

WEB RECOMMENDATIONS FOR
E-COMMERCE WEBSITES

Von der Fakultät für Mathematik und Informatik

der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOKTOR-INGENIEUR

(Dr.-Ing.)

im Fachgebiet

Informatik

vorgelegt

von Mykola Golovin

geboren am 23.12.1977 in Dnepropetrowsk, Ukraine

Die Annahme der Dissertation haben empfohlen:

1. Prof. Dr.-Ing. habil. Erhard Rahm, Universität Leipzig, Deutschland

2. Prof. Francesco Ricci, Freie Universität Bozen, Italien

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 2.3.2010 mit dem Gesamtprädikat “magna cum laude”.

Mykola Golovin Web Recommendations for E-Commerce Websites

 i

TABLE OF CONTENTS

PART I. INTRODUCTION ... 1

PART II. ADAPTIVE WEB RECOMMENDATIONS 5

1. Introduction ... 6

2. The Generic Recommendation System Architecture... 9
2.1 Overview .. 9
2.2 Recommendation Selection Using Ontology Graphs .. 12

2.3 Generating Recommendation Rules ... 15

3. Feedback-based Optimization ... 18
3.1 Modeling the Problem of Optimizing Web Recommendations as Markov Decision

Process and Applying Reinforcement Learning .. 18

3.2 “Drift of Interest” ... 22
3.3 Exploration versus Exploitation ... 24
3.4 Feedback Values .. 28

3.5 Optimization Algorithms ... 30

4. Implementation of the Real-life Prototypes and the Simulated Environment 32
4.1 Real-life Prototype Implementations ... 32
4.2 Adaptation of The Generic Architecture to The Prototypes 33

4.2.1 Web Usage Data: Crawler Detection, Data Cleaning 33

4.2.2 Ontology Graphs and Ontology Generators in Prototypes 36

4.2.3 Recommendation Rule Generators in the Prototypes. 37

4.2.4 Capturing Online Feedback in Prototypes .. 38
4.3 Simulated Environment Overview ... 39

4.4 Database Structure ... 41
4.4.1 Recommendation Database ... 41
4.4.2 Web Data Warehouse ... 42

5. Experiments on Real-Life Prototypes ... 46
5.1 Prerequisites and Effects of the Optimized Recommendations 46

5.2 Optimization Algorithms ... 47
5.3 User Groups ... 49
5.4 Comparison of Recommendation Generator-Based Optimization and

Recommendation-Based Optimization .. 50

6. Experiments in the Simulated Environment .. 54

Mykola Golovin Table of Contents

ii

6.1 Evaluation of different recommendation selection algorithms 55
6.1.1 Basic Recommendation Selection Algorithms.. 55
6.1.2 Reward-only Algorithm with ε-greedy Balancing Technique without Aging

(REWARD_ONLY) .. 57
6.1.3 Reward-only Algorithms with ε-greedy Balancing Technique and Aging

(REWARD_DEC) ... 60

6.1.4 Reward-penalty algorithm (REWARD_PEN) .. 62

6.1.5 Learning Behavior in Time for Different Algorithms 65
6.1.6 Influence of the Number of Recommendations on the Acceptance Rate 66
6.1.7 Simulation-based Comparison of the Recommendation Algorithms................ 67
6.1.8 Comparison of the Results Obtained from the Real-life Website and the

Simulation ... 68

6.1.9 Ontology-based Recommendation Selection Policies 69
6.2 Optimizing The Retrieval of Information From The Ontology Graphs 71

6.3 Summary: Prototypes and Experiments ... 73

7. Related Work ... 74
7.1 Surveys ... 76
7.2 Hybrid Recommendation Systems ... 82

7.3 Methods of Evaluation of Recommendation Systems ... 85
7.4 Web Data Warehousing and Web Usage Mining .. 89

7.5 Markov Decision Process and Reinforcement Learning .. 93
7.6 Recommendation Systems Employing Ontologies .. 99

8. Summary .. 102

PART III. WEB RECOMMENDATIONS IN THE INTEGRATED

DATA ENVIRONMENT .. 103

9. Introduction ... 104

10. Architecture of EC-Fuice ... 106
10.1 Overview of the EC-Fuice Architecture... 106
10.2 Data Integration in EC-Fuice ... 109

10.2.1 iFuice ... 110
10.2.2 COMA and COMA++ .. 119

10.2.3 Integration of Web Data using iFuice and COMA++ 126

11. Integrating Data: Experiments and Results ... 132
11.1 Integrating Product Data .. 134

11.2 Integrating Ontologies .. 141
11.2.1 Manual Ontology Mappings ... 143
11.2.2 Ontology Mappings Created Using COMA++ ... 145

Mykola Golovin Web Recommendations for E-Commerce Websites

 iii

11.2.3 Instance-based and Combined Mappings ... 148
11.2.4 Problems Discovered in the Process of Ontology Matching and Possibilities for

Improvement ... 152
11.2.5 Evolution of data, ontologies and mappings ... 156

11.3 Integrating Data: Summary .. 158

12. EC-Fuice Implementation .. 160
12.1 Database Structure ... 160

12.1.1 iFuice Database ... 160
12.1.2 Web Portal Operational Database ... 162
12.1.3 EC-Fuice Data Warehouse .. 163

12.2 EC-Fuice Web Portal Interface .. 166
12.2.1 Overview of the Web Interface ... 166

12.3 Web Recommendations ... 169

12.3.1 Types of recommendations ... 169
12.3.2 Recommendations used in EC-Fuice web portal .. 173

13. Related Work and Discussion .. 177
13.1 Related Work in the Field of Data Integration ... 177

13.2 Related Work in the Field of Ontology Matching ... 185

14. Summary ... 192

PART IV. SUMMARY ... 193

REFERENCES .. 197

APPENDIX 1. SCREENSHOTS OF WEB RECOMMENDATIONS .. 211

APPENDIX 2. EXAMPLES OF RECOMMENDATION

OPTIMIZATION .. 212

APPENDIX 3. EC-FUICE DATA PREPARATION SCRIPT 215

Mykola Golovin Table of Contents

iv

Mykola Golovin Web Recommendations for E-Commerce Websites

 v

ABSTRACT

In recent years we see the continuing growth of the Internet. Not only is the number

of internet users and websites increasing, but also the amount of information on the

individual websites. Many websites are concerned with presenting their often very

semantically versatile information in a concise and efficient way. This is especially true for

large E-Commerce websites with large amount of product information. A frequently used

technique to improve the presentation of data and navigation in these data is web

recommendations. Web recommendations are hyperlinks, often augmented with short

descriptive text and/or picture, which are shown on the website in addition to the usual

content in order to lead users to potentially interesting information. The motivation for the

use of web recommendations comes from both internet users and website owners. Internet

users want to see interesting information; the website owners want their information to

reach users quickly and to the full extent. Owners of commercial websites also employ

web recommendations in order to sell additional products or services to the users and thus

increase the sales turnover of their websites.

Many algorithms have been developed in order to generate such potentially

interesting web recommendations automatically. These approaches are based on different

intuitions about what might be interesting for the given user in a given situation. In this

dissertation we study these approaches and show that each of them has its own specific

drawbacks. To overcome these drawbacks, we present a combined adaptive algorithm,

which gathers potential recommendations from different recommendation algorithms,

presents them to users and refines them based on whether the users accept them or not. We

employ ontology graphs as a convenient way of storing highly diverse information about

the website which is required to make a decision on which recommendations should be

presented. We have implemented and evaluated our architecture on two real-world

websites, one of which is commercial and another non-commercial. In this dissertation we

further present a comparative analysis of our approach and several other recommendation

approaches using these real-world evaluations and show, that our algorithm is more

successful in attracting user interest in form of additional clicks and purchases.

Based on the gained experience, we extend our approach to the case, when the data

presented on a website are integrated from several data sources. This is a common case for

large E-Commerce websites. In this setting we recognize an additional problem – the

problem of data integration: we need to integrate both product data and additional semantic

information, which we also represent as ontology graphs. We give special attention to the

matching of the ontology graphs, since this problem needs to be solved for in order to

present web recommendations. The integrated setting also gives us the possibility to

explore some new types of recommendations. As a proof of concept, we have implemented

an integrated E-Commerce web portal, which gathers data from several internet shops,

represents them in integrated form and helps the web users to navigate through these data

by presenting web recommendations.

Mykola Golovin Table of Contents

vi

Mykola Golovin Web Recommendations for E-Commerce Websites

 vii

ACKNOWLEDGEMENTS

I am deeply grateful to my doctoral supervisor Prof. Dr. Erhard Rahm for all the

help and advices he was giving me while I was working on my PhD thesis, for the time

spent on making countless comments and corrections which helped me improve the

content, language and presentation style of my scientific work. Also I would like to thank

him for the patience with which he was keeping me on the right track and tolerating my

excursions into some rather distant areas of interest.

This thesis would not be possible without the financial support from the

postgraduate program (Graduiertenkolleg) “Wissensrepräsentation” at the University of

Leipzig, which is sponsored by the DFG (Deutsche Forschungsgemeinschaft - German

Research Foundation). Hence, I want to thank Prof. Dr. Erhard Rahm and Prof. Dr.

Gerhard Brewka, the speaker of the Graduiertenkolleg, for my acceptance into the program

and the financial support provided to me.

I am deeply grateful to all the colleagues and friends at the Database Group of the

Department of Computer Science, University of Leipzig for the very pleasant working

environment and many friendly advices. In particularly I would like to thank Dr. Andreas

Thor and David Aumüller for all the help, cooperation and support which I received from

them. I would also like to express my gratitude to all the colleagues at the

Graduiertenkolleg for creating the fruitful atmosphere of discussion and cooperation.

Parts of this thesis were completed during my work at Koch Media GmbH, Munich.

I would like to thank the Director of IT Dr. Juri Vaisman and the management of the

company for the understanding and support which I received from them during the work

on this thesis. I am particularly thankful to my colleagues at Koch Media Dr. Miroslav

Stimac and Thomas Gröber who spent their time on proofreading my thesis and

encouraged me during the final stages of the work.

I would like to express my deepest appreciation and love to my wife Natasha for

her support and for all the love and attention I was surrounded with during the work on this

thesis. And finally, I convey my sonly love and gratitude to my parents Nadezhda and

Vladimir for motivation and love which helped to finish this thesis.

PART I. INTRODUCTION

Mykola Golovin Part I. Introduction

2 2.1 Overview

Summary

In recent years the Internet has continued its rapid growth. This growth involves not

only the increase in the number of internet users and websites, but also in the increase of

the amount of information on the individual websites. Many modern middle-sized to large

websites become concerned with presenting their often semantically very versatile

information in a concise and efficient way. One of the techniques which are often used to

improve the presentation of the data and navigation in these data is the technique called

“web recommendations”. Web recommendations are hyperlinks, often augmented with

short descriptive text and/or picture, which are shown on the website in addition to the

original content with the intention to lead the user to interesting information. The

motivation for use of web recommendations comes both from internet users and from

website owners. Internet users want to see interesting information; the website owners

want their information to reach the user quickly. The owners of commercial websites also

employ web recommendations in order to sell additional products or services to the users

and thus increase the sales turnover of their websites. Probably the best-known example of

such usage is the website http://www.amazon.com, which heavily relies on web

recommendations in order to present its products to the users. Another example which

shows the importance of web recommendations is the website www.netflix.com, owned by

one of the largest US-based online movie rental companies Netflix. In 2006, Netflix started

a contest which offers a prize of one million US dollars to the developers of a

recommendation system which could outperform Netflix‟s own recommendation system

Cinematch by 10% in terms of prediction accuracy
1
.

A significant number of algorithms has been developed in order to generate

potentially interesting web recommendations automatically. These approaches are based on

different intuitions about what might be interesting for the given user in a given situation.

The main drawback of such approaches is the fact that the intuitions may or may not be

relevant in some particular situation and that we are often unable to precisely judge how

good one or another intuition is before the recommendation is presented to the user. To

overcome this drawback, in Part II of the thesis we present a combined adaptive approach,

which gathers potential recommendations from the existing recommendation algorithms,

presents them to users and refines them based on whether the users accept them or not. The

combined adaptive approach allows us to optimize the selection of interesting

recommendations in the long run. We have investigated different algorithms for the

1
 For additional information please see http://www.netflixprize.com/. Unfortunately, the system presented in

this thesis is not suitable for use with data available from Netflix, since these data do not contain user

feedback, which is required by our system as described in Part II of this thesis.

http://www.amazon.com/
http://www.netflix.com/
http://www.netflixprize.com/

Mykola Golovin Web Recommendations for E-Commerce Websites

1 Introduction 3

optimization of the recommendations in a simulated environment. Furthermore, we have

implemented and evaluated our recommendation architecture on two real-world websites,

one of which is commercial and another non-commercial. We employ ontology graphs as a

convenient way of storing highly diverse information about the website which is required

to make a decision on which recommendations should be presented. In this thesis we

present a comparative analysis of our approach and several other recommendation

approaches using real-world evaluations. We show that our algorithm is more successful in

attracting user interest in form of additional clicks and purchases.

Based on the gained experience, we extend our approach to the case when the data

presented on the website are integrated from several data sources. This is a common case

for modern large e-commerce websites. We handle this situation in Part III of this thesis. In

this setting we recognize an additional problem – the problem of data integration: we need

to integrate product data and additional semantic information, which we also represent as

ontology graphs. Here, another beneficial function of web recommendations comes to

light. Web recommendations can be used to help integrate the different data sources in one

interactive website. We pay special attention to the matching of the ontology graphs, since

this problem needs to be solved in order to present web recommendations. The integrated

setting also gives us the possibility to explore some new types of recommendations. As a

proof of concept, we have implemented an integrated e-commerce web portal which

gathers data from several internet shops, represents them in an integrated form and helps

the user to navigate through these data by presenting web recommendations.

Mykola Golovin Part I. Introduction

4 2.1 Overview

PART II. ADAPTIVE WEB RECOMMENDATIONS

Mykola Golovin Part II. Adaptive Web Recommendations

6 2.1 Overview

1. INTRODUCTION

In recent years web recommendations have become a technology familiar to most

internet users. The usage of web recommendations has become particularly widespread on

the e-commerce websites, such as internet shops. One well known example of use of a

recommendation system is the online store Amazon.com. Such e-commerce websites use

web recommendations to increase usability, customer satisfaction and commercial profit.

The schema of interaction between the user, the website and the recommendation system in

the general case is shown in Figure 2.1.

The website shown in Figure 2.1 can be either a collection of HTML pages residing

on a web server or a web application written in some programming language which serves

content in form of HTML pages. The usage of web recommendations usually assumes that

the technology employed on the web server allows dynamic generation of HTML content.

The recommendation system obtains information from the website. This information can

include data about different aspects of the current situation on the website and of the past

situations, which are deemed to be relevant to the task of providing web recommendations.

Based on this information, the recommendation system generates a set of so-called web

recommendations. Each recommendation is usually represented as a hyperlink,

accompanied by descriptive information. These recommendations are shown in specially

defined areas on the website, as depicted in Figure 2.1.

There are recommendation systems which do not follow the general schema shown

in Figure 2.1. Examples of such systems are WebWatcher [JFM97] which operates as a

proxy between the browser and the website and Letizia [Lieb95] where the presentation of

recommendations is

performed by an add-on to

the browser. Such systems

are however rare and have

not attained recognition in

commercial web

applications.

A number of

algorithms were developed

for generating web

recommendations by

applying different statistical

or data mining approaches to

some available information,

for example on

characteristics of the current

page, product, web user,

buying history etc.

Figure 2.1. Schematic representation of the interaction

between a website, a recommendation system and a web

user

Mykola Golovin Web Recommendations for E-Commerce Websites

1 Introduction 7

[Burk02][JKR02] However, so far no single algorithm uses the benefits of all the available

knowledge sources and no single algorithm shows clear superiority over all others.

Therefore, the need for hybrid approaches which combine the benefits of multiple

algorithms has been recognized [Burk02].

In this part of the thesis, we present a new approach to creating a web

recommendation system capable of combining many algorithms for generating

recommendations (recommendation generators or simply recommenders). Our approach

utilizes a central recommendation database for storing the recommendations coming from

different recommendation generators and applies machine learning techniques to

continuously optimize the stored recommendations. Optimization of the recommendations

is based on how “useful” they are to users and to the website, i.e. how willingly the users

click on them and how much profit they bring. The incentive for our optimization approach

was the observation, that the popularity and perceived relevance of individual

recommendations are not always well predicted by the recommendation generators.

The information about the website and the users is represented in the

recommendation database in the form of ontology graphs. This allows us to semantically

enrich the recommendations and bring in the knowledge from the additional sources, for

example geographical databases or publicly available ontologies. It is also practicable for

the adaptation of the system to the different types of websites.

The preliminary version of the architecture presented here was sketched in [GR04]

and further developed in [GR05]. In this thesis we describe the architecture of the system,

the prototype implementations of the system and present the evaluation results.

The focus of our work lies on providing a generic recommendation system

architecture for commercial websites, designed in particular for usage with internet shops

but also suitable for other types of websites.

We have implemented the prototype of our system on two real-life websites: a

website of the Database Group, University of Leipzig http://dbs.uni-leipzig.de and an

internet software shop http://www.softunity.com. The screenshots of the web pages

presenting recommendations are given in Appendix 1. We have also performed

experiments in a simulated environment modeled after http://www.softunity.com. To

denote the origin of the examples and notions in this part of the thesis we mark them with

EDU (educational) for the Database Group website, EC (e-commerce) for

www.softunity.com or SIM for simulation. The detailed descriptions of our prototypes can

be found in Chapter 4. We also use the examples taken from our prototypes throughout this

part of the thesis to illustrate the incentives for our architecture.

The main contributions of the research work described in this part of the thesis are:

 The generic semantically-enriched recommendation architecture for

e-commerce websites capable of combining different recommendation

approaches.

 The online optimization algorithm for web recommendations based on user

feedback.

 The evaluation of the architecture and the algorithm for real-life environments.

http://dbs.uni-leipzig.de/
http://www.softunity.com/
http://www.softunity.com/
http://www.softunity.com/

Mykola Golovin Part II. Adaptive Web Recommendations

8 2.1 Overview

In the next chapter we explain the architecture of the system and its main

components. We also describe some practice-driven incentives for choosing the described

architecture, but leave the discussion in this chapter largely generic. The optimization

techniques are presented in Chapter 3. In Chapter 4 we describe the implementation of our

prototypes and the correspondence between the generic architecture and the design of the

prototypes. In Chapter 5 we present the results of the experiments performed on real-life

prototypes. Chapter 6 contains evaluations of different architectural decisions and

optimization approaches obtained in the simulated environment. In Chapter 7 we provide

an overview of the related work and discuss some selected approaches in more detail.

Chapter 8 summarizes this part of the thesis.

Mykola Golovin Web Recommendations for E-Commerce Websites

2 The Generic Recommendation System Architecture 9

2. THE GENERIC RECOMMENDATION SYSTEM ARCHITECTURE

In this chapter we propose and discuss the generic recommendation system

architecture. We give an overview of the architecture and some relevant notions in Section

2.1. In the subsequent sections we discuss the selection of recommendations using the

ontology graphs (Section 2.2) and the generation of the recommendation rules (Section

2.3).

2.1 Overview

The architecture of our recommendation system is shown in Figure 2.2. In this

section we briefly describe each of the components depicted in Figure 2.2. More detailed

descriptions follow in the subsequent sections. The website interacts with the web user,

presents recommendations and gathers the feedback. The web data warehouse stores

information about the content of the website (e.g., products and product catalog, HTML

pages, etc.), users, and the usage logs generated by the web server or the application server.

It serves as an information source for the recommendation generators and ontology

generators and allows evaluations of the user behavior and the efficiency of

recommendations using OLAP tools. The recommendation database stores the semantic

information in form of ontology graphs and the recommendations in form of

recommendation rules, which are described in the next section. The set of ontology

generators is responsible for generating the ontology graphs. The set of recommendation

generators generates the recommendations using the data from the web data warehouse.

The combination of different recommendation generators which use different algorithms

for generating recommendations makes our system a hybrid recommendation system. The

combination of different recommendation generators is applied to avoid the drawbacks

which most popular recommendation algorithms are known to have when used alone. The

recommendation rules specify, which content items should be recommended in which

situation, the situation being expressed using concepts contained in the ontology graphs.

The ontology graphs and recommendation rules can also be created and edited by a human

editor. The optimizer refines the recommendation database based on the feedback obtained

from the website using machine learning. The refinement is done by adjusting the weights

of the recommendation rules according to an optimization algorithm. The study of different

optimization algorithms is an important aspect which is addressed in detail in Chapters 3, 5

and 6.

In our recommendation system we distinguish the generation loop and the

optimization loop. The generation loop is represented by a larger ellipse in the background

of Figure 2.2. It includes the website, the web data warehouse, the ontology and

recommendation generators and the recommendation database. The generation loop is

executed at regular intervals of time. It involves updating the web data warehouse using

Mykola Golovin Part II. Adaptive Web Recommendations

10 2.1 Overview

Figure 2.2. Generic recommendation system architecture

Optimizer

Web Data
Warehouse

WebsiteWebsite

Recommendations

Feedback

Recommendation
generator

...

Recommendation
generator

Editors

Web Usage

Data

R
e

c
o

m
m

e
n

d
a

ti
o

n

R
u

le
s

Ontology generator

Content information, usage data, etc.

Ontology

graphs

Ontology generator

Ontology generator

Recommendation

Rule Table

Recommendation

Database

Generation

loop

Optimization loop
O

n
to

lo
g

y

the data from the website and subsequent generating/updating of the ontology and the

recommendation rules utilizing the information on the content and recent usage

information from the web data warehouse. The optimization loop is executed continuously.

It selects and presents the recommendations from the recommendation database. After the

presentation system gathers the user feedback, i.e. user reactions to presented

recommendations. The optimizer uses this information to refine the recommendations in

the database and to influence the selection of future recommendations. The detailed

descriptions of the components of the generation loop are presented further on in this

chapter. The discussion of the optimization loop is presented in Chapter 3.

The online, i.e. real-time optimization of the recommendations is a distinctive

feature of our architecture. Although a number of recommendation system architectures

adjust or update their recommendation model at regular intervals of time, for example

every night, we argue that online optimization and the resulting quicker reaction to the

changes in the user interest can be significantly more beneficial in many cases. The direct

incentive for implementing the online optimization was the buyer behavior observed on the

e-commerce website http://www.softunity.com (EC) which we used for one of our

prototypes. The buyer activity on this website is distributed very unevenly in time,

featuring some dramatic activity peaks from time to time. This can be attributed to the fact,

that many of the computer games and software products offered on the website are sequels

of previously popular computer games and products. The release of such sequels is long

awaited by the prospective buyers and the first release day usually brings overwhelmingly

http://www.softunity.com/

Mykola Golovin Web Recommendations for E-Commerce Websites

2 The Generic Recommendation System Architecture 11

successful sales. For several successful products on the website the revenue generated on

the first release day constituted up to 75% of the sales in the subsequent 12 months. In fact,

30% of the revenue generated by the website is generated by the products on their

respective release day. In contrast, the second and third day bring only 1% of the revenue

each. So, it is very important to optimize recommendations on http://www.softunity.com in

terms of hours and minutes, for the most popular products even in terms of seconds. More

information about the website http://www.softunity.com can be found in Section 4.1.

An even stronger incentive for the online optimization can be assumed for news

websites. Indeed, although the content of news articles can stay on such websites for years,

the peak of the interest is usually the first day or even several hours. The recommendation

systems on such websites should therefore be able to learn the user interests and optimize

the presented recommendations within this time span as well.

Since we intend to create a generic recommendation system architecture which can

be used for many types of websites, we pay attention to separating the components which

need to be implemented specifically for each website from the components which stay the

same for all websites. So, the web data warehouse, the ontology generators and

recommendation generators depend on the concrete website, since their implementation

depends on the entities and entity attributes which are specific to each website (for

example, software products or clothes or news articles). The recommendation rule database

is generic and its structure can remain the same for all websites. The optimization loop is

also generic, but can be configured via a set of parameters described in Chapter 3 to suit

the needs of the concrete website.

The ontology graphs give our architecture the independence from the concrete

website and the possibility to encompass the recommendations coming different

recommendation algorithms, as discussed in the next section.

Some important notions which we use to describe different aspects of our

recommendation system include web user, item, page view, session, acceptance rate,

session acceptance rate
2
. Web user is a human which uses a web browser to access the

website. Sometimes the web users are required or allowed to register on the website and

enter some descriptive information about themselves. More often, however, web users

remain anonymous and the information about them is obtained indirectly. The web users

usually view one or more pages on the website. During each such page view the web user‟s

browser sends a series of HTTP requests
3
 to the website. Each request contains the

information about the IP address of the user, the used browser and some other descriptive

information. A series of page views coming from the same user in a limited interval of

time is called session. Sometimes websites let users log in and log out on the website.

Determining the user session in such cases is straightforward. More often, however, there‟s

no possibility for the user to explicitly end the session and the end of the session has to be

determined by timeout, i.e. time interval during which no HTTP requests are obtained from

2
 Definitions of some additional terms which are used to describe web activity can be found here:

http://www.w3.org/1999/05/WCA-terms/
3
 Protocol HTTP is specified in RFC2616 (ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt)

http://www.softunity.com/
http://www.softunity.com/
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

Mykola Golovin Part II. Adaptive Web Recommendations

12 2.2 Recommendation Selection Using Ontology Graphs

the web user‟s browser. The page views can contain presentation of the recommendations

as illustrated in Figure 2.1. The user may click on such recommendation, i.e. accept it. The

ratio of the number of times a recommendation has been accepted to the number of times a

recommendation has been presented is called acceptance rate of the recommendation.

Session acceptance rate is a ratio of the number of the sessions in which a

recommendation was accepted to the number of sessions in which it was presented. We

can speak about the acceptance rate or session acceptance rate for a single

recommendation, for the entire recommendation system or for a group of

recommendations unified by some common characteristic such as the recommendation

algorithm used to generate them or the user group for which these recommendations are

relevant.

2.2 Recommendation Selection Using Ontology Graphs

The information which the recommendation system needs in order to provide

relevant recommendations can be manifold and complex. We do not deem it feasible to

specifically name all possible reasons and consideration which can influence the

recommendation decisions in different web applications. Obviously, an e-commerce

website which sells automobiles would operate in different concept space when thinking

about its users and its products than a website which sells clothing. A news website and an

educational would also need their own concept spaces different from e-commerce

websites. Striving to create generic recommendation system architecture, we have decided

to introduce a special semantic layer between the website and our recommendation system.

This architectural decision answers the following needs:

 To be generic, our architecture needs to be isolated from the implementation details

of a given website.

 The concept spaces which contain knowledge about content, users, time and other

relevant information often exhibit a complex structure. This complex structure

needs to be represented in a way which allows the recommendation system to

reason about it.

 The human editors of the website need a human-friendly view of the concepts

which influence the presentation of recommendations. Very often the owners of the

website need to impose business rules onto the recommendation system. The

recommendation system needs to be able to represent these business rules internally

in a way understandable both for the recommendation system and for humans.

 In cases when the recommendation system is unable to find recommendations for

specific concepts on the website, it may be a meaningful decision to search for

some similar, related or more general concept and present the recommendations

relevant to these concepts.

An additional discussion about the role of ontologies in recommender systems and

personalization can be found in [BMC+06].

Mykola Golovin Web Recommendations for E-Commerce Websites

2 The Generic Recommendation System Architecture 13

In our system this semantic layer is represented using so-called ontology graphs.

The ontology graphs are directed acyclic graphs. The concepts are represented with nodes

and provided with labels. The edges can be provided with labels and weights. In the

general case, we assume that three ontology graphs are relevant for making

recommendations, one graph respectively for content, users and time. In some cases more

or fewer graphs may be adequate. So, in our prototype EC we use three graphs and in the

prototype EDU two graphs, as discussed in Section 4.2.2.

The ontology graphs are automatically generated by ontology generators and can be

edited manually by the editors of the website. The ontology graphs for the website content

can often be extracted with ease, since the navigation on a website is usually hierarchically

structured.

Figure 2.3 shows the process of selection of recommendations using ontology

graphs. To request recommendations to present, the website specifies the current website

context and the desired number of recommendations. The website context is a set of

parameters, which characterize the currently viewed website content, current web user and

present point in time. An example of a website context is given below:

WebsiteContext{ ProductID=”ECD00345”; UserCountry=”DE”;

UserOperatingSystem=”Windows”; Date =”21.03.2005”;...} (EC).

Obviously, the choice of suitable parameters in the website context depends on the

specific website, especially with respect to the current content.

The recommendation system maps the provided website context into a semantic

context, which consists of nodes of the three ontology graphs {ContentNodes, UserNodes,

TimeNodes}. After the semantic context has been determined, our recommendations

system is using a so-called selection policy to select the recommendations associated with

the relevant nodes of the ontology graphs for the presentation on the website. This two-step

selection process aims at supporting the application-oriented recommendation strategies

and high flexibility. Assigning recommendations to semantic concepts is expected to be

more stable than assigning them directly to the low-level website contexts whose values

may change frequently (e.g. due to website restructuring). The selection policies may be as

simple as selecting recommendations which are directly referencing the given context

Figure 2.3. Selecting recommendations using semantic context

Mykola Golovin Part II. Adaptive Web Recommendations

14 2.2 Recommendation Selection Using Ontology Graphs

nodes. It is however also possible to do a more complex selection by traversing the

ontology graphs and taking additional relevant context nodes into consideration. The

algorithms for more complex selection policies should be tailored to the needs of the

specific website.

Figure 2.4 shows an example of an ontology graph for website content. Ontology

graphs for web users and time are built in a similar way. We use directed edges to point

from more specific concepts to more general concepts, from subcomponents to aggregated

components, etc. Recommendations can be assigned to any node in such a graph.

Highlighted with thick lines in Figure 2.4 is an example of how the semantics stored in the

ontology graph can be used to search for additional recommendations for Product4. We are

able to retrieve the recommendations directly for Product4 as well the recommendations

that are bound to some common property that Product4 possesses (in our case Hardcover)

and the recommendations to some product catalog topics that Product4 belongs to (History,

Books).

The mapping between website and semantic contexts is specified by mapping

clauses. Mapping clauses are statements written in a simple predicate language which may

be attached to nodes in the ontology graphs. The predicate language supports logical

operators (AND, OR, NOT), comparison operators (<, >, =, <>, >=, <=) and the operator

LIKE, which does string matching with wildcard, similar to the SQL-operator with the

same name. Some of the nodes in the ontology graphs immediately correspond to a certain

set of parameters and can be mapped using mapping clauses. Other nodes represent

abstract notions. Such nodes can be reached only by traversing the ontology graph and

have no associated mapping clauses. The predicate language is chosen to be compatible to

SQL in order to be able to implement the mapping of the website context to the semantic

context as SQL query over a table in a relational database. In combination with indexes

created on the relevant columns this allows quick mapping even in case of very large

number of nodes in the ontology graphs.

Each of the three ontology graphs is mapped separately. In our EC application, the

ontology graphs are created by ontology generators using the product catalog, common

properties of products and the business logic of the website. The application EDU uses the

manually specified website content hierarchy and user groups determined by data mining.

Most mapping clauses are automatically determined by the ontology generators together

Figure 2.4. A sample ontology graph for content

dimension (EC)

Books

Product1 Product2

Action

Product3 Product4

Adventure History

Hardcover

Recommendations

Recommendations

Recommendations

Recommendations

Mykola Golovin Web Recommendations for E-Commerce Websites

2 The Generic Recommendation System Architecture 15

with the creation of the ontology and simply use an equality operator. Manually specified

mapping clauses may be more complex. Examples of the mapping clauses are:

ProductID=”ECD00345” -> ContentNode=1342 (EC)

UserCountry=”DE”-> UserNode=3 (EC)

UserDomain LIKE „%.edu‟ OR UserDomain LIKE „%uni-%‟ -> UserNode =2 (EDU)

The recommendations associated to nodes in the ontology graphs are represented

by the recommendation rules stored in the recommendation database. The recommendation

rules have the form:

RuleContext{Content, User, Time} -> RecommendedContent, Weight

RuleContext refers to nodes in one or several of the three ontology graphs. These

values can also be set to NULL, denoting that the rule does not depend on the

corresponding dimension. RecommendedContent is the pointer to the content being

recommended, e.g. recommended product or URL. The Weight is used as a criterion for

the selection of the recommendation rules for presentations.

We have implemented and tested several recommendation selection policies in our

prototypes. These policies include the default straightforward policy ”direct match” and

some more complex selection policies which use the additional semantic information

contained in the ontology graphs. We discuss these policies in Chapter 4 in more detail.

The ontological structure which we present here can also be used to implement the

ontology-based policies proposed by other researchers. Some of these ontology-based

selection techniques are discussed in Section 7.6.

2.3 Generating Recommendation Rules

The recommendation rules are generated by the recommendation generators and

stored in the recommendation database. We think of recommendation generators as

belonging to the website-specific part of our recommendation architecture. The algorithms

used in the recommendation generators may be specific for the given website or generic.

However, even the generic algorithms need tailoring to the data structures and peculiarities

of the specific website so that the recommendation generators should in our opinion be

considered in general website-specific.

The most popular approaches for generating web recommendations are content-

based approaches and approaches based on collaborative filtering.

The content-based approaches exploit the content of the items to provide

recommendations. A common example of the content-based approach is the

recommendation generators based on text similarity between the items. Items with similar

titles and/or descriptions are assumed to be good recommendations.

The approaches based on collaborative filtering attempt to match the current user to

the other users based on the gathered information about the user preferences. The

Mykola Golovin Part II. Adaptive Web Recommendations

16 2.3 Generating Recommendation Rules

preferences of these other users are then used to generate the recommendations for the

current user.

When used alone, each of these algorithms exhibit certain drawbacks. So, the

collaborative filtering algorithms require statistical information about the items and the

users to be gathered before the recommendations can be generated. This leads to the so-

called “new user” and “new item” problems, which arise when such information is not yet

available. Content-based recommendation approaches do not cause the mentioned

problems. However, they are based on the assumption that the information contained in the

content of the items is sufficient to generate good recommendation. This assumption may

or may not be the true depending on the concrete items. Algorithms other than

collaborative filtering and content-based, for example algorithms based on the domain

knowledge, usually generate very specific types of recommendations and cannot be used

alone as well. For more information about the different recommendation algorithms and

their respective benefits and drawbacks please see the surveys [Burk06], [JKR02],

[PSF02], [AT05]. By gathering the recommendations generated by different algorithms in

one recommendation rule database and subsequent optimization of this database we intend

to combine the benefits and avoid the drawbacks of the different recommendation

algorithms.

A recommendation generator may supply an initial weight for every generated

recommendation rule. The weight of a recommendation rule is a real number in the interval

[0 .. 1]. If the recommendation generators generate a rule which already exists in the

recommendation rule table with a different weight, the weight in the recommendation rule

table takes preference over the weight supplied by the recommendation generators. We

have explored two approaches to setting the initial weights of the newly generated

recommendation rules. In the first approach, we simply set all initial weights to zero. The

second approach uses normalized recommendation generator specific weights or relative

priorities for the respective contexts. When several recommendation generators generate

the same recommendation we use the maximum of their weights. The initial weights are

expected to be relevant primarily for new recommendations since the weights for presented

recommendations are continuously adapted in the optimization loop. In Chapter 4 we

discuss the possibility of setting the weights for the new recommendations to stimulate

their presentation in the initial period.

The individual recommendation rules may also be easily created, edited and deleted

by a human editor. Trivial as it may seem, this possibility is very important for the

operation of the recommendation systems on e-commerce websites. An example of

situation where lack of such direct control over the presented recommendations has lead to

a breakdown of the entire recommendation system is presented in [Flyn06]. In this New

York Times article the author describes an incident with the recommendation system

deployed at the website of the large US Company Wal-Mart. To commemorate the

anniversary of Martin Luther King‟s birth, the company has brought out a boxed set of

movies related to Afro-American themes and presented it in a prominent position on their

web-site. In addition, the company employed automatic cross-selling recommendation

system on their website which proposed a number of automatically selected products to be

Mykola Golovin Web Recommendations for E-Commerce Websites

2 The Generic Recommendation System Architecture 17

bought together with this special product. Some of the product combinations proposed by

this recommendation system to the described commemorative movie set have been

perceived as very offensive by the potential Afro-American customers. According to the

New York Times article, the entire cross-selling recommendation system on the Wal-Mart

website had to be taken down. If the recommendation system used by Wal-Mart provided

the possibility of the manual control of the presented recommendations, the problem would

have been solved by simply deleting the offending recommendations without the need to

switch off the entire recommendation system.

Mykola Golovin Part II. Adaptive Web Recommendations

18 3.1 Modeling the Problem of Optimizing Web Recommendations as Markov

Decision Process and Applying Reinforcement Learning

3. FEEDBACK-BASED OPTIMIZATION

In the previous chapter we have discussed our approach of generating

recommendation rules and storing them in the recommendation rules database. The

recommendation generators provide the recommendation rules basing on different

assumptions about the interests of the web users, more specifically about the correlation

between the observable information and the web user preferences. These assumptions may

or may not be true either in general or for some of the generated recommendations. In

particular, none of the available single (i.e. non-hybrid) techniques of generating

recommendations is able to use all possible information that is available. This leads us to a

suggestion that all available recommendation models are too coarse when being used

alone.

We can obtain a more fine-grained recommendation model in our architecture by

gathering the recommendation rules from different recommendation generators and storing

them in the central recommendation rule database. However, such recommendation rule

database contains both the “tops” and the “flops” of any available recommendation

generator. Now we can start using the recommendation rules and separate the “tops” from

the “flops” by observing the user reaction to presenting recommendations. We do this

using feedback-based optimization. We represent the user feedback in numerical form

(reward value) and use it for adjusting the weights of the recommendation rules in such a

way that the total reward is maximized. In this chapter we describe the model which we

employ for our optimization, the issues which we have to solve in our optimization

algorithms and the different approaches to solving these problems.

3.1 Modeling the Problem of Optimizing Web Recommendations as Markov

Decision Process and Applying Reinforcement Learning

We model the process of selecting recommendations for presentation as a Markov

Decision Process (MDP). The Markov Decision Process is a generic model of a sequential

decision process which serves as a foundation for a large number of methods for solving

optimization problems. Markov Decision Process assumes the existence of an agent which

interacts with the environment. At any moment, the agent is deemed to be in some state s

which belongs to the set of all possible states S. In any state s the agent may perform an

action a from the set of possible actions A. After performing the action a, the agent‟s state

may change from state s to state s´∈ S. The agent may also receive a feedback from the

environment, feedback being expressed numerically. Several terms are used in the MDP

literature to describe the numeric value of feedback, such as “reward”, “cost”, “penalty”

(cost and penalty being negative of reward). We use the term “feedback” to describe the

user‟s reaction to the agent‟s action and the terms “reward” or “feedback value” to denote

Mykola Golovin Web Recommendations for E-Commerce Websites

3 Feedback-based Optimization 19

the numerical value which describes the feedback. The feedback is used by the agent for

making decisions about taking one or another action in the future. In our case the

recommendation system acts as the agent.

An MDP model is a four-tuple <S, A, R, TR>. In this tuple, S is the set of possible

states and A is the set of possible actions. R(s, a, s´) is the reward function on <S, A, S>

which describes the immediate reward which is obtained from the environment if the agent

performs the action a in the state s and appears in the state s´ afterwards. TR(s, a, s´) is the

transition function which describes the probability of transition from the state s to the state

s´ after performing the action a. By performing actions, the agent usually strives to

optimize some function of the received reward values. An MDP model is called finite

MDP in case when the state and action spaces are finite [SB98]. We use a finite MDP to

represent the task of making web recommendations.

The MDP states often correspond to combinations of different characteristics of the

environment. In such cases the states are represented via a number of state variables. In our

architecture we have three state variables respectively for the content, user and time parts

of the context. Each of the variables can contain a reference to the node in the

corresponding ontology graph or the value “NULL”.

An MDP model should satisfy the so-called Markov property. The Markov property

of the sequential decision task means that the conditional probability distributions of the

future states depend only on the current state and not on any past state. The non-markovian

learning tasks can sometimes be converted into MDP by using states of the form

 Sn*={Sn-m, Sn-m+1 ,…, Sn},

i.e. by representing the sequence of last m states as a single state. An MDP which

takes the last m states into account when making decisions is called an m-th order MDP.

An MDP for which the Markov property holds without converting the sequence of states

into one state is called first-order MDP. The use of the MDPs of higher order has been

proposed to solve the problem of presenting web recommendations in [SBH02][SHB05].

The incorporation of the past states of the agent, however, leads to an explosion in the

number of possible states in the resulting higher order MDP.

For practical purposes it is often useful to assume the Markov property to hold even

when it is not the case in the reality. A reasonable prerequisite for such an assumption is

that the current states have a much larger influence than the past states. The preliminary

experiments with our prototype data have shown that we have relatively few situations

where we could benefit from taking previous states into account. The majority of sessions

in our prototypes has only one page view
4
; for the sessions which have two page views the

first page view is usually the starting page of the website. In our system we use only the

first-order MDP and take into account only the current state. We have not implemented or

tested higher order MDPs in our prototypes. However with our generic architecture this

could be implemented with little effort. The states in our system are defined on the nodes

4
 More details on the session length distribution for the EC prototype are given in Section 4.3

Mykola Golovin Part II. Adaptive Web Recommendations

20 3.1 Modeling the Problem of Optimizing Web Recommendations as Markov

Decision Process and Applying Reinforcement Learning

of the ontology graphs. The nodes can be configured to represent the combinations of

current and past states.

In an MDP, the agent is usually taking one action in every state. In our case an

action is equivalent to the presentation of a certain recommendation. A recommendation

system, however, usually presents a list of several recommendations. A straightforward

way to represent this behavior of the recommendation system in MDP would be to

consider each combination of recommendations as one action. This however would lead to

an explosion of the number of possible actions. To avoid this, we have made a simplifying

assumption that the probability of a recommendation being clicked in our system does not

depend on the other recommendations presented simultaneously. This allows us to treat the

simultaneous presentation of N recommendations as N independent learning episodes in

the sense of MDP. Such a simplifying assumption is often found in the literature, as

discussed in Section 7.5.

The problem of learning the optimal behavior of the agent by learning from

feedback provided by the environment using the framework of Markov Decision Process

constitutes the reinforcement learning problem. There are several families of methods

which can be used to solve this kind of optimization problem. Examples of such families of

methods are dynamic programming [Bell57] and reinforcement learning [KLM96]

[SB98]
5
.

Dynamic programming requires a complete model of the environment, in particular

the transition probabilities and the reward function should be known a priori. The most

prominent examples of dynamic programming are value iteration [Bell57] and policy

iteration [Howa60]. Dynamic programming has been widely studied in application to a

wide range of optimization problems, not only those expressed as an MDP. Dynamic

programming is computationally expensive since it requires re-calculation of the entire

state-action space after each step. There are synchronous dynamic programming

algorithms which require waiting for the re-calculation of the transition probabilities after

each step and asynchronous methods where the agent does not have to wait until the

calculation of the entire state-action space completes. Although with asynchronous

algorithms our system may be able to propose next action quicker, the total computation

load the asynchronous dynamic programming algorithms put on the computer is still very

large. Therefore, both synchronous and asynchronous dynamic programming methods are

computationally prohibitive for online optimization.

In contrast to dynamic programming, reinforcement learning algorithms do not

require the complete model of the environment and can implicitly learn the transition

probabilities during optimization. In the task of making web recommendations, exact

5
 There seems to be a dual understanding of the term reinforcement learning in the literature[KLM96]. In the

broader sense, this term relates to the set of problems which involve learning from feedback and the

algorithms which can be used to solve these problems. Such algorithms include genetic programming and

dynamic programming. In the narrower sense, the term relates to the set of approximative algorithms which

focus on online learning (i.e. algorithms allowing realtime computation) without requiring the complete

model of the environment.

Mykola Golovin Web Recommendations for E-Commerce Websites

3 Feedback-based Optimization 21

transition probabilities are unknown and need to be learned. The reinforcement learning

can be applied incrementally. The recalculations of the entire space-action space are

therefore not necessary, making the online optimization possible. These characteristics

make reinforcement learning algorithms particularly interesting for the task of optimizing

the web recommendations. The most popular reinforcement learning algorithms are Q-

Learning [Watk89] and SARSA [RN94]. The transition function is usually not learned

directly but estimated using for example state-action value function Q(s,a), which assigns

weights to combinations of states and actions. In our recommendation system the state-

action value function corresponds to the weight of recommendation rule Q(r), since the

recommendation rules contain information about both the state (i.e. recommendation

context) and the action (i.e. recommended item).

The goal of the reinforcement learning optimization is to maximize the total amount

of reward. Many of the reinforcement learning algorithms including Q-Learning and

SARSA deal with delayed rewards. That means, that the agents decisions may be rewarded

not only immediately after performing the action (“immediate reward”) but also when a

reward is received in some of the subsequent steps (“delayed reward”). This reward is

usually discounted, i.e. multiplied by the discount ratio γ (0≤ γ≤1). In the task of making

web recommendations, however, our goal is to obtain the reward immediately. Indeed, the

web recommendations are supposed to shorten the navigation paths which lead to

interesting content. The low usefulness of the delayed reward in application to our

prototypes is illustrated by the session length distribution of the EC prototype as described

in Subsection 4.3. The number of the observed sessions with a given length falls at

exponential rate as the session length increases. This leads to the intuition that the web

users are reluctant about continuing navigation when they do not see the interesting content

immediately. Because of this characteristic of our task, we are able to employ the simple

single-step reinforcement learning approaches in our prototypes. However, our generic

architecture can also support the usage of delayed rewards. Web recommendation systems

utilizing reinforcement learning approaches with delayed rewards have been studied in

[MR07][MR07a] and subsequent works from the same research group and also on

[TKG07][TK07]. The first series of works utilizes Policy Iteration and the second

Q-Learning. Both systems are discussed in Section 7.5 in more detail.

An interesting research direction in the field of reinforcement learning is

generalization of feedback. A common problem in the feedback-based optimization is that

the amount of feedback received by the system is small in comparison to the total number

of possible states. Generalization attempts to alleviate this problem by employing the

observation that the state space often exhibits some kind of internal structure or relation

between states. These relations can be used to generalize the feedback obtained in a single

state to the neighboring or similar states in the state space. A number of different

approaches can be used to perform this generalization, including artificial neural networks,

decision trees and multivariate regression [SB98]. Our recommendation system

architecture provides an ontological representation of the state space which can be used to

perform the feedback generalization. Currently, however, we use this representation only

to perform the selection of recommendations and not for the feedback generalization. The

Mykola Golovin Part II. Adaptive Web Recommendations

22 3.2 “Drift of Interest”

study of the different feedback generalization methods in the context of our

recommendation systems remains a matter for future research. Several other

recommendation system architectures based on reinforcement learning use the

generalization of feedback as discussed in Section 7.5.

There are formal proofs of convergence to the optimal values for a number of basic

reinforcement learning algorithms like SARSA. However, as noted in [KLM96], the proofs

of convergence for the reinforcement learning algorithms are of little practical value. Such

formal proofs usually assume an infinite number of visits of each state. Practically,

however, an algorithm that is proven to converge to the optimal values may be less

interesting that an algorithm that achieves only near-optimal values but at a faster pace. So,

the learning speed becomes the practically important metric for assessing the quality of a

reinforcement learning algorithms. In Subsection 6.1.5 we present the comparative study of

learning behavior in time for the optimization algorithms implemented in our

recommendation system.

3.2 “Drift of Interest”

One of the characteristics of the problem of optimizing web recommendations is

that this problem is a non-stationary problem. That means that the transition probabilities

in the corresponding MDP do not stay constant over time. This is caused by the changes in

the interests of the web user with respect to the recommended items. Products or content

items may become obsolete, put into obscurity by new products or events happening in the

world. Sometimes, on the contrary, old product or content may become interesting again

due to some events. We can handle these temporal changes in the user‟s interest, the so-

called “drift of interest” in several ways:

– Ignore the „drift of interest“. We can consider older rewards and newer rewards to

be equally important. In this case, the weight of the recommendation rule Q(r) is

calculated using the formula for arithmetic average:

𝑄 𝑟 =
 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑟)

𝑁𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 (𝑟)
 (3.2.1)

where 𝑅𝑒𝑤𝑎𝑟𝑑(𝑟) is the sum of rewards received by the recommendations r

since its creation and Npresented(r) is the number of times the recommendation r was

presented. The “drift of interest” is not taken into account here. In case when we use

Reward=1 when a recommendation is clicked and Reward=0 when a recommendation is

not clicked, the Q(r) becomes equivalent to the acceptance rate of the recommendation

rule.

– Consider only the last n reward values for each recommendation rule and generate

the weights of the recommendation rules from them by using one of the following

formulae:

Mykola Golovin Web Recommendations for E-Commerce Websites

3 Feedback-based Optimization 23

𝑄𝑡 𝑟 =
 𝑅𝑒𝑤𝑎𝑟𝑑 𝑡−𝑘(𝑟)𝑛−1
𝑘=0

n
= 𝑄𝑡−1 𝑟 +

𝑅𝑒𝑤𝑎𝑟𝑑 𝑟 −𝑅𝑒𝑤𝑎𝑟𝑑 𝑡−𝑛 (𝑟)

𝑛
 (3.2.2)

or

𝑄𝑡 𝑟 =
 𝑤𝑘𝑅𝑒𝑤𝑎𝑟𝑑 𝑡−𝑘 𝑟
𝑛−1
𝑘=0

n
, where wk = 1n−1

k=0 (3.2.3)

In the formulae above, Qt(r) is the weight of the recommendation rule r after the

presentation t, Rewardt(r) is the reward the recommendation system receives after

the presentation t, n is the number of last presentations which have impact on the

weight of the recommendation rule. The first formula is known in the literature as

simple moving average, the second as weighted moving average. In the first

formula all n participating reward values have equal impact on the weight of the

recommendation rule. In the second formula the impact which the reward from

each presentation has on the recommendation rule weight can be controlled using

the weights wk. In practice, the weights wk are chosen in such a way that for every k

wk< wk-1.

These simple moving average and weighted moving average approaches, however,

have drawbacks. So, the calculation of the recommendation rule weights is possible

only after first n presentations of each recommendation. Both approaches also

require additional memory in case of online optimization, since the last n reward

values need to be stored for calculation.

We are not using the simple moving average and weighted moving average

approaches in our system, since the next approach handles the „drift of interest“

starting from the first presentation and without an additional memory overhead.

– Use aging by division (also called exponential smoothing, exponential decay or

exponential moving average in the literature). Here, with every presentation the

original weight of the recommendation rule is decreased by a fraction of its value:

𝑄𝑡 𝑟 = 1 −
1

𝑇
 ∗ 𝑄𝑡−1 𝑟 +

𝑅𝑒𝑤𝑎𝑟𝑑 𝑟

𝑇
 (3.2.4)

In this formula, Qt(r) is the weight of the recommendation rule r at step t, T is the

aging parameter (T>1). Reward(r) is the numerical value which describes a user‟s response

to the presentation of the given recommendation. Multiplying the current weight by (1-1/T)

implements the aging, since this way the latest presentations have the most impact on the

resulting weight value while the contribution of past presentations decreases exponentially

with each next presentation. Lower values of T lead to a decrease in the impact of the older

recommendations presentations in comparison to the older presentations. The impact of the

value of parameter T on the acceptance rate of different recommendation optimization

algorithms is studied in Chapter 4. With aging by division, we do not need to keep the

Mykola Golovin Part II. Adaptive Web Recommendations

24 3.3 Exploration versus Exploitation

reward values from the previous recommendations and can start optimization from the first

presentation.

