptance rate of different recommendation optimization 

algorithms is studied in Chapter 4. With aging by division, we do not need to keep the 
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reward values from the previous recommendations and can start optimization from the first 

presentation. 

3.3 Exploration versus Exploitation  

In order to be successful in the long run, our recommendation system needs to 

pursue two goals. One goal is to gain the immediate profit from presenting 

recommendations, i.e. to exploit the recommendations which are known to be good. In 

order to achieve this, the recommendation system needs to present the recommendations 

with the larger utility. Another goal of our system is to learn how good the 

recommendations are, i.e. to explore the utility of the recommendations. In order to 

achieve this goal, the system needs to present the recommendations which have smaller 

number of presentations in the past. Balancing these two goals is an important issue for our 

adaptive recommendation system 

There are formally justified algorithms for computing the Bayes-optimal way of 

balancing exploration and exploitation. These algorithms are however known to be 

computationally intractable [SB98]. The improvements of such algorithms in order to 

make them computationally tractable are a subject of current research [Wang06], however 

no generally accepted solution has been provided yet. 

In order to balance the exploration and exploitation in practical applications, several 

heuristic methods have been developed and widely applied. One such technique is called ε-

greedy in the literature [SB98]. This technique splits all recommendation presentations for 

a given context into two fractions. One fraction of the presentations is used to learn the 

utility of the recommendations. The recommendations in this fraction are selected using a 

pseudorandom number generator. Another fraction exploits the gained knowledge to 

maximize the acceptance rate of the recommendation system as a whole. This fraction 

always chooses the recommendations with the largest weight. Such behavior is called 

greedy. The explorative behavior is followed with probability ε (0<ε<1), the exploitative 

with probability 1-ε. 

Another technique called softmax takes a different approach to balancing 

exploration and exploitation. The softmax technique selects the recommendations 

stochastically with probabilities which correlate to their weights. Many approaches can be 

used for correlating the weights and the selection probabilities. One common approach for 

the calculation of the selection probabilities is the Gibbs distribution, also named 

Boltzmann distribution: 

𝑃 𝑟 =
𝑒
𝑄 𝑟 
𝜏

 𝑒
𝑄 𝑏 
𝜏𝑛

𝑏=1

 

 

where r is the recommendation rule for which we calculate the probability, Q(r) is 

the weight of the recommendation rule r, e is the Euler‟s constant and τ is a positive 

parameter called temperature. Higher values of the parameter τ lead to smaller differences 
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in probabilities of selecting different recommendation rules. Lower values of τ cause the 

recommendation rules with higher weights to be strongly preferred to the rules with lower 

weights [SB98]. 

According to [SB98], there are neither theoretical results nor comparative 

experimental studies which prove the superiority of either ε-greedy or softmax technique 

over each other in general case. The choice of one or the other technique depends on the 

concrete problem. We have tested the softmax algorithm implemented using Gibbs 

distribution in our first informal experiments. We have found it very difficult to set the 

parameter τ for our experiments, because its influence on the learning process is less 

intuitive than the influence of ε. In our experiments the softmax technique has been able to 

achieve acceptance rate similar to ε-greedy only on a very narrow interval of the values of 

τ, being dramatically worse for all τ-s outside of this interval. If the values of τ lie below 

this narrow interval, the system pays too little attention to the weights of recommendations 

rules. If the values lie above the interval give non-proportional preference to the rules with 

higher weights to the disadvantage of rules with lower weights. This experience is in 

accordance with the following quote from [SB98]: “Most people find it easier to set the 

parameter ε with confidence; setting τ requires knowledge of the likely action values and 

of powers of e”. Since this property of the softmax technique would impede the usability of 

our recommendation system on real-life websites, we have not used this technique in our 

further experiments. 

It should be noted that the usage of aging as described in Section 3.2 also fosters 

exploration. Indeed, the idea of exploration is to avoid the so-called greedy behavior, i.e. 

the behavior which involves always selecting the best action according to the current 

knowledge, disregarding the fact that this knowledge may be incomplete and/or obsolete. 

Since aging gradually decreases the influence of the older knowledge on current decisions, 

it also alleviates the greedy behavior and makes way for exploration.  

However, as opposed to the ε-greedy method, employing of aging cannot guarantee 

that sufficient exploration is performed in all situations. The benefit of such exploration is 

that we do not need to sacrifice a fixed fraction of presentations for exploration. 

We would like to specifically mention some situations in the context of our 

recommendation system architecture, in which insufficient exploration can lead to 

systematic presentation of worse-than-optimal recommendations. These situations assume 

that the recommendation system is allowed to present N recommendations in one 

presentation. 

Exploration Situation 1 (exploration blockage): We suppose that a new 

recommendation context is created and M new recommendation rules are added to this 

context simultaneously, M>N. If sufficient exploration is not provided for, then after any N 

recommendations receive positive feedback no other recommendations will ever be 

presented. Such situation can be circumvented by using optimistic initial weights [SB98] 

for the new recommendations, i.e. such weights which would enforce the presentation of 

the new recommendation in the initial period. A similar situation occurs when there are 

already M recommendation rules available for the context that we are investigating, M>N. 
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If a new recommendation 

rule is generated and its 

initial weight is lower 

than the weight of at least 

N other recommendation 

rules for the same 

context, this rule will 

never be explored, even 

though it might be 

possible that the new rule 

would have higher 

acceptance rate is 

presented. Such situation 

can be solved by using 

optimistic initial weights 

as well. One of the possibilities to implement optimistic initial weights is by using negative 

feedback values as described in the next subsection. 

Exploration Situation 2 (unawareness of interest shift): Due to a shift of the 

users‟ interests one of the previously less popular recommendation rules becomes more 

popular than the others. If this recommendation has not previously been among the N 

recommendations with the highest weight, the recommendation system which prefers 

exploitation to exploration will never become aware of this shift of interest. This situation 

cannot be used by applying optimistic initial weights, since we are dealing with an already 

existing recommendation. Use of aging can alleviate this problem but it does not solve it 

completely, since aging is applied to all recommendation rules to the same degree.  

These two situations are illustrated in Figures 2.5, 2.6 and 2.7. All three figures 

show development in time for one recommendation context with three recommendation 

rules. The learning process is iterated for 1000 steps. All rules have initial weights equal to 

0. The number of recommendation which can be shown in one presentation N=1. The 

acceptance rates of the recommendations are set to change with time as follows: 

 

Recommendation 

rule 

Step 0 to 300 Step 300 to 

600 

Step 600 to 

750 

Step 750 to 

1000 

Rule 0 0.1 0.01 0.1 0.1 

Rule 1 0.01 0.1 0.01 0.01 

Rule 2 0.01 0.01 0.01 0.2 

Table 2.1. Sample acceptance rates for different time step ranges. 

 

Figure 2.5 shows the situation when the exploration is insufficient. The weights of 

the recommendation rules at each time step are calculated according to the formula (3.2.1). 

The recommendation system pursues greedy behavior. Figure 2.5 illustrates both the 

Exploration Situation 1 and Exploration Situation 2. As long as Rule 0 receives positive 
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feedback, it blocks any 

further exploration. Although 

the algorithm detects that at 

step 300 the acceptance rate 

falls, it is unable to provide 

an alternative 

recommendation. When at 

step 750 the acceptance rate 

of previously unpopular 

Rule2 suddenly grows, the 

algorithm is unable to react 

adequately. 

Figure 2.6 shows the 

development of weights with 

aging applied. The weights of 

the recommendation rules at 

each time step are calculated 

according to the formula (3.2.4) with parameter T=25. The weight of the recommendation 

rule Rule0 reacts quickly to the changes in popularity, but this is not enough to ensure 

exploration, since the weights of other recommendation rules are too low. 

Figure 2.7 shows the case when Exploration Situation 1 is solved by using 

optimistic initial weights and Exploration Situation 2 is partially solved by using aging. 

When the system detects that the acceptance rate of the currently presented 

recommendation rule is falling, other recommendation rules are allowed to be explored. 

The behavior of the Rule2 illustrates why aging solves the exploration problem only 

partially. Indeed, although the Rule2 has gained popularity in step 750, it has only started 

to be presented after step 900 when Rule0 has become sufficiently unpopular. If the Rule0 

keeps being sufficiently 

popular, Rule2 would not 

be presented even though 

its acceptance rate is higher. 

If ε-greedy balancing is in 

use, such issues do not 

arise. This however does 

not mean that ε-greedy 

balancing is guaranteed to 

achieve better results in 

general. Indeed, the ε-

greedy balancing needs to 

show random 

recommendations at times, 

including the ones with the 

lowest acceptance rates. 
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Recommendations presented by the aging-based balancing may not always be the best of 

all available recommendations but are usually sufficiently good. The best balancing 

method should be determined experimentally for a concrete situation. We have compared 

different ways of balancing exploration and exploitation experimentally in a simulated 

environment. The results of the experiments are provided in Section 6. 

3.4 Feedback Values 

Different events induced by the web users can be assigned different feedback 

values. Following are the typical cases which can result in feedback in an e-commerce 

environment: 

1. Viewing a product as a result of recommendation (recommendation 

accepted/clicked) 

2. Adding a product into to the shopping cart as a result of recommendation 

3. Checking out the shopping cart which contains a product which was added as a 

result of recommendation 

4. Successful payment for the product which was added to the shopping cart as a 

result of recommendations 

5. Ignoring the recommendation 

 The first four cases generate positive feedback; the last case can be 

considered for either negative or neutral feedback. In our system, the feedback influences 

the weights of the recommendation rules, i.e. the individual recommendations presented in 

a certain context. It is also possible to use feedback in other ways, for example to influence 

the selection of the recommendation generators as described in [TR04][TGR04]
6
. 

The selection of concrete feedback values is left to the person who is installing and 

configuring the recommendation system in the given environment. This person should 

decide, how important different events caused by the recommendation system are and to 

what extent they should influence the future behavior of the recommendation system. This 

relative importance could be for example expressed as follows:  

 Recommendation clicked: 1 

 Add recommended product to shopping cart: 5 

 Check out shopping cart with recommended product: 5 

 Received payment for recommended product: 10 

 Recommendation not clicked: 0  

                                                 
6
 For detailed discussion and comparison please see Section 4.5 
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In this example, the same recommendation rule can obtain feedback several times 

for the same presentation. Some of this feedback will reach the recommendation rule with 

time delay. Such delayed feedback should however be distinguished from the delayed 

reward in the sense of full reinforcement learning problem [KLM96]. In full reinforcement 

learning problem the agent can make several steps until it receives reward in the so-called 

terminal state. Delayed reward in this sense is usually a discounted reward which is given 

to actions which have been taken in non-terminal states. In our recommendation system 

each step is a terminal step and receives undiscounted reward either immediately or after a 

time delay.  

Alternatively to the static feedback values as mentioned above, we could use 

feedback values which reflect the revenue of profit generated by the product. Some 

researchers also consider the viewing time as a possible source for feedback, suggesting 

that if a web page is viewed for longer time, it means that it is more interesting to the web 

user. We argue that such intuition is unfounded, since longer viewing times can also be 

caused by other factors, such as web user being distracted or switching to another browser 

window. 

Another alternative for setting the feedback values is using explicit feedback. 

Explicit feedback is gathered by asking the user on the website to rate the presented 

recommendations. Such feedback has been widely considered in the early research on 

recommendation systems and is rarely used in the recent research.   The chief reasons for 

this are the additional burden put on web users (something which particularly e-commerce 

systems are striving to avoid) and possibilities for unfair manipulation of the 

recommendations.  We do not employ explicit feedback in our system. For a discussion of 

the implicit and explicit feedback please see [Lawr03]. 

In our prototypes EC and EDU we have not been able to use all variants of 

feedback mentioned above. The EDU prototype was not an e-commerce website and 

therefore the cases 2, 3 and 4 were not relevant. In the EC prototype the shopping cart and 

payments were implemented in a separate system to which we did not have direct access. 

We also did not have access to the information which is needed to set the dynamic 

feedback values representing revenue or profit. Therefore, we had to constrain ourselves to 

cases 1 and 5, namely “Recommendation clicked” and “Recommendation not clicked”. 

The feedback values in our prototypes are discussed in Chapter 4. 

The absolute values of the feedback values are not important in general case, since 

the recommendation rules are selected for presentation by comparison to each other and 

not to some absolute value. The case when the absolute feedback values become important 

is when we need to relate it to the initial weights supplied by the recommendation 

generators. This is more important for optimization algorithms using aging and less 

important for algorithms using ε-greedy balancing without aging. Indeed, the algorithms 

without aging use the formula (3.2.1) which overrides the initial weights after the first 

presentation. On the contrary, in the formula (3.2.4) used by the aging-based algorithms 

the initial weights play significant role for many presentations in the initial optimization 

phase. To ensure sufficient exploration in the initial optimization phase, aging-based 

algorithms rely on initial weights being optimistic, i.e. high enough to be presented 



Mykola Golovin Part II. Adaptive Web Recommendations 

 

30 3.5 Optimization Algorithms 

 

sufficient number of times in the initial phase. We find it convenient to control that by 

employing negative feedback values. Since our recommendation generators generate initial 

weights in the range [0..1], such initial weights should be optimistic in particular with 

respect to the already existing recommendation rules with lesser quality if negative 

feedback is used. How optimistic such initial weights are depends on the value of negative 

feedback. We investigate the different values of negative feedback experimentally in 

Subsection 6.1.4 basing on the simulated environment. 

3.5 Optimization Algorithms 

The generalized algorithm for optimized selection of recommendations is shown 

below: 

 
 

The implementations of functions GetRecommendations(), GatherFeedback() and 

AdjustWeights() can vary depending on the chosen optimization technique. So, the 

implementation of the GetRecommendations() is responsible for having or not having the 

random exploration component. The function GatherFeedback contains the definitions of 

the numeric feedback values for different user actions. The function AdjustWeights() 

determines whether aging is applied to the weights of the recommendation rules. 

Using the techniques described in the previous subsection to solve the problems of 

handling the “drift of interest” and balancing exploration versus exploitation, we have 

constructed several algorithms for optimizing the presentation of the recommendations: 

 REWARD_ONLY. This algorithm uses ε-greedy technique to balance 

between exploration and exploitation. The “drift of interest” is not accounted 

N – number of recommendations needed, {P}={P1,…., PK} – set of parameters, 
describing the current context of the website 
 
1:{C}=MatchContentNodes({P})  // Set of  matching content nodes 
 
2:{U}=MatchUserNodes({P})  // Set of  matching content nodes 
 
3:{T}=MatchTimeNodes({P})  // Set of  matching content nodes 
 
4:{R}=GetRecommendations(P,{C},{U},{T})  // applying selection policy P to 

obtain  the set of 
recommendation rules {R}, |R|≤N 

 
5: PresentRecommendations({R})   // Present the recommendations on the 

website 
 
6: {FR}=GatherFeedback()   // Get the feedback from user.  
 
7: AdjustWeights({R},{FR})  // Adjust weights of the recommendation 

rules according to feedback 
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for, i.e. no aging is used and the weights of the recommendation rules are 

calculated according to the formula (3.2.1).  

 REWARD_DEC (reward-decay). This algorithm combines aging by 

exponential decaying according to formula (3.2.4) with ε-greedy balancing 

technique. Negative feedback values are not used since ε-greedy technique 

provides for sufficient exploration even in the initial phase, thus making 

optimistic initial weights redundant.  

 REWARD_PEN (reward-penalty). This algorithm uses aging by exponential 

decaying and negative feedback values. The algorithm relies on aging for 

exploration and does not perform random exploration. 

The detailed experimental analysis and comparison of the above algorithms is 

presented in the next chapter. 

It is also possible to construct other recommendation optimization algorithms by 

combining or modifying the techniques we have described. However, in our preliminary 

experiments with these algorithms we have not been able to achieve improvement in 

comparison to the algorithms listed above. We discuss these algorithms here but do not 

further analyze them in Chapter 4. In particular, we have considered the following 

algorithms: 

 The ε-greedy algorithm with negative feedback values.  

 The algorithm combining aging by exponential decaying, negative feedback 

and ε-random selection of the recommendations for exploration.  

In case of the first algorithm we have found out that the negative feedback values 

do not have any influence on the learning, since only the relative values are important for 

selection of recommendation rules. The optimistic initial weights are not relevant for the 

ε-greedy technique, since the ε-greedy technique always dedicates a fraction of 

recommendations to exploration. 

The motivation for the second algorithm was the fact that the aging-based balancing 

technique does not guarantee sufficient exploration, in particular in Exploration Situation 

2. There are cases, when all the recommendations currently presented on the website are 

clicked so often, that the aging with a given parameter T cannot sufficiently decrease the 

weights of these recommendations to expose other underexplored recommendations in the 

time interval between two clicks. To overcome this problem, we have investigated the 

possibility of augmenting the aging-based exploration with exploration implemented 

according to ε-greedy technique, i.e. introduce a fraction of the presentations in which the 

recommendations are selected according to a pseudorandom number generator. 

According to our experience, the application of this algorithm increases the number 

of parameters which needs to be set but does not bring an improvement of the acceptance 

rate. Apparently, the deterioration of the acceptance rate caused by the random component 

is larger than the improvement achieved through guaranteed exploration. 
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4. IMPLEMENTATION OF THE REAL-LIFE PROTOTYPES AND THE 

SIMULATED ENVIRONMENT 

To comprehensively evaluate our recommendation system approach, we have 

performed a series of experiments in different environments. So, the evaluations of the 

different recommendation generators were done on the EDU website. The recommendation 

system implemented on this website was a joint work with A. Thor [TR04][TGR04], who 

has been working on the optimization of recommendation systems based on selection of 

different recommendation generators as opposed to selection of individual 

recommendations which is described in this thesis. On this website, we have also tested the 

effects of presenting different recommendations to different user groups. The effects of the 

optimization of recommendations in an e-commerce environment were studied on the 

prototype EC. The simulated prototype SIM provided a platform for thorough investigation 

of different optimization algorithms and parameter settings.  

In this chapter we describe the implementations of our real-life prototypes and the 

simulation environment. In the first sections of the chapter we describe the real-life 

experimental environments we used (Section 4.1) and the adaptation of our generic 

recommendation system architecture to these environments (Section 4.2). In Section 4.3 

we provide a description for the simulated environment and the data from the EC prototype 

which were used to create it. Section 4.4 elaborates on the structure of relational databases 

used in our prototypes to implement recommendation rule database and web data 

warehouse.  

4.1 Real-life Prototype Implementations 

The prototypes of the adaptive recommendation system corresponding to the 

general architecture described in the previous chapters were implemented and applied at 

two real-life websites. The first one is the website of the Database Group, University of 

Leipzig (http://dbs.uni-leipzig.de, approximately 2000 page views per day), further 

denoted as EDU. It shows two (N=2) recommendations on all html-pages of the site. This 

prototype was developed as a joint work with A. Thor. In particular, the implementations 

of the recommendation generators used on the EDU website are due to A. Thor. This 

prototype was used to study the user group based recommendations and to compare two 

approaches to optimizing the web recommendations. Both optimization approaches are 

based on user feedback. In the first approach implemented by A. Thor the optimization was 

done by adaptive switching of different recommendation generators. In the second 

approach (the approach presented in this thesis) the optimization was done by combining 

the recommendations from different recommendations generators and adjusting their 

weights individually. The website EDU contains information related to teaching and 
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research in the area of database technology at the University of Leipzig. This information 

includes for example study material, research papers, personal pages of the researchers. 

The second real-life application of our architecture is a mid-size commercial online 

software store (http://www.softunity.com, approximately 5000 page views per day), further 

denoted as EC. The online store is run by the German company Koch Media GmbH 

(http://www.kochmedia.com/). Here, our approach is used to automatically select and 

present five (N=5) recommendations on the product detail pages. The products presented 

on the website include computer and console games, software for home use and supporting 

products such as solution books for games and accessories for home computers and game 

consoles. The product details presented on the website include pictures, screenshots and 

text descriptions. Sometimes a trial or protected version of the software product is offered 

for download. 

Both websites have around 2500 content pages. The recommendation database 

contains about 60000 rules for (EDU) and 35000 rules for (EC). 

All recommendation generators and the optimizer on the EDU and EC websites, as 

well as the websites themselves, are implemented using the PHP scripting language. The 

experimental data from the EDU website presented here were obtained in the period from 

April 2003 to September 2004. The experimental data from the EC website were obtained 

from December 2003 to May 2005.  

The implementation effort for creating the EC prototype amounts to 2 man-months. 

The EDU prototype was created by porting the recommendation system used on the EC 

prototype in several days. Such swift development was made possible by the generic nature 

of our architecture as well as by the fact that the website-specific components such as web 

data warehouse and recommendation generators were already implemented by A. Thor.  

4.2 Adaptation of The Generic Architecture to The Prototypes 

Our generic recommendation system architecture has been adapted to two specific 

real-life websites. We have described some of the specific implementation details in the 

previous sections as examples of implementation of our generic architecture. In this section 

we summarize the correspondences between our generic architecture and concrete 

prototype implementations. 

4.2.1 Web Usage Data: Crawler Detection, Data Cleaning 

A crucial problem for a recommendation system which utilizes web usage data is 

the preparation and cleaning of these data. The most common source which provides web 

usage data is the log files of the web server.  Although some researchers consider working 

directly with usage data represented in this form, for a number of reasons it is beneficial to 

transfer the usage data into a relational database. The following reasons speak for using a 

relational database to store the web usage data [RS03]: 

http://www.kochmedia.com/
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 Large amounts of data. The amount of web usage data even on smaller websites 

grows very fast. If we need to analyze such data over longer periods of time, the 

amount of web usage data can grow to multiple Terabytes. Accessing such data 

for analysis in sequential manner, as usual for plain files, can be prohibitively 

slow. A relational database with its index structures ensures the feasibility of 

the analysis.  

 Flexible analysis. Relational databases support a large number of possibilities 

for analyzing the data ranging from ad-hoc queries to interactive tools for 

OLAP analysis and data mining. 

 Using a relational data representation, it is easy to establish relations with data 

coming from other data sources, for example with a database containing 

information about registered web users or about the products presented on the 

website.  

In our architecture we follow the approach of storing the web usage data into a 

relational database. In constructing such relational database we adhere to the data 

warehouse technology, which offers a specially designed relational schema optimized for 

performing analysis of the large volumes of data. The resulting database is called web data 

warehouse and is shown as one of the components of our architecture in Figure 2.2. The 

relational structure of the web data warehouse is discussed in Section 4.4. 

Before any analysis can be performed on the web usage data, the data needs to be 

prepared and cleaned. Sometimes this preparation is done during the process of loading the 

data into the data warehouse; sometimes it makes sense to prepare the data after they are 

loaded into the relational database. Usually the following tasks need to be performed: 

 Session reconstruction. In case when the sessions are not supported by the 

web server or application server directly, it may be hard to determine whether 

different page views belong to the same sessions. Special algorithms have 

been proposed for accomplishing this task. These algorithms are however 

mostly heuristic and do not guarantee the gapless reconstruction of sessions. 

In the EDU prototype, the session reconstruction was implemented by A. Thor 

by combining several session reconstruction techniques [TR04]. The primary 

technique for maintaining sessions is so-called “HTTP cookies”
7
. If the HTTP 

cookies are not supported by the client web browser, a set of heuristics is 

applied. This set of heuristics analyzes the information contained in the HTTP 

Request which came from the web user, such as IP address, access time, 

browser type etc. and determines whether different requests belong to the 

same session. In the EC prototype, we make use of the ability of the 

application server to maintain sessions. The application server is able to 

maintain sessions both using cookies and, if cookies are not available, using a 

special parameter “session identifier” which is automatically added to the 

URL. Utilizing this application server feature does not require additional 

                                                 
7
 For specification of HTTP Cookies see RFC-2956, http://www.rfc-editor.org/ 
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development effort in the web application. Instead of putting the usage 

information into log files in text format, our application puts all available 

information including the session id into a temporary database. The usage data 

are then transferred from the temporary database into the web data warehouse.  

 Crawler detection and removal of page views originating from crawlers. 
Crawlers are programs which automatically surf the Internet and gather 

information. Crawlers are also known as “robots” or “bots”. Most commonly 

the crawlers are used by search engines such as google.com and yahoo.com to 

update their search databases. The appearance of crawlers can distort the web 

usage data, since crawlers do not behave like normal web users. They usually 

follow all links found on the website and generate larger amount of usage 

data. Therefore, to obtain the correct picture of the web user behavior we need 

to detect and remove the sessions originated by crawlers. An interesting 

approach to the elimination of crawler sessions is proposed by [TR04]
8
. The 

detection of the crawler sessions in [TR04] is done by placing a special 

hyperlink on the website, which is visible only to web crawlers and not to 

human website visitors. This approach can be used to reliably distinguish 

between the sessions coming from crawlers and human users after the 

complete page view history of a session has been captured. This approach is 

however not suitable for use with online feedback, since the access to the 

hidden hyperlink may occur later in the session. We discuss the online crawler 

detection in Section 4.2.4. 

 Page view detection. An additional problem which needs to be solved in 

many web applications is the page view detection. Each page view usually 

consists of several HTTP requests. One of them is the main request which is 

triggered immediately by the user; other requests are sent by the browser to 

obtain supporting information, such as subdocuments, pictures and multimedia 

objects. In many web applications built with traditional technology this 

problem can be solved relatively easy, since the main HTTP request usually 

asks for an HTML-file and the auxiliary requests ask for other types of data. 

However in modern web applications built using so-called AJAX
9
 technology 

such a straightforward solution doesn‟t work, since such applications also 

request auxiliary data in HTML format. In the EDU prototype we consider the 

requests for HTML documents to be the page views and all other requests to 

be auxiliary. In the EC prototype the web application takes care of logging 

only the main page view request and not the auxiliary requests.  

                                                 
8
 Discussed in more detail in Section 5.4 

9
 For more information about AJAX technology please see http://www.w3schools.com/Ajax/ajax_intro.asp 
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4.2.2 Ontology Graphs and Ontology Generators in Prototypes 

The ontology graphs have been specially designed to help incorporate the 

implementation-specific features into our generic architecture.  Our prototypes EC and 

EDU make use of the ontology graphs as follows: 

EC: The prototype EC features all three possible ontologies for content, user and 

time. The content ontology for the EC prototype contains all products and categories in the 

web shop, with relations between products and categories. There are several types of 

product detail pages on the EC website, for example normal product detail page or product 

highlight page (special page layout for best-selling products). For our recommendations 

system it is less important which layout is used to present the product; important is the 

product that is shown. The mapping clauses for the content ontology nodes in the EC 

prototype therefore use product ids for mapping, disregarding the URL under which the 

product is shown, for example: 

ProductID=‟ECD000687K‟ 

In case of the EC prototype, the content ontology is present in the website database 

in form of hierarchical product catalog and needs to be extracted and converted into the 

representation used by our recommendation system. The implementation of the content 

ontology generator is therefore quite straightforward.  

The user ontology graph of the EC prototype consists only of three nodes which 

represent the countries in which the purchased products can be delivered: Germany and 

Luxembourg, Austria, Switzerland and Liechtenstein. This information is determined 

basing on explicit country selection by the web user and is instantly available for use in the 

mapping clauses. An example of the mapping clause is given below:  

UserCountry=‟CH‟ or UserCountry=‟FL‟ 

The time ontology of the EC prototype consists of several nodes which denote 

certain periods of time when some time-restricted sales offers are effective. These nodes 

are used for several manually specified recommendation rules. The nodes and the attached 

mapping clauses are also created manually. An example of the mapping clauses for the 

time ontology: 

WeekOfTheYear=50 or WeekOfTheYear=51 

EDU: The prototype EDU uses only two ontologies, content ontology and user 

ontology. 

The content ontology for the EDU prototype contains the URLs of the web pages 

on the server. That means that even if the same content were shown on two pages with 

different URLs, this would be represented as two different nodes in the content ontology of 

the EDU prototype. In the EDU prototype, the content ontology is implicitly present in the 

directory structure on the web server. The ontology generator extracts this information and 

converts it into the format understood by our recommendation system. In the EDU 
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prototype, the mapping clauses for the content ontology graph use the names of HTML (or 

PDF etc.) files. An example of the mapping clause is given below: 

URL like „%/study/wintersemester0809/database_systems1.html‟ 

The user ontology graph of the EDU prototype is created using a decision tree 

algorithm J48
10

. The decision tree predicts the interest area of the user based on the user‟s 

country. An example for the node representing users interested mostly in research topics is 

given below: 

UserCountry in ('in','cn','us','ru','se','gr','jp','ca','id','kw','np','hk','nl','ua') 

The value of UserCountry for each user is determined based on the lookup of his
11

 

IP address in the open database of IP addresses GeoLite Country
12

.  

Further details about the user ontology graph for the prototype EDU can be found 

in Section 5.3. 

We have also considered creating the time ontology in the EDU prototype and 

utilizing it for making time-specific recommendations for students. Possible cases where 

the time-specific recommendations could be useful are for example recommending 

examination announcements at the end of each semester or study plan in the beginning of 

each semester. However, we have not implemented this feature in our prototype. 

As can be seen from the examples in this subsection, the mapping clauses can be 

readily used as part of SQL queries to quickly select the relevant nodes from a table in a 

relational database. In Section 6.2 we further investigate the retrieval of information from 

the ontology graphs stored in a relational database and in main memory. 

4.2.3 Recommendation Rule Generators in the Prototypes. 

The following recommendation generators were used in our prototype 

implementations: 

 Content similarity. This recommendation generator determines for each 

product (EC) or HTML page (EDU) the M most similar products using 

TF*IDF text similarity score. We have used the implementation of the 

normalized TF*IDF algorithm which is provided by the MySQL database 

server
13

. The parameter M is configured for the specific website. We have 

used M=5 on the EDU prototype and M=10 on the EC prototype. The initial 

weight of the recommendation rules is the TF*IDF similarity score as returned 

by the algorithm. 

                                                 
10

 Weka‟s improved implementation of the C4.5 algorithm [Quin93]  
11

 In this thesis, the masculine pronomena are used to refer to both masculine and fenimine persons. 
12

 http://www.maxmind.com/app/geoip_country 
13

 http://dev.mysql.com/doc/internals/en/full-text-search.html 
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 Sequence patterns. This recommendation generator recommends products 

(EC) or HTML Pages (EDU) most often succeeding other products/pages in 

the same user session. The initial weight is set to the probability of one 

product or page succeeding the other one based on the historical information 

from the web usage warehouse.  

 Item-to-Item collaborative filtering. (EC) Products, which most often appear 

together in one user‟s basket, are recommended for each other. Collaborative 

filtering is considered the most successful recommendation technique, 

although some limitation and drawbacks of this recommendation technique are 

known. So-called item-to-item variant of collaborative filtering eliminates 

some of the scalability problems which the classical collaborative filtering has. 

This type of collaborative filtering produces the recommendation rules of the 

format which fits well into our data structure. Item-to-item collaborative 

filtering is due to [LSY03]. The initial weights provided by the 

recommendation generator are based on cosine similarity as described in 

[LSY03]. 

 Search Engine recommendation generator (EDU).  This recommendation 

generator is applicable to the users coming from a search engine such as 

Google. It extracts the search keywords from the HTTP Referrer field and uses 

the website‟s internal search engine to generate recommendations for each 

keyword. The recommendation generator was first described and implemented 

in [TR04].  The initial weights are set based on the relevance score which is 

provided by the website‟s internal search engine.  

4.2.4 Capturing Online Feedback in Prototypes 

In both prototypes the clicks on recommendations were considered as feedback 

with value 1. If negative feedback was not in use, we used the value 0 to denote that the 

user has not accepted the recommendation. If negative feedback was used, its value was 

different in different experiments as described later in this chapter. Theoretically, for the 

EC prototype we could have richer possibilities for feedback. So, for example, we could 

have additional feedback if the product is put into basket, when the basket is checked or 

when the transfer of the money for the purchased product is confirmed. We could also let 

our feedback values be influenced by the profit brought by the individual product. We 

were however not allowed by the website owners to access the data and programming 

interfaces needed to implement these additional kinds of feedback. Therefore the feedback 

for our EC prototype depends only on users clicking or not clicking the recommendation 

links.  

An important issue for the online optimization is filtering out the feedback from 

crawlers. Not all crawler detection techniques which can be applied to the web usage data 

in general are applicable for online crawler detection. In particular the reliable technique 

utilizing a hidden hyperlink as proposed in [TR04] is not applicable here, since the order in 
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which crawlers access the hyperlinks is different for every crawler and it is possible, that a 

recommendation hyperlink is visited and gets feedback before the hidden hyperlink is 

visited. In this case the recommendation would receive false feedback. For the online case 

we have to fall back onto the less reliable heuristic techniques. One such technique is 

checking whether the file “/robots.txt” is the first page view of the session. This technique 

relies on the “de-facto” internet standard [Kost96] which specifies the method for 

controlling the behavior of the web robots and crawlers by the website owners. This 

control method assumes that the first request a crawler should send to a website is a request 

for the file “/robots.txt”. The file robots.txt specifies which areas of the website are 

allowed be indexed be the crawlers. Our recommendation system checks the first HTTP 

request of the current session. If request for “/robots.txt” was the first request of the current 

session, the session is ignored by the recommendation system. Another technique is based 

on the publicly available databases of robots and crawlers. These databases contain lists of 

IP addresses and values of HTTP-attribute “User-Agent”, which can be used to detect 

crawlers and robots. To implement this type of online crawler detection in our prototype, 

we have combined the lists from the websites http://www.user-agents.org/ which contains 

the values of User-Agent attribute and http://www.robotstxt.org/ which contains both the 

values of User-Agent attribute and the IP-addresses of known crawlers. 

4.3 Simulated Environment Overview 

Initially, we were planning to perform all the experiments on the real-life websites. 

However, it has turned out that the amount of usage data generated by users of the EC and 

EDU is not sufficient to adequately explore various algorithms and algorithm parameters. 

To be able to comparatively test different approaches, we had to split the presentations 

between them. In one year, we could comparatively test only 5 combinations of different 

recommendation techniques and parameters, including the baseline technique without 

optimization. 

To overcome the problem of insufficient usage data on the available real-life 

websites, we have created a simulation environment to extensively test the different 

combinations to determine the optimal parameter values. To implement the simulation 

environment, we have taken the usage data from the http://www.softunity.com (EC).  The 

usage data were taken from a period of 12 months, January 2006 until July 2006 and 

September 2006 to January 2007 inclusive. August 2006 was omitted, since due to a server 

crash and subsequent website relocation very few data were available for August 2006.  

During this period, the adaptive recommendation system installed on the EC 

website was disabled in order not to influence the obtained usage data. The following data 

from the EC website were used to perform the simulation: 

http://www.user-agents.org/
http://www.robotstxt.org/
http://www.softunity.com/


Mykola Golovin Part II. Adaptive Web Recommendations 

 

40 4.3 Simulated Environment Overview 

 

 Start pages of all sessions, i.e. all pages from which the users have started a 

navigation session on the site, in chronological order of the sessions.  The page 

views originating from web crawlers were eliminated from the usage data we 

are using for simulation. For the described period, there were 784,747 sessions 

with a total of 971,197 page views.  

 The session length distribution. The session length distribution for the described 

period is shown in Figure 2.8. The average session length for the EC website in 

this period was ~1.237. There has been a small number of sessions containing 

more than 25 page views. We deem such sessions to come not from human 

users but from unknown crawlers. Such sessions are not used in the simulation.  

For every month, the conditional probabilities of the product to be viewed after 

another product in one session are calculated based on the above data. The product 

information and the recommendation rules with their initial weights were also taken from 

the EC website.   

To test the different optimization algorithms with different parameter combinations, 

we used simulation runs. For every experiment described later in this section, the average 

results obtained from 10 runs are presented. The user behavior in every run is reproduced 

by an agent based on a pseudo-random number generator. The agent is presented all 

session start pages from EC in chronological order. For every page, the agent is provided 

with a selection of several recommendations. The agent may select one of the 

recommendations or not select any. If the agent selects a recommendation, it is presented 

the page the recommendation was leading to. On this new page, it is presented a list of 

several recommendations again. The agent‟s decision whether to continue the session or 

not is based on the session length distribution as shown in Figure 2.8. The selection of the 

recommendations by the agent is based on the conditional probability of a product to be 

seen after another product for the month in which the page view takes place. 

Figure 2.8. Distribution of the session lengths on the EC prototype. 

Number of sessions is shown on the logarithmic axis y. 
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To test the different parameters, the following routine is used: we generate a set of 

seeds for pseudo-random generator. For each algorithm/parameter combination we want to 

test, we make several runs, every time with a different seed from the set. To test another 

algorithm/combination, we use the same set of seeds. This way, different algorithms 

combinations are tested on agents behaving in a similar way; however any non-common 

behavior the specific agent may have is alleviated by averaging multiple runs. The 

simulation environment was implemented in Java programming language. In all 

experiments in this section the number of simultaneously presented recommendations N is 

set to 5, unless explicitly stated otherwise.  

4.4 Database Structure 

4.4.1 Recommendation Database 

The recommendation rules are stored in a relational database. Both our real-life 

prototypes and the simulation environment use MySQL database server for the 

recommendation database. The relational schema of the recommendation rule database is 

shown in Figure 2.9. The rules are maintained in the table Rules. Some additional 

information is stored together with the rules, such as the number of times the 

recommendation was presented (Npresented), number of times the recommendation was 

clicked (Nclicked), the recommendation type (the recommendation generator which 
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UserNode

TimeNode

RecomNode

Weight
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Timestamp

ContentNodes

Nid

MatchRule

Name

RecomLink

RecomDescription

RuleTypes
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RuleType

Description

UserNodes

Uid

MatchRule

ContentArcs

ID

ChildNid

ParentNid

UserArcs

ID

AUid

Buid

Presentations

Pres_ID
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RuleID

SessionID

TimeNodes

Uid

MatchRule

TimeArcs

ID

AUid

Buid

Figure 2.9. Structure of the recommendation database 
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generated the rule), and the creation time of the rule. The attributes ContentNode, 

UserNode and TimeNode are the foreign keys which uniquely identify the values of the 

respective context dimension (null values are allowed to cover the partially specified 

context information). RecomNode identifies the recommended content and thus also refers 

to the ContentNodes table.  

The context dimensions are stored in pairs of tables ContentNodes/ContentArcs, 

UserNodes/UserArcs, TimeNodes/TimeArcs to allow the representation of ontology 

graphs. This representation of the ontology graphs is straightforward but has potential 

performance drawbacks. We discuss the ways of improving the performance of the 

ontology graph in Section 6.2. The node tables contain information on all relevant content 

items (products or URLs), users and time events that may occur in the context or 

recommendation part of a rule. The recommended content is represented by the fields 

Name, RecomLink and RecomDescription in ContentNodes.  

The table RuleTypes specifies from which recommendation generator algorithm a 

given recommendation rule comes. The same recommendation rule may come from several 

recommendation generators.  

The table Presentations is used to temporarily store the information about user 

recommendation presentations and the session identifiers. The data in this table is regularly 

moved to the web data warehouse to allow further evaluation. 

4.4.2 Web Data Warehouse 

The Web Data Warehouse was implemented using Microsoft SQL Server 2000. 

Microsoft SQL Server 2000 provides extensive functions and tools which simplify the 

creation of data warehouses and analytical processing of the data.  The following functions 

are available in MS SQL Server 2000: 

Partitioned tables. Partitioned tables simplify and speed up processing the large 

tables. The fact tables in our data warehouse are good candidates for horizontal partitioning 

on the date key. By partitioning the tables we can improve the speed of adding and 

removing the data. The adding of data to the data warehouse is accelerated due to the 

ability to first load the data and then to build the indexes, as opposed to the costly 

operation of index update. The removal of data is sped up by the ability to easily remove or 

move entire partitions, which is a typical operation for data warehouses where older data 

are regularly relocated to archive.  

Bulk load facility. Bulk load facility allows faster loading of the large portions of 

data into tables in the database. Analogous to partitioned table, bulk load facility speeds up 

the loading by deferring the updates of the indexes until all data rows are loaded. 

Microsoft Data Transformation Services (DTS). Microsoft Data Transformation 

Services is a powerful toolkit for data extraction, transformation and integration, suitable 

for flexible creation of the ETL (extract, transform, load) tools. Microsoft Data 

Transformation Services provide the possibility to graphically specify the workflow and 
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data flow with data transformations. It allows scheduling of the data extraction, 

transformation and loading tasks.  

Microsoft Analysis Services is providing the multidimensional database, the tools 

for creation of the OLAP cubes with different storage types (MOLAP, ROLAP, HOLAP) 

and the data mining algorithms, such as “Microsoft Clustering”, “Microsoft Association”, 
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Figure 2.10. Database structure of the web data warehouse (EC) 
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“Microsoft Sequence Clustering” and others. Additional tools need to be used for 

visualization of the OLAP cubes. An example of such tool is the PivotChart/PivotTable 

COM-object supplied with Microsoft Office. 

The relational database schema of the web data warehouse is shown in Figure 2.10. 

The schema shown here is the one that was used on the EC prototype. The data warehouse 

used on the EDU has a similar relational schema. However, it has some distinctions due to 

the fact that the recommendations were presented not on a product basis but on a HTML 

page basis. The data warehouse used for the EDU prototype also has additional tables and 

fields which serve to support the optimization approaches based on the recommendation 

generator selection and to perform comparative analysis of the approaches based on the 

recommendation generator selection and the approaches based on the optimized selection 

of individual recommendations.  

The structure of the web data warehouse is specific to the domain of e-commerce as 

well as to the functions the data warehouse has to support.  The data warehouse holds 

historic data about the web usage and changes in product assortment. The task of the web 

data warehouse is to support executing analytic queries, building the OLAP cubes and 

performing data mining. The data warehouse is based on a galaxy schema with several fact 

tables and multiple dimension tables which are shared between fact tables. We use an ETL 

process created using the Microsoft Data Transformation Services toolkit to import both 

web usage data and auxiliary data such as information about products. The ETL process is 

executed periodically. Although it has been a common practice in web usage mining 

systems to use the log files of the web server to update the data warehouse, we use the 

temporary table Presentations of the recommendation rule database to feed the data 

warehouse, since this significantly the data transfer and cleaning.  

Most modern application servers and web development frameworks are able to 

maintain sessions automatically and transparently manage the propagation of session 

identifiers between individual page views. A common practice for session identifier 

propagation is by using cookies when supported by the browser. If the cookies are not 

supported by the browser, the session identifier is transmitted as a query parameter in the 

request URL. The session identifier is also exposed to the web application. We make use 

of this feature and store the server-supplied session identifier for every presentation in the 

temporary table of the recommendation rule database. This significantly simplifies the ETL 

process: for example, we do not need to identify sessions in the ETL process. Some 

transformations are applied to the session and presentation data when they are transferred 

to the data warehouse. So, the start, end and duration and the number of page views 

(length) of the session is calculated based on the information in the table Presentations. For 

our prototype applications we also assume that the user component of the recommendation 

context stays constant during the entire session and for the sake of simpler analysis 

associate every session with a certain user node. In general, however, it is possible for the 

user component of the context to change within one session, for example when the user has 

a possibility to specify some of its attributes, such as language, country etc. explicitly on 

the website. 
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We have created several OLAP-Cubes: Session, Pageview, Presentation and 

Product. The cubes are based respectively on the tables with identical names in the data 

warehouse as fact tables. The fact tables are shown on the right side in Figure 2.10. The 

tables Session and Pageview hold the information regarding the usage of the website.  

The table Presentation logs the presentations of the recommendations and whether 

the user clicked on them. The table Products contains the historical information about the 

products shown on the website. Some tables have redundancy in order to eliminate the 

need for additional joins, which speeds up the processing of the OLAP cubes. So for 

example the table Presentations contains not only the reference to the recommendation rule 

id, but also some information which is already contained in the recom_rule  table, such as 

ContentNode, RecomNode, TimeNode, Presentation. Both tables Pageview and Session 

have the field “useragent_id”.  