3.3 Exploration versus Exploitation

In order to be successful in the long run, our recommendation system needs to

pursue two goals. One goal is to gain the immediate profit from presenting

recommendations, i.e. to exploit the recommendations which are known to be good. In

order to achieve this, the recommendation system needs to present the recommendations

with the larger utility. Another goal of our system is to learn how good the

recommendations are, i.e. to explore the utility of the recommendations. In order to

achieve this goal, the system needs to present the recommendations which have smaller

number of presentations in the past. Balancing these two goals is an important issue for our

adaptive recommendation system

There are formally justified algorithms for computing the Bayes-optimal way of

balancing exploration and exploitation. These algorithms are however known to be

computationally intractable [SB98]. The improvements of such algorithms in order to

make them computationally tractable are a subject of current research [Wang06], however

no generally accepted solution has been provided yet.

In order to balance the exploration and exploitation in practical applications, several

heuristic methods have been developed and widely applied. One such technique is called ε-

greedy in the literature [SB98]. This technique splits all recommendation presentations for

a given context into two fractions. One fraction of the presentations is used to learn the

utility of the recommendations. The recommendations in this fraction are selected using a

pseudorandom number generator. Another fraction exploits the gained knowledge to

maximize the acceptance rate of the recommendation system as a whole. This fraction

always chooses the recommendations with the largest weight. Such behavior is called

greedy. The explorative behavior is followed with probability ε (0<ε<1), the exploitative

with probability 1-ε.

Another technique called softmax takes a different approach to balancing

exploration and exploitation. The softmax technique selects the recommendations

stochastically with probabilities which correlate to their weights. Many approaches can be

used for correlating the weights and the selection probabilities. One common approach for

the calculation of the selection probabilities is the Gibbs distribution, also named

Boltzmann distribution:

𝑃 𝑟 =
𝑒
𝑄 𝑟
𝜏

 𝑒
𝑄 𝑏
𝜏𝑛

𝑏=1

where r is the recommendation rule for which we calculate the probability, Q(r) is

the weight of the recommendation rule r, e is the Euler‟s constant and τ is a positive

parameter called temperature. Higher values of the parameter τ lead to smaller differences

Mykola Golovin Web Recommendations for E-Commerce Websites

3 Feedback-based Optimization 25

in probabilities of selecting different recommendation rules. Lower values of τ cause the

recommendation rules with higher weights to be strongly preferred to the rules with lower

weights [SB98].

According to [SB98], there are neither theoretical results nor comparative

experimental studies which prove the superiority of either ε-greedy or softmax technique

over each other in general case. The choice of one or the other technique depends on the

concrete problem. We have tested the softmax algorithm implemented using Gibbs

distribution in our first informal experiments. We have found it very difficult to set the

parameter τ for our experiments, because its influence on the learning process is less

intuitive than the influence of ε. In our experiments the softmax technique has been able to

achieve acceptance rate similar to ε-greedy only on a very narrow interval of the values of

τ, being dramatically worse for all τ-s outside of this interval. If the values of τ lie below

this narrow interval, the system pays too little attention to the weights of recommendations

rules. If the values lie above the interval give non-proportional preference to the rules with

higher weights to the disadvantage of rules with lower weights. This experience is in

accordance with the following quote from [SB98]: “Most people find it easier to set the

parameter ε with confidence; setting τ requires knowledge of the likely action values and

of powers of e”. Since this property of the softmax technique would impede the usability of

our recommendation system on real-life websites, we have not used this technique in our

further experiments.

It should be noted that the usage of aging as described in Section 3.2 also fosters

exploration. Indeed, the idea of exploration is to avoid the so-called greedy behavior, i.e.

the behavior which involves always selecting the best action according to the current

knowledge, disregarding the fact that this knowledge may be incomplete and/or obsolete.

Since aging gradually decreases the influence of the older knowledge on current decisions,

it also alleviates the greedy behavior and makes way for exploration.

However, as opposed to the ε-greedy method, employing of aging cannot guarantee

that sufficient exploration is performed in all situations. The benefit of such exploration is

that we do not need to sacrifice a fixed fraction of presentations for exploration.

We would like to specifically mention some situations in the context of our

recommendation system architecture, in which insufficient exploration can lead to

systematic presentation of worse-than-optimal recommendations. These situations assume

that the recommendation system is allowed to present N recommendations in one

presentation.

Exploration Situation 1 (exploration blockage): We suppose that a new

recommendation context is created and M new recommendation rules are added to this

context simultaneously, M>N. If sufficient exploration is not provided for, then after any N

recommendations receive positive feedback no other recommendations will ever be

presented. Such situation can be circumvented by using optimistic initial weights [SB98]

for the new recommendations, i.e. such weights which would enforce the presentation of

the new recommendation in the initial period. A similar situation occurs when there are

already M recommendation rules available for the context that we are investigating, M>N.

Mykola Golovin Part II. Adaptive Web Recommendations

26 3.3 Exploration versus Exploitation

If a new recommendation

rule is generated and its

initial weight is lower

than the weight of at least

N other recommendation

rules for the same

context, this rule will

never be explored, even

though it might be

possible that the new rule

would have higher

acceptance rate is

presented. Such situation

can be solved by using

optimistic initial weights

as well. One of the possibilities to implement optimistic initial weights is by using negative

feedback values as described in the next subsection.

Exploration Situation 2 (unawareness of interest shift): Due to a shift of the

users‟ interests one of the previously less popular recommendation rules becomes more

popular than the others. If this recommendation has not previously been among the N

recommendations with the highest weight, the recommendation system which prefers

exploitation to exploration will never become aware of this shift of interest. This situation

cannot be used by applying optimistic initial weights, since we are dealing with an already

existing recommendation. Use of aging can alleviate this problem but it does not solve it

completely, since aging is applied to all recommendation rules to the same degree.

These two situations are illustrated in Figures 2.5, 2.6 and 2.7. All three figures

show development in time for one recommendation context with three recommendation

rules. The learning process is iterated for 1000 steps. All rules have initial weights equal to

0. The number of recommendation which can be shown in one presentation N=1. The

acceptance rates of the recommendations are set to change with time as follows:

Recommendation

rule

Step 0 to 300 Step 300 to

600

Step 600 to

750

Step 750 to

1000

Rule 0 0.1 0.01 0.1 0.1

Rule 1 0.01 0.1 0.01 0.01

Rule 2 0.01 0.01 0.01 0.2

Table 2.1. Sample acceptance rates for different time step ranges.

Figure 2.5 shows the situation when the exploration is insufficient. The weights of

the recommendation rules at each time step are calculated according to the formula (3.2.1).

The recommendation system pursues greedy behavior. Figure 2.5 illustrates both the

Exploration Situation 1 and Exploration Situation 2. As long as Rule 0 receives positive

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

10 110 210 310 410 510 610 710 810 910

R
u

le
 w

e
ig

h
ts

Time step number

Fig. 2.5. Exploration vs. expoitation: lack of

exploration

Rule 0

Rule 1

Rlue 2

Mykola Golovin Web Recommendations for E-Commerce Websites

3 Feedback-based Optimization 27

feedback, it blocks any

further exploration. Although

the algorithm detects that at

step 300 the acceptance rate

falls, it is unable to provide

an alternative

recommendation. When at

step 750 the acceptance rate

of previously unpopular

Rule2 suddenly grows, the

algorithm is unable to react

adequately.

Figure 2.6 shows the

development of weights with

aging applied. The weights of

the recommendation rules at

each time step are calculated

according to the formula (3.2.4) with parameter T=25. The weight of the recommendation

rule Rule0 reacts quickly to the changes in popularity, but this is not enough to ensure

exploration, since the weights of other recommendation rules are too low.

Figure 2.7 shows the case when Exploration Situation 1 is solved by using

optimistic initial weights and Exploration Situation 2 is partially solved by using aging.

When the system detects that the acceptance rate of the currently presented

recommendation rule is falling, other recommendation rules are allowed to be explored.

The behavior of the Rule2 illustrates why aging solves the exploration problem only

partially. Indeed, although the Rule2 has gained popularity in step 750, it has only started

to be presented after step 900 when Rule0 has become sufficiently unpopular. If the Rule0

keeps being sufficiently

popular, Rule2 would not

be presented even though

its acceptance rate is higher.

If ε-greedy balancing is in

use, such issues do not

arise. This however does

not mean that ε-greedy

balancing is guaranteed to

achieve better results in

general. Indeed, the ε-

greedy balancing needs to

show random

recommendations at times,

including the ones with the

lowest acceptance rates.

-0,0006

-0,0004

-0,0002

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

10 110 210 310 410 510 610 710 810 910

R
u

le
 w

e
ig

h
ts

Time step number

Fig. 2.7. Exploration vs. expoitation: problem

of insufficient exploration partially solved

Rule 0

Rule 1

Rule 2

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

10 110 210 310 410 510 610 710 810 910

R
u

e
 w

e
ig

h
ts

Time step number

Fig. 2.6. Exploration vs. expoitation: aging

applied

Rule 0

Rule 1

Rule 2

Mykola Golovin Part II. Adaptive Web Recommendations

28 3.4 Feedback Values

Recommendations presented by the aging-based balancing may not always be the best of

all available recommendations but are usually sufficiently good. The best balancing

method should be determined experimentally for a concrete situation. We have compared

different ways of balancing exploration and exploitation experimentally in a simulated

environment. The results of the experiments are provided in Section 6.

3.4 Feedback Values

Different events induced by the web users can be assigned different feedback

values. Following are the typical cases which can result in feedback in an e-commerce

environment:

1. Viewing a product as a result of recommendation (recommendation

accepted/clicked)

2. Adding a product into to the shopping cart as a result of recommendation

3. Checking out the shopping cart which contains a product which was added as a

result of recommendation

4. Successful payment for the product which was added to the shopping cart as a

result of recommendations

5. Ignoring the recommendation

 The first four cases generate positive feedback; the last case can be

considered for either negative or neutral feedback. In our system, the feedback influences

the weights of the recommendation rules, i.e. the individual recommendations presented in

a certain context. It is also possible to use feedback in other ways, for example to influence

the selection of the recommendation generators as described in [TR04][TGR04]
6
.

The selection of concrete feedback values is left to the person who is installing and

configuring the recommendation system in the given environment. This person should

decide, how important different events caused by the recommendation system are and to

what extent they should influence the future behavior of the recommendation system. This

relative importance could be for example expressed as follows:

 Recommendation clicked: 1

 Add recommended product to shopping cart: 5

 Check out shopping cart with recommended product: 5

 Received payment for recommended product: 10

 Recommendation not clicked: 0

6
 For detailed discussion and comparison please see Section 4.5

Mykola Golovin Web Recommendations for E-Commerce Websites

3 Feedback-based Optimization 29

In this example, the same recommendation rule can obtain feedback several times

for the same presentation. Some of this feedback will reach the recommendation rule with

time delay. Such delayed feedback should however be distinguished from the delayed

reward in the sense of full reinforcement learning problem [KLM96]. In full reinforcement

learning problem the agent can make several steps until it receives reward in the so-called

terminal state. Delayed reward in this sense is usually a discounted reward which is given

to actions which have been taken in non-terminal states. In our recommendation system

each step is a terminal step and receives undiscounted reward either immediately or after a

time delay.

Alternatively to the static feedback values as mentioned above, we could use

feedback values which reflect the revenue of profit generated by the product. Some

researchers also consider the viewing time as a possible source for feedback, suggesting

that if a web page is viewed for longer time, it means that it is more interesting to the web

user. We argue that such intuition is unfounded, since longer viewing times can also be

caused by other factors, such as web user being distracted or switching to another browser

window.

Another alternative for setting the feedback values is using explicit feedback.

Explicit feedback is gathered by asking the user on the website to rate the presented

recommendations. Such feedback has been widely considered in the early research on

recommendation systems and is rarely used in the recent research. The chief reasons for

this are the additional burden put on web users (something which particularly e-commerce

systems are striving to avoid) and possibilities for unfair manipulation of the

recommendations. We do not employ explicit feedback in our system. For a discussion of

the implicit and explicit feedback please see [Lawr03].

In our prototypes EC and EDU we have not been able to use all variants of

feedback mentioned above. The EDU prototype was not an e-commerce website and

therefore the cases 2, 3 and 4 were not relevant. In the EC prototype the shopping cart and

payments were implemented in a separate system to which we did not have direct access.

We also did not have access to the information which is needed to set the dynamic

feedback values representing revenue or profit. Therefore, we had to constrain ourselves to

cases 1 and 5, namely “Recommendation clicked” and “Recommendation not clicked”.

The feedback values in our prototypes are discussed in Chapter 4.

The absolute values of the feedback values are not important in general case, since

the recommendation rules are selected for presentation by comparison to each other and

not to some absolute value. The case when the absolute feedback values become important

is when we need to relate it to the initial weights supplied by the recommendation

generators. This is more important for optimization algorithms using aging and less

important for algorithms using ε-greedy balancing without aging. Indeed, the algorithms

without aging use the formula (3.2.1) which overrides the initial weights after the first

presentation. On the contrary, in the formula (3.2.4) used by the aging-based algorithms

the initial weights play significant role for many presentations in the initial optimization

phase. To ensure sufficient exploration in the initial optimization phase, aging-based

algorithms rely on initial weights being optimistic, i.e. high enough to be presented

Mykola Golovin Part II. Adaptive Web Recommendations

30 3.5 Optimization Algorithms

sufficient number of times in the initial phase. We find it convenient to control that by

employing negative feedback values. Since our recommendation generators generate initial

weights in the range [0..1], such initial weights should be optimistic in particular with

respect to the already existing recommendation rules with lesser quality if negative

feedback is used. How optimistic such initial weights are depends on the value of negative

feedback. We investigate the different values of negative feedback experimentally in

Subsection 6.1.4 basing on the simulated environment.

3.5 Optimization Algorithms

The generalized algorithm for optimized selection of recommendations is shown

below:

The implementations of functions GetRecommendations(), GatherFeedback() and

AdjustWeights() can vary depending on the chosen optimization technique. So, the

implementation of the GetRecommendations() is responsible for having or not having the

random exploration component. The function GatherFeedback contains the definitions of

the numeric feedback values for different user actions. The function AdjustWeights()

determines whether aging is applied to the weights of the recommendation rules.

Using the techniques described in the previous subsection to solve the problems of

handling the “drift of interest” and balancing exploration versus exploitation, we have

constructed several algorithms for optimizing the presentation of the recommendations:

 REWARD_ONLY. This algorithm uses ε-greedy technique to balance

between exploration and exploitation. The “drift of interest” is not accounted

N – number of recommendations needed, {P}={P1,…., PK} – set of parameters,
describing the current context of the website

1:{C}=MatchContentNodes({P}) // Set of matching content nodes

2:{U}=MatchUserNodes({P}) // Set of matching content nodes

3:{T}=MatchTimeNodes({P}) // Set of matching content nodes

4:{R}=GetRecommendations(P,{C},{U},{T}) // applying selection policy P to

obtain the set of
recommendation rules {R}, |R|≤N

5: PresentRecommendations({R}) // Present the recommendations on the

website

6: {FR}=GatherFeedback() // Get the feedback from user.

7: AdjustWeights({R},{FR}) // Adjust weights of the recommendation

rules according to feedback

Mykola Golovin Web Recommendations for E-Commerce Websites

3 Feedback-based Optimization 31

for, i.e. no aging is used and the weights of the recommendation rules are

calculated according to the formula (3.2.1).

 REWARD_DEC (reward-decay). This algorithm combines aging by

exponential decaying according to formula (3.2.4) with ε-greedy balancing

technique. Negative feedback values are not used since ε-greedy technique

provides for sufficient exploration even in the initial phase, thus making

optimistic initial weights redundant.

 REWARD_PEN (reward-penalty). This algorithm uses aging by exponential

decaying and negative feedback values. The algorithm relies on aging for

exploration and does not perform random exploration.

The detailed experimental analysis and comparison of the above algorithms is

presented in the next chapter.

It is also possible to construct other recommendation optimization algorithms by

combining or modifying the techniques we have described. However, in our preliminary

experiments with these algorithms we have not been able to achieve improvement in

comparison to the algorithms listed above. We discuss these algorithms here but do not

further analyze them in Chapter 4. In particular, we have considered the following

algorithms:

 The ε-greedy algorithm with negative feedback values.

 The algorithm combining aging by exponential decaying, negative feedback

and ε-random selection of the recommendations for exploration.

In case of the first algorithm we have found out that the negative feedback values

do not have any influence on the learning, since only the relative values are important for

selection of recommendation rules. The optimistic initial weights are not relevant for the

ε-greedy technique, since the ε-greedy technique always dedicates a fraction of

recommendations to exploration.

The motivation for the second algorithm was the fact that the aging-based balancing

technique does not guarantee sufficient exploration, in particular in Exploration Situation

2. There are cases, when all the recommendations currently presented on the website are

clicked so often, that the aging with a given parameter T cannot sufficiently decrease the

weights of these recommendations to expose other underexplored recommendations in the

time interval between two clicks. To overcome this problem, we have investigated the

possibility of augmenting the aging-based exploration with exploration implemented

according to ε-greedy technique, i.e. introduce a fraction of the presentations in which the

recommendations are selected according to a pseudorandom number generator.

According to our experience, the application of this algorithm increases the number

of parameters which needs to be set but does not bring an improvement of the acceptance

rate. Apparently, the deterioration of the acceptance rate caused by the random component

is larger than the improvement achieved through guaranteed exploration.

Mykola Golovin Part II. Adaptive Web Recommendations

32 4.1 Real-life Prototype Implementations

4. IMPLEMENTATION OF THE REAL-LIFE PROTOTYPES AND THE

SIMULATED ENVIRONMENT

To comprehensively evaluate our recommendation system approach, we have

performed a series of experiments in different environments. So, the evaluations of the

different recommendation generators were done on the EDU website. The recommendation

system implemented on this website was a joint work with A. Thor [TR04][TGR04], who

has been working on the optimization of recommendation systems based on selection of

different recommendation generators as opposed to selection of individual

recommendations which is described in this thesis. On this website, we have also tested the

effects of presenting different recommendations to different user groups. The effects of the

optimization of recommendations in an e-commerce environment were studied on the

prototype EC. The simulated prototype SIM provided a platform for thorough investigation

of different optimization algorithms and parameter settings.

In this chapter we describe the implementations of our real-life prototypes and the

simulation environment. In the first sections of the chapter we describe the real-life

experimental environments we used (Section 4.1) and the adaptation of our generic

recommendation system architecture to these environments (Section 4.2). In Section 4.3

we provide a description for the simulated environment and the data from the EC prototype

which were used to create it. Section 4.4 elaborates on the structure of relational databases

used in our prototypes to implement recommendation rule database and web data

warehouse.

4.1 Real-life Prototype Implementations

The prototypes of the adaptive recommendation system corresponding to the

general architecture described in the previous chapters were implemented and applied at

two real-life websites. The first one is the website of the Database Group, University of

Leipzig (http://dbs.uni-leipzig.de, approximately 2000 page views per day), further

denoted as EDU. It shows two (N=2) recommendations on all html-pages of the site. This

prototype was developed as a joint work with A. Thor. In particular, the implementations

of the recommendation generators used on the EDU website are due to A. Thor. This

prototype was used to study the user group based recommendations and to compare two

approaches to optimizing the web recommendations. Both optimization approaches are

based on user feedback. In the first approach implemented by A. Thor the optimization was

done by adaptive switching of different recommendation generators. In the second

approach (the approach presented in this thesis) the optimization was done by combining

the recommendations from different recommendations generators and adjusting their

weights individually. The website EDU contains information related to teaching and

Mykola Golovin Web Recommendations for E-Commerce Websites

4 Implementation of the Real-life Prototypes and the Simulated

Environment

33

research in the area of database technology at the University of Leipzig. This information

includes for example study material, research papers, personal pages of the researchers.

The second real-life application of our architecture is a mid-size commercial online

software store (http://www.softunity.com, approximately 5000 page views per day), further

denoted as EC. The online store is run by the German company Koch Media GmbH

(http://www.kochmedia.com/). Here, our approach is used to automatically select and

present five (N=5) recommendations on the product detail pages. The products presented

on the website include computer and console games, software for home use and supporting

products such as solution books for games and accessories for home computers and game

consoles. The product details presented on the website include pictures, screenshots and

text descriptions. Sometimes a trial or protected version of the software product is offered

for download.

Both websites have around 2500 content pages. The recommendation database

contains about 60000 rules for (EDU) and 35000 rules for (EC).

All recommendation generators and the optimizer on the EDU and EC websites, as

well as the websites themselves, are implemented using the PHP scripting language. The

experimental data from the EDU website presented here were obtained in the period from

April 2003 to September 2004. The experimental data from the EC website were obtained

from December 2003 to May 2005.

The implementation effort for creating the EC prototype amounts to 2 man-months.

The EDU prototype was created by porting the recommendation system used on the EC

prototype in several days. Such swift development was made possible by the generic nature

of our architecture as well as by the fact that the website-specific components such as web

data warehouse and recommendation generators were already implemented by A. Thor.

4.2 Adaptation of The Generic Architecture to The Prototypes

Our generic recommendation system architecture has been adapted to two specific

real-life websites. We have described some of the specific implementation details in the

previous sections as examples of implementation of our generic architecture. In this section

we summarize the correspondences between our generic architecture and concrete

prototype implementations.

4.2.1 Web Usage Data: Crawler Detection, Data Cleaning

A crucial problem for a recommendation system which utilizes web usage data is

the preparation and cleaning of these data. The most common source which provides web

usage data is the log files of the web server. Although some researchers consider working

directly with usage data represented in this form, for a number of reasons it is beneficial to

transfer the usage data into a relational database. The following reasons speak for using a

relational database to store the web usage data [RS03]:

http://www.kochmedia.com/

Mykola Golovin Part II. Adaptive Web Recommendations

34 4.2 Adaptation of The Generic Architecture to The Prototypes

 Large amounts of data. The amount of web usage data even on smaller websites

grows very fast. If we need to analyze such data over longer periods of time, the

amount of web usage data can grow to multiple Terabytes. Accessing such data

for analysis in sequential manner, as usual for plain files, can be prohibitively

slow. A relational database with its index structures ensures the feasibility of

the analysis.

 Flexible analysis. Relational databases support a large number of possibilities

for analyzing the data ranging from ad-hoc queries to interactive tools for

OLAP analysis and data mining.

 Using a relational data representation, it is easy to establish relations with data

coming from other data sources, for example with a database containing

information about registered web users or about the products presented on the

website.

In our architecture we follow the approach of storing the web usage data into a

relational database. In constructing such relational database we adhere to the data

warehouse technology, which offers a specially designed relational schema optimized for

performing analysis of the large volumes of data. The resulting database is called web data

warehouse and is shown as one of the components of our architecture in Figure 2.2. The

relational structure of the web data warehouse is discussed in Section 4.4.

Before any analysis can be performed on the web usage data, the data needs to be

prepared and cleaned. Sometimes this preparation is done during the process of loading the

data into the data warehouse; sometimes it makes sense to prepare the data after they are

loaded into the relational database. Usually the following tasks need to be performed:

 Session reconstruction. In case when the sessions are not supported by the

web server or application server directly, it may be hard to determine whether

different page views belong to the same sessions. Special algorithms have

been proposed for accomplishing this task. These algorithms are however

mostly heuristic and do not guarantee the gapless reconstruction of sessions.

In the EDU prototype, the session reconstruction was implemented by A. Thor

by combining several session reconstruction techniques [TR04]. The primary

technique for maintaining sessions is so-called “HTTP cookies”
7
. If the HTTP

cookies are not supported by the client web browser, a set of heuristics is

applied. This set of heuristics analyzes the information contained in the HTTP

Request which came from the web user, such as IP address, access time,

browser type etc. and determines whether different requests belong to the

same session. In the EC prototype, we make use of the ability of the

application server to maintain sessions. The application server is able to

maintain sessions both using cookies and, if cookies are not available, using a

special parameter “session identifier” which is automatically added to the

URL. Utilizing this application server feature does not require additional

7
 For specification of HTTP Cookies see RFC-2956, http://www.rfc-editor.org/

Mykola Golovin Web Recommendations for E-Commerce Websites

4 Implementation of the Real-life Prototypes and the Simulated

Environment

35

development effort in the web application. Instead of putting the usage

information into log files in text format, our application puts all available

information including the session id into a temporary database. The usage data

are then transferred from the temporary database into the web data warehouse.

 Crawler detection and removal of page views originating from crawlers.
Crawlers are programs which automatically surf the Internet and gather

information. Crawlers are also known as “robots” or “bots”. Most commonly

the crawlers are used by search engines such as google.com and yahoo.com to

update their search databases. The appearance of crawlers can distort the web

usage data, since crawlers do not behave like normal web users. They usually

follow all links found on the website and generate larger amount of usage

data. Therefore, to obtain the correct picture of the web user behavior we need

to detect and remove the sessions originated by crawlers. An interesting

approach to the elimination of crawler sessions is proposed by [TR04]
8
. The

detection of the crawler sessions in [TR04] is done by placing a special

hyperlink on the website, which is visible only to web crawlers and not to

human website visitors. This approach can be used to reliably distinguish

between the sessions coming from crawlers and human users after the

complete page view history of a session has been captured. This approach is

however not suitable for use with online feedback, since the access to the

hidden hyperlink may occur later in the session. We discuss the online crawler

detection in Section 4.2.4.

 Page view detection. An additional problem which needs to be solved in

many web applications is the page view detection. Each page view usually

consists of several HTTP requests. One of them is the main request which is

triggered immediately by the user; other requests are sent by the browser to

obtain supporting information, such as subdocuments, pictures and multimedia

objects. In many web applications built with traditional technology this

problem can be solved relatively easy, since the main HTTP request usually

asks for an HTML-file and the auxiliary requests ask for other types of data.

However in modern web applications built using so-called AJAX
9
 technology

such a straightforward solution doesn‟t work, since such applications also

request auxiliary data in HTML format. In the EDU prototype we consider the

requests for HTML documents to be the page views and all other requests to

be auxiliary. In the EC prototype the web application takes care of logging

only the main page view request and not the auxiliary requests.

8
 Discussed in more detail in Section 5.4

9
 For more information about AJAX technology please see http://www.w3schools.com/Ajax/ajax_intro.asp

Mykola Golovin Part II. Adaptive Web Recommendations

36 4.2 Adaptation of The Generic Architecture to The Prototypes

4.2.2 Ontology Graphs and Ontology Generators in Prototypes

The ontology graphs have been specially designed to help incorporate the

implementation-specific features into our generic architecture. Our prototypes EC and

EDU make use of the ontology graphs as follows:

EC: The prototype EC features all three possible ontologies for content, user and

time. The content ontology for the EC prototype contains all products and categories in the

web shop, with relations between products and categories. There are several types of

product detail pages on the EC website, for example normal product detail page or product

highlight page (special page layout for best-selling products). For our recommendations

system it is less important which layout is used to present the product; important is the

product that is shown. The mapping clauses for the content ontology nodes in the EC

prototype therefore use product ids for mapping, disregarding the URL under which the

product is shown, for example:

ProductID=‟ECD000687K‟

In case of the EC prototype, the content ontology is present in the website database

in form of hierarchical product catalog and needs to be extracted and converted into the

representation used by our recommendation system. The implementation of the content

ontology generator is therefore quite straightforward.

The user ontology graph of the EC prototype consists only of three nodes which

represent the countries in which the purchased products can be delivered: Germany and

Luxembourg, Austria, Switzerland and Liechtenstein. This information is determined

basing on explicit country selection by the web user and is instantly available for use in the

mapping clauses. An example of the mapping clause is given below:

UserCountry=‟CH‟ or UserCountry=‟FL‟

The time ontology of the EC prototype consists of several nodes which denote

certain periods of time when some time-restricted sales offers are effective. These nodes

are used for several manually specified recommendation rules. The nodes and the attached

mapping clauses are also created manually. An example of the mapping clauses for the

time ontology:

WeekOfTheYear=50 or WeekOfTheYear=51

EDU: The prototype EDU uses only two ontologies, content ontology and user

ontology.

The content ontology for the EDU prototype contains the URLs of the web pages

on the server. That means that even if the same content were shown on two pages with

different URLs, this would be represented as two different nodes in the content ontology of

the EDU prototype. In the EDU prototype, the content ontology is implicitly present in the

directory structure on the web server. The ontology generator extracts this information and

converts it into the format understood by our recommendation system. In the EDU

Mykola Golovin Web Recommendations for E-Commerce Websites

4 Implementation of the Real-life Prototypes and the Simulated

Environment

37

prototype, the mapping clauses for the content ontology graph use the names of HTML (or

PDF etc.) files. An example of the mapping clause is given below:

URL like „%/study/wintersemester0809/database_systems1.html‟

The user ontology graph of the EDU prototype is created using a decision tree

algorithm J48
10

. The decision tree predicts the interest area of the user based on the user‟s

country. An example for the node representing users interested mostly in research topics is

given below:

UserCountry in ('in','cn','us','ru','se','gr','jp','ca','id','kw','np','hk','nl','ua')

The value of UserCountry for each user is determined based on the lookup of his
11

IP address in the open database of IP addresses GeoLite Country
12

.

Further details about the user ontology graph for the prototype EDU can be found

in Section 5.3.

We have also considered creating the time ontology in the EDU prototype and

utilizing it for making time-specific recommendations for students. Possible cases where

the time-specific recommendations could be useful are for example recommending

examination announcements at the end of each semester or study plan in the beginning of

each semester. However, we have not implemented this feature in our prototype.

As can be seen from the examples in this subsection, the mapping clauses can be

readily used as part of SQL queries to quickly select the relevant nodes from a table in a

relational database. In Section 6.2 we further investigate the retrieval of information from

the ontology graphs stored in a relational database and in main memory.

4.2.3 Recommendation Rule Generators in the Prototypes.

The following recommendation generators were used in our prototype

implementations:

 Content similarity. This recommendation generator determines for each

product (EC) or HTML page (EDU) the M most similar products using

TF*IDF text similarity score. We have used the implementation of the

normalized TF*IDF algorithm which is provided by the MySQL database

server
13

. The parameter M is configured for the specific website. We have

used M=5 on the EDU prototype and M=10 on the EC prototype. The initial

weight of the recommendation rules is the TF*IDF similarity score as returned

by the algorithm.

10

 Weka‟s improved implementation of the C4.5 algorithm [Quin93]
11

 In this thesis, the masculine pronomena are used to refer to both masculine and fenimine persons.
12

 http://www.maxmind.com/app/geoip_country
13

 http://dev.mysql.com/doc/internals/en/full-text-search.html

Mykola Golovin Part II. Adaptive Web Recommendations

38 4.2 Adaptation of The Generic Architecture to The Prototypes

 Sequence patterns. This recommendation generator recommends products

(EC) or HTML Pages (EDU) most often succeeding other products/pages in

the same user session. The initial weight is set to the probability of one

product or page succeeding the other one based on the historical information

from the web usage warehouse.

 Item-to-Item collaborative filtering. (EC) Products, which most often appear

together in one user‟s basket, are recommended for each other. Collaborative

filtering is considered the most successful recommendation technique,

although some limitation and drawbacks of this recommendation technique are

known. So-called item-to-item variant of collaborative filtering eliminates

some of the scalability problems which the classical collaborative filtering has.

This type of collaborative filtering produces the recommendation rules of the

format which fits well into our data structure. Item-to-item collaborative

filtering is due to [LSY03]. The initial weights provided by the

recommendation generator are based on cosine similarity as described in

[LSY03].

 Search Engine recommendation generator (EDU). This recommendation

generator is applicable to the users coming from a search engine such as

Google. It extracts the search keywords from the HTTP Referrer field and uses

the website‟s internal search engine to generate recommendations for each

keyword. The recommendation generator was first described and implemented

in [TR04]. The initial weights are set based on the relevance score which is

provided by the website‟s internal search engine.

4.2.4 Capturing Online Feedback in Prototypes

In both prototypes the clicks on recommendations were considered as feedback

with value 1. If negative feedback was not in use, we used the value 0 to denote that the

user has not accepted the recommendation. If negative feedback was used, its value was

different in different experiments as described later in this chapter. Theoretically, for the

EC prototype we could have richer possibilities for feedback. So, for example, we could

have additional feedback if the product is put into basket, when the basket is checked or

when the transfer of the money for the purchased product is confirmed. We could also let

our feedback values be influenced by the profit brought by the individual product. We

were however not allowed by the website owners to access the data and programming

interfaces needed to implement these additional kinds of feedback. Therefore the feedback

for our EC prototype depends only on users clicking or not clicking the recommendation

links.

An important issue for the online optimization is filtering out the feedback from

crawlers. Not all crawler detection techniques which can be applied to the web usage data

in general are applicable for online crawler detection. In particular the reliable technique

utilizing a hidden hyperlink as proposed in [TR04] is not applicable here, since the order in

Mykola Golovin Web Recommendations for E-Commerce Websites

4 Implementation of the Real-life Prototypes and the Simulated

Environment

39

which crawlers access the hyperlinks is different for every crawler and it is possible, that a

recommendation hyperlink is visited and gets feedback before the hidden hyperlink is

visited. In this case the recommendation would receive false feedback. For the online case

we have to fall back onto the less reliable heuristic techniques. One such technique is

checking whether the file “/robots.txt” is the first page view of the session. This technique

relies on the “de-facto” internet standard [Kost96] which specifies the method for

controlling the behavior of the web robots and crawlers by the website owners. This

control method assumes that the first request a crawler should send to a website is a request

for the file “/robots.txt”. The file robots.txt specifies which areas of the website are

allowed be indexed be the crawlers. Our recommendation system checks the first HTTP

request of the current session. If request for “/robots.txt” was the first request of the current

session, the session is ignored by the recommendation system. Another technique is based

on the publicly available databases of robots and crawlers. These databases contain lists of

IP addresses and values of HTTP-attribute “User-Agent”, which can be used to detect

crawlers and robots. To implement this type of online crawler detection in our prototype,

we have combined the lists from the websites http://www.user-agents.org/ which contains

the values of User-Agent attribute and http://www.robotstxt.org/ which contains both the

values of User-Agent attribute and the IP-addresses of known crawlers.

4.3 Simulated Environment Overview

Initially, we were planning to perform all the experiments on the real-life websites.

However, it has turned out that the amount of usage data generated by users of the EC and

EDU is not sufficient to adequately explore various algorithms and algorithm parameters.

To be able to comparatively test different approaches, we had to split the presentations

between them. In one year, we could comparatively test only 5 combinations of different

recommendation techniques and parameters, including the baseline technique without

optimization.

To overcome the problem of insufficient usage data on the available real-life

websites, we have created a simulation environment to extensively test the different

combinations to determine the optimal parameter values. To implement the simulation

environment, we have taken the usage data from the http://www.softunity.com (EC). The

usage data were taken from a period of 12 months, January 2006 until July 2006 and

September 2006 to January 2007 inclusive. August 2006 was omitted, since due to a server

crash and subsequent website relocation very few data were available for August 2006.

During this period, the adaptive recommendation system installed on the EC

website was disabled in order not to influence the obtained usage data. The following data

from the EC website were used to perform the simulation:

http://www.user-agents.org/
http://www.robotstxt.org/
http://www.softunity.com/

Mykola Golovin Part II. Adaptive Web Recommendations

40 4.3 Simulated Environment Overview

 Start pages of all sessions, i.e. all pages from which the users have started a

navigation session on the site, in chronological order of the sessions. The page

views originating from web crawlers were eliminated from the usage data we

are using for simulation. For the described period, there were 784,747 sessions

with a total of 971,197 page views.

 The session length distribution. The session length distribution for the described

period is shown in Figure 2.8. The average session length for the EC website in

this period was ~1.237. There has been a small number of sessions containing

more than 25 page views. We deem such sessions to come not from human

users but from unknown crawlers. Such sessions are not used in the simulation.

For every month, the conditional probabilities of the product to be viewed after

another product in one session are calculated based on the above data. The product

information and the recommendation rules with their initial weights were also taken from

the EC website.

To test the different optimization algorithms with different parameter combinations,

we used simulation runs. For every experiment described later in this section, the average

results obtained from 10 runs are presented. The user behavior in every run is reproduced

by an agent based on a pseudo-random number generator. The agent is presented all

session start pages from EC in chronological order. For every page, the agent is provided

with a selection of several recommendations. The agent may select one of the

recommendations or not select any. If the agent selects a recommendation, it is presented

the page the recommendation was leading to. On this new page, it is presented a list of

several recommendations again. The agent‟s decision whether to continue the session or

not is based on the session length distribution as shown in Figure 2.8. The selection of the

recommendations by the agent is based on the conditional probability of a product to be

seen after another product for the month in which the page view takes place.

Figure 2.8. Distribution of the session lengths on the EC prototype.

Number of sessions is shown on the logarithmic axis y.

Mykola Golovin Web Recommendations for E-Commerce Websites

4 Implementation of the Real-life Prototypes and the Simulated

Environment

41

To test the different parameters, the following routine is used: we generate a set of

seeds for pseudo-random generator. For each algorithm/parameter combination we want to

test, we make several runs, every time with a different seed from the set. To test another

algorithm/combination, we use the same set of seeds. This way, different algorithms

combinations are tested on agents behaving in a similar way; however any non-common

behavior the specific agent may have is alleviated by averaging multiple runs. The

simulation environment was implemented in Java programming language. In all

experiments in this section the number of simultaneously presented recommendations N is

set to 5, unless explicitly stated otherwise.

4.4 Database Structure

4.4.1 Recommendation Database

The recommendation rules are stored in a relational database. Both our real-life

prototypes and the simulation environment use MySQL database server for the

recommendation database. The relational schema of the recommendation rule database is

shown in Figure 2.9. The rules are maintained in the table Rules. Some additional

information is stored together with the rules, such as the number of times the

recommendation was presented (Npresented), number of times the recommendation was

clicked (Nclicked), the recommendation type (the recommendation generator which

Rules

RID

ContentNode

UserNode

TimeNode

RecomNode

Weight

Npresented

Nclicked

Timestamp

ContentNodes

Nid

MatchRule

Name

RecomLink

RecomDescription

RuleTypes

RID

RuleType

Description

UserNodes

Uid

MatchRule

ContentArcs

ID

ChildNid

ParentNid

UserArcs

ID

AUid

Buid

Presentations

Pres_ID

Position

RuleID

SessionID

TimeNodes

Uid

MatchRule

TimeArcs

ID

AUid

Buid

Figure 2.9. Structure of the recommendation database

Mykola Golovin Part II. Adaptive Web Recommendations

42 4.4 Database Structure

generated the rule), and the creation time of the rule. The attributes ContentNode,

UserNode and TimeNode are the foreign keys which uniquely identify the values of the

respective context dimension (null values are allowed to cover the partially specified

context information). RecomNode identifies the recommended content and thus also refers

to the ContentNodes table.

The context dimensions are stored in pairs of tables ContentNodes/ContentArcs,

UserNodes/UserArcs, TimeNodes/TimeArcs to allow the representation of ontology

graphs. This representation of the ontology graphs is straightforward but has potential

performance drawbacks. We discuss the ways of improving the performance of the

ontology graph in Section 6.2. The node tables contain information on all relevant content

items (products or URLs), users and time events that may occur in the context or

recommendation part of a rule. The recommended content is represented by the fields

Name, RecomLink and RecomDescription in ContentNodes.

The table RuleTypes specifies from which recommendation generator algorithm a

given recommendation rule comes. The same recommendation rule may come from several

recommendation generators.

The table Presentations is used to temporarily store the information about user

recommendation presentations and the session identifiers. The data in this table is regularly

moved to the web data warehouse to allow further evaluation.

4.4.2 Web Data Warehouse

The Web Data Warehouse was implemented using Microsoft SQL Server 2000.

Microsoft SQL Server 2000 provides extensive functions and tools which simplify the

creation of data warehouses and analytical processing of the data. The following functions

are available in MS SQL Server 2000:

Partitioned tables. Partitioned tables simplify and speed up processing the large

tables. The fact tables in our data warehouse are good candidates for horizontal partitioning

on the date key. By partitioning the tables we can improve the speed of adding and

removing the data. The adding of data to the data warehouse is accelerated due to the

ability to first load the data and then to build the indexes, as opposed to the costly

operation of index update. The removal of data is sped up by the ability to easily remove or

move entire partitions, which is a typical operation for data warehouses where older data

are regularly relocated to archive.

Bulk load facility. Bulk load facility allows faster loading of the large portions of

data into tables in the database. Analogous to partitioned table, bulk load facility speeds up

the loading by deferring the updates of the indexes until all data rows are loaded.

Microsoft Data Transformation Services (DTS). Microsoft Data Transformation

Services is a powerful toolkit for data extraction, transformation and integration, suitable

for flexible creation of the ETL (extract, transform, load) tools. Microsoft Data

Transformation Services provide the possibility to graphically specify the workflow and

Mykola Golovin Web Recommendations for E-Commerce Websites

4 Implementation of the Real-life Prototypes and the Simulated

Environment

43

data flow with data transformations. It allows scheduling of the data extraction,

transformation and loading tasks.

Microsoft Analysis Services is providing the multidimensional database, the tools

for creation of the OLAP cubes with different storage types (MOLAP, ROLAP, HOLAP)

and the data mining algorithms, such as “Microsoft Clustering”, “Microsoft Association”,

Presentation

PK presentation_id

FK2 recom_rule_id

 screen_position

FK1 pageview_id

FK5 ContentNode

FK6 UserNode

FK9 TimeNode

FK7 RecomNode

FK8 RecomType

 Weight

FK3 prod_id_current

FK4 prod_id_recommended

 timestamp

Pageview

PK pageview_id

FK1 session_id

 session_position

 url

 referrer

FK2 useragent_id

 prev_pageview_id

 next_pageview_id

 pageview_timestamp

 client_ipaddr

 timestamp

Session

PK session_id

 length

 duration

 start_timestamp

 end_timestamp

FK2 userid

FK1 useragent_id

Recom_rule

PK id

 ContentNode

 UserNode

 RecomNode

FK1 RuleType

user_agent

PK useragent_id

 vendor

 oper_system

 version

 language

Product

PK id

FK1 product_id

 title

 ean

 isbn

 largeImageURL

 smallImageURL

 currency

 description

 listPrice

 offerPrice

 url

 porto

 timestamp

UserNodes

PK id

 type

 country

 description

ContentNodes

PK id

 name

 product_id

Content_edges

PK id

FK1 aid

FK2 bid

FK3 type

 weight

Content_edgetypes

PK id

 name

* *

*

*

*

*
*

ruletypes

PK id

 name

 Description

 Description1
*

*

* *

*

*

*

*

*

*

*

*

Fact tables

TimeNodes

PK id

 Description

*

User_edges

PK id

FK1 aid

FK2 bid

Time_edges

PK id

FK1 aid

FK2 bid

**

* *

Dimension tables

Figure 2.10. Database structure of the web data warehouse (EC)

Mykola Golovin Part II. Adaptive Web Recommendations

44 4.4 Database Structure

“Microsoft Sequence Clustering” and others. Additional tools need to be used for

visualization of the OLAP cubes. An example of such tool is the PivotChart/PivotTable

COM-object supplied with Microsoft Office.

The relational database schema of the web data warehouse is shown in Figure 2.10.

The schema shown here is the one that was used on the EC prototype. The data warehouse

used on the EDU has a similar relational schema. However, it has some distinctions due to

the fact that the recommendations were presented not on a product basis but on a HTML

page basis. The data warehouse used for the EDU prototype also has additional tables and

fields which serve to support the optimization approaches based on the recommendation

generator selection and to perform comparative analysis of the approaches based on the

recommendation generator selection and the approaches based on the optimized selection

of individual recommendations.

The structure of the web data warehouse is specific to the domain of e-commerce as

well as to the functions the data warehouse has to support. The data warehouse holds

historic data about the web usage and changes in product assortment. The task of the web

data warehouse is to support executing analytic queries, building the OLAP cubes and

performing data mining. The data warehouse is based on a galaxy schema with several fact

tables and multiple dimension tables which are shared between fact tables. We use an ETL

process created using the Microsoft Data Transformation Services toolkit to import both

web usage data and auxiliary data such as information about products. The ETL process is

executed periodically. Although it has been a common practice in web usage mining

systems to use the log files of the web server to update the data warehouse, we use the

temporary table Presentations of the recommendation rule database to feed the data

warehouse, since this significantly the data transfer and cleaning.

Most modern application servers and web development frameworks are able to

maintain sessions automatically and transparently manage the propagation of session

identifiers between individual page views. A common practice for session identifier

propagation is by using cookies when supported by the browser. If the cookies are not

supported by the browser, the session identifier is transmitted as a query parameter in the

request URL. The session identifier is also exposed to the web application. We make use

of this feature and store the server-supplied session identifier for every presentation in the

temporary table of the recommendation rule database. This significantly simplifies the ETL

process: for example, we do not need to identify sessions in the ETL process. Some

transformations are applied to the session and presentation data when they are transferred

to the data warehouse. So, the start, end and duration and the number of page views

(length) of the session is calculated based on the information in the table Presentations. For

our prototype applications we also assume that the user component of the recommendation

context stays constant during the entire session and for the sake of simpler analysis

associate every session with a certain user node. In general, however, it is possible for the

user component of the context to change within one session, for example when the user has

a possibility to specify some of its attributes, such as language, country etc. explicitly on

the website.

Mykola Golovin Web Recommendations for E-Commerce Websites

4 Implementation of the Real-life Prototypes and the Simulated

Environment

45

We have created several OLAP-Cubes: Session, Pageview, Presentation and

Product. The cubes are based respectively on the tables with identical names in the data

warehouse as fact tables. The fact tables are shown on the right side in Figure 2.10. The

tables Session and Pageview hold the information regarding the usage of the website.

The table Presentation logs the presentations of the recommendations and whether

the user clicked on them. The table Products contains the historical information about the

products shown on the website. Some tables have redundancy in order to eliminate the

need for additional joins, which speeds up the processing of the OLAP cubes. So for

example the table Presentations contains not only the reference to the recommendation rule

id, but also some information which is already contained in the recom_rule table, such as

ContentNode, RecomNode, TimeNode, Presentation. Both tables Pageview and Session

have the field “useragent_id”.

The tables which contain historical data, i.e. several versions of the same objects at

different times have artificial keys unique to the data warehouse. Tables such as

Datasource, Recom_Rules etc. have their own artificial keys in the recommendation rule

database. These keys uniquely identify the respective objects throughout the system‟s

lifetime both in the recommendation rule database and in the data warehouse.

We use HOLAP (hybrid OLAP) implementation provided by the Microsoft SQL

Server. The HOLAP partitioning is vertical, i.e. the detail data stay in the relational

structure whereas the aggregated data are stored in the multidimensional structure. The

cubes are processed incrementally at regular time intervals. The hybrid OLAP

implementation allows maintaining a reasonable trade-off between the size of the OLAP

cube and the time needed to perform multidimensional queries on the cube. The OLAP

cubes are used for human evaluation of the web usage and product data. Data mining

algorithms are used to generate the web recommendations based on the data stored in fact

tables.

Mykola Golovin Part II. Adaptive Web Recommendations

46 5.1 Prerequisites and Effects of the Optimized Recommendations

5. EXPERIMENTS ON REAL-LIFE PROTOTYPES

5.1 Prerequisites and Effects of the Optimized Recommendations

Figure 2.11 shows that the number of clicks per recommendation rule is distributed

according to a Zipfian-like law (in Figure 2.11, only the recommendations with at least 100

presentations are considered.). The data shows that a relatively small percentage of the

recommendation rules brings the majority of clicks. This supports our optimization

heuristic, since it shows that we may achieve overall improvement of the acceptance rate

by presenting the most successful recommendations more often.

The analysis of the customer and purchase data has also shown that 3.04% of all

purchased products were bought immediately after clicking the recommendation, and

3.43% of all purchased products were recommended in the same session.

In general, 2.07% web users of www.softunity.com are becoming customers (this

metric is usually regarded as CCR – Customer Conversion Rate). For web users who

clicked a recommendation this value is 8.55%, i.e. more than four times higher.

The absolute percentage values which are presented in the experimental data seem

to be very small. The acceptance rates of recommendations lie within 1%, with

improvements through optimization measured in fractions of a percent. However, it is

important to note, that according to the study [Shop07] the average customer conversion

rate for internet shops lies between 2% and 3%. Therefore, a variation of the conversion

rate amounting as small as a fraction of percent can be of large importance for the

commercial success of an e-commerce website. For a larger website, even an improvement

of 1 percent can result in revenue increase of hundred thousand to millions of euro per

year. Also, the absolute

values of the

acceptance rates are

influenced by aspects

such as the layout of

the website and the

number of

recommendations

presented

simultaneously.

Therefore, it is

important to study not

the absolute values of

the acceptance rates

but their relative values

for different

Fig. 2.11. A small percentage of recommendations

brings the majority of clicks (EC, EDU)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 >1

EC

EDU

Number of clicks per rule
0 1 >1

P
e

rc
e

n
t

o
f

ru
le

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
t

o
f

c
li

c
k

s

http://www.softunity.com/

Mykola Golovin Web Recommendations for E-Commerce Websites

5 Experiments on Real-Life Prototypes 47

Fig. 2.12. Additions to basket as a result of

recommendation (EC)

Additions to shopping

cart as a result

of recommendation

Period of 1 month.0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

immediately in the same

session

Optimized algorithm Non-optimized algorithm

algorithms.

Figure 2.12 shows the

effects of our optimization

algorithm in terms of buying

behavior, in contrast to the

non-optimized selection of the

recommendations. The non-

optimized algorithm uses the

initial weights supplied by the

recommendation generators as

described in Section 4.2.3 to

select the recommendations

and performs no feedback-

based optimization. Figure

2.12 shows that the optimized

approach results in a noticeable increase of the number of additions to shopping carts.

The distribution of the number of presentations for the recommendation rules

generated by different recommendation rule generators is shown in Figure 2.13. The

average acceptance rate for the recommendation rules generated by the same generator is

shown in Figure 2.14. Notably, the recommendations created manually have small number

of presentations (due to the small number of manually created recommendation rules) but

very high acceptance rate compared to the other types of recommendations, since they are

based on human knowledge. An example of such manual recommendation on the EC

website is the special “driving wheel” device for PC which is recommended as an

accessory to the car racing games.

5.2 Optimization

Algorithms

To evaluate the

effectiveness of the different

optimization algorithms in the

real-life environment, we have

compared the performance of the

reward-only and reward-penalty

optimization algorithms with the

selection of recommendations

based on the initial weights

supplied by the recommendation

generators. For an evaluation

period of several months the

recommendation selection

Figure 2.13. Presentation number for recommendation

generated by different recommendation generators(EC)

Mykola Golovin Part II. Adaptive Web Recommendations

48 5.2 Optimization Algorithms

algorithm on the EC website was

chosen with equal probability from one

of the following:

 REWARD_ONLY, ε-

greedy balancing with

ε=0.2 without aging

 REWARD_ONLY, ε-

greedy balancing with

ε=0.05 without aging

 REWARD_PEN, aging

using exponential

decaying with T=500 and

negative feedback

 REWARD_PEN, aging

using exponential decaying with T=200 and negative feedback

 without optimization, the recommendations are selected for presentation based

on their initial weights as supplied by the recommendation generators

Originally we have been planning to conduct all experiments on the real-life

prototype. However, it has turned out that the amount of feedback generated on the real-

life website is not sufficient to thoroughly investigate all possible algorithms and parameter

combinations. Therefore we have conducted the more thorough investigation in the

simulated environment as described later in this chapter.

The comparison of the results obtained on the real-life website with the similar

results obtained in the

simulated environment can be

used to judge about how well

the behavior of our simulated

environment represents the

behavior of the real website.

This comparison is presented in

Subsection 6.1.8.

Figure 2.15 shows the

comparison of the acceptance

rate of different optimization

algorithms as implemented in

the real-life website. The results

show that the optimized

algorithms achieve higher

acceptance rates than the

algorithm without optimization.