The tables which contain historical data, i.e. several versions of the same objects at 

different times have artificial keys unique to the data warehouse. Tables such as 

Datasource, Recom_Rules etc. have their own artificial keys in the recommendation rule 

database. These keys uniquely identify the respective objects throughout the system‟s 

lifetime both in the recommendation rule database and in the data warehouse.  

We use HOLAP (hybrid OLAP) implementation provided by the Microsoft SQL 

Server. The HOLAP partitioning is vertical, i.e. the detail data stay in the relational 

structure whereas the aggregated data are stored in the multidimensional structure. The 

cubes are processed incrementally at regular time intervals. The hybrid OLAP 

implementation allows maintaining a reasonable trade-off between the size of the OLAP 

cube and the time needed to perform multidimensional queries on the cube. The OLAP 

cubes are used for human evaluation of the web usage and product data. Data mining 

algorithms are used to generate the web recommendations based on the data stored in fact 

tables. 
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5. EXPERIMENTS ON REAL-LIFE PROTOTYPES 

5.1 Prerequisites and Effects of the Optimized Recommendations 

Figure 2.11 shows that the number of clicks per recommendation rule is distributed 

according to a Zipfian-like law (in Figure 2.11, only the recommendations with at least 100 

presentations are considered.). The data shows that a relatively small percentage of the 

recommendation rules brings the majority of clicks. This supports our optimization 

heuristic, since it shows that we may achieve overall improvement of the acceptance rate 

by presenting the most successful recommendations more often.  

The analysis of the customer and purchase data has also shown that 3.04% of all 

purchased products were bought immediately after clicking the recommendation, and 

3.43% of all purchased products were recommended in the same session.  

In general, 2.07% web users of www.softunity.com are becoming customers (this 

metric is usually regarded as CCR – Customer Conversion Rate). For web users who 

clicked a recommendation this value is 8.55%, i.e. more than four times higher.  

The absolute percentage values which are presented in the experimental data seem 

to be very small. The acceptance rates of recommendations lie within 1%, with 

improvements through optimization measured in fractions of a percent. However, it is 

important to note, that according to the study [Shop07] the average customer conversion 

rate for internet shops lies between 2% and 3%. Therefore, a variation of the conversion 

rate amounting as small as a fraction of percent can be of large importance for the 

commercial success of an e-commerce website. For a larger website, even an improvement 

of 1 percent can result in revenue increase of hundred thousand to millions of euro per 

year. Also, the absolute 

values of the 

acceptance rates are 

influenced by aspects 

such as the layout of 

the website and the 

number of 

recommendations 

presented 

simultaneously. 

Therefore, it is 

important to study not 

the absolute values of 

the acceptance rates 

but their relative values 

for different 

Fig. 2.11. A small percentage of recommendations 

brings the majority of clicks (EC, EDU) 
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Fig. 2.12. Additions to basket as a result of 

recommendation (EC) 

Additions to shopping 

cart as a result 

of recommendation
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immediately in the same

session

Optimized algorithm Non-optimized algorithm

algorithms. 

Figure 2.12 shows the 

effects of our optimization 

algorithm in terms of buying 

behavior, in contrast to the 

non-optimized selection of the 

recommendations. The non-

optimized algorithm uses the 

initial weights supplied by the 

recommendation generators as 

described in Section 4.2.3 to 

select the recommendations 

and performs no feedback-

based optimization. Figure 

2.12 shows that the optimized 

approach results in a noticeable increase of the number of additions to shopping carts.  

The distribution of the number of presentations for the recommendation rules 

generated by different recommendation rule generators is shown in Figure 2.13. The 

average acceptance rate for the recommendation rules generated by the same generator is 

shown in Figure 2.14. Notably, the recommendations created manually have small number 

of presentations (due to the small number of manually created recommendation rules) but 

very high acceptance rate compared to the other types of recommendations, since they are 

based on human knowledge. An example of such manual recommendation on the EC 

website is the special “driving wheel” device for PC which is recommended as an 

accessory to the car racing games. 

5.2 Optimization 

Algorithms  

To evaluate the 

effectiveness of the different 

optimization algorithms in the 

real-life environment, we have 

compared the performance of the 

reward-only and reward-penalty 

optimization algorithms with the 

selection of recommendations 

based on the initial weights 

supplied by the recommendation 

generators. For an evaluation 

period of several months the 

recommendation selection 

Figure 2.13. Presentation number for recommendation 

generated by different recommendation generators(EC) 
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algorithm on the EC website was 

chosen with equal probability from one 

of the following: 

 REWARD_ONLY, ε-

greedy balancing with 

ε=0.2 without aging 

 REWARD_ONLY, ε-

greedy balancing with 

ε=0.05 without aging 

 REWARD_PEN, aging 

using exponential 

decaying with T=500 and 

negative feedback 

 REWARD_PEN, aging 

using exponential decaying with T=200 and negative feedback 

 without optimization, the recommendations are selected for presentation based 

on their initial weights as supplied by the recommendation generators 

Originally we have been planning to conduct all experiments on the real-life 

prototype. However, it has turned out that the amount of feedback generated on the real-

life website is not sufficient to thoroughly investigate all possible algorithms and parameter 

combinations. Therefore we have conducted the more thorough investigation in the 

simulated environment as described later in this chapter.  

The comparison of the results obtained on the real-life website with the similar 

results obtained in the 

simulated environment can be 

used to judge about how well 

the behavior of our simulated 

environment represents the 

behavior of the real website. 

This comparison is presented in 

Subsection 6.1.8.  

Figure 2.15 shows the 

comparison of the acceptance 

rate of different optimization 

algorithms as implemented in 

the real-life website. The results 

show that the optimized 

algorithms achieve higher 

acceptance rates than the 

algorithm without optimization. 

Figure 2.14. Acceptance rate of different 

recommendation generators (EC) 
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The algorithm which uses aging with T=500 was able to achieve somewhat higher 

acceptance rates than the algorithms which use ε-greedy balancing. The relatively small 

improvement of the reward-penalty algorithm can be attributed to the fact, that in our 

applications the successful and unsuccessful recommendations can be distinctly separated 

even by the simpler algorithms. The algorithm which used zero as initial weights for the 

recommendation rules was tested on the EDU website. Its acceptance rate was only 4% 

lower than that of the algorithm which used recommendation generator-specific initial 

weights. The feedback values for the algorithms based on ε-greedy technique were set as 

follows: 1 if the recommendation was clicked, 0 if the recommendation was not clicked. 

For the reward-penalty algorithms the feedback was set to 0 if the recommendation was 

clicked and to -0.01 if the recommendation was not clicked. A more elaborate discussion 

on the behavior of the individual algorithms is provided in Subsection 6.1.8. 

5.3 User Groups 

We have investigated the effects of automatically classifying users into user groups 

and presenting different recommendations to different user groups on our EDU prototype. 

Figure 2.16 shows the comparison of the acceptance rates for the different user groups. The 

user groups were built using a decision tree algorithm J48 over the usage data of several 

months from the EDU website. The EDU website is structured in several areas of interest, 

most important of which are Study and Research. For the decision tree algorithm, the area 

of interest (Research/Study) visited by the web user has served as a classification attribute; 

other attributes were “country”, “browser” and “operating system” of the web user. 

However, after the tree was pruned, only the attribute “country” appeared to be of 

importance for predicting the area of interest. The resulting tree was transformed into the 

ontology graph nodes with mapping clauses. Figure 2.16 indicates that the acceptance rates 

differ substantially for the user groups and that for the website EDU the research-oriented 

users accept the presented recommendations almost twice as often as the study-oriented 

users. This behavior is explained by the fact that the research-oriented users are in most 
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cases occasional users which are not familiar with the structure of the website and are 

therefore interested in recommendations which can quickly lead them from the start page 

to the desired content. Most study-oriented users, on the contrary, are students which come 

often to the website during the semester to check the information such as lecture scripts. 

After several visits such users usually memorize or bookmark the exact location of the 

content which is interesting for them and pay less attention to recommendations.  

Figure 2.17 shows how good our user groups are in predicting the user interests. 

Here, differently colored bars show the acceptance for recommendations pointing to the 

content of different interest areas. The user group Research appears to be quite effective, 

since its users have only clicked the recommendations leading to the research area of the 

website. Users of the group Study preferred study-related recommendations but the 

corresponding acceptance rate is not much higher than for users not belonging to any of the 

two specific user groups.  

In our EC prototype we are utilizing user groups as well. These user groups are also 

depending on the attribute “country”. However, we are interested only in the three 

countries which are entitled to buy products on the EC website: Austria, Germany (with 

Luxembourg) and Switzerland (with Liechtenstein). The country (and therefore the user 

group) is determined in a straightforward way by the top level domain suffix: 

www.softunity.com and www.softunity.de are responsible for Germany, www.softunity.at 

is responsible for Austria and www.softunity.ch is responsible for Switzerland. The web 

users can also select their country manually on the website. The user groups on the EC 

website are also used to impose the country-specific restrictions on recommendations, 

since some of the products which can be sold in one country cannot be sold in another 

country (for example due to legal or trade restrictions). Therefore, such products can be 

recommended to users in one country and should not be recommended to users in another 

country. We do not provide the experimental results for the comparison of acceptance rates 

for different user groups on the EC prototype, since the aforementioned country-specific 

restrictions make the sets of recommendations for different countries incomparable. 

5.4 Comparison of Recommendation Generator-Based Optimization and 

Recommendation-Based Optimization  

Our prototype EDU was a project developed jointly with A. Thor. In this prototype 

we have implemented two different approaches to optimize web recommendations. In the 

architecture presented in this part of the thesis we use the optimization approaches which 

are targeted at individual recommendations, which can be classified as “mixed” according 

to [Burk02]. The approach proposed by A. Thor is the optimization of the selection of the 

recommendation generators based on machine learning, which can be classified as 

“switched” approach in terms of [Burk02]. This approach is described in [TR04][TGR04] 

and discussed in more detail in Section 7.4. In the prototype EDU the optimization 

approaches were tested on a rotating basis during the period from 1 April 2004 until 30 

http://www.softunity.com/
http://www.softunity.de/
http://www.softunity.at/
http://www.softunity.ch/
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September 2004. The 

recommendation 

generators were identical 

for all tested optimization 

approaches.  

Figure 2.18
14

 

shows the results of the 

experimental comparison 

of these two approaches 

and the approach 

“manual”. The approach 

“manual” is a 

recommendation 

generator-based (i. e. 

“switched”)  approach, 

where the selection of one 

or another 

recommendation 

generator was specified 

manually with respect to 

the current context and basing on human knowledge. On the Y-Axis in Figure 2.18 we 

show the session acceptance rate for the different approaches. The session acceptance rate 

is the ratio of sessions which contain one or more accepted recommendations to the total 

number of sessions. In Figure 2.18 the approaches were compared using several 

independent criteria. The criteria are: 

 whether the users were detected as new users or returning users. 

 how the users came to the website: by using a bookmark (or directly entering 

the address of the website into the browser‟s address line), by using search 

engine or by following a link from another website.   

 on which type of web page the session was started. There are two main groups 

of the web pages on the EDU website. The “navigation” pages are the main 

page of the website and the main pages of the sections of the website. These 

pages contain many hyperlinks to other web pages, for example to the “study” 

pages. The “study” pages contain the educational material, such as lecture 

notes. They contain large amounts of text and pictures and relatively few 

hyperlinks. Apart from “study” and “navigation” pages there were other types 

of pages which did not exhibit distinct differences in behavior with respect to 

the recommendation approaches.  

It makes sense to analyze the different criteria together. So, the users coming from a 

search engine are likely to be new users and show accordingly similar distribution of the 

session acceptance rates. The success of the manual optimization approach for the users 

                                                 
14

 Figure 2.18 originates from [TGR04] 

Figure 2.18. Session acceptance rates for different types of 

recommendattion generator based and recommendation based 

optimization (EDU) 
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coming from a search engine is 

stipulated by the special “Search 

Engine” recommender, which 

intercepts the search terms entered 

by the user and shows the 

recommendations relevant for 

these search terms. The two 

automatic approaches show 

significant differences for sessions 

starting with a study page and a navigation page. As shown in Figure 2.18, the 

recommendation generator based approaches work better for “study” sessions; the 

reinforcement learning approach achieves better results for “navigation” and other types of 

sessions. The website where our prototype EDU was running contains a large number of 

study pages, whereas the number of navigation pages is rather small. However, the 

navigation pages receive almost 15 times more feedback per page than the study pages. 

Therefore, the recommendation-based selection approach can easily identify the best 

recommendations for the navigation pages but not for the study pages, since the feedback 

for the study pages is scarce. On the other hand, the feedback aggregation of the 

recommender-based approach can better handle this lack of feedback on the study pages, 

but is not specific enough to generate better recommendations for navigation pages.  

An interesting parallel to this phenomenon constitutes the work [NM03]. The 

authors of [NM03] propose to choose the recommendation generators for the web page 

depending on the degree of connectivity of this page, i.e. the measure of how many 

outbound hyperlinks the web page has. In the EDU prototype, the degree of connectivity 

would be a good criterion for distinguishing the pages serving chiefly for navigation from 

the pages presenting the content. 

Recommendation generator based optimization can be considered a type of 

generalization of feedback, since the feedback given by a click on the individual 

recommendation is generalized to all recommendations coming from the same 

recommendation generator. This is consistent with our experimental results, where 

recommendation generator based approaches perform better under scarce feedback. The 

benefit of the recommendation-based optimization is the relatively simple implementation 

of the generalization in comparison to our ontological structure. However, once 

implemented, the ontology-based generalization allows more possibilities than the 

generalization based only on the recommendation generators.  

The Table 2.2
15

 shows the overall performance of the different recommendation 

selection approaches on the EDU website. In addition to the approaches which already 

appeared in Figure 2.18 some additional strategies are shown in Table 2.2. So, the 

approach Top-Rec is recommender-based and employs statistical information for selecting 

the recommenders. This approach makes use of the web usage data warehouse to 

                                                 
15

 Table 2.2 originates from [TGR04] 

Strategy No. of 

rules 

Acceptance 

rate 

Session 

acceptance 

rate 

Top-Rec ~ 2000     1.35%    10.27% 

Decision Tree ~ 250     1.74%    11.13% 

Reinf. Learning ~ 60000     1.92%    11.22% 

Reinf. Learning Zero ~ 60000     1.87%    10.35% 

Manual 5      1.97%    12.54% 

Random 137     0.96%      6.98% 
 

Table 2.2: Comparison of selection approaches 
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determine the most popular recommender for every context which appears in the historical 

data. The approach Reinforcement Learning Zero is reinforcement learning with initial 

weights of all recommendations rules set to zero. The Random approach selects the 

recommender based on a pseudo-random number generator. As shown in Table 2.2, the 

approach Manual achieves the best results. This approach is based on the human 

knowledge of the website structure, different types of web users and their interests and on 

the results obtained by the manual OLAP-evaluation of the data in the web usage data 

warehouse. The approach Manual is followed by the strategy Reinforcement Learning 

which achieves the best results of all automatic optimization approaches. The 

Reinforcement Learning Zero and Decision Tree achieve somewhat lower acceptance rates 

than Reinforcement Learning. In case of Reinforcement Learning Zero this can be 

explained by the absence of the positive effect of the initial weights; in case of Decision 

Tree the slight superiority of Reinforcement Learning can be attributed to its online nature 

and quicker adaptation to the user‟s interests. The simple statistics-based approach Top-

Rec achieves the worst results of all automatic algorithms, however its acceptance rates are 

still significantly better then the acceptance rates of the Random approach. It should be 

noted, that the random approach is recommender-based, i.e. rather than producing the 

random, possibly irrelevant recommendations it randomly selects one of the 

recommendation generators, which in turn produces recommendations it deems to be 

relevant for the current context.  
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6. EXPERIMENTS IN THE SIMULATED ENVIRONMENT 

In this section we present the experimental results obtained in the simulated 

environment. Section 6.1 deals with the evaluation of the different recommendation 

selection algorithms. In Subsection 6.1.1 we present basic algorithms, which do not use 

optimization but give understanding of the usage data which is used for simulation and 

some of its important characteristics. In Subsections 6.1.2 through 6.1.4 we discuss the 

individual optimization algorithms, explore their parameters and present the corresponding 

experimental results. In Subsection 6.1.2 we discuss the reward-only algorithms without 

aging and explore how the acceptance rates change when the optimization parameters 

change. In Subsection 6.1.3 we explore the reward-only algorithms with aging and explore 

its parameters. In Subsection 6.1.4 we investigate the reward-penalty algorithms and its 

parameters. The Subsections 6.1.2 to 6.1.4 are structured in a similar way:  

 We illustrate how the acceptance rate of the algorithms changes with different 

parameters specific to the algorithm. 

 For each algorithm we test both the variant with initial weights as generated by 

recommendation generators and with initial weights set to zero. 

 We find the near-optimal parameters and explain the impact of the parameters 

on the learning behavior.  

 We also illustrate how the different algorithms improve their acceptance rates 

as they learn and optimize the recommendations.  

To illustrate the improvement in time, we do not use the full session set. The full 

session set is not good for illustrating this behavior, since the user interests change over 

time. So, the increase of acceptance rate over time due to learning is compensated by the 

changing user behavior. Thus, the optimized algorithms do not show constant increase over 

time in this setting, instead the better algorithms have higher average acceptance rate than 

the worse algorithms. Also, the changes in the acceptance rates from month to month make 

it hard to distinguish what comes from learning and what is the change in user interest. In 

order to eliminate the influence of these interest fluctuations, we take the session set of one 

month and perform multiple iterations of our optimization algorithm using this session set.   

In Subsection 6.1.5 we compare the learning behavior in time for the different 

optimization algorithms. Subsection 6.1.6 illustrates the influence which the number of 

simultaneously presented recommendations has on the acceptance rate. In Subsection 6.1.7 

we compare the acceptance rates of the different optimization algorithms. Comparison of 

the results obtained on real-time prototype with the results obtained in the simulated 

environment is presented in Subsection 6.1.8. Subsection 6.1.9 discusses the ontology-

based recommendation selection policies. Section 6.2 describes a standalone series of 

experiments which were performed to investigate the performance of different techniques 

for the retrieval of information from the ontology graphs. 
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6.1 Evaluation of different recommendation selection algorithms 

6.1.1 Basic Recommendation Selection Algorithms 

To give an understanding about the characteristics of the session set used for 

simulation, in Figure 2.17 we present the acceptance rates achieved by several basic 

recommendation approaches without the adaptive optimization in the experiments based on 

this session set. We will be using some of these acceptance rates as baseline for 

comparison of the optimized algorithms in the subsequent sections. 

The baseline algorithms BEST_STATISTIC and WORST_STATISTIC rely on the 

statistical data gathered over the entire experiment period. The set of recommendation 

rules used for BEST_STATISTIC and WORST_STATISTIC is the original set of rules 

generated by the recommendation generators on the EC website. The weights of the rules 

are set to the conditional probabilities of one product following another in one session. The 

algorithm BEST_STATISTIC presents N recommendations for which the calculated 

conditional probabilities are maximal. The algorithm WORST_STATISTIC presents N 

recommendations for which the conditional probabilities are the lowest.  

The statistical information which is used by BEST_STATISTIC and 

WORST_STATISTIC is relatively coarse. It is calculated for the entire evaluation period 

and does not account for possible changes in user interests during this period 

The next two algorithms, STAT_CURRMONTH and STAT_PREVMONTH use 

more precise statistical information to make recommendations. The recommendation 

algorithm STAT_CURRMONTH uses the current month‟s conditional probabilities to 

select the recommendations for presentation. It is important to note, that this algorithm 

uses the conditional probabilities calculated for the entire month, not only from the 

beginning of the month to the current date in the simulation environment. The algorithm 

STAT_PREVMONTH uses the conditional probabilities for the previous month. As shown 

in Figure 2.16, the algorithm STAT_CURRMONTH has higher acceptance rate than 

BEST_STATIC. This shows that the drift of interest is an important issue which should be 

taken into account. However, it should be noted that the algorithm STAT_CURRMONTH 

(as well as BEST_STATISTIC) can be used only in the simulation environment and not on 

a real-life website, since it uses a-posteriori statistic information which is not available at a 

real-life website at the time when the decisions about presentation of recommendations 

need to be made. The algorithm STAT_PREVMONTH, on the contrary, can be used on a 

real-life website since it uses data which is also available on a real-life website. However, 

its acceptance rate is significantly lower than the acceptance rate of 

STAT_CURRMONTH. STAT_CURRMONTH and STAT_PREVMONTH are among the 

simplest approaches to using statistic information for selecting recommendations. These 

algorithms are shown here as the baseline for the future comparison. We will investigate 

more sophisticated algorithms in further subsections.  
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The algorithms BEST_INITIAL and WORST_INITIAL are also based on the set of 

recommendations generated by the recommendation generators on the EC site. The 

weights of the rules are the original weights generated by the recommendation generators. 

As shown in Figure 2.20, the BEST_INITIAL algorithm brings remarkably worse results 

than the statistics-based algorithms BEST_STATISTIC, STAT_CURRMONTH and 

STAT_PREVMONTH. However, the initial weights are predominantly interesting for the 

new recommendations, for which the statistic information is not yet available. For such 

recommendations the initial weights generated by the recommendation generators can be 

useful in the initial phase of the learning before sufficient statistical information can be 

gathered.  

The algorithm RANDOM_RULE uses the same set of rules as the previous 

algorithms but assigns the weights by using the pseudo-random number generator. As 

shown in Figure 2.20, choosing random recommendation rules brings worse results than 

the BEST_STATISTIC and BEST_INITIAL algorithms but better results than 

WORST_STATISTIC and WORST_INITIAL algorithms. 

The results for the algorithm RANDOM_PRODUCT is indistinguishable in Figure 

2.20, since its value is very small in comparison to other algorithms. The recommendation 

acceptance rate for this algorithm is 4*10
-5

. This algorithm does not use the set of rules 

provided by the recommendation generators of the EC prototype. Instead, it presents N 

randomly selected products in any context.  
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Figure 2.21 illustrates on example of the basic algorithms how the user‟s behavior 

with respect to the recommendations has been changing throughout the period covered by 

our session set. The increase of the acceptance rate towards the end of the year is due to 

several highly popular products brought out shortly before Christmas sales. 

6.1.2 Reward-only Algorithm with ε-greedy Balancing Technique without Aging 

(REWARD_ONLY) 

The algorithms presented in the previous sections have not used any dynamic 

optimization, i.e. there was no exploration and learning of the weights of the 

recommendation rules along with the presentation of the recommendations. The algorithms 

presented in this subsection use a simple form of optimization. The weights of the 

recommendation rules are set to the acceptance rate of the presentation rule according to 

formula (3.2.1). Additionally, a fraction of all presentations is used to perform the 

exploration of the recommendation rules. The intensity of exploration is managed by the 

parameter ε. With probability 1- ε the selection of recommendations is done according to 

their weights. With probability ε the selection of recommendations is pseudo-random.  

The acceptance rate for this algorithm with respect to the value of the parameter ε is 

shown in Figure 2.22. The value ε=0 corresponds to no exploration, the value ε=1 means 

all recommendations rules are selected at random among the recommendation rules 

available in the recommendation rule database for the given context. The algorithms 

REWARD_ONLY_0 and REWARD_ONLY_I stand for reward-only with initial weights 

equal to 0 and reward-only with initial weights supplied by the recommendation 
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generators. The algorithms BEST_INITIAL, BEST_STATISTIC and RANDOM_RULE 

are provided as a baseline for comparison and are represented with bars in Figure 2.22. 

As shown in Figure 2.22, the optimal value of the parameter ε in our simulation lies 

around the value 0.2. Both excessive exploration and insufficient exploration lead to the 

deterioration of the acceptance rate. The acceptance rate with ε=1 is approximately equal 

to the acceptance rate of the algorithm RANDOM_RULE. Although the initial weights of 

the algorithm REWARD_ONLY_I are the same as the initial weights for the algorithm 

BEST_INITIAL, the acceptance of the REWARD_ONLY_I is lower than that of 

BEST_INITIAL. This is explained by the fact, that the initial weights for the algorithm 

REWARD_ONLY_I play a role in the selection of recommendations only on the first 

presentation of the respective recommendation. After the first presentation, the weights are 

replaced with values calculated according to the formula (3.2.1). Thus, the setting of the 

initial weights does not play a significant role for the acceptance rate of the reward-only 

algorithms without aging and therefore the algorithms REWARD_ONLY_0 and 

REWARD_ONLY_I behave in a similar way. This insignificant influence of the initial 

weights is also the cause for the fact, that the REWARD_ONLY algorithms in our 

experiment are not able to achieve notably better acceptance rates than BEST_INITIAL. 

The improvement of the acceptance rate achieved through exploration depends how 

different the recommendation rules are in terms of popularity and how much time is 

allowed for learning. Most of the rules used in our simulation are quite similar in terms of 

popularity. The absolute value of the gain is therefore not large. The superiority of the 

REWARD_ONLY to algorithms based on the initial weights comes to light when the 

initial weights are inadequate or the REWARD_ONLY algorithm is allowed more time for 

learning. The second situation is illustrated in Figure 2.23.  

In Figure 2.23 we show the learning behavior of the REWARD_ONLY algorithms 

in time. As shown in Figure 2.18, the overall recommendation acceptance rates in our 
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usage data fluctuate strongly from month to month. In order to alleviate this fluctuation of 

user interest and highlight the changes of the acceptance rate which are due to the learning 

behavior of the algorithms, we have taken the usage data from February 2006 and 

re-iterated our algorithm over these usage data 25 times without re-setting the weights of 

the recommendation rules.  

As shown in Figure 2.23, the algorithms BEST_INITIAL and RANDOM_RULE 

are not improving with time since they have no optimization component. The algorithms 

with the learning component are significantly improving with time. As we already 

mentioned, the initial weights do not play a large role for our REWARD_ONLY 

algorithms, therefore REWARD_ONLY_0 and REWARD_ONLY_I exhibit very similar 

behavior. The small fluctuations of the acceptance rates in Figure 2.23 are caused by the 

pseudo-random exploration component of the algorithm. 

In Appendix 2 we have provided two examples of how the recommendation rules 

weights change with respect to the presentations during the learning process (Figures A2.1, 

A2.2). The examples provided are for the algorithm REWARD_ONLY_0, which provides 

a good comparison since in this algorithm all the weights are the identical at the beginning. 

The parameter ε in Figures A2.1 and A2.2 is set to 0.2. As shown in Figures A2.1 and 

A2.2, a distinctive feature of the REWARD_ONLY algorithms is that in the beginning of 

the learning process the outcome of each presentation has a larger impact on the 

recommendation rule weights than later on. At any given presentation, however, all 

previous presentations have the same influence on the current value of a given 

recommendation rule. For our task of presenting recommendations on the website different 

behavior seems to be more reasonable. It seems that more recent presentations should have 

more impact on the recommendation rule weights than the older ones. This can be 

achieved by applying aging, as described in the next subsection.  
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6.1.3 Reward-only Algorithms with ε-greedy Balancing Technique and Aging 

(REWARD_DEC) 

The reward-only algorithms with aging are an extension of the reward-only 

algorithms without aging, presented in the previous subsection. The weights of the 

recommendation rules are calculated according to the formula (3.2.4). When aging is in 

effect, the results of the older presentations have less impact on the current values of the 

recommendation rule weights. Similarly to the REWARD_ONLY, a fraction of the 

presentations is used to perform exploration. This size of this fraction is managed by the 

parameter ε. The acceptance rates of the algorithm with respect to the value of the 

parameter ε are shown in Figure 2.24.  

The algorithms REWARD_DEC_0 and REWARD_DEC_I stand respectively for 

reward-only with aging (decayed) with initial weights set to 0 and reward-only with aging 

(decayed) with initial weights set by the recommendation generators. As shown in Figure 

2.24, the initial weights play a more significant role for the REWARD_DEC algorithms 

than for REWARD_ONLY algorithms. This is due to the recommendation rule weight 

being amended, not replaced during the learning process.  The algorithm using the initial 

weights supplied by the recommendation generators is able to achieve significant 

improvement compared to BEST_INITIAL. With ε=0 the acceptance rate is roughly equal 

to the acceptance rate of the algorithm BEST_INITIAL. As exploration increases, the 

acceptance rate of the algorithm REWARD_DEC_I also increases until the maximal value 

is reached at ε~=0.2.  

 The behavior of the algorithms REWARD_DEC_0 and REWARD_DEC_I with 

respect to the parameter T is shown in Figure 2.25. The parameter ε for this experiment 

was set to 0.2. As shown in Figure 2.24, the value of T has little influence on the 
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acceptance rate of the REWARD_DEC algorithms, with exception of T=1. In case when 

T=1 the formula (3.2.4) degenerates into replacement of the previous weight by the latest 

feedback value. The acceptance rate in this case is notably low. For other values of T the 

acceptance rate does not vary significantly. Such behavior is explained by the fact, that the 

recommendation rules are selected by comparing their weights to each other. As long as 

the value of T is the same for all recommendation rules, the relative significance of a 

recommendation rule compared to other rules also stays the same regardless of the absolute 

values of the rule weights.  

For the algorithm REWARD_DEC_I this significance is also influenced by the 

initial weights of the rules. Because of this, the algorithm REWARD_DEC_I shows a 

slight decrease in the acceptance rate for higher values of T. According to the formula 

(3.2.4), higher values of T prolong the influence which the initial weights have on the 

relative significance of the recommendation rules. As seen in Figure 2.24, the learned 

recommendation rule weight can result in higher acceptance rates than the initial rule 

weights. Prolonging the influence of the initial weights can therefore lead to a decrease of 

the acceptance rate. 

The learning behavior of the REWARD_DEC algorithms in time is shown in 

Figure 2.26. Comparison of Figure 2.26 with Figure 2.23 reveals that initial weights have 

more influence on the REWARD_DEC algorithms than on REWARD_ONLY algorithms. 

This influence is especially remarkable in the initial phase of the learning and gradually 

wears off later on. The fluctuations of the lines representing the acceptance rates of 

REWARD_DEC_0 and REWARD_DEC_I in Figures 2.25 and 2.26 are due to the 

behavior of the pseudo-random number generator which is used for exploration.  

The examples of weight learning for the algorithm REWARD_DEC_0 are shown in 

Figures A2.3 and A2.4 in Appendix 2. For examples of the weight learning for the 

algorithm REWARD_DEC_0 the same two products were used as for REW_ONLY_0. 
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The value of the parameter ε in Figures A2.1 and A2.2 was set to 0.2, the value of 

parameter T to 1000. As the comparison of Figures A2.3 and A2.4 with Figures A2.1 and 

A2.2 shows, every new presentation has the same impact on the weight of the 

recommendations rules, regardless whether it appears in the beginning of the learning 

process or at a later time. The comparison of Figures A2.2 and A2.4 shows in particular, 

that the REWARD_DEC algorithms respond to the changes in the user behavior more 

promptly than the REWARD_ONLY algorithms. Figure A2.4 indicates that the product 

ECD008264M (Anno 1701 Limited Edition) was very popular as a recommendation in the 

beginning of the learning process. At a later point of time it suffered a sudden popularity 

loss. Subsequently the popularity has somewhat increased again. In Figure A2.2, however, 

this development of the product popularity is not reflected. In Figure A2.2, the weight of 

this recommendation steadily decreases after the initial peak.  

6.1.4 Reward-penalty algorithm (REWARD_PEN) 

The reward-penalty algorithm is a modification of the reward-only algorithm with 

aging. The same formula (3.2.4) is used to calculate the weights of the recommendation 

rules. However, as opposed to the reward-only algorithms, the feedback values in case the 

recommendation is not accepted are set to negative values (penalty). In contrast to reward-

only algorithms, the reward-penalty algorithm does not need to sacrifice a fraction of the 

presentations to the exploration, since the exploration is provisioned by using penalty. We 

have made a series of experiments varying the values of all parameters to determine the 

optimal (or near-optimal) parameter values. The figures presented in this section illustrate 

the behavior of the algorithms with respect to the variation of the value of some parameter 

with other parameters set to near-optimal values discovered during the previous series of 

experiments. 
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The correlation between the acceptance rate of the reward-penalty recommendation 

algorithms and the value of the parameter T is shown in Figure 2.27. The algorithm 

REWARD_PEN_0 uses 0 as initial weight of all recommendations. The algorithm 

REWARD_PEN_I uses the weights generated by the recommendation generators as initial 
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weights. In the experiments presented in Figure 2.27 the value of the negative feedback 

was set to -0.001. As shown in Figure 2.27, the acceptance rate of the 

REWARD_PENALTY algorithms with respect to the values of the parameter T behaves 

differently than the acceptance rates of the REWARD_DEC algorithms. In particular the 

smaller values of T lead to smaller acceptance rates. With smaller values of T the 

optimistic initial weights are wearing off too quickly and the learning is insufficient. 

REWARD_PEN algorithms do not have a separate exploration component to compensate 

this insufficient learning. For the values of T>=500 the acceptance rate is consistently high. 

In our subsequent experiments with the algorithms REWARD_PEN_I and 

REWARD_PEN_0 we use T=500.  

Figure 2.28 shows the correlation between the value of negative feedback and the 

acceptance rate of the recommendation algorithms REWARD_PEN_0 and 

REWARD_PEN_I. For the values from -1 to approximately -0.001 the acceptance rate 

grows as the absolute value of the negative feedback decreases. The maximum of the 

acceptance rates for both algorithms lies between feedback values of -0.001 and 10
-4

.  

Between the values 10
-4

 and 10
-5 

the acceptance rate somewhat decreases. Between 10
-5 

and 10
-12 

the
 
acceptance rate stays constant. The negative feedback value -0.001 represents 

the optimum between optimistic initial values and aging. This holds also for the 

REWARD_PEN_0, since zero initial weights also become optimistic weights in the 

presence of negative feedback. For the negative feedback values from -1 to -0.001 the 

initial weights are too optimistic and allow too much exploration, which leads to a decrease 

in the acceptance rate. The values of negative feedback below -0.001 provide not enough 

exploration for all recommendations to be learned. The feedback value of 0 leads to a 
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decrease in the acceptance rate for both REWARD_PEN_0 and REWARD_PEN_I. The 

remarkable ”shelf” in Figure 2.28 from 10
-5

 to 0 shows that even the smallest absolute 

values of negative feedback allow to avoid the Exploration Situation 1
16

, whereas  

feedback value of 0 does not avoid this situation. In our further experiments with 

REWARD_PEN algorithms we use the negative feedback value of -0.001.  

The learning behavior of the reward-penalty algorithms in time is shown in Figure 

2.29. Figures A2.5 and A2.6 in Appendix 1 show the examples of weight learning for the 

algorithm REWARD_PEN_0 on the EC website.  

6.1.5 Learning Behavior in Time for Different Algorithms 

We have shown the learning behavior in time for every algorithm in the 

corresponding sections. Now we would like to present and compare the performance of the 

best algorithms and parameter combinations together.  

The evolution of the acceptance rates of the different optimization algorithms in 

time are shown in Figure 2.30. In this Figure we repeatedly employ the usage data of 

February 2006 to show how the optimization algorithms learn in the absence of the drift of 

interest.  The algorithm BEST_INITIAL is used as a baseline for comparison. This 

algorithm does not use any optimization technique and its acceptance rate stays constant 

for all iterations. In contrast, the acceptance rate of the optimized algorithms increases with 

time. In the first iterations, the acceptance rate of the optimized algorithms grows quickly. 

                                                 
16

 As explained in Section 3.3. 
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The optimized algorithms surpass the BEST_INITIAL algorithm within the first iterations. 

In the later iterations, the acceptance rate of the algorithm REWARD_PEN stabilizes. The 

acceptance rate of the reward-only algorithms continues to fluctuate even after many 

iterations (the respective lines in the graphic are “jagged”). This is due to the pseudo-

random exploration component of these algorithms. The “jagged” lines in the graphic are 

somewhat smoothed due to the fact that they represent the average acceptance rate of 10 

runs of the experiments.  

6.1.6 Influence of the Number of Recommendations on the Acceptance Rate 

The quality of the recommendations candidates and the quality of the algorithm which 

selects the recommendations for presentations are not the only factors which influence the 

acceptance rates. The number of simultaneously presented recommendations N also 

influences the acceptance rate of the recommendations. Figure 2.31 shows the correlation 

of the maximum number of the recommendations presented in the same presentation with 

the acceptance rate of the different algorithms in the simulation. 

It is not likely that the real-life data follow exactly the same pattern for large values 

of N. Large numbers of recommendations are expected to overwhelm the user. We did not 

have the possibility to conduct a real-life study of how a user reacts to the increase of the 

number of recommendations. The user reaction to the larger number of presented 

recommendations depends also on the layout of the website and the amount of other 

information presented on the website. However, it is realistic to assume that for smaller 
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numbers of recommendations which do not overwhelm the users the increase in the 

number of recommendations should have a positive impact on the acceptance rate on real-

life websites in the manner similar to presented in Figure 2.31. 

The values of N higher than 30 are not very likely to be found on real-life websites 

because of the design and usability limitations. In Figure 2.31 these values are used to 

illustrate the theoretical limits of the acceptance rates which can be achieved by the 

discussed recommendation algorithms on our usage data. The algorithm 

RANDOM_PRODUCTS shows the limit of what can be achieved by using all products as 

recommendations. All the other algorithms show the limit of what can be achieved by 

using all the available recommendations rules which are generated by the recommendation 

generators. For these algorithms, the acceptance rate grows remarkably faster for the lower 

values of N. However, at a value of N~=20 all these algorithms reach their limit. This is 

simply due to the fact that the set of recommendation rules provided by the 

recommendation generators rarely contain more than 20 recommendations for every 

product. The maximal theoretically possible acceptance rate with our set of 

recommendation rules lies at 0.0088, maximal theoretically possible acceptance rate in 

case all products are used as recommendations lies at 0.0163.  

6.1.7 Simulation-based Comparison of the Recommendation Algorithms 

In Figure 2.32 we present the comparison of the basic algorithms (as shown in 

Figure 2.17) amended with the results obtained by applying optimization algorithms with 

near-optimal parameter values as described in the previous subsections. The algorithms 
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BEST_STATISTIC, WORST_STATISTIC, STAT_CURRMONTH, 

STAT_PREVMONTH, BEST_INITIAL, WORST_INITIAL, RANDOM_RULE and 

RANDOM_PRODUCT have been described in Subsection 6.1.1 and serve here as the 

baseline for comparison. The algorithm RANDOM_PRODUCT has a very low acceptance 

rate which appears as an empty bar in Figure 2.32. The algorithms REWARD_ONLY_I, 

REWARD_DEC_I, REWARD_PEN_0 and REWARD_PEN_I are the optimized 

algorithms. As shown in Figure 2.32, the REWARD_ONLY_I algorithm is better than the 

algorithm BEST_INITIAL based only on the initial weights supplied by the 

recommendation generators. However it is worse than the algorithms BEST_STATISTIC 

and STAT_CURRMONTH which use a-posteriori statistical data. The use of these 

statistical data explains their superiority to REWARD_ONLY_I and all other optimized 

recommendation algorithms, but also makes it impossible to use these algorithms on real-

life websites. The superiority of STAT_PREVMONTH to REWARD_ONLY_I can be 

explained by the fact that it uses only more recent data to present recommendations, as 

opposed to the REWARD_ONLY_I which does not give the more recent data preference 

over the older data. The algorithm REWARD_DEC_I addresses this issue and achieves 

somewhat better results than STAT_PREVMONTH. The algorithms REWARD_PEN_0 

and REWARD_PEN_I achieve remarkably better results by eliminating the pseudo-

random component in the presentation of recommendations. The algorithm 

REWARD_PEN_I which utilizes the initial weights generated by the recommendation 

generators performs better than REWARD_PEN_0 which does not use the initial weights 

generated by the recommendation generators. Thus, the algorithm REWARD_PEN_I 

achieves the best results among the algorithms which do not use a-posteriori knowledge 

and can be used to generate recommendations on real-life websites. 

6.1.8 Comparison of the Results Obtained from the Real-life Website and the 

Simulation 

We have developed the real-life prototypes EDU and EC before the development of 

the simulation environment. To justify the results obtained in the simulated environment 

and show that they can be used to reason about the real-life user behavior we have repeated 

the same set of experiments which is shown in Figure 2.12 on our SIM prototype. The 

results for the experiments repeated in the simulated environment are presented in Figure 

2.33. The comparison of the figures shows great similarity of the real-life results and 

simulated results, despite the fact that the usage data for the SIM environment was taken 

from the different periods of time compared to the EC evaluation. In the period from which 

the usage data employed for simulation originate the website EC became more popular and 

the overall recommendation acceptance rate (as well as the purchase rate) has increased. 
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As shown in Figures 2.12 and 2.33, in both real-life and simulated environments the 

reward-penalty algorithms achieve better results than the REWARD_ONLY algorithms. 

As expected, the RANDOM_RULE algorithm performs poorly both in real-life and in the 

simulation. In the case of reward-only algorithm the value of the parameter ε=0.2 brings 

better results than the value ε=0.05 for both real-life and simulation-based experiments. 

Also, for both real-life and simulation-based experiments the reward-penalty algorithm 

with T=500 performs better that with T=200. However, the difference between the 

acceptance rates of reward-penalty with T=500 and reward-penalty T=200 in the real-life 

experiments is larger than in the simulation-based experiments. In general, the comparison 

of the acceptance rate for the different algorithms for the real-life and simulation-based 

data shows that the simulation behaves similarly to the real-life website and therefore the 

simulation can be used to draw conclusions about the behavior of the real-life website.  

6.1.9 Ontology-based Recommendation Selection Policies 

We have tested different ontology-based recommendation selection policies in the 

EDU and SIM environments. The primary goal of the tested selection policies was to 

provide the recommendations for the cases when not enough recommendations can be 

supplied for a presentation by a straightforward selection policy which provides 

recommendations directly matching the current context. The following ontology-based 

selection policies were tested on the EDU site: DIRECT, DIRECT+PARENTS, 

ONLY_PARENTS, ONLY_SIBLINGS. For the SIM environment, we have analyzed the 

drawbacks of the policies used in the EDU environment and have created improved 

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

A
cc

e
p

ta
n

ce
 r

at
e

Figure 2.33. Acceptance rate of the algorithms and parameter 

combinations used in the prototype EC as measured in the 

simulation  environment SIM.

REWARD_ONLY_I - 0,2 - 0 REWARD_ONLY_I - 0,05 - 0 REWARD_PEN_I - 0 - 500

REWARD_PEN_I - 0 - 200 RANDOM_RULE



Mykola Golovin Part II. Adaptive Web Recommendations 

 

70 6.1 Evaluation of different recommendation selection algorithms 

 

selection policies PARENTS_SIM and SIBLINGS_SIM. The ontology selection policies 

we have evaluated are based on the content ontology.  

Figure 2.34 shows the session acceptance rates (number of sessions where at least 

one recommendation was accepted divided through total number of sessions) for the 

selection policies tested on the EDU prototype. The policy ONLY_PARENTS ignores the 

direct matching recommendations and takes only the recommendations from the higher 

levels of content hierarchy. The policy ONLY_SIBLINGS searches for the 

recommendations among the hierarchy siblings (nodes having a common parent with the 

current node), also ignoring the direct matches. According to the test results, the DIRECT 

policy performs better then the policy DIRECT+PARENTS. The DIRECT+PARENTS 

policy is able to find recommendations even in cases when no directly matching 

recommendations are available. However, since the weights of the directly relevant 

recommendations are not given any preference over the recommendations relevant to the 

parent ontology nodes, this leads to a decrease in the acceptance rate. Also, there are some 

pages which have no directly assigned recommendations and therefore no recommendation 

presentations have been registered for the DIRECT policy, which may have lead to the 

increased acceptance rate. These experimental results were published in [GR05].  

We have analyzed the weaknesses of the ontology-based selection policies and 

performed further experiments in the SIM environment with improved selection policies. 

In the SIM environment, we have tested the following ontology-based selection policies: 

DIRECT, PARENT_SIM and SIBLINGS_SIM. The policy DIRECT uses only the 

recommendations of the given context and is equivalent to the DIRECT policy used in the 

EDU experiments. The policy PARENT_SIM uses the recommendations assigned to the 

parent nodes of the current content context node in addition to the recommendations 

assigned directly to the current content context node. The policy SIBLINGS_SIM uses the 

recommendations assigned to the sibling nodes of the current content context node in 

addition to the recommendations assigned directly to the current content context node. The 

policies PARENT_SIM and SIBLINGS_SIM work in a different way than the parent-

based and siblings-based policies used in the EDU environment. The recommendations not 

directly associated with the current content context node are used only in cases, when the 
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number of recommendation rules assigned to the current node is less than the number of 

recommendations N which are to be presented according to the design of the website. Also, 

these recommendations are always shown in the list below the recommendations directly 

relevant to the current node, regardless of their weight.  If such recommendation is clicked, 

its weight is not changed. If this recommendation turns out to be steadily successful for the 

given context, the recommendation generator based on association rules should notice this 

and create a new recommendation directly assigned to the current context. This new 

recommendation will then participate in the weight optimization process. Thus, the policies 

PARENT_SIM and SIBLINGS_SIM help explore and find additional recommendations 

for the contexts which do not have a sufficient number of recommendations. As shown in 

Figure 2.35, both PARENT_SIM and SIBLINGS_SIM lead to an increase in the 

acceptance rate. The effect of the selection policies PARENT_SIM and SIBLINGS_SIM 

on the acceptance rate can be greater or smaller depending on how many contexts have 

insufficient number of recommendations. For our SIM environment only about 30% of the 

contexts have less than N recommendations (N=5). This is due to the fact that the 

similarity recommendation generator is able to provide enough recommendations for the 

majority of contexts. Therefore, the impact of our policies on the acceptance rate is 

moderate. 

6.2 Optimizing The Retrieval of Information From The Ontology Graphs 

In our web recommendation architecture we use the ontology graphs for the flexible 

representation of the concepts which can influence the recommendations presented on the 

website. The ontology graphs are stored in the relational database. The straightforward 

method of storing the graph information which is shown in the database schema in Figure 

2.9 is by using two tables, one for the ontology graph nodes and another for the ontology 

graph edges. This method of storing graph information in the relational database shows 

significant drawbacks with respect to the performance of the retrieval of the data. The most 

frequent and most time-critical usage of the ontology data in our system is the retrieval of 

the ancestors of a given ontology graph node. In case the ontology graphs are stored in the 

relational structure shown in Figure 2.9, every such retrieval requires several queries with 

joins. Depending on the total number of edges, nodes and on the average length of the 

paths in the ontology graphs, such operation may be lengthy and put significant load on the 

database server. In our prototypes, the size of the ontology graphs, the maximal length of 

the paths in them and the number of the page views per second are low. Therefore, in our 

prototypes we use the straightforward technique based on the relational database structure 

presented in Figure 2.9. However, we have also investigated the possibilities for 

optimizing the retrieval of the ontology data for the websites with larger ontologies and 

more page views per second. We have explored two performance optimization techniques. 

The first technique relies on computing the transitive closure of the graphs [DCES04]. The 

second technique makes use of the main memory to store the graph. It is also possible to 
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combine the two techniques and store the ontology graph‟s transitive closure in main 

memory. 

Figure 2.36 shows the results of the experimental comparison of the different 

optimization strategies. The operation performed in the experiments was the retrieval of all 

ancestors of a given node. The ontology used in the experiments is a consolidation of three 

e-commerce ontologies which are also extensively used in the Part III of this thesis: 

Softunity.com ontology, Amazon.de ontology and eBay.de ontology. For our experiments, 

all the above ontologies were restricted to the interest areas Software, Video and Games. 

The consolidated ontology is a forest. The total number of nodes in the consolidated 

ontology is 3432; the total number of edges is 10435. The maximal length of the paths 

between nodes in the consolidated ontology graph is 5. 

The following optimization strategies are shown in Figure 2.36:  straightforward 

implementation with ontology graph stored in the relational database, transitive closure 

stored in the relational database, straightforward implementation with ontology graph 

stored in the main memory, transitive closure stored in main memory. For the selection of 

the ancestors we selected different number of nodes from the ontology using a pseudo-

random algorithm. The implementation of the memory-based techniques was done in Java. 

Standard Java class java.util.HashMap was used to store the data in main memory. The 

standard Java implementation of a hashing algorithm used for retrieval provides for the 

high retrieval performance. The memory needed to store the ontology graph in our 

example is relatively low (around 50KB). Since the time needed to perform the same 

operation on a computer may be different depending on other conditions, for example on 

the activity of the garbage collector in the Java Virtual Machine, the experiments used to 

compare the performance of the retrieval was repeated 10 times. The execution times 

presented in Figure 2.36 are the average times calculated over 10 experiments. The 

computing of the transitive closure for large ontology graphs may become a problem in 

general case as well as specially for the relational databases. Several algorithms were 

proposed for efficient solution of this problem in general, for example [NUU95]. Some of 

the commercial relational database implementations, such as Oracle and IBM DB2 provide 

extensions to the SQL language to allow transitive closure computation [DCES04].  The 

computation of the transitive closure is an additional step which needs to be performed 

during the updates of the ontology graph data. In our setting, the update of the ontology 

graphs is a negligibly infrequent operation. We used a machine with 1 GB main memory 

and one 1.7 GHz CPU. The database server used to store the ontologies in our tests is 

MySQL Server 5.0.  

The Y-axis in Figure 2.36 is logarithmic with base 10. As shown in Figure 2.36, the 

transitive closure is about 3 times faster than the straightforward approach when both 

methods use relational database and about 2 times faster when both methods are memory-

based. The memory-based algorithms are up to 100 times faster than their RDBMS-based 

counterparts. Although the memory-based systems are less scalable with respect to the size 

of the ontologies, they are sufficient for the ontologies which are currently used on the 

largest e-commerce websites. Therefore, performing the graph traversal in memory is the 

most effective way to speed up the selection of the relevant ontology nodes. 
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As shown above, we have several ways of significantly optimizing the use of the 

ontology graph in our system, making it suitable for use on the large real-life websites. 

While we deem this level of optimization to be sufficient for practical applications, the 

authors of [CM05] go even further and propose a method which guarantees a constant-time 

retrieval of the relevant recommendations from an ontological structure similar to ours. 

This work is discussed on more detail in Section 7.6.  

6.3 Summary: Prototypes and Experiments 

In this chapter we have discussed the implementation of our recommendation 

system architecture on several prototypes and presented experimental results and 

evaluations. We have talked about the issues which need to be solved during 

implementation and illustrated our architectural decisions with real-life examples.  

The experiments and discussion presented in this chapter indicate that our 

recommendation system architecture demonstrates some beneficial properties which make 

it suitable for use on commercial websites. Although the achieved increase of the 

acceptance rate due to optimization is not large compared to the total number of visits on 

the website, but as we have discussed this relatively modest increase of the acceptance rate 

can bring a significant increase of profit in the monetary equivalent especially on the large 

e-commerce websites.  
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7. RELATED WORK 

The research work in the field of recommendation systems is ample and manifold 

due to the important practical incentives such as the continuous growth of the Internet and 

the commercial success of the recommendation systems used by the large e-commerce 

websites. The problem of making web recommendations was investigated by many 

researchers from different research fields. We are not able to describe every work related 

to the task of making web recommendations here. Here we describe the works which 

reflect the different aspects of the architecture of the recommendation systems in the most 

expressive way. We particularly focus on the works which are relevant not only to the task 

of making recommendations but also to the architectural decisions which we present in this 

thesis. The examples of such decisions are in particular the use of ontologies to represent 

the semantic information used for making recommendations, use of data warehouse 

technology or use of machine learning. We also present some works which are less related 

to our work but are characteristic for specific applications of recommendations or specific 

research areas. For the other works, we give a more general description and refer to the 

surveys.  

Recommendation systems are sometimes placed in the more general research field 

of personalization. Recommender systems can be considered one of the methods to 

implement personalization. Since this is also the method most often found in practice, the 

overlap of these research fields is large and some researchers use the terms 

“personalization” and “recommendation systems” as interchangeable. 

One of the important characteristics of our system which is common to our work 

Characteristic Nr 

Surveys and classifications of recommendation systems, techniques and 

supporting tools (Section 7.1) 

1 

Hybrid recommendation systems, combination of multiple recommendation 

algorithms (Section 7.2) 

2 

Evaluation and comparison of recommendation systems (Section 7.3) 3 

Web data warehousing, web usage mining and other database-related 

technologies (Section 7.4) 

4 

Systems based on Markov Decision Process and reinforcement learning 

(Section 7.5) 

5 

Recommendation systems employing concept hierarchies or ontologies 

(Section 7.6) 

6 

Personalization in broader sense 7 

Construction and usage of user profiles 8 

Commercial systems and systems for e-commerce 9 

Feedback-based learning and optimization 10 

Table 2.3. Important characteristics of the related research work.  
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and a large number of other works in the field is combining of multiple recommender 

algorithms, i.e. hybrid recommendation system architecture. Combining different 

recommender algorithms has become a widespread technique for increasing the quality of 

recommendation systems. A survey of the hybrid recommendation systems including a list 

of strengths and weaknesses of the different recommendation generator algorithms and a 

classification of the hybridization methods can be found in the [Burk02][Burk07].   

In particular we would like to mention the work of A. Thor and E. Rahm. The 

prototype presented in their work and the prototype EDU presented in this thesis share a 

Research work (Project name and/or authors) Characteristics 

Adomavicius and Tuzhilin [AT05] 1;2 

Anand and Mobasher [AM03] 1;7 

Perugini et al. [PSF02][PSF04] 1;8 

Burke [Burk02][Burk06][Burk07]. 1;2;3 

Goy at al.[GAP07] 1;7;9 

Pierrakos et al.[PPS03] 1;4;6;7;9 

Schafer, Konstan and Riedl [SKR01] 1;7;9 

Fab (Balabanovic) [Bal97] 2;10 

WindOwls  (Kazienko and Kolodziejski) [KK05][KK06] 2;9;10 

Hayes, Massa, Avesani and Cunningham [HMAC02] 3 

Herlocker, Konstan, Terveen and Riedl [HKTR04] 3 

Yang and Padmanabhan [YP05] 3 

CourseRank (Koutrika et al.) [KIBG08] 2;4;6 

RQL (Adomavicius and Tuzhilin) [AT01][AT01a] 4;8 

Web Utilization Miner (WUM, Spiliopolou et al.) 

[SF98][BS00][SP01] 

4 

WebSIFT (Cooley et al.)  [CTS99a][CTS99b] 4;3 

Rahm, Stöhr et al. [SRQ00][RS03] 4;1 

Thor and Rahm [TR04] 4;1;2;10 

Shani, Brafman and Heckerman [SBH02][SHB05] 5;10 

Mahmood, Ricci et al. [MR07][MR07a][MR08] 

[MRVH08][MR09][MRV09] 

5;10 

Preda and Popescu [PP04][PP05] 5;3;6 

Prudsys RE [Prud06] 5;2;9;6;10 

Taghipour, Kardan et al. [TKG07] [TK07] 5;3 

Acharyya, Ghosh [AG03] 6 

Chen, McLeod [CM05] 6 

Mobasher , Jin, Zhou.[JM03][MJZ03] 6;3 

Quickstep and Foxtrot (Middleton et al.) 

[MRS01][MASR02][MSR03][MSR04] 

6;2;8 

Table 2.4. Characteristics of the research work in order in which it appears further in 

this chapter (For description of numbers in column Characteristics see Table 2.3) 
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number of components which were developed in close cooperation. Another work which 

deserves a special mention is the Prudsys RE. The distinguishing feature of this work that 

it has been from the beginning developed as a commercial product rather than a research 

project. According to the authors, their architecture was inspired by our work and by the 

work [SBH02]. 

In the next section of this chapter we list several surveys, which can be consulted 

for a broader overview of the related work. In further sections we present research work 

subdivided by a number of prominent characteristics, such as combination of multiple 

recommendation algorithms, use of data warehousing technology and data mining, use of 

Markov Decision Process and reinforcement learning and use of ontologies. In case when 

the presented work possesses more than one of the listed characteristics and could be 

placed into several sections, we choose the section which corresponds to the more 

prominent characteristic or to the characteristic which deserves special discussion in 

comparison to our approach.  An overview of characteristics which we deem to be 

important in the related work is given in Table 2.3. Important characteristics highlighted in 

bold cursive also serve to define corresponding subsections. Table 2.4 shows the 

characteristics which are exhibited by the related research work presented in this section.  

7.1 Surveys 

A good survey of the state of the art in the research on recommendation systems 

and a comprehensive overview of the possibilities for extension of such systems are given 

in [AT05]. There are also several extensive surveys which target either the more general 

field of personalization or more specific subareas within the field of recommendation 

system research like hybrid recommendation systems [Burk02], recommendations in 

e-commerce [SKR01], recommendation systems for travel and tourism [FGJ+06], 

explanations in recommendation systems [TM07]. We review some of these surveys below 

in more detail.  

Adomavicius and Tuzhilin 

In the survey [AT05] the authors classify the recommendation systems into three 

large categories (citing the earlier work [BS97]): content-based recommendation systems, 

collaborative recommendation system and hybrid recommendation systems. The 

collaborative recommendation systems are further subdivided into memory-based systems 

and model-based systems. The authors also present classification for the different hybrid 

recommendation approaches; this classification is however less elaborate than the 

classification of hybrid recommendation systems provided by the survey 

[Burk02][Burk06][Burk07]. The knowledge-based recommendations which are often 

referred to by other authors are not included in the classification. The reason for this may 

be that the knowledge-based recommendations are rarely used alone. Usually the 

knowledge-based recommendations are used as a part of a hybrid recommendation system. 
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The authors discuss the relative strengths and weaknesses of the collaborative and content-

based recommendations. They point out that in several research projects the hybrid 

recommendations have been shown to provide better quality recommendations and to 

alleviate the common problems of both content-based and collaborative filtering.  

Furthermore the authors provide an overview of the promising extensions to the 

basic approaches. They mention the possibilities for the richer representation of the 

information about users and items, using the mathematical approximation theory, tackling 

the multidimensionality problem, applying multi-criteria optimization and providing 

flexible manual control of the recommendations.  

Anand and Mobasher 

The work [AM03] is a survey of the more general field of web personalization
17

. 

The work features a strict definition of the personalization process, a classification of the 

intelligent techniques which can be used to implement personalization and a discussion of 

the different classification criteria for such techniques. The authors view web 

personalization as an application of data mining and machine learning techniques to the 

task of predicting user needs and adapting the website with the goal of improving user 

satisfaction [AM03]. Quite interestingly, the authors also state that the goal of the 

personalization process is to recommend items to users, thus blurring the distinction 

between the concepts of personalization and recommendation system. Throughout the 

work [AM03], the authors sometimes refer to a personalization system as a 

recommendation system. 

The authors postulate that the personalization process consists of two stages: offline 

stage which concentrates on learning the necessary knowledge and online stage which 

utilizes the knowledge obtained in the first stage for personalizing the website. In our 

work, we enhance this concept by performing learning both in the offline and in the online 

stage.  

The classification of the personalization techniques according to [AM03] can be 

performed using many criteria. For example, the distinction between reactive and pro-

active techniques corresponds to the distinction between explicit and implicit feedback as 

discussed in this thesis. The authors note that in practice web users are often reluctant to 

provide explicit feedback even in cases when it can significantly improve the subsequent 

browsing experience. Among other criteria are collaborative versus individual (for 

example content-based) personalization, client-side versus server-side personalization, 

model-based vs. memory-based personalization etc. 

The authors also discuss issues which commonly need to be solved in 

personalization systems. Such issues include “cold start” problems (“new user”, “new 

item”), data sparseness, context-sensitivity, dynamics in user interests (“drift of interest”), 

and usage of domain knowledge. These issues are also explicitly addressed in our system. 

The authors point out that the problem of scalability is usually alleviated by using a model-

                                                 
17

 [AM05] and [AM07] are later versions of the same survey 
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based approach as opposed to a memory-based approach. In our system we are taking the 

model-based approach as well. The issues not addressed in our system explicitly include 

robustness against malevolent manipulation and promotion of user trust in 

recommendations provided by the recommendation system. With respect to the latter issue 

the authors cite the study [SS01] which states that in general a recommendation should 

generate two types of recommendations, useful recommendations and trust-generating 

recommendations. In our system we do not provide special trust-generating 

recommendations. However, manual recommendations can to a certain degree serve for 

increasing trust in recommendations provided by the recommendation system, since they 

usually exhibit high quality and are based on sophisticated domain knowledge. 

Perugini et al. 

The authors of the survey [PSF04] (an extended version of [PSF02]) provide an 

unusual perspective onto recommendation approaches. They call their survey a 

“connection-centric” survey. The connections which the authors place in the center of their 

analysis are the social connections, i.e. connections between people. The authors argue that 

the social aspect is an essential but previously underrepresented aspect of the 

recommendation system research. The survey concerns largely the collaborative-filtering 

approaches and the knowledge-based approaches. Content-based systems are omitted in 

the survey, since they do not fit well into the connection-centric perspective. 

The authors concentrate on different approaches to modeling the user profiles and 

the calculation of similarities or connections between different user profiles. They also 

review the possibilities of establishing a connection between the user profiles created by 

the recommendation systems and user profiles contained in the different social networks 

which are already available on the Internet. Another interesting research direction is 

“mining” of the explicit user networks from the implicit information contained for example 

in shared bookmark systems or in recommendation systems. The authors survey different 

aspects of interaction between a recommender system and the society, such as evaluation 

of recommendation systems in social context, targeting of the recommendation systems to 

different social groups, issues of privacy and trust. The work also identifies some of the 

possible future research directions, such as distributed recommendation systems, formal 

modeling of recommendation systems, new designs for human-computer interaction with 

recommendations, “recommendation appliances” – recommendation systems pre-installed 

on hardware devices which can be configured and utilized in any environment where 

recommendations are desired. 

Burke 

The author provides a very elaborate study of the different hybrid recommendation 

systems. There are several versions of the survey: [Burk02], [Burk06] and [Burk07]. The 

earlier version [Burk02] concentrates on classification issues, the latest version [Burk07] 
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provides comparative evaluation of different hybrid systems. The version [Burk06] is a 

technical report which contains a more detailed version of the comparative evaluation 

presented in [Burk07]. In the latest version of the survey [Burk07] the author studies 41 

implementations of hybrid recommender systems compares them to each other. The survey 

provides a classification of the basic recommendation techniques and a classification of the 

different approaches to creating a hybrid recommendation system by combining the basic 

techniques. According to [Burk02], the basic techniques can be classified as collaborative, 

content-based, demographic and knowledge-based techniques. The following classification 

of the possible ways of combining the basic techniques is proposed in [Burk02]: 

Weighted: the recommendation scores returned by different recommendation 

techniques are numerically combined into one score. 

Switching: the recommendation system automatically chooses which 

recommendation technique to apply in which case.  

Mixed: recommendations provided by the different recommendation techniques are 

presented together on the website. 

Feature Combination: the data from different knowledge sources (for example 

collaborative and content-based) are combined and given to a single recommendation 

technique as input data.  

Feature Augmentation: the output of one recommendation technique is used as 

input to the next technique. 

Cascade: recommendation techniques are assigned priority. The results of the 

recommendation techniques with lower priority are used to distinguish between the 

recommendations for which the recommendation techniques with higher priority return 

equal scores.  

Meta-level: one recommendation technique creates a model, which is then used by 

another recommendation technique.  

For each of the categories listed above the authors provide a schematic architecture 

description and several representative implementations in [Burk07]. We refer to this 

classification when describing hybrid recommendation systems further in this section. 

With respect to this classification, the architecture presented in this thesis possesses 

combined characteristics of a “mixed”, “feature-combination” and “meta-level” system, 

with “mixed” property expresses more prominently. The implementation of a weighted 

approach within our system would be straightforward. 

The authors also identify common problems which need to be addressed for 

implementing of a recommendation system. One of these problems is the so-called cold-

start problem, also known as new item or new user problem. Another is the problem of 

stability vs. plasticity, which we call drift of interest in this thesis. In our architecture we 

address both of these problems. 
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In the comparison part the authors evaluated the different hybridization techniques 

by creating a series of two-component hybrid recommendation systems and comparing 

their performance on the same input data set. The evaluation was performed in a simulated 

environment using data from a real-life website. The components have been chosen in such 

a way that each component represents a different class of recommendation techniques, so 

that all meaningful combinations of the basic techniques and all hybridization types. 

According to [Burk07], the systems based on feature augmentation hybridization technique 

achieve the best performance on the used dataset. The authors note that it is not clear to 

which extent the results obtained on a given dataset can be generalized and to which extent 

the peculiarities of the implementation of the basic recommendation techniques have 

influenced the results of the hybrid algorithms. This is however a relevant critique for our 

experimental evaluation and for many other experimental evaluations as well. The authors 

make a number of observations that certain hybridization techniques are better suited to 

certain combinations of the basic techniques. These observations are likely to be valid also 

in the general case, independently of the specific input data and implementation details of 

the basic techniques. The one observation which is shared by many researches is that the 

hybrid approaches can achieve better results than those which are possible by applying 

only the basic recommendation techniques.  

Goy at al. 

The survey [GAP07] deals with personalization for e-commerce applications. 

Personalization is a broader term compared to recommendation systems, however there‟s 

no distinct border between the recommendation systems and other personalization 

techniques. The authors consider E-commerce in the narrower sense of Business-to-

Customer (B2C) E-commerce. The survey considers commercial software which can be 

used for creating e-commerce systems with personalization as well as research prototypes 

of such systems. The authors note that the personalization possibilities implemented in 

commercial systems are rather simple, in contrast to the rich possibilities for management 

of content such as products, product catalogs, prices. The survey explores the connection 

between personalization techniques and modern technologies such as CRM (Customer 

Relations Management) and CDI (Customer Data Integration). [GAP07] classifies the 

personalization systems into adaptable systems and adaptive systems. The former are 

giving the user opportunities to adjust the system to his taste, the latter are trying to adjust 

themselves automatically. The authors then study the adaptive systems in more detail. 

They investigate what information can be used to create adaptive systems and common 

work steps of such system: acquisition of data needed to decide about adaptation, 

representation of these data and inference of the required adaptation, production of 

adaptation, i.e. making adjustments to the user interface. Web recommendations are the 

most known example of the possible adjustment, but there are also other possibilities for 

adaptation. Such adaptation possibilities are for example dynamically changing product 

catalogs. A promising application area of personalization is the adaptive representation of 

complex products with a large number of feature combinations, such as automobiles which 
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allow different types of color and additional equipment to be selected. It is often hard for 

the users to find the suitable combination. The personalization can help to determine the 

configurations which certain kinds of users find interesting. The authors investigate the 

types of advantage which personalization brings: improvement of customer relations, 

quality of service, usability of the website, integration of data from different suppliers. 

Pierrakos et al. 

The work [PPPS03] is a survey of the approaches which combine data mining and 

knowledge discovery techniques applied to web usage data with web personalization. They 

discuss different ways to personalize websites and different personalization functions. One 

example of a personalization function is a recommendation system. Other personalization 

functions include user salutation, personalized layout, personalized pricing scheme etc. 

The authors provide an overview of the most important aspects which need to be addressed 

in order to personalize a website based on the analysis of the usage data. They also define 

several steps which need to be implemented to provide personalization: data collection, 

date pre-processing, discovery of patterns, knowledge post-processing. For data collection, 

they review different possibilities for gathering the data, such as gathering data on the 

server side, on the client side and on the intermediary level such as proxy servers and 

firewalls. Data cleaning, crawler elimination, session detection and user identification are 

named among the tasks which need to be solved by data pre-processing.  For the pattern 

detection step, the authors describe and compare different approaches found in the 

literature such as clustering, classification, association rules and sequential patterns. For 

each method they discuss the specifics of its application to the task of automatic 

personalization. The knowledge post-processing is a process which is performed by 

humans. The authors describe several possibilities for knowledge representation which 

should simplify the task of knowledge post-processing.  

The authors have selected a number of works in the field of web personalization for 

more detailed discussion. They subdivide the personalization systems presented in these 

works in single-function systems and multi-function systems. The authors describe 

personalization systems originating from research institutions as well as commercial 

systems such as Oracle AS Personalization
18

.   

They also identify open issues in web personalization, such as scalability with 

respect to large volumes of data and possibility of incremental updates. They specifically 

point out the problem of users‟ behavior changing over time, i.e. “drift of interest” and 

indicate that this problem has not been sufficiently addressed in the research.  

They also indicate that the common representation of the knowledge obtained by 

web usage mining tools is an important practical issue and suggest using W3C knowledge 

representation standards such as RDF. In the architecture presented in this thesis we 

address this issue by using ontologies stored in a relational database to represent the 

knowledge. Such internal representation of the knowledge is superior in terms of retrieval 
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performance to the internal representation in RDF format. However, the import and export 

of knowledge between relational format and RDF format are straightforward. 

Schafer, Konstan and Riedl 

Similarly to the survey [GAP07], the survey [SKR01] concentrates on 

personalization of e-commerce applications. Although the title of the work explicitly 

specifies the focus on recommendation systems rather than more general term 

“personalization”, the perspective of the work is almost as broad as the perspective of 

[GAP07]. The authors survey the personalization and recommendation techniques used on 

several large e-commerce websites. They consider systems such as amazon.com, 

cdnow.com, ebay.com, drugstore.com, reel.com and compare different personalization 

techniques found on these websites. [SKR01] presents a taxonomy for recommendation 

techniques based on the input data received by the techniques and the output data provided 

by them. The aspects such as degree of personalization, different methods of delivery of 

recommendations to the user in e-commerce applications are analyzed in detail. The 

authors concentrate on the economical side of the personalization. They point out that the 

recommendation systems are at the moment used rather as “virtual salespeople” and not as 

marketing tools [SKR01]. Indeed, the recommendation systems can be used not only as 

sales instrument within the framework of a given website but also as a marketing 

instrument used in the framework of a company‟s marketing policy. The authors suggest 

using the recommendation systems for marketing campaigns or to capture a certain market 

segment.  

7.2 Hybrid Recommendation Systems 

Hybrid recommendation algorithms have been a fruitful research area in the recent 

time. Considerable amount of research work in this area has been published and a number 

of architectures of hybrid recommendation systems have been proposed.  For most of them 

we refer to the surveys [Burk02][Burk07]. However, some of them deserve special 

attention in the context of this thesis and we therefore discuss them in this subsection in 

more detail.  

Significant amount of research work deals with combining the collaborative 

filtering with content-based algorithms. Such architectures are proposed in [CGM99], 

[PZ03], [BH04], [Bal97] and other research works. Their approaches strive to combine 

both algorithms in one algorithm in an algorithm-specific way. The Fab system of [Bal97] 

is described below in more detail as an early example of such systems.  Our approach, in 

contrast, implements the collaborative, content-based and knowledge-based algorithms as 

independent recommendation generators, but dynamically combines their results in a way 

which is optimized for a given website and the taste of a given web user.  
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Fab (Balabanovic) 

The Fab recommendation system [Bal97] is one of the early hybrid adaptive 

recommendation system architectures which was the first to possess some of the features 

which we also used and extended in our architecture. The system in [Bal97] combines 

collaborative filtering and content-based recommendations. One distinctive feature of the 

Fab system is the usage of a central repository to store the recommendations. The 

repository is filled by so-called collection agents, which implement various 

recommendation algorithms. The selection agents select recommendations from this 

central repository and present them to users. Both collection and selection agents have own 

profiles. Each user is assigned its own selection agent. The profile of this selection agent 

serves as a profile of the user. Differently from our architecture, the system Fab relies on 

explicit feedback to adapt its behavior. The explicit feedback is used to adjust both the user 

profiles and the profiles of the collection agents. The adaptation is done on the level of 

recommendation algorithms, not on the level of individual recommendations. The author 

points out the need to perform both short-term and long-term learning in an adaptive 

recommendation system.  

WindOwls  (Kazienko and Kolodziejski) 

The work presented in [KK05][KK06] presents a hybrid recommendation system 

architecture able to combine recommendations from different recommendation algorithms 

in one website. The authors target particularly e-commerce websites. In the terminology of 

[Burk02] the hybridization method is “weighted”, i.e. the recommendation scores returned 

by different recommendation algorithms are combined numerically in one score. Two sets 

of numerical values are used to select the recommendations for presentation. One set of 

values contains the scores provided by the recommendation algorithms. In case when the 

same recommendation comes from several recommendation algorithms, the maximum 

score value is used. Another set of values contains the relative weights assigned to the 

different recommendation algorithms. In order to obtain the score of concrete 

recommendations, the scores provided by the recommendation algorithms are multiplied 

by the weights assigned to the respective recommendation algorithms. The sets of weights 

of the recommendation algorithms are individual for every user and are calculated 

statistically basing on the number of recommendations generated by the given 

recommendation algorithm which have been accepted by the user. The recommendation 

system also maintains a base set of weights, which represents the arithmetic average of the 

weights calculated over all sets of the individual users. The base set of weights is used to 

initialize the individual sets of weights for the new users.  

In some aspects the work presented in [KK06] can be considered a middle ground 

between the approach followed by [TR04] and the approach followed by our architecture. 

The architecture presented in [TR04] is a “switched” architecture in terms of [Burk02], 

which means that the different recommendation algorithms generate and present their 

recommendations separately and independently. The user feedback is used to learn the 
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optimal way of switching between the different recommendation algorithms. In the 

“mixed” approach presented in this thesis, the individual recommendations are detached 

from the recommendation algorithms which generated them to be learned and presented 

together. The feedback is used to influence the weights of the individual recommendations. 

In the architecture of [KK06] the recommendations are also detached from the 

recommendation algorithms and presented together. However, the feedback which they 

receive from the website is used to learn not the weights of the individual 

recommendations but the weights of the recommendation algorithms which generated 

them. In our opinion, the architecture of [TR04] has a major advantage over the 

architecture of [KK06]. In [KK06], the decision to give preference to one or another 

recommendation algorithm depends on the current user. In [TR04], this decision can be 

made basing on a large number of parameters of the so-called recommendation context, 

such as current user, current content and other information. The feature that associates 

[KK06] and [TR04] is that the feedback-based learning is done on the level of 

recommendation algorithms and not on the level of individual recommendations as in our 

architecture. This can be seen as both advantage and disadvantage, as discussed in Section 

5.4 of this thesis. Our experimental data obtained on the EDU prototype show that the 

feedback-based learning of individual recommendations can be more sensitive to the user‟s 

interest and achieve better acceptance rates, but it also suffers much more from the scarcity 

of feedback compared to the feedback-based learning on the level of recommendation 

algorithms. 

The authors present an evaluation of their system on a sample e-commerce website. 

The sample website is an internet shop that sells windsurfing equipment. With the total of 

65 users and 42 purchased products the website is significantly less representative than the 

websites we used to evaluate our architecture. Using the data collected on the sample 

website, the authors investigate the behavior of the acceptance rates of different 

recommendation algorithms in time.  

In [KK06] the authors polemicize with some of design decisions used in our 

architecture. In particular, they question the usage of the element CurrentUser in the rules 

of general form: 

 

<CurrentContent, CurrentUser, CurrentTime> => <RecomendedContent, Weight> 

 

This critique, however, is based on the mistakenly simplified understanding of our 

concept. So, the authors assume that the element CurrentUser represents an individual user 

in terms of the website. In our concept, however, this element represents the node in the 

ontology graph, which describes the semantic characteristics of the current user. If these 

semantic characteristics are shared by many individual website users, a node could be 

common for all these users, thus representing a user group rather than an individual user. 

Further, the authors assume that this element is mandatory. In our system, it is possible to 

employ the recommendation rules not depending on parts of the context or even 

completely independent of the context. Thus, any of the three context elements may be 

omitted in our recommendation rules. 
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7.3 Methods of Evaluation of Recommendation Systems 

There is a series of works which deal specifically with the evaluation of the 

performance of recommendation systems. This notorious interest is caused by the fact that 

such evaluation is has proved to be a complicated issue. Several aspects make evaluation 

of recommendation systems complicated, for example insufficient willingness of real-life 

websites to run experimental systems and lack of a universally accepted single 

performance measure. The works presented in this section study these and other aspects of 

the evaluation of recommendation system in detail. 

Hayes, Massa, Avesani and Cunningham 

The authors of [HMAC02] review different ways of evaluating the recommendation 

systems. They utilize the subdivision between to online evaluation and offline evaluation 

introduces first presented in [KR99] and give several examples of both evaluation types. 

The meaning of terms online and offline in [KR99] is different than the meaning they have 

in the description of our architecture. Online evaluation in [KR99] is understood as an 

evaluation performed on a real-life website with real users, whereas offline evaluation is an 

evaluation performed in a simulated environment. The data set used for offline evaluation 

usually also comes from a real-life website.  In [HMAC02] the authors argue that the only 

reliable way to evaluate a recommendation system is by using an online evaluation on a 

real website. The authors name examples of factors which can significantly distort the 

experimental results provided by an offline evaluation. [HMAC02] describes the 

architecture of a framework for online comparative evaluation of the recommendation 

systems. Their framework consists of a real-life web application visited by web users, two 

competing recommendation systems and a special component which controls the 

presentation of the recommendations generated by the different recommendation systems 

according to a policy. The authors discuss the steps which need to be taken in order to 

guarantee a fair competition between the recommendation systems.  They also discuss 

different ways to consider the user feedback and propose different policies for presenting 

the recommendations, such as merging all recommendations in one result set and 

presenting them together, presenting two result sets simultaneously on the web page or 

presenting recommendations from different systems alternately in different presentations. 

Interestingly, the authors propose the use of reinforcement learning during the evaluation 

in order not to negatively impact the trust of the users of the real-life system. 

Reinforcement learning in their approach should assure that only a small fraction of 

recommendations comes from the worse recommendation system. 

The evaluation approach proposed in [HMAC02] is in many aspects similar to the 

evaluation we present in this thesis. We perform evaluation using metrics which represent 

the attitude of the real web users towards our system. We agree that an online evaluation of 

a recommendation system on a real-life is more convincing than an offline evaluation. We 

have tried to use the online method as much as possible while evaluating our 

recommendation system. However, we have found out that even after overcoming the 
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obvious obstacle of obtaining access to a real-life website willing to test an experimental 

implementation – an obstacle which is considered to be very serious by most researchers 

including [HMAC02] – one more serious obstacle appears which makes online evaluation 

quite difficult. This obstacle is the scarce feedback which is does not suffice to achieve 

reliable results for the multitude of the possible modifications of the recommendation 

algorithms. 

A significant drawback of the proposed evaluation framework is that no 

implementation of the proposed evaluation framework has been done. Therefore it has not 

been possible to validate the theoretical considerations of the authors of [HMAC02] in 

practice. Also, there may be issues which become apparent only during the operation of the 

evaluation framework and which have not been mentioned in [HMAC02]. 

Herlocker, Konstan, Terveen and Riedl 

The authors of [HKTR04] concentrate on evaluating one common type of 

recommendation systems – the recommendation systems based on collaborative filtering. 

They point out three major difficulties of the evaluation: 

 Different datasets are used for evaluation of the recommendation systems. It is 

often unclear, to which degree the measured performance of a 

recommendation system depends on the design of the system and to which 

degree it depends on the characteristics of the dataset used for evaluation. To 

address this problem, in this thesis we used two datasets for the evaluation of 

our recommendation system. However, the question of whether our results 

apply to all or majority of possible datasets still cannot be answered with 

sufficient confidence. 

 Different recommendation goals – some websites want better prediction of the 

user‟s interests, other websites deliberately want to propose something else 

than the user would most probably choose, if it serves the interests of the 

website‟s owner, for example increases the profit. For example, of the two 

websites which we used to test the architecture presented in this thesis, the 

EDU website is interested in providing comfortable navigation for the user 

while the EC website concentrates on increasing commercial profit. 

 Different combinations of measures are used in different recommendation 

systems. In the work described in this thesis we use acceptance rate and 

session acceptance rate as performance measure for our systems. However, it 

is not possible to directly compare our architecture to many other 

architectures, since they use other measures such as precision and recall 

[CK68], ROC curve [Swet63], NDPM [Yao95] etc. 

According to [HKTR04], most of the performance measures currently used for 

evaluating recommendation systems are so-called accuracy-based measures, i.e. measures 

which describe the predictive accuracy of a recommendation algorithm. The authors note 
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that a “magic barrier” to the increase of the accuracy-based performance measures seems 

to exist. This “magic barrier” represents the degree to which a user himself is uncertain 

about what he wants to choose. If the different algorithms are tuned to the optimum, argue 

the authors, the improvements in terms of “accuracy” of the more complicated algorithms 

over the basic ones are tiny, since they approach the “magic barrier”. This is why the 

improvements to the algorithms should not concentrate on the accuracy measures, but 

rather on additional characteristics of the recommendation systems. Among such 

characteristics the authors name the ability to communicate the reasons for a certain 

recommendation to the users and the amount of data the recommendations systems need to 

make recommendations.  

These observations of the authors are consistent with our experience.  The 

acceptance rate metric used in our work is a variation of the “accuracy” metric. That is 

why we concentrate not on the improvement of the specific recommendation algorithms 

but on the automatic optimization of the recommendations independently from the 

algorithms which generate them, thus ensuring that the performance of our system always 

stays as close to the “magic barrier” as possible. We also provide some additional 

characteristics which we perceive to be important for modern e-commerce websites, such 

as the ability to generate the recommendations online, flexibility in changing the 

recommendations manually and in representing different concepts of the websites. 

In [HKTR04] the authors describe the difficulties listed above in more detail and 

propose the ways to tackle these difficulties: they categorize the goals of the 

recommendation system; discuss the selection of the datasets for evaluation; survey the 

evaluation metrics and study the behavior of different metrics on the same dataset, showing 

that the metrics can be divided into classes of correlated metrics. They also introduce and 

discuss some metrics which are not based on “accuracy”, such as novelty, serendipity and 

coverage of recommendations. The marketing-related evaluation metrics such as offer 

acceptance and sales lift as well as the usability-related metrics and computational 

performance metrics are deliberately not considered in [HKTR04], although the authors 

admit that such metrics are important for the comparative evaluation of recommendation 

systems. 

Yang and Padmanabhan 

Similar to the other work listed in this section, the work [YP05] points out that the 

current situation with the evaluation of recommendation systems is unsatisfying. They 

argue that especially the relative easiness of implementing the different types of 

recommendation systems leads to a possibility of unforeseen problems and complications. 

([Flyn06] gives a good example of such unforeseen complication). This makes the reliable 

evaluation of recommendation systems very important. Contrary to [HMAC02], the 

authors indicate that the evaluation on the real website is though welcome but rarely 

possible and even if possible then with limitations which make the obtained results weak. 

So, even if there is a real website willing to implement an experimental system, it is 

usually not willing to implement the relatively mediocre recommendation algorithms 
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which could serve as a “control group”. This is also the case with the real-life evaluations 

we present in this thesis. For example, we have not been allowed to use the 

recommendation algorithms which provide pseudo-randomly selected products as 

recommendations. We could use the algorithms which either pseudo-randomly switch the 

recommendation algorithms or pseudo-randomly select the recommendation candidates 

pre-selected by some non-random recommendation algorithm. For the common case when 

the real-life evaluation cannot be performed or cannot be used with reliable enough 

settings, the authors suggest a knowledge-based approach which can alleviate the weakness 

of previously used evaluation schemes. They introduce the notion of so-called 

distinguishing sets. Distinguishing set is a set of statements which can be evaluated on the 

data and represent our understanding of what a “good” recommendation system in a given 

domain should be. It is not a requirement that this understanding should be complete and 

exhaustive. To be qualified as a distinguishing set, a set of statements should have a 

characteristic of leading to a certain outcome (i.e. a certain set of recommendations) while 

ruling all other outcomes out. They also introduce the notion of minimal distinguishing set 

for a given outcome, i.e. such distinguishing set which doesn‟t contain any other 

distinguishing sets as a subset. The evaluation of the recommendation system is then 

performed in the following way:  

 Determining the set of minimal distinguishing sets using the algorithm provided 

by the authors in [YP05]. 

 Testing whether these minimal distinguishing sets hold on the experimental 

data.  

The technique described by authors is a systematic approach to evaluating the 

recommendation systems. It forces us to specify our assumptions about what is a good 

recommendation system in an explicit manner. It is also possible to include the previously 

used metrics in the statements describing knowledge in the distinguishing sets. This 

approach allows performing continuous evaluation and validation of a running 

recommendation system.  

 [YP05] also provides an example of how such evaluation system can be 

implemented. The authors use a simple case with real-life data, formulate a distinguishing 

set of rules and show how the performance of a recommendation system can be evaluated 

against these rules. 

The authors of [YP05] acknowledge that their approach has a serious problem, 

namely that the evaluation depends now not only on how good the recommendation system 

is but also on how good the domain knowledge is. The problem of assessing the quality of 

the domain knowledge used in this evaluation framework is however a hard problem if 

attempted to be solved as a computational problem. This problem is more suited to be 

solved on the organizational level while implementing the recommendation system, for 

example by cross-validating the domain knowledge by several human experts in the given 

domain.  

[YP05] explicitly does not advocate the use of the proposed evaluation method in 

case when possibilities for performing comparative experiments on real-life systems with a 

control group exist. In the common case, however, such experiments are not possible and 
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the approach [YP05] represents a valuable contribution to the solution of the demanding 

problem of evaluation of the recommendation systems. Although in our system we had the 

possibility of using a real-life evaluation, the aspects discussed by the authors are also 

relevant for our evaluations, since our control groups are relatively weak and are only 

representative of how good our optimization algorithms are, not how good our 

recommendation system as a whole is.  

7.4  Web Data Warehousing and Web Usage Mining  

In this subsection we review the connections between recommendation systems and 

database-related technologies. Such database-related technologies include data 

warehousing, online analytical processing (OLAP) and data mining. In some cases, new 

technologies have appeared on the intersection of these two fields. In particular, the 

application of data mining techniques to the data describing the user navigation on a 

website is termed “web usage mining”. Web usage mining is a sub-concept of the more 

general concept “web mining” which denotes the application of the data mining techniques 

to the data found on the World Wide Web. Other types of web mining include web Content 

mining and web structure mining [BL99][MBNL99]. Web usage mining and web data 

warehousing provide the foundation for the research presented in this thesis, in particular 

for the implementation of the recommendation generators.  

CourseRank (Koutrika, Ikeda, Bercovitz, Garcia-Molina) 

The system CourseRank [KIBG08] is used at Stanford University in order to help 

undergraduate students select their courses. Similarly to our approach, CourseRank 

suggests courses to the users relying on a rich data model which is stored in a relational 

database. The authors argue that using only a single type of recommendations, i.e. only 

collaborative or only content based recommendations brings a number of drawbacks and 

propose using hybrid architecture. The combination of different approaches is achieved by 

specifying so-called flexible recommendation workflows, which can provide 

recommendations based on a set of input parameters and on the domain knowledge 

contained in a relational database (rich data in the authors‟ terminology). The authors 

stress that the recommendation workflows are specified using a high-level definition 

language. This high-level definition language includes operators commonly used for 

accessing relational data, such as selections and joins, as well as operators which are 

specific for the generation of recommendations. The latter include the operator extend, 

which allows accessing additional relations in the database, the operator recommend for 

generating recommendations and the operator top-k for filtering the set of generated 

recommendations. The combination of match clauses and ontology selection policies 

which is presented in this thesis is comparable to the recommendation workflows as 

described in [KIBG08]. However, it should be noted that the recommendation workflows 

are more generic and therefore more flexible than the approach based on mapping clauses 
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and ontology selection policies. The authors also report that they are working on the 

mechanism for automatic optimization of the recommendation workflows; however no 

results are yet available.  

The system CourseRank does not gather implicit user feedback and performs no 

feedback-based optimization. Instead, CourseRank provides user with the interface which 

allows adjusting various parameters of the recommendation workflows in order to obtain 

personally tailored recommendations. Such approach potentially allows better fine-tuning. 