Figure 2.14. Acceptance rate of different

recommendation generators (EC)

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

Er gebni s

A
c
c
e
p

ta
n

c
e
 r

a
te

 p
e
r

re
c
o

m
m

e
n

d
a
ti

o
n

rew ard-only, ε=0.2 rew ard-only, ε=0.05

rew ard-penalty, aging T=500 rew ard-penalty, aging T=200

Without optimization

Fig. 2.15. Acceptance rate of different

optimization algorithms (EC)

Mykola Golovin Web Recommendations for E-Commerce Websites

5 Experiments on Real-Life Prototypes 49

The algorithm which uses aging with T=500 was able to achieve somewhat higher

acceptance rates than the algorithms which use ε-greedy balancing. The relatively small

improvement of the reward-penalty algorithm can be attributed to the fact, that in our

applications the successful and unsuccessful recommendations can be distinctly separated

even by the simpler algorithms. The algorithm which used zero as initial weights for the

recommendation rules was tested on the EDU website. Its acceptance rate was only 4%

lower than that of the algorithm which used recommendation generator-specific initial

weights. The feedback values for the algorithms based on ε-greedy technique were set as

follows: 1 if the recommendation was clicked, 0 if the recommendation was not clicked.

For the reward-penalty algorithms the feedback was set to 0 if the recommendation was

clicked and to -0.01 if the recommendation was not clicked. A more elaborate discussion

on the behavior of the individual algorithms is provided in Subsection 6.1.8.

5.3 User Groups

We have investigated the effects of automatically classifying users into user groups

and presenting different recommendations to different user groups on our EDU prototype.

Figure 2.16 shows the comparison of the acceptance rates for the different user groups. The

user groups were built using a decision tree algorithm J48 over the usage data of several

months from the EDU website. The EDU website is structured in several areas of interest,

most important of which are Study and Research. For the decision tree algorithm, the area

of interest (Research/Study) visited by the web user has served as a classification attribute;

other attributes were “country”, “browser” and “operating system” of the web user.

However, after the tree was pruned, only the attribute “country” appeared to be of

importance for predicting the area of interest. The resulting tree was transformed into the

ontology graph nodes with mapping clauses. Figure 2.16 indicates that the acceptance rates

differ substantially for the user groups and that for the website EDU the research-oriented

users accept the presented recommendations almost twice as often as the study-oriented

users. This behavior is explained by the fact that the research-oriented users are in most

0

0,005

0,01

0,015

0,02

0,025

No specific

user group

Research Study

A
c
c
e

p
ta

n
c
e

 R
a

te

Research Study

Fig. 2.17. Acceptance rates of user group based

recommendation rules (EDU)

0

0,005

0,01

0,015

0,02

0,025

No specific

user group

Research Study

A
c
c
e

p
ta

n
c
e

 R
a

te

Fig. 2.16. Acceptance rates of different

user groups (EDU)

Mykola Golovin Part II. Adaptive Web Recommendations

50 5.4 Comparison of Recommendation Generator-Based Optimization and

Recommendation-Based Optimization

cases occasional users which are not familiar with the structure of the website and are

therefore interested in recommendations which can quickly lead them from the start page

to the desired content. Most study-oriented users, on the contrary, are students which come

often to the website during the semester to check the information such as lecture scripts.

After several visits such users usually memorize or bookmark the exact location of the

content which is interesting for them and pay less attention to recommendations.

Figure 2.17 shows how good our user groups are in predicting the user interests.

Here, differently colored bars show the acceptance for recommendations pointing to the

content of different interest areas. The user group Research appears to be quite effective,

since its users have only clicked the recommendations leading to the research area of the

website. Users of the group Study preferred study-related recommendations but the

corresponding acceptance rate is not much higher than for users not belonging to any of the

two specific user groups.

In our EC prototype we are utilizing user groups as well. These user groups are also

depending on the attribute “country”. However, we are interested only in the three

countries which are entitled to buy products on the EC website: Austria, Germany (with

Luxembourg) and Switzerland (with Liechtenstein). The country (and therefore the user

group) is determined in a straightforward way by the top level domain suffix:

www.softunity.com and www.softunity.de are responsible for Germany, www.softunity.at

is responsible for Austria and www.softunity.ch is responsible for Switzerland. The web

users can also select their country manually on the website. The user groups on the EC

website are also used to impose the country-specific restrictions on recommendations,

since some of the products which can be sold in one country cannot be sold in another

country (for example due to legal or trade restrictions). Therefore, such products can be

recommended to users in one country and should not be recommended to users in another

country. We do not provide the experimental results for the comparison of acceptance rates

for different user groups on the EC prototype, since the aforementioned country-specific

restrictions make the sets of recommendations for different countries incomparable.

5.4 Comparison of Recommendation Generator-Based Optimization and

Recommendation-Based Optimization

Our prototype EDU was a project developed jointly with A. Thor. In this prototype

we have implemented two different approaches to optimize web recommendations. In the

architecture presented in this part of the thesis we use the optimization approaches which

are targeted at individual recommendations, which can be classified as “mixed” according

to [Burk02]. The approach proposed by A. Thor is the optimization of the selection of the

recommendation generators based on machine learning, which can be classified as

“switched” approach in terms of [Burk02]. This approach is described in [TR04][TGR04]

and discussed in more detail in Section 7.4. In the prototype EDU the optimization

approaches were tested on a rotating basis during the period from 1 April 2004 until 30

http://www.softunity.com/
http://www.softunity.de/
http://www.softunity.at/
http://www.softunity.ch/

Mykola Golovin Web Recommendations for E-Commerce Websites

5 Experiments on Real-Life Prototypes 51

September 2004. The

recommendation

generators were identical

for all tested optimization

approaches.

Figure 2.18
14

shows the results of the

experimental comparison

of these two approaches

and the approach

“manual”. The approach

“manual” is a

recommendation

generator-based (i. e.

“switched”) approach,

where the selection of one

or another

recommendation

generator was specified

manually with respect to

the current context and basing on human knowledge. On the Y-Axis in Figure 2.18 we

show the session acceptance rate for the different approaches. The session acceptance rate

is the ratio of sessions which contain one or more accepted recommendations to the total

number of sessions. In Figure 2.18 the approaches were compared using several

independent criteria. The criteria are:

 whether the users were detected as new users or returning users.

 how the users came to the website: by using a bookmark (or directly entering

the address of the website into the browser‟s address line), by using search

engine or by following a link from another website.

 on which type of web page the session was started. There are two main groups

of the web pages on the EDU website. The “navigation” pages are the main

page of the website and the main pages of the sections of the website. These

pages contain many hyperlinks to other web pages, for example to the “study”

pages. The “study” pages contain the educational material, such as lecture

notes. They contain large amounts of text and pictures and relatively few

hyperlinks. Apart from “study” and “navigation” pages there were other types

of pages which did not exhibit distinct differences in behavior with respect to

the recommendation approaches.

It makes sense to analyze the different criteria together. So, the users coming from a

search engine are likely to be new users and show accordingly similar distribution of the

session acceptance rates. The success of the manual optimization approach for the users

14

 Figure 2.18 originates from [TGR04]

Figure 2.18. Session acceptance rates for different types of

recommendattion generator based and recommendation based

optimization (EDU)

Mykola Golovin Part II. Adaptive Web Recommendations

52 5.4 Comparison of Recommendation Generator-Based Optimization and

Recommendation-Based Optimization

coming from a search engine is

stipulated by the special “Search

Engine” recommender, which

intercepts the search terms entered

by the user and shows the

recommendations relevant for

these search terms. The two

automatic approaches show

significant differences for sessions

starting with a study page and a navigation page. As shown in Figure 2.18, the

recommendation generator based approaches work better for “study” sessions; the

reinforcement learning approach achieves better results for “navigation” and other types of

sessions. The website where our prototype EDU was running contains a large number of

study pages, whereas the number of navigation pages is rather small. However, the

navigation pages receive almost 15 times more feedback per page than the study pages.

Therefore, the recommendation-based selection approach can easily identify the best

recommendations for the navigation pages but not for the study pages, since the feedback

for the study pages is scarce. On the other hand, the feedback aggregation of the

recommender-based approach can better handle this lack of feedback on the study pages,

but is not specific enough to generate better recommendations for navigation pages.

An interesting parallel to this phenomenon constitutes the work [NM03]. The

authors of [NM03] propose to choose the recommendation generators for the web page

depending on the degree of connectivity of this page, i.e. the measure of how many

outbound hyperlinks the web page has. In the EDU prototype, the degree of connectivity

would be a good criterion for distinguishing the pages serving chiefly for navigation from

the pages presenting the content.

Recommendation generator based optimization can be considered a type of

generalization of feedback, since the feedback given by a click on the individual

recommendation is generalized to all recommendations coming from the same

recommendation generator. This is consistent with our experimental results, where

recommendation generator based approaches perform better under scarce feedback. The

benefit of the recommendation-based optimization is the relatively simple implementation

of the generalization in comparison to our ontological structure. However, once

implemented, the ontology-based generalization allows more possibilities than the

generalization based only on the recommendation generators.

The Table 2.2
15

 shows the overall performance of the different recommendation

selection approaches on the EDU website. In addition to the approaches which already

appeared in Figure 2.18 some additional strategies are shown in Table 2.2. So, the

approach Top-Rec is recommender-based and employs statistical information for selecting

the recommenders. This approach makes use of the web usage data warehouse to

15

 Table 2.2 originates from [TGR04]

Strategy No. of

rules

Acceptance

rate

Session

acceptance

rate

Top-Rec ~ 2000 1.35% 10.27%

Decision Tree ~ 250 1.74% 11.13%

Reinf. Learning ~ 60000 1.92% 11.22%

Reinf. Learning Zero ~ 60000 1.87% 10.35%

Manual 5 1.97% 12.54%

Random 137 0.96% 6.98%

Table 2.2: Comparison of selection approaches

Mykola Golovin Web Recommendations for E-Commerce Websites

5 Experiments on Real-Life Prototypes 53

determine the most popular recommender for every context which appears in the historical

data. The approach Reinforcement Learning Zero is reinforcement learning with initial

weights of all recommendations rules set to zero. The Random approach selects the

recommender based on a pseudo-random number generator. As shown in Table 2.2, the

approach Manual achieves the best results. This approach is based on the human

knowledge of the website structure, different types of web users and their interests and on

the results obtained by the manual OLAP-evaluation of the data in the web usage data

warehouse. The approach Manual is followed by the strategy Reinforcement Learning

which achieves the best results of all automatic optimization approaches. The

Reinforcement Learning Zero and Decision Tree achieve somewhat lower acceptance rates

than Reinforcement Learning. In case of Reinforcement Learning Zero this can be

explained by the absence of the positive effect of the initial weights; in case of Decision

Tree the slight superiority of Reinforcement Learning can be attributed to its online nature

and quicker adaptation to the user‟s interests. The simple statistics-based approach Top-

Rec achieves the worst results of all automatic algorithms, however its acceptance rates are

still significantly better then the acceptance rates of the Random approach. It should be

noted, that the random approach is recommender-based, i.e. rather than producing the

random, possibly irrelevant recommendations it randomly selects one of the

recommendation generators, which in turn produces recommendations it deems to be

relevant for the current context.

Mykola Golovin Part II. Adaptive Web Recommendations

54 6.1 Evaluation of different recommendation selection algorithms

6. EXPERIMENTS IN THE SIMULATED ENVIRONMENT

In this section we present the experimental results obtained in the simulated

environment. Section 6.1 deals with the evaluation of the different recommendation

selection algorithms. In Subsection 6.1.1 we present basic algorithms, which do not use

optimization but give understanding of the usage data which is used for simulation and

some of its important characteristics. In Subsections 6.1.2 through 6.1.4 we discuss the

individual optimization algorithms, explore their parameters and present the corresponding

experimental results. In Subsection 6.1.2 we discuss the reward-only algorithms without

aging and explore how the acceptance rates change when the optimization parameters

change. In Subsection 6.1.3 we explore the reward-only algorithms with aging and explore

its parameters. In Subsection 6.1.4 we investigate the reward-penalty algorithms and its

parameters. The Subsections 6.1.2 to 6.1.4 are structured in a similar way:

 We illustrate how the acceptance rate of the algorithms changes with different

parameters specific to the algorithm.

 For each algorithm we test both the variant with initial weights as generated by

recommendation generators and with initial weights set to zero.

 We find the near-optimal parameters and explain the impact of the parameters

on the learning behavior.

 We also illustrate how the different algorithms improve their acceptance rates

as they learn and optimize the recommendations.

To illustrate the improvement in time, we do not use the full session set. The full

session set is not good for illustrating this behavior, since the user interests change over

time. So, the increase of acceptance rate over time due to learning is compensated by the

changing user behavior. Thus, the optimized algorithms do not show constant increase over

time in this setting, instead the better algorithms have higher average acceptance rate than

the worse algorithms. Also, the changes in the acceptance rates from month to month make

it hard to distinguish what comes from learning and what is the change in user interest. In

order to eliminate the influence of these interest fluctuations, we take the session set of one

month and perform multiple iterations of our optimization algorithm using this session set.

In Subsection 6.1.5 we compare the learning behavior in time for the different

optimization algorithms. Subsection 6.1.6 illustrates the influence which the number of

simultaneously presented recommendations has on the acceptance rate. In Subsection 6.1.7

we compare the acceptance rates of the different optimization algorithms. Comparison of

the results obtained on real-time prototype with the results obtained in the simulated

environment is presented in Subsection 6.1.8. Subsection 6.1.9 discusses the ontology-

based recommendation selection policies. Section 6.2 describes a standalone series of

experiments which were performed to investigate the performance of different techniques

for the retrieval of information from the ontology graphs.

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 55

6.1 Evaluation of different recommendation selection algorithms

6.1.1 Basic Recommendation Selection Algorithms

To give an understanding about the characteristics of the session set used for

simulation, in Figure 2.17 we present the acceptance rates achieved by several basic

recommendation approaches without the adaptive optimization in the experiments based on

this session set. We will be using some of these acceptance rates as baseline for

comparison of the optimized algorithms in the subsequent sections.

The baseline algorithms BEST_STATISTIC and WORST_STATISTIC rely on the

statistical data gathered over the entire experiment period. The set of recommendation

rules used for BEST_STATISTIC and WORST_STATISTIC is the original set of rules

generated by the recommendation generators on the EC website. The weights of the rules

are set to the conditional probabilities of one product following another in one session. The

algorithm BEST_STATISTIC presents N recommendations for which the calculated

conditional probabilities are maximal. The algorithm WORST_STATISTIC presents N

recommendations for which the conditional probabilities are the lowest.

The statistical information which is used by BEST_STATISTIC and

WORST_STATISTIC is relatively coarse. It is calculated for the entire evaluation period

and does not account for possible changes in user interests during this period

The next two algorithms, STAT_CURRMONTH and STAT_PREVMONTH use

more precise statistical information to make recommendations. The recommendation

algorithm STAT_CURRMONTH uses the current month‟s conditional probabilities to

select the recommendations for presentation. It is important to note, that this algorithm

uses the conditional probabilities calculated for the entire month, not only from the

beginning of the month to the current date in the simulation environment. The algorithm

STAT_PREVMONTH uses the conditional probabilities for the previous month. As shown

in Figure 2.16, the algorithm STAT_CURRMONTH has higher acceptance rate than

BEST_STATIC. This shows that the drift of interest is an important issue which should be

taken into account. However, it should be noted that the algorithm STAT_CURRMONTH

(as well as BEST_STATISTIC) can be used only in the simulation environment and not on

a real-life website, since it uses a-posteriori statistic information which is not available at a

real-life website at the time when the decisions about presentation of recommendations

need to be made. The algorithm STAT_PREVMONTH, on the contrary, can be used on a

real-life website since it uses data which is also available on a real-life website. However,

its acceptance rate is significantly lower than the acceptance rate of

STAT_CURRMONTH. STAT_CURRMONTH and STAT_PREVMONTH are among the

simplest approaches to using statistic information for selecting recommendations. These

algorithms are shown here as the baseline for the future comparison. We will investigate

more sophisticated algorithms in further subsections.

Mykola Golovin Part II. Adaptive Web Recommendations

56 6.1 Evaluation of different recommendation selection algorithms

The algorithms BEST_INITIAL and WORST_INITIAL are also based on the set of

recommendations generated by the recommendation generators on the EC site. The

weights of the rules are the original weights generated by the recommendation generators.

As shown in Figure 2.20, the BEST_INITIAL algorithm brings remarkably worse results

than the statistics-based algorithms BEST_STATISTIC, STAT_CURRMONTH and

STAT_PREVMONTH. However, the initial weights are predominantly interesting for the

new recommendations, for which the statistic information is not yet available. For such

recommendations the initial weights generated by the recommendation generators can be

useful in the initial phase of the learning before sufficient statistical information can be

gathered.

The algorithm RANDOM_RULE uses the same set of rules as the previous

algorithms but assigns the weights by using the pseudo-random number generator. As

shown in Figure 2.20, choosing random recommendation rules brings worse results than

the BEST_STATISTIC and BEST_INITIAL algorithms but better results than

WORST_STATISTIC and WORST_INITIAL algorithms.

The results for the algorithm RANDOM_PRODUCT is indistinguishable in Figure

2.20, since its value is very small in comparison to other algorithms. The recommendation

acceptance rate for this algorithm is 4*10
-5

. This algorithm does not use the set of rules

provided by the recommendation generators of the EC prototype. Instead, it presents N

randomly selected products in any context.

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,01

A
cc

e
p

ta
n

ce
 r

at
e

Figure 2.20. Acceptance rates for the basic algorithms

without optimization

BEST_STATISTIC

WORST_STATISTIC

STAT_CURRMONTH

STAT_PREVMONTH

BEST_INITIAL

WORST_INITIAL

RANDOM_RULE

RANDOM_PRODUCT

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 57

Figure 2.21 illustrates on example of the basic algorithms how the user‟s behavior

with respect to the recommendations has been changing throughout the period covered by

our session set. The increase of the acceptance rate towards the end of the year is due to

several highly popular products brought out shortly before Christmas sales.

6.1.2 Reward-only Algorithm with ε-greedy Balancing Technique without Aging

(REWARD_ONLY)

The algorithms presented in the previous sections have not used any dynamic

optimization, i.e. there was no exploration and learning of the weights of the

recommendation rules along with the presentation of the recommendations. The algorithms

presented in this subsection use a simple form of optimization. The weights of the

recommendation rules are set to the acceptance rate of the presentation rule according to

formula (3.2.1). Additionally, a fraction of all presentations is used to perform the

exploration of the recommendation rules. The intensity of exploration is managed by the

parameter ε. With probability 1- ε the selection of recommendations is done according to

their weights. With probability ε the selection of recommendations is pseudo-random.

The acceptance rate for this algorithm with respect to the value of the parameter ε is

shown in Figure 2.22. The value ε=0 corresponds to no exploration, the value ε=1 means

all recommendations rules are selected at random among the recommendation rules

available in the recommendation rule database for the given context. The algorithms

REWARD_ONLY_0 and REWARD_ONLY_I stand for reward-only with initial weights

equal to 0 and reward-only with initial weights supplied by the recommendation

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

A
cc

e
p

ta
n

ce
 r

at
e

Year, month

Figure 2.21. Acceptance rate of the basic algorithms

changing with time

BEST_INITIAL

BEST_STATISTIC

RANDOM_PRODUCT

RANDOM_RULE

WORST_INITIAL

WORST_STATISTIC

Mykola Golovin Part II. Adaptive Web Recommendations

58 6.1 Evaluation of different recommendation selection algorithms

generators. The algorithms BEST_INITIAL, BEST_STATISTIC and RANDOM_RULE

are provided as a baseline for comparison and are represented with bars in Figure 2.22.

As shown in Figure 2.22, the optimal value of the parameter ε in our simulation lies

around the value 0.2. Both excessive exploration and insufficient exploration lead to the

deterioration of the acceptance rate. The acceptance rate with ε=1 is approximately equal

to the acceptance rate of the algorithm RANDOM_RULE. Although the initial weights of

the algorithm REWARD_ONLY_I are the same as the initial weights for the algorithm

BEST_INITIAL, the acceptance of the REWARD_ONLY_I is lower than that of

BEST_INITIAL. This is explained by the fact, that the initial weights for the algorithm

REWARD_ONLY_I play a role in the selection of recommendations only on the first

presentation of the respective recommendation. After the first presentation, the weights are

replaced with values calculated according to the formula (3.2.1). Thus, the setting of the

initial weights does not play a significant role for the acceptance rate of the reward-only

algorithms without aging and therefore the algorithms REWARD_ONLY_0 and

REWARD_ONLY_I behave in a similar way. This insignificant influence of the initial

weights is also the cause for the fact, that the REWARD_ONLY algorithms in our

experiment are not able to achieve notably better acceptance rates than BEST_INITIAL.

The improvement of the acceptance rate achieved through exploration depends how

different the recommendation rules are in terms of popularity and how much time is

allowed for learning. Most of the rules used in our simulation are quite similar in terms of

popularity. The absolute value of the gain is therefore not large. The superiority of the

REWARD_ONLY to algorithms based on the initial weights comes to light when the

initial weights are inadequate or the REWARD_ONLY algorithm is allowed more time for

learning. The second situation is illustrated in Figure 2.23.

In Figure 2.23 we show the learning behavior of the REWARD_ONLY algorithms

in time. As shown in Figure 2.18, the overall recommendation acceptance rates in our

0,0055

0,006

0,0065

0,007

0,0075

0,008

A
ce

p
ta

n
ce

 r
at

e

ε
Figure 2.22. Correlation between the values of ε and acceptance rates

for ε-greedy reward-only algorithms

BEST_INITIAL

BEST_STATISTIC

RANDOM_RULE

REWARD_ONLY_0

REWARD_ONLY_I

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 59

usage data fluctuate strongly from month to month. In order to alleviate this fluctuation of

user interest and highlight the changes of the acceptance rate which are due to the learning

behavior of the algorithms, we have taken the usage data from February 2006 and

re-iterated our algorithm over these usage data 25 times without re-setting the weights of

the recommendation rules.

As shown in Figure 2.23, the algorithms BEST_INITIAL and RANDOM_RULE

are not improving with time since they have no optimization component. The algorithms

with the learning component are significantly improving with time. As we already

mentioned, the initial weights do not play a large role for our REWARD_ONLY

algorithms, therefore REWARD_ONLY_0 and REWARD_ONLY_I exhibit very similar

behavior. The small fluctuations of the acceptance rates in Figure 2.23 are caused by the

pseudo-random exploration component of the algorithm.

In Appendix 2 we have provided two examples of how the recommendation rules

weights change with respect to the presentations during the learning process (Figures A2.1,

A2.2). The examples provided are for the algorithm REWARD_ONLY_0, which provides

a good comparison since in this algorithm all the weights are the identical at the beginning.

The parameter ε in Figures A2.1 and A2.2 is set to 0.2. As shown in Figures A2.1 and

A2.2, a distinctive feature of the REWARD_ONLY algorithms is that in the beginning of

the learning process the outcome of each presentation has a larger impact on the

recommendation rule weights than later on. At any given presentation, however, all

previous presentations have the same influence on the current value of a given

recommendation rule. For our task of presenting recommendations on the website different

behavior seems to be more reasonable. It seems that more recent presentations should have

more impact on the recommendation rule weights than the older ones. This can be

achieved by applying aging, as described in the next subsection.

0,005

0,0055

0,006

0,0065

0,007

0,0075

1 3 5 7 9 11 13 15 17 19 21 23 25

A
cc

e
p

ta
n

ce
 r

at
e

Iteration Number

Fig. 2.23. The learning behaviour in time for the reward-only

algorithms without aging

BEST_INITIAL

RANDOM_RULE

REWARD_ONLY_0

REWARD_ONLY_I

Mykola Golovin Part II. Adaptive Web Recommendations

60 6.1 Evaluation of different recommendation selection algorithms

6.1.3 Reward-only Algorithms with ε-greedy Balancing Technique and Aging

(REWARD_DEC)

The reward-only algorithms with aging are an extension of the reward-only

algorithms without aging, presented in the previous subsection. The weights of the

recommendation rules are calculated according to the formula (3.2.4). When aging is in

effect, the results of the older presentations have less impact on the current values of the

recommendation rule weights. Similarly to the REWARD_ONLY, a fraction of the

presentations is used to perform exploration. This size of this fraction is managed by the

parameter ε. The acceptance rates of the algorithm with respect to the value of the

parameter ε are shown in Figure 2.24.

The algorithms REWARD_DEC_0 and REWARD_DEC_I stand respectively for

reward-only with aging (decayed) with initial weights set to 0 and reward-only with aging

(decayed) with initial weights set by the recommendation generators. As shown in Figure

2.24, the initial weights play a more significant role for the REWARD_DEC algorithms

than for REWARD_ONLY algorithms. This is due to the recommendation rule weight

being amended, not replaced during the learning process. The algorithm using the initial

weights supplied by the recommendation generators is able to achieve significant

improvement compared to BEST_INITIAL. With ε=0 the acceptance rate is roughly equal

to the acceptance rate of the algorithm BEST_INITIAL. As exploration increases, the

acceptance rate of the algorithm REWARD_DEC_I also increases until the maximal value

is reached at ε~=0.2.

 The behavior of the algorithms REWARD_DEC_0 and REWARD_DEC_I with

respect to the parameter T is shown in Figure 2.25. The parameter ε for this experiment

was set to 0.2. As shown in Figure 2.24, the value of T has little influence on the

0,0055

0,006

0,0065

0,007

0,0075

0,008
0

0
,0

0
0

0
0

1

0
,0

0
1

0
,0

1

0
,0

2

0
,0

5

0
,1

0
,2

0
,3

0
,4

0
,5

0
,7

0
,9

0
,9

9 1

A
cc

ep
ta

n
ce

 r
at

e

ε

Figure 2.24. Acceptance rates for the REWARD_DEC algorithms

(aging with ε-greedy balancing) with respect to ε

BEST_INITIAL

BEST_STATISTIC

RANDOM_RULE

REWARD_DEC_I

REWARD_DEC_0

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 61

acceptance rate of the REWARD_DEC algorithms, with exception of T=1. In case when

T=1 the formula (3.2.4) degenerates into replacement of the previous weight by the latest

feedback value. The acceptance rate in this case is notably low. For other values of T the

acceptance rate does not vary significantly. Such behavior is explained by the fact, that the

recommendation rules are selected by comparing their weights to each other. As long as

the value of T is the same for all recommendation rules, the relative significance of a

recommendation rule compared to other rules also stays the same regardless of the absolute

values of the rule weights.

For the algorithm REWARD_DEC_I this significance is also influenced by the

initial weights of the rules. Because of this, the algorithm REWARD_DEC_I shows a

slight decrease in the acceptance rate for higher values of T. According to the formula

(3.2.4), higher values of T prolong the influence which the initial weights have on the

relative significance of the recommendation rules. As seen in Figure 2.24, the learned

recommendation rule weight can result in higher acceptance rates than the initial rule

weights. Prolonging the influence of the initial weights can therefore lead to a decrease of

the acceptance rate.

The learning behavior of the REWARD_DEC algorithms in time is shown in

Figure 2.26. Comparison of Figure 2.26 with Figure 2.23 reveals that initial weights have

more influence on the REWARD_DEC algorithms than on REWARD_ONLY algorithms.

This influence is especially remarkable in the initial phase of the learning and gradually

wears off later on. The fluctuations of the lines representing the acceptance rates of

REWARD_DEC_0 and REWARD_DEC_I in Figures 2.25 and 2.26 are due to the

behavior of the pseudo-random number generator which is used for exploration.

The examples of weight learning for the algorithm REWARD_DEC_0 are shown in

Figures A2.3 and A2.4 in Appendix 2. For examples of the weight learning for the

algorithm REWARD_DEC_0 the same two products were used as for REW_ONLY_0.

0,003

0,0035

0,004

0,0045

0,005

0,0055

0,006

0,0065

0,007

0,0075

0,008

A
ce

p
ta

n
ce

 r
at

e

T
Figure 2.25. Acceptance rate of REWARD_DEC algorithms for different

values of T

BEST_INITIAL

BEST_STATISTIC

RANDOM_RULE

REWARD_DEC_0

REWARD_DEC_I

Mykola Golovin Part II. Adaptive Web Recommendations

62 6.1 Evaluation of different recommendation selection algorithms

The value of the parameter ε in Figures A2.1 and A2.2 was set to 0.2, the value of

parameter T to 1000. As the comparison of Figures A2.3 and A2.4 with Figures A2.1 and

A2.2 shows, every new presentation has the same impact on the weight of the

recommendations rules, regardless whether it appears in the beginning of the learning

process or at a later time. The comparison of Figures A2.2 and A2.4 shows in particular,

that the REWARD_DEC algorithms respond to the changes in the user behavior more

promptly than the REWARD_ONLY algorithms. Figure A2.4 indicates that the product

ECD008264M (Anno 1701 Limited Edition) was very popular as a recommendation in the

beginning of the learning process. At a later point of time it suffered a sudden popularity

loss. Subsequently the popularity has somewhat increased again. In Figure A2.2, however,

this development of the product popularity is not reflected. In Figure A2.2, the weight of

this recommendation steadily decreases after the initial peak.

6.1.4 Reward-penalty algorithm (REWARD_PEN)

The reward-penalty algorithm is a modification of the reward-only algorithm with

aging. The same formula (3.2.4) is used to calculate the weights of the recommendation

rules. However, as opposed to the reward-only algorithms, the feedback values in case the

recommendation is not accepted are set to negative values (penalty). In contrast to reward-

only algorithms, the reward-penalty algorithm does not need to sacrifice a fraction of the

presentations to the exploration, since the exploration is provisioned by using penalty. We

have made a series of experiments varying the values of all parameters to determine the

optimal (or near-optimal) parameter values. The figures presented in this section illustrate

the behavior of the algorithms with respect to the variation of the value of some parameter

with other parameters set to near-optimal values discovered during the previous series of

experiments.

0,005

0,0055

0,006

0,0065

0,007

0,0075

0,008

1 3 5 7 9 11 13 15 17 19 21 23 25

A
cc

e
p

ta
n

ce
 r

at
e

Month number

Figure 2.26. The learning behavior in time for the REWARD_DEC
algorithms with aging

BEST_INITIAL

RANDOM_RULE

REWARD_DEC_0

REWARD_DEC_I

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 63

The correlation between the acceptance rate of the reward-penalty recommendation

algorithms and the value of the parameter T is shown in Figure 2.27. The algorithm

REWARD_PEN_0 uses 0 as initial weight of all recommendations. The algorithm

REWARD_PEN_I uses the weights generated by the recommendation generators as initial

0,0058

0,006

0,0062

0,0064

0,0066

0,0068

0,007

0,0072

0,0074

0,0076

0,0078

-1
-0

,9
-0

,8
-0

,7
-0

,6
-0

,5
-0

,4
-0

,3
-0

,2
5

-0
,2

-0
,1

-0
,0

1
-0

,0
0

1
-0

,0
0

0
1

-0
,0

0
0

0
1

-0
,0

0
0

0
0

1
-0

,0
0

0
0

0
0

1
-0

,0
0

0
0

0
0

0
1

-0
,0

0
0

0
0

0
0

0
1

-0
,0

0
0

0
0

0
0

0
0

1
-0

,0
0

0
0

0
0

0
0

0
0

1 0

A
cc

ep
ta

n
ce

 r
at

e

Negative feedback

Figure 2.28. Acceptance rate of the REWARD_PEN algorithms with

respect to the values of negative feedback

REWARD_PEN_0

REWARD_PEN_I

0,005

0,0055

0,006

0,0065

0,007

0,0075

0,008

0 2 4

1
0

3
0

5
0

7
0

9
0

1
2

0

1
7

0

2
5

0

4
0

0

1
0

0
0

2
0

0
0

4
0

0
0

7
5

0
0

5
0

0
0

0

1
0

0
0

0
0

0

A
cc

ep
ta

n
ce

 r
at

e

T

Figure 2.27. Acceptance rate of the REWARD_PEN algorithms with

respect to the values of T

BEST_INITIAL

BEST_STATISTIC

RANDOM_RULE

REWARD_PEN_0

REWARD_PEN_I

Mykola Golovin Part II. Adaptive Web Recommendations

64 6.1 Evaluation of different recommendation selection algorithms

weights. In the experiments presented in Figure 2.27 the value of the negative feedback

was set to -0.001. As shown in Figure 2.27, the acceptance rate of the

REWARD_PENALTY algorithms with respect to the values of the parameter T behaves

differently than the acceptance rates of the REWARD_DEC algorithms. In particular the

smaller values of T lead to smaller acceptance rates. With smaller values of T the

optimistic initial weights are wearing off too quickly and the learning is insufficient.

REWARD_PEN algorithms do not have a separate exploration component to compensate

this insufficient learning. For the values of T>=500 the acceptance rate is consistently high.

In our subsequent experiments with the algorithms REWARD_PEN_I and

REWARD_PEN_0 we use T=500.

Figure 2.28 shows the correlation between the value of negative feedback and the

acceptance rate of the recommendation algorithms REWARD_PEN_0 and

REWARD_PEN_I. For the values from -1 to approximately -0.001 the acceptance rate

grows as the absolute value of the negative feedback decreases. The maximum of the

acceptance rates for both algorithms lies between feedback values of -0.001 and 10
-4

.

Between the values 10
-4

 and 10
-5

the acceptance rate somewhat decreases. Between 10
-5

and 10
-12

the

acceptance rate stays constant. The negative feedback value -0.001 represents

the optimum between optimistic initial values and aging. This holds also for the

REWARD_PEN_0, since zero initial weights also become optimistic weights in the

presence of negative feedback. For the negative feedback values from -1 to -0.001 the

initial weights are too optimistic and allow too much exploration, which leads to a decrease

in the acceptance rate. The values of negative feedback below -0.001 provide not enough

exploration for all recommendations to be learned. The feedback value of 0 leads to a

0,005

0,0055

0,006

0,0065

0,007

0,0075

0,008

0,0085

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

A
cc

ep
ta

n
ce

 r
at

e

Month number

Figure 2.29. The learning behavior in time for reward-penalty

algorithms

BEST_INITIAL

RANDOM_RULE

REWARD_PEN_0

REWARD_PEN_I

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 65

decrease in the acceptance rate for both REWARD_PEN_0 and REWARD_PEN_I. The

remarkable ”shelf” in Figure 2.28 from 10
-5

 to 0 shows that even the smallest absolute

values of negative feedback allow to avoid the Exploration Situation 1
16

, whereas

feedback value of 0 does not avoid this situation. In our further experiments with

REWARD_PEN algorithms we use the negative feedback value of -0.001.

The learning behavior of the reward-penalty algorithms in time is shown in Figure

2.29. Figures A2.5 and A2.6 in Appendix 1 show the examples of weight learning for the

algorithm REWARD_PEN_0 on the EC website.

6.1.5 Learning Behavior in Time for Different Algorithms

We have shown the learning behavior in time for every algorithm in the

corresponding sections. Now we would like to present and compare the performance of the

best algorithms and parameter combinations together.

The evolution of the acceptance rates of the different optimization algorithms in

time are shown in Figure 2.30. In this Figure we repeatedly employ the usage data of

February 2006 to show how the optimization algorithms learn in the absence of the drift of

interest. The algorithm BEST_INITIAL is used as a baseline for comparison. This

algorithm does not use any optimization technique and its acceptance rate stays constant

for all iterations. In contrast, the acceptance rate of the optimized algorithms increases with

time. In the first iterations, the acceptance rate of the optimized algorithms grows quickly.

16

 As explained in Section 3.3.

0,005

0,0055

0,006

0,0065

0,007

0,0075

0,008

0,0085

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

A
cc

ep
ta

n
ce

 r
at

e

Month number

Figure 2.30. The learning behavior in time for different optimization

algorithms

BEST_INITIAL

RANDOM_RULE

REWARD_DEC_I

REWARD_ONLY_I

REWARD_PEN_I

Mykola Golovin Part II. Adaptive Web Recommendations

66 6.1 Evaluation of different recommendation selection algorithms

The optimized algorithms surpass the BEST_INITIAL algorithm within the first iterations.

In the later iterations, the acceptance rate of the algorithm REWARD_PEN stabilizes. The

acceptance rate of the reward-only algorithms continues to fluctuate even after many

iterations (the respective lines in the graphic are “jagged”). This is due to the pseudo-

random exploration component of these algorithms. The “jagged” lines in the graphic are

somewhat smoothed due to the fact that they represent the average acceptance rate of 10

runs of the experiments.

6.1.6 Influence of the Number of Recommendations on the Acceptance Rate

The quality of the recommendations candidates and the quality of the algorithm which

selects the recommendations for presentations are not the only factors which influence the

acceptance rates. The number of simultaneously presented recommendations N also

influences the acceptance rate of the recommendations. Figure 2.31 shows the correlation

of the maximum number of the recommendations presented in the same presentation with

the acceptance rate of the different algorithms in the simulation.

It is not likely that the real-life data follow exactly the same pattern for large values

of N. Large numbers of recommendations are expected to overwhelm the user. We did not

have the possibility to conduct a real-life study of how a user reacts to the increase of the

number of recommendations. The user reaction to the larger number of presented

recommendations depends also on the layout of the website and the amount of other

information presented on the website. However, it is realistic to assume that for smaller

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

A
cc

ep
ta

n
ce

 r
at

e

N

Figure 2.31. Influence of the number of simultaneously presented

recommendations on the acceptance rate

BEST_INITIAL

BEST_STATISTIC

RANDOM_PRODUCT

RANDOM_RULE

REWARD_DEC_I

REWARD_ONLY_I

REWARD_PEN_0

REWARD_PEN_I

WORST_INITIAL

WORST_STATISTIC

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 67

numbers of recommendations which do not overwhelm the users the increase in the

number of recommendations should have a positive impact on the acceptance rate on real-

life websites in the manner similar to presented in Figure 2.31.

The values of N higher than 30 are not very likely to be found on real-life websites

because of the design and usability limitations. In Figure 2.31 these values are used to

illustrate the theoretical limits of the acceptance rates which can be achieved by the

discussed recommendation algorithms on our usage data. The algorithm

RANDOM_PRODUCTS shows the limit of what can be achieved by using all products as

recommendations. All the other algorithms show the limit of what can be achieved by

using all the available recommendations rules which are generated by the recommendation

generators. For these algorithms, the acceptance rate grows remarkably faster for the lower

values of N. However, at a value of N~=20 all these algorithms reach their limit. This is

simply due to the fact that the set of recommendation rules provided by the

recommendation generators rarely contain more than 20 recommendations for every

product. The maximal theoretically possible acceptance rate with our set of

recommendation rules lies at 0.0088, maximal theoretically possible acceptance rate in

case all products are used as recommendations lies at 0.0163.

6.1.7 Simulation-based Comparison of the Recommendation Algorithms

In Figure 2.32 we present the comparison of the basic algorithms (as shown in

Figure 2.17) amended with the results obtained by applying optimization algorithms with

near-optimal parameter values as described in the previous subsections. The algorithms

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,01

A
cc

ep
ta

n
ce

 r
at

e

Figure 2.32. Comparison of the acceptance rate of the optimized

recommendation algoritms based on the simulation data.

BEST_STATISTIC

WORST_STATISTIC

STAT_CURRMONTH

STAT_PREVMONTH

BEST_INITIAL

WORST_INITIAL

RANDOM_RULE

RANDOM_PRODUCT

REWARD_ONLY_I

REWARD_DEC_I

REWARD_PEN_0

REWARD_PEN_I

Mykola Golovin Part II. Adaptive Web Recommendations

68 6.1 Evaluation of different recommendation selection algorithms

BEST_STATISTIC, WORST_STATISTIC, STAT_CURRMONTH,

STAT_PREVMONTH, BEST_INITIAL, WORST_INITIAL, RANDOM_RULE and

RANDOM_PRODUCT have been described in Subsection 6.1.1 and serve here as the

baseline for comparison. The algorithm RANDOM_PRODUCT has a very low acceptance

rate which appears as an empty bar in Figure 2.32. The algorithms REWARD_ONLY_I,

REWARD_DEC_I, REWARD_PEN_0 and REWARD_PEN_I are the optimized

algorithms. As shown in Figure 2.32, the REWARD_ONLY_I algorithm is better than the

algorithm BEST_INITIAL based only on the initial weights supplied by the

recommendation generators. However it is worse than the algorithms BEST_STATISTIC

and STAT_CURRMONTH which use a-posteriori statistical data. The use of these

statistical data explains their superiority to REWARD_ONLY_I and all other optimized

recommendation algorithms, but also makes it impossible to use these algorithms on real-

life websites. The superiority of STAT_PREVMONTH to REWARD_ONLY_I can be

explained by the fact that it uses only more recent data to present recommendations, as

opposed to the REWARD_ONLY_I which does not give the more recent data preference

over the older data. The algorithm REWARD_DEC_I addresses this issue and achieves

somewhat better results than STAT_PREVMONTH. The algorithms REWARD_PEN_0

and REWARD_PEN_I achieve remarkably better results by eliminating the pseudo-

random component in the presentation of recommendations. The algorithm

REWARD_PEN_I which utilizes the initial weights generated by the recommendation

generators performs better than REWARD_PEN_0 which does not use the initial weights

generated by the recommendation generators. Thus, the algorithm REWARD_PEN_I

achieves the best results among the algorithms which do not use a-posteriori knowledge

and can be used to generate recommendations on real-life websites.

6.1.8 Comparison of the Results Obtained from the Real-life Website and the

Simulation

We have developed the real-life prototypes EDU and EC before the development of

the simulation environment. To justify the results obtained in the simulated environment

and show that they can be used to reason about the real-life user behavior we have repeated

the same set of experiments which is shown in Figure 2.12 on our SIM prototype. The

results for the experiments repeated in the simulated environment are presented in Figure

2.33. The comparison of the figures shows great similarity of the real-life results and

simulated results, despite the fact that the usage data for the SIM environment was taken

from the different periods of time compared to the EC evaluation. In the period from which

the usage data employed for simulation originate the website EC became more popular and

the overall recommendation acceptance rate (as well as the purchase rate) has increased.

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 69

As shown in Figures 2.12 and 2.33, in both real-life and simulated environments the

reward-penalty algorithms achieve better results than the REWARD_ONLY algorithms.

As expected, the RANDOM_RULE algorithm performs poorly both in real-life and in the

simulation. In the case of reward-only algorithm the value of the parameter ε=0.2 brings

better results than the value ε=0.05 for both real-life and simulation-based experiments.

Also, for both real-life and simulation-based experiments the reward-penalty algorithm

with T=500 performs better that with T=200. However, the difference between the

acceptance rates of reward-penalty with T=500 and reward-penalty T=200 in the real-life

experiments is larger than in the simulation-based experiments. In general, the comparison

of the acceptance rate for the different algorithms for the real-life and simulation-based

data shows that the simulation behaves similarly to the real-life website and therefore the

simulation can be used to draw conclusions about the behavior of the real-life website.

6.1.9 Ontology-based Recommendation Selection Policies

We have tested different ontology-based recommendation selection policies in the

EDU and SIM environments. The primary goal of the tested selection policies was to

provide the recommendations for the cases when not enough recommendations can be

supplied for a presentation by a straightforward selection policy which provides

recommendations directly matching the current context. The following ontology-based

selection policies were tested on the EDU site: DIRECT, DIRECT+PARENTS,

ONLY_PARENTS, ONLY_SIBLINGS. For the SIM environment, we have analyzed the

drawbacks of the policies used in the EDU environment and have created improved

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

A
cc

e
p

ta
n

ce
 r

at
e

Figure 2.33. Acceptance rate of the algorithms and parameter

combinations used in the prototype EC as measured in the

simulation environment SIM.

REWARD_ONLY_I - 0,2 - 0 REWARD_ONLY_I - 0,05 - 0 REWARD_PEN_I - 0 - 500

REWARD_PEN_I - 0 - 200 RANDOM_RULE

Mykola Golovin Part II. Adaptive Web Recommendations

70 6.1 Evaluation of different recommendation selection algorithms

selection policies PARENTS_SIM and SIBLINGS_SIM. The ontology selection policies

we have evaluated are based on the content ontology.

Figure 2.34 shows the session acceptance rates (number of sessions where at least

one recommendation was accepted divided through total number of sessions) for the

selection policies tested on the EDU prototype. The policy ONLY_PARENTS ignores the

direct matching recommendations and takes only the recommendations from the higher

levels of content hierarchy. The policy ONLY_SIBLINGS searches for the

recommendations among the hierarchy siblings (nodes having a common parent with the

current node), also ignoring the direct matches. According to the test results, the DIRECT

policy performs better then the policy DIRECT+PARENTS. The DIRECT+PARENTS

policy is able to find recommendations even in cases when no directly matching

recommendations are available. However, since the weights of the directly relevant

recommendations are not given any preference over the recommendations relevant to the

parent ontology nodes, this leads to a decrease in the acceptance rate. Also, there are some

pages which have no directly assigned recommendations and therefore no recommendation

presentations have been registered for the DIRECT policy, which may have lead to the

increased acceptance rate. These experimental results were published in [GR05].

We have analyzed the weaknesses of the ontology-based selection policies and

performed further experiments in the SIM environment with improved selection policies.

In the SIM environment, we have tested the following ontology-based selection policies:

DIRECT, PARENT_SIM and SIBLINGS_SIM. The policy DIRECT uses only the

recommendations of the given context and is equivalent to the DIRECT policy used in the

EDU experiments. The policy PARENT_SIM uses the recommendations assigned to the

parent nodes of the current content context node in addition to the recommendations

assigned directly to the current content context node. The policy SIBLINGS_SIM uses the

recommendations assigned to the sibling nodes of the current content context node in

addition to the recommendations assigned directly to the current content context node. The

policies PARENT_SIM and SIBLINGS_SIM work in a different way than the parent-

based and siblings-based policies used in the EDU environment. The recommendations not

directly associated with the current content context node are used only in cases, when the

Figure 2.35. Acceptance rates for different

ontology selection policies (SIM)

0

0,01

0,02

0,03

0,04

0,05

Er gebn is

S
e
s
s
io

n
 a

c
c
e
p

ta
n

c
e
 r

a
te

Random Direct match Direct+Parents

Only Parents OnlySiblings

Figure 2.34. Session Acceptance rate of the

ontology selection policies (EDU)

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 71

number of recommendation rules assigned to the current node is less than the number of

recommendations N which are to be presented according to the design of the website. Also,

these recommendations are always shown in the list below the recommendations directly

relevant to the current node, regardless of their weight. If such recommendation is clicked,

its weight is not changed. If this recommendation turns out to be steadily successful for the

given context, the recommendation generator based on association rules should notice this

and create a new recommendation directly assigned to the current context. This new

recommendation will then participate in the weight optimization process. Thus, the policies

PARENT_SIM and SIBLINGS_SIM help explore and find additional recommendations

for the contexts which do not have a sufficient number of recommendations. As shown in

Figure 2.35, both PARENT_SIM and SIBLINGS_SIM lead to an increase in the

acceptance rate. The effect of the selection policies PARENT_SIM and SIBLINGS_SIM

on the acceptance rate can be greater or smaller depending on how many contexts have

insufficient number of recommendations. For our SIM environment only about 30% of the

contexts have less than N recommendations (N=5). This is due to the fact that the

similarity recommendation generator is able to provide enough recommendations for the

majority of contexts. Therefore, the impact of our policies on the acceptance rate is

moderate.

6.2 Optimizing The Retrieval of Information From The Ontology Graphs

In our web recommendation architecture we use the ontology graphs for the flexible

representation of the concepts which can influence the recommendations presented on the

website. The ontology graphs are stored in the relational database. The straightforward

method of storing the graph information which is shown in the database schema in Figure

2.9 is by using two tables, one for the ontology graph nodes and another for the ontology

graph edges. This method of storing graph information in the relational database shows

significant drawbacks with respect to the performance of the retrieval of the data. The most

frequent and most time-critical usage of the ontology data in our system is the retrieval of

the ancestors of a given ontology graph node. In case the ontology graphs are stored in the

relational structure shown in Figure 2.9, every such retrieval requires several queries with

joins. Depending on the total number of edges, nodes and on the average length of the

paths in the ontology graphs, such operation may be lengthy and put significant load on the

database server. In our prototypes, the size of the ontology graphs, the maximal length of

the paths in them and the number of the page views per second are low. Therefore, in our

prototypes we use the straightforward technique based on the relational database structure

presented in Figure 2.9. However, we have also investigated the possibilities for

optimizing the retrieval of the ontology data for the websites with larger ontologies and

more page views per second. We have explored two performance optimization techniques.

The first technique relies on computing the transitive closure of the graphs [DCES04]. The

second technique makes use of the main memory to store the graph. It is also possible to

Mykola Golovin Part II. Adaptive Web Recommendations

72 6.2 Optimizing The Retrieval of Information From The Ontology Graphs

combine the two techniques and store the ontology graph‟s transitive closure in main

memory.

Figure 2.36 shows the results of the experimental comparison of the different

optimization strategies. The operation performed in the experiments was the retrieval of all

ancestors of a given node. The ontology used in the experiments is a consolidation of three

e-commerce ontologies which are also extensively used in the Part III of this thesis:

Softunity.com ontology, Amazon.de ontology and eBay.de ontology. For our experiments,

all the above ontologies were restricted to the interest areas Software, Video and Games.

The consolidated ontology is a forest. The total number of nodes in the consolidated

ontology is 3432; the total number of edges is 10435. The maximal length of the paths

between nodes in the consolidated ontology graph is 5.

The following optimization strategies are shown in Figure 2.36: straightforward

implementation with ontology graph stored in the relational database, transitive closure

stored in the relational database, straightforward implementation with ontology graph

stored in the main memory, transitive closure stored in main memory. For the selection of

the ancestors we selected different number of nodes from the ontology using a pseudo-

random algorithm. The implementation of the memory-based techniques was done in Java.

Standard Java class java.util.HashMap was used to store the data in main memory. The

standard Java implementation of a hashing algorithm used for retrieval provides for the

high retrieval performance. The memory needed to store the ontology graph in our

example is relatively low (around 50KB). Since the time needed to perform the same

operation on a computer may be different depending on other conditions, for example on

the activity of the garbage collector in the Java Virtual Machine, the experiments used to

compare the performance of the retrieval was repeated 10 times. The execution times

presented in Figure 2.36 are the average times calculated over 10 experiments. The

computing of the transitive closure for large ontology graphs may become a problem in

general case as well as specially for the relational databases. Several algorithms were

proposed for efficient solution of this problem in general, for example [NUU95]. Some of

the commercial relational database implementations, such as Oracle and IBM DB2 provide

extensions to the SQL language to allow transitive closure computation [DCES04]. The

computation of the transitive closure is an additional step which needs to be performed

during the updates of the ontology graph data. In our setting, the update of the ontology

graphs is a negligibly infrequent operation. We used a machine with 1 GB main memory

and one 1.7 GHz CPU. The database server used to store the ontologies in our tests is

MySQL Server 5.0.

The Y-axis in Figure 2.36 is logarithmic with base 10. As shown in Figure 2.36, the

transitive closure is about 3 times faster than the straightforward approach when both

methods use relational database and about 2 times faster when both methods are memory-

based. The memory-based algorithms are up to 100 times faster than their RDBMS-based

counterparts. Although the memory-based systems are less scalable with respect to the size

of the ontologies, they are sufficient for the ontologies which are currently used on the

largest e-commerce websites. Therefore, performing the graph traversal in memory is the

most effective way to speed up the selection of the relevant ontology nodes.

Mykola Golovin Web Recommendations for E-Commerce Websites

6 Experiments in the Simulated Environment 73

As shown above, we have several ways of significantly optimizing the use of the

ontology graph in our system, making it suitable for use on the large real-life websites.

While we deem this level of optimization to be sufficient for practical applications, the

authors of [CM05] go even further and propose a method which guarantees a constant-time

retrieval of the relevant recommendations from an ontological structure similar to ours.

This work is discussed on more detail in Section 7.6.

6.3 Summary: Prototypes and Experiments

In this chapter we have discussed the implementation of our recommendation

system architecture on several prototypes and presented experimental results and

evaluations. We have talked about the issues which need to be solved during

implementation and illustrated our architectural decisions with real-life examples.

The experiments and discussion presented in this chapter indicate that our

recommendation system architecture demonstrates some beneficial properties which make

it suitable for use on commercial websites. Although the achieved increase of the

acceptance rate due to optimization is not large compared to the total number of visits on

the website, but as we have discussed this relatively modest increase of the acceptance rate

can bring a significant increase of profit in the monetary equivalent especially on the large

e-commerce websites.

Mykola Golovin Part II. Adaptive Web Recommendations

74 6.3 Summary: Prototypes and Experiments

7. RELATED WORK

The research work in the field of recommendation systems is ample and manifold

due to the important practical incentives such as the continuous growth of the Internet and

the commercial success of the recommendation systems used by the large e-commerce

websites. The problem of making web recommendations was investigated by many

researchers from different research fields. We are not able to describe every work related

to the task of making web recommendations here. Here we describe the works which

reflect the different aspects of the architecture of the recommendation systems in the most

expressive way. We particularly focus on the works which are relevant not only to the task

of making recommendations but also to the architectural decisions which we present in this

thesis. The examples of such decisions are in particular the use of ontologies to represent

the semantic information used for making recommendations, use of data warehouse

technology or use of machine learning. We also present some works which are less related

to our work but are characteristic for specific applications of recommendations or specific

research areas. For the other works, we give a more general description and refer to the

surveys.

Recommendation systems are sometimes placed in the more general research field

of personalization. Recommender systems can be considered one of the methods to

implement personalization. Since this is also the method most often found in practice, the

overlap of these research fields is large and some researchers use the terms

“personalization” and “recommendation systems” as interchangeable.

One of the important characteristics of our system which is common to our work

Characteristic Nr

Surveys and classifications of recommendation systems, techniques and

supporting tools (Section 7.1)

1

Hybrid recommendation systems, combination of multiple recommendation

algorithms (Section 7.2)

2

Evaluation and comparison of recommendation systems (Section 7.3) 3

Web data warehousing, web usage mining and other database-related

technologies (Section 7.4)

4

Systems based on Markov Decision Process and reinforcement learning

(Section 7.5)

5

Recommendation systems employing concept hierarchies or ontologies

(Section 7.6)

6

Personalization in broader sense 7

Construction and usage of user profiles 8

Commercial systems and systems for e-commerce 9

Feedback-based learning and optimization 10

Table 2.3. Important characteristics of the related research work.

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 75

and a large number of other works in the field is combining of multiple recommender

algorithms, i.e. hybrid recommendation system architecture. Combining different

recommender algorithms has become a widespread technique for increasing the quality of

recommendation systems. A survey of the hybrid recommendation systems including a list

of strengths and weaknesses of the different recommendation generator algorithms and a

classification of the hybridization methods can be found in the [Burk02][Burk07].

In particular we would like to mention the work of A. Thor and E. Rahm. The

prototype presented in their work and the prototype EDU presented in this thesis share a

Research work (Project name and/or authors) Characteristics

Adomavicius and Tuzhilin [AT05] 1;2

Anand and Mobasher [AM03] 1;7

Perugini et al. [PSF02][PSF04] 1;8

Burke [Burk02][Burk06][Burk07]. 1;2;3

Goy at al.[GAP07] 1;7;9

Pierrakos et al.[PPS03] 1;4;6;7;9

Schafer, Konstan and Riedl [SKR01] 1;7;9

Fab (Balabanovic) [Bal97] 2;10

WindOwls (Kazienko and Kolodziejski) [KK05][KK06] 2;9;10

Hayes, Massa, Avesani and Cunningham [HMAC02] 3

Herlocker, Konstan, Terveen and Riedl [HKTR04] 3

Yang and Padmanabhan [YP05] 3

CourseRank (Koutrika et al.) [KIBG08] 2;4;6

RQL (Adomavicius and Tuzhilin) [AT01][AT01a] 4;8

Web Utilization Miner (WUM, Spiliopolou et al.)

[SF98][BS00][SP01]

4

WebSIFT (Cooley et al.) [CTS99a][CTS99b] 4;3

Rahm, Stöhr et al. [SRQ00][RS03] 4;1

Thor and Rahm [TR04] 4;1;2;10

Shani, Brafman and Heckerman [SBH02][SHB05] 5;10

Mahmood, Ricci et al. [MR07][MR07a][MR08]

[MRVH08][MR09][MRV09]

5;10

Preda and Popescu [PP04][PP05] 5;3;6

Prudsys RE [Prud06] 5;2;9;6;10

Taghipour, Kardan et al. [TKG07] [TK07] 5;3

Acharyya, Ghosh [AG03] 6

Chen, McLeod [CM05] 6

Mobasher , Jin, Zhou.[JM03][MJZ03] 6;3

Quickstep and Foxtrot (Middleton et al.)

[MRS01][MASR02][MSR03][MSR04]

6;2;8

Table 2.4. Characteristics of the research work in order in which it appears further in

this chapter (For description of numbers in column Characteristics see Table 2.3)

Mykola Golovin Part II. Adaptive Web Recommendations

76 7.1 Surveys

number of components which were developed in close cooperation. Another work which

deserves a special mention is the Prudsys RE. The distinguishing feature of this work that

it has been from the beginning developed as a commercial product rather than a research

project. According to the authors, their architecture was inspired by our work and by the

work [SBH02].

In the next section of this chapter we list several surveys, which can be consulted

for a broader overview of the related work. In further sections we present research work

subdivided by a number of prominent characteristics, such as combination of multiple

recommendation algorithms, use of data warehousing technology and data mining, use of

Markov Decision Process and reinforcement learning and use of ontologies. In case when

the presented work possesses more than one of the listed characteristics and could be

placed into several sections, we choose the section which corresponds to the more

prominent characteristic or to the characteristic which deserves special discussion in

comparison to our approach. An overview of characteristics which we deem to be

important in the related work is given in Table 2.3. Important characteristics highlighted in

bold cursive also serve to define corresponding subsections. Table 2.4 shows the

characteristics which are exhibited by the related research work presented in this section.

7.1 Surveys

A good survey of the state of the art in the research on recommendation systems

and a comprehensive overview of the possibilities for extension of such systems are given

in [AT05]. There are also several extensive surveys which target either the more general

field of personalization or more specific subareas within the field of recommendation

system research like hybrid recommendation systems [Burk02], recommendations in

e-commerce [SKR01], recommendation systems for travel and tourism [FGJ+06],

explanations in recommendation systems [TM07]. We review some of these surveys below

in more detail.

Adomavicius and Tuzhilin

In the survey [AT05] the authors classify the recommendation systems into three

large categories (citing the earlier work [BS97]): content-based recommendation systems,

collaborative recommendation system and hybrid recommendation systems. The

collaborative recommendation systems are further subdivided into memory-based systems

and model-based systems. The authors also present classification for the different hybrid

recommendation approaches; this classification is however less elaborate than the

classification of hybrid recommendation systems provided by the survey

[Burk02][Burk06][Burk07]. The knowledge-based recommendations which are often

referred to by other authors are not included in the classification. The reason for this may

be that the knowledge-based recommendations are rarely used alone. Usually the

knowledge-based recommendations are used as a part of a hybrid recommendation system.

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 77

The authors discuss the relative strengths and weaknesses of the collaborative and content-

based recommendations. They point out that in several research projects the hybrid

recommendations have been shown to provide better quality recommendations and to

alleviate the common problems of both content-based and collaborative filtering.

Furthermore the authors provide an overview of the promising extensions to the

basic approaches. They mention the possibilities for the richer representation of the

information about users and items, using the mathematical approximation theory, tackling

the multidimensionality problem, applying multi-criteria optimization and providing

flexible manual control of the recommendations.

Anand and Mobasher

The work [AM03] is a survey of the more general field of web personalization
17

.

The work features a strict definition of the personalization process, a classification of the

intelligent techniques which can be used to implement personalization and a discussion of

the different classification criteria for such techniques. The authors view web

personalization as an application of data mining and machine learning techniques to the

task of predicting user needs and adapting the website with the goal of improving user

satisfaction [AM03]. Quite interestingly, the authors also state that the goal of the

personalization process is to recommend items to users, thus blurring the distinction

between the concepts of personalization and recommendation system. Throughout the

work [AM03], the authors sometimes refer to a personalization system as a

recommendation system.

The authors postulate that the personalization process consists of two stages: offline

stage which concentrates on learning the necessary knowledge and online stage which

utilizes the knowledge obtained in the first stage for personalizing the website. In our

work, we enhance this concept by performing learning both in the offline and in the online

stage.

The classification of the personalization techniques according to [AM03] can be

performed using many criteria. For example, the distinction between reactive and pro-

active techniques corresponds to the distinction between explicit and implicit feedback as

discussed in this thesis. The authors note that in practice web users are often reluctant to

provide explicit feedback even in cases when it can significantly improve the subsequent

browsing experience. Among other criteria are collaborative versus individual (for

example content-based) personalization, client-side versus server-side personalization,

model-based vs. memory-based personalization etc.

The authors also discuss issues which commonly need to be solved in

personalization systems. Such issues include “cold start” problems (“new user”, “new

item”), data sparseness, context-sensitivity, dynamics in user interests (“drift of interest”),

and usage of domain knowledge. These issues are also explicitly addressed in our system.

The authors point out that the problem of scalability is usually alleviated by using a model-

17

 [AM05] and [AM07] are later versions of the same survey

Mykola Golovin Part II. Adaptive Web Recommendations

78 7.1 Surveys

based approach as opposed to a memory-based approach. In our system we are taking the

model-based approach as well. The issues not addressed in our system explicitly include

robustness against malevolent manipulation and promotion of user trust in

recommendations provided by the recommendation system. With respect to the latter issue

the authors cite the study [SS01] which states that in general a recommendation should

generate two types of recommendations, useful recommendations and trust-generating

recommendations. In our system we do not provide special trust-generating

recommendations. However, manual recommendations can to a certain degree serve for

increasing trust in recommendations provided by the recommendation system, since they

usually exhibit high quality and are based on sophisticated domain knowledge.

Perugini et al.

The authors of the survey [PSF04] (an extended version of [PSF02]) provide an

unusual perspective onto recommendation approaches. They call their survey a

“connection-centric” survey. The connections which the authors place in the center of their

analysis are the social connections, i.e. connections between people. The authors argue that

the social aspect is an essential but previously underrepresented aspect of the

recommendation system research. The survey concerns largely the collaborative-filtering

approaches and the knowledge-based approaches. Content-based systems are omitted in

the survey, since they do not fit well into the connection-centric perspective.

The authors concentrate on different approaches to modeling the user profiles and

the calculation of similarities or connections between different user profiles. They also

review the possibilities of establishing a connection between the user profiles created by

the recommendation systems and user profiles contained in the different social networks

which are already available on the Internet. Another interesting research direction is

“mining” of the explicit user networks from the implicit information contained for example

in shared bookmark systems or in recommendation systems. The authors survey different

aspects of interaction between a recommender system and the society, such as evaluation

of recommendation systems in social context, targeting of the recommendation systems to

different social groups, issues of privacy and trust. The work also identifies some of the

possible future research directions, such as distributed recommendation systems, formal

modeling of recommendation systems, new designs for human-computer interaction with

recommendations, “recommendation appliances” – recommendation systems pre-installed

on hardware devices which can be configured and utilized in any environment where

recommendations are desired.

Burke

The author provides a very elaborate study of the different hybrid recommendation

systems. There are several versions of the survey: [Burk02], [Burk06] and [Burk07]. The

earlier version [Burk02] concentrates on classification issues, the latest version [Burk07]

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 79

provides comparative evaluation of different hybrid systems. The version [Burk06] is a

technical report which contains a more detailed version of the comparative evaluation

presented in [Burk07]. In the latest version of the survey [Burk07] the author studies 41

implementations of hybrid recommender systems compares them to each other. The survey

provides a classification of the basic recommendation techniques and a classification of the

different approaches to creating a hybrid recommendation system by combining the basic

techniques. According to [Burk02], the basic techniques can be classified as collaborative,

content-based, demographic and knowledge-based techniques. The following classification

of the possible ways of combining the basic techniques is proposed in [Burk02]:

Weighted: the recommendation scores returned by different recommendation

techniques are numerically combined into one score.

Switching: the recommendation system automatically chooses which

recommendation technique to apply in which case.

Mixed: recommendations provided by the different recommendation techniques are

presented together on the website.

Feature Combination: the data from different knowledge sources (for example

collaborative and content-based) are combined and given to a single recommendation

technique as input data.

Feature Augmentation: the output of one recommendation technique is used as

input to the next technique.

Cascade: recommendation techniques are assigned priority. The results of the

recommendation techniques with lower priority are used to distinguish between the

recommendations for which the recommendation techniques with higher priority return

equal scores.

Meta-level: one recommendation technique creates a model, which is then used by

another recommendation technique.

For each of the categories listed above the authors provide a schematic architecture

description and several representative implementations in [Burk07]. We refer to this

classification when describing hybrid recommendation systems further in this section.

With respect to this classification, the architecture presented in this thesis possesses

combined characteristics of a “mixed”, “feature-combination” and “meta-level” system,

with “mixed” property expresses more prominently. The implementation of a weighted

approach within our system would be straightforward.

The authors also identify common problems which need to be addressed for

implementing of a recommendation system. One of these problems is the so-called cold-

start problem, also known as new item or new user problem. Another is the problem of

stability vs. plasticity, which we call drift of interest in this thesis. In our architecture we

address both of these problems.

Mykola Golovin Part II. Adaptive Web Recommendations

80 7.1 Surveys

In the comparison part the authors evaluated the different hybridization techniques

by creating a series of two-component hybrid recommendation systems and comparing

their performance on the same input data set. The evaluation was performed in a simulated

environment using data from a real-life website. The components have been chosen in such

a way that each component represents a different class of recommendation techniques, so

that all meaningful combinations of the basic techniques and all hybridization types.

According to [Burk07], the systems based on feature augmentation hybridization technique

achieve the best performance on the used dataset. The authors note that it is not clear to

which extent the results obtained on a given dataset can be generalized and to which extent

the peculiarities of the implementation of the basic recommendation techniques have

influenced the results of the hybrid algorithms. This is however a relevant critique for our

experimental evaluation and for many other experimental evaluations as well. The authors

make a number of observations that certain hybridization techniques are better suited to

certain combinations of the basic techniques. These observations are likely to be valid also

in the general case, independently of the specific input data and implementation details of

the basic techniques. The one observation which is shared by many researches is that the

hybrid approaches can achieve better results than those which are possible by applying

only the basic recommendation techniques.

Goy at al.

The survey [GAP07] deals with personalization for e-commerce applications.

Personalization is a broader term compared to recommendation systems, however there‟s

no distinct border between the recommendation systems and other personalization

techniques. The authors consider E-commerce in the narrower sense of Business-to-

Customer (B2C) E-commerce. The survey considers commercial software which can be

used for creating e-commerce systems with personalization as well as research prototypes

of such systems. The authors note that the personalization possibilities implemented in

commercial systems are rather simple, in contrast to the rich possibilities for management

of content such as products, product catalogs, prices. The survey explores the connection

between personalization techniques and modern technologies such as CRM (Customer

Relations Management) and CDI (Customer Data Integration). [GAP07] classifies the

personalization systems into adaptable systems and adaptive systems. The former are

giving the user opportunities to adjust the system to his taste, the latter are trying to adjust

themselves automatically. The authors then study the adaptive systems in more detail.

They investigate what information can be used to create adaptive systems and common

work steps of such system: acquisition of data needed to decide about adaptation,

representation of these data and inference of the required adaptation, production of

adaptation, i.e. making adjustments to the user interface. Web recommendations are the

most known example of the possible adjustment, but there are also other possibilities for

adaptation. Such adaptation possibilities are for example dynamically changing product

catalogs. A promising application area of personalization is the adaptive representation of

complex products with a large number of feature combinations, such as automobiles which

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 81

allow different types of color and additional equipment to be selected. It is often hard for

the users to find the suitable combination. The personalization can help to determine the

configurations which certain kinds of users find interesting. The authors investigate the

types of advantage which personalization brings: improvement of customer relations,

quality of service, usability of the website, integration of data from different suppliers.

Pierrakos et al.

The work [PPPS03] is a survey of the approaches which combine data mining and

knowledge discovery techniques applied to web usage data with web personalization. They

discuss different ways to personalize websites and different personalization functions. One

example of a personalization function is a recommendation system. Other personalization

functions include user salutation, personalized layout, personalized pricing scheme etc.

The authors provide an overview of the most important aspects which need to be addressed

in order to personalize a website based on the analysis of the usage data. They also define

several steps which need to be implemented to provide personalization: data collection,

date pre-processing, discovery of patterns, knowledge post-processing. For data collection,

they review different possibilities for gathering the data, such as gathering data on the

server side, on the client side and on the intermediary level such as proxy servers and

firewalls. Data cleaning, crawler elimination, session detection and user identification are

named among the tasks which need to be solved by data pre-processing. For the pattern

detection step, the authors describe and compare different approaches found in the

literature such as clustering, classification, association rules and sequential patterns. For

each method they discuss the specifics of its application to the task of automatic

personalization. The knowledge post-processing is a process which is performed by

humans. The authors describe several possibilities for knowledge representation which

should simplify the task of knowledge post-processing.

The authors have selected a number of works in the field of web personalization for

more detailed discussion. They subdivide the personalization systems presented in these

works in single-function systems and multi-function systems. The authors describe

personalization systems originating from research institutions as well as commercial

systems such as Oracle AS Personalization
18

.

They also identify open issues in web personalization, such as scalability with

respect to large volumes of data and possibility of incremental updates. They specifically

point out the problem of users‟ behavior changing over time, i.e. “drift of interest” and

indicate that this problem has not been sufficiently addressed in the research.

They also indicate that the common representation of the knowledge obtained by

web usage mining tools is an important practical issue and suggest using W3C knowledge

representation standards such as RDF. In the architecture presented in this thesis we

address this issue by using ontologies stored in a relational database to represent the

knowledge. Such internal representation of the knowledge is superior in terms of retrieval

18

 http://www.oracle.com/personalization

Mykola Golovin Part II. Adaptive Web Recommendations

82 7.2 Hybrid Recommendation Systems

performance to the internal representation in RDF format. However, the import and export

of knowledge between relational format and RDF format are straightforward.

Schafer, Konstan and Riedl

Similarly to the survey [GAP07], the survey [SKR01] concentrates on

personalization of e-commerce applications. Although the title of the work explicitly

specifies the focus on recommendation systems rather than more general term

“personalization”, the perspective of the work is almost as broad as the perspective of

[GAP07]. The authors survey the personalization and recommendation techniques used on

several large e-commerce websites. They consider systems such as amazon.com,

cdnow.com, ebay.com, drugstore.com, reel.com and compare different personalization

techniques found on these websites. [SKR01] presents a taxonomy for recommendation

techniques based on the input data received by the techniques and the output data provided

by them. The aspects such as degree of personalization, different methods of delivery of

recommendations to the user in e-commerce applications are analyzed in detail. The

authors concentrate on the economical side of the personalization. They point out that the

recommendation systems are at the moment used rather as “virtual salespeople” and not as

marketing tools [SKR01]. Indeed, the recommendation systems can be used not only as

sales instrument within the framework of a given website but also as a marketing

instrument used in the framework of a company‟s marketing policy. The authors suggest

using the recommendation systems for marketing campaigns or to capture a certain market

segment.

7.2 Hybrid Recommendation Systems

Hybrid recommendation algorithms have been a fruitful research area in the recent

time. Considerable amount of research work in this area has been published and a number

of architectures of hybrid recommendation systems have been proposed. For most of them

we refer to the surveys [Burk02][Burk07]. However, some of them deserve special

attention in the context of this thesis and we therefore discuss them in this subsection in

more detail.

Significant amount of research work deals with combining the collaborative

filtering with content-based algorithms. Such architectures are proposed in [CGM99],

[PZ03], [BH04], [Bal97] and other research works. Their approaches strive to combine

both algorithms in one algorithm in an algorithm-specific way. The Fab system of [Bal97]

is described below in more detail as an early example of such systems. Our approach, in

contrast, implements the collaborative, content-based and knowledge-based algorithms as

independent recommendation generators, but dynamically combines their results in a way

which is optimized for a given website and the taste of a given web user.

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 83

Fab (Balabanovic)

The Fab recommendation system [Bal97] is one of the early hybrid adaptive

recommendation system architectures which was the first to possess some of the features

which we also used and extended in our architecture. The system in [Bal97] combines

collaborative filtering and content-based recommendations. One distinctive feature of the

Fab system is the usage of a central repository to store the recommendations. The

repository is filled by so-called collection agents, which implement various

recommendation algorithms. The selection agents select recommendations from this

central repository and present them to users. Both collection and selection agents have own

profiles. Each user is assigned its own selection agent. The profile of this selection agent

serves as a profile of the user. Differently from our architecture, the system Fab relies on

explicit feedback to adapt its behavior. The explicit feedback is used to adjust both the user

profiles and the profiles of the collection agents. The adaptation is done on the level of

recommendation algorithms, not on the level of individual recommendations. The author

points out the need to perform both short-term and long-term learning in an adaptive

recommendation system.

WindOwls (Kazienko and Kolodziejski)

The work presented in [KK05][KK06] presents a hybrid recommendation system

architecture able to combine recommendations from different recommendation algorithms

in one website. The authors target particularly e-commerce websites. In the terminology of

[Burk02] the hybridization method is “weighted”, i.e. the recommendation scores returned

by different recommendation algorithms are combined numerically in one score. Two sets

of numerical values are used to select the recommendations for presentation. One set of

values contains the scores provided by the recommendation algorithms. In case when the

same recommendation comes from several recommendation algorithms, the maximum

score value is used. Another set of values contains the relative weights assigned to the

different recommendation algorithms. In order to obtain the score of concrete

recommendations, the scores provided by the recommendation algorithms are multiplied

by the weights assigned to the respective recommendation algorithms. The sets of weights

of the recommendation algorithms are individual for every user and are calculated

statistically basing on the number of recommendations generated by the given

recommendation algorithm which have been accepted by the user. The recommendation

system also maintains a base set of weights, which represents the arithmetic average of the

weights calculated over all sets of the individual users. The base set of weights is used to

initialize the individual sets of weights for the new users.

In some aspects the work presented in [KK06] can be considered a middle ground

between the approach followed by [TR04] and the approach followed by our architecture.

The architecture presented in [TR04] is a “switched” architecture in terms of [Burk02],

which means that the different recommendation algorithms generate and present their

recommendations separately and independently. The user feedback is used to learn the

Mykola Golovin Part II. Adaptive Web Recommendations

84 7.3 Methods of Evaluation of Recommendation Systems

optimal way of switching between the different recommendation algorithms. In the

“mixed” approach presented in this thesis, the individual recommendations are detached

from the recommendation algorithms which generated them to be learned and presented

together. The feedback is used to influence the weights of the individual recommendations.

In the architecture of [KK06] the recommendations are also detached from the

recommendation algorithms and presented together. However, the feedback which they

receive from the website is used to learn not the weights of the individual

recommendations but the weights of the recommendation algorithms which generated

them. In our opinion, the architecture of [TR04] has a major advantage over the

architecture of [KK06]. In [KK06], the decision to give preference to one or another

recommendation algorithm depends on the current user. In [TR04], this decision can be

made basing on a large number of parameters of the so-called recommendation context,

such as current user, current content and other information. The feature that associates

[KK06] and [TR04] is that the feedback-based learning is done on the level of

recommendation algorithms and not on the level of individual recommendations as in our

architecture. This can be seen as both advantage and disadvantage, as discussed in Section

5.4 of this thesis. Our experimental data obtained on the EDU prototype show that the

feedback-based learning of individual recommendations can be more sensitive to the user‟s

interest and achieve better acceptance rates, but it also suffers much more from the scarcity

of feedback compared to the feedback-based learning on the level of recommendation

algorithms.

The authors present an evaluation of their system on a sample e-commerce website.

The sample website is an internet shop that sells windsurfing equipment. With the total of

65 users and 42 purchased products the website is significantly less representative than the

websites we used to evaluate our architecture. Using the data collected on the sample

website, the authors investigate the behavior of the acceptance rates of different

recommendation algorithms in time.

In [KK06] the authors polemicize with some of design decisions used in our

architecture. In particular, they question the usage of the element CurrentUser in the rules

of general form:

<CurrentContent, CurrentUser, CurrentTime> => <RecomendedContent, Weight>

This critique, however, is based on the mistakenly simplified understanding of our

concept. So, the authors assume that the element CurrentUser represents an individual user

in terms of the website. In our concept, however, this element represents the node in the

ontology graph, which describes the semantic characteristics of the current user. If these

semantic characteristics are shared by many individual website users, a node could be

common for all these users, thus representing a user group rather than an individual user.

Further, the authors assume that this element is mandatory. In our system, it is possible to

employ the recommendation rules not depending on parts of the context or even

completely independent of the context. Thus, any of the three context elements may be

omitted in our recommendation rules.

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 85

7.3 Methods of Evaluation of Recommendation Systems

There is a series of works which deal specifically with the evaluation of the

performance of recommendation systems. This notorious interest is caused by the fact that

such evaluation is has proved to be a complicated issue. Several aspects make evaluation

of recommendation systems complicated, for example insufficient willingness of real-life

websites to run experimental systems and lack of a universally accepted single

performance measure. The works presented in this section study these and other aspects of

the evaluation of recommendation system in detail.

Hayes, Massa, Avesani and Cunningham

The authors of [HMAC02] review different ways of evaluating the recommendation

systems. They utilize the subdivision between to online evaluation and offline evaluation

introduces first presented in [KR99] and give several examples of both evaluation types.

The meaning of terms online and offline in [KR99] is different than the meaning they have

in the description of our architecture. Online evaluation in [KR99] is understood as an

evaluation performed on a real-life website with real users, whereas offline evaluation is an

evaluation performed in a simulated environment. The data set used for offline evaluation

usually also comes from a real-life website. In [HMAC02] the authors argue that the only

reliable way to evaluate a recommendation system is by using an online evaluation on a

real website. The authors name examples of factors which can significantly distort the

experimental results provided by an offline evaluation. [HMAC02] describes the

architecture of a framework for online comparative evaluation of the recommendation

systems. Their framework consists of a real-life web application visited by web users, two

competing recommendation systems and a special component which controls the

presentation of the recommendations generated by the different recommendation systems

according to a policy. The authors discuss the steps which need to be taken in order to

guarantee a fair competition between the recommendation systems. They also discuss

different ways to consider the user feedback and propose different policies for presenting

the recommendations, such as merging all recommendations in one result set and

presenting them together, presenting two result sets simultaneously on the web page or

presenting recommendations from different systems alternately in different presentations.

Interestingly, the authors propose the use of reinforcement learning during the evaluation

in order not to negatively impact the trust of the users of the real-life system.

Reinforcement learning in their approach should assure that only a small fraction of

recommendations comes from the worse recommendation system.

The evaluation approach proposed in [HMAC02] is in many aspects similar to the

evaluation we present in this thesis. We perform evaluation using metrics which represent

the attitude of the real web users towards our system. We agree that an online evaluation of

a recommendation system on a real-life is more convincing than an offline evaluation. We

have tried to use the online method as much as possible while evaluating our

recommendation system. However, we have found out that even after overcoming the

Mykola Golovin Part II. Adaptive Web Recommendations

86 7.3 Methods of Evaluation of Recommendation Systems

obvious obstacle of obtaining access to a real-life website willing to test an experimental

implementation – an obstacle which is considered to be very serious by most researchers

including [HMAC02] – one more serious obstacle appears which makes online evaluation

quite difficult. This obstacle is the scarce feedback which is does not suffice to achieve

reliable results for the multitude of the possible modifications of the recommendation

algorithms.

A significant drawback of the proposed evaluation framework is that no

implementation of the proposed evaluation framework has been done. Therefore it has not

been possible to validate the theoretical considerations of the authors of [HMAC02] in

practice. Also, there may be issues which become apparent only during the operation of the

evaluation framework and which have not been mentioned in [HMAC02].

Herlocker, Konstan, Terveen and Riedl

The authors of [HKTR04] concentrate on evaluating one common type of

recommendation systems – the recommendation systems based on collaborative filtering.

They point out three major difficulties of the evaluation:

 Different datasets are used for evaluation of the recommendation systems. It is

often unclear, to which degree the measured performance of a

recommendation system depends on the design of the system and to which

degree it depends on the characteristics of the dataset used for evaluation. To

address this problem, in this thesis we used two datasets for the evaluation of

our recommendation system. However, the question of whether our results

apply to all or majority of possible datasets still cannot be answered with

sufficient confidence.

 Different recommendation goals – some websites want better prediction of the

user‟s interests, other websites deliberately want to propose something else

than the user would most probably choose, if it serves the interests of the

website‟s owner, for example increases the profit. For example, of the two

websites which we used to test the architecture presented in this thesis, the

EDU website is interested in providing comfortable navigation for the user

while the EC website concentrates on increasing commercial profit.

 Different combinations of measures are used in different recommendation

systems. In the work described in this thesis we use acceptance rate and

session acceptance rate as performance measure for our systems. However, it

is not possible to directly compare our architecture to many other

architectures, since they use other measures such as precision and recall

[CK68], ROC curve [Swet63], NDPM [Yao95] etc.

According to [HKTR04], most of the performance measures currently used for

evaluating recommendation systems are so-called accuracy-based measures, i.e. measures

which describe the predictive accuracy of a recommendation algorithm. The authors note

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 87

that a “magic barrier” to the increase of the accuracy-based performance measures seems

to exist. This “magic barrier” represents the degree to which a user himself is uncertain

about what he wants to choose. If the different algorithms are tuned to the optimum, argue

the authors, the improvements in terms of “accuracy” of the more complicated algorithms

over the basic ones are tiny, since they approach the “magic barrier”. This is why the

improvements to the algorithms should not concentrate on the accuracy measures, but

rather on additional characteristics of the recommendation systems. Among such

characteristics the authors name the ability to communicate the reasons for a certain

recommendation to the users and the amount of data the recommendations systems need to

make recommendations.

These observations of the authors are consistent with our experience. The

acceptance rate metric used in our work is a variation of the “accuracy” metric. That is

why we concentrate not on the improvement of the specific recommendation algorithms

but on the automatic optimization of the recommendations independently from the

algorithms which generate them, thus ensuring that the performance of our system always

stays as close to the “magic barrier” as possible. We also provide some additional

characteristics which we perceive to be important for modern e-commerce websites, such

as the ability to generate the recommendations online, flexibility in changing the

recommendations manually and in representing different concepts of the websites.

In [HKTR04] the authors describe the difficulties listed above in more detail and

propose the ways to tackle these difficulties: they categorize the goals of the

recommendation system; discuss the selection of the datasets for evaluation; survey the

evaluation metrics and study the behavior of different metrics on the same dataset, showing

that the metrics can be divided into classes of correlated metrics. They also introduce and

discuss some metrics which are not based on “accuracy”, such as novelty, serendipity and

coverage of recommendations. The marketing-related evaluation metrics such as offer

acceptance and sales lift as well as the usability-related metrics and computational

performance metrics are deliberately not considered in [HKTR04], although the authors

admit that such metrics are important for the comparative evaluation of recommendation

systems.

Yang and Padmanabhan

Similar to the other work listed in this section, the work [YP05] points out that the

current situation with the evaluation of recommendation systems is unsatisfying. They

argue that especially the relative easiness of implementing the different types of

recommendation systems leads to a possibility of unforeseen problems and complications.

([Flyn06] gives a good example of such unforeseen complication). This makes the reliable

evaluation of recommendation systems very important. Contrary to [HMAC02], the

authors indicate that the evaluation on the real website is though welcome but rarely

possible and even if possible then with limitations which make the obtained results weak.

So, even if there is a real website willing to implement an experimental system, it is

usually not willing to implement the relatively mediocre recommendation algorithms

Mykola Golovin Part II. Adaptive Web Recommendations

88 7.3 Methods of Evaluation of Recommendation Systems

which could serve as a “control group”. This is also the case with the real-life evaluations

we present in this thesis. For example, we have not been allowed to use the

recommendation algorithms which provide pseudo-randomly selected products as

recommendations. We could use the algorithms which either pseudo-randomly switch the

recommendation algorithms or pseudo-randomly select the recommendation candidates

pre-selected by some non-random recommendation algorithm. For the common case when

the real-life evaluation cannot be performed or cannot be used with reliable enough

settings, the authors suggest a knowledge-based approach which can alleviate the weakness

of previously used evaluation schemes. They introduce the notion of so-called

distinguishing sets. Distinguishing set is a set of statements which can be evaluated on the

data and represent our understanding of what a “good” recommendation system in a given

domain should be. It is not a requirement that this understanding should be complete and

exhaustive. To be qualified as a distinguishing set, a set of statements should have a

characteristic of leading to a certain outcome (i.e. a certain set of recommendations) while

ruling all other outcomes out. They also introduce the notion of minimal distinguishing set

for a given outcome, i.e. such distinguishing set which doesn‟t contain any other

distinguishing sets as a subset. The evaluation of the recommendation system is then

performed in the following way:

 Determining the set of minimal distinguishing sets using the algorithm provided

by the authors in [YP05].

 Testing whether these minimal distinguishing sets hold on the experimental

data.

The technique described by authors is a systematic approach to evaluating the

recommendation systems. It forces us to specify our assumptions about what is a good

recommendation system in an explicit manner. It is also possible to include the previously

used metrics in the statements describing knowledge in the distinguishing sets. This

approach allows performing continuous evaluation and validation of a running

recommendation system.

 [YP05] also provides an example of how such evaluation system can be

implemented. The authors use a simple case with real-life data, formulate a distinguishing

set of rules and show how the performance of a recommendation system can be evaluated

against these rules.

The authors of [YP05] acknowledge that their approach has a serious problem,

namely that the evaluation depends now not only on how good the recommendation system

is but also on how good the domain knowledge is. The problem of assessing the quality of

the domain knowledge used in this evaluation framework is however a hard problem if

attempted to be solved as a computational problem. This problem is more suited to be

solved on the organizational level while implementing the recommendation system, for

example by cross-validating the domain knowledge by several human experts in the given

domain.

[YP05] explicitly does not advocate the use of the proposed evaluation method in

case when possibilities for performing comparative experiments on real-life systems with a

control group exist. In the common case, however, such experiments are not possible and

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 89

the approach [YP05] represents a valuable contribution to the solution of the demanding

problem of evaluation of the recommendation systems. Although in our system we had the

possibility of using a real-life evaluation, the aspects discussed by the authors are also

relevant for our evaluations, since our control groups are relatively weak and are only

representative of how good our optimization algorithms are, not how good our

recommendation system as a whole is.

7.4 Web Data Warehousing and Web Usage Mining

In this subsection we review the connections between recommendation systems and

database-related technologies. Such database-related technologies include data

warehousing, online analytical processing (OLAP) and data mining. In some cases, new

technologies have appeared on the intersection of these two fields. In particular, the

application of data mining techniques to the data describing the user navigation on a

website is termed “web usage mining”. Web usage mining is a sub-concept of the more

general concept “web mining” which denotes the application of the data mining techniques

to the data found on the World Wide Web. Other types of web mining include web Content

mining and web structure mining [BL99][MBNL99]. Web usage mining and web data

warehousing provide the foundation for the research presented in this thesis, in particular

for the implementation of the recommendation generators.

CourseRank (Koutrika, Ikeda, Bercovitz, Garcia-Molina)

The system CourseRank [KIBG08] is used at Stanford University in order to help

undergraduate students select their courses. Similarly to our approach, CourseRank

suggests courses to the users relying on a rich data model which is stored in a relational

database. The authors argue that using only a single type of recommendations, i.e. only

collaborative or only content based recommendations brings a number of drawbacks and

propose using hybrid architecture. The combination of different approaches is achieved by

specifying so-called flexible recommendation workflows, which can provide

recommendations based on a set of input parameters and on the domain knowledge

contained in a relational database (rich data in the authors‟ terminology). The authors

stress that the recommendation workflows are specified using a high-level definition

language. This high-level definition language includes operators commonly used for

accessing relational data, such as selections and joins, as well as operators which are

specific for the generation of recommendations. The latter include the operator extend,

which allows accessing additional relations in the database, the operator recommend for

generating recommendations and the operator top-k for filtering the set of generated

recommendations. The combination of match clauses and ontology selection policies

which is presented in this thesis is comparable to the recommendation workflows as

described in [KIBG08]. However, it should be noted that the recommendation workflows

are more generic and therefore more flexible than the approach based on mapping clauses

Mykola Golovin Part II. Adaptive Web Recommendations

90 7.4 Web Data Warehousing and Web Usage Mining

and ontology selection policies. The authors also report that they are working on the

mechanism for automatic optimization of the recommendation workflows; however no

results are yet available.

The system CourseRank does not gather implicit user feedback and performs no

feedback-based optimization. Instead, CourseRank provides user with the interface which

allows adjusting various parameters of the recommendation workflows in order to obtain

personally tailored recommendations. Such approach potentially allows better fine-tuning.

However, it expects the user to have at least a basic understanding of how the

recommendation system works and how the different parameters affect its behavior.

RQL (Adomavicius and Tuzhilin)

Adomavicius and Tuzhilin present the use of data warehousing technology for

generating web recommendations in two works [AT01][AT01a]. They point out a number

of improvements which can be introduced by such symbiosis, for example the aggregation

of the data used for generating recommendations and creation of profiles basing on these

data. In particular the creation and use of hierarchical profiles and groups is possible. The

use of data warehousing technology can help the recommendation system to tackle the

problem of multidimensionality. The authors propose to use a special recommendation

warehouse, i.e. a data warehouse designed especially for making web recommendations.

They also propose a special language RQL (Recommendation Query Language). RQL can

be used both to define a recommendation warehouse and to select recommendations from

it. RQL allows flexible management of the recommendations. Statements expressed in

RQL can be used by the website owners to specify which recommendations should be used

in which situation.

The authors present an implementation of their architecture. In their

implementation, the recommendation warehouse is implemented using a relational DBMS

and the RQL language is translated to SQL. The authors indicate that such implementation

can be a performance bottleneck in a production system and suggest that the

recommendation warehouse be implemented as custom software in this case.

The architecture presented in [AT01] and [AT01a] has a number of contact points

with our architecture. These contact points include using the data warehousing technology,

advocating of the need for use of groups and hierarchical profiles, using rules for making

recommendations, giving the website owners the possibility for flexible adjustment of the

recommendation rules. There are also significant differences. For example, the direct use

of a data warehouse to select recommendations for presentation as proposed in [AT01]

does not seem to be a plausible solution for a real-life recommendation system. Indeed,

data warehouses usually contain large amounts of data and the queries posed to a data

warehouse put considerable load onto the database server. This is especially pertinent since

RQL allows almost arbitrarily complex queries. Performance problems are likely to arise

when such architecture is used on a real-life website. In our architecture we use rules of a

simpler kind. We generate recommendation rules basing on the information from the data

warehouse and then store them in a recommendation rule database which is specially

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 91

optimized for quick access. Other differences between our architectures include the

absence of the automatic selection of the recommendations from [AT01] – the RQL

statements should be entered manually by the website owners. The possibility of automatic

optimization of the recommendation rules using feedback received from web users is also

absent from [AT01] [AT01a].

Web Utilization Miner (WUM, Spiliopolou et al.)

Web Utilization Miner is a specialized tool for web usage mining described in

[SF98][BS00][SP01]. WUM is comprised of two components. The first component is

called aggregation module. This component prepares and aggregates the web usage data

for analysis. The second component is the mining processor which performs the

recognition of significant navigation patterns in the usage data. WUM architecture does not

contain a special personalization component. The authors suggest that the personalization

should be performed manually by the website owner, after the user preferences are

understood with the help of WUM. The mining of the usage data is controlled manually

using an SQL-like mining language named MINT. Human experts need to use MINT to

specify what types of behavioral patterns are being looked for. MINT processor can be

used to explore the behavioral patterns of the web users or to monitor the changes in the

user behavior. [BS00] discusses an extension of the system which allows mining usage

data for dynamic websites where HTML-Pages are results of form-based queries over a

relational database or some other source of data. The authors propose creating the concept

hierarchies for such “hidden” data and investigating the user behavior with respect to these

conceptual hierarchies. An interesting approach is taken by the authors with respect to

storing the usage data for analysis. Although they do not use a relational database, they

recognize that such analysis is not possible without a suitable data structure. WUM uses

specially structured data storage called Aggregated Log with special indexes based on trie

algorithm [Brian59].

WebSIFT (Cooley et al.)

The system WebSIFT is described in [CTS99a][CTS99b]. WebSIFT is a

framework for web usage mining. The distinctive feature of WebSIFT is the usage of the

domain knowledge as auxiliary source of information for the usage mining. WebSIFT

employs web content mining and web structure mining to automatically extract domain

knowledge which can be helpful in detecting interesting patterns in the usage data.

The domain knowledge in WebSIFT is used to assess the “interestingness” of the

pattern. The authors relate “interestingness” of a usage pattern to its “unexpectedness”. For

example, a strong usage pattern connecting the items which belong to unrelated areas

(according to the content hierarchy) or have highly dissimilar content are considered

especially interesting.

Mykola Golovin Part II. Adaptive Web Recommendations

92 7.4 Web Data Warehousing and Web Usage Mining

We would like to note that such definition of “unexpectedness” is focused on the

website owner and not on the web user. Indeed, the behavior patterns which cannot be

easily predicted basing on the domain knowledge provide the most interesting insights for

the website owner. However, since the web users do not necessarily possess sufficient

domain knowledge, even the patterns which can be easily predicted from the domain

knowledge may be quite unexpected and interesting for the web users when used as

recommendations.

The system WebSIFT relies on the relational database technology for storing the

usage data and the domain knowledge. However, no task-specific techniques such as data

warehousing methodology or special types of indexing are applied.

Rahm, Stöhr et al.

The authors of [SRQ00][RS03] discuss the problem of evaluating the web usage

data and designing personalization systems from the point of view of relational database

technology and data warehousing. They come to the conclusion that the use of the database

technology for personalization is inevitable given the characteristics of modern websites

and the characteristics of the usage data which needs to be stored and evaluated. In [RS03]

the authors first theoretically analyze the possibilities for database-supported processing of

web usage data and point out that data warehousing technology is particularly suitable for

this task, despite of the relatively high implementation effort. The authors then present the

architecture of a web data warehouse and extensively study the different practical aspects

of the processing of web usage data in a data warehousing environment. [RS03] also

contains an overview of the tools for preparing and analyzing the data. In general, [RS03]

can be used as a practical instruction for creating a web data warehouse.

The works [SRQ00] and [RS03] concentrate on the processing and analysis of the

usage data. The possibility of creating an automated adaptive personalization system is

suggested but no specific architecture of such a system is proposed. However, the

architecture proposed in this thesis as well as architecture proposed in [TR04] are based on

the ideas and results presented in [SRQ00][RS03] and can be regarded as the continuation

of this work.

Thor and Rahm

The work described in [TR04] employs a data warehouse to store the usage

information and implicit user feedback. In [TR04] the feedback is used to learn how to

switch the different recommendation generator algorithms, which work independently

from each other, whereas in our approach the feedback influences the weights of individual

recommendations (“switched” approach vs. “weighted” approach according to the

classification in [Burk02]). [TR04] describes several strategies, according to which the best

recommendation generator can be chosen, including an adaptive strategy based on a

decision tree algorithm. The selection of the recommendation generators is influenced by

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 93

the current context, i.e. current situation on the website. The work also contains a

classification of recommendation algorithms.

[TR04] proposes an interesting technique of filtering out the page views originating

from automated web crawlers. The filtering is performed by including special hyperlinks

into the HTML code of the web pages. These hyperlinks are specially formatted to be

invisible for the human user but are still visible for the crawlers. The sessions in which

such links were visited can therefore be safely excluded from the analysis of the navigation

behavior of the human users.

The implementation of the system described in [TR04] and the system presented in

this thesis were performed in close cooperation. So, some of the recommendation

algorithms developed by Mr. Andreas Thor were used to create the recommendation rules

in our EDU prototype. Particularly interesting is the highly successful search engine based

recommendation algorithm, which utilizes the keywords forwarded by the search engine in

order to provide relevant recommendations. In the EDU prototype, a common data

warehouse was used for both approaches. A joint paper [TGR05] containing the

description and comparative evaluation of both approaches was published.

7.5 Markov Decision Process and Reinforcement Learning

[Sutt96] was the first to mention the possibility of employing reinforcement

learning to solve the task of presenting web recommendations. Specially to mention are the

work of Shani, Brafman and Heckerman [SBH02][SHB05] which described an MDP-

based recommendation system. They also referred to the possibility of applying

reinforcement learning but did not implement it in their architecture. At a later time,

several research teams presented systems based specifically on reinforcement learning. The

systems described in this subsection take different approaches to representing the

recommendation problem as an MDP and solving it.

Shani, Brafman and Heckerman

The work of Shani, Brafman and Heckerman described in [SBH02][SHB05] exhibit

a number of common points as well as a number of principal differences with our work.

So, they also argue that the problem of making web recommendations should consist of

creating the initial model and the part which optimizes this model based on the usage. The

authors employ the MDP (Markov Decision Process) model. Our approach is based on

reinforcement learning which in turn also employs MDP model to describe the problem to

be solved. Although they use the term “online”, but their use of this term is different from

the online learning as presented in this thesis. Our online learning is performed after every

presentation. They authors of [SBH02][SHB05] understand using relatively recent

feedback as “online” learning. So, on their prototype they update the model only once

every several weeks.

Mykola Golovin Part II. Adaptive Web Recommendations

94 7.5 Markov Decision Process and Reinforcement Learning

The prediction model used by the authors is based on the usage data. This means

that the discussion for of “new item” problem arises for the cases when usage data is

available. The authors mention that in case when new items appear and have no associated

usage data the recommendations for these items are learned online. The authors point out

that their online optimization approach does not depend on the implementation of the

predictive model, i.e. some other algorithm which is not necessarily based on MDP can be

used to generate the predictive model.

The authors use not only a currently viewed page to describe the current MDP state,

but also a history of previous states. The history length is variable; the history can contain

a combination of a maximum of 5 previous states. Since this may lead to explosion in the

number of states, the authors apply special techniques to reduce the number of states. Our

architecture also allows considering the previous states for making recommendation

decisions. However, after a preliminary analysis of our data we have decided to restrain

ourselves from using the previous states. The sessions with many page views are relatively

rare in our data, so the benefits of using previous states didn‟t seem to justify the increased

difficulty of handling much larger number of states.

The work of Shani, Brafman and Heckerman takes into account not only the

immediate feedback, but also the prospective feedback of all subsequent states. This

approach stands in contrast to our approach, which takes only immediate feedback into

account. The authors point out that there are both benefits and drawbacks of considering

not only the immediate but also expected subsequent feedback. The benefit is that we can

maximize the reward beyond the reward which can be obtained by considering only

immediate feedback. The drawback is that considering non-immediate feedback may lead

to recommendations with low perceived relevance. This may lead users to losing

confidence in the recommendation system and starting to ignore the recommendations in

general. Another drawback of considering subsequent feedback is that it significantly

increases the computational complexity, making it barely possible to learn

recommendations in real time.

Noteworthy is that Shani, Brafman and Heckerman also presented the evaluation of

their system on a real-life commercial website, which is encountered only in few works in

the literature.

Mahmood, Ricci et al.

The authors of the extensive series of research works [MR07][MR07a][MR08]

[MRVH08][MR09][MRV09] use Markov Decision Process to model the recommendation

problem and apply reinforcement learning to solve this problem. The use of an adaptive

recommendation system in these works represents an interesting contrast to how a

recommendation system is used in most other work presented in this subsection. In the

described application, the adaptive recommendation technique is applied to the search

queries entered by the user on a website. If the recommendation system detects that too

many results would be returned by the query, it suggests some keywords which could be

added to the query in order to reduce the number of returned search results. So, the

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 95

recommendation system tries not to suggest how to extend the information currently

presented to user, i.e. present him new products or content, but rather how to further

constrain the amount of presented information to reach precisely the content the user is

interested in (Query Tightening Process). The system also provides the opposite

functionality, i.e. auto-relaxing of the search query in case when it returns no results. The

recommendation problem described by the authors appears on many websites which offer

search function, for example on the website www.ebay.com. The authors use two travel

planning websites as examples for the application of the proposed architecture. A

significant part of the experimental results was obtained using simulation.

 In the proposed architecture the state and action spaces of the MDP are richer than

in most other architectures presented in this subsection. So, the possible actions include

moving from one page to another, showing the query form, suggesting additional query

terms for tightening the query, accepting or rejecting a recommendation. Taking an action

without reaching a goal is punished by negative feedback. The authors investigate how the

different negative feedback values influence the behavior of the recommendation system

and find out that the different values of feedback lead to different optimal recommendation

policies.

The representations of the state models have been given special consideration in the

described research work. The authors represent the state space as a set of feature variables.

They argue that one particularly important issue for such recommendation system is the

selection of the relevant features in the state representation [MR07a], since otherwise the

size of the state space can make the recommendation problem computationally intractable.

Therefore, including additional features to state variables may not always be beneficial for

a given recommendation task. The authors propose two criteria for judging about the

relevancy of features, namely Policy Diversity (i.e. the ability of a certain feature to

produce a different optimal policy if taken into account) and Policy Value (based on the

total reward achieved by the system). The authors demonstrate how an evaluation of the

feature relevance can be performed in a simulated environment [MR07a]. In [MR08] the

authors perform further experimental evaluations of feature relevance and show in

particular that the selection of the relevant features depends also on the user behavior with

respect to recommendations (i.e. how often the users are willing to accept a

recommendation in general). The proposed architecture utilizes the Policy Iteration

algorithm [SB98] which belongs to the dynamic programming family of reinforcement

learning algorithms in order to calculate the optimal recommendation strategy.

Another important contribution of the research team is the design of the

recommendation system for a real-life website [MRVH08] and the online evaluation of the

proposed system on this website [MRV09][MR09]. The evaluation shows that the

proposed adaptive recommendation system helps the users to reach their goals more

quickly compared to the none-adaptive recommendation approach. It also shows that the

acceptance rate of the different system requests has increased on the average due to the

adaptive nature of the recommendation system.

Mykola Golovin Part II. Adaptive Web Recommendations

96 7.5 Markov Decision Process and Reinforcement Learning

Preda and Popescu

In the works [PP04] and [PP05] the authors employ Reinforcement Learning to

solve the problem of providing web recommendations and perform experiments on a small

real-life website. Their sample application is a website of a school library with ~500 users.

The authors employ the algorithm SARSA(λ) from the family of so-called TD(λ)

reinforcement learning algorithms [RN94]. The value of parameter λ in their system is ser

to 0.5. The value of parameter λ<>0 denotes, that not only the immediate reward after

taking an action is considered, but also the future rewards in the discounted form. This is

different from our approach where we consider only the immediate feedback. In terms of a

TD(λ) algorithm our approach would correspond to λ=0. The TD(λ) algorithms with λ<>0

are significantly more expensive computationally then the algorithms used in our

architecture.

The authors do not consider the problem of making web recommendations to be

non-stationary, i.e. they do not account for the “drift of interest”. Their algorithms are

designed to handle the model in which the transition probabilities T(s,s´) remain the same

throughout the entire lifetime of the recommendation system. In the sample application

used in [PP04][PP05] this may be a plausible assumption which doesn‟t negatively affect

the quality of recommendations, since it can be expected that the user interests on a

website of a school library change slower than for example on an e-commerce website or a

news website.