However, it expects the user to have at least a basic understanding of how the 

recommendation system works and how the different parameters affect its behavior.  

RQL (Adomavicius and Tuzhilin) 

Adomavicius and Tuzhilin present the use of data warehousing technology for 

generating web recommendations in two works [AT01][AT01a]. They point out a number 

of improvements which can be introduced by such symbiosis, for example the aggregation 

of the data used for generating recommendations and creation of profiles basing on these 

data. In particular the creation and use of hierarchical profiles and groups is possible. The 

use of data warehousing technology can help the recommendation system to tackle the 

problem of multidimensionality. The authors propose to use a special recommendation 

warehouse, i.e. a data warehouse designed especially for making web recommendations. 

They also propose a special language RQL (Recommendation Query Language). RQL can 

be used both to define a recommendation warehouse and to select recommendations from 

it. RQL allows flexible management of the recommendations. Statements expressed in 

RQL can be used by the website owners to specify which recommendations should be used 

in which situation.  

The authors present an implementation of their architecture. In their 

implementation, the recommendation warehouse is implemented using a relational DBMS 

and the RQL language is translated to SQL. The authors indicate that such implementation 

can be a performance bottleneck in a production system and suggest that the 

recommendation warehouse be implemented as custom software in this case. 

The architecture presented in [AT01] and [AT01a] has a number of contact points 

with our architecture. These contact points include using the data warehousing technology, 

advocating of the need for use of groups and hierarchical profiles, using rules for making 

recommendations, giving the website owners the possibility for flexible adjustment of the 

recommendation rules. There are also significant differences.  For example, the direct use 

of a data warehouse to select recommendations for presentation as proposed in [AT01] 

does not seem to be a plausible solution for a real-life recommendation system. Indeed, 

data warehouses usually contain large amounts of data and the queries posed to a data 

warehouse put considerable load onto the database server. This is especially pertinent since 

RQL allows almost arbitrarily complex queries. Performance problems are likely to arise 

when such architecture is used on a real-life website. In our architecture we use rules of a 

simpler kind. We generate recommendation rules basing on the information from the data 

warehouse and then store them in a recommendation rule database which is specially 
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optimized for quick access. Other differences between our architectures include the 

absence of the automatic selection of the recommendations from [AT01] – the RQL 

statements should be entered manually by the website owners. The possibility of automatic 

optimization of the recommendation rules using feedback received from web users is also 

absent from [AT01] [AT01a].  

Web Utilization Miner (WUM, Spiliopolou et al.) 

Web Utilization Miner is a specialized tool for web usage mining described in 

[SF98][BS00][SP01]. WUM is comprised of two components. The first component is 

called aggregation module. This component prepares and aggregates the web usage data 

for analysis. The second component is the mining processor which performs the 

recognition of significant navigation patterns in the usage data. WUM architecture does not 

contain a special personalization component. The authors suggest that the personalization 

should be performed manually by the website owner, after the user preferences are 

understood with the help of WUM. The mining of the usage data is controlled manually 

using an SQL-like mining language named MINT. Human experts need to use MINT to 

specify what types of behavioral patterns are being looked for. MINT processor can be 

used to explore the behavioral patterns of the web users or to monitor the changes in the 

user behavior. [BS00] discusses an extension of the system which allows mining usage 

data for dynamic websites where HTML-Pages are results of form-based queries over a 

relational database or some other source of data. The authors propose creating the concept 

hierarchies for such “hidden” data and investigating the user behavior with respect to these 

conceptual hierarchies. An interesting approach is taken by the authors with respect to 

storing the usage data for analysis. Although they do not use a relational database, they 

recognize that such analysis is not possible without a suitable data structure. WUM uses 

specially structured data storage called Aggregated Log with special indexes based on trie 

algorithm [Brian59]. 

WebSIFT (Cooley et al.) 

The system WebSIFT is described in [CTS99a][CTS99b]. WebSIFT is a 

framework for web usage mining. The distinctive feature of WebSIFT is the usage of the 

domain knowledge as auxiliary source of information for the usage mining. WebSIFT 

employs web content mining and web structure mining to automatically extract domain 

knowledge which can be helpful in detecting interesting patterns in the usage data.  

The domain knowledge in WebSIFT is used to assess the “interestingness” of the 

pattern. The authors relate “interestingness” of a usage pattern to its “unexpectedness”. For 

example, a strong usage pattern connecting the items which belong to unrelated areas 

(according to the content hierarchy) or have highly dissimilar content are considered 

especially interesting.  
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We would like to note that such definition of “unexpectedness” is focused on the 

website owner and not on the web user. Indeed, the behavior patterns which cannot be 

easily predicted basing on the domain knowledge provide the most interesting insights for 

the website owner. However, since the web users do not necessarily possess sufficient 

domain knowledge, even the patterns which can be easily predicted from the domain 

knowledge may be quite unexpected and interesting for the web users when used as 

recommendations.  

The system WebSIFT relies on the relational database technology for storing the 

usage data and the domain knowledge. However, no task-specific techniques such as data 

warehousing methodology or special types of indexing are applied. 

Rahm, Stöhr et al. 

The authors of [SRQ00][RS03] discuss the problem of evaluating the web usage 

data and designing personalization systems from the point of view of relational database 

technology and data warehousing. They come to the conclusion that the use of the database 

technology for personalization is inevitable given the characteristics of modern websites 

and the characteristics of the usage data which needs to be stored and evaluated. In [RS03] 

the authors first theoretically analyze the possibilities for database-supported processing of 

web usage data and point out that data warehousing technology is particularly suitable for 

this task, despite of the relatively high implementation effort. The authors then present the 

architecture of a web data warehouse and extensively study the different practical aspects 

of the processing of web usage data in a data warehousing environment. [RS03] also 

contains an overview of the tools for preparing and analyzing the data. In general, [RS03] 

can be used as a practical instruction for creating a web data warehouse.  

The works [SRQ00] and [RS03] concentrate on the processing and analysis of the 

usage data. The possibility of creating an automated adaptive personalization system is 

suggested but no specific architecture of such a system is proposed. However, the 

architecture proposed in this thesis as well as architecture proposed in [TR04] are based on 

the ideas and results presented in [SRQ00][RS03] and can be regarded as the continuation 

of this work.  

Thor and Rahm 

The work described in [TR04] employs a data warehouse to store the usage 

information and implicit user feedback. In [TR04] the feedback is used to learn how to 

switch the different recommendation generator algorithms, which work independently 

from each other, whereas in our approach the feedback influences the weights of individual 

recommendations (“switched” approach vs. “weighted” approach according to the 

classification in [Burk02]). [TR04] describes several strategies, according to which the best 

recommendation generator can be chosen, including an adaptive strategy based on a 

decision tree algorithm. The selection of the recommendation generators is influenced by 
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the current context, i.e. current situation on the website. The work also contains a 

classification of recommendation algorithms. 

[TR04] proposes an interesting technique of filtering out the page views originating 

from automated web crawlers. The filtering is performed by including special hyperlinks 

into the HTML code of the web pages. These hyperlinks are specially formatted to be 

invisible for the human user but are still visible for the crawlers. The sessions in which 

such links were visited can therefore be safely excluded from the analysis of the navigation 

behavior of the human users.  

The implementation of the system described in [TR04] and the system presented in 

this thesis were performed in close cooperation. So, some of the recommendation 

algorithms developed by Mr. Andreas Thor were used to create the recommendation rules 

in our EDU prototype. Particularly interesting is the highly successful search engine based 

recommendation algorithm, which utilizes the keywords forwarded by the search engine in 

order to provide relevant recommendations. In the EDU prototype, a common data 

warehouse was used for both approaches. A joint paper [TGR05] containing the 

description and comparative evaluation of both approaches was published. 

7.5 Markov Decision Process and Reinforcement Learning 

[Sutt96] was the first to mention the possibility of employing reinforcement 

learning to solve the task of presenting web recommendations. Specially to mention are the 

work of Shani, Brafman and Heckerman [SBH02][SHB05] which described an MDP-

based recommendation system. They also referred to the possibility of applying 

reinforcement learning but did not implement it in their architecture. At a later time, 

several research teams presented systems based specifically on reinforcement learning. The 

systems described in this subsection take different approaches to representing the 

recommendation problem as an MDP and solving it. 

Shani, Brafman and Heckerman 

The work of Shani, Brafman and Heckerman described in [SBH02][SHB05] exhibit 

a number of common points as well as a number of principal differences with our work. 

So, they also argue that the problem of making web recommendations should consist of 

creating the initial model and the part which optimizes this model based on the usage. The 

authors employ the MDP (Markov Decision Process) model. Our approach is based on 

reinforcement learning which in turn also employs MDP model to describe the problem to 

be solved. Although they use the term “online”, but their use of this term is different from 

the online learning as presented in this thesis. Our online learning is performed after every 

presentation. They authors of [SBH02][SHB05]  understand using relatively recent 

feedback as “online” learning. So, on their prototype they update the model only once 

every several weeks.  
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The prediction model used by the authors is based on the usage data. This means 

that the discussion for of “new item” problem arises for the cases when usage data is 

available. The authors mention that in case when new items appear and have no associated 

usage data the recommendations for these items are learned online. The authors point out 

that their online optimization approach does not depend on the implementation of the 

predictive model, i.e. some other algorithm which is not necessarily based on MDP can be 

used to generate the predictive model.  

The authors use not only a currently viewed page to describe the current MDP state, 

but also a history of previous states. The history length is variable; the history can contain 

a combination of a maximum of 5 previous states. Since this may lead to explosion in the 

number of states, the authors apply special techniques to reduce the number of states. Our 

architecture also allows considering the previous states for making recommendation 

decisions. However, after a preliminary analysis of our data we have decided to restrain 

ourselves from using the previous states. The sessions with many page views are relatively 

rare in our data, so the benefits of using previous states didn‟t seem to justify the increased 

difficulty of handling much larger number of states.  

The work of Shani, Brafman and Heckerman takes into account not only the 

immediate feedback, but also the prospective feedback of all subsequent states. This 

approach stands in contrast to our approach, which takes only immediate feedback into 

account. The authors point out that there are both benefits and drawbacks of considering 

not only the immediate but also expected subsequent feedback. The benefit is that we can 

maximize the reward beyond the reward which can be obtained by considering only 

immediate feedback. The drawback is that considering non-immediate feedback may lead 

to recommendations with low perceived relevance. This may lead users to losing 

confidence in the recommendation system and starting to ignore the recommendations in 

general. Another drawback of considering subsequent feedback is that it significantly 

increases the computational complexity, making it barely possible to learn 

recommendations in real time.  

Noteworthy is that Shani, Brafman and Heckerman also presented the evaluation of 

their system on a real-life commercial website, which is encountered only in few works in 

the literature.  

Mahmood, Ricci et al. 

The authors of the extensive series of research works [MR07][MR07a][MR08] 

[MRVH08][MR09][MRV09] use Markov Decision Process to model the recommendation 

problem and apply reinforcement learning to solve this problem. The use of an adaptive 

recommendation system in these works represents an interesting contrast to how a 

recommendation system is used in most other work presented in this subsection. In the 

described application, the adaptive recommendation technique is applied to the search 

queries entered by the user on a website. If the recommendation system detects that too 

many results would be returned by the query, it suggests some keywords which could be 

added to the query in order to reduce the number of returned search results. So, the 



Mykola Golovin Web Recommendations for E-Commerce Websites 

 

7 Related Work 95 

 

recommendation system tries not to suggest how to extend the information currently 

presented to user, i.e. present him new products or content, but rather how to further 

constrain the amount of presented information to reach precisely the content the user is 

interested in (Query Tightening Process). The system also provides the opposite 

functionality, i.e. auto-relaxing of the search query in case when it returns no results. The 

recommendation problem described by the authors appears on many websites which offer 

search function, for example on the website www.ebay.com. The authors use two travel 

planning websites as examples for the application of the proposed architecture. A 

significant part of the experimental results was obtained using simulation.  

 In the proposed architecture the state and action spaces of the MDP are richer than 

in most other architectures presented in this subsection. So, the possible actions include 

moving from one page to another, showing the query form, suggesting additional query 

terms for tightening the query, accepting or rejecting a recommendation. Taking an action 

without reaching a goal is punished by negative feedback. The authors investigate how the 

different negative feedback values influence the behavior of the recommendation system 

and find out that the different values of feedback lead to different optimal recommendation 

policies.  

The representations of the state models have been given special consideration in the 

described research work. The authors represent the state space as a set of feature variables. 

They argue that one particularly important issue for such recommendation system is the 

selection of the relevant features in the state representation [MR07a], since otherwise the 

size of the state space can make the recommendation problem computationally intractable. 

Therefore, including additional features to state variables may not always be beneficial for 

a given recommendation task. The authors propose two criteria for judging about the 

relevancy of features, namely Policy Diversity (i.e. the ability of a certain feature to 

produce a different optimal policy if taken into account) and Policy Value (based on the 

total reward achieved by the system). The authors demonstrate how an evaluation of the 

feature relevance can be performed in a simulated environment [MR07a]. In [MR08] the 

authors perform further experimental evaluations of feature relevance and show in 

particular that the selection of the relevant features depends also on the user behavior with 

respect to recommendations (i.e. how often the users are willing to accept a 

recommendation in general). The proposed architecture utilizes the Policy Iteration 

algorithm [SB98] which belongs to the dynamic programming family of reinforcement 

learning algorithms in order to calculate the optimal recommendation strategy. 

Another important contribution of the research team is the design of the 

recommendation system for a real-life website [MRVH08] and the online evaluation of the 

proposed system on this website [MRV09][MR09]. The evaluation shows that the 

proposed adaptive recommendation system helps the users to reach their goals more 

quickly compared to the none-adaptive recommendation approach. It also shows that the 

acceptance rate of the different system requests has increased on the average due to the 

adaptive nature of the recommendation system. 
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Preda and Popescu 

In the works [PP04] and [PP05] the authors employ Reinforcement Learning to 

solve the problem of providing web recommendations and perform experiments on a small 

real-life website. Their sample application is a website of a school library with ~500 users.  

The authors employ the algorithm SARSA(λ) from the family of so-called TD(λ) 

reinforcement learning algorithms [RN94]. The value of parameter λ in their system is ser 

to 0.5. The value of parameter λ<>0 denotes, that not only the immediate reward after 

taking an action is considered, but also the future rewards in the discounted form. This is 

different from our approach where we consider only the immediate feedback. In terms of a 

TD(λ) algorithm our approach would correspond to λ=0.  The TD(λ) algorithms with λ<>0 

are significantly more expensive computationally then the algorithms used in our 

architecture.  

The authors do not consider the problem of making web recommendations to be 

non-stationary, i.e. they do not account for the “drift of interest”. Their algorithms are 

designed to handle the model in which the transition probabilities T(s,s´) remain the same 

throughout the entire lifetime of the recommendation system. In the sample application 

used  in [PP04][PP05] this may be a plausible assumption which doesn‟t negatively affect 

the quality of recommendations, since it can be expected that the user interests on a 

website of a school library change slower than for example on an e-commerce website or a 

news website. 

The authors devote much attention to the selection of states for the MDP which 

serves as a foundation for their reinforcement learning approach. In the face of the scarcity 

of feedback they see strong need for generalization. The generalization approach they 

employ relies on the domain knowledge. The authors approach bears some similarity to the 

approach which we present in this thesis. In [PP04] the authors represent knowledge in an 

ontological structure which imposes a partial ordering on the concepts of the website. The 

authors present their model as an ontological directed acyclic graph with weighted edges. 

The authors propose using content similarity (i.e. text similarity) as a metric for setting the 

weights of the edges in the ontology graph, but also mention that it is possible to use other 

metrics to set the weights. In fact, in their sample application the weights are specified 

manually by a human editor. To be able to generalize the knowledge in the face of large 

number of states and scarce feedback, the authors apply the technique of linear function 

approximation. Linear function approximation allows generalizing the feedback obtained 

by a particular state also to its neighborhood. The linear function approximation technique 

used in [PP04] is the CMAC (Cerebellar Model Articulation Controller) technique 

[SSR98][SB98], which represents a type of a neural network. In [PP05] the concepts 

presented on the website and the relations between them are represented via logical 

programs. The logical programs also serve as states for the MDP model. Some parallels 

can be drawn between the logical programs presented in [PP05] and the mapping clauses 

presented earlier in this thesis, since both consist of logical statements representing domain 

knowledge. The usage of the logical programs of [PP05] is however different from the 

usage of mapping clauses. The mapping clauses in our architecture have simple syntax and 
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are used to map the information expressed in technical terms of the web application to the 

domain knowledge represented in the ontological structure. The semantic expressiveness 

of our mapping clauses is relatively weak. The logic programs of [PP05] constitute the 

states in the ontological graph. They are semantically rich and can be reasoned about. The 

authors propose an original method for calculating the similarities between the logic 

programs and thus the weights of the edges in the ontological graph.  

In general, the approach investigated in [PP04] and [PP05] has a number of 

common design solutions with the approach presented in this thesis, however with a 

different focus. The focus in [PP04] and [PP05] lies on investigating different knowledge 

representations. In this thesis we concentrate on the software architecture and review 

engineering aspects which enable the application of the reinforcement learning approaches 

on the real-life websites. We provide architectural means for different representations of 

complex knowledge needed to select the web recommendations, but leave the details of the 

knowledge and exact representation up to the concrete application. Although in [PP04] and 

[PP05] the knowledge representation is discussed in much more detail than in this thesis, 

many issues are also left open, since they are usually domain-dependent and 

implementation-dependant. For example, the generation of the models in [PP04][PP05] is 

an open issue which is left up to the concrete application. In particular, it is not clear 

whether and how the logical programs of [PP05] can be generated automatically. In both 

[PP04] and [PP05] the sample application relies on the domain knowledge being generated 

manually by a human editor. The different knowledge representations in [PP04][PP05] are 

investigated from the mathematical perspective as opposed to the software engineering 

perspective assumed in this thesis. The authors present the results of the experimental 

comparison of three different recommendation systems on their sample website: item-to-

item collaborative filtering, top N items from the category, reinforcement learning. 

Reinforcement learning achieves the best results, closely followed by the item-to-item 

collaborative filtering. Top-N achieves considerably worse results. The authors present the 

experimental values for the session acceptance rates similar to those observed in our 

experiments.  

Prudsys RE 

The recommendation engine Prudsys RE developed by the company Prudsys AG, 

(Chemnitz, Germany) is an industrial strength implementation of a recommendation 

system based on reinforcement learning. This recommendation engine is now used by a 

number of large German companies, including Quelle AG, BAUR Versand and Metro 

Group (Metro Future Store). The implementation of the Prudsys RE was done 

independently from the work presented in this thesis. However, according to Dr. Michael 

Thess, Managing Director of the Prudsys company, the ideas presented in our paper[GR04] 

and in the paper [SBH02] have inspired the architecture of Prudsys RE. The Prudsys RE 

extends our dimensions of <Content, User, Time> by two additional dimensions Price and 

Channel. However, they also state that in particular the dimensions Price and Channel can 

be fixed, i.e have the same value for all contexts possible in the system. The library of data 
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mining algorithms Xelopes[TB07] developed by the company Prudsys is used to create the 

initial model. This model is then optimized using reinforcement learning algorithms which 

are also integrated into Xelopes. It is possible to operate the recommendation engine in 

three modes: Offline, when the recommendation weights are generated by the 

recommendation algorithms and not adjusted during the interaction with web users; 

Online, when the recommendations are learned immediately from the user interaction, and 

Offline+Online, when the recommendations are generated by learning from historical data 

and then adjusted online. The Prudsys RE is targeted not only for web recommendations, 

but also for recommendations in conventional stores, for example at cash counters or 

information kiosks. According to the joint statement of Prudsys AG and Quelle AG, after 

the introduction of the Prudsys RE on the website of Quelle AG the proportion of cross-

selling products to the total sales has increased by more than ten times [Prud06]. Prudsys 

RE also has several interesting extensions which enrich the service provided by Prudsys 

RE. For example, Prudsys RE provides simulation analysis (“what-if” analysis) based on 

historical data. Another interesting feature of the Prudsys architecture is the dynamic price 

optimization. The product price can be adapted dynamically using regression-based 

methods to increase the profit.  

Taghipour, Kardan et al. 

The architecture presented in [TKG07] and its enhancements described in [TK07] 

apply Q-Learning to the problem of making web recommendations. Q-Learning is a 

popular Reinforcement Learning method. In two main aspects the model used in [TKG07] 

is different from ours and closer to the one used in [SHB05]. The first aspect is that the 

authors consider not only the current web page but also the history of the last web pages as 

states in their Markov model. Similar to [SHB05] they use the notion of N-Grams to 

represent the states in the Markov model. The application N-Grams in [TKG07] is however 

somewhat different than in [SHB05]. They used fixed N for all their N-grams representing 

states, whereas [SHB05] uses varying N for different states. Their states however consist 

not only of an N-Gram containing the last pages visited by the user as in [SHB05] but also 

of N-Grams containing the history of recommendations shown to user (or, more exactly, of 

M-Grams, since the sizes of page view history and recommendation presentation history 

can be different). The second aspect is that they take into account not only the immediate 

rewards but also the expected rewards for the subsequent states during the calculation, as 

the classical Q-Learning does. The corresponding discussion of the [SHB05] is also 

pertinent here. The authors favor using time which web user spends on a particular web 

page as reward value. We oppose such connection between time spent on the website and 

reward, as described in Section 3.4. Like most known systems, the authors consider 

multiple simultaneously presented recommendations as independent from each other and 

treat each presentation of a recommendation as a separate action. The difference between 

[TKG07] and both our system and the system described in [SHB05] is that the authors do 

not make distinction between the algorithms for creating a model and optimizing the 

model. Rather, the same algorithm is used to first train the system on the historical usage 
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data and then to continue simultaneous training and exploiting of the system on the real 

website. The states and the actions are created basing on the training data. The balancing 

between exploration and exploitation in [TKG07] is implemented using ε-greedy 

technique. As we discussed earlier, the ε-greedy balancing always sacrifices a fraction of 

presentations to exploration, leading to inherently suboptimal recommendation 

presentation.  

In [TK07] the authors realize some shortcomings of their architecture and propose 

enhancements which can alleviate these shortcomings. One shortcoming is that their model 

based on states and actions which are generated from the observed historical usage data 

during the training phase is not able to provide recommendations for the states which have 

not occurred in the training data. In [TK07] they address this shortcoming by employing a 

content-based algorithm to amend the initial model and enrich it with semantic 

information. This makes their architecture more similar to our approach. Another 

shortcoming of [TKG07] is that using both page view history and recommendation history 

in the states of the MDP leads to an explosion in the number of states. To solve this 

problem, the authors in [TK07] remove the recommendation history from the states and 

compensate the effects of this removal by using a special reward function which takes 

history of recommendation presentations into account. 

The authors provide results of experimental analysis of some aspects of their 

architecture, such as sizes for page view history and recommendation presentation history, 

different reward functions. They have also conducted comparative evaluation of their 

approach and two other approaches based on association rules and collaborative filtering. 

The recommendation system based on reinforcement learning has performed better than 

the other two systems. The evaluations were done on simulated data and not on a real-

world website. Therefore it‟s hard to tell whether this is possible from the point of view of 

the system performance, given the relatively complex structure of the state space in 

[TKG07] and [TK07]. 

7.6 Recommendation Systems Employing Ontologies 

Acharyya, Ghosh 

Although the work [AG03] does not present a complete recommendation system 

architecture, it deals with the issue which is very relevant to creating a semantically 

enabled recommendation system. The authors describe a method of representing the 

navigation of the web users through the pages of the website as navigation in the semantic 

concept space.  The authors of [AG03] represent the semantic concept space as a tree. The 

generation of such a concept tree is left outside the scope of [AG03], where the authors 

assume the concept three to be already provided. The authors propose a probabilistic model 

which represents the surfing behavior of the users. They discuss the learning of the 

transition probabilities between the concepts in the concept tree and using these 

probabilities to predict further navigation of the users. Being able to predict the next step of 



Mykola Golovin Part II. Adaptive Web Recommendations 

 

100 7.6 Recommendation Systems Employing Ontologies 

 

the user is a crucial functionality for building a recommendation system. The model 

described by the authors can be for example implemented within our framework relying on 

the ontological structures we provide.  

In [AG03], the interest of users for a specific area is determined by the time during 

which the user occupies certain pages certain areas of the concept graph. As already 

discussed in Section 3.4, we do not consider using the viewing time as a measure of user‟s 

interest to be an assumption which can be accepted unconditionally.  

Chen, McLeod 

The authors of [CM05] propose a semantically enriched recommendation system 

based on collaborative filtering. The authors point out the computation complexity which 

arises when taking semantic information into account.  In [CM05] the authors focus on 

developing the algorithms and data structures which allow exploiting of the semantic 

information while reducing the computational overhead. In fact, they propose an algorithm 

which is able to perform the selection of recommendations based on the ontological 

structure in constant time. While the work [AG03] deals only with tree-like representation 

of the semantic concepts, [CM05] allows a directed acyclic graph representation. Unlike 

our architecture, which expects the ontology graphs to be supplied in the way which makes 

them suitable for selecting recommendations, the authors of [CM05] transform the 

supplied ontology graph into a special structure which allows constant-time 

recommendation selection. The transformation algorithm relies on geometry-inspired 

distance metric to convert the original ontology graph into a set of groups of concepts. The 

geometric proximity of the concepts to each other is considered to be equivalent to 

“hierarchical similarity”. Every group of concepts is characterized by the “geometric” 

proximity of the member concepts to each other. Such groups are used during the 

recommendation selection process to quickly perform semantic-based generalization. The 

authors describe the application of their recommendation approach to a geosciences 

information system. 

Mobasher , Jin, Zhou. 

In [JM03][MJZ03] the authors employ the semantic information in form of an 

ontology to enhance a recommendation algorithm based in item-to-item collaborative 

filtering [LSY03]. The extraction of the ontologies is performed using an automatic 

ontology extraction algorithm based on text mining and heuristic rules. In [MJT03] the 

ontology classes are represented as tables in a relational schema. The class instances are 

stored in the table rows. Additionally, the instances are converted into vector 

representation in order to enable the computation of item similarities. The vector 

representations of the instances are combined into a similarity matrix. Thus obtained 

similarity matrix is however large and sparse. To reduce the dimensionality of the matrix 
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and thus make it suitable for the item-to-item collaborative filtering algorithm, latent 

semantic indexing technique is used.  

The authors have performed an experimental evaluation of their approach in a 

simulated environment using the data set from a real website. They compared their 

semantically-enriched collaborative filtering algorithm with standard item-to-item 

collaboration filtering recommendation algorithm. The authors report significant 

improvement in the predictive quality of recommendations which could be achieved by 

semantically enhancing the collaborative filtering recommendation system. 

Quickstep and Foxtrot (Middleton et al.) 

In a series of works [MRS01], [MASR02], [MSR03] and [MSR04] the authors 

propose the ontology-based hybrid recommendation systems Quickstep and Foxtrot.  The 

recommendation systems are aimed at helping researchers quickly find research papers in 

the fields of interest. The Foxtrot system is an extension of the Quickstep system and 

shares the general architectural decisions with it. The system Quickstep is a pure 

recommendation system, while the system Foxtrot also provides facilities for search and 

user profile visualization. The recommendation systems make use of the external 

ontologies provided by the project dmoz (http://www.dmoz.org ) and the project AKT 

(http://www.aktors.org/ ). The ontology AKT is also used to bootstrap the user profiles in 

the recommendation system, since it also contains personal information about some 

researchers. The relation between the individual research papers and the concepts in the 

ontology are determined using a modified version of the classifier algorithm [AKA91]. In 

Quickstep and Foxtrot, both explicit feedback and implicit feedback is used. The explicit 

feedback is obtained from the web users by offering them to rate topics in the ontology as 

more or less interesting, while implicit feedback is gathered from the clicks on individual 

recommendations. In Quickstep and Foxtrot, both explicit and implicit user feedback 

influences the weights of ontology topics and not the weights of the individual 

recommendations. While selecting the recommendations for presentation, the weight of the 

individual recommendations is obtained by combining the weight of the ontology topic 

with the confidence score of the classifier, which indicates how strong the relation between 

the individual recommendation and the given ontology topic is. Since the system is 

designed for internal use, the authors are able exploit not  only the web logs from the 

website with recommendations but also the web proxy logs containing the complete 

browsing behavior of the internal users. The authors suggest that the use of ontologies can 

bolster the cooperation between independent knowledge bases. They however also point 

out that complications of legal nature may appear when establishing such cooperation. This 

is also pertinent to the gathering of the complete web navigation logs using web proxy. 

Three small-scale experiments with up to 260 users have been performed to assess the 

quality of the recommendations generated by the recommendation systems Quickstep and 

Foxtrot. The algorithms show the superiority of the ontology-based approaches over the 

recommendation approach using the unstructured flat topic list. 

http://www.dmoz.org/
http://www.aktors.org/
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8. SUMMARY 

In this part of the thesis we have described the architecture, implementation and use 

of a novel recommendation system. Our recommendation system uses multiple techniques 

to generate recommendations, stores the generated recommendations in a semantically 

enabled recommendation database and then refines the recommendations using online 

optimization. We present the evaluation of our architecture not only in a simulated 

environment but also on two real-life websites, which is rarely found in the literature. Our 

results for two real-life websites showed that feedback-based optimization can significantly 

increase the acceptance rate of the recommendations. Even the simple optimization 

techniques could substantially improve acceptance of recommendations compared to the 

non-optimized algorithm. In comparison to the overall buying behavior on the website, the 

overall impact of web recommendations stayed modest. However, if we have in mind that 

success of a website is a result of the joint efforts in the areas of pricing, product 

assortment selection, marketing, website maintenance, customer support etc, with each 

area bringing its share towards the common success, the share brought by a web 

recommendation system can be a valuable addition to this joint effort.  
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9. INTRODUCTION 

In Part II of this thesis we have described the architecture of the adaptive 

recommendation system which is designed for a single website. The recommendations 

generated by that system were used to adaptively support navigation in the data coming 

from a single data source. In this part we study the case when the data shown on the 

website comes from different data sources. This happens for example when two or more 

e-commerce websites enter a partnership and offer complementary products to each others‟ 

assortment. Another example is provided by integrated e-commerce portals, which do not 

have their own product assortment but present data gathered from other e-commerce 

websites augmented with some additional services, for example with an overview of the 

market, customer reviews, price comparison for identical products from different sellers 

and comparison of characteristics for similar products. In this part we describe how such 

websites can be created and how web recommendations can be instrumental in 

implementing the user navigation for such integrated data environments. The data 

integration problems which arise in such situations are given particular attention in this 

part. As a proof of concept, we have implemented a prototype of an integrated e-commerce 

portal using data from several e-commerce websites. 

To integrate the data from e-commerce websites, we have used the data integration 

platform iFuice [RTA+05]. iFuice enables integration of data based on the relations 

between data instances, so-called mappings. We called our prototypical integrated web 

portal EC-Fuice (“e-commerce web portal based on iFuice”) and describe it in this part of 

the thesis.  

The data presented in an integrated e-commerce website can be typically split into 

two parts: content items (product data) and the ontology (product categories), which 

describes the semantic structure of the data. The same is true for many other types of 

websites – digital libraries, news archives, online art galleries, encyclopedias and others. In 

this thesis we focus on the e-commerce applications. The role of content items in our 

setting is played by sets of information describing a product, which includes for example 

product title, prices, extended textual description of the product etc. Subsequently, we will 

call this set of information “product instance”. We will use the terms “node in the product 

ontology” or simply “ontology node” to refer to a product category.  

To provide smooth navigation between the data from different data sources we have 

to determine the relations between ontology nodes and product instances from different 

data sources. Such relations can be identity relations, in case when ontology nodes or 

product instances represent the same real world objects. However, the analysis of the real-

world data shows that the identity relations found in real-world data are often not sufficient 

for implementing practicable navigation. Such relations often involve only a small fraction 

of the instances and nodes, usually require elaborate data cleaning but are nevertheless not 

completely error-safe. According to our experience additional, usually domain-specific 

types of relations are needed to implement the navigation. A convenient way of presenting 
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such domain-specific recommendations is by using web recommendations. This way, 

recommendations become important means of navigation between the data from different 

data sources.  

These are the main contributions of the research described in this part of the thesis:  

 We study the problems which arise during the development of integrated 

e-commerce website, more specifically extraction and integration of the data 

and navigating in the integrated data. We propose the architecture for creating 

such integrated e-commerce websites. Integrated e-commerce websites are 

becoming increasingly popular. However, to our knowledge, the presented 

work is the first study of the data integration problems which are posed by 

such integrated e-commerce websites. 

 We propose a new combined method of matching ontology and instance data 

in the context of e-commerce environment. 

 We evaluate different methods for matching ontology and instance data and 

present evaluation results. 

 We classify the types of recommendations which can be used on the integrated 

websites and propose new types of recommendations. 

The part is organized as follows. In Chapter 10 we present the general architecture 

of EC-Fuice, outline the architecture of the web portal and the supporting services. We also 

give a detailed overview of the two systems which are used for data integration. The fist of 

the systems is the iFuice system which provides the website with data from the different 

data sources. The second is COMA++, the tool which we us to match ontologies in our 

system. In conclusion we explain how these tools work together to perform data integration 

in EC-Fuice. Chapter 11 describes the experiments on integrating product data and 

ontologies using iFuice and the semi-automatic ontology-matching system COMA++. 

Here we also evaluate experimental results regarding the application of different matching 

methods to the problem of ontology matching. In Chapter 12 we discuss the details of the 

EC-Fuice implementation, such as structure of the databases used in EC-Fuice, the web 

interface of EC-Fuice, the generation of recommendation on the integrated data and the 

different kinds of recommendations which can be presented on an integrated website. 

Chapter 13 gives an overview of related work and positions our approach within the 

research field of data integration and ontology matching. In Chapter 14 we summarize our 

work on recommendations in the integrated data environment and discuss possibilities for 

further research. 
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10. ARCHITECTURE OF EC-FUICE 

10.1 Overview of the EC-Fuice Architecture 

The general architecture of the EC-Fuice system is shown in Figure 3.1. Here, we 

show two types of the user interface our system supports. The first is the Web Portal 

interface, targeted for end users with common usage possibilities, such as keyword search, 

browsing etc. The second is the OLAP interface, which is devised for more complex 

analytical usage. In Figure 3.1 we show two interoperating databases: Web Portal 

Operational database and EC-Fuice Data Warehouse. These databases are served with 

integrated data, which come from the data sources through the data integration platform 

iFuice. iFuice has its own internal database which is used during the data integration 

process. The structure of the databases used in EC-Fuice is described in Chapter 12.  

The data sources are shown in the lower part of Figure 3.1. For the sake of 

demonstrativeness, in Figure 3.1 we depict the specific data sources we used for our 

prototype. Our architecture in general, however, is in no way limited to these specific data 

Figure 3.1. Overview of the EC-Fuice architecture. 



Mykola Golovin Web Recommendations for E-Commerce Websites 

 

10 Architecture of EC-Fuice 107 

 

sources but allows plugging in any other data source as well. In our prototype we have 

used the following data sources:  

 Softunity – a German internet shop located at http://www.softunity.com and 

specializing in the distribution of software products. Books, DVD-Movies and 

some other products are also present in the product assortment.  

 Amazon – “the world‟s largest online bookstore” (From Amazon 

advertisement). However, Amazon offers not only books, but also a wide 

range of other products, such as electronics, music, video products, household 

products etc. The German version of Amazon is located at located at 

http://www.amazon.de. 

 eBay – eBay is an auction website. Because of this most data coming from 

eBay are very short lived. For most of the auctions there‟s no firm price. 

However, some of the data (auctions marked with “Buy it now /Sofort 

kaufen”, ”Best offer”, “Sofort und neu”) are similar to the usual e-commerce 

data in that they have firm price and remain listed for longer periods of time, 

from several weeks to several months. eBay has a very broad, practically 

unlimited assortment spectrum. The German version of eBay is located at 

http://www.ebay.de 

 Bestpreis24 – German internet shop located at http://www.bestpreis24.de, 

which gathers products from other suppliers. Bestpreis24 specializes in 

computer- and office-related products. 

The textual information contained in the data sources is mostly in German 

language.  

We have also used some auxiliary data sources, for example the US version of the 

Amazon website. In contrast to the data sources listed above, the product data from these 

auxiliary data sources are not integrated into our framework. The auxiliary data sources are 

used to provide web recommendations leading to the external websites. The use of these 

additional data sources is discussed in Section 12.3.  

Due to the huge amount of data, which is contained in the data sources listed above, 

and the modest (in comparison to the above sites) computational capacity of the 

equipment, on which our prototype runs, we limited the data to topics “Software” , 

“Video” and “Games”. The topic “Software” is comprised of different types of consumer 

software for personal computers. The topic “Video” contains various video materials on 

DVD, VHS etc. The topic “Games” includes games for PC for different operating systems 

as well as games for game consoles.  The topics usually also include some accompanying 

products, which are provided by the data source in the same interest area. For example, the 

topic “Software” also includes computer accessories, such as mouse pads and keyboards, 

the topic “Video” – film posters, the topic “Games” – game consoles, joysticks, books with 

game solutions etc. 
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The import of data is done according to the paradigm of the iFuice framework 

[RTA+05]. Access to data in the data sources is implemented using executable mappings
19

. 

An executable mapping can connect data sources to iFuice using many possible methods – 

by executing calls to a web service (Amazon), by querying a local SQL database 

(Softunity), by performing HTML-scraping (eBay, Bestpreis24). Other methods can be 

implemented by writing a wrapper in Java programming language. We will talk more 

about the implementation of the executable mappings in the next chapter. Several 

executable mappings are usually implemented for every data source. In most cases the data 

source provides at least executable product mappings and executable ontology mappings. 

There may also be other executable mappings to allow integrating additional information 

provided by a data source.  

The integrated data produced by iFuice are used to regularly update both the web 

portal operational database and the EC-Fuice data warehouse. The update intervals can be 

set individually for each data source, since the rates at which information changes are 

specific for each data source. 

The Web portal operational database stores the data and recommendations to be 

presented on the web portal. It also stores recommendation feedback and temporarily 

stores usage data before they are transferred to the EC-Fuice Data Warehouse. The web 

portal contains a module which performs optimization of the presented recommendations 

using the approach presented in the Part II of this thesis. In contrast to Part II, in this part 

we do not further study different approaches to generating recommendations. Instead, we 

investigate how the recommendations can be helpful in building navigation on an 

e-commerce website based on integrated data. However, in this part we also introduce a 

novel art of recommendations – live recommendations. Live recommendations are 

recommendations, which are requested by the web portal directly from iFuice avoiding the 

operational database. Live recommendations are can be provided by invoking individual 

iFuice mappings or iFuice scripts. The incentive for live recommendations is that some 

information is most valuable for a very short period of time. Examples for such 

information can be latest news or (as in our case) web recommendations based on last-

second eBay auctions. Web portal contains a special module for live recommendations. 

The web portal provides the following navigational features:  

 Browsing in categories – the navigation in the link structure which connects 

categories with each other and with products within the same data source. The 

links in the browsing structure are characterized by their unambiguousness. 

The semantics of each link are strictly defined. For example, a link in the 

                                                 
19

 Between the works [RTA+05] which describes iFuice and the work [TR07] which describes the successor 

system MOMA, the use of the term mapping has changed. In iFuice mapping is an executable routine, which 

returns a set of correspondences between objects.  This set of correspondences is called mapping result in 

iFuice. In MOMA, the term mapping is used to denote a set of correspondences which are returned by 

executable matchers. In this work we use iFuice terminology. In this thesis, we use the term executable 

mapping or iFuice mapping to refer to the executable mapping routine. The term mapping in this thesis is 

equivalent to mapping result in [RTA+05]. 
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browsing structure can lead to a product in the current category, to a 

subcategory of the given category etc.  

 Full-text search – allows searching product instances based on the relevance to 

the given query string.  

 Recommendations – recommendations are computed based on different 

algorithms, they can be adaptive or not adaptive, pre-computed or live, lead 

from content of one data source to content of another data source or to 

external website. Recommendations make up a significant part of the 

navigation. As opposed to the unambiguous links in the browsing structure, 

the semantics of the recommendation links are “fuzzy”. So, a recommendation 

link can lead from one category to a similar category in another data source or 

to a product in a related category. The degree of similarity or relatedness is not 

postulated in the original data but is approximated using some presumably 

intelligent technique.  

Our e-commerce portal has no own features which allow purchasing products. It 

has no shopping cart and no payment system. Instead, we refer users to the websites from 

which the product descriptions come, so that they can make their purchase there.  

The EC-Fuice data warehouse serves as an exhaustive data store for multiple 

purposes: 

 Analysis of the product data using OLAP tools. 

 Analysis of the web usage data from the web portal using OLAP tools. 

 Automatic generation of the web usage based web recommendations 

The database structure of the EC-Fuice data warehouse is tailored for analytical use 

by both humans and automated tools. The analytical (OLAP) interface to the data 

warehouse allows the manifold analysis of the competition. For example, it allows the 

comparison of individual products, price niveau comparison in different categories, 

analysis of the price trends over time and comparative analysis of the product spectrum‟s 

breadth with respect to price. We have communicated the results of our analysis to the 

company which operates the website http://www.softunity.com. The results of the analysis 

were assessed by the company‟s specialists and some price adjustments were made to the 

company‟s product assortment based on these results.  

10.2 Data Integration in EC-Fuice 

Essential parts of the e-commerce data are the product data and the product 

categories. In order to implement the navigation between the data sources, we have to 

match these data and establish mappings. To achieve this, we are using iFuice as the data 

integration platform and COMA++ as the tool for ontology matching. In this section we 

give a short description of both systems, sufficient for understanding of their application in 
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our prototype. For more detailed information, please refer to the corresponding papers. 

iFuice is described in the paper [RTA+05], COMA in paper [DR02]. COMA++ is an 

extension of COMA described in [ADMR05] and [Do06] which features substantial 

improvements over its predecessor. One of these improvements is the ability of COMA++ 

to perform ontology matching. In this section we also discuss the collaboration between 

iFuice and COMA++ within the EC-Fuice framework. 

10.2.1 iFuice 

iFuice is a software platform for information integration and fusion which has been 

developed by the Database Group at the University of Leipzig. It has already been 

successfully applied in several projects. It was used for example for the comparative 

analysis of the bibliographical data from the leading database-related conferences and 

journals [RT05]. It was also used to implement the integration of the bioinformatics-related 

data. The goal of the application of iFuice in the field of bioinformatics was the 

consolidation of the data related to different genes and proteins, available from different 

public and private data sources [KR05].  

iFuice is based on peer-to-peer executable mappings between data sources. The 

peer-to-peer architecture allows easy addition of new data sources. Executable mappings 

can be established between objects in the same data source or between objects coming 

from different data sources. The execution of mappings and the handling of the mapping 

results are controlled by the iFuice component called “mediator”. The iFuice mediator is 

domain-independent, i.e. the same mediator is used for all problem domains. The mappings 

themselves are specific to the given problem domain. The executable mappings can be 

plugged into the mediator using several interfaces: 

 as a Web Service. For the Web Service based data sources used in EC-Fuice 

we use Apache Axis library
20

 to connect to web services.  

 as a relational database. The relational database data sources used in EC-Fuice 

are connected using the respective JDBC libraries of the respective relational 

database servers. 

 as an XML database or an XML file. In EC-Fuice, we use Exist as an XML
21

 

Database . For XML Files, we use Xerces
22

 as XML parser and Saxon
23

 as 

XQuery processor.  

 as a plain text file 

 using a custom Java object. An example of a custom Java object can be an 

HTML parser which extracts information from HTML pages of the websites. 

                                                 
20

 http://ws.apache.org/axis/ 
21

 http://exist.sourceforge.net/ 
22

 http://xerces.apache.org/xerces-j/ 
23

 http://saxon.sourceforge.net/ 
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For creating HTML parsers in EC-Fuice we use the Java HTMLParser 

library
24

. 