The authors devote much attention to the selection of states for the MDP which

serves as a foundation for their reinforcement learning approach. In the face of the scarcity

of feedback they see strong need for generalization. The generalization approach they

employ relies on the domain knowledge. The authors approach bears some similarity to the

approach which we present in this thesis. In [PP04] the authors represent knowledge in an

ontological structure which imposes a partial ordering on the concepts of the website. The

authors present their model as an ontological directed acyclic graph with weighted edges.

The authors propose using content similarity (i.e. text similarity) as a metric for setting the

weights of the edges in the ontology graph, but also mention that it is possible to use other

metrics to set the weights. In fact, in their sample application the weights are specified

manually by a human editor. To be able to generalize the knowledge in the face of large

number of states and scarce feedback, the authors apply the technique of linear function

approximation. Linear function approximation allows generalizing the feedback obtained

by a particular state also to its neighborhood. The linear function approximation technique

used in [PP04] is the CMAC (Cerebellar Model Articulation Controller) technique

[SSR98][SB98], which represents a type of a neural network. In [PP05] the concepts

presented on the website and the relations between them are represented via logical

programs. The logical programs also serve as states for the MDP model. Some parallels

can be drawn between the logical programs presented in [PP05] and the mapping clauses

presented earlier in this thesis, since both consist of logical statements representing domain

knowledge. The usage of the logical programs of [PP05] is however different from the

usage of mapping clauses. The mapping clauses in our architecture have simple syntax and

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 97

are used to map the information expressed in technical terms of the web application to the

domain knowledge represented in the ontological structure. The semantic expressiveness

of our mapping clauses is relatively weak. The logic programs of [PP05] constitute the

states in the ontological graph. They are semantically rich and can be reasoned about. The

authors propose an original method for calculating the similarities between the logic

programs and thus the weights of the edges in the ontological graph.

In general, the approach investigated in [PP04] and [PP05] has a number of

common design solutions with the approach presented in this thesis, however with a

different focus. The focus in [PP04] and [PP05] lies on investigating different knowledge

representations. In this thesis we concentrate on the software architecture and review

engineering aspects which enable the application of the reinforcement learning approaches

on the real-life websites. We provide architectural means for different representations of

complex knowledge needed to select the web recommendations, but leave the details of the

knowledge and exact representation up to the concrete application. Although in [PP04] and

[PP05] the knowledge representation is discussed in much more detail than in this thesis,

many issues are also left open, since they are usually domain-dependent and

implementation-dependant. For example, the generation of the models in [PP04][PP05] is

an open issue which is left up to the concrete application. In particular, it is not clear

whether and how the logical programs of [PP05] can be generated automatically. In both

[PP04] and [PP05] the sample application relies on the domain knowledge being generated

manually by a human editor. The different knowledge representations in [PP04][PP05] are

investigated from the mathematical perspective as opposed to the software engineering

perspective assumed in this thesis. The authors present the results of the experimental

comparison of three different recommendation systems on their sample website: item-to-

item collaborative filtering, top N items from the category, reinforcement learning.

Reinforcement learning achieves the best results, closely followed by the item-to-item

collaborative filtering. Top-N achieves considerably worse results. The authors present the

experimental values for the session acceptance rates similar to those observed in our

experiments.

Prudsys RE

The recommendation engine Prudsys RE developed by the company Prudsys AG,

(Chemnitz, Germany) is an industrial strength implementation of a recommendation

system based on reinforcement learning. This recommendation engine is now used by a

number of large German companies, including Quelle AG, BAUR Versand and Metro

Group (Metro Future Store). The implementation of the Prudsys RE was done

independently from the work presented in this thesis. However, according to Dr. Michael

Thess, Managing Director of the Prudsys company, the ideas presented in our paper[GR04]

and in the paper [SBH02] have inspired the architecture of Prudsys RE. The Prudsys RE

extends our dimensions of <Content, User, Time> by two additional dimensions Price and

Channel. However, they also state that in particular the dimensions Price and Channel can

be fixed, i.e have the same value for all contexts possible in the system. The library of data

Mykola Golovin Part II. Adaptive Web Recommendations

98 7.5 Markov Decision Process and Reinforcement Learning

mining algorithms Xelopes[TB07] developed by the company Prudsys is used to create the

initial model. This model is then optimized using reinforcement learning algorithms which

are also integrated into Xelopes. It is possible to operate the recommendation engine in

three modes: Offline, when the recommendation weights are generated by the

recommendation algorithms and not adjusted during the interaction with web users;

Online, when the recommendations are learned immediately from the user interaction, and

Offline+Online, when the recommendations are generated by learning from historical data

and then adjusted online. The Prudsys RE is targeted not only for web recommendations,

but also for recommendations in conventional stores, for example at cash counters or

information kiosks. According to the joint statement of Prudsys AG and Quelle AG, after

the introduction of the Prudsys RE on the website of Quelle AG the proportion of cross-

selling products to the total sales has increased by more than ten times [Prud06]. Prudsys

RE also has several interesting extensions which enrich the service provided by Prudsys

RE. For example, Prudsys RE provides simulation analysis (“what-if” analysis) based on

historical data. Another interesting feature of the Prudsys architecture is the dynamic price

optimization. The product price can be adapted dynamically using regression-based

methods to increase the profit.

Taghipour, Kardan et al.

The architecture presented in [TKG07] and its enhancements described in [TK07]

apply Q-Learning to the problem of making web recommendations. Q-Learning is a

popular Reinforcement Learning method. In two main aspects the model used in [TKG07]

is different from ours and closer to the one used in [SHB05]. The first aspect is that the

authors consider not only the current web page but also the history of the last web pages as

states in their Markov model. Similar to [SHB05] they use the notion of N-Grams to

represent the states in the Markov model. The application N-Grams in [TKG07] is however

somewhat different than in [SHB05]. They used fixed N for all their N-grams representing

states, whereas [SHB05] uses varying N for different states. Their states however consist

not only of an N-Gram containing the last pages visited by the user as in [SHB05] but also

of N-Grams containing the history of recommendations shown to user (or, more exactly, of

M-Grams, since the sizes of page view history and recommendation presentation history

can be different). The second aspect is that they take into account not only the immediate

rewards but also the expected rewards for the subsequent states during the calculation, as

the classical Q-Learning does. The corresponding discussion of the [SHB05] is also

pertinent here. The authors favor using time which web user spends on a particular web

page as reward value. We oppose such connection between time spent on the website and

reward, as described in Section 3.4. Like most known systems, the authors consider

multiple simultaneously presented recommendations as independent from each other and

treat each presentation of a recommendation as a separate action. The difference between

[TKG07] and both our system and the system described in [SHB05] is that the authors do

not make distinction between the algorithms for creating a model and optimizing the

model. Rather, the same algorithm is used to first train the system on the historical usage

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 99

data and then to continue simultaneous training and exploiting of the system on the real

website. The states and the actions are created basing on the training data. The balancing

between exploration and exploitation in [TKG07] is implemented using ε-greedy

technique. As we discussed earlier, the ε-greedy balancing always sacrifices a fraction of

presentations to exploration, leading to inherently suboptimal recommendation

presentation.

In [TK07] the authors realize some shortcomings of their architecture and propose

enhancements which can alleviate these shortcomings. One shortcoming is that their model

based on states and actions which are generated from the observed historical usage data

during the training phase is not able to provide recommendations for the states which have

not occurred in the training data. In [TK07] they address this shortcoming by employing a

content-based algorithm to amend the initial model and enrich it with semantic

information. This makes their architecture more similar to our approach. Another

shortcoming of [TKG07] is that using both page view history and recommendation history

in the states of the MDP leads to an explosion in the number of states. To solve this

problem, the authors in [TK07] remove the recommendation history from the states and

compensate the effects of this removal by using a special reward function which takes

history of recommendation presentations into account.

The authors provide results of experimental analysis of some aspects of their

architecture, such as sizes for page view history and recommendation presentation history,

different reward functions. They have also conducted comparative evaluation of their

approach and two other approaches based on association rules and collaborative filtering.

The recommendation system based on reinforcement learning has performed better than

the other two systems. The evaluations were done on simulated data and not on a real-

world website. Therefore it‟s hard to tell whether this is possible from the point of view of

the system performance, given the relatively complex structure of the state space in

[TKG07] and [TK07].

7.6 Recommendation Systems Employing Ontologies

Acharyya, Ghosh

Although the work [AG03] does not present a complete recommendation system

architecture, it deals with the issue which is very relevant to creating a semantically

enabled recommendation system. The authors describe a method of representing the

navigation of the web users through the pages of the website as navigation in the semantic

concept space. The authors of [AG03] represent the semantic concept space as a tree. The

generation of such a concept tree is left outside the scope of [AG03], where the authors

assume the concept three to be already provided. The authors propose a probabilistic model

which represents the surfing behavior of the users. They discuss the learning of the

transition probabilities between the concepts in the concept tree and using these

probabilities to predict further navigation of the users. Being able to predict the next step of

Mykola Golovin Part II. Adaptive Web Recommendations

100 7.6 Recommendation Systems Employing Ontologies

the user is a crucial functionality for building a recommendation system. The model

described by the authors can be for example implemented within our framework relying on

the ontological structures we provide.

In [AG03], the interest of users for a specific area is determined by the time during

which the user occupies certain pages certain areas of the concept graph. As already

discussed in Section 3.4, we do not consider using the viewing time as a measure of user‟s

interest to be an assumption which can be accepted unconditionally.

Chen, McLeod

The authors of [CM05] propose a semantically enriched recommendation system

based on collaborative filtering. The authors point out the computation complexity which

arises when taking semantic information into account. In [CM05] the authors focus on

developing the algorithms and data structures which allow exploiting of the semantic

information while reducing the computational overhead. In fact, they propose an algorithm

which is able to perform the selection of recommendations based on the ontological

structure in constant time. While the work [AG03] deals only with tree-like representation

of the semantic concepts, [CM05] allows a directed acyclic graph representation. Unlike

our architecture, which expects the ontology graphs to be supplied in the way which makes

them suitable for selecting recommendations, the authors of [CM05] transform the

supplied ontology graph into a special structure which allows constant-time

recommendation selection. The transformation algorithm relies on geometry-inspired

distance metric to convert the original ontology graph into a set of groups of concepts. The

geometric proximity of the concepts to each other is considered to be equivalent to

“hierarchical similarity”. Every group of concepts is characterized by the “geometric”

proximity of the member concepts to each other. Such groups are used during the

recommendation selection process to quickly perform semantic-based generalization. The

authors describe the application of their recommendation approach to a geosciences

information system.

Mobasher , Jin, Zhou.

In [JM03][MJZ03] the authors employ the semantic information in form of an

ontology to enhance a recommendation algorithm based in item-to-item collaborative

filtering [LSY03]. The extraction of the ontologies is performed using an automatic

ontology extraction algorithm based on text mining and heuristic rules. In [MJT03] the

ontology classes are represented as tables in a relational schema. The class instances are

stored in the table rows. Additionally, the instances are converted into vector

representation in order to enable the computation of item similarities. The vector

representations of the instances are combined into a similarity matrix. Thus obtained

similarity matrix is however large and sparse. To reduce the dimensionality of the matrix

Mykola Golovin Web Recommendations for E-Commerce Websites

7 Related Work 101

and thus make it suitable for the item-to-item collaborative filtering algorithm, latent

semantic indexing technique is used.

The authors have performed an experimental evaluation of their approach in a

simulated environment using the data set from a real website. They compared their

semantically-enriched collaborative filtering algorithm with standard item-to-item

collaboration filtering recommendation algorithm. The authors report significant

improvement in the predictive quality of recommendations which could be achieved by

semantically enhancing the collaborative filtering recommendation system.

Quickstep and Foxtrot (Middleton et al.)

In a series of works [MRS01], [MASR02], [MSR03] and [MSR04] the authors

propose the ontology-based hybrid recommendation systems Quickstep and Foxtrot. The

recommendation systems are aimed at helping researchers quickly find research papers in

the fields of interest. The Foxtrot system is an extension of the Quickstep system and

shares the general architectural decisions with it. The system Quickstep is a pure

recommendation system, while the system Foxtrot also provides facilities for search and

user profile visualization. The recommendation systems make use of the external

ontologies provided by the project dmoz (http://www.dmoz.org) and the project AKT

(http://www.aktors.org/). The ontology AKT is also used to bootstrap the user profiles in

the recommendation system, since it also contains personal information about some

researchers. The relation between the individual research papers and the concepts in the

ontology are determined using a modified version of the classifier algorithm [AKA91]. In

Quickstep and Foxtrot, both explicit feedback and implicit feedback is used. The explicit

feedback is obtained from the web users by offering them to rate topics in the ontology as

more or less interesting, while implicit feedback is gathered from the clicks on individual

recommendations. In Quickstep and Foxtrot, both explicit and implicit user feedback

influences the weights of ontology topics and not the weights of the individual

recommendations. While selecting the recommendations for presentation, the weight of the

individual recommendations is obtained by combining the weight of the ontology topic

with the confidence score of the classifier, which indicates how strong the relation between

the individual recommendation and the given ontology topic is. Since the system is

designed for internal use, the authors are able exploit not only the web logs from the

website with recommendations but also the web proxy logs containing the complete

browsing behavior of the internal users. The authors suggest that the use of ontologies can

bolster the cooperation between independent knowledge bases. They however also point

out that complications of legal nature may appear when establishing such cooperation. This

is also pertinent to the gathering of the complete web navigation logs using web proxy.

Three small-scale experiments with up to 260 users have been performed to assess the

quality of the recommendations generated by the recommendation systems Quickstep and

Foxtrot. The algorithms show the superiority of the ontology-based approaches over the

recommendation approach using the unstructured flat topic list.

http://www.dmoz.org/
http://www.aktors.org/

Mykola Golovin Part II. Adaptive Web Recommendations

102 7.6 Recommendation Systems Employing Ontologies

8. SUMMARY

In this part of the thesis we have described the architecture, implementation and use

of a novel recommendation system. Our recommendation system uses multiple techniques

to generate recommendations, stores the generated recommendations in a semantically

enabled recommendation database and then refines the recommendations using online

optimization. We present the evaluation of our architecture not only in a simulated

environment but also on two real-life websites, which is rarely found in the literature. Our

results for two real-life websites showed that feedback-based optimization can significantly

increase the acceptance rate of the recommendations. Even the simple optimization

techniques could substantially improve acceptance of recommendations compared to the

non-optimized algorithm. In comparison to the overall buying behavior on the website, the

overall impact of web recommendations stayed modest. However, if we have in mind that

success of a website is a result of the joint efforts in the areas of pricing, product

assortment selection, marketing, website maintenance, customer support etc, with each

area bringing its share towards the common success, the share brought by a web

recommendation system can be a valuable addition to this joint effort.

PART III. WEB RECOMMENDATIONS IN THE INTEGRATED DATA ENVIRONMENT

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

104 7.6 Recommendation Systems Employing Ontologies

9. INTRODUCTION

In Part II of this thesis we have described the architecture of the adaptive

recommendation system which is designed for a single website. The recommendations

generated by that system were used to adaptively support navigation in the data coming

from a single data source. In this part we study the case when the data shown on the

website comes from different data sources. This happens for example when two or more

e-commerce websites enter a partnership and offer complementary products to each others‟

assortment. Another example is provided by integrated e-commerce portals, which do not

have their own product assortment but present data gathered from other e-commerce

websites augmented with some additional services, for example with an overview of the

market, customer reviews, price comparison for identical products from different sellers

and comparison of characteristics for similar products. In this part we describe how such

websites can be created and how web recommendations can be instrumental in

implementing the user navigation for such integrated data environments. The data

integration problems which arise in such situations are given particular attention in this

part. As a proof of concept, we have implemented a prototype of an integrated e-commerce

portal using data from several e-commerce websites.

To integrate the data from e-commerce websites, we have used the data integration

platform iFuice [RTA+05]. iFuice enables integration of data based on the relations

between data instances, so-called mappings. We called our prototypical integrated web

portal EC-Fuice (“e-commerce web portal based on iFuice”) and describe it in this part of

the thesis.

The data presented in an integrated e-commerce website can be typically split into

two parts: content items (product data) and the ontology (product categories), which

describes the semantic structure of the data. The same is true for many other types of

websites – digital libraries, news archives, online art galleries, encyclopedias and others. In

this thesis we focus on the e-commerce applications. The role of content items in our

setting is played by sets of information describing a product, which includes for example

product title, prices, extended textual description of the product etc. Subsequently, we will

call this set of information “product instance”. We will use the terms “node in the product

ontology” or simply “ontology node” to refer to a product category.

To provide smooth navigation between the data from different data sources we have

to determine the relations between ontology nodes and product instances from different

data sources. Such relations can be identity relations, in case when ontology nodes or

product instances represent the same real world objects. However, the analysis of the real-

world data shows that the identity relations found in real-world data are often not sufficient

for implementing practicable navigation. Such relations often involve only a small fraction

of the instances and nodes, usually require elaborate data cleaning but are nevertheless not

completely error-safe. According to our experience additional, usually domain-specific

types of relations are needed to implement the navigation. A convenient way of presenting

Mykola Golovin Web Recommendations for E-Commerce Websites

9 Introduction 105

such domain-specific recommendations is by using web recommendations. This way,

recommendations become important means of navigation between the data from different

data sources.

These are the main contributions of the research described in this part of the thesis:

 We study the problems which arise during the development of integrated

e-commerce website, more specifically extraction and integration of the data

and navigating in the integrated data. We propose the architecture for creating

such integrated e-commerce websites. Integrated e-commerce websites are

becoming increasingly popular. However, to our knowledge, the presented

work is the first study of the data integration problems which are posed by

such integrated e-commerce websites.

 We propose a new combined method of matching ontology and instance data

in the context of e-commerce environment.

 We evaluate different methods for matching ontology and instance data and

present evaluation results.

 We classify the types of recommendations which can be used on the integrated

websites and propose new types of recommendations.

The part is organized as follows. In Chapter 10 we present the general architecture

of EC-Fuice, outline the architecture of the web portal and the supporting services. We also

give a detailed overview of the two systems which are used for data integration. The fist of

the systems is the iFuice system which provides the website with data from the different

data sources. The second is COMA++, the tool which we us to match ontologies in our

system. In conclusion we explain how these tools work together to perform data integration

in EC-Fuice. Chapter 11 describes the experiments on integrating product data and

ontologies using iFuice and the semi-automatic ontology-matching system COMA++.

Here we also evaluate experimental results regarding the application of different matching

methods to the problem of ontology matching. In Chapter 12 we discuss the details of the

EC-Fuice implementation, such as structure of the databases used in EC-Fuice, the web

interface of EC-Fuice, the generation of recommendation on the integrated data and the

different kinds of recommendations which can be presented on an integrated website.

Chapter 13 gives an overview of related work and positions our approach within the

research field of data integration and ontology matching. In Chapter 14 we summarize our

work on recommendations in the integrated data environment and discuss possibilities for

further research.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

106 10.1 Overview of the EC-Fuice Architecture

10. ARCHITECTURE OF EC-FUICE

10.1 Overview of the EC-Fuice Architecture

The general architecture of the EC-Fuice system is shown in Figure 3.1. Here, we

show two types of the user interface our system supports. The first is the Web Portal

interface, targeted for end users with common usage possibilities, such as keyword search,

browsing etc. The second is the OLAP interface, which is devised for more complex

analytical usage. In Figure 3.1 we show two interoperating databases: Web Portal

Operational database and EC-Fuice Data Warehouse. These databases are served with

integrated data, which come from the data sources through the data integration platform

iFuice. iFuice has its own internal database which is used during the data integration

process. The structure of the databases used in EC-Fuice is described in Chapter 12.

The data sources are shown in the lower part of Figure 3.1. For the sake of

demonstrativeness, in Figure 3.1 we depict the specific data sources we used for our

prototype. Our architecture in general, however, is in no way limited to these specific data

Figure 3.1. Overview of the EC-Fuice architecture.

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 107

sources but allows plugging in any other data source as well. In our prototype we have

used the following data sources:

 Softunity – a German internet shop located at http://www.softunity.com and

specializing in the distribution of software products. Books, DVD-Movies and

some other products are also present in the product assortment.

 Amazon – “the world‟s largest online bookstore” (From Amazon

advertisement). However, Amazon offers not only books, but also a wide

range of other products, such as electronics, music, video products, household

products etc. The German version of Amazon is located at located at

http://www.amazon.de.

 eBay – eBay is an auction website. Because of this most data coming from

eBay are very short lived. For most of the auctions there‟s no firm price.

However, some of the data (auctions marked with “Buy it now /Sofort

kaufen”, ”Best offer”, “Sofort und neu”) are similar to the usual e-commerce

data in that they have firm price and remain listed for longer periods of time,

from several weeks to several months. eBay has a very broad, practically

unlimited assortment spectrum. The German version of eBay is located at

http://www.ebay.de

 Bestpreis24 – German internet shop located at http://www.bestpreis24.de,

which gathers products from other suppliers. Bestpreis24 specializes in

computer- and office-related products.

The textual information contained in the data sources is mostly in German

language.

We have also used some auxiliary data sources, for example the US version of the

Amazon website. In contrast to the data sources listed above, the product data from these

auxiliary data sources are not integrated into our framework. The auxiliary data sources are

used to provide web recommendations leading to the external websites. The use of these

additional data sources is discussed in Section 12.3.

Due to the huge amount of data, which is contained in the data sources listed above,

and the modest (in comparison to the above sites) computational capacity of the

equipment, on which our prototype runs, we limited the data to topics “Software” ,

“Video” and “Games”. The topic “Software” is comprised of different types of consumer

software for personal computers. The topic “Video” contains various video materials on

DVD, VHS etc. The topic “Games” includes games for PC for different operating systems

as well as games for game consoles. The topics usually also include some accompanying

products, which are provided by the data source in the same interest area. For example, the

topic “Software” also includes computer accessories, such as mouse pads and keyboards,

the topic “Video” – film posters, the topic “Games” – game consoles, joysticks, books with

game solutions etc.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

108 10.1 Overview of the EC-Fuice Architecture

The import of data is done according to the paradigm of the iFuice framework

[RTA+05]. Access to data in the data sources is implemented using executable mappings
19

.

An executable mapping can connect data sources to iFuice using many possible methods –

by executing calls to a web service (Amazon), by querying a local SQL database

(Softunity), by performing HTML-scraping (eBay, Bestpreis24). Other methods can be

implemented by writing a wrapper in Java programming language. We will talk more

about the implementation of the executable mappings in the next chapter. Several

executable mappings are usually implemented for every data source. In most cases the data

source provides at least executable product mappings and executable ontology mappings.

There may also be other executable mappings to allow integrating additional information

provided by a data source.

The integrated data produced by iFuice are used to regularly update both the web

portal operational database and the EC-Fuice data warehouse. The update intervals can be

set individually for each data source, since the rates at which information changes are

specific for each data source.

The Web portal operational database stores the data and recommendations to be

presented on the web portal. It also stores recommendation feedback and temporarily

stores usage data before they are transferred to the EC-Fuice Data Warehouse. The web

portal contains a module which performs optimization of the presented recommendations

using the approach presented in the Part II of this thesis. In contrast to Part II, in this part

we do not further study different approaches to generating recommendations. Instead, we

investigate how the recommendations can be helpful in building navigation on an

e-commerce website based on integrated data. However, in this part we also introduce a

novel art of recommendations – live recommendations. Live recommendations are

recommendations, which are requested by the web portal directly from iFuice avoiding the

operational database. Live recommendations are can be provided by invoking individual

iFuice mappings or iFuice scripts. The incentive for live recommendations is that some

information is most valuable for a very short period of time. Examples for such

information can be latest news or (as in our case) web recommendations based on last-

second eBay auctions. Web portal contains a special module for live recommendations.

The web portal provides the following navigational features:

 Browsing in categories – the navigation in the link structure which connects

categories with each other and with products within the same data source. The

links in the browsing structure are characterized by their unambiguousness.

The semantics of each link are strictly defined. For example, a link in the

19

 Between the works [RTA+05] which describes iFuice and the work [TR07] which describes the successor

system MOMA, the use of the term mapping has changed. In iFuice mapping is an executable routine, which

returns a set of correspondences between objects. This set of correspondences is called mapping result in

iFuice. In MOMA, the term mapping is used to denote a set of correspondences which are returned by

executable matchers. In this work we use iFuice terminology. In this thesis, we use the term executable

mapping or iFuice mapping to refer to the executable mapping routine. The term mapping in this thesis is

equivalent to mapping result in [RTA+05].

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 109

browsing structure can lead to a product in the current category, to a

subcategory of the given category etc.

 Full-text search – allows searching product instances based on the relevance to

the given query string.

 Recommendations – recommendations are computed based on different

algorithms, they can be adaptive or not adaptive, pre-computed or live, lead

from content of one data source to content of another data source or to

external website. Recommendations make up a significant part of the

navigation. As opposed to the unambiguous links in the browsing structure,

the semantics of the recommendation links are “fuzzy”. So, a recommendation

link can lead from one category to a similar category in another data source or

to a product in a related category. The degree of similarity or relatedness is not

postulated in the original data but is approximated using some presumably

intelligent technique.

Our e-commerce portal has no own features which allow purchasing products. It

has no shopping cart and no payment system. Instead, we refer users to the websites from

which the product descriptions come, so that they can make their purchase there.

The EC-Fuice data warehouse serves as an exhaustive data store for multiple

purposes:

 Analysis of the product data using OLAP tools.

 Analysis of the web usage data from the web portal using OLAP tools.

 Automatic generation of the web usage based web recommendations

The database structure of the EC-Fuice data warehouse is tailored for analytical use

by both humans and automated tools. The analytical (OLAP) interface to the data

warehouse allows the manifold analysis of the competition. For example, it allows the

comparison of individual products, price niveau comparison in different categories,

analysis of the price trends over time and comparative analysis of the product spectrum‟s

breadth with respect to price. We have communicated the results of our analysis to the

company which operates the website http://www.softunity.com. The results of the analysis

were assessed by the company‟s specialists and some price adjustments were made to the

company‟s product assortment based on these results.

10.2 Data Integration in EC-Fuice

Essential parts of the e-commerce data are the product data and the product

categories. In order to implement the navigation between the data sources, we have to

match these data and establish mappings. To achieve this, we are using iFuice as the data

integration platform and COMA++ as the tool for ontology matching. In this section we

give a short description of both systems, sufficient for understanding of their application in

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

110 10.2 Data Integration in EC-Fuice

our prototype. For more detailed information, please refer to the corresponding papers.

iFuice is described in the paper [RTA+05], COMA in paper [DR02]. COMA++ is an

extension of COMA described in [ADMR05] and [Do06] which features substantial

improvements over its predecessor. One of these improvements is the ability of COMA++

to perform ontology matching. In this section we also discuss the collaboration between

iFuice and COMA++ within the EC-Fuice framework.

10.2.1 iFuice

iFuice is a software platform for information integration and fusion which has been

developed by the Database Group at the University of Leipzig. It has already been

successfully applied in several projects. It was used for example for the comparative

analysis of the bibliographical data from the leading database-related conferences and

journals [RT05]. It was also used to implement the integration of the bioinformatics-related

data. The goal of the application of iFuice in the field of bioinformatics was the

consolidation of the data related to different genes and proteins, available from different

public and private data sources [KR05].

iFuice is based on peer-to-peer executable mappings between data sources. The

peer-to-peer architecture allows easy addition of new data sources. Executable mappings

can be established between objects in the same data source or between objects coming

from different data sources. The execution of mappings and the handling of the mapping

results are controlled by the iFuice component called “mediator”. The iFuice mediator is

domain-independent, i.e. the same mediator is used for all problem domains. The mappings

themselves are specific to the given problem domain. The executable mappings can be

plugged into the mediator using several interfaces:

 as a Web Service. For the Web Service based data sources used in EC-Fuice

we use Apache Axis library
20

 to connect to web services.

 as a relational database. The relational database data sources used in EC-Fuice

are connected using the respective JDBC libraries of the respective relational

database servers.

 as an XML database or an XML file. In EC-Fuice, we use Exist as an XML
21

Database . For XML Files, we use Xerces
22

 as XML parser and Saxon
23

 as

XQuery processor.

 as a plain text file

 using a custom Java object. An example of a custom Java object can be an

HTML parser which extracts information from HTML pages of the websites.

20

 http://ws.apache.org/axis/
21

 http://exist.sourceforge.net/
22

 http://xerces.apache.org/xerces-j/
23

 http://saxon.sourceforge.net/

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 111

For creating HTML parsers in EC-Fuice we use the Java HTMLParser

library
24

.

In contrast to the many other methods for information integration, iFuice doesn‟t

require the creation of a global schema. The absence of a global schema leads to a decrease

in the implementation effort, since it is known that creation of the global schema requires

much effort but the quality of integration on the instance level nevertheless cannot be

guaranteed. Instead, iFuice relies on a domain model which is of higher conceptual level

than a global schema and reflects the semantic relations within the problem domain. A

domain model is less detailed than a global schema and is easier to create and maintain. An

iFuice domain model incorporates the objects types which exist in the given domain (for

example publications, authors, venues for the bibliographic domain or genes, proteins and

sequences for the bioinformatics domain) and the mapping types which exist between these

object types (for example same publication, authors of a publication, etc.). Different data

sources can provide objects of the same type. iFuice distinguishes “physical data sources”

and “logical data sources”. A physical data source is the a “real-world” data source, which

can provide objects of different types. A physical data source encapsulates one or more

Logical Data Sources (LDS). Each logical data source provides objects of one type. iFuice

does not require the specification of all attributes of an object type in the domain model.

24

 http://htmlparser.sourceforge.net/

Figure 3.2. Screenshot of the iFuice GUI

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

112 10.2 Data Integration in EC-Fuice

However, the key attribute, also called object id, must be specified. The value of the object

id must be present in all objects and unique for the given LDS. The mapping types

represent semantic relations between object types. Every mapping type can have several

mapping implementations which are specific to the data sources. For example, mapping

type “author of publication” can have the implementation “return object of type „author‟

from the data source B which corresponds to the object of type „publication‟ from the data

source A”.

The iFuice mediator supports two methods for executing iFuice mappings. One

method is navigational, in which the user navigates from one object to another in iFuice

GUI using mappings between them. This method is useful for users wishing to explore the

data in the data sources.

 Another method is based on the iFuice scripting language, which allows creating of

the scripts able to perform more complex data integration tasks. The scripts can be

executed either by calling the iFuice mediator from a program written in a programming

language or by specifying the script to be executed in iFuice GUI. The screenshot of the

iFuice GUI is shown in Figure 3.2. The screen in Figure 3.2 is divided in several areas. The

area on the right contains the text of the script which is used to integrate and manipulate

the data. The right side shows the data in different variables which contain input and output

data for the script, as described later on. The upper part of this area shows the list of

objects or object pairs, the lower part shows the attributes of the respective objects.

The iFuice scripting language is based on a powerful set of operators which

perform various operations and optionally assign the results of these operation to variables.

Variables can hold values of the following common data types: Integer, Float, and

String. In addition to these common data types there are also iFuice-specific data types:

ObjectInstances, MappingResult, AggregatedObjects, and AggregatedMappingResult. The

data type ObjectInstances, as the name suggests, contains a set of object instances. The

data type MappingResult describes a set of object correspondences, i.e. a set of object

instance pairs. Each correspondence in a MappingResult has an associated quality metric.

The quality metric is a value of type Float in the range [0..1]. The quality metric is set by

the iFuice mapping during its execution. The set of all object instances on the left side of

each correspondence in a MappingResult is called the domain of the MappingResult. The

set of all object instances on the right side of each correspondence in a MappingResult is

called the range of the MappingResult.

The type AggregatedObjects describes a set of aggregated objects. An aggregated

object is a set of semantically equal object instances from different data sources. An

AggregatedMappingResult is a set of correspondences between aggregated objects. We do

not use AggregatedObjects and AggregatedMappingResult in EC-Fuice.

The iFuice variables are not strictly typed, i.e. each variable can hold values of any

supported type. By convention of the iFuice scripting language the variables are denoted

by identifiers prefixed by “$”. In some cases, when an operation requires a reference to the

variable rather than the value held by the variable, the variable name needs to be prefixed

by the symbol “&”.

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 113

The data types Integer and Float types support the basic arithmetic operations

“+”,”-”,”*”,”/”. String data type supports the concatenation operation “+”.

The iFuice operators which we have utilized for implementing EC-Fuice are

summarized in Table 3.1 and described further in this section. Description of the other

operators can be found in the paper [RTA+05]. There are also some new useful operators

which have been introduced to iFuice after the paper [RTA+05] was published. We utilized

these operators in EC-Fuice and describe these operators here as well. For each operator in

Table 3.1 we also show a possible set of input parameters. For example, $MR denotes that

the operator expects a variable containing a MappingResult as input parameter. $O denotes

a variable containing ObjectInstances. The notation $variable shows that the operator can

handle variables containing different data types. Sometimes there is more than one way to

invoke an operator. So, for example, the operator queryInstances can be used to query a

data source or to query a variable of type ObjectIstances. In such cases, we show one of the

invocation variants in the table and describe other invocation variants further in text.

Operator Short description

queryInstances(DataSource,

“query“)

Query instances from a data source

queryMapResult($MR,“query“) Query a variable which contains a MappingResult

getInstances($O) Get all attributes for objects instances

map($O,Mapping) Execute mapping Mapping using $variable as input

and return MappingResult

traverse($O,Mapping) Execute mapping Mapping using $variable as input

and return ObjectInstances

compose($MR1,$MR2) Find all equivalent object instances in the range of

$MR1 and the domain of MR2. Return a

MappingResult consisting of the domain

ObjectInstance from $MR1and the range

ObjectInstance from $MR2 for all such equivalent

object instances.

union($variable,$variable) Perform the set operation ⋃ on the sets of object

instances or correspondences in the input variables

intersect($variable,$variable) Perform the set operation ∩ on the sets of object

instances or correspondences in the input variables

diff($variable,$variable) Perform the set subtraction operation on the sets of

object instances or correspondences in the input

variables

attrMatch($O1,$O2,MatchMethod,

Attribute,Attribute,Threshold)

Perform generic attribute-based matching sets of

object instances in the input variables using one of

the match methods provided by iFuice

match(($O1,$O2,Matcher) Perform matching sets of object instances in the

input variables using a custom matcher

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

114 10.2 Data Integration in EC-Fuice

domain($MR) Return the set of object instances from the domain

or MappingResult

range($MR) Return the set of object instances from the range or

MappingResult

inverse($MR) Switch the domain and the range of a

MappingResult, i.e. mapping result $O1->$O2

becomes $O2->$O1

print($variable) Output the contents of a variable to the console

if <condition> then <operators>

end

Execute operators if a condition is true

while <condition> do <operators>

end

Repeat operators while condition is true

Table 3.1. iFuice operators used in EC-Fuice

One of the essential iFuice operators is the operator “map”. This operator executes

a mapping, taking a variable of the type ObjectInstances and the name of the iFuice

mapping to be executed as input parameters. The operator “map” returns data of the type

MappingResult. An example of executing the operator “map” using the iFuice scripting

syntax is given below:

$SoftunityToAmazonMappingResult:=map($SoftunityProducts,Softunity.Softunity2Amazon);

Here $SoftunityProducts is a variable which contains data of type ObjectInstances.

Such variable can be obtained for example using the operator queryInstances, which is

discussed later on. “:=” stands for the assignment operation. “Softunity.Softunity2Amazon”

is the name of the iFuice mapping. According to the EC-Fuice naming convention, the

names of the mappings have a form of

“<DatasourceName>.<NameOfTheMappingProper>”

where “DatasourceName” denotes the first of the data sources for which the iFuice

mapping is applicable. This naming pattern is however only a convention and not an iFuice

requirement.

There are several kinds of iFuice mappings. The kinds of mappings can be

classified along different perspectives. With respect to the kind of the input data, we

discern query mappings and id mappings. The id mappings establish correspondences

between the objects from two data sources or within the same data source. Internally iFuice

represents such mappings as a set of correspondences between object ids. Query mappings

differ from the id mappings in that they do not map objects from data sources to each

other, but rather map a special object of the type “query” to a set of output objects. They

allow getting objects based on given criteria from a data source. The query is formulated in

the query language which is native to the data source. For example, it can be SQL for the

relational database source, XQuery for an XML data source, a special proprietary language

for a web service or just a set of keywords for an HTML data source. Below are some

examples of executing a query mapping using the iFuice scripting syntax:

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 115

$SoftunityProduct:=queryInstances(Product@Softunity,”title like „Harry%‟”);

$AmazonOntology:=queryInstances(Ontology@Amazon,"Software,Video,Games

EXCEPT Software/Specials,Games/Specials,Video/For Rent");

$eBayProducts:= queryInstances(Product@eBay,"keyword");

The operator queryInstances may also be applied to iFuice variables which contain

data of the type ObjectInstances. In this case, a special iFuice query language is used,

which is similar to the syntax of SQL “WHERE” clause. The only additional requirement

compared to SQL is that attribute names must be surrounded by square brackets:

$SoftunityProduct1:=queryInstances($SoftunityProduct,”[title] like „%Potter%‟”);

A similar operator queryMapResult is provided for querying variables of the type

“MappingResult”. To distinguish between the attributes of the two object instances which

constitute a correspondence, the attribute names are prefixed with respectively “domain.”

and “range”. A special attribute “_confidence” is available for access to the quality metric

of the correspondence. An example of the usage of the operator queryMapResult is shown

below:

SoftunityToAmazonMappingResult1:=queryMapResult(SoftunityToAmazonMappingResult,

” [domain.title] like „Harry%‟ and [range.title] like „%Potter%‟ and

[_confidence]>0.5”);

With respect to the semantics of the executable mappings iFuice differentiates

between “same”-mappings and association mappings. “Same”-mappings establish

correspondences between the objects which represent the same “real-world” object, i.e. are

semantically equivalent. It should be noted, that “same” mappings in practice do not

guarantee the full identity of the object instances, i.e. recall and precision values of 100%.

Such mappings may contain errors, which should of course be minimized in order for these

mappings to be practically useful. Association mapping represent types of semantic

relations other then equivalence. The particular semantics of the association mappings are

specific to the problem domain.

Many real-world domains, including the domain of e-commerce, are characterized

by the large volume of available data and therefore impose high memory requirements on

the data integration applications. Because of that, iFuice allows mappings which require

only sets of object ids as input and output data. This way, the storing of the complete

object with all attributes in memory can be avoided. Every LDS must provide a special

routine, which allows getting all attributes of the object with a given id. These routines are

utilized by the iFuice operator getInstances. An example of the executing the operator

“getInstances” is given below:

$eBayProducts:=getInstances($eBayProductIds);

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

116 10.2 Data Integration in EC-Fuice

The variable $eBayProductIds contains data of type ObjectInstances. In every

object instance, however, only the id attribute is present. The operator getInstances

determines the LDS from which the object instances contained in the parameter originate

and executes the appropriate “getInstances”-implementation. After execution, the result

variable $eBayProducts contains object instances with all attributes.

iFuice makes a distinction between “single mappings” and “bulk mappings”. This

notation characterizes the handling of data inside of the implementation of the iFuice

mapping and the interface between mapping and the iFuice mediator. In case of a single

mapping the iFuice mediator iterates over the set of input instances and performs one call

to the executable mapping for every instance. Such executable mappings are relatively

easy to implement and are more easily comprehensible, since the programmer needs to

implement only the matching of a single instance. Bulk mappings on the contrary are

called one time for the entire input dataset and not once per instance. They require more

implementation effort but allow speeding up the execution of the mapping, especially in

the case of large input sets. Bulk mappings also offer additional possibilities of utilizing

the relations which exist within the input dataset. Such bulk mappings are especially

suitable for the ontology mapping, since they receive the entire ontology in one input set

with all nodes and edges and can use this information while computing the mapping.

The iFuice mediator also allows traversing executable mappings and composing

mapping results. Traversing mappings means executing a sequence of mappings. Thereby

the output of the previous mapping becomes the input of the next mapping. The result of

the traversing is a MappingResult which contains correspondences between the input data

of the first mapping and the output data of the last mapping. Composing is analogous to

traversing, with the difference that it is done not over a sequence of executable mappings

but over a sequence of MappingResult variables. Operators such as union and diff can be

applied to the data of the types ObjectInstances and MappingResult. The execution flow in

the iFuice scripts can be managed using flow control operators similar to the ones found in

the modern programming languages. Examples of operators which perform these

operations are shown below (the code does not constitute a continuous program but rather

a collection of fragments from different programs):

$SoftunityToeBayProductsMappingResult:= traverse($SoftunityProducts,

{Softunity.Softunity2Amazon, Amazon.Amazon2eBay});

$SoftunityToeBayProductsMappingResult:=compose(

$SoftunityToAmazonProductsMappingResult,

$AmazonToeBayProductsMappingResult);

$eBayProducts:=union($eBaySoftware,$eBayGames);

$CommonProducts:=intersect($SoftwareProducts,$GameProducts);

$OnlySoftwareProducts:=diff($SoftwareProducts,$GameProducts);

// Example of a “while” loop construct

$j:=0;

while $j<=9 do

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 117

print ("[id] like '"+ $j+"%'");

if $j>3 then

$ebprodtemp:=queryInstances($ebprod,"[id] like '"+$j+"%'");

else

getInstances($ebprodtemp);

end

$j:=$j + 1;

end

The lines in the iFuice scripts which begin with the symbols “//” are considered

comments and not further interpreted by the iFuice mediator. We will use comments for

explaining the details of the scripts later on.

iFuice also has the concept of a “matcher”. Matchers operate on the data of the type

MappingResult and adjust the value of the quality metric basing on some algorithm.

Matchers can be for example applied to improve recall and precision of “same”-mappings

based on some additional information.

iFuice provides several standard matcher algorithms, including trigram string

attribute similarity and affix string attribute similarity. Below is an example of using

standard trigram attribute matcher:

$SoftunityToAmazonMappingResultRefined:=

attrMatch($SoftunityToAmazonMappingResult,“[title]”,”[title]”,MATCHER_TRIGRAM,

0.3)

Here, $SoftunityToAmazonMappingResult holds the initial MappingResult which

will be refined by the matcher. $SoftunityToAmazonMappingResultRefined is the variable

which will hold the resulting MappingResult after the execution of the matcher. Parameters

with value ”[title]” give the name of the attributes which will be used by the attribute

matcher. MATCHER_TRIGRAM sets the name of the matching algorithm to be executed.

The last, optional parameter value 0.3 sets the similarity threshold for the attribute matcher.

It is also possible to implement and use own matchers. Below are the examples of

using custom matchers:

$SoftunityToAmazonMappingResultRefined:=match($SoftunityToAmazonMappingResult,

Softunity.CategoryMatcher)

Here, $SoftunityToAmazonMappingResult contains the input MappingResult and

$SoftunityToAmazonMappingResultRefined contains the output mapping result.

“Softunity.CategoryMatcher” is the name of the custom matcher.

Adding new data sources, executable mappings and custom matchers to iFuice

requires relatively little effort. They are configured using XML configuration files, an

example of which is shown in Appendix. The domain model, i.e. object types, mapping

types and relations between them are also stored in the XML files.

In general, iFuice is a highly customizable integration platform featuring several

highlights, which are especially important for building modern e-commerce applications:

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

118 10.2 Data Integration in EC-Fuice

 Absence of the global schema

 Peer-to-peer-like paradigm

 XML-based configuration

 Implementation in Java programming language, for which a large number of

adapters for diverse data sources already exists or can be easily created

 Executable mappings which allow implementing highly complex data

transformations

 Rich possibilities for composing executable mappings and manipulating data

and mapping results

These distinctive features make iFuice a good choice as a platform for integrating

data in the e-commerce domain.

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 119

10.2.2 COMA and COMA++

COMA is a platform for schema matching developed by the Database Group at the

University of Leipzig [DR02]. COMA++ described in [ADMR05] and [Do06] is an

extended version of COMA which has a significant number of additional features

compared to its predecessor. The novel feature of COMA++ which is particularly

important for the topic of our research is its ability to match ontologies. COMA++

encompasses the full functionality of COMA. Because of this, henceforth we will be

speaking only of COMA++.

The task of schema and ontology matching is to obtain semantic mappings between

input schemas or ontologies. Such mappings consist of the correspondences between the

elements of the schemas or ontologies. The correspondences between the real-world

concepts which are represented as schema or ontology elements are characterized by high

diversity and semantic richness. Such correspondences may have different cardinality, i.e.

be 1:1, 1:n or n:m correspondences and have specific direction. For schemas, the

correspondences often have associated “mapping expressions”, which specify how the

instances of one schema can be transformed into instances in another schema. In general

case, however, it is not practically feasible to produce mappings encompassing the entire

complexity of such real-world correspondences with an automatic tool. Therefore,

COMA++ uses a simplified representation of a mapping. All the correspondences in a

COMA++ mapping correspondences have cardinality 1:1 and type “similarity”. Each

correspondence also has an attached value from 0 to 1 denoting the degree of similarity,

where 0 stand for no similarity and 1 for equality. The interpretation of the domain-specific

meaning of the similarity values is left to the application which uses the results of the

mapping. The correspondences with cardinalities 1:n and n:m are represented through

multiple 1:1 correspondences. The COMA++ correspondences are non-directed. It is

however possible to configure the matching process in such a way that only the

correspondences having a specified direction are included in the resulting mapping.

COMA++ is based on a generic data model which allows supporting input schemas

and ontologies expressed in different languages, such as Structured Query Language

(SQL), W3C XML Schema Definition (XSD), Resource Description Framework (RDF),

Web Ontology Language (OWL), and XML Data Reduced (XDR). COMA++ translates

the input schemas and ontologies into the internal format based on rooted directed acyclic

graphs. The rooted acyclic graphs are stored in the COMA++ repository implemented

using the relational database technology. The repository is also used to store the resulting

mappings between schemas and ontologies.

COMA++ consists of the following components:

 parsers/importers for the input data

 schema pool and mapping pool

 repository

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

120 10.2 Data Integration in EC-Fuice

 match customizer, which is in turn comprised of:

 a library of matching algorithms (or shortly matchers)

 mapping refinement strategies

 execution engine

 exporters

 graphical user interface (ComaGUI)

The parsers and importers are responsible for reading the schema, ontology and

mapping data in the various supported input formats and for loading these data into the

schema pool and mapping pool. The schema pool and mapping pool contain the schemas,

ontologies and mappings in the main memory which can be immediately used for

matching. The schemas in the schema pool can be subjected to preprocessing, aimed for

example to transform complex data types into simple ones or recognize shared element

which are declared inline at multiple places[Do06]. The preprocessing techniques of

COMA++ are focused in the first places on preprocessing of schemas rather than

ontologies. We do not use these techniques in this work and therefore omit the description

of the schema preprocessing in COMA++.

The repository provides a persistent storage for schemas, ontologies and mappings

which can be used later. The relational database server MySQL is used to implement the

repository.

The match customizer allows specification of parameters which influence the

matching process. The parameters which can be configured by the match customizer are:

 the choice of the matchers from the matcher library

 configuration of the combined matchers, constructed from the matchers in the

matcher library

 mapping refinement strategy

 combination of the similarity values and selection of match candidates based

on the calculated combined similarity

To match the schemas and ontologies, COMA++ provides an expandable matcher

library. Below we discuss the matching algorithms provided by COMA++ and the

parameters of these algorithms, focusing on the algorithms and parameters which are

important for understanding of the experiments described later in this thesis. The built-in

matching algorithms (or simply matchers) fall in two categories
25

:

25

 In the original COMA and COMA++ papers [DR02][ADMR05] the hybrid matchers were called simple

matchers and combined matchers were called hybrid matchers. The naming of the matcher types which is

used here originates from [Do06]. Such naming better reveals the nature of the matchers. So, in a hybrid

matcher the combination the algorithms which constitute the matcher is hard-coded. This applies also in the

case when only a single algorithm is used. In the combined matchers the interaction of the algorithms of

which the matcher is comprised can be flexibly configured.

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 121

 hybrid matchers

 combined matchers

The following hybrid matchers are available:

 Affix: matches affixes, i.e. prefixes and suffixes of a string.

 N-gram: (bigram, trigram, etc.): matches all common n-letter substrings of a

string.

 EditDistance: calculates the string similarity based on the number of edit

operations needed to transform one string into another, so called Levenshtein

metric[Lev66]

 Soundex: calculates the phonetic similarity of the strings based on soundex

algorithm.

 Synonyms: calculates string similarity based on the synonym table, provided

by user.

 Data types: calculates the similarity of the fields in database schema, based

on their data types.

 UserFeedback: based on the matches and mismatches specified interactively

by user.

 ReuseSchema: this matcher uses the results of previously matched schemas

or ontologies which are stored in the repository. The intuition behind this

matcher is that some schemas which need to be matched may be similar to the

schemas already matched. This is an extension of the idea of a Synonym

matcher, with the difference that in Synonym matcher the synonyms need to

be entered manually, whereas the reuse matcher tries to determine the

semantic similarity based on previous experience.

 ReuseFragment: analogous to the ReuseSchema matcher, however operates

not on results of matching the entire schemas but on fragments of previously

matched schemas.

 Taxonomy: this matcher calculates the similarity of the elements based on

their distance to each other in the taxonomy provided by user.

At the time when we conducted our experiments COMA++ provided no instance-

based matchers. Currently, COMA++ has implemented constraint-based and content-based

instance matchers [EM07]. This work is discussed in Section 13.2 in more detail.

Some of the hybrid matchers, for example affix, n-gram, and EditDistance can

operate on different input data. The possible types of input data include node names, paths

from the root of the internal graph, data types, descriptions or other additional data. To

enrich the input data additional types of input data can be obtained from original data using

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

122 10.2 Data Integration in EC-Fuice

preprocessing. These generated input data can be constituents of the properties of the input

elements, for example individual lexical terms which constitute the element name or

description, deciphered abbreviations etc. Another type of the generated input data is

obtained by considering the structural context of the matched elements. Such input data are

manifold. Following are the types of the element data which can be generated by

COMA++ and supplied to the matchers:

 Parents, Siblings, Children: the elements of the schema/ontology which

appear respectively as parents, siblings or children of the node in the internal

directed graph. The original relations need not necessarily have “child-parent”

semantic.

 Leaves: the children of the element in the internal directed graph which have

no further children.

 Ascendants, Descendants: ascendants and descendants of the element in the

internal directed graph.

 AscPaths, DescPaths: paths from the root of the internal graph respectively to

the ascendants and the descendants of the element.

The type of input data can be configured for every matcher invocation. In the

course of matching the same matcher can be applied several times on different input data.

The built-in combined matchers are pre-configured combinations of the hybrid

matchers, determined empirically and known to be successful for some often encountered

matching tasks. COMA++ also provides flexible possibilities for combining the hybrid and

combined matchers into more complex combined matchers in order to achieve higher

quality of the resulting mapping.

Another technique COMA++ provides in order to increase the quality of the

resulting mappings is the ability to do iterative refinement of the mappings. The process of

matching is executed iteratively. Depending on the strategy chosen in the match

customizer, one or several iterations are executed. The mappings obtained in one iteration

can be used as input data for the next iteration. COMA++ provides several strategies for

refinement of the mappings such as context-dependent matching, fragment-based matching

and reuse-oriented matching. Context-dependent matching refines the mapping based on

the intuition that similar elements usually have similar neighborhoods. These

neighborhoods are called “contexts”. COMA++ provides two strategies for performing

context-dependent matching: AllContext and FilteredContext. In case of the AllContext

strategy all found contexts are matched, in case of the FilteredContext strategy only the

contexts whose cumulative similarity is higher than the given threshold are matched.

 Fragment-based matching is useful for large schemas, which are likely to have

relatively small matching portions. The conventional approach of matching all elements of

one schema to all elements of other schema may lead to performance degradation as well

as deterioration of the quality of the resulting mapping [Do06]. In this case, it makes sense

first to determine the portions of the schemas which have significant similarity and then

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 123

match the elements contained in these portions. Reuse-oriented matching is a matching

strategy which uses mappings in the repository and works in collaboration with the reuse

matchers. There‟s also a special ontology matching strategy specific to the COMA++

version which collaborates with the taxonomy matcher and is using a shared taxonomy.