In contrast to the many other methods for information integration, iFuice doesn‟t 

require the creation of a global schema. The absence of a global schema leads to a decrease 

in the implementation effort, since it is known that creation of the global schema requires 

much effort but the quality of integration on the instance level nevertheless cannot be 

guaranteed. Instead, iFuice relies on a domain model which is of higher conceptual level 

than a global schema and reflects the semantic relations within the problem domain. A 

domain model is less detailed than a global schema and is easier to create and maintain. An 

iFuice domain model incorporates the objects types which exist in the given domain (for 

example publications, authors, venues for the bibliographic domain or genes, proteins and 

sequences for the bioinformatics domain) and the mapping types which exist between these 

object types (for example same publication, authors of a publication, etc.). Different data 

sources can provide objects of the same type. iFuice distinguishes “physical data sources” 

and “logical data sources”. A physical data source is the a “real-world” data source, which 

can provide objects of different types.  A physical data source encapsulates one or more 

Logical Data Sources (LDS). Each logical data source provides objects of one type. iFuice 

does not require the specification of all attributes of an object type in the domain model. 

                                                 
24

 http://htmlparser.sourceforge.net/ 

Figure 3.2. Screenshot of the iFuice GUI 
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However, the key attribute, also called object id, must be specified. The value of the object 

id must be present in all objects and unique for the given LDS. The mapping types 

represent semantic relations between object types. Every mapping type can have several 

mapping implementations which are specific to the data sources. For example, mapping 

type “author of publication” can have the implementation “return object of type „author‟ 

from the data source B which corresponds to the object of type „publication‟ from the data 

source A”. 

The iFuice mediator supports two methods for executing iFuice mappings. One 

method is navigational, in which the user navigates from one object to another in iFuice 

GUI using mappings between them. This method is useful for users wishing to explore the 

data in the data sources. 

 Another method is based on the iFuice scripting language, which allows creating of 

the scripts able to perform more complex data integration tasks. The scripts can be 

executed either by calling the iFuice mediator from a program written in a programming 

language or by specifying the script to be executed in iFuice GUI. The screenshot of the 

iFuice GUI is shown in Figure 3.2. The screen in Figure 3.2 is divided in several areas. The 

area on the right contains the text of the script which is used to integrate and manipulate 

the data. The right side shows the data in different variables which contain input and output 

data for the script, as described later on. The upper part of this area shows the list of 

objects or object pairs, the lower part shows the attributes of the respective objects. 

The iFuice scripting language is based on a powerful set of operators which 

perform various operations and optionally assign the results of these operation to variables.  

Variables can hold values of the following common data types: Integer, Float, and 

String. In addition to these common data types there are also iFuice-specific data types: 

ObjectInstances, MappingResult, AggregatedObjects, and AggregatedMappingResult. The 

data type ObjectInstances, as the name suggests, contains a set of object instances. The 

data type MappingResult describes a set of object correspondences, i.e. a set of object 

instance pairs. Each correspondence in a MappingResult has an associated quality metric. 

The quality metric is a value of type Float in the range [0..1]. The quality metric is set by 

the iFuice mapping during its execution.  The set of all object instances on the left side of 

each correspondence in a MappingResult is called the domain of the MappingResult. The 

set of all object instances on the right side of each correspondence in a MappingResult is 

called the range of the MappingResult.  

The type AggregatedObjects describes a set of aggregated objects. An aggregated 

object is a set of semantically equal object instances from different data sources. An 

AggregatedMappingResult is a set of correspondences between aggregated objects. We do 

not use AggregatedObjects and AggregatedMappingResult in EC-Fuice.  

The iFuice variables are not strictly typed, i.e. each variable can hold values of any 

supported type. By convention of the iFuice scripting language the variables are denoted 

by identifiers prefixed by “$”. In some cases, when an operation requires a reference to the 

variable rather than the value held by the variable, the variable name needs to be prefixed 

by the symbol “&”. 
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The data types Integer and Float types support the basic arithmetic operations 

“+”,”-”,”*”,”/”. String data type supports the concatenation operation “+”.  

The iFuice operators which we have utilized for implementing EC-Fuice are 

summarized in Table 3.1 and described further in this section. Description of the other 

operators can be found in the paper [RTA+05]. There are also some new useful operators 

which have been introduced to iFuice after the paper [RTA+05] was published. We utilized 

these operators in EC-Fuice and describe these operators here as well.  For each operator in  

Table 3.1 we also show a possible set of input parameters. For example, $MR denotes that 

the operator expects a variable containing a MappingResult as input parameter. $O denotes 

a variable containing ObjectInstances. The notation $variable shows that the operator can 

handle variables containing different data types. Sometimes there is more than one way to 

invoke an operator. So, for example, the operator queryInstances can be used to query a 

data source or to query a variable of type ObjectIstances. In such cases, we show one of the 

invocation variants in the table and describe other invocation variants further in text.  

Operator Short description 

queryInstances(DataSource, 

“query“) 

Query instances from a data source 

queryMapResult($MR,“query“) Query a variable which contains a MappingResult 

getInstances($O) Get all attributes for objects instances 

map($O,Mapping) Execute mapping Mapping using $variable as input 

and return MappingResult 

traverse($O,Mapping) Execute mapping Mapping using $variable as input 

and return ObjectInstances 

compose($MR1,$MR2) Find all equivalent object instances in the range of 

$MR1 and the domain of MR2. Return a 

MappingResult consisting of the domain 

ObjectInstance from $MR1and the range 

ObjectInstance from $MR2 for all such equivalent 

object instances. 

union($variable,$variable) Perform the set operation ⋃  on the sets of object 

instances or correspondences in the input variables 

intersect($variable,$variable) Perform the set operation ∩ on the sets of object 

instances or correspondences in the input variables 

diff($variable,$variable) Perform the set subtraction operation on the sets of 

object instances or correspondences in the input 

variables 

attrMatch($O1,$O2,MatchMethod,

Attribute,Attribute,Threshold) 

Perform generic attribute-based matching sets of 

object instances in the input variables using one of 

the match methods provided by iFuice 

match(($O1,$O2,Matcher) Perform matching sets of object instances in the 

input variables using a custom matcher 
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domain($MR) Return the set of object instances from the domain 

or MappingResult 

range($MR) Return the set of object instances from the range or 

MappingResult 

inverse($MR) Switch the domain and the range of a 

MappingResult, i.e. mapping result $O1->$O2 

becomes $O2->$O1 

print($variable) Output the contents of a variable to the console 

if  <condition> then  <operators> 

end 

Execute operators  if a condition is true 

while <condition> do  <operators> 

end 

Repeat operators while condition is true 

Table 3.1. iFuice operators used in EC-Fuice 

 

One of the essential iFuice operators is the operator “map”. This operator executes 

a mapping, taking a variable of the type ObjectInstances and the name of the iFuice 

mapping to be executed as input parameters. The operator “map” returns data of the type 

MappingResult. An example of executing the operator “map” using the iFuice scripting 

syntax is given below: 

$SoftunityToAmazonMappingResult:=map($SoftunityProducts,Softunity.Softunity2Amazon); 

Here $SoftunityProducts is a variable which contains data of type ObjectInstances. 

Such variable can be obtained for example using the operator queryInstances, which is 

discussed later on. “:=” stands for the assignment operation. “Softunity.Softunity2Amazon” 

is the name of the iFuice mapping. According to the EC-Fuice naming convention, the 

names of the mappings have a form of  

“<DatasourceName>.<NameOfTheMappingProper>” 

where “DatasourceName” denotes the first of the data sources for which the iFuice 

mapping is applicable. This naming pattern is however only a convention and not an iFuice 

requirement. 

There are several kinds of iFuice mappings. The kinds of mappings can be 

classified along different perspectives. With respect to the kind of the input data, we 

discern query mappings and id mappings. The id mappings establish correspondences 

between the objects from two data sources or within the same data source. Internally iFuice 

represents such mappings as a set of correspondences between object ids. Query mappings 

differ from the id mappings in that they do not map objects from data sources to each 

other, but rather map a special object of the type “query” to a set of output objects. They 

allow getting objects based on given criteria from a data source. The query is formulated in 

the query language which is native to the data source. For example, it can be SQL for the 

relational database source, XQuery for an XML data source, a special proprietary language 

for a web service or just a set of keywords for an HTML data source. Below are some 

examples of executing a query mapping using the iFuice scripting syntax: 
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$SoftunityProduct:=queryInstances(Product@Softunity,”title like „Harry%‟”); 

$AmazonOntology:=queryInstances(Ontology@Amazon,"Software,Video,Games 

EXCEPT Software/Specials,Games/Specials,Video/For Rent"); 

$eBayProducts:= queryInstances(Product@eBay,"keyword"); 

 

The operator queryInstances may also be applied to iFuice variables which contain 

data of the type ObjectInstances. In this case, a special iFuice query language is used, 

which is similar to the syntax of SQL “WHERE” clause. The only additional requirement 

compared to SQL is that attribute names must be surrounded by square brackets: 

$SoftunityProduct1:=queryInstances($SoftunityProduct,”[title] like „%Potter%‟”); 

A similar operator queryMapResult is provided for querying variables of the type 

“MappingResult”. To distinguish between the attributes of the two object instances which 

constitute a correspondence, the attribute names are prefixed with respectively “domain.” 

and “range”. A special attribute “_confidence” is available for access to the quality metric 

of the correspondence. An example of the usage of the operator queryMapResult is shown 

below: 

SoftunityToAmazonMappingResult1:=queryMapResult(SoftunityToAmazonMappingResult,

” [domain.title] like „Harry%‟ and [range.title] like „%Potter%‟ and 

[_confidence]>0.5”); 

With respect to the semantics of the executable mappings iFuice differentiates 

between “same”-mappings and association mappings. “Same”-mappings establish 

correspondences between the objects which represent the same “real-world” object, i.e. are 

semantically equivalent. It should be noted, that “same” mappings in practice do not 

guarantee the full identity of the object instances, i.e. recall and precision values of 100%. 

Such mappings may contain errors, which should of course be minimized in order for these 

mappings to be practically useful. Association mapping represent types of semantic 

relations other then equivalence. The particular semantics of the association mappings are 

specific to the problem domain.  

Many real-world domains, including the domain of e-commerce, are characterized 

by the large volume of available data and therefore impose high memory requirements on 

the data integration applications. Because of that, iFuice allows mappings which require 

only sets of object ids as input and output data. This way, the storing of the complete 

object with all attributes in memory can be avoided. Every LDS must provide a special 

routine, which allows getting all attributes of the object with a given id. These routines are 

utilized by the iFuice operator getInstances. An example of the executing the operator 

“getInstances” is given below: 

 

$eBayProducts:=getInstances($eBayProductIds); 
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The variable $eBayProductIds contains data of type ObjectInstances. In every 

object instance, however, only the id attribute is present. The operator getInstances 

determines the LDS from which the object instances contained in the parameter originate 

and executes the appropriate “getInstances”-implementation. After execution, the result 

variable $eBayProducts contains object instances with all attributes. 

iFuice makes a distinction between “single mappings” and “bulk mappings”. This 

notation characterizes the handling of data inside of the implementation of the iFuice 

mapping and the interface between mapping and the iFuice mediator. In case of a single 

mapping the iFuice mediator iterates over the set of input instances and performs one call 

to the executable mapping for every instance. Such executable mappings are relatively 

easy to implement and are more easily comprehensible, since the programmer needs to 

implement only the matching of a single instance. Bulk mappings on the contrary are 

called one time for the entire input dataset and not once per instance. They require more 

implementation effort but allow speeding up the execution of the mapping, especially in 

the case of large input sets. Bulk mappings also offer additional possibilities of utilizing 

the relations which exist within the input dataset. Such bulk mappings are especially 

suitable for the ontology mapping, since they receive the entire ontology in one input set 

with all nodes and edges and can use this information while computing the mapping.  

The iFuice mediator also allows traversing executable mappings and composing 

mapping results. Traversing mappings means executing a sequence of mappings. Thereby 

the output of the previous mapping becomes the input of the next mapping. The result of 

the traversing is a MappingResult which contains correspondences between the input data 

of the first mapping and the output data of the last mapping. Composing is analogous to 

traversing, with the difference that it is done not over a sequence of executable mappings 

but over a sequence of MappingResult variables. Operators such as union and diff can be 

applied to the data of the types ObjectInstances and MappingResult. The execution flow in 

the iFuice scripts can be managed using flow control operators similar to the ones found in 

the modern programming languages. Examples of operators which perform these 

operations are shown below (the code does not constitute a continuous program but rather 

a collection of fragments from different programs): 

 

$SoftunityToeBayProductsMappingResult:= traverse( $SoftunityProducts, 

{Softunity.Softunity2Amazon, Amazon.Amazon2eBay}); 

$SoftunityToeBayProductsMappingResult:=compose( 

$SoftunityToAmazonProductsMappingResult, 

$AmazonToeBayProductsMappingResult); 

$eBayProducts:=union($eBaySoftware,$eBayGames); 

$CommonProducts:=intersect($SoftwareProducts,$GameProducts); 

$OnlySoftwareProducts:=diff($SoftwareProducts,$GameProducts); 

 

// Example of a “while” loop construct 

$j:=0; 

while  $j<=9 do 
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print ("[id] like '"+ $j+"%'"); 

if $j>3 then 

$ebprodtemp:=queryInstances($ebprod,"[id] like '"+$j+"%'"); 

else 

getInstances($ebprodtemp); 

end 

$j:=$j + 1; 

end 

 

The lines in the iFuice scripts which begin with the symbols “//” are considered 

comments and not further interpreted by the iFuice mediator. We will use comments for 

explaining the details of the scripts later on.  

iFuice also has the concept of a “matcher”. Matchers operate on the data of the type 

MappingResult and adjust the value of the quality metric basing on some algorithm. 

Matchers can be for example applied to improve recall and precision of “same”-mappings 

based on some additional information.  

iFuice provides several standard matcher algorithms, including trigram string 

attribute similarity and affix string attribute similarity. Below is an example of using 

standard trigram attribute matcher: 

$SoftunityToAmazonMappingResultRefined:= 

attrMatch($SoftunityToAmazonMappingResult,“[title]”,”[title]”,MATCHER_TRIGRAM, 

0.3) 

Here, $SoftunityToAmazonMappingResult holds the initial MappingResult which 

will be refined by the matcher. $SoftunityToAmazonMappingResultRefined is the variable 

which will hold the resulting MappingResult after the execution of the matcher. Parameters 

with value ”[title]” give the name of the attributes which will be used by the attribute 

matcher. MATCHER_TRIGRAM sets the name of the matching algorithm to be executed. 

The last, optional parameter value 0.3 sets the similarity threshold for the attribute matcher.  

It is also possible to implement and use own matchers. Below are the examples of 

using custom matchers: 

$SoftunityToAmazonMappingResultRefined:=match( $SoftunityToAmazonMappingResult, 

Softunity.CategoryMatcher) 

Here, $SoftunityToAmazonMappingResult contains the input MappingResult and 

$SoftunityToAmazonMappingResultRefined contains the output mapping result. 

“Softunity.CategoryMatcher” is the name of the custom matcher. 

Adding new data sources, executable mappings and custom matchers to iFuice 

requires relatively little effort. They are configured using XML configuration files, an 

example of which is shown in Appendix. The domain model, i.e. object types, mapping 

types and relations between them are also stored in the XML files.  

In general, iFuice is a highly customizable integration platform featuring several 

highlights, which are especially important for building modern e-commerce applications: 
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 Absence of the  global schema 

 Peer-to-peer-like paradigm 

 XML-based configuration 

 Implementation in Java programming language, for which a large number of 

adapters for diverse data sources already exists or can be easily created 

 Executable mappings which allow implementing highly complex data 

transformations  

 Rich possibilities for composing executable mappings and manipulating data 

and mapping results 

These distinctive features make iFuice a good choice as a platform for integrating 

data in the e-commerce domain. 
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10.2.2 COMA and COMA++ 

COMA is a platform for schema matching developed by the Database Group at the 

University of Leipzig [DR02]. COMA++ described in [ADMR05] and [Do06] is an 

extended version of COMA which has a significant number of additional features 

compared to its predecessor. The novel feature of COMA++ which is particularly 

important for the topic of our research is its ability to match ontologies.  COMA++ 

encompasses the full functionality of COMA. Because of this, henceforth we will be 

speaking only of COMA++.   

The task of schema and ontology matching is to obtain semantic mappings between 

input schemas or ontologies. Such mappings consist of the correspondences between the 

elements of the schemas or ontologies. The correspondences between the real-world 

concepts which are represented as schema or ontology elements are characterized by high 

diversity and semantic richness. Such correspondences may have different cardinality, i.e. 

be 1:1, 1:n or n:m correspondences and have specific direction. For schemas, the 

correspondences often have associated “mapping expressions”, which specify how the 

instances of one schema can be transformed into instances in another schema. In general 

case, however, it is not practically feasible to produce mappings encompassing the entire 

complexity of such real-world correspondences with an automatic tool. Therefore, 

COMA++ uses a simplified representation of a mapping. All the correspondences in a 

COMA++ mapping correspondences have cardinality 1:1 and type “similarity”. Each 

correspondence also has an attached value from 0 to 1 denoting the degree of similarity, 

where 0 stand for no similarity and 1 for equality. The interpretation of the domain-specific 

meaning of the similarity values is left to the application which uses the results of the 

mapping. The correspondences with cardinalities 1:n and n:m are represented through 

multiple 1:1 correspondences. The COMA++ correspondences are non-directed. It is 

however possible to configure the matching process in such a way that only the 

correspondences having a specified direction are included in the resulting mapping. 

COMA++ is based on a generic data model which allows supporting input schemas 

and ontologies expressed in different languages, such as Structured Query Language 

(SQL), W3C XML Schema Definition (XSD), Resource Description Framework (RDF), 

Web Ontology Language (OWL), and XML Data Reduced (XDR). COMA++ translates 

the input schemas and ontologies into the internal format based on rooted directed acyclic 

graphs. The rooted acyclic graphs are stored in the COMA++ repository implemented 

using the relational database technology. The repository is also used to store the resulting 

mappings between schemas and ontologies.  

COMA++ consists of the following components: 

 parsers/importers for the input data 

 schema pool and mapping pool 

 repository  
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 match customizer, which is in turn comprised of: 

 a library of matching algorithms (or shortly matchers) 

 mapping refinement strategies 

 execution engine 

 exporters 

 graphical user interface (ComaGUI) 

The parsers and importers are responsible for reading the schema, ontology and 

mapping data in the various supported input formats and for loading these data into the 

schema pool and mapping pool. The schema pool and mapping pool contain the schemas, 

ontologies and mappings in the main memory which can be immediately used for 

matching. The schemas in the schema pool can be subjected to preprocessing, aimed for 

example to transform complex data types into simple ones or recognize shared element 

which are declared inline at multiple places[Do06]. The preprocessing techniques of 

COMA++ are focused in the first places on preprocessing of schemas rather than 

ontologies. We do not use these techniques in this work and therefore omit the description 

of the schema preprocessing in COMA++.  

The repository provides a persistent storage for schemas, ontologies and mappings 

which can be used later. The relational database server MySQL is used to implement the 

repository.  

The match customizer allows specification of parameters which influence the 

matching process. The parameters which can be configured by the match customizer are: 

 the choice of the matchers from the matcher library 

 configuration of the combined matchers, constructed from the matchers in the 

matcher library 

 mapping refinement strategy  

 combination of the similarity values and selection of match candidates based 

on the calculated combined similarity 

To match the schemas and ontologies, COMA++ provides an expandable matcher 

library. Below we discuss the matching algorithms provided by COMA++ and the 

parameters of these algorithms, focusing on the algorithms and parameters which are 

important for understanding of the experiments described later in this thesis. The built-in 

matching algorithms (or simply matchers) fall in two categories
25

: 

                                                 
25

 In the original COMA and COMA++ papers [DR02][ADMR05]  the hybrid matchers were called simple 

matchers and combined matchers were called hybrid matchers. The naming of the matcher types which is 

used here originates from [Do06]. Such naming better reveals the nature of the matchers. So, in a hybrid 

matcher the combination the algorithms which constitute the matcher is hard-coded. This applies also in the 

case when only a single algorithm is used. In the combined matchers the interaction of the algorithms of 

which the matcher is comprised can be flexibly configured. 
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 hybrid matchers 

 combined matchers 

The following hybrid matchers are available:  

 Affix: matches affixes, i.e. prefixes and suffixes of a string.  

 N-gram: (bigram, trigram, etc.):  matches all common n-letter substrings of a 

string. 

 EditDistance: calculates the string similarity based on the number of edit 

operations needed to transform one string into another, so called Levenshtein 

metric[Lev66] 

 Soundex: calculates the phonetic similarity of the strings based on soundex 

algorithm.  

 Synonyms: calculates string similarity based on the synonym table, provided 

by user. 

 Data types: calculates the similarity of the fields in database schema, based 

on their data types. 

 UserFeedback: based on the matches and mismatches specified interactively 

by user. 

 ReuseSchema: this matcher uses the results of previously matched schemas 

or ontologies which are stored in the repository. The intuition behind this 

matcher is that some schemas which need to be matched may be similar to the 

schemas already matched. This is an extension of the idea of a Synonym 

matcher, with the difference that in Synonym matcher the synonyms need to 

be entered manually, whereas the reuse matcher tries to determine the 

semantic similarity based on previous experience.  

 ReuseFragment: analogous to the ReuseSchema matcher, however operates 

not on results of matching the entire schemas but on fragments of previously 

matched schemas.  

 Taxonomy: this matcher calculates the similarity of the elements based on 

their distance to each other in the taxonomy provided by user.  

At the time when we conducted our experiments COMA++ provided no instance-

based matchers. Currently, COMA++ has implemented constraint-based and content-based 

instance matchers [EM07]. This work is discussed in Section 13.2 in more detail.  

Some of the hybrid matchers, for example affix, n-gram, and EditDistance can 

operate on different input data. The possible types of input data include node names, paths 

from the root of the internal graph, data types, descriptions or other additional data. To 

enrich the input data additional types of input data can be obtained from original data using 
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preprocessing. These generated input data can be constituents of the properties of the input 

elements, for example individual lexical terms which constitute the element name or 

description, deciphered abbreviations etc. Another type of the generated input data is 

obtained by considering the structural context of the matched elements. Such input data are 

manifold. Following are the types of the element data which can be generated by 

COMA++ and supplied to the matchers: 

 Parents, Siblings, Children: the elements of the schema/ontology which 

appear respectively as parents, siblings or children of the node in the internal 

directed graph. The original relations need not necessarily have “child-parent” 

semantic.  

 Leaves: the children of the element in the internal directed graph which have 

no further children. 

 Ascendants, Descendants: ascendants and descendants of the element in the 

internal directed graph.  

 AscPaths, DescPaths: paths from the root of the internal graph respectively to 

the ascendants and the descendants of the element. 

The type of input data can be configured for every matcher invocation. In the 

course of matching the same matcher can be applied several times on different input data.  

The built-in combined matchers are pre-configured combinations of the hybrid 

matchers, determined empirically and known to be successful for some often encountered 

matching tasks. COMA++ also provides flexible possibilities for combining the hybrid and 

combined matchers into more complex combined matchers in order to achieve higher 

quality of the resulting mapping.  

Another technique COMA++ provides in order to increase the quality of the 

resulting mappings is the ability to do iterative refinement of the mappings. The process of 

matching is executed iteratively. Depending on the strategy chosen in the match 

customizer, one or several iterations are executed. The mappings obtained in one iteration 

can be used as input data for the next iteration. COMA++ provides several strategies for 

refinement of the mappings such as context-dependent matching, fragment-based matching 

and reuse-oriented matching. Context-dependent matching refines the mapping based on 

the intuition that similar elements usually have similar neighborhoods. These 

neighborhoods are called “contexts”. COMA++ provides two strategies for performing 

context-dependent matching: AllContext and FilteredContext. In case of the AllContext 

strategy all found contexts are matched, in case of the FilteredContext strategy only the 

contexts whose cumulative similarity is higher than the given threshold are matched. 

 Fragment-based matching is useful for large schemas, which are likely to have 

relatively small matching portions. The conventional approach of matching all elements of 

one schema to all elements of other schema may lead to performance degradation as well 

as deterioration of the quality of the resulting mapping [Do06]. In this case, it makes sense 

first to determine the portions of the schemas which have significant similarity and then 
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match the elements contained in these portions. Reuse-oriented matching is a matching 

strategy which uses mappings in the repository and works in collaboration with the reuse 

matchers. There‟s also a special ontology matching strategy specific to the COMA++ 

version which collaborates with the taxonomy matcher and is using a shared taxonomy.  

It has been widely recognized that fully automatic schema and ontology matching 

does not achieve practically acceptable quality in general case and that human intervention 

is usually necessary. COMA++ takes this into account and provides several ways of 

allowing human assistance to the automatic matching. COMA++ allows fully automatic 

matching with posterior manual adjustment and also and iterative semi-automatic approach 

where human intervention happens after every match iteration of the matching process. 

The matching process itself is carried out by the execution engine according to the 

parameters specified in the match customizer. Every iteration consists of several basic 

steps. The basic steps of the match iteration are component identification, matcher 

execution and similarity combination. During the component identification step COMA++ 

generates the input data for matchers basing on the internal graphs of the source and target 

ontologies. The matchers are then executed independently from each other. Every 

combined matcher is executed in a manner similar to the entire matching process. In the 

similarity combination step the similarity values returned by the individual matchers are 

combined and the match candidates are selected. The combination and selection process in 

its turn consists of three substeps, with an optional fourth: 

Aggregation: in this substep the similarity values computed by different matchers 

are aggregated, so that for each pair of elements exactly one similarity value is obtained. 

Ranking: in this substep we rank the elements of one schema with respect to the 

other schema according to the similarity values obtained in the previous step. The direction 

of the ranking (i.e. elements of which schema are ranked) is set by the parameter Direction 

as described later in this Section. 

Selection: in this substep the best match candidates are selected from the ranked 

elements.  

At the end of the last iteration an additional substep of may be performed, which 

combines the similarity values of the individual mappings to a single value which denotes 

the cumulative similarity value of the matched schemas or ontologies. This substep is 

required for combined matchers.  

The following parameters of the steps can be adjusted using match customizer to 

control how each step is being executed: 

Aggregation: aggregation strategies can be selected among max, min, weighted 

and average. Here, max and min denote that respectively maximal and minimal values are 

chosen among all similarity values returned by matchers.  In case of weighted strategy the 

similarity value is calculated according to the formula:  
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[Do06], where s1, s2 are the elements in the matched schemas, similarity between which is 

being calculated, M – set of matchers which provided similarity values for correspondence 

between s1 and s2, sim(s1,s2,m) – similarity value provided for correspondence between s1 

and s2 by the matcher m ∈M. Average is a special case of the weighted strategy, where all 

the weights wm are equal.  

Direction: for the ranking step, the following direction settings are available: 

LargeSmall, SmallLarge, Both. As the names suggest, direction can be specified with 

respect to the size of the schemas being matched. In case when the setting Both is selected, 

the correspondences appear in the resulting mapping only when they are identified as 

correspondences in both directions. In our experiments we use only the setting Both, since 

we are only interested in bidirectional mappings. 

Selection. For selection, several parameters can be specified:  MaxN, MaxDelta, 

Threshold. The parameter MaxN takes an integer value which specifies how many top-

ranking correspondence candidates will appear in the resulting mapping. The parameter 

MaxDelta takes a floating-point value which specifies that all correspondence candidates 

whose similarity value differs no more than MaxDelta from the highest ranking 

correspondence candidate are taken over to the resulting mapping. MaxDelta can be 

specified as absolute value or relative to the value of the highest ranking correspondence 

candidate. Threshold is a floating-point value which specifies that no correspondence 

candidate with similarity value less than threshold should appear in the resulting mapping. 

Unlike previous steps, the parameters in this step can be combined. This is often useful, 

since each parameter used alone has some drawbacks. So, MaxN and MaxDelta may return 

correspondences with too low similarity value, while Threshold may return too few 

correspondences. A reasonable configuration is using MaxN or MaxDelta combined with 

relatively low value of the Threshold parameter to cut off the admittedly low-quality 

correspondences.  

Combination. Two strategies are available for combination of the similarities of 

the multiple correspondence candidates to obtain one cumulative similarity value: average 

and Dice. Average, as the name suggests, is obtained by dividing the sum of all similarity 

values through the total number of elements in the schemas or ontologies being matched. 

Dice is based on the Dice coefficient [CAFP98] and is the ratio of the elements which can 

be matched to the total number of elements in the input ontologies or schemas. Dice 

coefficient is not influenced by the individual similarity values of the correspondence 

candidates.  

COMA++ allows exporting schemas, ontologies and mappings in a proprietary 

text-based format. The mappings can be exported as OWL/RDF as well. We have also 

implemented a wrapper for the COMA++ repository, which allows exposing of the 



Mykola Golovin Web Recommendations for E-Commerce Websites 

 

10 Architecture of EC-Fuice 125 

 

ontology mappings created by COMA++ to iFuice as iFuice mappings. Using this wrapper, 

COMA++ and iFuice can transparently exchange data between each other.  

COMA++ features a powerful graphical user interface shown in Figure 3.3 which 

can be used to: 

 import schemas,  ontologies and mappings into the schema pool and mapping 

pool 

 persist selected schemas, ontologies and mappings into repository, load or 

delete them from the repository 

 configure the parameters of the match customizer  

 manually edit mappings, specify fragments for fragment-based matching.  

The COMA++ GUI also allows operations on schemas and ontologies, such as: 

Domain: given two schemas/ontologies and a mapping between them, return the 

matching part of the source schema/ontology. 

InvertDomain: given two schemas/ontologies and a mapping between them, return 

the non-matching part of the source schema/ontology. 

Range: given two schemas/ontologies and a mapping between them, return the 

matching part of the target schema/ontology. 

Figure 3.3. COMA++ graphical user interface 
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InvertRange: given two schemas/ontologies and a mapping between them, return 

the non-matching part of the target schema/ontology. 

The COMA ++ GUI also provides access to the following operations on mappings:  

Merge: merge two mappings into one, which contains all correspondences present 

in at least one of the original mappings. 

Diff: return all correspondences from one mapping which are not contained in 

another mapping 

Intersect: return all correspondences from one mapping, which are also contained 

in another mapping 

Compare: COMA ++ also supports comparative evaluation of different matchers 

and strategies. The COMA++ GUI allows selecting a mapping as a base for comparison 

and comparing it either to another mapping or to all available mappings with identical 

source and target schemas/ontologies. For each pair of mapping, COMA++ calculates the 

values of recall and precision, which are widely known measures in the field of 

information retrieval. Also COMA++ calculates the values of the combined metrics F-

Measure [Rijs79] and Overall, which has been introduced in [MGR02] under the name 

Accuracy. 

In general, COMA++ is a versatile platform which has proven to be successfully 

applicable to schemas and ontologies from many problem domains. We use COMA++ to 

create mappings between E-commerce ontologies, based on the structural and lexical 

information contained in the ontologies. The instance data are not taken into consideration 

for generating COMA++-based mappings.  

10.2.3 Integration of Web Data using iFuice and COMA++ 

The iFuice platform plays a central part in our architecture for web data integration. 

iFuice acts as a base framework for data extraction, transformation and integration 

operations. It also provides the temporary working storage for both product instance and 

product category data and performs the loading of data into the web portal operational 

database. 

The process of the integration of the e-commerce data in iFuice utilizing COMA++ 

is schematically shown in Figure 3.4. For clarity, we show only two data sources in Figure 

3.4. In case when more data sources need to be integrated, they are integrated pair-wise. 

The data shown in the picture are limited to product instances and product categories, i.e. 

here we do not show any additional information which may be provided by a data source. 

In iFuice, the products and product categories are handled uniformly as object instances of 

different object types. The products are handled as object instances of type “Product”, the 

product categories – as object instances of type “Ontology”. COMA++ is used as a tool to 

implement iFuice mappings for the object instances of type “Ontology”. 



Mykola Golovin Web Recommendations for E-Commerce Websites 

 

10 Architecture of EC-Fuice 127 

 

As shown in Figure 3.4, the data from the data sources are imported into iFuice. To 

enable the data import, the data source usually provides several executable mappings. At 

least two executable mappings are mandatory. One of the executable mappings should be a 

mapping which allows obtaining either all products or all product categories. The other 

executable mapping should map the products to product categories or vice versa, 

depending on what type of data is provided by the first executable mapping.  

Normally, however, the data sources provide more than two executable mappings. 

This allows more convenience and more flexibility for the iFuice scripts and may also 

provide additional data useful for matching. A typical set of executable mappings usually 

includes query mappings for both products and product categories and at least one of the 

mappings between the products and product categories within one data source. The inverse 

mapping for a given executable mapping can be obtained by applying the iFuice operation 

inverse()
26

 on the materialized results of the original executable mapping. This is very 

important for the cases when due to the nature of the data source the mapping in one 

direction can be implemented more easily than in the other direction. In such cases, it is 

sufficient to implement only the easier executable mapping. By convention, in our 

executable mappings between products and categories every product which belongs to a 

certain product category also belongs to all parent categories of that category (i.e. we use 

“is-a” relations for products in the ontologies). In the mapping results produced by our 

executable mappings, if a product has an explicit correspondence to a category, there are 

also explicit correspondences to all parents of this category. The relations between 

categories in the ontology are however “child-of” (i.e. a category only has an explicit 

                                                 
26

 See Table 3.1 for the description of the operator inverse() 

Figure 3.4. Integrating e-commerce data in iFuice. 
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correspondence to its parent and not to the parent‟s parent). This convention is consistent 

with the way Softunity, Amazon and eBay assign products to the categories in the 

ontology. Product ontologies from other data sources can be converted to this convention 

using special executable mappings. Such convention is not an obligatory requirement. 

However, this greatly simplifies the iFuice scripts used to control the data integration 

process.  

The integration process is managed by custom iFuice scripts, which allow tight 

fitting of the integration process to the particularities of the e-commerce data.  The goal of 

our integration system is to provide automatic integration of the data sources which are 

specified in the design of the website.  

The toothed clouds in Figure 3.4 represent the matching of the object instances of 

the same object type coming from different data sources to each other. The thick arrows in 

Figure 3.4 show the cooperation between the process of matching of different object types 

made possible by the compound COMA++/iFuice framework. The exact sequence of 

operations which are executed in the course of the matching process can be flexibly 

configured using iFuice scripts. For example, it is possible to first match the product data 

using fuzzy string matching and then refine the resulting matching using multiple-attribute 

matching. Further the results of the product data matching can be refined using the results 

of the ontology matching.  Such flexibility is made possible by the fact that all the needed 

data are available in the iFuice cache. The result of the integration process shown in Figure 

3.4 consists of two mappings between the participating data sources. One of the mappings 

contains correspondences between the products, the other mapping the correspondences 

between the ontologies of the respective data sources.  

The process of exporting of the resulting data is not shown in Figure 3.4. The 

export of the integrated data into Web Portal Operational Database and EC-Fuice data 

warehouse is implemented using the executable mappings, which return pre-defined values 

“successful” or “not successful” as mapping result.  

The data integration process is best illustrated using an example. The iFuice script 

shown below performs the data integration process which is graphically presented in 

Figure 3.4. The script is simplified for better demonstrativeness: 

 

// Import 

$suonto:=queryInstances(Ontology@Softunity,\"ALL\"); 

$suontoprod:=map($suonto,Softunity.OntoProd); 

$suprodonto:=inverse($suontoprod); 

$suprod:=range($suontoprod); 

 

//Matching Section 

//matching products 

$suamprod:=map($suprod,Softunity.SoftunityProduct2AmazonProduct_TitleEquals) 

//matching ontology without COMA++ 

$suamonto:=map($suprod,Softunity.SoftunityProduct2AmazonOntology_TitleEquals) 

//matching ontology using COMA++ in automatic mode 
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$suamontoComa:=map($suprod,COMA.ComaAutomatic) 

 

//Export 

$ExportStatus:=map($suprod,ECFuice.ExportProducts) 

$ExportStatus:=map($suprod,ECFuice.ExportOntology) 

 

In this simple script the products and ontologies are mapped in the simple (but not 

the best possible) way based on the string equality title attribute of the products and 

product categories. Other ways of mapping the data are described in the later sections. A 

part of the script which prepares the data for loading into the EC-Fuice operating database 

is shown in Appendix 3. 

The following simple ways of matching are provided: unique id matching, fuzzy 

string matching, multiple-attribute matching, ontology-based. In the next chapter we will 

show that these simple techniques are not working very well alone and present other 

approaches which combine these simple techniques to achieve better quality of the 

generated mappings. The combined techniques are implemented by amending the iFuice 

scripts.  

Building of such an integration script is one of the core tasks for creating an 

integrated website based on the EC-Fuice architecture. The E-commerce data, as well as 

many other types of data typically found on the web, change frequently. Therefore, the 

data integration process should be designed to allow repeated execution when the data in 

the data sources change.  

The data integration process should be also tailored to the requirements of the 

application and the characteristics of the input data. Ideally, the design of such integration 

data process should be carried out similarly to the AHP (Analytic Hierarchy Process) 

method as suggested for ontology matching in [KW04a]. AHP is a systematic approach 

developed to structure expectance, intuition and heuristics-based decision making into a 

well-defined methodology on the basis of sound mathematical principles [BR04]
27

. Such a 

structured approach however requires that a sufficient body of expert knowledge about 

how different matching techniques and their combinations perform for different data is 

accumulated. In the AHP approach, the decisions about using specific matchers are then 

made basing comparing the application requirements against the characteristics of the 

matchers in the expert knowledge base. 

However, at the moment we have only a limited understanding of how the different 

matching techniques and particularly their combinations behave in different situations. 

Therefore, we apply an iterative process to design the data integration script and to select 

the best matchers. In every iteration we make assumptions about the performance of the 

matchers based on the knowledge about how they operate. Then we test the matchers with 

different parameters, select the best ones and make assumptions about further 

                                                 
27

 It is important to note, that AHP is not a computer algorithm, but rather a methodology to be applied by 

humans while designing computer algorihtms which contain a heuristic component. 
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improvements by combining the current matchers with additional matchers. We will 

illustrate this iterative process by presenting examples of it in Sections 11.1 and 11.2. 

The matching of the product data can be used to facilitate the matching of the 

ontologies and vice versa. One of the approaches to matching ontologies is by using the 

techniques provided by COMA++. COMA++ has automatic matchers and also a GUI, 

using which the human editor can control and refine the ontology mapping. COMA++ can 

be called from iFuice in automatic or interactive mode. In interactive mode, a human editor 

Figure 3.5. Source graph Figure 3.6. Domain model 

Figure 3.7. Source-mapping model 
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can control and refine the ontology mappings.  

The four data sources used in our prototype are shown on the graph in Figure 3.5. 

The arrows in Figure 3.5 denote the existence of mappings between the data sources, 

irrespectively of the types of the mappings or the types of objects which are mapped. The 

mappings of the objects within one data source are shown with closed arrows. Figure 3.6 

shows the domain model, i.e. the object types and the types of mappings between the 

different objects types. The object types that we are already familiar with are Product and 

Ontology. There are also two additional object types – Review and Manufacturer. These 

object types represent data which are instrumental for the generation of recommendations. 

In Figure 3.6, arrows denote the existence of the mappings of a certain mapping type from 

one object type to another irrespectively of the data sources from which the objects come.  

Figure 3.7 shows the graph of the source-mapping model. In this graph, every 

vertex represents one LDS, i.e. object type provided by a particular data source. Every 

edge in the graph shown in Figure 3.7 is one mapping.  “Same”-mappings are represented 

with solid lines. Association mappings, i.e. all mappings which represent relations other 

than equality are represented with dashed lines.  

The results of the mapping execution are stored in the cache. The data in the cache 

are updated from the data sources at regular intervals of time. The time intervals are set 

specifically for every data source. So, Amazon, Softunity and Bestpreis24 are updated 

once a week. The eBay data due to its nature changes more often. Therefore, the eBay data 

is updated every three days. Although the data on the eBay website change more 

frequently than every three days, it is not possible to update eBay data more frequently, 

since the average duration of the query which retrieves all needed eBay data is 48 hours. 

The update of the data is done in the following way: the iFuice cache is cleared of all 

objects coming from the specific data source. Then, the entire iFuice integration script is 

executed. The data from the data sources which are absent from the cache are re-fetched 

from the sources, otherwise the data is taken from the cache. 
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11.  INTEGRATING DATA: EXPERIMENTS AND RESULTS 

 In this chapter we describe the experiments on matching product data and product 

categories and present experimental results.  We used Softunity and Amazon as sources of 

data for our experiments. These two data sources were chosen for our experiments because 

of the existence of an unambiguous mapping between the products of Softunity and 

Amazon. This unambiguous mapping serves us as the baseline for comparison of different 

matching methods. The amount of data used in the experiments is illustrated in Table 3.2.  

 

 Nr. of product categories Nr. of products Nr. of categories with 

product instances 

Amazon 1930 (manually pruned) 42942 1753 

Softunity 466 2711 204 

 

Table 3.2. Number of products and product categories in the data sources used in the 

experiments. 

 

The goal of the experiments was to explore the quality of mappings which can be 

achieved by matching instances and ontologies separately with existing tools and to 

analyze the improvements which can be brought by combining these mappings. As shown 

in Table 3.2, not all categories on the product ontologies have associated product instances. 

The reason for this is that the product assortment changes more often than the ontology 

structure, therefore at different times some product categories may or may not have 

associated product instances. If a product category does not have associated product 

instances, it is not shown on the website, but it can still be queried using a direct access to 

the website database (Softunity) or using a web service API (Amazon).  

The e-commerce ontologies which we used in our experiments have a number of 

characteristics typical for this kind of ontologies. These ontologies do not exhibit a rich 

palette of semantic features. So, only one type of concept is used – product category, i.e. 

class. Only one type of relation is used – all relations between the classes are specialization 

relations. According to the classification in [KW04], our e-commerce ontologies exhibit 

taxonomical structure, i.e. based on specialization relations as opposed to mereologic 

structure based on the subsumption relations. The ontology nodes have no attributes apart 

from names. The ontologies are organized as trees.  It is however possible for the product 

instances to belong to several categories in different ontology subtrees simultaneously. The 

top of the ontologies is comprised of the three areas which we have selected for 

experiments: “Software”, “Games”, “DVD” or “Video”. The classes below are for the 

most part aligned along the thematic axis, i.e. they represent the classification of the 
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product‟s content with respect to genres, using commonly accepted genre denominations. 

For example
28

: 

“Games->Action”; “Games->Adventure”;”Games->Strategy” 

or 

“DVD->Documentary”; “DVD->Comedy”; “DVD->Western” 

However, some of the ontology branches are orthogonal to this axis. This is 

particularly characteristic for the Amazon ontology.  

The following branches are the examples of orthogonal ontology branches: 

“Amazon->Software->Specials”, “Amazon->Games->Specials”, “Amazon->Video->For 

Rent”. These branches represent “crosscuts” of product instances belonging to other 

branches based on some criteria. For example, the “Specials” branches contain product 

instances which are (usually temporarily) put on special sales conditions by Amazon. “For 

Rent” is a category containing the subset of the video products which Amazon allows to be 

rented. There are also some ontology nodes which represent the same concept as their 

parent nodes but denote a root  of an orthogonal sub-ontology, for example “Amazon-

>DVD->By genre”, “Amazon->DVD->By year” and “Amazon->DVD->By author”. Since 

the extracted ontologies do not provide a mechanism to distinguish between these 

relations, these orthogonal branches cannot be filtered out automatically. We had to 

exclude some branches, for example ““Amazon->DVD->By year” and “Amazon->DVD-

>By author” from the extracted Amazon ontology manually, because these branches were 

clearly orthogonal to the rest of the ontology. The categorizations by year and by author 

are not found in other ontologies we used in our system, therefore they could adversely 

affect the results of both COMA++-based and instance-based matching. We do not provide 

complete listing of the used ontologies in this thesis because of the large amount of data 

which would break the format of this document. These ontologies are available for 

browsing online at the respective websites http://www.softunity.de/, 

http://www.amazon.de/ and http://www.ebay.de. In this thesis, we show only relevant 

portions of the ontologies to illustrate some of their characteristics and issues arising 

during the integration process. 

Both product mappings and ontology mappings are used to create browsing 

structure of the website as well as to generate the recommendations. Browsing and 

recommendations impose different requirements onto the mappings. Browsing requires 

mappings with strictly defined types of correspondences, usually only one type per 

mapping. For example, browsing between the versions of the same product coming from 

different data sources requires that the utilized mapping contains only the correspondences 

between strictly equal products. The mappings which are used for recommendations are 

                                                 
28

 The notation A->B means, that the concept B is a child of the concept A in the given ontology. The 

notation can be repeated (A->B->C). Sometimes we also use the name of ontology as the first element in 

such notation to denote the ontology to which the concepts belong.  

http://www.softunity.de/
http://www.amazon.de/
http://www.ebay.de/


Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment 

 

134 11.1 /Integrating Product Data 

 

not subject to such strict requirements. They can also make use of correspondences 

between products and ontology nodes which are similar or related in some way.  

We have conducted the following series of experiments: 

 Match Softunity products to Amazon products with iFuice. Recall and 

precision are determined using unambiguous EAN mapping. 

 Match Softunity ontology to Amazon Ontology with COMA++. Recall and 

precision are calculated with respect to the manual mapping. 

 Combine matching ontology with matching products; evaluate how 

recall/precision is affected. 

11.1 Integrating Product Data 

In this chapter we discuss the product matching, i.e. establishing the mappings 

between the products of different data sources. Our architecture provides rich possibilities 

for creating such mappings. In this chapter we illustrate how the manifold possibilities 

provided by iFuice can be instrumental in creating and improving the product mappings. 

We use a helpful fact that between the products of two data sources which we use in our 

system, Softunity and Amazon, exists an unambiguous mapping using EAN. The 

abbreviation EAN stands for European Article Number which is a unique product number. 

It is commonly known as “barcode” number. Since 2005 EAN has also become standard in 

the North America and de facto worldwide. Other data sources do not have such 

unambiguous mappings. So, for example, the product data available from ebay.de do not 

include EAN numbers. Such data must be matched using algorithms which do not 

guarantee 100% recall/precision.  To find the best ways to match the products, we have 

tested different matching techniques on the products from the two data sources we have an 
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unambiguous mapping for and then analyzed the results using the recall and precision 

calculated with respect to the unambiguous mapping. The characteristic excerpts from 

results of the matching of products between Softunity and Amazon using different 

matching algorithms are shown in Tables 3.3 and 3.4. These tables show the name of the 

applied algorithm, the value of the threshold parameter in case the given algorithm requires 

it, the total number of correspondences returned by the algorithm, the number of correct 

correspondences, the values of recall and precision and the value of F-Measure[Rijs79] 

which combines recall and precision in a single metric. The first line of the Table 3.3 

shows the results of the unambiguous product matching based on EAN number. These 

results act as a comparison baseline for other methods of matching. 

Line 

Nr 

 Matching 

methods Threshold Total Correct Recall Precision F-Measure 

1 EAN   1981 1981 1 1 1 

2 Title equivalence   803 660 0,333 0,821 0,474 

3 Trigram 0.3 157564 1951 0,984 0,012 0,024 

4 Trigram 0.4 58943 1894 0,956 0,032 0,062 

5 Trigram 0.5 28566 1793 0,905 0,062 0,117 

6 Trigram 0.6 14703 1611 0,813 0,109 0,193 

7 Trigram 0.7 7682 1350 0,681 0,175 0,279 

8 Trigram 0.8 3262 928 0,468 0,284 0,353 

9 Trigram 0.9 1067 677 0,341 0,634 0,444 

10 Trigram 0.99 804 661 0,333 0,822 0,474 

 

Table 3.3. Matching Softunity and Amazon products using EAN, title equality and trigram 

similarity with different threshold values. 

  

The second line in Table 3.3 shows the results of the matching based on the 

equality of the product title attribute which is the most simple and obvious way of 

matching products.  The recall and precision values are symptomatic here. Although 1981 

products are in fact identical, as the EAN mapping guarantees, only ~33,3% of them have 

identical titles. Also, of the products with identical titles only ~82.1% are identical, i.e. 

have the same EANs.  

This illustrates the severity of the data cleaning problem in the real-world data, 

since the company which operates Softunity also acts as a supplier to Amazon, i.e. a subset 

of the product assortment of Softunity is sold via the Amazon website. The product 

information concerning this subset of products is regularly exported by Softunity and 

imported by Amazon. Amazon then formats the product information according to its 

presentation requirements. As our results show, within only one step of import/export of 

data between different organizations the product titles diverge substantially.  
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Human analysis of the input product data shows, that many of the discrepancies in 

the titles of the products which are exported from Softunity and imported by Amazon 

result from slight variations of the title, for example from addition of some information or 

from permutation of the words (“The King of Queens” -> “The King of Queens (4DVDs)” 

or “The King of Queens”->”King of Queens, The”).  

To be able to match such titles, we need a matching algorithm which tolerates 

variations in the spelling. We have investigated the following algorithms: trigram matching 

[MS99], affix matching, edit distance matching, MSSQL Fuzzy Lookup. The trigram 

string matching is based on calculating the number of identical trigrams in the input 

strings. A trigram is any three-character substring of the given string. Affix matching is 

based on the longest common prefix or suffix of the input strings. Edit distance matching is 

based on the so called Levenshtein metric [Lev66]. Fuzzy Lookup algorithm provided by 

Microsoft SQL 2005 Integration Services is based on a combined string similarity score.  

This combined score depends on the following factors: 

 Number of matching tokens in the input strings 

 Number of matching n-grams in the input strings. N-gram is a substring of the 

input string with the length n. Only a probabilistically chosen subset of all 

present n-grams is used for the matching.  

 Edit distance, i.e.  number of token or character insertions, deletions, 

substitutions and re-orderings which need to be made to transform one string 

to another. 

 Inverse token frequency in the entire corpus of strings being matched. The 

more frequent the token is, the less information about the quality of the match 

is it considered to convey. The rare tokens are considered to be more 

important for the discovery of the potential matches.  

The MS SQL Fuzzy Lookup algorithm is described in more detail in [CGGM05] 

and [CGGM03] 

All the above algorithms are supplied with two input sets of products and a 

threshold value parameter. They calculate the similarity scores for the products in the input 

data sets and return the correspondences with similarity score equal or greater than the 

supplied threshold value. For every returned correspondence the value of the similarity 

score is returned as well and can be used further. The value of the similarity score is a 

floating-point number in the range [0..1], where 0 stands for no similarity and 1 for 

equality. The trigram matcher, affix matcher and edit distance matcher are the standard 

attribute matchers provided by iFuice in the operator attrMatch. In addition to the two 

input parameters containing object instances of the type Product and the threshold value, 

this operator takes the name of the matching algorithm (TRIGRAM, AFFIX, EDITDIST) 

and the names of the attributes to be matched, in our case “title”, as input. The MSSQL 

Fuzzy Lookup algorithm is implemented as an executable iFuice mapping. This mapping 

loads the input data into temporary tables on a separate instance of Microsoft SQL Server 
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2005 and makes a call to the MSSQL Integration Services which perform Fuzzy Lookup. 

The results of the Fuzzy Lookup execution are then returned to iFuice. 

The level of the tolerance to the variations in spelling is based on the threshold 

value. We have tried all variation-tolerant matching algorithms with threshold values from 

0.3 to 0.9 with step 0.1 and additionally the threshold value 0.99. However, for the sake of 

brevity we do not show the results for all combinations here. Instead, in Table 3.3 we 

illustrate how the results produced by the trigram matcher change when changing the value 

of the threshold parameter. For demonstrativeness, in Figure 3.8 we show the results from 

the Table 3.3 (lines 3 to 10) in graphical form. As shown in Table 3.3 and in Figure 3.8, 

lower threshold values result in increased recall. However the variation tolerance of the 

trigram matching leads to the decrease of precision, making the threshold of 0.5 and below 

practically useless. One can see that in case of the threshold 0.99 the results are almost 

identical with exact matching and share a common disadvantage of having low recall and 

few correspondences, i.e. low coverage. This is especially disadvantageous for our purpose 

of creating navigation between products from different data sources. If such mapping 

having low coverage is used for implementing navigation between products, a large 

fraction of the products would have no counterparts to navigate to. Other matching 

algorithms not shown in Table 3.3 react in a similar way to changes of the value of the 

threshold parameter. As one can see, in case of the low threshold such as 0.3 the trigram 

algorithm is able to find ~98% of the correct correspondences at a cost of finding a very 

large number of incorrect correspondences. Thus, we can take the match results produced 

by this algorithm as a basis for further refinement. We apply additional matching 

algorithms to these results in order to filter out the incorrect correspondences.  

One such additional matching algorithm can be designed after investigating the 

values of the title attribute in the input data. Since the products contained in the input data 

are mostly software and games, they usually have a version number after the title. Often 

there are several versions of the same product line. The titles of such products differ only 

through one or few digits which constitute the version number. The variation-tolerant 

string matching algorithms consider this a very minor difference, while in fact it is a major 

one. In iFuice, we implemented a special “version number” matcher, which is able to 

detect the version numbers using the commonly used version number format (i.e. version 

number is usually one or more digits at the end of the title, possibly with a dot in between). 

Before applying this matcher, the title attribute is cleaned of comments which are usually 

also located at the end of the title and enclosed in parenthesis. 

Another additional matching algorithm is based on the product ontology 

information which is available in our iFuice environment. Large fraction of the products 

common to Softunity and Amazon is comprised of games, which have different versions 

for different platforms, such as PC, Sony Playstation, Microsoft Xbox, Nintendo DS, etc. 

However, there is no attribute in the product information which denotes the intended 

platform. The title attributes of these products are identical for Amazon products. Softunity 

products usually have the indication of the platform at the end of the title in parenthesis. 

This way, the matching algorithms with low variation tolerance are unable to find 

correspondences for these products. The matching algorithms with higher variation 
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tolerance are able to find these correspondences, however they also erroneously identify 

other products from the same product line as correspondences, even if these products are 

intended for a different platform. To solve this problem, we can use the fact that the 

products intended for different platforms belong to different categories in the respective 

product ontologies. To use this for refining the mapping, we need the following 

information: the mapping from the products to the ontology in the same data source and 

mapping between the ontologies of the two data sources. The mappings between products 

and ontologies are supplied by the data sources. The mapping between the ontologies is 

created using COMA++. We use a simple matcher which matches the ontology nodes 

basing on their names and then refine the obtained result manually using COMA++ GUI. 

The checking of whether the instances belong to the corresponding categories is easy to 

implement due to the convention that when an instance belongs to a category, it also 

belongs to all its parent categories. Therefore, no costly operation of traversing the 

ontology tree is needed.  

 

Ser
ies Matcher algorithms 

Threshol
d 

Total 
correspon
dences 

Correct 
corresponde
nces Recall Precision 

F-
Measure 

1 EAN   1981 1981 1 1 1 

2 Title eq   803 660 0,333 0,821 0,474 

3 Any of: Trigram, EditDist, 
Affix 0.99 804 661 0,333 0,822 0,474 

4 MSSQL Fuzzy Lookup 0.99 804 661 0,333 0,822 0,474 

5 Trigram with version number 
matcher 0.99 804 661 0,333 0,822 0,474 

6 Affix with version number 
matcher 0.99 804 661 0,333 0,822 0,474 

7 EditDist with version number 
matcher 0.99 804 661 0,333 0,822 0,474 

8 MSSQL Fuzzy Lookup with 
version number matcher 0.99 804 661 0,333 0,822 0,474 

9 Affix with version number 
matcher 0.9 815 664 0,335 0,814 0,475 

10 MSSQL Fuzzy Lookup 0.9 2995 1229 0,620 0,410 0,494 

11 Affix with ontology matcher 
and version number matcher 0.8 1014 750 0,378 0,739 0,500 

12 Affix with ontology matcher 
and version number matcher 0.6 2290 1079 0,544 0,471 0,505 

13 Trigram with ontology 
matcher and version number 
matcher 0.7 3139 1305 0,658 0,415 0,509 

14 MSSQL Fuzzy Lookup with 
ontology matcher and 
version number matcher 0.6 3954 1524 0,769 0,385 0,513 
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15 MSSQL Fuzzy Lookup with 
version number matcher 0.9 2633 1215 0,613 0,461 0,526 

16 Affix with ontology matcher 
and version number matcher 0.7 1498 925 0,466 0,617 0,531 

17 MSSQL Fuzzy Lookup with 
ontology matcher and 
version number matcher 0.7 3027 1439 0,726 0,475 0,574 

18 MSSQL Fuzzy Lookup with 
version number matcher 0.8 3750 1739 0,877 0,463 0,606 

19 MSSQL Fuzzy Lookup with 
ontology matcher and 
version number matcher 0.8 2312 1367 0,690 0,591 0,636 

20 MSSQL Fuzzy Lookup with 
ontology matcher and 
version number matcher 0.9 1643 1204 0,607 0,732 0,664 

 

Table 3.4. Matching Softunity and Amazon products. Only the results of the algorithms 

with F-Measure greater than that of title equality matching are shown.  

 

In Table 3.4 we show only the algorithm/threshold combinations which achieved 

higher F-Measure than the algorithm based on the equality of the title.  We have 

investigated all base algorithms and also their combinations with the version number 

matcher and both version number matcher and ontology matcher. The results of the 

variation-tolerant algorithms are sorted by the value of F-Measure. The same results are 

also presented graphically in Figure 3.9.  
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Looking at the results of the comparison of the matching algorithms, we can see 

that the relative complexity of the MS SQL Fuzzy Lookup algorithm pays off and results 

in better matching results compared to the more simple Trigram, EditDist and Affix 

algorithms. 

Another benefit of the Microsoft SQL Fuzzy Lookup which is not reflected in 

Table 3.4 is that it performs the matching task considerably faster than the matching 

algorithm supplied by iFuice, since it uses a special index structure called ETI (error 

tolerance index)[CGGM03], which contains all pre-computed tokens and n-grams used for 

matching.  The three basic algorithms supplied by iFuice have achieved better F-Measure 

values then the title equality matcher only with the most restrictive threshold of 0.99, 

which can be intuitively understood. Indeed, although by lowering the threshold we are 

able to find more correct matches than the title equality matcher, this also results in a 

significantly lower precision which brings F-Measure down as well. The MS SQL Fuzzy 

Lookup alone also performs better with higher thresholds of 0.99 and 0.9.  

Looking at the results of MS Fuzzy Lookup algorithm with threshold 0.9, we can 

see how the results of the matching are improved by applying additional matchers. MS 

Fuzzy Lookup with threshold 0.9 without additional matchers achieves F-Measure value of 

0.494. Applying the version number matcher increases this value to 0.526. Applying both 

version number matcher and ontology matcher increases F-Measure to 0.664. 

We have also investigated other matching methods not shown in Table 3.4, for 

example the possibility of using attributes price, manufacturer and description in addition 

to the title attribute. However we discovered that due to errors in the web service interface 

provided by Amazon it is not possible to use these data. For example, Amazon web service 

tends to return the offer prices for used products instead of its own prices. These offer 

prices have large deviance to the product list prices and therefore cannot be used for 

matching. The manufacturer attribute for Amazon products which come from Softunity is 

set to the value “Koch Media” (the company which operates Softunity website). The 

description attribute is returned only for a small fraction of the products. 

The evaluation results presented here can be improved further by applying the 

knowledge of the input data. So, for example, the version matcher can be extended to 

recognize not only the numerical versions, but also special suffixes like „Pro‟, 

„Professional‟, „Update‟, or different language versions which are also usually specified at 

the end of the title attribute. We do not investigate such improvements here, however, 

since the implementation would be straightforward and the obtained results rely on very 

data-specific knowledge.  

Here, we merely intend to illustrate how the rich possibilities provided by the 

iFuice environment can be used in combination with the domain knowledge to build and 

improve the reusable executable mappings between products.  

To create the product mapping between other data sources we used the techniques 

similar to the described above. We do not present the experimental results for these 

mappings here since we have no means of assessing the quality of these mappings due to 

absence of the unambiguous EAN mapping.  
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11.2 Integrating Ontologies 

In this section we explore the possibilities which our architecture provides for 

matching ontologies. Using COMA++ we can match ontologies based on lexical and 

structural similarity of the nodes in the ontology. We will also use the results of the 

instance matching presented in the previous section. As described in Section 10.2.2, 

COMA++ has a large number of matchers and rich possibilities for their combination with 

a large number of input parameters. We do not possess the complete knowledge of the 

behavior of the different matchers and parameter combinations in different situation. Due 

to the overwhelmingly large number of possible combinations, the complete analysis and 

comparison of all these combinations is practically impossible. Therefore, we make some 

assumptions based on the human analysis of the ontology data to achieve a good initial 

configuration. After the initial configuration is determined, we try to improve the matching 

strategy iteratively, gradually optimizing the results.  

Some of the COMA++ features are not applicable to the ontologies in general, for 

example the matchers using data type and context-based strategies. Context-based 

strategies are important only for shared elements. Since we have no shared elements in our 

ontologies, all the context-based strategies are equivalent. Some matchers are not 

applicable to our specific input ontologies. For example, matchers which use descriptions 

cannot be utilized since our ontologies do not contain node descriptions other than the node 

labels.  

For the experiments, we used COMA++ only in the automatic mode (with the 

exception of the manual mappings used as a base for comparison). The execution of 
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COMA++ in automatic mode is performed from iFuice. The calls to COMA++ are 

implemented as calls to iFuice matchers: 

$suamontoCOMA:=match($suonto,$amonto,SU_AM_COMA_MATCHER); 

Table 3.5 shows the results of matching Softunity and Amazon product ontologies 

using COMA++ matchers. We performed several series of experiments with COMA++ 

matchers. After each series the results of matching were analyzed based on the domain 

knowledge and the available knowledge about the behavior and characteristics of the 

COMA++ matchers. This way the possibilities for further improvement were determined. 

In Table 3.5, only the best algorithms in each series of experiments are shown. In Figure 

3.10, the same results are presented in graphical form. In the following subsections we 

discuss the series of the experiments and the matching results in more detail. The manual 

matching results (M1 and M2 in Table 3.5) are presented in subsection 11.2.1. The 

COMA++-based experiments (series 1 to 7 in Table 3.5) are discussed in 11.2.2. The 

instance-based matching results (series 8 and 9 in Table 3.5) and the the results of 

combined matching (COMA++ and instance-based, series 10 to 13 in Table 3.5) are 

presented in 11.2.3. 

 

Series  
Best algorithm and parameter 
combination in series Total Correct Recall Precision F−measure 

 M1 Manual 346 346 1 1 1 

 M2 
Manual based on lexical/structural 
similarity only 204 204 0,589 1,00000 0,741 

1 
NamePath Trigram 
MaxN=0,MaxDelta=0.08,Threshold=0.3 212 109 0,315 0,514 0,390 

2 
NamePath Trigram + Name Trigram 
0.04  218 118 0,341 0,541 0,418 

3 
NamePath Trigram + Name (Trigram 
0.5 +Affix 0.5) 0.04  220 119 0,343 0,540 0,420 

4 

NamePath Trigram  + Name (Trigram 
0.5 +Affix 0.5) 0.04 + 
Synonyms/Abreviations 284 151 0,436 0,531 0,479 

5 

NamePath Trigram + Name (Trigram 
0.5 +Affix 0.5) 0.04 + 
Synonyms/Abreviations + Taxonomy  285 154 0,445 0,540 0,488 

6 COMA++ Default combined matcher 111 74 0,213 0,666 0,323 

7 COMA++ Default with synonyms 156 108 0,312 0,692 0,430 

8 Instance-based EAN Dice>= 0.5 285 202 0,583 0,708 0,640 

9 Instance-based MSSQL Dice>= 0.5 280 138 0,398 0,492 0,440 

10 
COMA + Instance-based EAN 
Dice>=0.5 505 297 0,858 0,588 0,698 

11 
COMA + Instance-based MSSQL 
Dice>=0.5 518 249 0,721 0,48 0,576 

12 COMA + Instance-based EAN  464 278 0,803 0,599 0,686 
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Dice>=0.5 (excluding Ncorresp=1) 

13 
COMA + Instance-based MSSQL 
Dice>=0.5 (excluding Ncorresp=1) 425 237 0,684 0,557 0,614 

 

Table 3.5. Matching of the Softunity and Amazon ontologies using COMA++ 

11.2.1 Manual Ontology Mappings 

 The baseline for the comparison of the matching quality of the different match 

algorithms is the manual mapping shown in the first line of Table 3.5. The manual 

mapping was created using the mapping editor provided by the COMA++ user interface. 

The input ontologies were designed for the practical purpose of website navigation and do 

not grasp the complete formal knowledge about the domain. Because of that, human 

domain-specific knowledge about both product categories and product instances was used 

to create the manual mapping. It is important to note, that the manual mappings are 

inherently subjective. This subjectivity needs to be taken into account when reviewing the 

values of recall, precision and F-measure in Table 3.5, since they are calculated with 

respect to the manual mappings.  

An important issue which needs clarification before creating the manual mapping is 

how to handle the different types of relations. Although only one type of relation – 

“specialization” – exists in our input ontologies, there are several types of relations which 

may exist between the nodes of different input ontologies, for example: 

Equivalence: the concepts represented by the nodes in two ontologies are 

semantically equivalent. The equivalence of the concepts can however rarely be stated with 

full confidence. Much more often one can speak of approximate equivalence. Even the 

seemingly obvious equivalency correspondences like “Amazon->Games” <-> “Softunity-

>Games”
29

 is not a complete equivalence, because for example the Amazon category 

includes additional subcategories for game consoles “Sega Saturn” and “Gizmondo” which 

do not exist in the Softunity ontology. On the other hand, category “Softunity->Games” 

includes subcategory “Game solution books” which is absent in Amazon. There are also 

equivalences which are not visible at first glance but can be recognized using background 

domain knowledge. So, for example, the categories “Softunity->DVD->Western” and 

“Amazon->DVD->Classic Western” are not equivalent at first glance, since the notion 

“Western” is broader than just “Classic Western”. However, since the DVD assortment of 

the Softunity shop consists in general only of the digitally re-mastered classical movies, the 

categories are equivalent in this given case.  

Specialization: the nodes in one ontology can be mapped to nodes in another 

ontology as children. Sometimes this can be based on the equivalence of the parent of the 

given node to a node in another ontology, sometimes there is no equivalent parent, for 

                                                 
29

 We use the notation A<->B to denote the correspondence between the concept A in one ontology and the 

concept B in another ontology. 
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example when child-parent relation is expressed in the node name: “Comedy” <-> 

“Comedy, Satire, Slapstick”, “Science Fiction”<->”Science Fiction & Fantasy”. 

Sometimes it is hard to determine whether we are dealing with equivalency or 

specialization, for example: “Thriller” <->”Psychothriller”. We consider only immediate 

specialization and not specialization over several nodes, because these distant 

specialization relations can be deducted from the immediate specialization relations.  

There can be other, less common types of relations, for example partially 

overlapping concepts: “Amazon->Games->Computer games->Action & Adventure”<-

>”Softunity->Games->PC-Games->Adventure & Role games”.  

Although multiple types of relations may exist between the nodes of different input 

ontologies, the correspondences in our mappings are all of the same type “similarity”.  

Taking this information about the creation of the manual ontology mappings into 

account, we can assume that several “correct” manual ontology mappings may exist, 

depending on which human knowledge is available and which types of relations are 

considered as “legitimate” correspondences in the resulting mapping.  

In the manual mapping which we used as a baseline for our experiments we chose 

the criteria of the selection of the correspondences in accordance with our goal of creating 

website navigation. The following criteria were applied to select the correspondences: 

 The equality relations are always considered “legitimate” correspondences.  

 The specialization in general is not considered “legitimate” correspondence 

when it can be deducted from the existing equivalence-based correspondence. 

This is done to eliminate redundant correspondences, because taking all 

specialization relations into account would generate additional 

correspondences for every child of a node which participates in an 

equivalence-based correspondence, thus leading to an explosion of the number 

of correspondences which do not add any new information. So, for example, 

given that the category “Amazon->Software” has 10 children, the category 

“Softunity->Software” would have at least 11 correspondences to the Amazon 

ontology, one to “Amazon->Software” and 10 to its children. Although 

redundant correspondences are not wrong, they can be confusing to the user if 

used for navigation on a website. We do consider specialization in the cases 

where no equivalency exists between the node parent in one ontology and a 

node in another ontology. In special cases we also allow correspondences 

when a node in one ontology corresponds simultaneously to a node and its 

child in another ontology. Such special cases occur when the concept 

represented by the child node is almost as broad as its parent‟s concept, for 

example “Softunity->Games->Accessories”<->”Amazon->Games-

>Accessories->More Accessories”. It occurs also when the child node is a root 

of an orthogonal sub-ontology, for example “Softunity->DVD” <->”Amazon-

>DVD->By production land” and ”Amazon->DVD->By format”. 
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 Nodes which exhibit partial semantic overlap are considered “legitimate” 

correspondences in absence of equality correspondences between their 

children, for example: “Amazon->Games->Computer games->Action & 

Adventure”<->”Softunity->Games->PC-Games->Adventure & Role games”.  

Since COMA++ matchers consider only information about product categories, we 

have also created another manual mapping (Table 3.5, second line). This mapping is a 

subset of the previous mapping and is based only on the structural/lexical information 

contained in the product ontologies. The correspondences which cannot be determined 

without utilizing the background domain knowledge not contained in the nodes and their 

relations in the input ontologies are excluded in this mapping. This way we approximate 

the upper limit which can theoretically be achieved by COMA++ without utilizing the 

instance information.  

The number of correspondences given in Table 3.5 shows the number of 1:1 

correspondences in the mappings. Some of these correspondences in fact represent 1:n 

correspondences. Although the size of the Amazon ontology is ~4.1 times larger than the 

size of the Softunity ontology, the bias of 1:n correspondences with respect to Amazon 

ontology is not large. There are 38 1:2 correspondences with two elements on the Amazon 

side and 45 1:2 correspondences with two elements on Softunity side. For 1:3 mappings 

however, there are 20 correspondences with three elements on the Amazon side and only 2 

with three elements on the Softunity side. The cardinality 1:4 appears 5 times, 1:5 and 1:6 

one time each, in all cases with n elements on the Amazon side. All other correspondences 

are 1:1 correspondences. It is important to note, that Amazon ontology and Softunity have 

only a partial, although significant, overlap. Because of this, even the manual matching can 

match only some concepts in the ontologies and not all concepts.  

11.2.2 Ontology Mappings Created Using COMA++  

The most important source of information about the identity of the nodes in the 

ontologies is the names of the nodes. In fact, our nodes have no attribute other than the 

name attribute. However, the names of the individual nodes can be confusing, since in our 

ontologies many different nodes have the same name. Since our ontologies are represented 

as trees, the path to a node from the root uniquely identifies this node. So we may have two 

nodes with name “Action”, one being “Games->Playstation 2->Action” and another 

“Games->Xbox->Action”. Due to these peculiarities of the input data, we start with the 

COMA++ matcher “NamePath” as our basic matcher. This matcher is a combined matcher 

which takes the paths from the respective ontology roots to the input elements and 

computes string similarity between them. Several algorithms for computing the string 

similarity, among them Trigram, Affix and EditDistance, can be configured. Before 

computing the string similarity, the input strings are tokenized, i.e. single terms are 

extracted. Similarity values are then computed for every term and stored in a similarity 

cube. The maximal similarity values for every term are then averaged to return a single 

similarity value.  
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It is also possible to configure a combination of similarity scores computed by 

several string similarity algorithms. In our 1
st
 series of experiments, we have compared the 

matching quality of these three string similarity algorithms. As described in Section 10.2.2 

of this chapter, COMA++ provides several parameters for selection of the matching 

candidates. In addition to specifying an absolute threshold value for the similarity score, 

one can also specify so called MaxDelta and MaxN values. We have explored the 

combinations of the parameters with each of the three string similarity algorithms to find 

the best algorithms and combinations. We have iterated the value of Threshold from 0 to 1 

with step 0.1 and the value of MaxN from 1 to 10 with step 1. We have iterated the value 

of MaxDelta from 0 to 1 with step 0.1. After we have determined that the best values are 

achieved with MaxDelta of 0.1 and that the quality of the matching decreases as MaxDelta 

increases, we have additionally iterated MaxDelta from 0 to 0.2 with Step 0.01. We have 

determined that the best matching results are achieved using the Trigram string similarity 

algorithm with MaxN=0, MaxDelta=0.08, Threshold=0.3.  The matching in this series of 

experiments and in all subsequent experiments was performed using bidirectional mode of 

COMA++ (Direction=BOTH). In this mode, the matching is performed two times, from 

larger ontology to the smaller and from smaller to larger. The intersection of the two 

unidirectional results serves as the final result of the matching.  

After examination of the results of the matching produced in the 1
st
 series of the 

experiments and the differences between the manual mapping and the mapping obtained 

using the NamePath matcher it became clear that some of the false correspondences found 

by the NamePath matcher and some of the missed correspondences can be attributed to the 

fact that in the paths of the nodes serving as input for the NamePath matcher all 

components of the path are considered equally significant for determining the similarity. 

This may lead to the calculated similarity value being too high, especially in the not 

infrequent cases when the node name is much shorter than the full path to the node. In the 

2
nd

 series of experiments, we have investigated how the aggregation of the NamePath 

matcher with the Name matcher, which matches only the name attributes of the nodes, can 

improve the matching quality. Similar to the NamePath matcher, the Name matcher allows 

using several string similarity algorithms such as Trigram, Affix, EditDistance. The 

similarity scores returned by the Name and NamePath matchers were aggregated using the 

weighted aggregation strategy provided by COMA++. We have explored how the values of 

the aggregation weights influence the quality of the matching. We have tried the three 

string similarity algorithms and iterated each of them with aggregation weight for the 

Name matcher W from 0 to 1 with step 0.1. The aggregation weight for NamePath matcher 

was set respectively to 1-W on each iteration. The best performing string similarity 

algorithm was the Trigram Algorithm, the best values are achieved around W=0.1. We 

have then iterated the value of W from 0 to 0.2 with step 0.01 to find out more precise 

value of the optimal W, which appeared to be 0.04. The values of the parameters MaxN, 

MaxDelta, Threshold stayed unchanged. Through aggregation of the Name matcher with 

the NamePath matcher we were able to obtain additional correct correspondences in the 

resulting ontology mapping. For example, “Software->Betriebssysteme” is now correctly 
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matched to “Software->Tools & Utilities->Betriebssysteme” and “Software->Sound-

>Sampler” to “Software->Musik->Sampler”. 

After assessing the mappings produced in the 2
nd

 series of experiments, we have 

found that although the Affix string similarity algorithm performed in general worse than 

the trigram matching algorithm, it had better results for a certain pattern of 

correspondences. This pattern was characterized by the names of the top product categories 

added to the names of the lower product categories, for example “Games->Game Boy 

Advanced Games -> Sport Games” vs. “Spiele->Game Boy Advanced->Sport”. Thus, in 

the 3
rd

 series of the experiments we have investigated the aggregation of the Trigram and 

Affix string matchers in the Name matcher. It is not reasonable to use the Affix matcher in 

the NamePath matcher, since the paths to different nodes often have common prefixes. We 

have iterated the value of the aggregation weight Wt of the Trigram matcher from 0 to 1 

with step 0.1. The aggregation weight for Affix matcher was set respectively to 1-Wt on 

each iteration. The best results were achieved when the weights of the Trigram and Affix 

matchers were equal.  

Many of the words used in the input data are lexically different but have the same 

meaning, i.e. are synonyms. In our German e-commerce ontologies this is especially the 

case, since for many notions in the areas of Software and Games both German and English 

equivalents exist which are used interchangeably. The use of abbreviations is also 

common. COMA++ contains a special matcher which allows users to specify a set of 

synonyms and abbreviations. We made a set of 6 synonyms (for example “Game”<-

>”Spiel”, “Business”<->“Geschäft”) and one abbreviation (“PSP”->”Playstation Portable”) 

and activated synonym matching in both NamePath and Name matcher, which resulted in 

significant increase in the matching quality. The synonym matcher returns high similarity 

values when a synonymy exists and 0 otherwise. The synonym matcher was aggregated 

with the Trigram matcher using Max aggregation strategy. Thus the synonym matcher has 

no influence on the similarity score when no synonymy exists.  

Further extension of the synonym matcher is the taxonomy matcher. It also uses the 

data supplied by user, but the relation between terms are expressed not as a set as 

equivalent terms, but as a taxonomy. The similarity between the terms is determined by the 

distance between them in the taxonomy. We have created a small taxonomy with three 

nodes: “Filme“(the root of the taxonomy),”DVD” and “VHS” (children of the root). In the 

5
th

 series of the experiments we have tested the ontology matching using the taxonomy 

matcher along with the synonym matcher for both Name and NamePath matchers. The 

taxonomy matcher was aggregated with the Name and NamePath matchers similarly to the 

synonym matcher. Although in our experiments the results of the taxonomy-based matcher 

were only marginally better than the results of the synonym-based matcher (three 

additional correct correspondences), the use of taxonomy-based matcher seems to be 

promising. Similarly to synonyms, taxonomies allow introducing additional domain 

knowledge into the matching process. However, taxonomies also provide richer semantics 

compared to synonyms, since not only equivalence of the terms but also less strict relations 

can be specified. Our taxonomy is a very simple one; intuitively, specifying more elaborate 

taxonomy would increase the quality of the matching result (assuming the taxonomy to be 
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relevant and of high quality), however this would also increase the amount of manual 

work. One possible way to decrease the manual effort is to use a ready taxonomy provided 

by some external source
30

. However such taxonomy was not available for our problem 

domain.  

In addition to the matchers we described here we have also tried combinations of 

the NamePath Matcher other matchers provided by COMA++, such as Leaves, Children, 

Siblings and Parents. However, these matchers were unable to improve the matching 

performance. In case of the Leaves, Children and Siblings matchers the results contained 

many false positives. The reason for this is that many subcategories with the same names 

are located in different subcategories in the same ontology. For example, both categories 

“Games->Playstation 2” and “Games->Nintendo DS” contain subcategories “Action”, 

“Strategie” and ”Sport”. Thus, the assumption that nodes having similar children, leaves or 

siblings should be similar is not pertinent for our ontologies. The Parents matcher was not 

able to improve the matching results, since the information about the parent node is already 

taken into account by the NamePath matcher. 

Comparison of the matching results to the results of the manual mapping based on 

the lexical and structural similarity shows that the recall values of the COMA++ mappings 

are gradually approaching the recall values of the manual mapping. The precision values 

are however remarkably lower. 

The COMA++ matching results presented in the experiment series 1 to 5 have 

required a significant amount of human analysis and experimenting. In the next two series 

of experiments we have investigated what results can be obtained with the default 

configuration of COMA++, i.e. without additional effort. In series 6 we used COMA++ 

default matcher with no default parameter values. The matcher configuration in series 7 is 

the same as in series 6 but with the synonyms and abbreviations as used in experiment 

series 5. The results of using the default COMA++ matcher are significantly worse than in 

our custom matcher configurations. Using synonym and abbreviation tables however 

remarkably improves the matching quality.  

Our custom combined COMA++ matchers are fitted to the specific type of input 

data and are not suitable as generic matchers. This complies with our intent to create a 

specific matcher, which would grasp the particularities of our ontology data without being 

dependant on the concrete data. Although the concrete ontology data will be changing with 

time (i.e. some nodes may be added to or removed from the ontology, the names of some 

nodes may be altered), we anticipate the general characteristics grasped by our matchers to 

be preserved.  

11.2.3 Instance-based and Combined Mappings 

So far we have not used the instance information to match the ontologies. In this 

section we explore how the information about products instances can be instrumental in 

matching product categories. The method we use in matching ontologies to determine the 

                                                 
30

 For example http://www.schemaweb.info/ 
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similarity of any two categories is using Dice coefficient
31

. For this, we use the mappings 

between product instances and ontology nodes within each data source and a mapping 

between the product instances of the different data sources. The Dice coefficient for 

categories a and b is defined as 

Dice(a,b)=2*|Cab| /( |Sa| +|Sb|), 

where C is the set of correspondences between products which belong to a and b, 

Sa, Sb set of products which belong respectively to the categories a and b.  

In the 8
th

 and 9
th

 series of experiments we have investigated the quality of the 

ontology mappings produced using only the instance information. The instance-based 

matching of the Softunity and Amazon ontologies is implemented using the following 

iFuice script
32

: 

 

1: $amontosuprod:=compose($amontoprod,inverse($suamprod)); 

2: $suontosuprod:=compose(compose($suontoprod,$suamprod), 

inverse($suamprod)); 

 

3: groupAttr(&amontosuprod,"nInstances","count(*)"); 

4: groupAttr(&suontosuprod,"nInstances","count(*)"); 

 

5: $suamontoINSTANCE:=match($suontosuprod, $amontosuprod, 

SU_AM_ONTO_INSTANCE_DICE); 

 

6: $suamontoINSTANCE_DICE01:=queryMapResult( $suamontoINSTANCE, 

”[_confidence]>=0.1”); 

 

In this script we first establish the mappings $amontosuprod and $suontosuprod 

(lines 1 and 2). These mappings map the nodes of both Softunity and Amazon ontologies 

to the set of Softunity product instances. Here we use only those Softunity products which 

have counterparts on Amazon. The mapping from Amazon ontology to Softunity products 

(variable $amontosuprod) is created by composing the mapping from Amazon ontology to 

Amazon products with the mapping from Amazon products to Softunity products stored in 

the variable $suamprod. This instance mapping can be created using one of the methods 

described in the previous section. In the 8
th

 series we have used the unambiguous EAN-

based mapping between product instances. In the 9
th

 series we have used the product 

mapping based on MSSQL Fuzzy Lookup combined with ontology and version number 

matchers which appeared to be the best among the instance mappings investigated in 

Section 11.1 with the exception of the unambiguous EAN mapping. The mapping 

$suontosuprod is created from the mapping $suontoprod which maps Softunity ontology to 

                                                 
31

 The later work [MR08] has investigated using instance-based similarity measures other than Dice. 

However, the Dice coefficient has achieved the best results in the experiments. [MR08] is described in the 

Section 13.2 in more detail. 
32

 The line numbers are not part of the iFuice scripting language syntax and are added for better readability. 
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Softunity products by filtering it to contain only those Softunity products which have 

corresponding Amazon products.  

To perform the filtering, we compose the mapping $suontoprod with the mapping 

$suamprod twice, first in the forward direction and then in the inverse direction. After 

creating the mappings $amontosuprod and $suontosuprod we create auxiliary attribute 

nInstances in every node in the ontologies (lines 3 and 4). The attribute is created using 

iFuice operator groupAttr which can be applied to the variable of type Mappingresult. For 

every object instance in the domain of the mapping the operator groupAttr calculates the 

value of the specified SQL aggregate function on the object instances in the range of the 

mapping and assigns the calculated value to a new attribute in the domain object instance. 

The attribute nInstances which contains the number of instances in every ontology node is 

utilized to calculate the Dice coefficient later on.  

The generation of the instance-based ontology mapping is performed by a call to 

the user-defined matcher SU_AM_ONTO_INSTANCE_DICE (line 5). This matcher 

returns correspondences between all nodes in the Softunity and Amazon ontologies which 

have at least one common product instance and calculates the Dice coefficient for every 

correspondence. For our experiments we have filtered the correspondences having 

Dice>=T, where T is a threshold value. To filter the mappings by the Dice coefficient 

value we used iFuice operator queryMapResult with T=0.1 (line 6 in the sample script). In 

both 8
th

 and 9
th

 series of the experiments we have iterated the value of T from 0 to 1 with 

step 0.1. The best F-measure values were achieved with Dice>=0.5. As one can see in 

Table 3.5, the quality of the ontology matching based on the unambiguous EAN product 

mapping surpasses the quality of the best COMA++-based mapping. Such unambiguous 

mappings are however rarely available in practice. The ontology mapping based on the 

fuzzy string matching in the series 9 achieves however only the quality comparable with 

the default COMA++ matching without any data-specific enhancements (series 7).  

The sets of correspondences in instance-based mappings contain a significant 

number of correspondences not found in the COMA++ mappings. The reason for this is 

that although some product categories are semantically similar, which results in the large 

number of instance correspondences, their lexical similarity may be small. Analogously, 

many of the correspondences found by COMA++ cannot be found in the instance 

mappings. In cases when the product assortment changes frequently, some categories may 

contain no instances at some points of time. Such categories cannot be matched using the 

instance matcher. Another reason for this may be the dispersion of the instances of a 

product category in one data source between multiple categories in the other data source. 

So, in the COMA++ mapping produced in the 5
th

 series of experiments only ~16% of the 

correspondences are also found in the instance-based mapping from the 9
th

 series. In the 

instance-based mapping these common correspondences constitute ~17% of all 

correspondences.  

Therefore, it can be beneficial to merge the COMA++ mapping and the instance-

based mapping to one mapping. This can be accomplished using the following iFuice 

script: 
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$suamontoMERGED:=union($suamontoCOMA,$suamontoINSTANCE); 

In this script, variables $suamontoCOMA and $suamontoINSTANCE represent 

respectively the results of the matching Softunity and Amazon ontologies using COMA++ 

and instance mapping. The united mapping is stored in the variable $suamontoMERGED, 

the duplicate correspondences are eliminated. Apart from the possibility for combining the 

mappings using the operator union as presented in the above script, iFuice also provides 

other possibilities for accomplishing this. So, the iFuice operator union can take third 

parameter, which controls how the weights of the correspondences in the different 

mappings can be combined. Functions such as Max, Min, Average and others are available 

for combining the weights. The resulting weights can be used to further filter the merged 

mapping. The default value for this parameter is Average, i.e. the weights in the merged 

mapping are obtained by calculating arithmetic average of the weights in the source 

mapping. In our experiments, however, the merged mapping is not further filtered and the 

value of the third parameter is therefore of no consequence. Another possibility to combine 

the mapping is by using the iFuice operator intersect. This operator performs the set 

operation ∩ on the sets of correspondences in the source mappings to obtain the resulting 

mapping. However, as mentioned above, the overlap between the instance-based mappings 

and COMA++ mappings is very small. As a result of this, the mappings obtained by using 

the operator intersect contain too few correspondences to be used for our purpose of 

creating navigation on a website.  

We have tried the combination of COMA++ mapping and instance-based mapping 

in the 10
th

 and 11
th

 series of experiments. As COMA++ mapping we took the mapping 

produced in the 5
th

 series of experiments. In the 10
th

 series of experiments we combined it 

with the instance-based mapping utilizing EAN product correspondences. In the 11
th

 series 

of experiments we tested the combination of the COMA++ mapping with the instance 

mapping based on the product correspondences determined using MSSQL Fuzzy Lookup 

and additional instance matchers as described in Table 3.4 (series 20). For both instance-

based mappings we have repeated the merging process for every threshold value used in 

the experiment series 8 and 9. The values of recall, precision and F-measure for the best 

mappings obtained by merging COMA++ and instance-based mappings are shown in 

Table 3.5, experiment series 10 and 11.  