It has been widely recognized that fully automatic schema and ontology matching

does not achieve practically acceptable quality in general case and that human intervention

is usually necessary. COMA++ takes this into account and provides several ways of

allowing human assistance to the automatic matching. COMA++ allows fully automatic

matching with posterior manual adjustment and also and iterative semi-automatic approach

where human intervention happens after every match iteration of the matching process.

The matching process itself is carried out by the execution engine according to the

parameters specified in the match customizer. Every iteration consists of several basic

steps. The basic steps of the match iteration are component identification, matcher

execution and similarity combination. During the component identification step COMA++

generates the input data for matchers basing on the internal graphs of the source and target

ontologies. The matchers are then executed independently from each other. Every

combined matcher is executed in a manner similar to the entire matching process. In the

similarity combination step the similarity values returned by the individual matchers are

combined and the match candidates are selected. The combination and selection process in

its turn consists of three substeps, with an optional fourth:

Aggregation: in this substep the similarity values computed by different matchers

are aggregated, so that for each pair of elements exactly one similarity value is obtained.

Ranking: in this substep we rank the elements of one schema with respect to the

other schema according to the similarity values obtained in the previous step. The direction

of the ranking (i.e. elements of which schema are ranked) is set by the parameter Direction

as described later in this Section.

Selection: in this substep the best match candidates are selected from the ranked

elements.

At the end of the last iteration an additional substep of may be performed, which

combines the similarity values of the individual mappings to a single value which denotes

the cumulative similarity value of the matched schemas or ontologies. This substep is

required for combined matchers.

The following parameters of the steps can be adjusted using match customizer to

control how each step is being executed:

Aggregation: aggregation strategies can be selected among max, min, weighted

and average. Here, max and min denote that respectively maximal and minimal values are

chosen among all similarity values returned by matchers. In case of weighted strategy the

similarity value is calculated according to the formula:

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

124 10.2 Data Integration in EC-Fuice

[Do06], where s1, s2 are the elements in the matched schemas, similarity between which is

being calculated, M – set of matchers which provided similarity values for correspondence

between s1 and s2, sim(s1,s2,m) – similarity value provided for correspondence between s1

and s2 by the matcher m ∈M. Average is a special case of the weighted strategy, where all

the weights wm are equal.

Direction: for the ranking step, the following direction settings are available:

LargeSmall, SmallLarge, Both. As the names suggest, direction can be specified with

respect to the size of the schemas being matched. In case when the setting Both is selected,

the correspondences appear in the resulting mapping only when they are identified as

correspondences in both directions. In our experiments we use only the setting Both, since

we are only interested in bidirectional mappings.

Selection. For selection, several parameters can be specified: MaxN, MaxDelta,

Threshold. The parameter MaxN takes an integer value which specifies how many top-

ranking correspondence candidates will appear in the resulting mapping. The parameter

MaxDelta takes a floating-point value which specifies that all correspondence candidates

whose similarity value differs no more than MaxDelta from the highest ranking

correspondence candidate are taken over to the resulting mapping. MaxDelta can be

specified as absolute value or relative to the value of the highest ranking correspondence

candidate. Threshold is a floating-point value which specifies that no correspondence

candidate with similarity value less than threshold should appear in the resulting mapping.

Unlike previous steps, the parameters in this step can be combined. This is often useful,

since each parameter used alone has some drawbacks. So, MaxN and MaxDelta may return

correspondences with too low similarity value, while Threshold may return too few

correspondences. A reasonable configuration is using MaxN or MaxDelta combined with

relatively low value of the Threshold parameter to cut off the admittedly low-quality

correspondences.

Combination. Two strategies are available for combination of the similarities of

the multiple correspondence candidates to obtain one cumulative similarity value: average

and Dice. Average, as the name suggests, is obtained by dividing the sum of all similarity

values through the total number of elements in the schemas or ontologies being matched.

Dice is based on the Dice coefficient [CAFP98] and is the ratio of the elements which can

be matched to the total number of elements in the input ontologies or schemas. Dice

coefficient is not influenced by the individual similarity values of the correspondence

candidates.

COMA++ allows exporting schemas, ontologies and mappings in a proprietary

text-based format. The mappings can be exported as OWL/RDF as well. We have also

implemented a wrapper for the COMA++ repository, which allows exposing of the

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 125

ontology mappings created by COMA++ to iFuice as iFuice mappings. Using this wrapper,

COMA++ and iFuice can transparently exchange data between each other.

COMA++ features a powerful graphical user interface shown in Figure 3.3 which

can be used to:

 import schemas, ontologies and mappings into the schema pool and mapping

pool

 persist selected schemas, ontologies and mappings into repository, load or

delete them from the repository

 configure the parameters of the match customizer

 manually edit mappings, specify fragments for fragment-based matching.

The COMA++ GUI also allows operations on schemas and ontologies, such as:

Domain: given two schemas/ontologies and a mapping between them, return the

matching part of the source schema/ontology.

InvertDomain: given two schemas/ontologies and a mapping between them, return

the non-matching part of the source schema/ontology.

Range: given two schemas/ontologies and a mapping between them, return the

matching part of the target schema/ontology.

Figure 3.3. COMA++ graphical user interface

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

126 10.2 Data Integration in EC-Fuice

InvertRange: given two schemas/ontologies and a mapping between them, return

the non-matching part of the target schema/ontology.

The COMA ++ GUI also provides access to the following operations on mappings:

Merge: merge two mappings into one, which contains all correspondences present

in at least one of the original mappings.

Diff: return all correspondences from one mapping which are not contained in

another mapping

Intersect: return all correspondences from one mapping, which are also contained

in another mapping

Compare: COMA ++ also supports comparative evaluation of different matchers

and strategies. The COMA++ GUI allows selecting a mapping as a base for comparison

and comparing it either to another mapping or to all available mappings with identical

source and target schemas/ontologies. For each pair of mapping, COMA++ calculates the

values of recall and precision, which are widely known measures in the field of

information retrieval. Also COMA++ calculates the values of the combined metrics F-

Measure [Rijs79] and Overall, which has been introduced in [MGR02] under the name

Accuracy.

In general, COMA++ is a versatile platform which has proven to be successfully

applicable to schemas and ontologies from many problem domains. We use COMA++ to

create mappings between E-commerce ontologies, based on the structural and lexical

information contained in the ontologies. The instance data are not taken into consideration

for generating COMA++-based mappings.

10.2.3 Integration of Web Data using iFuice and COMA++

The iFuice platform plays a central part in our architecture for web data integration.

iFuice acts as a base framework for data extraction, transformation and integration

operations. It also provides the temporary working storage for both product instance and

product category data and performs the loading of data into the web portal operational

database.

The process of the integration of the e-commerce data in iFuice utilizing COMA++

is schematically shown in Figure 3.4. For clarity, we show only two data sources in Figure

3.4. In case when more data sources need to be integrated, they are integrated pair-wise.

The data shown in the picture are limited to product instances and product categories, i.e.

here we do not show any additional information which may be provided by a data source.

In iFuice, the products and product categories are handled uniformly as object instances of

different object types. The products are handled as object instances of type “Product”, the

product categories – as object instances of type “Ontology”. COMA++ is used as a tool to

implement iFuice mappings for the object instances of type “Ontology”.

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 127

As shown in Figure 3.4, the data from the data sources are imported into iFuice. To

enable the data import, the data source usually provides several executable mappings. At

least two executable mappings are mandatory. One of the executable mappings should be a

mapping which allows obtaining either all products or all product categories. The other

executable mapping should map the products to product categories or vice versa,

depending on what type of data is provided by the first executable mapping.

Normally, however, the data sources provide more than two executable mappings.

This allows more convenience and more flexibility for the iFuice scripts and may also

provide additional data useful for matching. A typical set of executable mappings usually

includes query mappings for both products and product categories and at least one of the

mappings between the products and product categories within one data source. The inverse

mapping for a given executable mapping can be obtained by applying the iFuice operation

inverse()
26

 on the materialized results of the original executable mapping. This is very

important for the cases when due to the nature of the data source the mapping in one

direction can be implemented more easily than in the other direction. In such cases, it is

sufficient to implement only the easier executable mapping. By convention, in our

executable mappings between products and categories every product which belongs to a

certain product category also belongs to all parent categories of that category (i.e. we use

“is-a” relations for products in the ontologies). In the mapping results produced by our

executable mappings, if a product has an explicit correspondence to a category, there are

also explicit correspondences to all parents of this category. The relations between

categories in the ontology are however “child-of” (i.e. a category only has an explicit

26

 See Table 3.1 for the description of the operator inverse()

Figure 3.4. Integrating e-commerce data in iFuice.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

128 10.2 Data Integration in EC-Fuice

correspondence to its parent and not to the parent‟s parent). This convention is consistent

with the way Softunity, Amazon and eBay assign products to the categories in the

ontology. Product ontologies from other data sources can be converted to this convention

using special executable mappings. Such convention is not an obligatory requirement.

However, this greatly simplifies the iFuice scripts used to control the data integration

process.

The integration process is managed by custom iFuice scripts, which allow tight

fitting of the integration process to the particularities of the e-commerce data. The goal of

our integration system is to provide automatic integration of the data sources which are

specified in the design of the website.

The toothed clouds in Figure 3.4 represent the matching of the object instances of

the same object type coming from different data sources to each other. The thick arrows in

Figure 3.4 show the cooperation between the process of matching of different object types

made possible by the compound COMA++/iFuice framework. The exact sequence of

operations which are executed in the course of the matching process can be flexibly

configured using iFuice scripts. For example, it is possible to first match the product data

using fuzzy string matching and then refine the resulting matching using multiple-attribute

matching. Further the results of the product data matching can be refined using the results

of the ontology matching. Such flexibility is made possible by the fact that all the needed

data are available in the iFuice cache. The result of the integration process shown in Figure

3.4 consists of two mappings between the participating data sources. One of the mappings

contains correspondences between the products, the other mapping the correspondences

between the ontologies of the respective data sources.

The process of exporting of the resulting data is not shown in Figure 3.4. The

export of the integrated data into Web Portal Operational Database and EC-Fuice data

warehouse is implemented using the executable mappings, which return pre-defined values

“successful” or “not successful” as mapping result.

The data integration process is best illustrated using an example. The iFuice script

shown below performs the data integration process which is graphically presented in

Figure 3.4. The script is simplified for better demonstrativeness:

// Import

$suonto:=queryInstances(Ontology@Softunity,\"ALL\");

$suontoprod:=map($suonto,Softunity.OntoProd);

$suprodonto:=inverse($suontoprod);

$suprod:=range($suontoprod);

//Matching Section

//matching products

$suamprod:=map($suprod,Softunity.SoftunityProduct2AmazonProduct_TitleEquals)

//matching ontology without COMA++

$suamonto:=map($suprod,Softunity.SoftunityProduct2AmazonOntology_TitleEquals)

//matching ontology using COMA++ in automatic mode

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 129

$suamontoComa:=map($suprod,COMA.ComaAutomatic)

//Export

$ExportStatus:=map($suprod,ECFuice.ExportProducts)

$ExportStatus:=map($suprod,ECFuice.ExportOntology)

In this simple script the products and ontologies are mapped in the simple (but not

the best possible) way based on the string equality title attribute of the products and

product categories. Other ways of mapping the data are described in the later sections. A

part of the script which prepares the data for loading into the EC-Fuice operating database

is shown in Appendix 3.

The following simple ways of matching are provided: unique id matching, fuzzy

string matching, multiple-attribute matching, ontology-based. In the next chapter we will

show that these simple techniques are not working very well alone and present other

approaches which combine these simple techniques to achieve better quality of the

generated mappings. The combined techniques are implemented by amending the iFuice

scripts.

Building of such an integration script is one of the core tasks for creating an

integrated website based on the EC-Fuice architecture. The E-commerce data, as well as

many other types of data typically found on the web, change frequently. Therefore, the

data integration process should be designed to allow repeated execution when the data in

the data sources change.

The data integration process should be also tailored to the requirements of the

application and the characteristics of the input data. Ideally, the design of such integration

data process should be carried out similarly to the AHP (Analytic Hierarchy Process)

method as suggested for ontology matching in [KW04a]. AHP is a systematic approach

developed to structure expectance, intuition and heuristics-based decision making into a

well-defined methodology on the basis of sound mathematical principles [BR04]
27

. Such a

structured approach however requires that a sufficient body of expert knowledge about

how different matching techniques and their combinations perform for different data is

accumulated. In the AHP approach, the decisions about using specific matchers are then

made basing comparing the application requirements against the characteristics of the

matchers in the expert knowledge base.

However, at the moment we have only a limited understanding of how the different

matching techniques and particularly their combinations behave in different situations.

Therefore, we apply an iterative process to design the data integration script and to select

the best matchers. In every iteration we make assumptions about the performance of the

matchers based on the knowledge about how they operate. Then we test the matchers with

different parameters, select the best ones and make assumptions about further

27

 It is important to note, that AHP is not a computer algorithm, but rather a methodology to be applied by

humans while designing computer algorihtms which contain a heuristic component.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

130 10.2 Data Integration in EC-Fuice

improvements by combining the current matchers with additional matchers. We will

illustrate this iterative process by presenting examples of it in Sections 11.1 and 11.2.

The matching of the product data can be used to facilitate the matching of the

ontologies and vice versa. One of the approaches to matching ontologies is by using the

techniques provided by COMA++. COMA++ has automatic matchers and also a GUI,

using which the human editor can control and refine the ontology mapping. COMA++ can

be called from iFuice in automatic or interactive mode. In interactive mode, a human editor

Figure 3.5. Source graph Figure 3.6. Domain model

Figure 3.7. Source-mapping model

Mykola Golovin Web Recommendations for E-Commerce Websites

10 Architecture of EC-Fuice 131

can control and refine the ontology mappings.

The four data sources used in our prototype are shown on the graph in Figure 3.5.

The arrows in Figure 3.5 denote the existence of mappings between the data sources,

irrespectively of the types of the mappings or the types of objects which are mapped. The

mappings of the objects within one data source are shown with closed arrows. Figure 3.6

shows the domain model, i.e. the object types and the types of mappings between the

different objects types. The object types that we are already familiar with are Product and

Ontology. There are also two additional object types – Review and Manufacturer. These

object types represent data which are instrumental for the generation of recommendations.

In Figure 3.6, arrows denote the existence of the mappings of a certain mapping type from

one object type to another irrespectively of the data sources from which the objects come.

Figure 3.7 shows the graph of the source-mapping model. In this graph, every

vertex represents one LDS, i.e. object type provided by a particular data source. Every

edge in the graph shown in Figure 3.7 is one mapping. “Same”-mappings are represented

with solid lines. Association mappings, i.e. all mappings which represent relations other

than equality are represented with dashed lines.

The results of the mapping execution are stored in the cache. The data in the cache

are updated from the data sources at regular intervals of time. The time intervals are set

specifically for every data source. So, Amazon, Softunity and Bestpreis24 are updated

once a week. The eBay data due to its nature changes more often. Therefore, the eBay data

is updated every three days. Although the data on the eBay website change more

frequently than every three days, it is not possible to update eBay data more frequently,

since the average duration of the query which retrieves all needed eBay data is 48 hours.

The update of the data is done in the following way: the iFuice cache is cleared of all

objects coming from the specific data source. Then, the entire iFuice integration script is

executed. The data from the data sources which are absent from the cache are re-fetched

from the sources, otherwise the data is taken from the cache.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

132 10.2 Data Integration in EC-Fuice

11. INTEGRATING DATA: EXPERIMENTS AND RESULTS

 In this chapter we describe the experiments on matching product data and product

categories and present experimental results. We used Softunity and Amazon as sources of

data for our experiments. These two data sources were chosen for our experiments because

of the existence of an unambiguous mapping between the products of Softunity and

Amazon. This unambiguous mapping serves us as the baseline for comparison of different

matching methods. The amount of data used in the experiments is illustrated in Table 3.2.

 Nr. of product categories Nr. of products Nr. of categories with

product instances

Amazon 1930 (manually pruned) 42942 1753

Softunity 466 2711 204

Table 3.2. Number of products and product categories in the data sources used in the

experiments.

The goal of the experiments was to explore the quality of mappings which can be

achieved by matching instances and ontologies separately with existing tools and to

analyze the improvements which can be brought by combining these mappings. As shown

in Table 3.2, not all categories on the product ontologies have associated product instances.

The reason for this is that the product assortment changes more often than the ontology

structure, therefore at different times some product categories may or may not have

associated product instances. If a product category does not have associated product

instances, it is not shown on the website, but it can still be queried using a direct access to

the website database (Softunity) or using a web service API (Amazon).

The e-commerce ontologies which we used in our experiments have a number of

characteristics typical for this kind of ontologies. These ontologies do not exhibit a rich

palette of semantic features. So, only one type of concept is used – product category, i.e.

class. Only one type of relation is used – all relations between the classes are specialization

relations. According to the classification in [KW04], our e-commerce ontologies exhibit

taxonomical structure, i.e. based on specialization relations as opposed to mereologic

structure based on the subsumption relations. The ontology nodes have no attributes apart

from names. The ontologies are organized as trees. It is however possible for the product

instances to belong to several categories in different ontology subtrees simultaneously. The

top of the ontologies is comprised of the three areas which we have selected for

experiments: “Software”, “Games”, “DVD” or “Video”. The classes below are for the

most part aligned along the thematic axis, i.e. they represent the classification of the

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 133

product‟s content with respect to genres, using commonly accepted genre denominations.

For example
28

:

“Games->Action”; “Games->Adventure”;”Games->Strategy”

or

“DVD->Documentary”; “DVD->Comedy”; “DVD->Western”

However, some of the ontology branches are orthogonal to this axis. This is

particularly characteristic for the Amazon ontology.

The following branches are the examples of orthogonal ontology branches:

“Amazon->Software->Specials”, “Amazon->Games->Specials”, “Amazon->Video->For

Rent”. These branches represent “crosscuts” of product instances belonging to other

branches based on some criteria. For example, the “Specials” branches contain product

instances which are (usually temporarily) put on special sales conditions by Amazon. “For

Rent” is a category containing the subset of the video products which Amazon allows to be

rented. There are also some ontology nodes which represent the same concept as their

parent nodes but denote a root of an orthogonal sub-ontology, for example “Amazon-

>DVD->By genre”, “Amazon->DVD->By year” and “Amazon->DVD->By author”. Since

the extracted ontologies do not provide a mechanism to distinguish between these

relations, these orthogonal branches cannot be filtered out automatically. We had to

exclude some branches, for example ““Amazon->DVD->By year” and “Amazon->DVD-

>By author” from the extracted Amazon ontology manually, because these branches were

clearly orthogonal to the rest of the ontology. The categorizations by year and by author

are not found in other ontologies we used in our system, therefore they could adversely

affect the results of both COMA++-based and instance-based matching. We do not provide

complete listing of the used ontologies in this thesis because of the large amount of data

which would break the format of this document. These ontologies are available for

browsing online at the respective websites http://www.softunity.de/,

http://www.amazon.de/ and http://www.ebay.de. In this thesis, we show only relevant

portions of the ontologies to illustrate some of their characteristics and issues arising

during the integration process.

Both product mappings and ontology mappings are used to create browsing

structure of the website as well as to generate the recommendations. Browsing and

recommendations impose different requirements onto the mappings. Browsing requires

mappings with strictly defined types of correspondences, usually only one type per

mapping. For example, browsing between the versions of the same product coming from

different data sources requires that the utilized mapping contains only the correspondences

between strictly equal products. The mappings which are used for recommendations are

28

 The notation A->B means, that the concept B is a child of the concept A in the given ontology. The

notation can be repeated (A->B->C). Sometimes we also use the name of ontology as the first element in

such notation to denote the ontology to which the concepts belong.

http://www.softunity.de/
http://www.amazon.de/
http://www.ebay.de/

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

134 11.1 /Integrating Product Data

not subject to such strict requirements. They can also make use of correspondences

between products and ontology nodes which are similar or related in some way.

We have conducted the following series of experiments:

 Match Softunity products to Amazon products with iFuice. Recall and

precision are determined using unambiguous EAN mapping.

 Match Softunity ontology to Amazon Ontology with COMA++. Recall and

precision are calculated with respect to the manual mapping.

 Combine matching ontology with matching products; evaluate how

recall/precision is affected.

11.1 Integrating Product Data

In this chapter we discuss the product matching, i.e. establishing the mappings

between the products of different data sources. Our architecture provides rich possibilities

for creating such mappings. In this chapter we illustrate how the manifold possibilities

provided by iFuice can be instrumental in creating and improving the product mappings.

We use a helpful fact that between the products of two data sources which we use in our

system, Softunity and Amazon, exists an unambiguous mapping using EAN. The

abbreviation EAN stands for European Article Number which is a unique product number.

It is commonly known as “barcode” number. Since 2005 EAN has also become standard in

the North America and de facto worldwide. Other data sources do not have such

unambiguous mappings. So, for example, the product data available from ebay.de do not

include EAN numbers. Such data must be matched using algorithms which do not

guarantee 100% recall/precision. To find the best ways to match the products, we have

tested different matching techniques on the products from the two data sources we have an

0

0,2

0,4

0,6

0,8

1

1,2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Threshold

Figure 3.8. Recall, precision and f-measure for trigram-based
similarity

Recall

Precision

F-Measure

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 135

unambiguous mapping for and then analyzed the results using the recall and precision

calculated with respect to the unambiguous mapping. The characteristic excerpts from

results of the matching of products between Softunity and Amazon using different

matching algorithms are shown in Tables 3.3 and 3.4. These tables show the name of the

applied algorithm, the value of the threshold parameter in case the given algorithm requires

it, the total number of correspondences returned by the algorithm, the number of correct

correspondences, the values of recall and precision and the value of F-Measure[Rijs79]

which combines recall and precision in a single metric. The first line of the Table 3.3

shows the results of the unambiguous product matching based on EAN number. These

results act as a comparison baseline for other methods of matching.

Line

Nr

 Matching

methods Threshold Total Correct Recall Precision F-Measure

1 EAN 1981 1981 1 1 1

2 Title equivalence 803 660 0,333 0,821 0,474

3 Trigram 0.3 157564 1951 0,984 0,012 0,024

4 Trigram 0.4 58943 1894 0,956 0,032 0,062

5 Trigram 0.5 28566 1793 0,905 0,062 0,117

6 Trigram 0.6 14703 1611 0,813 0,109 0,193

7 Trigram 0.7 7682 1350 0,681 0,175 0,279

8 Trigram 0.8 3262 928 0,468 0,284 0,353

9 Trigram 0.9 1067 677 0,341 0,634 0,444

10 Trigram 0.99 804 661 0,333 0,822 0,474

Table 3.3. Matching Softunity and Amazon products using EAN, title equality and trigram

similarity with different threshold values.

The second line in Table 3.3 shows the results of the matching based on the

equality of the product title attribute which is the most simple and obvious way of

matching products. The recall and precision values are symptomatic here. Although 1981

products are in fact identical, as the EAN mapping guarantees, only ~33,3% of them have

identical titles. Also, of the products with identical titles only ~82.1% are identical, i.e.

have the same EANs.

This illustrates the severity of the data cleaning problem in the real-world data,

since the company which operates Softunity also acts as a supplier to Amazon, i.e. a subset

of the product assortment of Softunity is sold via the Amazon website. The product

information concerning this subset of products is regularly exported by Softunity and

imported by Amazon. Amazon then formats the product information according to its

presentation requirements. As our results show, within only one step of import/export of

data between different organizations the product titles diverge substantially.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

136 11.1 /Integrating Product Data

Human analysis of the input product data shows, that many of the discrepancies in

the titles of the products which are exported from Softunity and imported by Amazon

result from slight variations of the title, for example from addition of some information or

from permutation of the words (“The King of Queens” -> “The King of Queens (4DVDs)”

or “The King of Queens”->”King of Queens, The”).

To be able to match such titles, we need a matching algorithm which tolerates

variations in the spelling. We have investigated the following algorithms: trigram matching

[MS99], affix matching, edit distance matching, MSSQL Fuzzy Lookup. The trigram

string matching is based on calculating the number of identical trigrams in the input

strings. A trigram is any three-character substring of the given string. Affix matching is

based on the longest common prefix or suffix of the input strings. Edit distance matching is

based on the so called Levenshtein metric [Lev66]. Fuzzy Lookup algorithm provided by

Microsoft SQL 2005 Integration Services is based on a combined string similarity score.

This combined score depends on the following factors:

 Number of matching tokens in the input strings

 Number of matching n-grams in the input strings. N-gram is a substring of the

input string with the length n. Only a probabilistically chosen subset of all

present n-grams is used for the matching.

 Edit distance, i.e. number of token or character insertions, deletions,

substitutions and re-orderings which need to be made to transform one string

to another.

 Inverse token frequency in the entire corpus of strings being matched. The

more frequent the token is, the less information about the quality of the match

is it considered to convey. The rare tokens are considered to be more

important for the discovery of the potential matches.

The MS SQL Fuzzy Lookup algorithm is described in more detail in [CGGM05]

and [CGGM03]

All the above algorithms are supplied with two input sets of products and a

threshold value parameter. They calculate the similarity scores for the products in the input

data sets and return the correspondences with similarity score equal or greater than the

supplied threshold value. For every returned correspondence the value of the similarity

score is returned as well and can be used further. The value of the similarity score is a

floating-point number in the range [0..1], where 0 stands for no similarity and 1 for

equality. The trigram matcher, affix matcher and edit distance matcher are the standard

attribute matchers provided by iFuice in the operator attrMatch. In addition to the two

input parameters containing object instances of the type Product and the threshold value,

this operator takes the name of the matching algorithm (TRIGRAM, AFFIX, EDITDIST)

and the names of the attributes to be matched, in our case “title”, as input. The MSSQL

Fuzzy Lookup algorithm is implemented as an executable iFuice mapping. This mapping

loads the input data into temporary tables on a separate instance of Microsoft SQL Server

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 137

2005 and makes a call to the MSSQL Integration Services which perform Fuzzy Lookup.

The results of the Fuzzy Lookup execution are then returned to iFuice.

The level of the tolerance to the variations in spelling is based on the threshold

value. We have tried all variation-tolerant matching algorithms with threshold values from

0.3 to 0.9 with step 0.1 and additionally the threshold value 0.99. However, for the sake of

brevity we do not show the results for all combinations here. Instead, in Table 3.3 we

illustrate how the results produced by the trigram matcher change when changing the value

of the threshold parameter. For demonstrativeness, in Figure 3.8 we show the results from

the Table 3.3 (lines 3 to 10) in graphical form. As shown in Table 3.3 and in Figure 3.8,

lower threshold values result in increased recall. However the variation tolerance of the

trigram matching leads to the decrease of precision, making the threshold of 0.5 and below

practically useless. One can see that in case of the threshold 0.99 the results are almost

identical with exact matching and share a common disadvantage of having low recall and

few correspondences, i.e. low coverage. This is especially disadvantageous for our purpose

of creating navigation between products from different data sources. If such mapping

having low coverage is used for implementing navigation between products, a large

fraction of the products would have no counterparts to navigate to. Other matching

algorithms not shown in Table 3.3 react in a similar way to changes of the value of the

threshold parameter. As one can see, in case of the low threshold such as 0.3 the trigram

algorithm is able to find ~98% of the correct correspondences at a cost of finding a very

large number of incorrect correspondences. Thus, we can take the match results produced

by this algorithm as a basis for further refinement. We apply additional matching

algorithms to these results in order to filter out the incorrect correspondences.

One such additional matching algorithm can be designed after investigating the

values of the title attribute in the input data. Since the products contained in the input data

are mostly software and games, they usually have a version number after the title. Often

there are several versions of the same product line. The titles of such products differ only

through one or few digits which constitute the version number. The variation-tolerant

string matching algorithms consider this a very minor difference, while in fact it is a major

one. In iFuice, we implemented a special “version number” matcher, which is able to

detect the version numbers using the commonly used version number format (i.e. version

number is usually one or more digits at the end of the title, possibly with a dot in between).

Before applying this matcher, the title attribute is cleaned of comments which are usually

also located at the end of the title and enclosed in parenthesis.

Another additional matching algorithm is based on the product ontology

information which is available in our iFuice environment. Large fraction of the products

common to Softunity and Amazon is comprised of games, which have different versions

for different platforms, such as PC, Sony Playstation, Microsoft Xbox, Nintendo DS, etc.

However, there is no attribute in the product information which denotes the intended

platform. The title attributes of these products are identical for Amazon products. Softunity

products usually have the indication of the platform at the end of the title in parenthesis.

This way, the matching algorithms with low variation tolerance are unable to find

correspondences for these products. The matching algorithms with higher variation

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

138 11.1 /Integrating Product Data

tolerance are able to find these correspondences, however they also erroneously identify

other products from the same product line as correspondences, even if these products are

intended for a different platform. To solve this problem, we can use the fact that the

products intended for different platforms belong to different categories in the respective

product ontologies. To use this for refining the mapping, we need the following

information: the mapping from the products to the ontology in the same data source and

mapping between the ontologies of the two data sources. The mappings between products

and ontologies are supplied by the data sources. The mapping between the ontologies is

created using COMA++. We use a simple matcher which matches the ontology nodes

basing on their names and then refine the obtained result manually using COMA++ GUI.

The checking of whether the instances belong to the corresponding categories is easy to

implement due to the convention that when an instance belongs to a category, it also

belongs to all its parent categories. Therefore, no costly operation of traversing the

ontology tree is needed.

Ser
ies Matcher algorithms

Threshol
d

Total
correspon
dences

Correct
corresponde
nces Recall Precision

F-
Measure

1 EAN 1981 1981 1 1 1

2 Title eq 803 660 0,333 0,821 0,474

3 Any of: Trigram, EditDist,
Affix 0.99 804 661 0,333 0,822 0,474

4 MSSQL Fuzzy Lookup 0.99 804 661 0,333 0,822 0,474

5 Trigram with version number
matcher 0.99 804 661 0,333 0,822 0,474

6 Affix with version number
matcher 0.99 804 661 0,333 0,822 0,474

7 EditDist with version number
matcher 0.99 804 661 0,333 0,822 0,474

8 MSSQL Fuzzy Lookup with
version number matcher 0.99 804 661 0,333 0,822 0,474

9 Affix with version number
matcher 0.9 815 664 0,335 0,814 0,475

10 MSSQL Fuzzy Lookup 0.9 2995 1229 0,620 0,410 0,494

11 Affix with ontology matcher
and version number matcher 0.8 1014 750 0,378 0,739 0,500

12 Affix with ontology matcher
and version number matcher 0.6 2290 1079 0,544 0,471 0,505

13 Trigram with ontology
matcher and version number
matcher 0.7 3139 1305 0,658 0,415 0,509

14 MSSQL Fuzzy Lookup with
ontology matcher and
version number matcher 0.6 3954 1524 0,769 0,385 0,513

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 139

15 MSSQL Fuzzy Lookup with
version number matcher 0.9 2633 1215 0,613 0,461 0,526

16 Affix with ontology matcher
and version number matcher 0.7 1498 925 0,466 0,617 0,531

17 MSSQL Fuzzy Lookup with
ontology matcher and
version number matcher 0.7 3027 1439 0,726 0,475 0,574

18 MSSQL Fuzzy Lookup with
version number matcher 0.8 3750 1739 0,877 0,463 0,606

19 MSSQL Fuzzy Lookup with
ontology matcher and
version number matcher 0.8 2312 1367 0,690 0,591 0,636

20 MSSQL Fuzzy Lookup with
ontology matcher and
version number matcher 0.9 1643 1204 0,607 0,732 0,664

Table 3.4. Matching Softunity and Amazon products. Only the results of the algorithms

with F-Measure greater than that of title equality matching are shown.

In Table 3.4 we show only the algorithm/threshold combinations which achieved

higher F-Measure than the algorithm based on the equality of the title. We have

investigated all base algorithms and also their combinations with the version number

matcher and both version number matcher and ontology matcher. The results of the

variation-tolerant algorithms are sorted by the value of F-Measure. The same results are

also presented graphically in Figure 3.9.

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Experiment Series Number (description in Table 3.4)

Figure 3.9. Matching Softunity and Amazon products:
F-Measure for different experiment series

F-Measure

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

140 11.2 Integrating Ontologies

Looking at the results of the comparison of the matching algorithms, we can see

that the relative complexity of the MS SQL Fuzzy Lookup algorithm pays off and results

in better matching results compared to the more simple Trigram, EditDist and Affix

algorithms.

Another benefit of the Microsoft SQL Fuzzy Lookup which is not reflected in

Table 3.4 is that it performs the matching task considerably faster than the matching

algorithm supplied by iFuice, since it uses a special index structure called ETI (error

tolerance index)[CGGM03], which contains all pre-computed tokens and n-grams used for

matching. The three basic algorithms supplied by iFuice have achieved better F-Measure

values then the title equality matcher only with the most restrictive threshold of 0.99,

which can be intuitively understood. Indeed, although by lowering the threshold we are

able to find more correct matches than the title equality matcher, this also results in a

significantly lower precision which brings F-Measure down as well. The MS SQL Fuzzy

Lookup alone also performs better with higher thresholds of 0.99 and 0.9.

Looking at the results of MS Fuzzy Lookup algorithm with threshold 0.9, we can

see how the results of the matching are improved by applying additional matchers. MS

Fuzzy Lookup with threshold 0.9 without additional matchers achieves F-Measure value of

0.494. Applying the version number matcher increases this value to 0.526. Applying both

version number matcher and ontology matcher increases F-Measure to 0.664.

We have also investigated other matching methods not shown in Table 3.4, for

example the possibility of using attributes price, manufacturer and description in addition

to the title attribute. However we discovered that due to errors in the web service interface

provided by Amazon it is not possible to use these data. For example, Amazon web service

tends to return the offer prices for used products instead of its own prices. These offer

prices have large deviance to the product list prices and therefore cannot be used for

matching. The manufacturer attribute for Amazon products which come from Softunity is

set to the value “Koch Media” (the company which operates Softunity website). The

description attribute is returned only for a small fraction of the products.

The evaluation results presented here can be improved further by applying the

knowledge of the input data. So, for example, the version matcher can be extended to

recognize not only the numerical versions, but also special suffixes like „Pro‟,

„Professional‟, „Update‟, or different language versions which are also usually specified at

the end of the title attribute. We do not investigate such improvements here, however,

since the implementation would be straightforward and the obtained results rely on very

data-specific knowledge.

Here, we merely intend to illustrate how the rich possibilities provided by the

iFuice environment can be used in combination with the domain knowledge to build and

improve the reusable executable mappings between products.

To create the product mapping between other data sources we used the techniques

similar to the described above. We do not present the experimental results for these

mappings here since we have no means of assessing the quality of these mappings due to

absence of the unambiguous EAN mapping.

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 141

11.2 Integrating Ontologies

In this section we explore the possibilities which our architecture provides for

matching ontologies. Using COMA++ we can match ontologies based on lexical and

structural similarity of the nodes in the ontology. We will also use the results of the

instance matching presented in the previous section. As described in Section 10.2.2,

COMA++ has a large number of matchers and rich possibilities for their combination with

a large number of input parameters. We do not possess the complete knowledge of the

behavior of the different matchers and parameter combinations in different situation. Due

to the overwhelmingly large number of possible combinations, the complete analysis and

comparison of all these combinations is practically impossible. Therefore, we make some

assumptions based on the human analysis of the ontology data to achieve a good initial

configuration. After the initial configuration is determined, we try to improve the matching

strategy iteratively, gradually optimizing the results.

Some of the COMA++ features are not applicable to the ontologies in general, for

example the matchers using data type and context-based strategies. Context-based

strategies are important only for shared elements. Since we have no shared elements in our

ontologies, all the context-based strategies are equivalent. Some matchers are not

applicable to our specific input ontologies. For example, matchers which use descriptions

cannot be utilized since our ontologies do not contain node descriptions other than the node

labels.

For the experiments, we used COMA++ only in the automatic mode (with the

exception of the manual mappings used as a base for comparison). The execution of

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
M

1

M
2 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

Experiment Series Number (from Table 3.5)

Figure 3.10. Matching Softunity and Amazon ontologies:
F-Measure for different experiment series

F-measure

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

142 11.2 Integrating Ontologies

COMA++ in automatic mode is performed from iFuice. The calls to COMA++ are

implemented as calls to iFuice matchers:

$suamontoCOMA:=match($suonto,$amonto,SU_AM_COMA_MATCHER);

Table 3.5 shows the results of matching Softunity and Amazon product ontologies

using COMA++ matchers. We performed several series of experiments with COMA++

matchers. After each series the results of matching were analyzed based on the domain

knowledge and the available knowledge about the behavior and characteristics of the

COMA++ matchers. This way the possibilities for further improvement were determined.

In Table 3.5, only the best algorithms in each series of experiments are shown. In Figure

3.10, the same results are presented in graphical form. In the following subsections we

discuss the series of the experiments and the matching results in more detail. The manual

matching results (M1 and M2 in Table 3.5) are presented in subsection 11.2.1. The

COMA++-based experiments (series 1 to 7 in Table 3.5) are discussed in 11.2.2. The

instance-based matching results (series 8 and 9 in Table 3.5) and the the results of

combined matching (COMA++ and instance-based, series 10 to 13 in Table 3.5) are

presented in 11.2.3.

Series
Best algorithm and parameter
combination in series Total Correct Recall Precision F−measure

 M1 Manual 346 346 1 1 1

 M2
Manual based on lexical/structural
similarity only 204 204 0,589 1,00000 0,741

1
NamePath Trigram
MaxN=0,MaxDelta=0.08,Threshold=0.3 212 109 0,315 0,514 0,390

2
NamePath Trigram + Name Trigram
0.04 218 118 0,341 0,541 0,418

3
NamePath Trigram + Name (Trigram
0.5 +Affix 0.5) 0.04 220 119 0,343 0,540 0,420

4

NamePath Trigram + Name (Trigram
0.5 +Affix 0.5) 0.04 +
Synonyms/Abreviations 284 151 0,436 0,531 0,479

5

NamePath Trigram + Name (Trigram
0.5 +Affix 0.5) 0.04 +
Synonyms/Abreviations + Taxonomy 285 154 0,445 0,540 0,488

6 COMA++ Default combined matcher 111 74 0,213 0,666 0,323

7 COMA++ Default with synonyms 156 108 0,312 0,692 0,430

8 Instance-based EAN Dice>= 0.5 285 202 0,583 0,708 0,640

9 Instance-based MSSQL Dice>= 0.5 280 138 0,398 0,492 0,440

10
COMA + Instance-based EAN
Dice>=0.5 505 297 0,858 0,588 0,698

11
COMA + Instance-based MSSQL
Dice>=0.5 518 249 0,721 0,48 0,576

12 COMA + Instance-based EAN 464 278 0,803 0,599 0,686

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 143

Dice>=0.5 (excluding Ncorresp=1)

13
COMA + Instance-based MSSQL
Dice>=0.5 (excluding Ncorresp=1) 425 237 0,684 0,557 0,614

Table 3.5. Matching of the Softunity and Amazon ontologies using COMA++

11.2.1 Manual Ontology Mappings

 The baseline for the comparison of the matching quality of the different match

algorithms is the manual mapping shown in the first line of Table 3.5. The manual

mapping was created using the mapping editor provided by the COMA++ user interface.

The input ontologies were designed for the practical purpose of website navigation and do

not grasp the complete formal knowledge about the domain. Because of that, human

domain-specific knowledge about both product categories and product instances was used

to create the manual mapping. It is important to note, that the manual mappings are

inherently subjective. This subjectivity needs to be taken into account when reviewing the

values of recall, precision and F-measure in Table 3.5, since they are calculated with

respect to the manual mappings.

An important issue which needs clarification before creating the manual mapping is

how to handle the different types of relations. Although only one type of relation –

“specialization” – exists in our input ontologies, there are several types of relations which

may exist between the nodes of different input ontologies, for example:

Equivalence: the concepts represented by the nodes in two ontologies are

semantically equivalent. The equivalence of the concepts can however rarely be stated with

full confidence. Much more often one can speak of approximate equivalence. Even the

seemingly obvious equivalency correspondences like “Amazon->Games” <-> “Softunity-

>Games”
29

 is not a complete equivalence, because for example the Amazon category

includes additional subcategories for game consoles “Sega Saturn” and “Gizmondo” which

do not exist in the Softunity ontology. On the other hand, category “Softunity->Games”

includes subcategory “Game solution books” which is absent in Amazon. There are also

equivalences which are not visible at first glance but can be recognized using background

domain knowledge. So, for example, the categories “Softunity->DVD->Western” and

“Amazon->DVD->Classic Western” are not equivalent at first glance, since the notion

“Western” is broader than just “Classic Western”. However, since the DVD assortment of

the Softunity shop consists in general only of the digitally re-mastered classical movies, the

categories are equivalent in this given case.

Specialization: the nodes in one ontology can be mapped to nodes in another

ontology as children. Sometimes this can be based on the equivalence of the parent of the

given node to a node in another ontology, sometimes there is no equivalent parent, for

29

 We use the notation A<->B to denote the correspondence between the concept A in one ontology and the

concept B in another ontology.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

144 11.2 Integrating Ontologies

example when child-parent relation is expressed in the node name: “Comedy” <->

“Comedy, Satire, Slapstick”, “Science Fiction”<->”Science Fiction & Fantasy”.

Sometimes it is hard to determine whether we are dealing with equivalency or

specialization, for example: “Thriller” <->”Psychothriller”. We consider only immediate

specialization and not specialization over several nodes, because these distant

specialization relations can be deducted from the immediate specialization relations.

There can be other, less common types of relations, for example partially

overlapping concepts: “Amazon->Games->Computer games->Action & Adventure”<-

>”Softunity->Games->PC-Games->Adventure & Role games”.

Although multiple types of relations may exist between the nodes of different input

ontologies, the correspondences in our mappings are all of the same type “similarity”.

Taking this information about the creation of the manual ontology mappings into

account, we can assume that several “correct” manual ontology mappings may exist,

depending on which human knowledge is available and which types of relations are

considered as “legitimate” correspondences in the resulting mapping.

In the manual mapping which we used as a baseline for our experiments we chose

the criteria of the selection of the correspondences in accordance with our goal of creating

website navigation. The following criteria were applied to select the correspondences:

 The equality relations are always considered “legitimate” correspondences.

 The specialization in general is not considered “legitimate” correspondence

when it can be deducted from the existing equivalence-based correspondence.

This is done to eliminate redundant correspondences, because taking all

specialization relations into account would generate additional

correspondences for every child of a node which participates in an

equivalence-based correspondence, thus leading to an explosion of the number

of correspondences which do not add any new information. So, for example,

given that the category “Amazon->Software” has 10 children, the category

“Softunity->Software” would have at least 11 correspondences to the Amazon

ontology, one to “Amazon->Software” and 10 to its children. Although

redundant correspondences are not wrong, they can be confusing to the user if

used for navigation on a website. We do consider specialization in the cases

where no equivalency exists between the node parent in one ontology and a

node in another ontology. In special cases we also allow correspondences

when a node in one ontology corresponds simultaneously to a node and its

child in another ontology. Such special cases occur when the concept

represented by the child node is almost as broad as its parent‟s concept, for

example “Softunity->Games->Accessories”<->”Amazon->Games-

>Accessories->More Accessories”. It occurs also when the child node is a root

of an orthogonal sub-ontology, for example “Softunity->DVD” <->”Amazon-

>DVD->By production land” and ”Amazon->DVD->By format”.

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 145

 Nodes which exhibit partial semantic overlap are considered “legitimate”

correspondences in absence of equality correspondences between their

children, for example: “Amazon->Games->Computer games->Action &

Adventure”<->”Softunity->Games->PC-Games->Adventure & Role games”.

Since COMA++ matchers consider only information about product categories, we

have also created another manual mapping (Table 3.5, second line). This mapping is a

subset of the previous mapping and is based only on the structural/lexical information

contained in the product ontologies. The correspondences which cannot be determined

without utilizing the background domain knowledge not contained in the nodes and their

relations in the input ontologies are excluded in this mapping. This way we approximate

the upper limit which can theoretically be achieved by COMA++ without utilizing the

instance information.

The number of correspondences given in Table 3.5 shows the number of 1:1

correspondences in the mappings. Some of these correspondences in fact represent 1:n

correspondences. Although the size of the Amazon ontology is ~4.1 times larger than the

size of the Softunity ontology, the bias of 1:n correspondences with respect to Amazon

ontology is not large. There are 38 1:2 correspondences with two elements on the Amazon

side and 45 1:2 correspondences with two elements on Softunity side. For 1:3 mappings

however, there are 20 correspondences with three elements on the Amazon side and only 2

with three elements on the Softunity side. The cardinality 1:4 appears 5 times, 1:5 and 1:6

one time each, in all cases with n elements on the Amazon side. All other correspondences

are 1:1 correspondences. It is important to note, that Amazon ontology and Softunity have

only a partial, although significant, overlap. Because of this, even the manual matching can

match only some concepts in the ontologies and not all concepts.

11.2.2 Ontology Mappings Created Using COMA++

The most important source of information about the identity of the nodes in the

ontologies is the names of the nodes. In fact, our nodes have no attribute other than the

name attribute. However, the names of the individual nodes can be confusing, since in our

ontologies many different nodes have the same name. Since our ontologies are represented

as trees, the path to a node from the root uniquely identifies this node. So we may have two

nodes with name “Action”, one being “Games->Playstation 2->Action” and another

“Games->Xbox->Action”. Due to these peculiarities of the input data, we start with the

COMA++ matcher “NamePath” as our basic matcher. This matcher is a combined matcher

which takes the paths from the respective ontology roots to the input elements and

computes string similarity between them. Several algorithms for computing the string

similarity, among them Trigram, Affix and EditDistance, can be configured. Before

computing the string similarity, the input strings are tokenized, i.e. single terms are

extracted. Similarity values are then computed for every term and stored in a similarity

cube. The maximal similarity values for every term are then averaged to return a single

similarity value.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

146 11.2 Integrating Ontologies

It is also possible to configure a combination of similarity scores computed by

several string similarity algorithms. In our 1
st
 series of experiments, we have compared the

matching quality of these three string similarity algorithms. As described in Section 10.2.2

of this chapter, COMA++ provides several parameters for selection of the matching

candidates. In addition to specifying an absolute threshold value for the similarity score,

one can also specify so called MaxDelta and MaxN values. We have explored the

combinations of the parameters with each of the three string similarity algorithms to find

the best algorithms and combinations. We have iterated the value of Threshold from 0 to 1

with step 0.1 and the value of MaxN from 1 to 10 with step 1. We have iterated the value

of MaxDelta from 0 to 1 with step 0.1. After we have determined that the best values are

achieved with MaxDelta of 0.1 and that the quality of the matching decreases as MaxDelta

increases, we have additionally iterated MaxDelta from 0 to 0.2 with Step 0.01. We have

determined that the best matching results are achieved using the Trigram string similarity

algorithm with MaxN=0, MaxDelta=0.08, Threshold=0.3. The matching in this series of

experiments and in all subsequent experiments was performed using bidirectional mode of

COMA++ (Direction=BOTH). In this mode, the matching is performed two times, from

larger ontology to the smaller and from smaller to larger. The intersection of the two

unidirectional results serves as the final result of the matching.

After examination of the results of the matching produced in the 1
st
 series of the

experiments and the differences between the manual mapping and the mapping obtained

using the NamePath matcher it became clear that some of the false correspondences found

by the NamePath matcher and some of the missed correspondences can be attributed to the

fact that in the paths of the nodes serving as input for the NamePath matcher all

components of the path are considered equally significant for determining the similarity.

This may lead to the calculated similarity value being too high, especially in the not

infrequent cases when the node name is much shorter than the full path to the node. In the

2
nd

 series of experiments, we have investigated how the aggregation of the NamePath

matcher with the Name matcher, which matches only the name attributes of the nodes, can

improve the matching quality. Similar to the NamePath matcher, the Name matcher allows

using several string similarity algorithms such as Trigram, Affix, EditDistance. The

similarity scores returned by the Name and NamePath matchers were aggregated using the

weighted aggregation strategy provided by COMA++. We have explored how the values of

the aggregation weights influence the quality of the matching. We have tried the three

string similarity algorithms and iterated each of them with aggregation weight for the

Name matcher W from 0 to 1 with step 0.1. The aggregation weight for NamePath matcher

was set respectively to 1-W on each iteration. The best performing string similarity

algorithm was the Trigram Algorithm, the best values are achieved around W=0.1. We

have then iterated the value of W from 0 to 0.2 with step 0.01 to find out more precise

value of the optimal W, which appeared to be 0.04. The values of the parameters MaxN,

MaxDelta, Threshold stayed unchanged. Through aggregation of the Name matcher with

the NamePath matcher we were able to obtain additional correct correspondences in the

resulting ontology mapping. For example, “Software->Betriebssysteme” is now correctly

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 147

matched to “Software->Tools & Utilities->Betriebssysteme” and “Software->Sound-

>Sampler” to “Software->Musik->Sampler”.

After assessing the mappings produced in the 2
nd

 series of experiments, we have

found that although the Affix string similarity algorithm performed in general worse than

the trigram matching algorithm, it had better results for a certain pattern of

correspondences. This pattern was characterized by the names of the top product categories

added to the names of the lower product categories, for example “Games->Game Boy

Advanced Games -> Sport Games” vs. “Spiele->Game Boy Advanced->Sport”. Thus, in

the 3
rd

 series of the experiments we have investigated the aggregation of the Trigram and

Affix string matchers in the Name matcher. It is not reasonable to use the Affix matcher in

the NamePath matcher, since the paths to different nodes often have common prefixes. We

have iterated the value of the aggregation weight Wt of the Trigram matcher from 0 to 1

with step 0.1. The aggregation weight for Affix matcher was set respectively to 1-Wt on

each iteration. The best results were achieved when the weights of the Trigram and Affix

matchers were equal.

Many of the words used in the input data are lexically different but have the same

meaning, i.e. are synonyms. In our German e-commerce ontologies this is especially the

case, since for many notions in the areas of Software and Games both German and English

equivalents exist which are used interchangeably. The use of abbreviations is also

common. COMA++ contains a special matcher which allows users to specify a set of

synonyms and abbreviations. We made a set of 6 synonyms (for example “Game”<-

>”Spiel”, “Business”<->“Geschäft”) and one abbreviation (“PSP”->”Playstation Portable”)

and activated synonym matching in both NamePath and Name matcher, which resulted in

significant increase in the matching quality. The synonym matcher returns high similarity

values when a synonymy exists and 0 otherwise. The synonym matcher was aggregated

with the Trigram matcher using Max aggregation strategy. Thus the synonym matcher has

no influence on the similarity score when no synonymy exists.

Further extension of the synonym matcher is the taxonomy matcher. It also uses the

data supplied by user, but the relation between terms are expressed not as a set as

equivalent terms, but as a taxonomy. The similarity between the terms is determined by the

distance between them in the taxonomy. We have created a small taxonomy with three

nodes: “Filme“(the root of the taxonomy),”DVD” and “VHS” (children of the root). In the

5
th

 series of the experiments we have tested the ontology matching using the taxonomy

matcher along with the synonym matcher for both Name and NamePath matchers. The

taxonomy matcher was aggregated with the Name and NamePath matchers similarly to the

synonym matcher. Although in our experiments the results of the taxonomy-based matcher

were only marginally better than the results of the synonym-based matcher (three

additional correct correspondences), the use of taxonomy-based matcher seems to be

promising. Similarly to synonyms, taxonomies allow introducing additional domain

knowledge into the matching process. However, taxonomies also provide richer semantics

compared to synonyms, since not only equivalence of the terms but also less strict relations

can be specified. Our taxonomy is a very simple one; intuitively, specifying more elaborate

taxonomy would increase the quality of the matching result (assuming the taxonomy to be

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

148 11.2 Integrating Ontologies

relevant and of high quality), however this would also increase the amount of manual

work. One possible way to decrease the manual effort is to use a ready taxonomy provided

by some external source
30

. However such taxonomy was not available for our problem

domain.

In addition to the matchers we described here we have also tried combinations of

the NamePath Matcher other matchers provided by COMA++, such as Leaves, Children,

Siblings and Parents. However, these matchers were unable to improve the matching

performance. In case of the Leaves, Children and Siblings matchers the results contained

many false positives. The reason for this is that many subcategories with the same names

are located in different subcategories in the same ontology. For example, both categories

“Games->Playstation 2” and “Games->Nintendo DS” contain subcategories “Action”,

“Strategie” and ”Sport”. Thus, the assumption that nodes having similar children, leaves or

siblings should be similar is not pertinent for our ontologies. The Parents matcher was not

able to improve the matching results, since the information about the parent node is already

taken into account by the NamePath matcher.

Comparison of the matching results to the results of the manual mapping based on

the lexical and structural similarity shows that the recall values of the COMA++ mappings

are gradually approaching the recall values of the manual mapping. The precision values

are however remarkably lower.

The COMA++ matching results presented in the experiment series 1 to 5 have

required a significant amount of human analysis and experimenting. In the next two series

of experiments we have investigated what results can be obtained with the default

configuration of COMA++, i.e. without additional effort. In series 6 we used COMA++

default matcher with no default parameter values. The matcher configuration in series 7 is

the same as in series 6 but with the synonyms and abbreviations as used in experiment

series 5. The results of using the default COMA++ matcher are significantly worse than in

our custom matcher configurations. Using synonym and abbreviation tables however

remarkably improves the matching quality.

Our custom combined COMA++ matchers are fitted to the specific type of input

data and are not suitable as generic matchers. This complies with our intent to create a

specific matcher, which would grasp the particularities of our ontology data without being

dependant on the concrete data. Although the concrete ontology data will be changing with

time (i.e. some nodes may be added to or removed from the ontology, the names of some

nodes may be altered), we anticipate the general characteristics grasped by our matchers to

be preserved.

11.2.3 Instance-based and Combined Mappings

So far we have not used the instance information to match the ontologies. In this

section we explore how the information about products instances can be instrumental in

matching product categories. The method we use in matching ontologies to determine the

30

 For example http://www.schemaweb.info/

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 149

similarity of any two categories is using Dice coefficient
31

. For this, we use the mappings

between product instances and ontology nodes within each data source and a mapping

between the product instances of the different data sources. The Dice coefficient for

categories a and b is defined as

Dice(a,b)=2*|Cab| /(|Sa| +|Sb|),

where C is the set of correspondences between products which belong to a and b,

Sa, Sb set of products which belong respectively to the categories a and b.

In the 8
th

 and 9
th

 series of experiments we have investigated the quality of the

ontology mappings produced using only the instance information. The instance-based

matching of the Softunity and Amazon ontologies is implemented using the following

iFuice script
32

:

1: $amontosuprod:=compose($amontoprod,inverse($suamprod));

2: $suontosuprod:=compose(compose($suontoprod,$suamprod),

inverse($suamprod));

3: groupAttr(&amontosuprod,"nInstances","count(*)");

4: groupAttr(&suontosuprod,"nInstances","count(*)");

5: $suamontoINSTANCE:=match($suontosuprod, $amontosuprod,

SU_AM_ONTO_INSTANCE_DICE);

6: $suamontoINSTANCE_DICE01:=queryMapResult($suamontoINSTANCE,

”[_confidence]>=0.1”);

In this script we first establish the mappings $amontosuprod and $suontosuprod

(lines 1 and 2). These mappings map the nodes of both Softunity and Amazon ontologies

to the set of Softunity product instances. Here we use only those Softunity products which

have counterparts on Amazon. The mapping from Amazon ontology to Softunity products

(variable $amontosuprod) is created by composing the mapping from Amazon ontology to

Amazon products with the mapping from Amazon products to Softunity products stored in

the variable $suamprod. This instance mapping can be created using one of the methods

described in the previous section. In the 8
th

 series we have used the unambiguous EAN-

based mapping between product instances. In the 9
th

 series we have used the product

mapping based on MSSQL Fuzzy Lookup combined with ontology and version number

matchers which appeared to be the best among the instance mappings investigated in

Section 11.1 with the exception of the unambiguous EAN mapping. The mapping

$suontosuprod is created from the mapping $suontoprod which maps Softunity ontology to

31

 The later work [MR08] has investigated using instance-based similarity measures other than Dice.

However, the Dice coefficient has achieved the best results in the experiments. [MR08] is described in the

Section 13.2 in more detail.
32

 The line numbers are not part of the iFuice scripting language syntax and are added for better readability.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

150 11.2 Integrating Ontologies

Softunity products by filtering it to contain only those Softunity products which have

corresponding Amazon products.

To perform the filtering, we compose the mapping $suontoprod with the mapping

$suamprod twice, first in the forward direction and then in the inverse direction. After

creating the mappings $amontosuprod and $suontosuprod we create auxiliary attribute

nInstances in every node in the ontologies (lines 3 and 4). The attribute is created using

iFuice operator groupAttr which can be applied to the variable of type Mappingresult. For

every object instance in the domain of the mapping the operator groupAttr calculates the

value of the specified SQL aggregate function on the object instances in the range of the

mapping and assigns the calculated value to a new attribute in the domain object instance.

The attribute nInstances which contains the number of instances in every ontology node is

utilized to calculate the Dice coefficient later on.

The generation of the instance-based ontology mapping is performed by a call to

the user-defined matcher SU_AM_ONTO_INSTANCE_DICE (line 5). This matcher

returns correspondences between all nodes in the Softunity and Amazon ontologies which

have at least one common product instance and calculates the Dice coefficient for every

correspondence. For our experiments we have filtered the correspondences having

Dice>=T, where T is a threshold value. To filter the mappings by the Dice coefficient

value we used iFuice operator queryMapResult with T=0.1 (line 6 in the sample script). In

both 8
th

 and 9
th

 series of the experiments we have iterated the value of T from 0 to 1 with

step 0.1. The best F-measure values were achieved with Dice>=0.5. As one can see in

Table 3.5, the quality of the ontology matching based on the unambiguous EAN product

mapping surpasses the quality of the best COMA++-based mapping. Such unambiguous

mappings are however rarely available in practice. The ontology mapping based on the

fuzzy string matching in the series 9 achieves however only the quality comparable with

the default COMA++ matching without any data-specific enhancements (series 7).

The sets of correspondences in instance-based mappings contain a significant

number of correspondences not found in the COMA++ mappings. The reason for this is

that although some product categories are semantically similar, which results in the large

number of instance correspondences, their lexical similarity may be small. Analogously,

many of the correspondences found by COMA++ cannot be found in the instance

mappings. In cases when the product assortment changes frequently, some categories may

contain no instances at some points of time. Such categories cannot be matched using the

instance matcher. Another reason for this may be the dispersion of the instances of a

product category in one data source between multiple categories in the other data source.

So, in the COMA++ mapping produced in the 5
th

 series of experiments only ~16% of the

correspondences are also found in the instance-based mapping from the 9
th

 series. In the

instance-based mapping these common correspondences constitute ~17% of all

correspondences.

Therefore, it can be beneficial to merge the COMA++ mapping and the instance-

based mapping to one mapping. This can be accomplished using the following iFuice

script:

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 151

$suamontoMERGED:=union($suamontoCOMA,$suamontoINSTANCE);

In this script, variables $suamontoCOMA and $suamontoINSTANCE represent

respectively the results of the matching Softunity and Amazon ontologies using COMA++

and instance mapping. The united mapping is stored in the variable $suamontoMERGED,

the duplicate correspondences are eliminated. Apart from the possibility for combining the

mappings using the operator union as presented in the above script, iFuice also provides

other possibilities for accomplishing this. So, the iFuice operator union can take third

parameter, which controls how the weights of the correspondences in the different

mappings can be combined. Functions such as Max, Min, Average and others are available

for combining the weights. The resulting weights can be used to further filter the merged

mapping. The default value for this parameter is Average, i.e. the weights in the merged

mapping are obtained by calculating arithmetic average of the weights in the source

mapping. In our experiments, however, the merged mapping is not further filtered and the

value of the third parameter is therefore of no consequence. Another possibility to combine

the mapping is by using the iFuice operator intersect. This operator performs the set

operation ∩ on the sets of correspondences in the source mappings to obtain the resulting

mapping. However, as mentioned above, the overlap between the instance-based mappings

and COMA++ mappings is very small. As a result of this, the mappings obtained by using

the operator intersect contain too few correspondences to be used for our purpose of

creating navigation on a website.

We have tried the combination of COMA++ mapping and instance-based mapping

in the 10
th

 and 11
th

 series of experiments. As COMA++ mapping we took the mapping

produced in the 5
th

 series of experiments. In the 10
th

 series of experiments we combined it

with the instance-based mapping utilizing EAN product correspondences. In the 11
th

 series

of experiments we tested the combination of the COMA++ mapping with the instance

mapping based on the product correspondences determined using MSSQL Fuzzy Lookup

and additional instance matchers as described in Table 3.4 (series 20). For both instance-

based mappings we have repeated the merging process for every threshold value used in

the experiment series 8 and 9. The values of recall, precision and F-measure for the best

mappings obtained by merging COMA++ and instance-based mappings are shown in

Table 3.5, experiment series 10 and 11.

Further, we have noticed that some category correspondences with very high Dice

value produced by the instance-based matcher are based on very few instance

correspondences. Since the low number of correspondences can be attributed to “noise” in

the input data, we have filtered out the category correspondences having less than or

exactly N instance correspondences. We have repeated the experiments for values of N in

the range [1..5] in the experiment series 12 and 13. The input data were the same as in

respectively series 10 and series 11.The best results were achieved in cases when only the

category correspondences having exactly one instance correspondence were filtered out. In

the case when EAN-based instance mapping were used, the result obtained by applying the

“noise reduction” was worse than without it. In case of MSSQL-based instance mapping

the “noise reduction” leads to increase in the mapping quality.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

152 11.2 Integrating Ontologies

11.2.4 Problems Discovered in the Process of Ontology Matching and Possibilities

for Improvement

We have investigated the possibilities for matching ontologies using our framework

on example of the Softunity and Amazon ontologies. We have been able to obtain

mappings which can be used as a basis for creating the navigation on the integrated

website. As mentioned earlier, we apply the ontology mapping for two purposes– creation

of the browsing structure and generation of the recommendations. The correspondences in

our automatically produced ontology mappings may represent different types of relations

between the nodes in the input ontologies, which makes them not immediately suitable for

creating the browsing structure. However, our automatically produced ontology mappings

are suitable for generating recommendations, since all the correspondences represent nodes

that are somehow related to each other. To create web browsing structure, the

automatically produced ontology mappings need to be manually refined. The refinement of

the automatically produced ontology mappings can be carried out using COMA++

mapping editor. Such refinement of the existing mapping requires considerably less effort

than creating a manual ontology mapping from scratch. The obtained refined mapping can

be than used for creating the browsing structure on the integrated website.

While analyzing the results of the automatic ontology mapping we have become

aware of several problems which cannot be solved by the combination of COMA++ and

instance matchers but require extensions to the entire architecture.

Many of these problems result from using untyped correspondences in both

COMA++ and iFuice, i.e correspondences which do not have sufficient semantic

expressiveness. As discussed in the previous section, there can be many possible types of

relations between the nodes in the different input ontologies. Our automatic matching

algorithms are aimed in the first place at finding the equivalence relations. However, since

the specialization relations frequently exhibit distinguishing features which are also

characteristic to the equivalence relations (such as lexical similarity and large number of

common instances), significant number of specialization-based correspondences also

appear in the matching results. Since we have defined our manual mapping to include

specialization-based correspondences only in special rare cases, the majority of these

correspondences are wrong with respect to our manual mapping. If we had redefined our

manual mapping to include all specialization-based correspondences, the automatic

mapping would still be of poor quality with respect to the manual mapping since it is able

to determine only a fraction of the specialization-based correspondences. To improve the

quality of the automatic matching by better handling the specialization-based

correspondences, one of the following techniques can be proposed:

 remove all specialization-based correspondences from the automatic mapping.

 add all specialization-based correspondences to both automatic mapping and

manual mapping.

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 153

 partially prune specialization-based correspondences from the automatic

mapping based on the rules similar to the ones we used for manual mapping,

i.e. all the specialization-based correspondences are removed except for those

which cannot be deducted from the equivalence correspondences.

To implement any of these techniques, we need to be able to assign different

relation types (i.e. “equivalence” or “specialization”) to correspondences. We also need to

implement special matchers which would be able to determine the relation type for a

correspondence by looking at the lexical and structural information provided by the

ontology and also at the instance data.

One such problem is caused by the fact that 1:N and N:M correspondences are

represented as multiple 1:1 correspondences in our system. So, for example, category

“Softunity->Filme” is mapped to a union of “Amazon->DVD” and “Amazon->VHS”(i.e.

cardinality 1:N, Figure 3.11). Category “Softunity->Spiele” for example is mapped to

“Amazon-DVD->Spiele” with cardinality 1:1. Since in both cases the relation is

represented by 1:1 correspondences, we are not able to distinguish between the first and

the second case. Possible solutions for this problem are addressed in [TKR07]. The authors

propose using set

correspondences to

overcome the

limitations of 1:1

correspondences. They

study of how this

improves the mapping

needs yet to be done.

In this section we refer

to some of the

improvements proposed in [TKR07] when appropriate.

Another problem which is not addressed by our approach yet is the problem of

structure violations. (Figure 3.12) The problem of structure violations could be best

illustrated by example: let the ontology class a1 in the ontology A be the parent of the class

a2 and the class b1 in the ontology B accordingly the parent of the class b2. It is possible

that in the mapping

between the ontologies

A and B both the

correspondence a1-

>b2 and b1->a2 exist.

Since we use untyped

correspondences to

represent several types

of relations, we cannot

distinguish whether

there is a contradiction
Figure 3.12. Some correspondences may violate the structure of

the ontologies

Figure 3.11. Concept in one ontology mapped to a union of

concepts in another ontology.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

154 11.2 Integrating Ontologies

in this setting. If one of

the underlying

relations is of type

parent-child and the

other of the type child-

parent, than both

correspondences are

legitimate. If however

both relations are of

type parent-child, then

a structure violation

exists in the ontology mapping. Whether such structure violation is problematic, depends

on the intended use of the ontology mapping. It can be argued that correspondences which

violate the ontology structure can still be useful as recommendations.

Severe problems are caused by orthogonal subontologies (Figure 3.13) which are

frequent in the Amazon product ontology. These problems are especially stepping forward

in connection with the instance mapping. Because of the orthogonal subontologies, the

category „Filme->Kinder- und Jugendfilm->Zeichentrick“ (Movies->Movies for Children-

>Animation movie) is instance-mapped to „Filme->By production land->Japan“ (Figure

3.14) and the category „DVD->Classic Western Collection“ to „Filme->By production

land->Italy“. These correspondences are not unfounded because an overwhelming number

of animation films are produced in Japan and a large number of classic “western” movies

are “Italo-westerns” produced in Italy. Such correspondences can in fact be used as

interesting recommendations. However, they are clearly erroneous if we are looking for the

equivalency-based correspondences.

Orthogonal subontologies can be removed by preprocessing the input ontologies.

We have manually pruned some of the larger orthogonal subontologies from the ontologies

we use in our system. However there is a large number of smaller orthogonal

subontologies which require much effort to be pruned manually. Some automatic or semi-

automatic preprocessing techniques for removing orthogonal subontologies may be

required to improve the quality of the ontology mappings.

An improvement to the instance-based ontology matching techniques used here was

proposed in [TKR07]. The key idea of the improvement proposal is to use SimMin

similarity measure instead of Dice similarity measure used here. The SimMin similarity

measure between two

ontology concepts is

calculated according to

the following formula:

SimMin(a,b)=|Cab| /

min(|Sa| ,|Sb|),

where Cab is the set of

correspondences

Figure 3.13. Orthogonal subontologies

Figure 3.14. Correpondences in orthogonal subontologies found

by instance matching

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 155

between instances which belong to a and b, Sa, Sb set of instances which belong

respectively to the concepts a and b.

The authors of [TKR07] also used the e-commerce ontologies from

www.softunity.com and www.amazon.de in their work. The ontologies were restricted to

the areas Software and Games. Since in our experiments we used the data from the areas

Software, Games and Video, our results are not directly comparable to the results provided

in [TKR07]. We have implemented an algorithm analogous to the algorithm described in

[TKR07]. In our experiments, we have not been able to notice direct improvements in the

recall and precision with respect to our manual mapping. The human analysis of the

resulting mapping in COMA++ GUI shows that the algorithm described in [TKR07] is

able to find larger number of correspondences which are correct from the point of view of

the distribution of instances. However, these correspondences do not comply with the

guidelines we set for our manual ontology mapping, i.e. that the equality relations are

preferred, and other relations are considered redundant if they can be inferred from the

equality relations. In particular, for every equality correspondence found by the algorithm

based on Dice similarity measure the algorithm described in [TKR07] tends to produce

additional correspondences for child-parent relations. For example, for the concept

“Softunity->Games->Game Boy Advanced” the instance-based matching with threshold

Dice>=0.5 produces one correspondence to the concept “Amazon->Games->Game Boy

Advanced”. The instance-based matching with SimMin coefficient produces for the same

Softunity concept 5 correspondences to the children of “Amazon->Games->Game Boy

Advanced”, such as “Amazon->Games->Game Boy Advanced->Strategy”, “Amazon-

>Games->Game Boy Advanced->Jump & Run” etc., as shown in Figure 3.15. The value of

the SimMin measure equals to 1.0 for four of these correspondences, therefore it is not

possible to filter these correspondences out using a threshold value.

Although it appears that the replacement of the Dice similarity measure through

SimMin similarity measure alone does not improve recall and precision, the method based

on the SimMin provides better coverage, i.e. it produces more promising correspondence

candidates which in combination with methods for post-processing of the ontology

Figure 3.15. Additional child-parent correspondences found by instance matchning with

SimMin coefficient

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

156 11.2 Integrating Ontologies

mapping proposed earlier in this section can lead to improvement in the quality of the

ontology mapping.

The work in [TKR07] also studies the use of direct references from the products to

nodes in the product hierarchy vs. indirect references. The direct references are those when

the products are explicitly assigned to the nodes in the product hierarchy. The indirect

references are those which are explicitly assigned either to the nodes or to their

descendents in the hierarchy. In the work presented in this thesis we study only the indirect

references, since during the data extraction process all indirect references are transformed

into explicit, i.e. direct references.

Additional improvement of the ontology mappings can be achieved by using

matchers which establish correspondences based on the neighborhood of the given pair of

objects as described in [TR07].

11.2.5 Evolution of data, ontologies and mappings

Both product instance data and the ontologies provided by our data sources change

over time. This poses a problem of maintaining the instance and ontology mappings up-to-

date with the changing data. In particular, one of the incentives for implementing

automatic ontology matching algorithms was that such algorithms can be designed once

according to the characteristics of the input data and then be continually used with the

changing input data. The naïve method for keeping the mappings up-to-date is by simply

repeating the automatic matching when the data change. As we have determined, however,

our automatically produced ontology mappings are not suitable for creating the browsing

structure for a website without manual post-processing. Of course, we can repeat the

automatic matching and post-process it manually each time the data change. Although

manual post-processing of the automatically produced mapping requires less effort than the

creation of the manual mapping from scratch, it still becomes quite laborious if we need to

repeat it many times.

A special research area called ontology evolution or schema evolution investigates

different problems of handling changes in ontologies. These problems include change

capturing, propagating of changes from one ontology to another, ontology versioning etc.

A detailed overview and bibliography for this research field can be found in

[HS04][RB06]
33

. The particular problem of maintaining up-to-date mappings that we are

facing in our system is called mapping evolution [HS04]. In particular the system ToMAS

[VMP03][VMP04][VMPM04] is specially designed for handling the problem of mapping

evolution. This system allows sophisticated handling of structural changes such as moving

an element from one position to another but does not handle the additions of the new

elements. In fact, it is not possible to handle element additions by using a pure evolution-

support system. This task requires the cooperation of an evolution-support system and an

ontology-matching system in order to find the correspondences for the newly added

elements. In our system, however, additions are of great interest, because according to our

33

 Online bibliography is located at http://se-pubs.dbs.uni-leipzig.de

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 157

experience additions constitute the majority of all changes occurring in e-commerce

ontologies.

To solve the problem of maintaining up-to-date ontology mappings in our system,

we take the following approach:

After the initial generation of the automatic ontology mapping and its manual

refinement, we generate two additional ontology mappings: auxiliary negative mapping

and auxiliary positive mapping. Both auxiliary mappings are created using iFuice scripts.

The original automatically generated mapping and the manually refined mapping serve as

input data for the scripts. The auxiliary negative mapping contains the erroneous

correspondences which were contained in the automatic mapping and removed by the

manual post-processing. The auxiliary negative mapping is created with the following

script:

$auxiliaryNegativeMapping:=diff($automaticMapping,$manuallyRefinedMapping);

Auxiliary positive mapping contains the correspondences which were not found by

the automatic mapping and added during manual refinement. It is created with the

following iFuice script:

$auxiliaryPositiveMapping:=diff($manuallyRefinedMapping,$automaticMapping);

When the ontologies are updated from the data sources, the ontology mapping is

generated in the following way: First the automatic matching process employing COMA++

and instance matchers is run. Then the auxiliary positive mapping is added to the results of

the mapping to provide for missing correspondences and the auxiliary negative mapping is

subtracted from it to remove the known errors:

$updatedMapping:=diff(union($newAutomaticMapping,$auxiliaryPositiveMapping),

$auxiliaryNegativeMapping)

This way only the correspondences which are relevant to the newly added nodes are

added to the mapping. The new correspondences may be correct or incorrect with the

expectation of our automatic mapping. The old manually refined correspondences persist.

Our approach does not solve the problem completely: the mapping quality will still

deteriorate due to the imperfectness of the automatic matching and the mapping will

eventually need a new manual revision after certain number of changes in the input

ontologies. However, according to our experience, the changes in our input ontologies are

infrequent and the amount of changes is small with respect to the size of ontology.

Therefore, the time between the manual revisions can be kept large without significant

deterioration of the quality of the mapping.

In contrast to the system ToMAS [VMP03][VMP04][VMPM04], our approach

does not specially handle re-structuring of the ontology without removing or adding

elements. This functionality is a subject of further research. In our current architecture,

correct propagation of such restructuring to the mapping depends on whether the automatic

matching algorithms can correctly recognize the correspondences for the relocated

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

158 11.3 Integrating Data: Summary

elements in the new locations. Manual adjustment of correspondences is of course also

possible.

COMA++ has special Reuse matchers which can be generally useful in the

situations similar to the described above. Indeed, in our experiments these matchers have

been able to find many additional correct correspondences in the changed ontologies.

However, these matchers have also generated a large number of false positives. This is due

to a peculiarity of our ontologies: our ontologies have a large number of homonymous

nodes in different subtrees. Because of this homonymy, the reuse matchers generate a large

number of 1:n correspondences where only one of the n elements is usually correct. We

have been able to somewhat alleviate this effect by combining Reuse matcher with

NamePath matcher, in order to take the current subtree into account. The number of false

positives however remained too high for practical use.

We have also implemented an approach to handle the evolution of the instance data

with respect to the mappings. This approach is analogous to the iFuice-based approach

with auxiliary mappings described above. We manually create auxiliary mappings which

contain the correspondences typically overlooked by the automatic matching and the

correspondences which are false positives. The former are added to the mapping created

automatically, the latter are subtracted from this mapping using the corresponding iFuice

operators.

11.3 Integrating Data: Summary

In this chapter we investigated the data integration approaches which can be used

for creating an integrated e-commerce website within our framework EC-Fuice.

We concentrated on two main types of input data for creating the integrated website

– product instances and product ontologies. For both input data types, mappings can be

generated for two purposes – browsing and recommendations. Since there can be several

types of browsing and several types of recommendations, several mappings may need to be

created for each purpose. The incentive for our work was to create a set of integration

routines, which can be repeatedly used during the lifetime of the integrated website to

update and maintain the integrated data and settings.

We performed several series of experiments for both instance matching and

ontology matching. The product instance and product category data for the experiments

were taken from Softunity and Amazon data sources, since unambiguous product instance

mapping exists between these data sources which can be used to assess the quality of the

various methods for instance matching.

We investigated the following methods for matching of the product instances

 several simple matchers based on well-known string similarity algorithms.

 a more complicated fuzzy string matcher provided by the Microsoft SQL

Server which combines multiple string similarity algorithms.

Mykola Golovin Web Recommendations for E-Commerce Websites

11 Integrating Data: Experiments and Results 159

 combination of the string matching algorithms with the ontology data

available in the EC-Fuice framework.

 We have also investigated using additional attributes for matching, however

with no success due to the specifics of the input data.

For matching product ontologies, we have investigated the following possibilities:

 matching using COMA++ matchers

 matching based on the product instance mapping and on the information on

which product instance belongs to which product category

 combination of the mapping produced with COMA++ and the instance

mapping.

We have recognized that while our automatically produced ontology mappings can

be used as recommendations, they are not suitable for creating browsing structure without

further manual refinement. Subsequently, we have proposed a technique which allows

minimizing the manual effort when the data change.

Many researches point out that the mapping of ontologies is a challenging task

[MR08][ELTV04][KW04]. This pertains also to the task of matching product ontologies of

the e-commerce websites, with an additional difficulty of product ontologies containing

deliberately incomplete information about the domain. We have identified a number of

problems which arise during the matching of e-commerce product ontologies and proposed

several ways to further improve their matching.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

160 12.1 Database Structure

12. EC-FUICE IMPLEMENTATION

12.1 Database Structure

In this section we review the structure of the relational databases which we use in

the EC-Fuice platform. We highlight the structural specifics of these databases which are

targeted to optimize the usage and performance of the databases for their respective tasks.

12.1.1 iFuice Database

The iFuice relational database is used internally by the iFuice platform to hold the

information about the problem domain, the mappings, the objects with attributes and the

variables. Our iFuice implementation uses MySQL Server to store and manage the

relational database.

The structure of the iFuice database is shown in Figure 3.16. The iFuice database

has a generic, domain-independent structure, designed to deal with various objects without

the need to specify the attributes of the objects in advance. If we were to change our

problem domain from e-commerce to some other domain, we wouldn‟t need to change the

structure of the iFuice database. The database structure can be logically divided into three

parts: “domain model”, “source-mapping model”, “objects and variables”. The “domain

model” is a very generic part. It consists of two tables which contain types of object which

are present in the domain and mapping types, i.e. types of relations between objects. The

second part of the schema is the “source-mapping model”, which contains information

about data sources and mappings. The table “datasources” contains the descriptions of the

physical data sources connected to iFuice, for example “Amazon”, “eBay” etc. The table

“lds” contains so called “logical data sources”, i.e. object types coming from a given data

source, for example “Product@Amazon”, “Review@Amazon”.

The content of the tables in the domain model and source-mapping model are

loaded from XML configuration file. The information for the mapping mediator on how to

execute the mappings is also loaded from the XML configuration file. The information

contained in the domain model and source-mapping model is used by the mapping

mediator for executing iFuice scripts. The iFuice scripts may return results which are

stored in variables. The variables are stored in tables displayed in the third part of the

schema in Figure 3.16 “Objects and variables”. We have three types of scalar variables:

float, integer, string. The values of the scalar variables are stored directly in the

corresponding tables. We also have variables of type ObjectsInstances and Mapping Result

which can correspondingly contain a collection of object ids and a collection of

correspondences between object ids. The collections are stored in separate tables. The

objects which are referenced by the object ids are stored in the table “object”. The

attributes of the objects are stored in the table “attribute”.

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 161

For sake of brevity, we have omitted the tables which contain variables of types

AggregatedObjects and AggregatedMappingResult, since they are not used in our system.

As can be seen from Figure 3.16, the database schema places few restrictions as to

types of objects, mappings, number of attributes etc. However such generic schema has a

trade-off in complexity of the queries which are needed to perform common tasks. For

example a query which returns a list of objects with multiple attributes which can be used

on the website to display a product listing would require either a large number of queries or

a complicated query with multiple subqueries. The database schema in Figure 3.16 already

has one feature which is able to simplify the queries commonly used by iFuice, namely the

value of the attribute “ID” which is commonly referenced by iFuice queries is stored with

Figure 3.16. Structure of the iFuice database

mappingtype

PK mt_id

FK1 mt_inputobjecttypeid_fk

FK2 mt_outputobjecttypeid_fk

 mt_issamemapping

 mt_name

object

PK Obj_ID

FK1 Obj_LDSID_FK

 Obj_AttributeIDValue

attribute

PK Attr_ID

FK1 Attr_ObjectID_FK

 Attr_Name

 Attr_Value

objecttype

PK ot_id

 ot_name

datasource

PK,FK1 ds_id

 ds_name

lds

PK lds_id

 lds_attributename

FK1 lds_objecttypeid_fk

 lds_datasourceid_fk

mapping

PK map_id

FK3 map_mappingtypeid_fk

 map_name

FK2 map_inputldsid_fk

FK1 map_outputldsid_fk

var_float

PK vfloat_id

 vfloat_name

 vfloat_value

var_mapresult

PK vmr_id

FK2 vmr_inputldsid_fk

FK1 vmr_outputldsid_fk

 vmr_name

var_object

PK vobj_id

FK1 vobj_ldsid_fk

 vobj_name

var_string

PK vstr_id

 vstr_name

 vstr_value

var_object_store

PK vobjstore_id

FK1 vobjstore_varid_fk

 vobjstore_confidence

 vobjstore_sort

FK2 vobjstore_objectid_fk

var_integer

PK vint_id

 vint_name

 vint_value

var_mapresult_store

PK vmrstore_id

FK1 vmrstore_varid_fk

 vmrstore_confidence

FK2 vmrstore_inputobjectid_fk

 vmrstore_inputobject_confidence

 vmrstore_outputobject_confidence

FK3 vmrstore_outputobjectid_fk

 vmrstore_occurence

Domain Model

Source-Mapping Model

Objects and

variables

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

162 12.1 Database Structure

the object, as opposed to other attributes which are stored in the table “attribute”. However,

this is still not sufficient to efficiently execute the queries required by the EC-Fuice web

portal. Therefore, we use iFuice directly only for integrating the data and for special “live”

recommendations which are discussed in Section 12.3. After the integration, we use a

special iFuice mapping to transfer the data into the Web Portal Operational Database

which is discussed in the next section.

12.1.2 Web Portal Operational Database

The schema of the web portal operational database is shown in Figure 3.17. The

web portal database is designed to immediately provide the data to the web application

which visualizes the integrated data to the web user as HTML pages. The web portal

operational database is implemented using MySQL database server. The structure of the

web portal database is designed to provide high performance when executing queries

which typically come from the web application. This structure is not only domain specific,

but also specific to the tasks and queries pertinent to the web interface functions. This is

why the database design exhibits some redundancy in tables: we have both the table

containing individual ontology edges and the table containing the transitive closure of the

ontology, i.e. the minimal paths between all nodes in graph. We need the first table to find

out the types of the individual edges and the second one to quickly find all connected

nodes. The mappings between nodes originally coming from different input ontologies are

also saved as ontology edges.

The database schema in Figure 3.17 can be compared to the schema of

recommendation database in Part II, Section 4.4.1. The schema in Figure 3.17 is logically

Figure 3.17. Schema of the web portal operational database

usernodes

PK id

 type

 country

 userid

 Description

presentations

PK id

 pres_id

FK1 recom_rule_id

 timestamp_clicked

 timestamp_presented

 session

 screen_position

ruletypes

PK id

 name

 Description

 Description1

product_data

PK id

FK1 product_id

 title

 ean

 isbn

 largeImageURL

 smallImageURL

 currency

 description

 listPrice

 offerPrice

 url

FK1 datasourceId

 porto

datasources

PK id

 name

 update_rate

Content_edges

PK id

FK2 aid

FK3 bid

FK1 type

 weight

rules

PK id

FK2 ContentNode

FK3 UserNode

FK4 RecomNode

 Weight

 Weight1

 Npres

 Nclick

FK1 Type

 ModTime

 CTime

Content_edgetypes

PK id

 name

ContentNodes

PK id

FK1 source

 name

 product_id

*

*

*

* *

*

*

*

Content_tranclosure

PK id

FK1 aid

FK2 bid

 pathlength

 summary_weight

*

*

0..1

*

Content

Adaptive

recommendations

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 163

divided into two parts. The right part of the schema deals with adaptive web

recommendations and bears significant similarity to the schema presented in Part II.

Compared to the schema in Part II, this schema is simplified – the parts which are not

utilized in our portal are removed. So, the table TimeNodes and the fields which reference

the table TimeNodes are removed, since we do not provide time-specific recommendations

in EC-Fuice web portal. The part of the schema related to the table “UserNodes” is

simplified from a graph-like structure to a single table with the individual user nodes. The

table Rules has been amended with fields which show modification time and creation time.

The part which is responsible for the content has been expanded in comparison to the

schema in Part II. It is shown in the left part of Figure 3.17. The table “ContentNodes” is

similar to the one used in Part II. The content nodes stored in this table are the ontology

nodes belonging to the product hierarchies as well as product instance nodes. Every

product instance node corresponds to an individual product in the table “product_data”.

Ontology nodes have no corresponding entries in the table “product_data”. The table

“presentations” contains the presentations which have been presented in the current web

sessions on the website.

When a session ends, the information about the presentations is removed from the

table “Presentations” and pushed into the EC-Fuice data warehouse by the ETL application

which is discussed in the next session. Since we do not have an explicit logout function in

our website, the user sessions end automatically after a pre-defined period of inactivity.

The timeout for a session is defined in the configuration of the application server. The

common value for the session timeout is 30 minutes.

The access to the web portal operational database by the web portal is implemented

using the ORM (Object-Relational Mapping) technology. ORM technology enables the

developer to declaratively describe the object-relational mapping between Java classes and

tables in a relational database. Afterwards, the developer can use the instances of the OR-

mapped classes as if they were resident in memory. The storing and retrieving of the class

instances in the relational database is handled transparently by the ORM library. We use

the ORM library Hibernate
34

 which supports multiple levels of caching to increase the

performance. The data structure of the web portal operational database is optimized for use

with an ORM library.

12.1.3 EC-Fuice Data Warehouse

The EC-Fuice Data Warehouse is implemented using Microsoft SQL Server

2005
35

. Microsoft SQL Server 2005 is a newer version of Microsoft SQL Server 2000

which was used to implement Web Data Warehouse in Part II of this thesis. Compared to

the functionality of its predecessor described in Section 4.4.2, SQL Server 2005 features a

34

 http://www.hibernate.org/
35

 http://www.microsoft.com/sql/

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

164 12.1 Database Structure

new ETL tool called Microsoft Data Integration Services which contains features such as

Fuzzy Lookup which we use to perform matching of the instance data in EC-Fuice.

The relational database schema of the EC-Fuice data warehouse is shown in Figure

3.18. The structure of the EC-Fuice data warehouse is largely similar to the structure of

Web Data Warehouse as shown in Figure 2.37 in Section 4.4.2. The differences are

stipulated by the fact that EC-Fuice data warehouse contains data from multiple data

sources. The tables Product and ContentNodes are amended with a field denoting the

source of the information. This field serves as a foreign key for the new table Datasource

which contains the list of available data sources.

To import the product data into EC-Fuice Data Warehouse we use an ETL tool

created using the Microsoft Data Integration Services toolkit. The ETL tool for importing

the product data is executed periodically. For web usage data we use a specially developed

real-time ETL tool using a server application written in Java. The ETL application

transforms the data into the format suitable for loading into the warehouse tables. The ETL

application‟s being real-time means that every pageview in the EC-Fuice web portal

generates a set of input data which is immediately forwarded into the data warehouse. It

should be noted that the rate at which the EC-Fuice portal is able to serve pages to web

users is much greater than the rate at which the ETL application is able to transform the

data and load it into the warehouse.

However, the load placed by the web users on the EC-Fuice portal is distributed

unevenly. The EC-Fuice portal has peak times when pages must be served quickly but

most of the time it experiences little load. To evenly distribute the load placed on the ETL

application, we use buffering inside the ETL application. The ETL application consists of

two concurrently working asynchronous processes. The first process gets the usage data

from the EC-Fuice portal and puts them into the queue. The second process takes the data

from the queue, transforms them and loads into the data warehouse.

The OLAP interface to the EC-Fuice data warehouse is implemented using

Microsoft Analysis Services
36

. The OLAP interface is leveraged both programmatically

and by human users. Programmatically the OLAP interface is used for the generation of

the web recommendations, for example the web recommendations based on web usage

history. The human users of the OLAP interface are not the end customers as in the case of

the web portal, but the business users, i.e. business analysts. The human interface for

OLAP can be realized either using special OLAP tools or with help of Microsoft Excel‟s

OLAP features such as PivotTable and PivotChart.

We have created the OLAP-Cubes Session, Pageview, Presentation and Product

based on the EC-Fuice data warehouse. The composition and usage of these cubes are

similar to the respective cubes based on Web Data Warehouse as described in Part II,

Section 4.4.2.

36

 http://www.microsoft.com/sql/solutions/bi/default.mspx

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 165

Figure 3.18. Database structure of the EC-Fuice data warehouse

Presentation

PK presentation_id

FK2 recom_rule_id

 screen_position

FK1 pageview_id

FK5 ContentNode

FK6 UserNode

FK7 RecomNode

FK8 RecomType

 Weight

FK3 prod_id_current

FK4 prod_id_recommended

 timestamp

Pageview

PK pageview_id

FK1 session_id

 session_position

 url

 referrer

FK2 useragent_id

FK3 prev_pageview_id

FK4 next_pageview_id

 pageview_timestamp

 client_ipaddr

 timestamp

Session

PK session_id

 length

 duration

 start_timestamp

 end_timestamp

FK2 userid

FK1 useragent_id

Datasource

PK id

 name

Recom_rule

PK id

 ContentNode

 UserNode

 RecomNode

FK1 RuleType

user_agent

PK useragent_id

 vendor

 oper_system

 version

 language

Product

PK id

FK1 product_id

 title

 ean

 isbn

 largeImageURL

 smallImageURL

 currency

 description

 listPrice

 offerPrice

 url

FK1,FK2 datasourceId

 porto

 timestamp

UserNodes

PK id

 type

 country

 description

ContentNodes

PK id

FK1 source

 name

 product_id

Content_edges

PK id

FK1 aid

FK2 bid

FK3 type

 weight

Content_edgetypes

PK id

 name

Dimension tables Fact tables

*

*

*

*

0..1

*

*

ruletypes

PK id

 name

 Description

 Description1

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

166 12.2 EC-Fuice Web Portal Interface

12.2 EC-Fuice Web Portal Interface

12.2.1 Overview of the Web Interface

The interface of the EC-Fuice web portal is designed to facilitate user navigation in

the large amount of e-commerce data. EC-Fuice web portal provides user with two types of

navigation. The first type of navigation is browsing of the integrated website structure

which is constructed from the browsing structure of the original data sources. This type of

navigation is based on the relations which already exist in the original data sources. It

includes the navigation between the categories in the same data source and the navigation

from a category to a product. The second type of navigation is generated by the EC-Fuice

framework and is based on relations calculated using iFuice mappings. This second type of

navigation is presented chiefly in form of web recommendations.

The snapshot of the welcome screen of the EC-Fuice web portal is shown in Figure

3.19. The main content panel is shown in the middle of the screen. The navigation menu is

located on the left side. The web recommendations are presented on both left and right

sides. The navigation menu and web recommendation panels are present in every EC-Fuice

page view. We will describe the recommendations in more detail in the next subsection. In

this subsection we omit the recommendations from the subsequent screenshots for brevity.

Figure 3.19. EC-Fuice web portal welcome screen

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 167

The navigation menu on the left side contains four options: “Welcome”, “Search”,

“Browse”, “Data sources”. The menu option “Welcome” returns the user to the welcome

page. The menu options “Search” and “Browse” are the two principal ways to proceed

from the main screen to the product data. These are the traditional navigation options for

e-commerce websites. The menu “Data sources” provides the information about the data

sources connected to the system, in particular the number of products and ontology nodes.

Clicking on the menu option “Search” takes user to the search form shown in

Figure 3.20. The user is prompted to enter the search keywords. Clicking on the link

Options extends the panel which shows additional options for the full-text search. Here the

user can choose the algorithm used for searching. Three search algorithms are available:

substring search using simple SQL operator LIKE, search using normalized TF*IDF

algorithm as implemented in the MySQL server
37

 and search using open-source full-text

search library Lucene
38

. The user also has the possibility the change the limit for displayed

results and select data sources which should be included to or excluded from the search.

After the user clicks the button “Go”, the list of products matching the search

criteria is presented (Figure 3.21). For each product, we show picture, title, price and

shipping costs if specified. Some products present on the Amazon website are in fact not

sold by Amazon. They are stubs which serve as an anchor for sellers of used products.

Such products have no Amazon price, as shown in the second line of the search results in

Figure 3.21. For every product in the result list we also show a list of categories to which

the product belongs. If a product exists in several data sources, each entry is shown

separately in the list. The data source from which the product comes is shown with an icon

preceding the product title. If same-mapping from this product to products in other data

sources exist, we show the icons of the respective data sources after the title.

37

 http://dev.mysql.com/doc/internals/en/full-text-search.html
38

 http://lucene.apache.org

Figure 3.20. EC-Fuice web portal: search form.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

168 12.2 EC-Fuice Web Portal Interface

Clicking on a product name in the search result list brings the user to the product

view which is described later in this section. Another way to get to the product view is by

browsing the product categories. After the user selects the option “Browse” in the main

menu, the product category view is presented (Figure 3.22). The product categories of each

data source are presented separately. At any given time, only the product categories of one

source are presented. The user can however switch between them in several ways. It is

possible to change the currently shown product ontology by selecting the data source in the

root of the product category tree. It is also possible to use the links located next to the

category names. These links are shown if one or several categories in other data sources

match to the given category in the current data source. Clicking on such link brings the

user to the product ontology of the respective data source. The categories matching to the

original category are highlighted.

The user can also choose, whether all available categories are shown in the product

category tree or only those which have associated products.

Clicking on the name of a product category displays the product list for this

category. The product list for a category is similar to the list of search results shown in

Figure 3.21. Additionally, the user can select whether to see the list of products which

belong only to the selected category from the same data source or also from other data

sources in case when they have categories which map to the current one.

The presentation of a product on the website is shown in Figure 3.23. We show the

characteristics of the product, such as categories it belongs to, title, id, price, picture. We

also present a URL which leads to the page at the original website where this product can

be found. If we have a same-mapping from this product to products in other data sources.

Figure 3.21. EC-Fuice web portal: search result list (search term is “King”).

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 169

We do not fuse the attributes of the

products. In our experiments, it has proven

to be not feasible to fuse the attributes of

products with satisfactory quality. One of

the reasons for this is because eBay often

has more than one matching product with

different price and description. Thus, it is

unclear which of the matching products

should participate in the fusion.

The web portal is implemented in

Java using the J2EE
39

 (Java 2 Enterprise

Edition) framework and is a presentation-

oriented multi-tier web application. The

presentation layer of the application is

implemented using the JSF
40

 (Java Server

Faces) technology.

12.3 Web Recommendations

In Section 12.3.1 we present the

types of recommendations which can be

used in the integrated data environment. In

Section 12.3.2 we show examples of

different types of recommendations used in

EC-Fuice web portal.

12.3.1 Types of recommendations

As mentioned earlier, web

recommendations constitute a significant part of the navigation in the EC-Fuice web portal,

especially for the navigation between different data sources. The types of web

recommendations which can be used in the integrated data environment are manifold.

The web recommendations in EC-Fuice web portal can be classified based on

several criteria. The web recommendations can be classified in the following way with

respect to the point of time when they are generated:

 Live – these recommendations are calculated immediately before they are

presented.

39

 http://java.sun.com/javaee/
40

 http://java.sun.com/javaee/javaserverfaces/

Figure 3.22. EC-Fuice web portal:

browsing the product category tree.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

170 12.3 Web Recommendations

 Pre-calculated – these generations are pre-generated at regular intervals of

time and stored in the database for quick access.

Whether a recommendation should be pre-calculated depends on the time needed to

generate it. Calculating live recommendations may slow the presentation of the web page.

Therefore, in most cases it is advisable to pre-calculate the recommendations. In cases

when such pre-calculation is not possible, the presentations delays can be avoided by using

asynchronous loading discussed later in this section.

The recommendations can be non-adaptive or adaptive. After being generated by

the recommenders, the non-adaptive recommendations stay unchanged throughout their

lifetime. The adaptive recommendations are adjusted according to the web users‟

navigational behavior. The adaptation can happen on the level of a single recommendation

or the level of the recommender. The recommendations adaptive on the level of single

recommendation need to be pre-calculated, so that they can be stored in the database and

later adjusted. Different techniques for creating adaptive web recommendations were

discussed in the Part II of this thesis.

Figure 3.23. EC-Fuice web portal: Product view.

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 171

In the integrated data environment the web recommendations can be classified by

the utilization of the data sources:

 Recommendations from the same data source -- the recommended content

comes from the same data source as the presented content.

 Recommendations from other data sources integrated in the EC-Fuice

Operational database.

 Recommendations based on external data sources. The recommended content

is not integrated in the EC-Fuice Operational database and is obtained by

directly calling an iFuice mapping which serves as recommender. The

recommender obtains the recommendations in some recommender-specific

way, for example by sending an HTTP request to an external website or

calling a web service.

By the type of loading into the web page the web recommendations can be divided

into the following categories:

 Static recommendations are shown in the web page as usual parts of the

content. The place on the web page where they appear is defined by the page

layout.

 Asynchronously loaded recommendations use so-called AJAX (asynchronous

JavaScript and XML) technology. These recommendations are usually also

shown at pre-defined places on the web page. However, they are not loaded

simultaneously with the rest of the web page. Instead, the web page contains a

small script which is executed in the user‟s browser after the web page is

loaded. This script requests additional content from the server. As soon as the

requested content becomes available, it is inserted into the website at pre-

defined places.

 Event-based recommendations are shown, when a certain event occurs in the

browser, for example when the user holds the mouse pointer over a certain

HTML element or text on the web page. The event-based recommendations

can be either shown at the places pre-defined by the layout or the position of

the recommendations can be calculated dynamically relative to the HTML

element which triggered the event. Although the recommendations can be

loaded together with the web page in the hidden state and then visualized at

the needed moment, it is advisable to load such recommendations

asynchronously using the AJAX technology to decrease the size of the initially

loaded web page.

The recommendations are usually shown on the web page in blocks. Each such

block contains several recommendations. By selection of recommendations which are

shown in one recommendations block the recommendations can be classified as single-

recommender or mixed. In case of single-recommender recommendations all

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

172 12.3 Web Recommendations

recommendations in the block

are generated by the same

algorithm. In case of mixed

recommendations the

recommendations in one block

may come from different

algorithms. It has been

observed, that users have

more trust in

recommendations when they

see an explanation of how the

recommendations were

generated. In case of single-

recommender

recommendations the

recommender-specific

description can be shown in

the title of the

recommendation block. In the

mixed case, the explanation

can be shown either for every

recommendation(to save the

space on the page, the

explanation can be shown as

so-called “tooltip”, i.e. it

becomes shown when user

holds the mouse pointer over

the recommendation), or a generic explanation can be shown

for the entire block.

All the recommendations we discuss here are context-

dependent. The notion of context was discussed in detail in

Part II. In this Part the notion of the context with respect to

content has been adjusted. Here the content part of the context

can be not only the currently presented content as a whole, but

also a specific content element which is focused or

highlighted on the web page. Whether a recommendation

depends on the content of the entire web page or on the state

of some specific element on the page is a further criterion for

classifying the web recommendations.

There are other thinkable criteria for classifying the

web recommendations, for example based on the position on

the page, presentation design etc. However these types of

classification are less relevant for our project and we therefore

Figure 3.24. Screenshot of

the EC-Fuice web portal

during loading of the

asynchronous

recommendations.

Figure 3.25.

Screenshot of the EC-

Fuice web portal after

the asynchronous

recommendations are

loaded.

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 173

do not discuss them here. The classification of the recommendation types should be

distinguished from the classification of the recommendation generators, i.e. algorithms

used to generate the recommendations which have been presented in the Part II of this

thesis.

12.3.2 Recommendations used in EC-Fuice web portal

In this section we illustrate how the different types of recommendations discussed

in the previous section are used in EC-Fuice web portal. Figures 3.241 and 3.25 show the

right side content pane of the web page where some of our web recommendations are

shown. The pane contains three blocks of recommendations. We will describe these

recommendations with respect to the classification criteria listed in the previous section.

The first from above recommendation block shown in Figures 3.24 and 3.25

contains pre-calculated adaptive recommendations. The adaptation is done on the level of

single recommendation and implemented using the reinforcement learning based algorithm

described in Part II. The recommendations are mixed, i.e. can come from different

recommenders. We use the following recommenders to generate recommendations shown

here: product similarity, sequential association rules, item-to-item collaborative filtering,

and manual recommendations. The recommended products can come from any of the data

sources connected to iFuice. The recommendations links lead user to the respective

product pages in the EC-Fuice web portal. External data sources are not used here. We use

a generic explanation “Product Tips” for this recommendation block.

The second recommendation block presents live recommendations based on data

from external data source – the eBay website. Although we have information about

products from eBay in EC-Fuice operational database as well, we do not use it here for two

reasons. The first reason is that we have limited the eBay products stored in EC-Fuice

operational database to those products which have a “Buy now” price (“Sofort kaufen”).

The second reason is that the eBay data in EC-Fuice operational database are updated at

regular intervals of time. That means that the information in the EC-Fuice operational

database is not the latest information available. This is acceptable for products which have

a fixed price, is however not acceptable for auctions where the price can change every

second. The recommendations in the second block are loaded asynchronously using AJAX

technology and present last second auctions from eBay. Figures 3.24 and 3.25 illustrate the

process of asynchronous loading using the AJAX technology. Figure 3.24 shows the

recommendation blocks immediately after the web page is loaded. At this moment, an

additional request is sent to the server in order to obtain the recommendations. Until the

response for this request is obtained, the placeholder string “Getting recommendations

from eBay” is shown in the recommendation block instead of the recommendations. As

soon as the response is obtained, the recommendations are presented to the user as shown

in Figure 3.25. The position of the recommendation block is set statically in the layout of

the website. All recommendations shown in the block come from a single recommender. In

order to obtain the recommendations the recommender sends an HTTP request with the

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

174 12.3 Web Recommendations

keywords describing the current context on the EC-Fuice web portal to the search engine

of the website http://www.ebay.de/. The obtained search results are formatted and returned

to the web user as recommendations. The explanation “Last-Second eBay” is shown in the

header of the recommendation block. The recommendations in this block are not adaptive.

The recommendation links lead user directly to the eBay website.

The third recommendation block is similar to the second recommendation block.

The data source which provides the recommendations is the books assortment on the

website http://www.amazon.com. We do not have the contents of this data source in

EC-Fuice operational database (there we have integrated the German version of the

website, http://www.amazon.de, which has its own product assortment and its own prices).

Therefore an external call to the keyword search web service of the US Amazon is made.