Further, we have noticed that some category correspondences with very high Dice 

value produced by the instance-based matcher are based on very few instance 

correspondences. Since the low number of correspondences can be attributed to “noise” in 

the input data, we have filtered out the category correspondences having less than or 

exactly N instance correspondences. We have repeated the experiments for values of N in 

the range [1..5] in the experiment series 12 and 13. The input data were the same as in 

respectively series 10 and series 11.The best results were achieved in cases when only the 

category correspondences having exactly one instance correspondence were filtered out. In 

the case when EAN-based instance mapping were used, the result obtained by applying the 

“noise reduction” was worse than without it. In case of MSSQL-based instance mapping 

the “noise reduction” leads to increase in the mapping quality.  
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11.2.4 Problems Discovered in the Process of Ontology Matching and Possibilities 

for Improvement 

We have investigated the possibilities for matching ontologies using our framework 

on example of the Softunity and Amazon ontologies. We have been able to obtain 

mappings which can be used as a basis for creating the navigation on the integrated 

website. As mentioned earlier, we apply the ontology mapping for two purposes– creation 

of the browsing structure and generation of the recommendations. The correspondences in 

our automatically produced ontology mappings may represent different types of relations 

between the nodes in the input ontologies, which makes them not immediately suitable for 

creating the browsing structure. However, our automatically produced ontology mappings 

are suitable for generating recommendations, since all the correspondences represent nodes 

that are somehow related to each other. To create web browsing structure, the 

automatically produced ontology mappings need to be manually refined. The refinement of 

the automatically produced ontology mappings can be carried out using COMA++ 

mapping editor. Such refinement of the existing mapping requires considerably less effort 

than creating a manual ontology mapping from scratch. The obtained refined mapping can 

be than used for creating the browsing structure on the integrated website.  

While analyzing the results of the automatic ontology mapping we have become 

aware of several problems which cannot be solved by the combination of COMA++ and 

instance matchers but require extensions to the entire architecture.  

Many of these problems result from using untyped correspondences in both 

COMA++ and iFuice, i.e correspondences which do not have sufficient semantic 

expressiveness. As discussed in the previous section, there can be many possible types of 

relations between the nodes in the different input ontologies. Our automatic matching 

algorithms are aimed in the first place at finding the equivalence relations. However, since 

the specialization relations frequently exhibit distinguishing features which are also 

characteristic to the equivalence relations (such as lexical similarity and large number of 

common instances), significant number of specialization-based correspondences also 

appear in the matching results. Since we have defined our manual mapping to include 

specialization-based correspondences only in special rare cases, the majority of these 

correspondences are wrong with respect to our manual mapping. If we had redefined our 

manual mapping to include all specialization-based correspondences, the automatic 

mapping would still be of poor quality with respect to the manual mapping since it is able 

to determine only a fraction of the specialization-based correspondences. To improve the 

quality of the automatic matching by better handling the specialization-based 

correspondences, one of the following techniques can be proposed: 

 remove all specialization-based correspondences from the automatic mapping. 

 add all specialization-based correspondences to both automatic mapping and 

manual mapping. 
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 partially prune specialization-based correspondences from the automatic 

mapping based on the rules similar to the ones we used for manual mapping, 

i.e. all the specialization-based correspondences are removed except for those 

which cannot be deducted from the equivalence correspondences. 

To implement any of these techniques, we need to be able to assign different 

relation types (i.e. “equivalence” or “specialization”) to correspondences. We also need to 

implement special matchers which would be able to determine the relation type for a 

correspondence by looking at the lexical and structural information provided by the 

ontology and also at the instance data. 

One such  problem is caused by the fact that 1:N and N:M correspondences are 

represented as multiple 1:1 correspondences in our system. So, for example, category 

“Softunity->Filme” is mapped to a union of “Amazon->DVD” and “Amazon->VHS”(i.e. 

cardinality 1:N, Figure 3.11). Category “Softunity->Spiele” for example is mapped to 

“Amazon-DVD->Spiele” with cardinality 1:1. Since in both cases the relation is 

represented by 1:1 correspondences, we are not able to distinguish between the first and 

the second case. Possible solutions for this problem are addressed in [TKR07]. The authors 

propose using set 

correspondences to 

overcome the 

limitations of 1:1 

correspondences. They 

study of how this 

improves the mapping 

needs yet to be done. 

In this section we refer 

to some of the 

improvements proposed in [TKR07] when appropriate. 

Another problem which is not addressed by our approach yet is the problem of 

structure violations. (Figure 3.12)  The problem of structure violations could be best 

illustrated by example: let the ontology class a1 in the ontology A be the parent of the class 

a2 and the class b1 in the ontology B accordingly the parent of the class b2. It is possible 

that in the mapping 

between the ontologies 

A and B both the 

correspondence a1-

>b2 and b1->a2 exist. 

Since we use untyped 

correspondences to 

represent several types 

of relations, we cannot 

distinguish whether 

there is a contradiction 
Figure 3.12. Some correspondences may violate the structure of 

the ontologies 

Figure 3.11. Concept in one ontology mapped to a union of 

concepts in another ontology. 

 



Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment 

 

154 11.2 Integrating Ontologies 

 

in this setting. If one of 

the underlying 

relations is of type 

parent-child and the 

other of the type child-

parent, than both 

correspondences are 

legitimate. If however 

both relations are of 

type parent-child, then 

a structure violation 

exists in the ontology mapping. Whether such structure violation is problematic, depends 

on the intended use of the ontology mapping. It can be argued that correspondences which 

violate the ontology structure can still be useful as recommendations.  

Severe problems are caused by orthogonal subontologies (Figure 3.13) which are 

frequent in the Amazon product ontology. These problems are especially stepping forward 

in connection with the instance mapping. Because of the orthogonal subontologies, the 

category „Filme->Kinder- und Jugendfilm->Zeichentrick“  (Movies->Movies for Children-

>Animation movie) is instance-mapped to „Filme->By production land->Japan“ (Figure 

3.14) and the category  „DVD->Classic Western Collection“ to „Filme->By production 

land->Italy“. These correspondences are not unfounded because an overwhelming number 

of animation films are produced in Japan and a large number of classic “western” movies 

are “Italo-westerns” produced in Italy. Such correspondences can in fact be used as 

interesting recommendations. However, they are clearly erroneous if we are looking for the 

equivalency-based correspondences.  

Orthogonal subontologies can be removed by preprocessing the input ontologies. 

We have manually pruned some of the larger orthogonal subontologies from the ontologies 

we use in our system. However there is a large number of smaller orthogonal 

subontologies which require much effort to be pruned manually. Some automatic or semi-

automatic preprocessing techniques for removing orthogonal subontologies may be 

required to improve the quality of the ontology mappings.  

An improvement to the instance-based ontology matching techniques used here was 

proposed in [TKR07]. The key idea of the improvement proposal is to use SimMin 

similarity measure instead of Dice similarity measure used here. The SimMin similarity 

measure between two 

ontology concepts is 

calculated according to 

the following formula: 

SimMin(a,b)=|Cab| / 

min(|Sa| ,|Sb|), 

where Cab is the set of 

correspondences 

Figure 3.13. Orthogonal subontologies 

Figure 3.14. Correpondences in orthogonal subontologies found 

by instance matching 
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between instances which belong to a and b, Sa, Sb set of instances which belong 

respectively to the concepts a and b.  

The authors of [TKR07] also used the e-commerce ontologies from 

www.softunity.com and www.amazon.de in their work. The ontologies were restricted to 

the areas Software and Games. Since in our experiments we used the data from the areas 

Software, Games and Video, our results are not directly comparable to the results provided 

in [TKR07]. We have implemented an algorithm analogous to the algorithm described in 

[TKR07]. In our experiments, we have not been able to notice direct improvements in the 

recall and precision with respect to our manual mapping. The human analysis of the 

resulting mapping in COMA++ GUI shows that the algorithm described in [TKR07] is 

able to find larger number of correspondences which are correct from the point of view of 

the distribution of instances. However, these correspondences do not comply with the 

guidelines we set for our manual ontology mapping, i.e. that the equality relations are 

preferred, and other relations are considered redundant if they can be inferred from the 

equality relations. In particular, for every equality correspondence found by the algorithm 

based on Dice similarity measure the algorithm described in [TKR07] tends to produce 

additional correspondences for child-parent relations. For example, for the concept 

“Softunity->Games->Game Boy Advanced” the instance-based matching with threshold 

Dice>=0.5 produces one correspondence to the concept “Amazon->Games->Game Boy 

Advanced”. The instance-based matching with SimMin coefficient produces for the same 

Softunity concept 5 correspondences to the children of “Amazon->Games->Game Boy 

Advanced”, such as “Amazon->Games->Game Boy Advanced->Strategy”, “Amazon-

>Games->Game Boy Advanced->Jump & Run” etc., as shown in Figure 3.15. The value of 

the SimMin measure equals to 1.0 for four of these correspondences, therefore it is not 

possible to filter these correspondences out using a threshold value.  

Although it appears that the replacement of the Dice similarity measure through 

SimMin similarity measure alone does not improve recall and precision, the method based 

on the SimMin provides better coverage, i.e. it produces more promising correspondence 

candidates which in combination with methods for post-processing of the ontology 

Figure 3.15. Additional child-parent correspondences found by instance matchning with 

SimMin coefficient 
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mapping proposed earlier in this section can lead to improvement in the quality of the 

ontology mapping. 

The work in [TKR07] also studies the use of direct references from the products to 

nodes in the product hierarchy vs. indirect references. The direct references are those when 

the products are explicitly assigned to the nodes in the product hierarchy. The indirect 

references are those which are explicitly assigned either to the nodes or to their 

descendents in the hierarchy. In the work presented in this thesis we study only the indirect 

references, since during the data extraction process all indirect references are transformed 

into explicit, i.e. direct references. 

Additional improvement of the ontology mappings can be achieved by using 

matchers which establish correspondences based on the neighborhood of the given pair of 

objects as described in [TR07]. 

11.2.5 Evolution of data, ontologies and mappings 

Both product instance data and the ontologies provided by our data sources change 

over time. This poses a problem of maintaining the instance and ontology mappings up-to-

date with the changing data. In particular, one of the incentives for implementing 

automatic ontology matching algorithms was that such algorithms can be designed once 

according to the characteristics of the input data and then be continually used with the 

changing input data. The naïve method for keeping the mappings up-to-date is by simply 

repeating the automatic matching when the data change. As we have determined, however, 

our automatically produced ontology mappings are not suitable for creating the browsing 

structure for a website without manual post-processing. Of course, we can repeat the 

automatic matching and post-process it manually each time the data change. Although 

manual post-processing of the automatically produced mapping requires less effort than the 

creation of the manual mapping from scratch, it still becomes quite laborious if we need to 

repeat it many times. 

A special research area called ontology evolution or schema evolution investigates 

different problems of handling changes in ontologies. These problems include change 

capturing, propagating of changes from one ontology to another, ontology versioning etc. 

A detailed overview and bibliography for this research field can be found in 

[HS04][RB06]
33

. The particular problem of maintaining up-to-date mappings that we are 

facing in our system is called mapping evolution [HS04]. In particular the system ToMAS 

[VMP03][VMP04][VMPM04] is specially designed for handling the problem of mapping 

evolution. This system allows sophisticated handling of structural changes such as moving 

an element from one position to another but does not handle the additions of the new 

elements. In fact, it is not possible to handle element additions by using a pure evolution-

support system. This task requires the cooperation of an evolution-support system and an 

ontology-matching system in order to find the correspondences for the newly added 

elements. In our system, however, additions are of great interest, because according to our 

                                                 
33

 Online bibliography is located at http://se-pubs.dbs.uni-leipzig.de 
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experience additions constitute the majority of all changes occurring in e-commerce 

ontologies.  

To solve the problem of maintaining up-to-date ontology mappings in our system, 

we take the following approach:  

After the initial generation of the automatic ontology mapping and its manual 

refinement, we generate two additional ontology mappings: auxiliary negative mapping 

and auxiliary positive mapping. Both auxiliary mappings are created using iFuice scripts. 

The original automatically generated mapping and the manually refined mapping serve as 

input data for the scripts. The auxiliary negative mapping contains the erroneous 

correspondences which were contained in the automatic mapping and removed by the 

manual post-processing. The auxiliary negative mapping is created with the following 

script: 

$auxiliaryNegativeMapping:=diff($automaticMapping,$manuallyRefinedMapping); 

Auxiliary positive mapping contains the correspondences which were not found by 

the automatic mapping and added during manual refinement. It is created with the 

following iFuice script: 

$auxiliaryPositiveMapping:=diff($manuallyRefinedMapping,$automaticMapping); 

When the ontologies are updated from the data sources, the ontology mapping is 

generated in the following way: First the automatic matching process employing COMA++ 

and instance matchers is run. Then the auxiliary positive mapping is added to the results of 

the mapping to provide for missing correspondences and the auxiliary negative mapping is 

subtracted from it to remove the known errors: 

$updatedMapping:=diff(union($newAutomaticMapping,$auxiliaryPositiveMapping), 

$auxiliaryNegativeMapping) 

This way only the correspondences which are relevant to the newly added nodes are 

added to the mapping. The new correspondences may be correct or incorrect with the 

expectation of our automatic mapping. The old manually refined correspondences persist. 

Our approach does not solve the problem completely: the mapping quality will still 

deteriorate due to the imperfectness of the automatic matching and the mapping will 

eventually need a new manual revision after certain number of changes in the input 

ontologies. However, according to our experience, the changes in our input ontologies are 

infrequent and the amount of changes is small with respect to the size of ontology.  

Therefore, the time between the manual revisions can be kept large without significant 

deterioration of the quality of the mapping.  

In contrast to the system ToMAS [VMP03][VMP04][VMPM04], our approach 

does not specially handle re-structuring of the ontology without removing or adding 

elements. This functionality is a subject of further research. In our current architecture, 

correct propagation of such restructuring to the mapping depends on whether the automatic 

matching algorithms can correctly recognize the correspondences for the relocated 
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elements in the new locations. Manual adjustment of correspondences is of course also 

possible.  

COMA++ has special Reuse matchers which can be generally useful in the 

situations similar to the described above. Indeed, in our experiments these matchers have 

been able to find many additional correct correspondences in the changed ontologies. 

However, these matchers have also generated a large number of false positives. This is due 

to a peculiarity of our ontologies: our ontologies have a large number of homonymous 

nodes in different subtrees. Because of this homonymy, the reuse matchers generate a large 

number of 1:n correspondences where only one of the n elements is usually correct. We 

have been able to somewhat alleviate this effect by combining Reuse matcher with 

NamePath matcher, in order to take the current subtree into account.  The number of false 

positives however remained too high for practical use.  

We have also implemented an approach to handle the evolution of the instance data 

with respect to the mappings. This approach is analogous to the iFuice-based approach 

with auxiliary mappings described above. We manually create auxiliary mappings which 

contain the correspondences typically overlooked by the automatic matching and the 

correspondences which are false positives. The former are added to the mapping created 

automatically, the latter are subtracted from this mapping using the corresponding iFuice 

operators. 

11.3 Integrating Data: Summary 

In this chapter we investigated the data integration approaches which can be used 

for creating an integrated e-commerce website within our framework EC-Fuice. 

We concentrated on two main types of input data for creating the integrated website 

– product instances and product ontologies. For both input data types, mappings can be 

generated for two purposes – browsing and recommendations. Since there can be several 

types of browsing and several types of recommendations, several mappings may need to be 

created for each purpose. The incentive for our work was to create a set of integration 

routines, which can be repeatedly used during the lifetime of the integrated website to 

update and maintain the integrated data and settings. 

We performed several series of experiments for both instance matching and 

ontology matching. The product instance and product category data for the experiments 

were taken from Softunity and Amazon data sources, since unambiguous product instance 

mapping exists between these data sources which can be used to assess the quality of the 

various methods for instance matching. 

We investigated the following methods for matching of the product instances 

 several simple matchers based on well-known string similarity algorithms.  

 a more complicated fuzzy string matcher provided by the Microsoft SQL 

Server which combines multiple string similarity algorithms.  
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 combination of the string matching algorithms with the ontology data 

available in the EC-Fuice framework.  

 We have also investigated using additional attributes for matching, however 

with no success due to the specifics of the input data.  

For matching product ontologies, we have investigated the following possibilities: 

 matching using COMA++ matchers 

 matching based on the product instance mapping and on the information on 

which product instance belongs to which product category 

 combination of the mapping produced with COMA++ and the instance 

mapping.  

We have recognized that while our automatically produced ontology mappings can 

be used as recommendations, they are not suitable for creating browsing structure without 

further manual refinement. Subsequently, we have proposed a technique which allows 

minimizing the manual effort when the data change.  

Many researches point out that the mapping of ontologies is a challenging task 

[MR08][ELTV04][KW04]. This pertains also to the task of matching product ontologies of 

the e-commerce websites, with an additional difficulty of product ontologies containing 

deliberately incomplete information about the domain. We have identified a number of 

problems which arise during the matching of e-commerce product ontologies and proposed 

several ways to further improve their matching.  
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12.  EC-FUICE IMPLEMENTATION 

12.1 Database Structure 

In this section we review the structure of the relational databases which we use in 

the EC-Fuice platform. We highlight the structural specifics of these databases which are 

targeted to optimize the usage and performance of the databases for their respective tasks. 

12.1.1 iFuice Database 

The iFuice relational database is used internally by the iFuice platform to hold the 

information about the problem domain, the mappings, the objects with attributes and the 

variables. Our iFuice implementation uses MySQL Server to store and manage the 

relational database. 

The structure of the iFuice database is shown in Figure 3.16. The iFuice database 

has a generic, domain-independent structure, designed to deal with various objects without 

the need to specify the attributes of the objects in advance. If we were to change our 

problem domain from e-commerce to some other domain, we wouldn‟t need to change the 

structure of the iFuice database. The database structure can be logically divided into three 

parts: “domain model”, “source-mapping model”, “objects and variables”. The “domain 

model” is a very generic part. It consists of two tables which contain types of object which 

are present in the domain and mapping types, i.e. types of relations between objects. The 

second part of the schema is the “source-mapping model”, which contains information 

about data sources and mappings. The table “datasources” contains the descriptions of the 

physical data sources connected to iFuice, for example “Amazon”, “eBay” etc. The table 

“lds” contains so called “logical data sources”, i.e. object types coming from a given data 

source, for example “Product@Amazon”, “Review@Amazon”. 

The content of the tables in the domain model and source-mapping model are 

loaded from XML configuration file. The information for the mapping mediator on how to 

execute the mappings is also loaded from the XML configuration file. The information 

contained in the domain model and source-mapping model is used by the mapping 

mediator for executing iFuice scripts. The iFuice scripts may return results which are 

stored in variables. The variables are stored in tables displayed in the third part of the 

schema in Figure 3.16 “Objects and variables”. We have three types of scalar variables: 

float, integer, string. The values of the scalar variables are stored directly in the 

corresponding tables. We also have variables of type ObjectsInstances and Mapping Result 

which can correspondingly contain a collection of object ids and a collection of 

correspondences between object ids. The collections are stored in separate tables. The 

objects which are referenced by the object ids are stored in the table “object”. The 

attributes of the objects are stored in the table “attribute”. 
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For sake of brevity, we have omitted the tables which contain variables of types 

AggregatedObjects and AggregatedMappingResult, since they are not used in our system. 

As can be seen from Figure 3.16, the database schema places few restrictions as to 

types of objects, mappings, number of attributes etc. However such generic schema has a 

trade-off in complexity of the queries which are needed to perform common tasks. For 

example a query which returns a list of objects with multiple attributes which can be used 

on the website to display a product listing would require either a large number of queries or 

a complicated query with multiple subqueries. The database schema in Figure 3.16 already 

has one feature which is able to simplify the queries commonly used by iFuice, namely the 

value of the attribute “ID” which is commonly referenced by iFuice queries is stored with 

Figure 3.16. Structure of the iFuice database 
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the object, as opposed to other attributes which are stored in the table “attribute”. However, 

this is still not sufficient to efficiently execute the queries required by the EC-Fuice web 

portal. Therefore, we use iFuice directly only for integrating the data and for special “live” 

recommendations which are discussed in Section 12.3. After the integration, we use a 

special iFuice mapping to transfer the data into the Web Portal Operational Database 

which is discussed in the next section.  

12.1.2 Web Portal Operational Database 

The schema of the web portal operational database is shown in Figure 3.17. The 

web portal database is designed to immediately provide the data to the web application 

which visualizes the integrated data to the web user as HTML pages.  The web portal 

operational database is implemented using MySQL database server. The structure of the 

web portal database is designed to provide high performance when executing queries 

which typically come from the web application. This structure is not only domain specific, 

but also specific to the tasks and queries pertinent to the web interface functions. This is 

why the database design exhibits some redundancy in tables: we have both the table 

containing individual ontology edges and the table containing the transitive closure of the 

ontology, i.e. the minimal paths between all nodes in graph. We need the first table to find 

out the types of the individual edges and the second one to quickly find all connected 

nodes. The mappings between nodes originally coming from different input ontologies are 

also saved as ontology edges.  

The database schema in Figure 3.17 can be compared to the schema of 

recommendation database in Part II, Section 4.4.1. The schema in Figure 3.17 is logically 

Figure 3.17. Schema of the web portal operational database 
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divided into two parts. The right part of the schema deals with adaptive web 

recommendations and bears significant similarity to the schema presented in Part II.  

Compared to the schema in Part II, this schema is simplified – the parts which are not 

utilized in our portal are removed. So, the table TimeNodes and the fields which reference 

the table TimeNodes are removed, since we do not provide time-specific recommendations 

in EC-Fuice web portal. The part of the schema related to the table “UserNodes” is 

simplified from a graph-like structure to a single table with the individual user nodes. The 

table Rules has been amended with fields which show modification time and creation time. 

The part which is responsible for the content has been expanded in comparison to the 

schema in Part II. It is shown in the left part of Figure 3.17. The table “ContentNodes” is 

similar to the one used in Part II. The content nodes stored in this table are the ontology 

nodes belonging to the product hierarchies as well as product instance nodes. Every 

product instance node corresponds to an individual product in the table “product_data”. 

Ontology nodes have no corresponding entries in the table “product_data”. The table 

“presentations” contains the presentations which have been presented in the current web 

sessions on the website. 

When a session ends, the information about the presentations is removed from the 

table “Presentations” and pushed into the EC-Fuice data warehouse by the ETL application 

which is discussed in the next session. Since we do not have an explicit logout function in 

our website, the user sessions end automatically after a pre-defined period of inactivity. 

The timeout for a session is defined in the configuration of the application server. The 

common value for the session timeout is 30 minutes.  

The access to the web portal operational database by the web portal is implemented 

using the ORM (Object-Relational Mapping) technology. ORM technology enables the 

developer to declaratively describe the object-relational mapping between Java classes and 

tables in a relational database. Afterwards, the developer can use the instances of the OR-

mapped classes as if they were resident in memory. The storing and retrieving of the class 

instances in the relational database is handled transparently by the ORM library. We use 

the ORM library Hibernate
34

 which supports multiple levels of caching to increase the 

performance. The data structure of the web portal operational database is optimized for use 

with an ORM library.  

 

12.1.3 EC-Fuice Data Warehouse 

The EC-Fuice Data Warehouse is implemented using Microsoft SQL Server 

2005
35

. Microsoft SQL Server 2005 is a newer version of Microsoft SQL Server 2000 

which was used to implement Web Data Warehouse in Part II of this thesis. Compared to 

the functionality of its predecessor described in Section 4.4.2, SQL Server 2005 features a 

                                                 
34

 http://www.hibernate.org/ 
35

 http://www.microsoft.com/sql/ 
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new ETL tool called Microsoft Data Integration Services which contains features such as 

Fuzzy Lookup which we use to perform matching of the instance data in EC-Fuice. 

The relational database schema of the EC-Fuice data warehouse is shown in Figure 

3.18. The structure of the EC-Fuice data warehouse is largely similar to the structure of 

Web Data Warehouse as shown in Figure 2.37 in Section 4.4.2. The differences are 

stipulated by the fact that EC-Fuice data warehouse contains data from multiple data 

sources. The tables Product and ContentNodes are amended with a field denoting the 

source of the information. This field serves as a foreign key for the new table Datasource 

which contains the list of available data sources. 

To import the product data into EC-Fuice Data Warehouse we use an ETL tool 

created using the Microsoft Data Integration Services toolkit. The ETL tool for importing 

the product data is executed periodically.  For web usage data we use a specially developed 

real-time ETL tool using a server application written in Java. The ETL application 

transforms the data into the format suitable for loading into the warehouse tables. The ETL 

application‟s being real-time means that every pageview in the EC-Fuice web portal 

generates a set of input data which is immediately forwarded into the data warehouse. It 

should be noted that the rate at which the EC-Fuice portal is able to serve pages to web 

users is much greater than the rate at which the ETL application is able to transform the 

data and load it into the warehouse.  

However, the load placed by the web users on the EC-Fuice portal is distributed 

unevenly. The EC-Fuice portal has peak times when pages must be served quickly but 

most of the time it experiences little load. To evenly distribute the load placed on the ETL 

application, we use buffering inside the ETL application. The ETL application consists of 

two concurrently working asynchronous processes. The first process gets the usage data 

from the EC-Fuice portal and puts them into the queue. The second process takes the data 

from the queue, transforms them and loads into the data warehouse.  

The OLAP interface to the EC-Fuice data warehouse is implemented using 

Microsoft Analysis Services
36

.  The OLAP interface is leveraged both programmatically 

and by human users. Programmatically the OLAP interface is used for the generation of 

the web recommendations, for example the web recommendations based on web usage 

history. The human users of the OLAP interface are not the end customers as in the case of 

the web portal, but the business users, i.e. business analysts. The human interface for 

OLAP can be realized either using special OLAP tools or with help of Microsoft Excel‟s 

OLAP features such as PivotTable and PivotChart.  

We have created the OLAP-Cubes Session, Pageview, Presentation and Product 

based on the EC-Fuice data warehouse. The composition and usage of these cubes are 

similar to the respective cubes based on Web Data Warehouse as described in Part II, 

Section 4.4.2. 

                                                 
36
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Figure 3.18. Database structure of the EC-Fuice data warehouse 
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12.2 EC-Fuice Web Portal Interface  

12.2.1 Overview of the Web Interface 

The interface of the EC-Fuice web portal is designed to facilitate user navigation in 

the large amount of e-commerce data. EC-Fuice web portal provides user with two types of 

navigation. The first type of navigation is browsing of the integrated website structure 

which is constructed from the browsing structure of the original data sources.  This type of 

navigation is based on the relations which already exist in the original data sources. It 

includes the navigation between the categories in the same data source and the navigation 

from a category to a product. The second type of navigation is generated by the EC-Fuice 

framework and is based on relations calculated using iFuice mappings. This second type of 

navigation is presented chiefly in form of web recommendations.  

The snapshot of the welcome screen of the EC-Fuice web portal is shown in Figure 

3.19. The main content panel is shown in the middle of the screen. The navigation menu is 

located on the left side. The web recommendations are presented on both left and right 

sides. The navigation menu and web recommendation panels are present in every EC-Fuice 

page view. We will describe the recommendations in more detail in the next subsection. In 

this subsection we omit the recommendations from the subsequent screenshots for brevity. 

Figure 3.19. EC-Fuice web portal welcome screen 
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The navigation menu on the left side contains four options: “Welcome”, “Search”, 

“Browse”, “Data sources”. The menu option “Welcome” returns the user to the welcome 

page. The menu options “Search” and “Browse” are the two principal ways to proceed 

from the main screen to the product data. These are the traditional navigation options for 

e-commerce websites. The menu “Data sources” provides the information about the data 

sources connected to the system, in particular the number of products and ontology nodes. 

Clicking on the menu option “Search” takes user to the search form shown in 

Figure 3.20. The user is prompted to enter the search keywords. Clicking on the link 

Options extends the panel which shows additional options for the full-text search. Here the 

user can choose the algorithm used for searching. Three search algorithms are available: 

substring search using simple SQL operator LIKE, search using normalized TF*IDF 

algorithm as implemented in the MySQL server
37

 and search using open-source full-text 

search library Lucene
38

. The user also has the possibility the change the limit for displayed 

results and select data sources which should be included to or excluded from the search. 

After the user clicks the button “Go”, the list of products matching the search 

criteria is presented (Figure 3.21). For each product, we show picture, title, price and 

shipping costs if specified. Some products present on the Amazon website are in fact not 

sold by Amazon. They are stubs which serve as an anchor for sellers of used products. 

Such products have no Amazon price, as shown in the second line of the search results in 

Figure 3.21. For every product in the result list we also show a list of categories to which 

the product belongs. If a product exists in several data sources, each entry is shown 

separately in the list. The data source from which the product comes is shown with an icon 

preceding the product title. If same-mapping from this product to products in other data 

sources exist, we show the icons of the respective data sources after the title.  

                                                 
37

 http://dev.mysql.com/doc/internals/en/full-text-search.html 
38

 http://lucene.apache.org 

Figure 3.20. EC-Fuice web portal: search form.  
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Clicking on a product name in the search result list brings the user to the product 

view which is described later in this section. Another way to get to the product view is by 

browsing the product categories. After the user selects the option “Browse” in the main 

menu, the product category view is presented (Figure 3.22). The product categories of each 

data source are presented separately. At any given time, only the product categories of one 

source are presented. The user can however switch between them in several ways. It is 

possible to change the currently shown product ontology by selecting the data source in the 

root of the product category tree. It is also possible to use the links located next to the 

category names. These links are shown if one or several categories in other data sources 

match to the given category in the current data source. Clicking on such link brings the 

user to the product ontology of the respective data source. The categories matching to the 

original category are highlighted.  

The user can also choose, whether all available categories are shown in the product 

category tree or only those which have associated products.  

Clicking on the name of a product category displays the product list for this 

category. The product list for a category is similar to the list of search results shown in 

Figure 3.21. Additionally, the user can select whether to see the list of products which 

belong only to the selected category from the same data source or also from other data 

sources in case when they have categories which map to the current one.  

The presentation of a product on the website is shown in Figure 3.23. We show the 

characteristics of the product, such as categories it belongs to, title, id, price, picture. We 

also present a URL which leads to the page at the original website where this product can 

be found. If we have a same-mapping from this product to products in other data sources. 

Figure 3.21. EC-Fuice web portal: search result list (search term is “King”).  
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We do not fuse the attributes of the 

products. In our experiments, it has proven 

to be not feasible to fuse the attributes of 

products with satisfactory quality. One of 

the reasons for this is because eBay often 

has more than one matching product with 

different price and description. Thus, it is 

unclear which of the matching products 

should participate in the fusion.  

The web portal is implemented in 

Java using the J2EE
39

 (Java 2 Enterprise 

Edition) framework and is a presentation-

oriented multi-tier web application. The 

presentation layer of the application is 

implemented using the JSF
40

 (Java Server 

Faces) technology. 

12.3 Web Recommendations 

In Section 12.3.1 we present the 

types of recommendations which can be 

used in the integrated data environment. In 

Section 12.3.2 we show examples of 

different types of recommendations used in 

EC-Fuice web portal.  

12.3.1 Types of recommendations 

As mentioned earlier, web 

recommendations constitute a significant part of the navigation in the EC-Fuice web portal, 

especially for the navigation between different data sources. The types of web 

recommendations which can be used in the integrated data environment are manifold.  

The web recommendations in EC-Fuice web portal can be classified based on 

several criteria. The web recommendations can be classified in the following way with 

respect to the point of time when they are generated: 

 Live – these recommendations are calculated immediately before they are 

presented.  

                                                 
39

 http://java.sun.com/javaee/ 
40

 http://java.sun.com/javaee/javaserverfaces/ 

Figure 3.22. EC-Fuice web portal: 

browsing the product category tree. 
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 Pre-calculated – these generations are pre-generated at regular intervals of 

time and stored in the database for quick access. 

Whether a recommendation should be pre-calculated depends on the time needed to 

generate it. Calculating live recommendations may slow the presentation of the web page. 

Therefore, in most cases it is advisable to pre-calculate the recommendations. In cases 

when such pre-calculation is not possible, the presentations delays can be avoided by using 

asynchronous loading discussed later in this section. 

The recommendations can be non-adaptive or adaptive. After being generated by 

the recommenders, the non-adaptive recommendations stay unchanged throughout their 

lifetime. The adaptive recommendations are adjusted according to the web users‟ 

navigational behavior. The adaptation can happen on the level of a single recommendation 

or the level of the recommender. The recommendations adaptive on the level of single 

recommendation need to be pre-calculated, so that they can be stored in the database and 

later adjusted. Different techniques for creating adaptive web recommendations were 

discussed in the Part II of this thesis. 

Figure 3.23. EC-Fuice web portal: Product view.  
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In the integrated data environment the web recommendations can be classified by 

the utilization of the data sources: 

 Recommendations from the same data source -- the recommended content 

comes from the same data source as the presented content.  

 Recommendations from other data sources integrated in the EC-Fuice 

Operational database.  

 Recommendations based on external data sources. The recommended content 

is not integrated in the EC-Fuice Operational database and is obtained by 

directly calling an iFuice mapping which serves as recommender. The 

recommender obtains the recommendations in some recommender-specific 

way, for example by sending an HTTP request to an external website or 

calling a web service.  

By the type of loading into the web page the web recommendations can be divided 

into the following categories: 

 Static recommendations are shown in the web page as usual parts of the 

content. The place on the web page where they appear is defined by the page 

layout. 

 Asynchronously loaded recommendations use so-called AJAX (asynchronous 

JavaScript and XML) technology. These recommendations are usually also 

shown at pre-defined places on the web page. However, they are not loaded 

simultaneously with the rest of the web page. Instead, the web page contains a 

small script which is executed in the user‟s browser after the web page is 

loaded. This script requests additional content from the server. As soon as the 

requested content becomes available, it is inserted into the website at pre-

defined places. 

 Event-based recommendations are shown, when a certain event occurs in the 

browser, for example when the user holds the mouse pointer over a certain 

HTML element or text on the web page. The event-based recommendations 

can be either shown at the places pre-defined by the layout or the position of 

the recommendations can be calculated dynamically relative to the HTML 

element which triggered the event. Although the recommendations can be 

loaded together with the web page in the hidden state and then visualized at 

the needed moment, it is advisable to load such recommendations 

asynchronously using the AJAX technology to decrease the size of the initially 

loaded web page.  

The recommendations are usually shown on the web page in blocks. Each such 

block contains several recommendations. By selection of recommendations which are 

shown in one recommendations block the recommendations can be classified as single-

recommender or mixed. In case of single-recommender recommendations all 
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recommendations in the block 

are generated by the same 

algorithm. In case of mixed 

recommendations the 

recommendations in one block 

may come from different 

algorithms. It has been 

observed, that users have 

more trust in 

recommendations when they 

see an explanation of how the 

recommendations were 

generated. In case of single-

recommender 

recommendations the 

recommender-specific 

description can be shown in 

the title of the 

recommendation block. In the 

mixed case, the explanation 

can be shown either for every 

recommendation( to save the 

space on the page, the 

explanation can be shown as 

so-called “tooltip”, i.e. it 

becomes shown when user 

holds the mouse pointer over 

the recommendation), or a generic explanation can be shown 

for the entire block.  

All the recommendations we discuss here are context-

dependent. The notion of context was discussed in detail in 

Part II. In this Part the notion of the context with respect to 

content has been adjusted. Here the content part of the context 

can be not only the currently presented content as a whole, but 

also a specific content element which is focused or 

highlighted on the web page. Whether a recommendation 

depends on the content of the entire web page or on the state 

of some specific element on the page is a further criterion for 

classifying the web recommendations. 

There are other thinkable criteria for classifying the 

web recommendations, for example based on the position on 

the page, presentation design etc. However these types of 

classification are less relevant for our project and we therefore 

Figure 3.24. Screenshot of 

the EC-Fuice web portal 

during loading of the 

asynchronous 

recommendations. 

Figure 3.25. 

Screenshot of the EC-

Fuice web portal after 

the asynchronous  

recommendations are 

loaded. 
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do not discuss them here. The classification of the recommendation types should be 

distinguished from the classification of the recommendation generators, i.e. algorithms 

used to generate the recommendations which have been presented in the Part II of this 

thesis. 

12.3.2 Recommendations used in EC-Fuice web portal 

 

In this section we illustrate how the different types of recommendations discussed 

in the previous section are used in EC-Fuice web portal. Figures 3.241 and 3.25 show the 

right side content pane of the web page where some of our web recommendations are 

shown. The pane contains three blocks of recommendations. We will describe these 

recommendations with respect to the classification criteria listed in the previous section.  

The first from above recommendation block shown in Figures 3.24 and 3.25 

contains pre-calculated adaptive recommendations. The adaptation is done on the level of 

single recommendation and implemented using the reinforcement learning based algorithm 

described in Part II. The recommendations are mixed, i.e. can come from different 

recommenders. We use the following recommenders to generate recommendations shown 

here: product similarity, sequential association rules, item-to-item collaborative filtering, 

and manual recommendations. The recommended products can come from any of the data 

sources connected to iFuice. The recommendations links lead user to the respective 

product pages in the EC-Fuice web portal. External data sources are not used here. We use 

a generic explanation “Product Tips” for this recommendation block. 

The second recommendation block presents live recommendations based on data 

from external data source – the eBay website. Although we have information about 

products from eBay in EC-Fuice operational database as well, we do not use it here for two 

reasons. The first reason is that we have limited the eBay products stored in EC-Fuice 

operational database to those products which have a “Buy now” price (“Sofort kaufen”). 

The second reason is that the eBay data in EC-Fuice operational database are updated at 

regular intervals of time. That means that the information in the EC-Fuice operational 

database is not the latest information available. This is acceptable for products which have 

a fixed price, is however not acceptable for auctions where the price can change every 

second. The recommendations in the second block are loaded asynchronously using AJAX 

technology and present last second auctions from eBay. Figures 3.24 and 3.25 illustrate the 

process of asynchronous loading using the AJAX technology. Figure 3.24 shows the 

recommendation blocks immediately after the web page is loaded. At this moment, an 

additional request is sent to the server in order to obtain the recommendations. Until the 

response for this request is obtained, the placeholder string “Getting recommendations 

from eBay” is shown in the recommendation block instead of the recommendations. As 

soon as the response is obtained, the recommendations are presented to the user as shown 

in Figure 3.25. The position of the recommendation block is set statically in the layout of 

the website. All recommendations shown in the block come from a single recommender. In 

order to obtain the recommendations the recommender sends an HTTP request with the 
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keywords describing the current context on the EC-Fuice web portal to the search engine 

of the website http://www.ebay.de/. The obtained search results are formatted and returned 

to the web user as recommendations. The explanation “Last-Second eBay” is shown in the 

header of the recommendation block. The recommendations in this block are not adaptive. 

The recommendation links lead user directly to the eBay website.  

The third recommendation block is similar to the second recommendation block. 

The data source which provides the recommendations is the books assortment on the 

website http://www.amazon.com. We do not have the contents of this data source in 

EC-Fuice operational database (there we have integrated the German version of the 

website, http://www.amazon.de, which has its own product assortment and its own prices). 

Therefore an external call to the keyword search web service of the US Amazon is made. 

As soon as the data is returned, it is formatted as recommendations and presented to the 

user. The keywords for the request are extracted from the content-related part of the 

current context of the EC-Fuice website. It should be noted that the content context of the 

EC-Fuice website is in German language, the web service provided by US-Amazon 

however expects keywords in English language as input parameters. Initially, we have 

implemented the translation of the keywords in the recommender before sending them to 

Amazon web service. The translation was implemented using the free of charge web 

service provided by the company Linguatec (http://www.linguatec.de). However, after 

some time this free web service has become unavailable. We have not found any other web 

service providing the similar service. At the moment, we send the German keywords to the 

Amazon web service. We have discovered, that due to the large number of English and 

international keywords in the names of product categories and titles and descriptions of the 

products this recommender is in many cases still able to provide good quality 

recommendations without keyword translation. The recommendation links shown in this 

recommendation block lead to the website http://www.amazon.com. 

Apart from the three recommendation blocks on the right side, we also show one 

recommendation block on the left side of the web page. This recommendation block 

presents DVD products from US-Amazon and operates similarly to the recommender 

showing Book products from US-Amazon.  

The main content panel, the panels containing the navigation menu and the four 

recommendations panels take all the space of the web page which is available in the 

browser window without the need for extensive scrolling. It is known that the areas of the 

website available only via scrolling tend to get less user attention. Therefore, in addition to 

the recommendations positioned statically in the web page layout we also use “floating” 

recommendations. The floating recommendations are used in the category browsing view, 

product list view and individual product view. Figure 3.26 shows the presentation of the 

floating recommendations in the category browsing view. The recommendations used for 

the floating presentation are pre-calculated and adaptive on the level of recommenders. 

The recommendations use multiple data source connected to iFuice framework. The 

floating recommendations are event-based. They appear when the user holds the mouse 

pointer over some element on the web page for the time which is sufficient to assume that 

this element has attracted the user‟s attention. The elements which represent product 

http://www.ebay.de/
http://www.amazon.com/
http://www.amazon.de/
http://www.amazon.com/
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categories or individual products can be used to trigger the floating recommendations. In 

the EC-Fuice web portal we set the time interval after which the request is sent to the 

server to show the recommendations to 2.5 seconds. The recommendations are presented to 

the user after the response from the server is received. The floating web recommendations 

are shown near the element which has triggered them. They can overlay the other content 

on the website. To hide the floating recommendations and thus reveal the content overlaid 

by the recommendations, the web user can move the mouse pointer away from the 

highlighted element and either click on the empty space on the web page or hold the mouse 

pointer over the empty space for some time.  

The blocks of floating recommendations show recommendations coming from the 

same recommender. The utilized recommenders however can be different, based on the 

analysis of the web usage data in the EC-Fuice data warehouse similar to the adaptive 

recommender selection process discussed in Part II. We use the following recommenders 

for floating recommendations in the EC-Fuice portal: 

Figure 3.26. Floating recommendations shown during category browsing. 
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For the recommendations to the categories presented in the category browsing 

view: 

 new products in the category 

 most viewed products in the category (product highlights) 

 related categories from other data sources 

For the recommendations to the products presented in the product view: 

 similar products from the same categories to which the product belongs 

 related categories from other data sources 

It is possible to use other recommenders as well.  
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13.  RELATED WORK AND DISCUSSION 

The presented work borders on two large research fields: data integration and 

ontology matching. In this section we present the related projects in these two research 

fields and discuss some highlights which differentiate the work presented in this thesis 

from other work or liken it to other work to in the respective research fields. In Section 

13.1 we discuss the distinctive features of our approach and present the related work in the 

field of data integration. In Section 13.2 the related ontology matching projects are 

presented.  

13.1 Related Work in the Field of Data Integration 

To the author‟s knowledge, there are no works that claim to provide a complete or 

nearly complete survey of approaches to the data integration problem. Two works provide 

an overview of the data integration research field in general. The work by A. Halevy and 

others [HRO06] presents a short but broad overview onto the field, whereas the work by 

M. Lenzerini [Lenz02] takes a theoretical perspective. The latter work formally defines a 

data integration framework, and explores different problems of global schema modeling 

and declarative query processing. In fact, much of the discussion in the field of data 

integration is devoted to the issues dealing with the way the data sources are described 

with respect to the global schema (local-as-view, global-as-view, global-local-as-view, 

respectively LAV, GAV, GLAV) and with the optimization and execution of the 

declarative queries over the integrated data. Although the work presented here corresponds 

to the formal theoretical definition of the data integration framework given in [Lenz02], it 

uses neither global schema nor declarative queries. Because of that, a significant part of the 

discussion in the field of data integration research is not directly relevant for our 

architecture. In the following subsections we discuss several of the relevant projects 

individually. During the discussion of the individual projects we also elaborate on the 

features of EC-Fuice which are similar or different from the comparable features in the 

discussed projects. Before discussing the individual projects, we would like to highlight 

some issues which distinguish out approach from many or all projects listed below. These 

common differences result from our architecture responding to the practice-relevant issues 

which arise in the field of integrated e-commerce sites. These issues common to the data 

integration in e-commerce were summarized in the invited talk of A. Gupta (Amazon.com) 

at the EDBT2000 [Gupt00]. Mr. Gupta has led research in the field of virtual database 

technology at Junglee Corp. before it was acquired by Amazon. Listed below are some of 

the relevant issues from [Gupt00]: 

Objects, not relations. Unclear separation of schema and instance. The needs of 

e-commerce applications with respect to storing and accessing the data are not well served 

by the relational database model. So, the attributes of the objects may change often. Multi-
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valued attributes, such as different sizes and colors for a t-shirt, are possible. The data often 

needs to be stored and accessed in a hierarchical way as opposed to the flat way suggested 

by the relational model. 