As soon as the data is returned, it is formatted as recommendations and presented to the

user. The keywords for the request are extracted from the content-related part of the

current context of the EC-Fuice website. It should be noted that the content context of the

EC-Fuice website is in German language, the web service provided by US-Amazon

however expects keywords in English language as input parameters. Initially, we have

implemented the translation of the keywords in the recommender before sending them to

Amazon web service. The translation was implemented using the free of charge web

service provided by the company Linguatec (http://www.linguatec.de). However, after

some time this free web service has become unavailable. We have not found any other web

service providing the similar service. At the moment, we send the German keywords to the

Amazon web service. We have discovered, that due to the large number of English and

international keywords in the names of product categories and titles and descriptions of the

products this recommender is in many cases still able to provide good quality

recommendations without keyword translation. The recommendation links shown in this

recommendation block lead to the website http://www.amazon.com.

Apart from the three recommendation blocks on the right side, we also show one

recommendation block on the left side of the web page. This recommendation block

presents DVD products from US-Amazon and operates similarly to the recommender

showing Book products from US-Amazon.

The main content panel, the panels containing the navigation menu and the four

recommendations panels take all the space of the web page which is available in the

browser window without the need for extensive scrolling. It is known that the areas of the

website available only via scrolling tend to get less user attention. Therefore, in addition to

the recommendations positioned statically in the web page layout we also use “floating”

recommendations. The floating recommendations are used in the category browsing view,

product list view and individual product view. Figure 3.26 shows the presentation of the

floating recommendations in the category browsing view. The recommendations used for

the floating presentation are pre-calculated and adaptive on the level of recommenders.

The recommendations use multiple data source connected to iFuice framework. The

floating recommendations are event-based. They appear when the user holds the mouse

pointer over some element on the web page for the time which is sufficient to assume that

this element has attracted the user‟s attention. The elements which represent product

http://www.ebay.de/
http://www.amazon.com/
http://www.amazon.de/
http://www.amazon.com/

Mykola Golovin Web Recommendations for E-Commerce Websites

12 EC-Fuice Implementation 175

categories or individual products can be used to trigger the floating recommendations. In

the EC-Fuice web portal we set the time interval after which the request is sent to the

server to show the recommendations to 2.5 seconds. The recommendations are presented to

the user after the response from the server is received. The floating web recommendations

are shown near the element which has triggered them. They can overlay the other content

on the website. To hide the floating recommendations and thus reveal the content overlaid

by the recommendations, the web user can move the mouse pointer away from the

highlighted element and either click on the empty space on the web page or hold the mouse

pointer over the empty space for some time.

The blocks of floating recommendations show recommendations coming from the

same recommender. The utilized recommenders however can be different, based on the

analysis of the web usage data in the EC-Fuice data warehouse similar to the adaptive

recommender selection process discussed in Part II. We use the following recommenders

for floating recommendations in the EC-Fuice portal:

Figure 3.26. Floating recommendations shown during category browsing.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

176 12.3 Web Recommendations

For the recommendations to the categories presented in the category browsing

view:

 new products in the category

 most viewed products in the category (product highlights)

 related categories from other data sources

For the recommendations to the products presented in the product view:

 similar products from the same categories to which the product belongs

 related categories from other data sources

It is possible to use other recommenders as well.

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 177

13. RELATED WORK AND DISCUSSION

The presented work borders on two large research fields: data integration and

ontology matching. In this section we present the related projects in these two research

fields and discuss some highlights which differentiate the work presented in this thesis

from other work or liken it to other work to in the respective research fields. In Section

13.1 we discuss the distinctive features of our approach and present the related work in the

field of data integration. In Section 13.2 the related ontology matching projects are

presented.

13.1 Related Work in the Field of Data Integration

To the author‟s knowledge, there are no works that claim to provide a complete or

nearly complete survey of approaches to the data integration problem. Two works provide

an overview of the data integration research field in general. The work by A. Halevy and

others [HRO06] presents a short but broad overview onto the field, whereas the work by

M. Lenzerini [Lenz02] takes a theoretical perspective. The latter work formally defines a

data integration framework, and explores different problems of global schema modeling

and declarative query processing. In fact, much of the discussion in the field of data

integration is devoted to the issues dealing with the way the data sources are described

with respect to the global schema (local-as-view, global-as-view, global-local-as-view,

respectively LAV, GAV, GLAV) and with the optimization and execution of the

declarative queries over the integrated data. Although the work presented here corresponds

to the formal theoretical definition of the data integration framework given in [Lenz02], it

uses neither global schema nor declarative queries. Because of that, a significant part of the

discussion in the field of data integration research is not directly relevant for our

architecture. In the following subsections we discuss several of the relevant projects

individually. During the discussion of the individual projects we also elaborate on the

features of EC-Fuice which are similar or different from the comparable features in the

discussed projects. Before discussing the individual projects, we would like to highlight

some issues which distinguish out approach from many or all projects listed below. These

common differences result from our architecture responding to the practice-relevant issues

which arise in the field of integrated e-commerce sites. These issues common to the data

integration in e-commerce were summarized in the invited talk of A. Gupta (Amazon.com)

at the EDBT2000 [Gupt00]. Mr. Gupta has led research in the field of virtual database

technology at Junglee Corp. before it was acquired by Amazon. Listed below are some of

the relevant issues from [Gupt00]:

Objects, not relations. Unclear separation of schema and instance. The needs of

e-commerce applications with respect to storing and accessing the data are not well served

by the relational database model. So, the attributes of the objects may change often. Multi-

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

178 13.1 Related Work in the Field of Data Integration

valued attributes, such as different sizes and colors for a t-shirt, are possible. The data often

needs to be stored and accessed in a hierarchical way as opposed to the flat way suggested

by the relational model.

Query, not transaction. Queries pose a greater challenge to e-commerce websites

than transactions. Data to be queried, such as product information, is often separate from

transaction data, such as shopping cart and payment data. According to the data from

Amazon.com, their website processes 50 times more queries than orders. Being focused on

the query answering is a common feature for many heterogeneous data integration systems

as opposed to multi-database systems. According to [Gupt00], query response times are

much more critical than the transaction response times.

Limited queries, not ad-hoc queries. Tightly integrated keyword searching.

The e-commerce applications usually provide limited possibilities for querying the data:

usually they are restricted to keyword search and simple attribute search. According to

[Gupt00], the majority of customers are unsophisticated and do need rich possibilities for

querying data. Such customers are best served with the keyword search. On the other hand,

the few structured queries which are used by the e-commerce applications internally need

to be optimized a-priori. In our e-commerce system we do not address answering

declarative structured queries on the multiple data sources. Instead, we use iFuice scripts

which can be viewed as manually optimized query execution plans. However, it is still

possible to declaratively query the materialized data in EC-Fuice using SQL query

language.

Incomplete query results. The users do not necessarily need to see all query

results. Usually, however, they are interested in getting the first results quickly. We

address this issue by using paging in the keyword search results. The first page of the result

list is shown to the user immediately when it becomes available. Further results are shown

when the user chooses to view the subsequent pages.

Inexact matches. The users seldom know what exactly they are looking for.

Therefore, it is important to provide them not only with the exact results for their query but

also some related results. We address this issue by providing web recommendations in the

search results. Two of the three keyword search algorithms we provide also support

returning additional query results. So, the Lucene full-text search library provides the

possibility to include all variants of keyword flexion and declination into the search query.

MySQL full-text search supports so-called “query expansion”
41

. Query expansion means

that the full-text search is performed twice. In the first run the query engine determines all

keywords which frequently co-occur with the user-specified keywords. In the second run,

the keywords determined in the first run are used together with the user-specified

keywords to perform keyword search and return the results to the user.

Caching and materialized views. E-commerce applications are expected to

provide sub-second response times. It has been our experience that even well established

41

 http://dev.mysql.com/doc/refman/5.0/en/fulltext-query-expansion.html

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 179

industrial-strength relational database systems such as IBM DB2, Microsoft SQL Server or

MySQL can provide sub-second response times on heavily loaded websites only with

additional caching on the level of the web application, i.e. in the main memory. To provide

sub-second response in EC-Fuice web portal, we have used massive data materialization,

optimized the relational database structure and implemented the asynchronous loading of

those portions of web page content which are based on the non-materialized data. We

know of no comparative study of the response times for the other data integrations

projects. Several other projects address the query answering performance issues of the data

integration systems. For example, the project Tukwila [ILW+00] discusses the issues

related to performance and techniques for adaptive query processing.

Availability, not consistency. E-commerce applications stress availability, not

consistency. Less consistent data may still be sufficient to persuade the user to buy a

product.

Data cleaning. As we have illustrated in Chapter 11, e-commerce applications

require extensive data cleaning. Not all of the projects described below address data

cleaning. Some of the systems assume that the data coming from different data sources is

either homogeneous in format or homogeneous in both format and value representation.

Information Manifold

The influential project Informaton Manifold from the authors of the overview paper

[HRO06] is described in [LRO96]. Information Manifold is the first project to use “Local

as view” concept to describe the data sources. The authors describe the system as source

independent and query independent. In comparison to EC-Fuice, Information Manifold

integrates a much larger number of data sources (~100 sources). We have not

experimentally investigated the scalability of EC-Fuice with respect to the number of the

data sources. However, since EC-Fuice does not contain components such as query

planner, the performance of which could drastically depend on the number on sources, we

can assume that EC-Fuice system is sufficiently scalable with respect to the performance

given a large number of data sources. However, EC-Fuice may exhibit scalability problems

with respect to the amount of implementation work which is needed to integrate an

additional data source into EC-Fuice. Indeed, although it is sufficient to implement only

one mapping to integrate a new data source into EC-Fuice, for better efficiency it is

advisable to implement the mappings to as many other data sources as possible, since

composing mappings may lead to an increased error rate in the resulting mapping. This

may lead to the explosive growth of the total number of mappings in case when new data

sources are added.

The authors of the Information Manifold emphasize the combination of AI

approach with database techniques in their system. AI techniques are used to solve the

tasks of query optimization, query reformulation and query execution. The underlying data

model is relational with object-oriented features. The data model supports a class hierarchy

with inheritance and is significantly more complex than the domain model we use in

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

180 13.1 Related Work in the Field of Data Integration

EC-Fuice. Information Manifold is designed for answering ad-hoc declarative queries on

the data from heterogeneous data sources. That distinguishes Information Manifold from

our approach, where the data is queried using scripts which utilize the executable

mappings. Information Manifold needs to establish a query plan in order to execute a

query, whereas an iFuice script represents a ready query execution plan. The approach with

scripts and executable mapping is especially useful for building web applications, which

rely not on ad-hoc structured queries but on full-text search and pre-defined navigation.

The disadvantage of the script-based approach is that more knowledge about what data is

provided by which data source is needed to build such a script than to pose a declarative

query.

TSIMMIS

TSIMMIS [CGH+94] is one of the first data integration projects which targets the

heterogeneous, diverse and semi-structured data, such as the data found on the web.

TSIMMIS stands for “The Stanford-IBM Manager of Multiple Information Sources”.

TSIMMIS‟s data model is built around the special data exchange language OEM (object

exchange model), which includes many of the features found in later XML and RDF/XML

languages. However, the information need not be stored as OEM inside the TSIMMIS

system, as opposed to some XML-based systems where XML is also used to store the data.

Similar to XML, OEM allows nesting objects. In EC-Fuice nesting of objects is not

supported explicitly. Nesting in EC-Fuice can however be expressed as a mapping between

objects. TSIMMIS also provides a special OEM-QL language for querying data stored as

OEM. The authors claim that they use no global database schema. The later surveys

classify their approach as GAV. A distinctive feature of TSIMMIS is the ability to have

several mediators which can interact with each other. In EC-Fuice, another integrated

website can act as a data source. Other ways of cooperation between several EC-Fuice

instances are not addressed in the design of the EC-Fuice system. Similar to EC-Fuice, the

TSIMMIS mediator does not need to understand all the data it handles [CGH+94]. Special

attention in the design of the TSIMMIS system is given to the constraints on the integrated

data. TSIMMIS also allows browsing and exploring the integrated data. TSIMMIS

provides a web interface called MOBIE (which can be sees as the counterpart to the

EC-Fuice web portal). The web user obtains access to the data integrated by TSIMMIS by

starting with entering a query on the website and then browsing the returned results. The

authors also mention the possibility to present the user with the results of the “frequently

asked queries”, which can be viewed as a move towards web recommendations.

Ariadne, SIMS

The project Ariadne is described in [KMA+01] and the project SIMS in [AKS96].

Ariadne is an extension of the SIMS mediator architecture. The SIMS mediator comprises

the core of the system and performs answering queries to the distributed heterogeneous

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 181

data sources. Ariadne concentrates on web data sources, information from which is

obtained using HTML-scraping. Ariadne and SIMS support declarative queries and are

based on the domain model which is represented using Loom knowledge representation

language[MB87]. SIMS data model describes classes with relations and inheritance As

opposed to EC-Fuice/iFuice, the data model is more detailed and contains attributes. SIMS

is able to answer declarative queries using the query planner. SIMS supports mappings on

the instance level, either as an executable mapping or as a mapping table, analogous to

respectively a mapping and a MappingResult in iFuice. The system allows using combined

methods for instance mapping. For example, SIMS can combine textual similarity with

machine learning which learns the abbreviations. The authors propose an active learning

system where the system asks the user whether the rules according to which the mappings

are created are good or not. In our system, these rules (i.e. iFuice scripts) are pre-defined.

The Ariadne architecture includes possibilities for selective materialization based on the

analysis of the user query distribution. The authors mention that they have integrated

online electronic catalogs with products including pricing, availability, manufacturer etc.

They have however not indicated whether the hierarchical structure of the catalogs was

also integrated.

The authors point out that one shortcoming of their architecture is the inability to

execute recursive query plans. This is addressed in the next projects of the same working

group – data integration system Prometheus [TAK03] and query execution engine Theseus

[BDKM00].

Prometheus, Theseus

In the projects Prometheus[TAK03] and Theseus[BDKM00], the workgroup which

has previously created the projects Ariadne and SIMS has addressed the following issues:

execution of recursive integration plans, view integration technique with dynamic service

composition, support for geo-spacial data types, record linkage and object consolidation.

The integrated web project BulidingFinder[MAK+04] based on Prometheus and Theseus

allows users to search for building information and satellite images based on the

information from several data sources. Similarly to Ariadne and SIMS, Prometheus is

based on domain model. In the project BuildingFinder the mediator supports the RDQL

query language. The query is then translated into Datalog query which is executed by the

Theseus query execution engine. The query results can be returned as RDF.

VISPO

The project Vispo is described in [CFP+02], [BA04]. The project is explicitly

focused on e-commerce applications. In the motivating scenario, several enterprises

organize a virtual marketplace nicknamed “virtual district” in order to cooperate on the

web. XML is used as data exchange format in the “virtual district”. To overcome the

semantic heterogeneity, the authors propose the use of common ontology. The handling of

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

182 13.1 Related Work in the Field of Data Integration

ontologies in Vispo is different from EC-Fuice. In EC-Fuice, we treat ontologies as a kind

of data: we store in them the same data storage where the instance data are stored and

process them using the same operators. In VISPO the ontologies are treated as metadata

and are clearly separated from the instance data. Vispo features a three-layer domain

ontology which is constructed from the input XMLS data. The classes extracted from the

input XML are clustered. Ontological concepts and semantic relations between them are

generated from the clusters. The generated ontological concepts are then associated with

categories in one of the available standard taxonomies.

The 5-level UNSPSC (United Nations Standard Products and Services Code)
42

 is

proposed as a possible standard taxonomy. We do not make use of UNSPSC in EC-Fuice,

since it doesn‟t contain detailed hierarchy levels for the products which we have in our

system.

MOMIS

The application of the system MOMIS [BB04][BBB+04][BBB+02] to an

e-commerce environment is described in [BGV02]. MOMIS allows integrating data from

heterogeneous data sources, such as relational databases, object-oriented databases, XML.

MOMIS is based on a global virtual schema. The global virtual schema is generated from

the source descriptions. The global virtual schema used in MOMIS is more sophisticated

than the domain model used in EC-Fuice. The global virtual schema contains attributes and

data types. In the extension of the system described in [BBB+06] the global virtual schema

also contains a list of “relevant values” for the individual attributes. MOMIS uses several

lexical techniques to generate the global virtual schema, for example a generated common

thesaurus. Instance-based mappings are not used to generate the global schema. In the

paper [BGV02] special attention is given to matching hierarchical product catalogs. Three

standard hierarchical product classification systems are taken as an example: the

aforementioned UNSPSC, NAICS (North American Industry Classification system)
43

,

Ecl@ss (European classification system)
44

. With respect to the possible use in EC-Fuice,

all these product classification systems share a common shortcoming of being not detailed

enough for the assortment of the products processed by EC-Fuice. In contrast to EC-Fuice,

in MOMIS the classification hierarchies are incorporated into the global virtual schema,

i.e. are considered by the system as metadata rather than data.

The classification hierarchies are matched to each other using the MOMIS system

based on the following (the description is based on the classification in [RB01]): schema-

level information, different matching granularity is possible, language-derived, considering

auxiliary information. The correspondences can be generated in three ways: schema-

derived, lexicon-derived, human-supplied. As opposite to the EC-Fuice approach, the

instance-level information is not used to match the classification hierarchies.

42

 http://www.unspsc.org/
43

 http://www.naics.com/
44

 http://www.eclass.de/

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 183

To describe the mappings between the classes, more sophisticated system than in

EC-Fuice is used: the mappings can be of several types, namely: synonymy (i.e. equality),

broader term/narrower term (subclass/superclass), related (loose relationship). Similarly to

the use of COMA++ GUI in EC-Fuice, the mappings between classification hierarchies in

MOMIS are generated in a semi-automatic way. The human engineer can refine and amend

the mappings using the graphical tool “Source Integration Designer”. The classification

hierarchies are then merged with help of the tool ARTEMIS[CAC01].

ActiveXML

Active XML [ABM+04] is a peer-to-peer based framework developed at INRIA,

France, which allows declarative data integration. The Active XML approach is based on

XML and web services. ActiveXML takes a novel approach with respect to the input data

and data source descriptions, namely: it blends the difference between the data and the

information on how to obtain these data. The core idea of ActiveXML lies in augmenting

the usual XML data with calls to web services. The ActiveXML documents are normal

XML documents from the point of view of a conventional XML parser. The difference lies

in how these documents are processed by the peers participating in the data integration.

Some tags in ActiveXML documents are treated as calls to web services, which can be

either conventional web services or ActiveXML peers. ActiveXML positions itself not as a

data integration system but as a “language and system to facilitate data integration”

[TAXT03]. Therefore, ActiveXML is not designed to address many of the issues addressed

by other projects listed here. However, there are some contact points between ActiveXML

and our research. To some extent, we also combine data with service calls (calls to iFuice

mappings to provide live recommendations) for the presentation in the EC-Fuice web

portal using the combination of Java, JavaScript and HTML languages. We also utilize

iFuice scripts written in iFuice script language to control the execution of mappings and

processing the mapping results. ActiveXML is an interesting generic approach, which

could potentially help perform both these tasks within the same language framework.

OntoWebber

OntoWebber[JDW01] is a project which deals with building a semantic web portal

from different data sources. The data sources are required to comply with the Semantic

Web requirements (RDF, UML/XMI, HTML). The architecture of the OntoWebber system

is based on a domain ontology. In OntoWebber, ontologies are handled as data. The

ontologies are extracted from the data sources and then combined into one reference

ontology. The focus of the OntoWebber lies in formalization and modeling of the creation

of an ontology-based web portal. OntoWebber formalizes the four layers of an integrated

web portal: the integration layer, the articulation layer, the composition layer and the

generation layer. The authors specifically mention the modeling of the website

personalization. The authors make provisions for the following models: maintenance

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

184 13.1 Related Work in the Field of Data Integration

model, personalization model, content model, presentation model, domain model and

multiple navigation models. OntoWebber expects the input data either to be in RDF format

or to be easily expressed as RDF. For the generation layer, [JDW01]discusses several types

of generation of the website from models with respect to the performance of the resulting

website, ranked from most performant and least flexible to least performant and most

flexible: pre-generation of static HTML pages, generation of JSP pages, or direct

interpretation of the models. OntoWebber does not discuss the problems of data

extraction, data cleaning, ontology matching and ontology integration in detail. Instead, it

refers to other projects such as TSIMMIS[CGH+94], InterDataWorking[MD00] and

ONION[MWK00] for the detailed discussion of these issues. An important difference

between the concepts of OntoWebber and EC-Fuice is that that OntoWebber relies on a

centralized authority which is responsible for creating and maintaining the reference

ontology, whereas EC-Fuice takes a more decentralized, peer-to-peer like approach

without a reference ontology.

Online Citation Service (OCS)

The works [RTA07][TAR07] propose a data integration framework for mashups

based on iFuice platform. The term “mashup” denotes a new type of interactive website

which combines data and services from different web sources [RTA07]. iFuice is used to

provide the created mashups with sophisticated data integration functionality. The authors

discuss the capabilities of their framework using the example mashup site “Online Citation

Service” (OCS)
45

, which was implemented using the presented framework. In comparison

to EC-Fuice, the interactive aspect of web data integration is significantly more developed

in the framework presented in [RTA07][TAR07]. In EC-Fuice most of the data integration

work is performed by iFuice scripts in offline mode, although we also use live

recommendations which are generated by iFuice in online mode. In OCS, iFuice scripts are

executed online in response to the user navigation on the site. Since some of these scripts

can take longer to complete, the authors also use asynchronous execution mode

implemented using AJAX technology. This way, the web user can see first partial results in

relatively short time; missing data are added to the web page as soon as they become

available. Another improvement in comparison to EC-Fuice is the use of the special

operator fuse. This operator fuses different versions of the same real-life entity into one

object. In EC-Fuice different versions of the same real-life entities are linked together but

not fused into one object. In general, the presented framework allows web developers to

define complex mashup websites using a high level script language. The focus of the work

is being placed on the rich data integration capabilities, which are not present in other

currently available mashup frameworks.

45

 http://dbs.uni-leipzig.de:8080/OCS/Index.html

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 185

SEAL, Ontobroker

SEAL[MSS+01] is an approach for creating semantic portals (SEAL stands for

Semantic portAL) based on the Ontobroker[DEFS99] architecture. Although the usage of

different data sources is implied in the SEAL architecture, it is not discussed and no

explicit support for heterogeneous data sources is offered. The authors focus on the AI

techniques for creating semantic portals. The SEAL architecture is based on a knowledge

warehouse and the Ontobroker inferencing system. One of the ideas of the authors is that

data contained in the ontologies themselves is not sufficient to integrate the semantics. This

is consistent with our experience that for example thesauri and abbreviation dictionaries

can be very helpful in bringing the concepts from different ontologies together. SEAL

supports semantic personalization. Explicitly described is the manual personalization, but

the authors also mention semantic logfiles which can be analyzed to perform automatic

personalization and optimization of the web portal.

Omelayenko and Fensel

A series of works by Omelayenko and Fensel [OF01][OF01a][OF01b] specifically

deals with integration of product catalog integration in B2B e-commerce. The system

described by the authors works on XML basis and uses transformation rules expressed in

XSLT. The architecture is based on the assumption that input data are expressed in XML.

The authors propose to use RDF for internal representations of the data sources and

models. The work adopts the layered structure proposed in [MD00]. Due to the

architecture‟s being focused on XML and XSLT, some problems are not addressed, in

particular the data integration from heterogeneous data sources. Also, the (semi)automatic

generation of the transformation rules is not addressed. It is arguable that all

transformations which may need to be performed in the heterogeneous data environment

can be adequately expressed with XSLT and that the use of transformations written in a

full programming language such as Java can be given up.

13.2 Related Work in the Field of Ontology Matching

There is a large body of published work devoted to the ontology matching (also

known as ontology alignment). We will not try to give a complete overview of the

research in this field here. Instead, we refer to the publications [Noy04], [NS05] and

[KS05]. The first two publications contain a rather concise informal overview of the

research in the field, whereas the last one presents a more thorough survey. An even more

extensive work on the state of art in ontology matching is presented in the KnowledgeWeb

deliverables [KW04] and [KW04a]. Many researchers which analyze the field of ontology

matching research point out that the major works in the field come from two communities:

the AI community and the database community. The interest on the ontology matching in

the database community has evolved from the interest on matching of database schemas.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

186 13.2 Related Work in the Field of Ontology Matching

The survey of work on schema matching is presented in [RB01]. The work presented in

this thesis has an affiliation to the work provided by the database community, since the

COMA++ platform which we utilize is an extension of the schema matching platform

COMA. Since our work concerns not the ontology matching in general but rather a specific

technique of combining the instance-based ontology matching with other mapping

techniques, in the following subsections we will describe some of the relevant ontology

matching projects which also use instance-based matching.

Instance Matching in COMA++

The COMA++ architecture is described in Section 3.2 in detail. Here, we discuss

the instance-based matchers in COMA++ which were not available at the time when we

conducted our experiments. The instance-based matchers integrated into COMA++ are

introduced in [EM07]. The additional instance-based COMA++ matchers which are

described in [EM07] target in the first place schema matching. In the later paper [MR08]

they have been extended for matching ontologies, in particular web directories. The

following instance-based matchers are presented in [EM07]:

Constraint-based matchers. This type of matcher checks whether the instances of

the ontologies satisfy a pre-defined set of constraints. The constraints can be for example

defined as a string pattern, numeric range, containment of a substring etc.

Content-based matchers. This type of matcher determines the similarity of two

elements by executing a pair-wise comparison of instance values using a similarity

function [EM07]. Any of the several string similarity functions implemented in COMA++

can be used to calculate the instance similarity. The list of the string similarity functions is

provided in Section 3.2. The matching of ontologies in COMA++ using content-based

matchers is similar to the work presented in this thesis. Since our approach uses iFuice

mappings to determine the instance similarity, we are not limited to the string similarity

functions provided by COMA++ and can use complex combined mappings. However, in

our architecture the matching of ontologies using instance information requires two

systems (iFuice and COMA++), whereas in the approach described in [EM07] such

matching is implemented within one system.

Similarity propagation. Since the instances in the ontology may often be sparse,

i.e. not all ontology concepts may have associated instances, it may be promising to

propagate the similarity values to parents of the concepts which have associated instances.

 [MR08] investigates the use of instance-based matchers and combinations of

instance-based and other COMA++ matchers in application to matching web directories.

Web directories are ontology-like hierarchical structures containing annotated web links

which are assigned to different categories. The authors experiment with web directories

from Google
46

, Yahoo
47

, Dmoz
48

 and Web.de
49

 (all in German language). The authors

46

 http://directory.google.de/Top/World/Deutsch/

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 187

compare the performance of the match algorithms to the manually created reference

mappings between the web directories. The authors however do not specify the criteria for

creating such reference mappings with respect to the semantics of the individual

correspondences.

Similarly to the work presented in this thesis, the correspondences in the mappings

represent a generic similarity measure without semantic differentiation. Thus, [MR08] and

the work presented in this thesis potentially share some of the drawbacks caused by the

low semantic expressiveness of the COMA++ correspondences.

In contrast to our approach which uses two tools, COMA++ and iFuice, the

matching approach presented in [MR08] is completely done in COMA++. Such approach

allows more versatile combination of instance-based and other matchers. However, for our

particular application -- creation of an integrated website -- COMA++ amended with

instance matchers would not be sufficient alone. iFuice would still be needed since it has

rich possibilities for script-based manipulation of the mappings which COMA++ doesn‟t

provide.

One aspect of the instance-based matching which is investigated in [MR08] is the

use of instances directly associated to a category in comparison to use of instances

associated both directly and indirectly, i.e. directly associated to a subcategory of a

category. The authors find out that the use of indirectly associated instances may be

beneficial for the quality of the mapping. This corresponds to the approach which we take

in this work: we implicitly convert all indirectly associated into directly associated

instances, which is stipulated by the fact that some of our important source ontologies

explicitly store indirect links as direct. [MR08] analyses average recall, precision and f-

measure with respect to the manual reference mappings in 6 matching tasks (each of the

mentioned four ontologies matcher pair-wise). The authors indicate that the input

ontologies which were used in [MR08] exhibit various degrees of pair-wise heterogeneity,

from quite homogeneous (Dmoz vs. Google) to very heterogeneous. The authors achieve

average f-measure of 0.79 with their best matching algorithm comprised of 6 single

matchers. In our work, the maximal achieved f-measure was ~0.7, however using different

input data.

Although the results of [MR08] and our results are not directly comparable, one

interesting common result is that in both works the combination of metadata-based and

instance-based matchers has brought an increase of f-measure between 15% and 35%

compared to both metadata-only and instance-only approaches (excluding the instance-

based mapping in our work which uses EAN code – this mapping has relatively high

quality due to unambiguousness of EAN, therefore the combination with metadata-based

matchers brings only ~7% improvement).

[EM07] also provides a comparative study on how the use of instance-based

matchers improves the quality of the ontology mapping. According to their results,

47

 http://de.dir.yahoo.com/
48

 http://www.dmoz.org/World/Deutsch/
49

 http://dir.web.de/

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

188 13.2 Related Work in the Field of Ontology Matching

utilizing the proposed algorithms, in particular the content-based matchers, improves the

average precision by 10% and the recall by 13%.

Glue

The system Glue developed at the University of Washington is described in

[DMDH04] and [DMDH03]. Glue uses machine learning to match ontologies. To match

the ontology concepts based on the instances, Glue first performs the classification of the

instances utilizing several machine learning approaches. The joint probability distributions

of concepts in the ontologies are calculated. Then the system estimates the similarities of

the concepts as function of their joint distributions. Finally, a so-called relaxation labeling

technique is applied to choose the best correspondence candidates based on the computed

similarity between concepts.

FCA-Merge

The system FCA-Merge is described in [SM01]. The system is based on the formal

concept analysis techniques described in [GW99]. The system focuses on merging two

input ontologies into one output ontology based on the analysis of the instance data. The

ontology merging is done in three steps: instance extraction, application of the FCA-Merge

core algorithm to create the concept lattice, creation of the resulting ontology. The result of

the process is a merged ontology rather than a mapping between ontologies. The last step

of the merging process requires human intervention.

IF-Map

IF-Map [KS02][KS03] is the system inspired by the Barwise-Serligman theory of

information flow [BS97]. The system matches local ontologies using reference ontology,

assuming that the local ontologies are usually populated, whereas the reference ontology is

usually unpopulated. The system works by the classifying the instances on the input local

ontologies with respect to their concepts and determining the local logic of both local and

reference ontologies. Then the system infers the logical morphism which can transform

one local logic into another. The core IF-Map algorithm is implemented in Prolog.

S-Match

The S-Match approach (also known as Semantic matching) is presented in the

series of works [GSY04][GYG05][GSY05][GYS07]. The authors discuss application of

their approach to relational and object-oriented schemas, concept hierarchies and

ontologies. The authors focus on matching of tree-like structures. For non-tree-like

structures the authors rely on the known techniques such as one described in [BMPQ04] to

convert such structures into tree-like structures.

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 189

In contrast to many other schema and ontology matching platforms, such as Cupid

[MBR01], Rondo [MRB03], COMA[DR02] and COMA++ [ADMR05], the semantic

matching approach uses not “weighted” correspondences but “typed” correspondences.

The following types of correspondences are used: equivalence, more general, less general,

disjointness, unknown. The types of correspondences in the above list are ranked according

to their binding strength, with strongest being equivalence and the weakest unknown.

During the matching, the S-Match algorithm tries to find the strongest existing

correspondences between the nodes in the ontologies which are being matched. An

additional filtering step can be applied to prune correspondences which can be inferred

from the stronger correspondences. This is similar to the intuition we have used for

creating our manual ontology mapping between Amazon and Softunity ontologies.

Another important feature of the approach is that S-Match does not use the

information stored in the ontology nodes and their labels for matching immediately. At

first, this information is subjected to preprocessing. During preprocessing S-Match

matches this information to concepts in an extensive global ontology such as WordNet.

This is done both for individual nodes and for complete paths from the root to a given

node. After preprocessing, S-Match uses a combination of numerous matchers to establish

correspondences between the calculated concepts from the global ontology. These

matchers include lexical matchers such as EditDistance, N-Gram and Affix but also special

matchers which operate on the information specific to WordNet. After the correspondence

candidates are determined using the matchers, the matching problem is transformed into

the propositional satisfiability problem and solved using so-called SAT solver
50

.

The authors state that their approach is schema-based and that instances are not

considered during the matching [GYS07]. An exception constitutes the matching of

ontologies, where instances are also used for matching as long as they are present in the

ontology. Since no difference is made between the processing of the concept data and the

processing of the instance data, such approach may exhibit performance problems in case

when the amount of instance data is very large, which is a quite common case. Apart from

this, the authors place a special value on the efficiency of their matching algorithm and

propose a number of optimization techniques.

The authors evaluate their matching approach by comparing its results to the results

obtained by Cupid [MBR01], Rondo [MRB03] and COMA[DR02]. The evaluation was

performed on matching tasks from different application domains, such as company

profiles, purchase orders schemas and university course catalogs. The results show that S-

Match can achieve better results in matching company profiles and university course

catalogues than the other systems while lying slightly behind COMA in matching purchase

order schemas. Additional experiments on matching web directories (Google vs. Yahoo vs.

Looksmart) were performed to explore the efficiency of the matching of larger ontologies

(about 1000 nodes) and highlight the effects of the optimization techniques.

50

 D. Le Berre. A satisfiability library for Java. http://www.sat4j.org/.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

190 13.2 Related Work in the Field of Ontology Matching

T-Tree

T-Tree is a system described in [Euze94]. The T-Tree system is capable of inferring

correspondences (so-called “bridges”) between the ontology classes based only on the

instance data. It is assumed that the correspondences between the instances are known in

advance. The algorithm for inferring the bridges is iterative and is guaranteed to be

extension-minimal. Being extension-minimal means that in cases when some less general

bridges which can be inferred from the more general bridges exist, only the more general

bridges are returned. The authors point out that the bridges found by the algorithm are not

guaranteed to be semantically sound, which is in fact a common shortcoming of all

instance-based methods including ours. This is consistent with our observations that certain

distribution of instances may be a result of coincidence. In our experiments an example of

this is the correspondence between “Films->Genre->Animation Films” and “Films->By

Production Land->Japan”.

QOM

QOM is described in [ES04a] and [ES04b]. As the abbreviation QOM standing for

Quick Ontology Mapping suggests, the project deals with efficiency of the ontology

matching, as opposed to most other ontology matching projects which focus on the quality

of the resulting mapping. QOM expects input ontologies to be in the RDFS format. QOM

uses special heuristics to find the most promising candidates for matching. Multiple

similarity functions for the ontology concepts are supported, among them also instance-

based similarity. The resulting similarity for a correspondence is a weighted sum of

normalized values of the individual similarity functions. The calculation of the instance-

based similarity of the two concepts is based on multidimensional scaling [CC94]. In

contrast to our approach, this approach takes into account individual similarity values

between the instances to calculate the similarity of the respective concepts.

Thor, Hartung et al.

The work [THG+09] focuses on mappings between evolving ontologies. The

authors argue that stability of the correspondences is an important aspect which needs to be

considered in the situation when the mapped ontologies evolve over time. The authors take

the ontologies from the life science domain as example for such actively evolving

ontologies and propose three metrics which reflect the stability of the correspondences

within the mapping. The metrics take into account the historical development of the

mapping and the changes in similarity of the corresponding concepts over time. Since the

e-commerce ontologies which we employ in this part of the thesis are also evolving over

time, using stability metrics for the correspondences utilized by EC-Fuice would be an

interesting extension of our architecture.

Mykola Golovin Web Recommendations for E-Commerce Websites

13 Related Work and Discussion 191

OLA

OLA (OWL-Lite Alignment) [ELTV04] is a system designed for alignment of

ontologies expressed in OWL-Lite language. OLA targets to cover all possible types of

matching: terminological, structural, extensional (i.e. instance-based), semantic. The

algorithm which computes the similarity is iterative and uses fix-point computations. The

algorithm starts from the lexical similarity measure and gradually brings in contributions

from other similarity functions. Although the internal representation of the ontologies in

OLA allows relations of several types within ontologies, the correspondences based on

calculated similarity between the concepts of the different ontologies are not typed.

SCM

SCM stands for Semantic Category Matching and is described in [HYNT04]. SCM

performs matching of the ontologies based on the statistical analysis of the instance data.

SCM computes a feature vector for all concepts in the input ontologies based on keywords

found in the instances. Then it calculates the similarity of the feature vectors. To calculate

the vector similarity, a common coordinate system is created based in all keywords which

are found in the input ontologies. The correspondence candidates found using the feature

vector based similarity are then refined by a structural matcher. The structural matcher

resolves the structure violation problems which we discussed in Section 11.2.4.

Mykola Golovin Part III. Web Recommendations in the Integrated Data Environment

192 13.2 Related Work in the Field of Ontology Matching

14. SUMMARY

In this part of the thesis we have investigated how the navigation utilizing web

recommendations can be implemented on the e-commerce websites based on integrated

data sources. The integrated e-commerce websites are an interesting use case for web

recommendations. One of the reasons for this interest is that many modern, large and

economically successful e-commerce websites follow the integrated approach. Another

reason is that especially in the integrated environment, due to the lack of the pre-defined

semantic connections between the data, the web recommendations step forward as means

of enabling user navigation. In this chapter we have presented the architecture for the

websites based on integrated data sources named EC-Fuice. We have also presented the

prototypical implementation of our architecture which serves as a proof-of-concept and

investigated the challenges of creating navigation on an integrated website.

The following issues were addressed in this part of the thesis:

 Combination of several state-of-the-art tools and techniques in the fields of

databases, data integration, ontology matching and web engineering into one

generic architecture for creating integrated websites.

 Comparative experiments with several techniques for instance matching (also

known as record linkage or duplicate detection). Investigation on using the

ontology matching to facilitate the instance matching.

 Comparative experiments with several techniques for ontology matching.

Investigations on the instance-based ontology matching and the possibilities

for combining instance-based ontology matching with other techniques for

ontology matching.

 Investigation of the possibilities to improve user navigation in the integrated

data environment with different types of web recommendations.

 Review of the related work in the fields of data integration and ontology

matching and discussion of the contact points between the research described

here and other related projects.

The main contributions of the research described in this part of the thesis are the

EC-Fuice architecture, the novel method for matching e-commerce ontologies based on

combination of instance information and metadata information, the experimental results of

ontology and instance matching performed by different matching algorithms and the

classification of the types of recommendations which can be used on an integrated

e-commerce website.

PART IV. SUMMARY

Mykola Golovin Part IV. Summary

194

In this thesis we have investigated approaches for implementing web

recommendations in on e-commerce websites. Recommendations are very important for

such websites because of the ongoing growth of the amount of information and the

increasing competition between sellers. The immense numbers of different products on

modern e-commerce websites and vast amount of information about these products

become an obstacle for the customers looking for the products that match their interests.

Web recommendations have already become indispensable on large e-commerce

websites, however is probable that the peak of their popularity is yet to come, possibly in

connection with distributed advertising systems such as Google AdSense
51

, with which the

web recommendations share a number of common characteristics.

Until present time, no single approach to generating web recommendation could

claim supremacy over all others. Moreover, many researchers point out that the most

promising architecture needs to combine several approached in one hybrid approach

([Bal97], [SKR02], [Burk07] and others). In Part II of this thesis we have proposed a novel

architecture for combining recommendations generated by different approaches and a

technique which allows optimizing the presented recommendation basing on the user

feedback. We have performed comparative investigation of the different technical and

algorithmic possibilities for selecting and optimizing our recommendations. In particular,

we investigate several approaches to solving the problem of balancing between exploration

and exploitation, i.e. balancing between using web recommendations and learning their

quality. Our experiments illustrate the increase of the user acceptance of recommendations

as a result of our optimization. The experimental results which we present are based on

data obtained both on real-life prototypes and in a simulated environment. We have also

described a way to incorporate versatile domain knowledge into our recommendation

system to provide the different recommendation approaches with a unified source of

relevant information. The domain knowledge in our architecture can be both extracted

automatically from the available data and supplied by the human experts. We pay special

attention to the storage structures in which this knowledge is stored in our system and

investigate the comparative performance of the different storage structures.

In the Part III of the thesis we have investigated the generating of web

recommendations for e-commerce websites which are based on data coming from multiple

data sources. Integration of data from different data sources is a common characteristic

found in many modern large e-commerce websites, such as Amazon and eBay. We have

built a prototype of such integrated website named EC-Fuice and discussed some of the

data integration challenges which arise in this prototype. In particular we pay significant

attention to the problem of matching product ontologies. We combine matching based on

the information contained within the ontology structure with matching based on the

information provided by the product instances to improve the quality the mapping. An

important issue which has to be addressed in the context of e-commerce ontologies is the

evolution of ontologies and respectively the evolution of the corresponding ontology

mapping. EC-Fuice uses the instance and ontology mappings to provide recommendations

51

 http://www.google.com/adsense/

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 195

to the web users. We have explored different types of recommendations which can be used

on integrated websites and have shown that recommendations are an important means of

enabling user navigation in the integrated data.

The main scientific contributions of this thesis are the following:

 An architecture of a novel semantically enriched recommendation system

which is capable of combining several techniques for generation of web

recommendations.

 A recommendation optimization algorithm which is able to learn the best

recommendations online based on the behavior of web users.

 The evaluation of the proposed recommendation system on two real-life

websites and in a simulated environment.

 An architecture of an e-commerce website built using data integration and

recommendations and a proof-of-concept prototype website built according to

this architecture.

 An algorithm for matching ontologies by combining instance data with lexical,

syntactical, structural and other information contained in the ontology; a

comparative evaluation of this algorithm.

The practical orientation of our work determines the areas of further research.

So, the recommendation system architecture presented in Part II of the thesis has

influenced the design of a commercial recommendation system deployed on several top

e-commerce websites in Germany. Our research on dynamically integrated websites is

finding its continuation in the ongoing research on so-called “mashups”, i.e. dynamically

integrated websites which are becoming popular as a part of Web 2.0 paradigm.

Another possibility of further development of our recommendation approach along

the Web 2.0 paradigm is the consideration of the social aspect of recommendations. For

example, the websites where users share and recommend bookmarks to each other such as

http://del.icio.us have become very popular in the last years. Investigation of the

applicability of our optimization approaches and data integration approaches to such

websites is an interesting topic for further research.

The problem of creating mappings between ontologies belongs to an active area

research. The combined instance-based and metadata-based approach which we described

in this thesis can be further improved to achieve better matching quality on real-life

ontologies. An interesting data integration problem statement arose within the EC-Fuice

framework, namely the need for combination of the offline, physical data integration (data

warehouse) with “”live” data integrated online (live recommendations using iFuice

mappings). This need emerges also in the context of other types of data integration projects

which are commonly found in the industry. We plan further investigation of the possible

solutions for this problem and of the applicability of these solutions to the problems found

in the industrial environment.

http://del.icio.us/

Mykola Golovin Part IV. Summary

196

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 197

REFERENCES

[ABM+04] Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active

XML: A Data-Centric Perspective on Web Services. Web Dynamics 2004: 275-300

[ADMR05] Aumueller, D., Do, H.H., Massmann, S., Rahm, E. Schema and ontology

matching with COMA++. SIGMOD Conference 2005-06

[AG03] Acharyya, S., Ghosh, J.: Context-Sensitive Modeling of Web-Surfing Behavior

using Concept Trees. Proc. WebKDD, 2003

[AKA91] Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine

Learning, 6:37--66. 1991

[AKS96] Arens, Y., Knoblock, C., Shen, W.-M.: Query Reformulation for Dynamic

Information Integration. J. Intell. Inf. Syst. 6(2/3): 99-130 (1996)

[AM03] Anand, S., Mobasher, B.: Intelligent Techniques for Web Personalization. ITWP

2003: 1-36

[AM05] Mobasher, B., Anand, S.: Intelligent Techniques for Web Personalization, IJCAI

2003 Workshop, ITWP 2003, Acapulco, Mexico, August 11, 2003, Revised Selected

Papers Springer 2005

[AM07] Anand, S., Mobasher, B.: Introduction to intelligent techniques for Web

personalization. ACM Trans. Internet Techn. 7(4): (2007)

[AT01] Adomavicius, G., Tuzhilin, A.: Multidimensional Recommender Systems: A Data

Warehousing Approach. WELCOM 2001: 180-192

[AT01a] Adomavicius, G., Tuzhilin, A.: Extending recommender systems: A

multidimensional approach. In Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI-01), Workshop on Intelligent Techniques for Web

Personalization (ITWP2001), Seattle, Washington, August 4 -- 6.

[AT05] Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl.

Data Eng. 17(6): 734-749. 2005.

[Bal97] Balabanovic, M.: An Adaptive Web Page Recommendation Service. CACM, 1997

[BB04] Beneventano, D., Bergamaschi, S.: The MOMIS Methodology for Integrating

Heterogeneous Data Sources, IFIP World Computer Congress. Toulouse France, 22-27

August 2004

Mykola Golovin References

198

[BBB+02] Beneventano, D., Bergamaschi, S., Bianco, D., Guerra, F., Vincini, M.: "SI-

Web: A Web based interface for the MOMIS project", Proceedings of the Convegno

Nazionale Sistemi di Basi di Dati Evolute (SEBD2002), Isola d'Elba, 19-21 June, 2002

[BBB+04] Benassi, R., Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.:

"Synthesizing an Integrated Ontology with MOMIS", International Conference on

Knowledge Engineering and Decision Support (ICKEDS). Porto, Portugal, 21-23 July

2004

[BBB+06] Beneventano, D., Bergamaschi, S., Bruschi, S., Guerra, F., Orsini, M., Vincini,

M.: Instances Navigation for Querying Integrated Data from Web-Sites. WEBIST (1)

2006: 46-53

[BDKM00] Barish, G., DiPasquo, D., Knoblock, C., Minton, S.:Dataflow Plan Execution

for Software Agents, Proceedings of the Fourth International Conference on Autonomous

Agents, ACM Press, Barcelona, Spain, Carles Sierra and Maria Gini and Jeffrey S.

Rosenschein, 138--139, 2000

[Bell57] Bellman, R. : Dynamic Programming. Princeton University Press. 1957

[BGV02] Bergamaschi, S., Guerra, F., Vincini, M.: A Data Integration Framework for e-

Commerce Product Classification. International Semantic Web Conference 2002: 379-393

[BH04] Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering.

Proc. 21th ICML Conference. Banff, Canada, 2004

[BL99] Borges, J., Levene, M.: Data Mining of User Navigation Patterns. WEBKDD

1999: 92-111

[BMC+06] Buriano, L., Marchetti, M., Carmagnola, F., Cena, F., Gena, G., Torre, I.: The

Role of Ontologies in Context-Aware Recommender Systems. MDM 2006: 80

[BMPQ04] Bernstein, P., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema

matching. SIGMOD Record 33(4), 38–43. 2004

[BR04] Bhushan, N. , Rai, K. , editors.: Strategix Decision Making: Applying the Analytic

Hierarchy Process. Springer, 2004.

[Brian59] de la Briandais, R.: File Searching Using Variable Length Keys, Proceedings of

the Western Joint Computer Conference: 295–298. 1959.

[BS00] Berendt, B., Spiliopoulou, M.: Analysis of Navigation Behaviour in Web Sites

Integrating Multiple Information Systems. VLDB J. 9(1): 56-75 (2000)

[BS03] Baron, S. , Spiliopoulou, M.: Monitoring the Evolution of Web Usage Patterns.

Proc. ECML/PKDD, 2003

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 199

[BS97] Balabanovic, M., Shoham, Y.: Content-Based, Collaborative Recommendation.

Commun. ACM 40(3): 66-72. 1997

[BS97] Barwise J., Seligman, J. :Information Flow: the Logic of distributed systems.

Cambridge Tracts in Theoretical Computer Science 44. Cambridge University Press, 1997.

[Burk02] Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User

Modeling and User-Adapted Interaction, 2002

[Burk06] Burke, R. Hybrid Recommender Systems: A Comparative Study. CTI Technical

Report 06-012. 2006. (Available at http://www.cs.depaul.edu/research/technical.asp.)

[Burk07] Burke, R.: Hybrid Web Recommender Systems. The Adaptive Web 2007: 377-

408

[CAC01] Castano, S., De Antonellis, V. , De Capitani di Vimercati, S. : Global Viewing of

Heterogeneous Data Sources. IEEE Trans. Knowl. Data Eng. 13(2): 277-297 (2001)

[CAFP98] Castano, S., De Antonellis, V. , Fugini, M.G. , Pernici, B.: Conceptual Schema

Analysis - Techniques and Applications. ACM Trans. on Database Systems 23(3), 286-

333, 1998

[CC94] Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall (1994)

[CFP+02] Colombo, E., Francalanci, C., Pernici, B., Plebani, P., Mecella, M., De

Antonellis, V., Melchiori, M.: Cooperative Information Systems in Virtual Districts: the

VISPO Approach. IEEE Data Eng. Bull. 25(4): 36-40 (2002)

[CGGM03] Chaudhuri, S., Ganjam, K., Ganti, V., and Motwani, R. 2003. Robust and

efficient fuzzy match for online data cleaning. In Proceedings of the 2003 ACM SIGMOD

international Conference on Management of Data (San Diego, California, June 09 - 12,

2003). SIGMOD2003. ACM Press, New York, NY, 313-324.

[CGGM05] Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Fuzzy Lookup and Fuzzy

Grouping in SQL Server Integration Services 2005. Microsoft Corporation. MSDN

Library September 2005. http://msdn2.microsoft.com/en-us/library/ms345128.aspx

[CGH+94] Chawathe, S. , Garcia-Molina, H. , Hammer, J. , Ireland, K. , Papakonstantinou,

Y., Ullman, J. , Widom,. J. : The TSIMMIS Project: Integration of Heterogeneous

Information Sources. In Proceedings of IPSJ Conference, pp. 7-18, Tokyo, Japan, October

1994.

[CGM99] Claypool, M., Gokhale, A., Miranda, T.: Combining Content-Based and

Collaborative Filters in an Online Newspaper. In: Proc. ACM SIGIR Workshop on

Recommender Systems, 1999

http://www.cs.depaul.edu/research/technical.asp
http://msdn2.microsoft.com/en-us/library/ms345128.aspx

Mykola Golovin References

200

[CK68] Cleverdon, C., Kean, M.: Factors Determining the Performance of Indexing

Systems.Aslib Cranfield Research Project, Cranfield, England.1968.

[CM05] Chen, A., McLeod, D.: Semantic-Based Similarity Decisions for Ontologies.

ICEIS (3) 2005: 443-446

[CTS99a] Cooley, R., Tan, P., Srivastava, J.: Discovery of Interesting Usage Patterns from

Web Data. WEBKDD 1999: 163-182

[CTS99b] Cooley, R., Tan, P., Srivastava, J.: WebSIFT: The Web site information filter

system. In Workshop on Web Usage Analysis and User Profiling (WebKDD99), San

Diego, August 1999.

[DCES04] Das, S., Chong, E., Eadon., G, Srinivasan, J.: Supporting Ontology-Based

Semantic matching in RDBMS. VLDB 2004: 1054-1065

[DEFS99] Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology Based

Access to Distributed and Semi-Structured Information. DS-8 1999: 351-369

[DMDH03] Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning

to match ontologies on the Semantic Web. VLDB J. 12(4): 303-319 (2003)

[DMDH04] Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Ontology

Matching: A Machine Learning Approach. Handbook on Ontologies 2004: 385-404

[Do06] Do, H.H.: Schema Matching and Mapping-based Data Integration, Dissertation,

Department of Computer Science, Universität Leipzig, Germany, 2006

[DR02] Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema

Matching Approaches. VLDB 2002: 610-621

[ELTV04] Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology alignment with

OLA, in: Proc. 3rd ISWC2004 workshop on Evaluation of Ontology-based tools (EON),

Hiroshima (JP), p. 59-68, 2004

[EM07] Engmann, D; Maßmann, S: Instance Matching with COMA++. BTW Workshops

2007: 28-37

[ES04a] Ehrig, M., Staab, S.: QOM - Quick Ontology Mapping. International Semantic

Web Conference 2004: 683-697

[ES04b] Ehrig, M., Y. Sure: Ontology