Query, not transaction. Queries pose a greater challenge to e-commerce websites 

than transactions. Data to be queried, such as product information, is often separate from 

transaction data, such as shopping cart and payment data. According to the data from 

Amazon.com, their website processes 50 times more queries than orders. Being focused on 

the query answering is a common feature for many heterogeneous data integration systems 

as opposed to multi-database systems. According to [Gupt00], query response times are 

much more critical than the transaction response times. 

Limited queries, not ad-hoc queries. Tightly integrated keyword searching. 

The e-commerce applications usually provide limited possibilities for querying the data: 

usually they are restricted to keyword search and simple attribute search. According to 

[Gupt00], the majority of customers are unsophisticated and do need rich possibilities for 

querying data. Such customers are best served with the keyword search. On the other hand, 

the few structured queries which are used by the e-commerce applications internally need 

to be optimized a-priori. In our e-commerce system we do not address answering 

declarative structured queries on the multiple data sources. Instead, we use iFuice scripts 

which can be viewed as manually optimized query execution plans. However, it is still 

possible to declaratively query the materialized data in EC-Fuice using SQL query 

language.  

Incomplete query results. The users do not necessarily need to see all query 

results. Usually, however, they are interested in getting the first results quickly. We 

address this issue by using paging in the keyword search results. The first page of the result 

list is shown to the user immediately when it becomes available. Further results are shown 

when the user chooses to view the subsequent pages.  

Inexact matches. The users seldom know what exactly they are looking for. 

Therefore, it is important to provide them not only with the exact results for their query but 

also some related results. We address this issue by providing web recommendations in the 

search results. Two of the three keyword search algorithms we provide also support 

returning additional query results. So, the Lucene full-text search library provides the 

possibility to include all variants of keyword flexion and declination into the search query. 

MySQL full-text search supports so-called “query expansion”
41

. Query expansion means 

that the full-text search is performed twice. In the first run the query engine determines all 

keywords which frequently co-occur with the user-specified keywords. In the second run, 

the keywords determined in the first run are used together with the user-specified 

keywords to perform keyword search and return the results to the user.  

Caching and materialized views. E-commerce applications are expected to 

provide sub-second response times. It has been our experience that even well established 

                                                 
41

 http://dev.mysql.com/doc/refman/5.0/en/fulltext-query-expansion.html 
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industrial-strength relational database systems such as IBM DB2, Microsoft SQL Server or 

MySQL can provide sub-second response times on heavily loaded websites only with 

additional caching on the level of the web application, i.e. in the main memory. To provide 

sub-second response in EC-Fuice web portal, we have used massive data materialization, 

optimized the relational database structure and implemented the asynchronous loading of 

those portions of web page content which are based on the non-materialized data. We 

know of no comparative study of the response times for the other data integrations 

projects. Several other projects address the query answering performance issues of the data 

integration systems. For example, the project Tukwila [ILW+00] discusses the issues 

related to performance and techniques for adaptive query processing.  

Availability, not consistency. E-commerce applications stress availability, not 

consistency. Less consistent data may still be sufficient to persuade the user to buy a 

product.  

Data cleaning. As we have illustrated in Chapter 11, e-commerce applications 

require extensive data cleaning. Not all of the projects described below address data 

cleaning. Some of the systems assume that the data coming from different data sources is 

either homogeneous in format or homogeneous in both format and value representation.  

Information Manifold  

The influential project Informaton Manifold from the authors of the overview paper 

[HRO06] is described in [LRO96]. Information Manifold is the first project to use “Local 

as view” concept to describe the data sources. The authors describe the system as source 

independent and query independent. In comparison to EC-Fuice, Information Manifold 

integrates a much larger number of data sources (~100 sources). We have not 

experimentally investigated the scalability of EC-Fuice with respect to the number of the 

data sources. However, since EC-Fuice does not contain components such as query 

planner, the performance of which could drastically depend on the number on sources, we 

can assume that EC-Fuice system is sufficiently scalable with respect to the performance 

given a large number of data sources. However, EC-Fuice may exhibit scalability problems 

with respect to the amount of implementation work which is needed to integrate an 

additional data source into EC-Fuice. Indeed, although it is sufficient to implement only 

one mapping to integrate a new data source into EC-Fuice, for better efficiency it is 

advisable to implement the mappings to as many other data sources as possible, since 

composing mappings may lead to an increased error rate in the resulting mapping. This 

may lead to the explosive growth of the total number of mappings in case when new data 

sources are added.  

The authors of the Information Manifold emphasize the combination of AI 

approach with database techniques in their system.  AI techniques are used to solve the 

tasks of query optimization, query reformulation and query execution. The underlying data 

model is relational with object-oriented features. The data model supports a class hierarchy 

with inheritance and is significantly more complex than the domain model we use in 
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EC-Fuice. Information Manifold is designed for answering ad-hoc declarative queries on 

the data from heterogeneous data sources. That distinguishes Information Manifold from 

our approach, where the data is queried using scripts which utilize the executable 

mappings. Information Manifold needs to establish a query plan in order to execute a 

query, whereas an iFuice script represents a ready query execution plan. The approach with 

scripts and executable mapping is especially useful for building web applications, which 

rely not on ad-hoc structured queries but on full-text search and pre-defined navigation. 

The disadvantage of the script-based approach is that more knowledge about what data is 

provided by which data source is needed to build such a script than to pose a declarative 

query.  

TSIMMIS 

TSIMMIS [CGH+94] is one of the first data integration projects which targets the 

heterogeneous, diverse and semi-structured data, such as the data found on the web. 

TSIMMIS stands for “The Stanford-IBM Manager of Multiple Information Sources”. 

TSIMMIS‟s data model is built around the special data exchange language OEM (object 

exchange model), which includes many of the features found in later XML and RDF/XML 

languages. However, the information need not be stored as OEM inside the TSIMMIS 

system, as opposed to some XML-based systems where XML is also used to store the data. 

Similar to XML, OEM allows nesting objects. In EC-Fuice nesting of objects is not 

supported explicitly. Nesting in EC-Fuice can however be expressed as a mapping between 

objects.  TSIMMIS also provides a special OEM-QL language for querying data stored as 

OEM. The authors claim that they use no global database schema. The later surveys 

classify their approach as GAV. A distinctive feature of TSIMMIS is the ability to have 

several mediators which can interact with each other. In EC-Fuice, another integrated 

website can act as a data source. Other ways of cooperation between several EC-Fuice 

instances are not addressed in the design of the EC-Fuice system. Similar to EC-Fuice, the 

TSIMMIS mediator does not need to understand all the data it handles [CGH+94]. Special 

attention in the design of the TSIMMIS system is given to the constraints on the integrated 

data. TSIMMIS also allows browsing and exploring the integrated data. TSIMMIS 

provides a web interface called MOBIE (which can be sees as the counterpart to the 

EC-Fuice web portal). The web user obtains access to the data integrated by TSIMMIS by 

starting with entering a query on the website and then browsing the returned results. The 

authors also mention the possibility to present the user with the results of the “frequently 

asked queries”, which can be viewed as a move towards web recommendations. 

Ariadne, SIMS 

The project Ariadne is described in [KMA+01] and the project SIMS in [AKS96]. 

Ariadne is an extension of the SIMS mediator architecture. The SIMS mediator comprises 

the core of the system and performs answering queries to the distributed heterogeneous 



Mykola Golovin Web Recommendations for E-Commerce Websites 

 

13 Related Work and Discussion 181 

 

data sources. Ariadne concentrates on web data sources, information from which is 

obtained using HTML-scraping. Ariadne and SIMS support declarative queries and are 

based on the domain model which is represented using Loom knowledge representation 

language[MB87]. SIMS data model describes classes with relations and inheritance As 

opposed to EC-Fuice/iFuice, the data model is more detailed and contains attributes. SIMS 

is able to answer declarative queries using the query planner. SIMS supports mappings on 

the instance level, either as an executable mapping or as a mapping table, analogous to 

respectively a mapping and a MappingResult in iFuice. The system allows using combined 

methods for instance mapping. For example, SIMS can combine textual similarity with 

machine learning which learns the abbreviations. The authors propose an active learning 

system where the system asks the user whether the rules according to which the mappings 

are created are good or not. In our system, these rules (i.e. iFuice scripts) are pre-defined. 

The Ariadne architecture includes possibilities for selective materialization based on the 

analysis of the user query distribution. The authors mention that they have integrated 

online electronic catalogs with products including pricing, availability, manufacturer etc. 

They have however not indicated whether the hierarchical structure of the catalogs was 

also integrated. 

The authors point out that one shortcoming of their architecture is the inability to 

execute recursive query plans. This is addressed in the next projects of the same working 

group – data integration system Prometheus [TAK03] and query execution engine Theseus 

[BDKM00]. 

Prometheus, Theseus 

In the projects Prometheus[TAK03] and Theseus[BDKM00], the workgroup which 

has previously created the projects Ariadne and SIMS has addressed the following issues: 

execution of recursive integration plans, view integration technique with dynamic service 

composition,  support for geo-spacial data types, record linkage and object consolidation. 

The integrated web project BulidingFinder[MAK+04] based on Prometheus and Theseus 

allows users to search for building information and satellite images based on the 

information from several data sources. Similarly to Ariadne and SIMS, Prometheus is 

based on domain model. In the project BuildingFinder the mediator supports the RDQL 

query language. The query is then translated into Datalog query which is executed by the 

Theseus query execution engine. The query results can be returned as RDF.  

VISPO 

The project Vispo is described in [CFP+02], [BA04]. The project is explicitly 

focused on e-commerce applications. In the motivating scenario, several enterprises 

organize a virtual marketplace nicknamed “virtual district” in order to cooperate on the 

web. XML is used as data exchange format in the “virtual district”. To overcome the 

semantic heterogeneity, the authors propose the use of common ontology. The handling of 
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ontologies in Vispo is different from EC-Fuice. In EC-Fuice, we treat ontologies as a kind 

of data: we store in them the same data storage where the instance data are stored and 

process them using the same operators.  In VISPO the ontologies are treated as metadata 

and are clearly separated from the instance data. Vispo features a three-layer domain 

ontology which is constructed from the input XMLS data. The classes extracted from the 

input XML are clustered. Ontological concepts and semantic relations between them are 

generated from the clusters. The generated ontological concepts are then associated with 

categories in one of the available standard taxonomies.  

The 5-level UNSPSC (United Nations Standard Products and Services Code)
42

 is 

proposed as a possible standard taxonomy. We do not make use of UNSPSC in EC-Fuice, 

since it doesn‟t contain detailed hierarchy levels for the products which we have in our 

system. 

MOMIS 

The application of the system MOMIS [BB04][BBB+04][BBB+02] to an 

e-commerce environment is described in [BGV02]. MOMIS allows integrating data from 

heterogeneous data sources, such as relational databases, object-oriented databases, XML. 

MOMIS is based on a global virtual schema. The global virtual schema is generated from 

the source descriptions. The global virtual schema used in MOMIS is more sophisticated 

than the domain model used in EC-Fuice. The global virtual schema contains attributes and 

data types. In the extension of the system described in [BBB+06] the global virtual schema 

also contains a list of “relevant values” for the individual attributes. MOMIS uses several 

lexical techniques to generate the global virtual schema, for example a generated common 

thesaurus. Instance-based mappings are not used to generate the global schema. In the 

paper [BGV02] special attention is given to matching hierarchical product catalogs. Three 

standard hierarchical product classification systems are taken as an example: the 

aforementioned UNSPSC, NAICS (North American Industry Classification system)
43

, 

Ecl@ss (European classification system)
44

. With respect to the possible use in EC-Fuice, 

all these product classification systems share a common shortcoming of being not detailed 

enough for the assortment of the products processed by EC-Fuice. In contrast to EC-Fuice, 

in MOMIS the classification hierarchies are incorporated into the global virtual schema, 

i.e. are considered by the system as metadata rather than data.  

The classification hierarchies are matched to each other using the MOMIS system 

based on the following (the description is based on the classification in [RB01]): schema-

level information, different matching granularity is possible, language-derived, considering 

auxiliary information. The correspondences can be generated in three ways: schema-

derived, lexicon-derived, human-supplied. As opposite to the EC-Fuice approach, the 

instance-level information is not used to match the classification hierarchies.  
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To describe the mappings between the classes, more sophisticated system than in 

EC-Fuice is used: the mappings can be of several types, namely: synonymy (i.e. equality), 

broader term/narrower term (subclass/superclass), related (loose relationship). Similarly to 

the use of COMA++ GUI in EC-Fuice, the mappings between classification hierarchies in 

MOMIS are generated in a semi-automatic way. The human engineer can refine and amend 

the mappings using the graphical tool “Source Integration Designer”. The classification 

hierarchies are then merged with help of the tool ARTEMIS[CAC01].  

ActiveXML 

Active XML [ABM+04] is a peer-to-peer based framework developed at INRIA, 

France, which allows declarative data integration. The Active XML approach is based on 

XML and web services. ActiveXML takes a novel approach with respect to the input data 

and data source descriptions, namely: it blends the difference between the data and the 

information on how to obtain these data. The core idea of ActiveXML lies in augmenting 

the usual XML data with calls to web services. The ActiveXML documents are normal 

XML documents from the point of view of a conventional XML parser. The difference lies 

in how these documents are processed by the peers participating in the data integration. 

Some tags in ActiveXML documents are treated as calls to web services, which can be 

either conventional web services or ActiveXML peers. ActiveXML positions itself not as a 

data integration system but as a “language and system to facilitate data integration” 

[TAXT03]. Therefore, ActiveXML is not designed to address many of the issues addressed 

by other projects listed here. However, there are some contact points between ActiveXML 

and our research. To some extent, we also combine data with service calls (calls to iFuice 

mappings to provide live recommendations) for the presentation in the EC-Fuice web 

portal using the combination of Java, JavaScript and HTML languages. We also utilize 

iFuice scripts written in iFuice script language to control the execution of mappings and 

processing the mapping results. ActiveXML is an interesting generic approach, which 

could potentially help perform both these tasks within the same language framework.  

OntoWebber 

OntoWebber[JDW01] is a project which deals with building a  semantic web portal 

from different data sources. The data sources are required to comply with the Semantic 

Web requirements (RDF, UML/XMI, HTML). The architecture of the OntoWebber system 

is based on a domain ontology. In OntoWebber, ontologies are handled as data. The 

ontologies are extracted from the data sources and then combined into one reference 

ontology. The focus of the OntoWebber lies in formalization and modeling of the creation 

of an ontology-based web portal. OntoWebber formalizes the four layers of an integrated 

web portal: the integration layer, the articulation layer, the composition layer and the 

generation layer. The authors specifically mention the modeling of the website 

personalization. The authors make provisions for the following models: maintenance 
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model, personalization model, content model, presentation model, domain model and 

multiple navigation models. OntoWebber expects the input data either to be in RDF format 

or to be easily expressed as RDF. For the generation layer, [JDW01]discusses several types 

of generation of the website from models with respect to the performance of the resulting 

website, ranked from most performant and least flexible to least performant and most 

flexible:  pre-generation of static HTML pages, generation of JSP pages, or direct 

interpretation of the models.  OntoWebber does not discuss the problems of data 

extraction, data cleaning, ontology matching and ontology integration in detail. Instead, it 

refers to other projects such as TSIMMIS[CGH+94], InterDataWorking[MD00] and 

ONION[MWK00] for the detailed discussion of these issues. An important difference 

between the concepts of OntoWebber and EC-Fuice is that that OntoWebber relies on a 

centralized authority which is responsible for creating and maintaining the reference 

ontology, whereas EC-Fuice takes a more decentralized, peer-to-peer like approach 

without a reference ontology.  

Online Citation Service (OCS) 

The works [RTA07][TAR07] propose a data integration framework for mashups 

based on iFuice platform. The term “mashup” denotes a new type of interactive website 

which combines data and services from different web sources [RTA07]. iFuice is used to 

provide the created mashups with sophisticated data integration functionality. The authors 

discuss the capabilities of their framework using the example mashup site “Online Citation 

Service” (OCS)
45

, which was implemented using the presented framework. In comparison 

to EC-Fuice, the interactive aspect of web data integration is significantly more developed 

in the framework presented in [RTA07][TAR07]. In EC-Fuice most of the data integration 

work is performed by iFuice scripts in offline mode, although we also use live 

recommendations which are generated by iFuice in online mode. In OCS, iFuice scripts are 

executed online in response to the user navigation on the site. Since some of these scripts 

can take longer to complete, the authors also use asynchronous execution mode 

implemented using AJAX technology. This way, the web user can see first partial results in 

relatively short time; missing data are added to the web page as soon as they become 

available. Another improvement in comparison to EC-Fuice is the use of the special 

operator fuse. This operator fuses different versions of the same real-life entity into one 

object. In EC-Fuice different versions of the same real-life entities are linked together but 

not fused into one object. In general, the presented framework allows web developers to 

define complex mashup websites using a high level script language. The focus of the work 

is being placed on the rich data integration capabilities, which are not present in other 

currently available mashup frameworks.  
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SEAL, Ontobroker 

SEAL[MSS+01] is an approach for creating semantic portals (SEAL stands for 

Semantic portAL) based on the Ontobroker[DEFS99] architecture. Although the usage of 

different data sources is implied in the SEAL architecture, it is not discussed and no 

explicit support for heterogeneous data sources is offered. The authors focus on the AI 

techniques for creating semantic portals. The SEAL architecture is based on a knowledge 

warehouse and the Ontobroker inferencing system. One of the ideas of the authors is that 

data contained in the ontologies themselves is not sufficient to integrate the semantics. This 

is consistent with our experience that for example thesauri and abbreviation dictionaries 

can be very helpful in bringing the concepts from different ontologies together.  SEAL 

supports semantic personalization. Explicitly described is the manual personalization, but 

the authors also mention semantic logfiles which can be analyzed to perform automatic 

personalization and optimization of the web portal.  

Omelayenko and Fensel 

A series of works by Omelayenko and Fensel [OF01][OF01a][OF01b] specifically 

deals with integration of product catalog integration in B2B e-commerce. The system 

described by the authors works on XML basis and uses transformation rules expressed in 

XSLT. The architecture is based on the assumption that input data are expressed in XML. 

The authors propose to use RDF for internal representations of the data sources and 

models.  The work adopts the layered structure proposed in [MD00]. Due to the 

architecture‟s being focused on XML and XSLT, some problems are not addressed, in 

particular the data integration from heterogeneous data sources. Also, the (semi)automatic 

generation of the transformation rules is not addressed. It is arguable that all 

transformations which may need to be performed in the heterogeneous data environment 

can be adequately expressed with XSLT and that the use of transformations written in a 

full programming language such as Java can be given up.  

13.2 Related Work in the Field of Ontology Matching 

There is a large body of published work devoted to the ontology matching (also 

known as ontology alignment).  We will not try to give a complete overview of the 

research in this field here. Instead, we refer to the publications [Noy04], [NS05] and 

[KS05]. The first two publications contain a rather concise informal overview of the 

research in the field, whereas the last one presents a more thorough survey. An even more 

extensive work on the state of art in ontology matching is presented in the KnowledgeWeb 

deliverables [KW04] and [KW04a]. Many researchers which analyze the field of ontology 

matching research point out that the major works in the field come from two communities:  

the AI community and the database community. The interest on the ontology matching in 

the database community has evolved from the interest on matching of database schemas. 
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The survey of work on schema matching is presented in [RB01]. The work presented in 

this thesis has an affiliation to the work provided by the database community, since the 

COMA++ platform which we utilize is an extension of the schema matching platform 

COMA. Since our work concerns not the ontology matching in general but rather a specific 

technique of combining the instance-based ontology matching with other mapping 

techniques, in the following subsections we will describe some of the relevant ontology 

matching projects which also use instance-based matching. 

Instance Matching in COMA++ 

The COMA++ architecture is described in Section 3.2 in detail. Here, we discuss 

the instance-based matchers in COMA++ which were not available at the time when we 

conducted our experiments. The instance-based matchers integrated into COMA++ are 

introduced in [EM07]. The additional instance-based COMA++ matchers which are 

described in [EM07] target in the first place schema matching. In the later paper [MR08] 

they have been extended for matching ontologies, in particular web directories. The 

following instance-based matchers are presented in [EM07]: 

Constraint-based matchers. This type of matcher checks whether the instances of 

the ontologies satisfy a pre-defined set of constraints. The constraints can be for example 

defined as a string pattern, numeric range, containment of a substring etc.   

Content-based matchers. This type of matcher determines the similarity of two 

elements by executing a pair-wise comparison of instance values using a similarity 

function [EM07]. Any of the several string similarity functions implemented in COMA++ 

can be used to calculate the instance similarity. The list of the string similarity functions is 

provided in Section 3.2. The matching of ontologies in COMA++ using content-based 

matchers is similar to the work presented in this thesis. Since our approach uses iFuice 

mappings to determine the instance similarity, we are not limited to the string similarity 

functions provided by COMA++ and can use complex combined mappings. However, in 

our architecture the matching of ontologies using instance information requires two 

systems (iFuice and COMA++), whereas in the approach described in [EM07] such 

matching is implemented within one system. 

Similarity propagation. Since the instances in the ontology may often be sparse, 

i.e. not all ontology concepts may have associated instances, it may be promising to 

propagate the similarity values to parents of the concepts which have associated instances.  

 [MR08] investigates the use of instance-based matchers and combinations of 

instance-based and other COMA++ matchers in application to matching web directories. 

Web directories are ontology-like hierarchical structures containing annotated web links 

which are assigned to different categories. The authors experiment with web directories 

from Google
46

, Yahoo
47

, Dmoz
48

 and Web.de
49

 (all in German language). The authors 
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compare the performance of the match algorithms to the manually created reference 

mappings between the web directories. The authors however do not specify the criteria for 

creating such reference mappings with respect to the semantics of the individual 

correspondences. 

Similarly to the work presented in this thesis, the correspondences in the mappings 

represent a generic similarity measure without semantic differentiation. Thus, [MR08] and 

the work presented in this thesis potentially share some of the drawbacks caused by the 

low semantic expressiveness of the COMA++ correspondences. 

In contrast to our approach which uses two tools, COMA++ and iFuice, the 

matching approach presented in [MR08] is completely done in COMA++. Such approach 

allows more versatile combination of instance-based and other matchers. However, for our 

particular application -- creation of an integrated website -- COMA++ amended with 

instance matchers would not be sufficient alone. iFuice would still be needed since it has 

rich possibilities for script-based manipulation of the mappings which COMA++ doesn‟t 

provide.  

One aspect of the instance-based matching which is investigated in [MR08] is the 

use of instances directly associated to a category in comparison to use of instances 

associated both directly and indirectly, i.e. directly associated to a subcategory of a 

category. The authors find out that the use of indirectly associated instances may be 

beneficial for the quality of the mapping. This corresponds to the approach which we take 

in this work: we implicitly convert all indirectly associated into directly associated 

instances, which is stipulated by the fact that some of our important source ontologies 

explicitly store indirect links as direct. [MR08] analyses average recall, precision and f-

measure with respect to the manual reference mappings in 6 matching tasks (each of the 

mentioned four ontologies matcher pair-wise). The authors indicate that the input 

ontologies which were used in [MR08] exhibit various degrees of pair-wise heterogeneity, 

from quite homogeneous (Dmoz vs. Google) to very heterogeneous. The authors achieve 

average f-measure of 0.79 with their best matching algorithm comprised of 6 single 

matchers. In our work, the maximal achieved f-measure was ~0.7, however using different 

input data.  

Although the results of [MR08] and our results are not directly comparable, one 

interesting common result is that in both works the combination of metadata-based and 

instance-based matchers has brought an increase of f-measure between 15% and 35% 

compared to both metadata-only and instance-only approaches (excluding the instance-

based mapping in our work which uses EAN code – this mapping has relatively high 

quality due to unambiguousness of EAN, therefore the combination with metadata-based 

matchers brings only ~7% improvement).  

[EM07] also provides a comparative study on how the use of instance-based 

matchers improves the quality of the ontology mapping. According to their results, 
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utilizing the proposed algorithms, in particular the content-based matchers, improves the 

average precision by 10% and the recall by 13%.  

Glue 

The system Glue developed at the University of Washington is described in 

[DMDH04] and [DMDH03]. Glue uses machine learning to match ontologies. To match 

the ontology concepts based on the instances, Glue first performs the classification of the 

instances utilizing several machine learning approaches. The joint probability distributions 

of concepts in the ontologies are calculated. Then the system estimates the similarities of 

the concepts as function of their joint distributions. Finally, a so-called relaxation labeling 

technique is applied to choose the best correspondence candidates based on the computed 

similarity between concepts. 

FCA-Merge 

The system FCA-Merge is described in [SM01]. The system is based on the formal 

concept analysis techniques described in [GW99]. The system focuses on merging two 

input ontologies into one output ontology based on the analysis of the instance data. The 

ontology merging is done in three steps: instance extraction, application of the FCA-Merge 

core algorithm to create the concept lattice, creation of the resulting ontology. The result of 

the process is a merged ontology rather than a mapping between ontologies. The last step 

of the merging process requires human intervention. 

IF-Map 

IF-Map [KS02][KS03] is the system inspired by the Barwise-Serligman theory of 

information flow [BS97]. The system matches local ontologies using reference ontology, 

assuming that the local ontologies are usually populated, whereas the reference ontology is 

usually unpopulated. The system works by the classifying the instances on the input local 

ontologies with respect to their concepts and determining the local logic of both local and 

reference ontologies. Then the system infers the logical morphism which can transform 

one local logic into another. The core IF-Map algorithm is implemented in Prolog.  

S-Match 

The S-Match approach (also known as Semantic matching) is presented in the 

series of works [GSY04][GYG05][GSY05][GYS07]. The authors discuss application of 

their approach to relational and object-oriented schemas, concept hierarchies and 

ontologies. The authors focus on matching of tree-like structures. For non-tree-like 

structures the authors rely on the known techniques such as one described in [BMPQ04] to 

convert such structures into tree-like structures.  



Mykola Golovin Web Recommendations for E-Commerce Websites 

 

13 Related Work and Discussion 189 

 

In contrast to many other schema and ontology matching platforms, such as Cupid 

[MBR01], Rondo [MRB03], COMA[DR02] and COMA++ [ADMR05], the semantic 

matching approach uses not “weighted” correspondences but “typed” correspondences. 

The following types of correspondences are used: equivalence, more general, less general, 

disjointness, unknown. The types of correspondences in the above list are ranked according 

to their binding strength, with strongest being equivalence and the weakest unknown. 

During the matching, the S-Match algorithm tries to find the strongest existing 

correspondences between the nodes in the ontologies which are being matched. An 

additional filtering step can be applied to prune correspondences which can be inferred 

from the stronger correspondences. This is similar to the intuition we have used for 

creating our manual ontology mapping between Amazon and Softunity ontologies.  

Another important feature of the approach is that S-Match does not use the 

information stored in the ontology nodes and their labels for matching immediately. At 

first, this information is subjected to preprocessing. During preprocessing S-Match 

matches this information to concepts in an extensive global ontology such as WordNet. 

This is done both for individual nodes and for complete paths from the root to a given 

node. After preprocessing, S-Match uses a combination of numerous matchers to establish 

correspondences between the calculated concepts from the global ontology. These 

matchers include lexical matchers such as EditDistance, N-Gram and Affix but also special 

matchers which operate on the information specific to WordNet. After the correspondence 

candidates are determined using the matchers, the matching problem is transformed into 

the propositional satisfiability problem and solved using so-called SAT solver
50

. 

The authors state that their approach is schema-based and that instances are not 

considered during the matching [GYS07]. An exception constitutes the matching of 

ontologies, where instances are also used for matching as long as they are present in the 

ontology. Since no difference is made between the processing of the concept data and the 

processing of the instance data, such approach may exhibit performance problems in case 

when the amount of instance data is very large, which is a quite common case. Apart from 

this, the authors place a special value on the efficiency of their matching algorithm and 

propose a number of optimization techniques. 

The authors evaluate their matching approach by comparing its results to the results 

obtained by Cupid [MBR01], Rondo [MRB03] and COMA[DR02]. The evaluation was 

performed on matching tasks from different application domains, such as company 

profiles, purchase orders schemas and university course catalogs. The results show that S-

Match can achieve better results in matching company profiles and university course 

catalogues than the other systems while lying slightly behind COMA in matching purchase 

order schemas. Additional experiments on matching web directories (Google vs. Yahoo vs. 

Looksmart) were performed to explore the efficiency of the matching of larger ontologies 

(about 1000 nodes) and highlight the effects of the optimization techniques.  
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T-Tree 

T-Tree is a system described in [Euze94]. The T-Tree system is capable of inferring 

correspondences (so-called “bridges”) between the ontology classes based only on the 

instance data. It is assumed that the correspondences between the instances are known in 

advance. The algorithm for inferring the bridges is iterative and is guaranteed to be 

extension-minimal. Being extension-minimal means that in cases when some less general 

bridges which can be inferred from the more general bridges exist, only the more general 

bridges are returned. The authors point out that the bridges found by the algorithm are not 

guaranteed to be semantically sound, which is in fact a common shortcoming of all 

instance-based methods including ours. This is consistent with our observations that certain 

distribution of instances may be a result of coincidence. In our experiments an example of 

this is the correspondence between “Films->Genre->Animation Films” and “Films->By 

Production Land->Japan”. 

QOM 

QOM is described in [ES04a] and [ES04b]. As the abbreviation QOM standing for 

Quick Ontology Mapping suggests, the project deals with efficiency of the ontology 

matching, as opposed to most other ontology matching projects which focus on the quality 

of the resulting mapping. QOM expects input ontologies to be in the RDFS format. QOM 

uses special heuristics to find the most promising candidates for matching. Multiple 

similarity functions for the ontology concepts are supported, among them also instance-

based similarity. The resulting similarity for a correspondence is a weighted sum of 

normalized values of the individual similarity functions. The calculation of the instance-

based similarity of the two concepts is based on multidimensional scaling [CC94]. In 

contrast to our approach, this approach takes into account individual similarity values 

between the instances to calculate the similarity of the respective concepts.  

 

Thor, Hartung et al. 

The work [THG+09] focuses on mappings between evolving ontologies. The 

authors argue that stability of the correspondences is an important aspect which needs to be 

considered in the situation when the mapped ontologies evolve over time. The authors take 

the ontologies from the life science domain as example for such actively evolving 

ontologies and propose three metrics which reflect the stability of the correspondences 

within the mapping. The metrics take into account the historical development of the 

mapping and the changes in similarity of the corresponding concepts over time. Since the 

e-commerce ontologies which we employ in this part of the thesis are also evolving over 

time, using stability metrics for the correspondences utilized by EC-Fuice would be an 

interesting extension of our architecture.  
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OLA 

OLA (OWL-Lite Alignment) [ELTV04] is a system designed for alignment of 

ontologies expressed in OWL-Lite language. OLA targets to cover all possible types of 

matching: terminological, structural, extensional (i.e. instance-based), semantic. The 

algorithm which computes the similarity is iterative and uses fix-point computations. The 

algorithm starts from the lexical similarity measure and gradually brings in contributions 

from other similarity functions. Although the internal representation of the ontologies in 

OLA allows relations of several types within ontologies, the correspondences based on 

calculated similarity between the concepts of the different ontologies are not typed.  

SCM  

SCM stands for Semantic Category Matching and is described in [HYNT04]. SCM 

performs matching of the ontologies based on the statistical analysis of the instance data. 

SCM computes a feature vector for all concepts in the input ontologies based on keywords 

found in the instances. Then it calculates the similarity of the feature vectors. To calculate 

the vector similarity, a common coordinate system is created based in all keywords which 

are found in the input ontologies. The correspondence candidates found using the feature 

vector based similarity are then refined by a structural matcher. The structural matcher 

resolves the structure violation problems which we discussed in Section 11.2.4. 
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14.  SUMMARY 

In this part of the thesis we have investigated how the navigation utilizing web 

recommendations can be implemented on the e-commerce websites based on integrated 

data sources. The integrated e-commerce websites are an interesting use case for web 

recommendations. One of the reasons for this interest is that many modern, large and 

economically successful e-commerce websites follow the integrated approach. Another 

reason is that especially in the integrated environment, due to the lack of the pre-defined 

semantic connections between the data, the web recommendations step forward as means 

of enabling user navigation. In this chapter we have presented the architecture for the 

websites based on integrated data sources named EC-Fuice. We have also presented the 

prototypical implementation of our architecture which serves as a proof-of-concept and 

investigated the challenges of creating navigation on an integrated website.  

The following issues were addressed in this part of the thesis: 

 Combination of several state-of-the-art tools and techniques in the fields of 

databases, data integration, ontology matching and web engineering into one 

generic architecture for creating integrated websites.  

 Comparative experiments with several techniques for instance matching (also 

known as record linkage or duplicate detection).  Investigation on using the 

ontology matching to facilitate the instance matching.  

 Comparative experiments with several techniques for ontology matching. 

Investigations on the instance-based ontology matching and the possibilities 

for combining instance-based ontology matching with other techniques for 

ontology matching.  

 Investigation of the possibilities to improve user navigation in the integrated 

data environment with different types of web recommendations. 

 Review of the related work in the fields of data integration and ontology 

matching and discussion of the contact points between the research described 

here and other related projects. 

The main contributions of the research described in this part of the thesis are the 

EC-Fuice architecture, the novel method for matching e-commerce ontologies based on 

combination of instance information and metadata information, the experimental results of 

ontology and instance matching performed by different matching algorithms and the 

classification of the types of recommendations which can be used on an integrated 

e-commerce website.  
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In this thesis we have investigated approaches for implementing web 

recommendations in on e-commerce websites. Recommendations are very important for 

such websites because of the ongoing growth of the amount of information and the 

increasing competition between sellers. The immense numbers of different products on 

modern e-commerce websites and vast amount of information about these products 

become an obstacle for the customers looking for the products that match their interests. 

Web recommendations have already become indispensable on large e-commerce 

websites, however is probable that the peak of their popularity is yet to come, possibly in 

connection with distributed advertising systems such as Google AdSense
51

, with which the 

web recommendations share a number of common characteristics.  

Until present time, no single approach to generating web recommendation could 

claim supremacy over all others. Moreover, many researchers point out that the most 

promising architecture needs to combine several approached in one hybrid approach 

([Bal97], [SKR02], [Burk07] and others). In Part II of this thesis we have proposed a novel 

architecture for combining recommendations generated by different approaches and a 

technique which allows optimizing the presented recommendation basing on the user 

feedback. We have performed comparative investigation of the different technical and 

algorithmic possibilities for selecting and optimizing our recommendations. In particular, 

we investigate several approaches to solving the problem of balancing between exploration 

and exploitation, i.e. balancing between using web recommendations and learning their 

quality. Our experiments illustrate the increase of the user acceptance of recommendations 

as a result of our optimization. The experimental results which we present are based on 

data obtained both on real-life prototypes and in a simulated environment. We have also 

described a way to incorporate versatile domain knowledge into our recommendation 

system to provide the different recommendation approaches with a unified source of 

relevant information. The domain knowledge in our architecture can be both extracted 

automatically from the available data and supplied by the human experts. We pay special 

attention to the storage structures in which this knowledge is stored in our system and 

investigate the comparative performance of the different storage structures.  

In the Part III of the thesis we have investigated the generating of web 

recommendations for e-commerce websites which are based on data coming from multiple 

data sources. Integration of data from different data sources is a common characteristic 

found in many modern large e-commerce websites, such as Amazon and eBay. We have 

built a prototype of such integrated website named EC-Fuice and discussed some of the 

data integration challenges which arise in this prototype. In particular we pay significant 

attention to the problem of matching product ontologies. We combine matching based on 

the information contained within the ontology structure with matching based on the 

information provided by the product instances to improve the quality the mapping. An 

important issue which has to be addressed in the context of e-commerce ontologies is the 

evolution of ontologies and respectively the evolution of the corresponding ontology 

mapping. EC-Fuice uses the instance and ontology mappings to provide recommendations 
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to the web users. We have explored different types of recommendations which can be used 

on integrated websites and have shown that recommendations are an important means of 

enabling user navigation in the integrated data.  

The main scientific contributions of this thesis are the following: 

 An architecture of a novel semantically enriched recommendation system 

which is capable of combining several techniques for generation of web 

recommendations. 

 A recommendation optimization algorithm which is able to learn the best 

recommendations online based on the behavior of web users.  

 The evaluation of the proposed recommendation system on two real-life 

websites and in a simulated environment.  

 An architecture of an e-commerce website built using data integration and 

recommendations and a proof-of-concept prototype website built according to 

this architecture.  

 An algorithm for matching ontologies by combining instance data with lexical, 

syntactical, structural and other information contained in the ontology; a 

comparative evaluation of this algorithm. 

The practical orientation of our work determines the areas of further research.  

So, the recommendation system architecture presented in Part II of the thesis has 

influenced the design of a commercial recommendation system deployed on several top 

e-commerce websites in Germany. Our research on dynamically integrated websites is 

finding its continuation in the ongoing research on so-called “mashups”, i.e. dynamically 

integrated websites which are becoming popular as a part of Web 2.0 paradigm. 

Another possibility of further development of our recommendation approach along 

the Web 2.0 paradigm is the consideration of the social aspect of recommendations. For 

example, the websites where users share and recommend bookmarks to each other such as 

http://del.icio.us have become very popular in the last years. Investigation of the 

applicability of our optimization approaches and data integration approaches to such 

websites is an interesting topic for further research. 

The problem of creating mappings between ontologies belongs to an active area 

research. The combined instance-based and metadata-based approach which we described 

in this thesis can be further improved to achieve better matching quality on real-life 

ontologies. An interesting data integration problem statement arose within the EC-Fuice 

framework, namely the need for combination of the offline, physical data integration (data 

warehouse) with “”live” data integrated online (live recommendations using iFuice 

mappings). This need emerges also in the context of other types of data integration projects 

which are commonly found in the industry. We plan further investigation of the possible 

solutions for this problem and of the applicability of these solutions to the problems found 

in the industrial environment. 
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APPENDIX 1. SCREENSHOTS OF WEB RECOMMENDATIONS 

 

Figure A1.1. Screenshot of the product detail page of the website 

http://www.softunity.com (EC). The recommendations are shown on the right side. Up to 

five recommendations are shown for each products, if available. Depending on the screen 

resolution of the client browser, three, four or five recommendations are visible without 

scrolling. 

 

Figure A1.2. Screenshot of the website http://dbs.uni-leipzig.de (EDU). The 

recommendations are shown on the right. Up to two recommendations are shown, if 

available. 

  

http://www.softunity.com/
http://dbs.uni-leipzig.de/
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APPENDIX 2. EXAMPLES OF RECOMMENDATION OPTIMIZATION  
 

A2.1 Examples of weight learning for the algorithm REW_ONLY_0 

 
Figure A2.1. Learning weights for the product “Singles 2 – Wilde Zeiten(Hammerpreis)”. 

  

 
Figure A2.2. Learning weights for the product “Anno 1701(PC)”. 

  

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

1
9

0
8

1
8

1
5

2
7

2
2

3
6

2
9

4
5

3
6

5
4

4
3

6
3

5
0

7
2

5
7

8
1

6
4

9
0

7
1

9
9

7
8

1
0

8
8

5
1

1
7

9
2

1
2

6
9

9

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t 

ECD008010M (Singles 2 - Wilde Zeiten (Hammerpreis))

ECD000879K (Singles - Flirt 
up your Life!)

ECD008010L (Singles 2 -
Wilde Zeiten (Download-
Version, 518.6 MB))

ECD008039M (Singles 
Extended Version (PC))

ECD008104M (Singles 2 -
Wilde Zeiten Special Edition 
(PC))

ECD538018K (Singles - Flirt 
up your life!)

ECD538019M (Singles 2 
Triple Trouble)

0

0,005

0,01

0,015

0,02

0,025

1

1
0

3
9

2
0

7
7

3
1

1
5

4
1

5
3

5
1

9
1

6
2

2
9

7
2

6
7

8
3

0
5

9
3

4
3

1
0

3
8

1

1
1

4
1

9

1
2

4
5

7

1
3

4
9

5
1

4
5

3
3

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t 

ECD008136M (Anno 1701 (PC))

ECD008136L (Anno 1701 
(Download-Version MB))

ECD008137M (Anno 1701 
(It.))

ECD008264M (Anno 1701 
Limited Edition)

ECD560129D (Elder Scrolls 
IV: Oblivion (PC-DVD))

ECD605001B (Anno 1701 -
Das offizielle Strategiebuch)

ECD865274 (Anno 1701 
(NDS))

ECD900031D (Anno 1701  
(Frz.))



Nick Golovin Web Recommendations for E-Commerce Websites 

 

Appendix 213 

 

A2.2 Example of weight learning for the algorithm REW_DEC_0 

 

 
Figure A2.3. Learning weights for the product “Singles 2 – Wilde Zeiten(Hammerpreis)”. 

 

 
Figure A2.4. Learning weights for the product “Anno 1701(PC)”. 
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A2.3. Examples of weight learning for algorithm REW_PEN_0 

 

 
 

Figure A2.5. Learning weights for the product “Singles 2 – Wilde Zeiten(Hammerpreis)”. 

 
 

Figure A2.6. Learning weights for the product “Anno 1701(PC)”.
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APPENDIX 3. EC-FUICE DATA PREPARATION SCRIPT 
 

// Get Softunity ontology 

$suonto:=queryInstances(Ontology@Softunity,\"ALL\"); 

// Get Ebay ontology 

$ebonto:=queryInstances(Ontology@Ebay,\"ALL\"); 

// Get Amazon ontology, except for the manually pruned nodes and their 

children 

$amonto:=queryInstances(Ontology@Amazon,\"ALL EXCEPT 

14238651,554846,547084, 

547086,528052,528030,547088,554416,1099832,525470,13325641,547644,1039674

,14238441, 

738564,656070,1099834,3118641,13503881,13533241,13532261,13531771,1353275

1,1027142, 

1027152,1027162,1027180,1027190,1027208,1027218,1027228); 

//load pre-caclulated onto mapping Amazon->Ebay 

$amebontom:=map($amonto,Ebay.ontoAmazon2EbayMerged); 

//create inverse onto mapping 

$ebamontom:=inverse($amebontom); 

//load pre-caclulated onto mapping Amazon->Softunity 

$amsuontom:=map($amonto,Softunity.ontoAmazon2SoftunityMerged); 

//create inverse onto mapping 

$suamontom:=inverse($amsuontomm); 

//compose onto mapping Softunity->Ebay from mappings Softunity->Amazon 

and Amazon->Ebay 

$suebontom:=compose($suamontomm,$amebontom); 

//create inverse onto mapping 

$ebsuontomm:=inverse($suebontomm); 

//get mapping from Ontology to products for Softunity, the product ids 

are loaded into object cache 

$suontoprod:=map($suonto,Softunity.OntoProd); 

//get all Softunity products from object cache 

$suprod:=queryInstances(Product@Softunity,\"1=1\"); 

// get all attributes for Siftunity products into attribute cache 

getInstances($suprod); 

//create mapping from Sofunity products to Ebay products 

$suebprod:=map($suprod,Ebay.Softunity2Ebay); 

// Load ontology to product mapping from Amazon. Products are loaded by 

querying all ontology categories to get  

// the products which belong to these categories 

$amontoprod:=map($amonto,Amazon.OntoProdBulk); 

//get the list of products 

$amprod:=range($amontoprod); 

//get all atributes for products 

getInstances($amprod); 

$amebprod:=map($amprod,Ebay.Amazon2Ebay); 

// for ebay products, we do not use all but only those which have 

correspondences either on Amazon or on Softunity 

$ebprod:=union(range($amebprod),range($suebprod)); 

//Ebay has too large number of products for all attributes to be loaded 

in one operation.  

// We are using loop to load the product attributes in portions 
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$i:=0; 

while $i<=9 do  

 $ebprodtemp:=queryInstances($ebprod,"[id] like '%"+$i+"'"); 

 getInstances($ebprodtemp);  

 $i:=$i + 1; 

end; 

 

 


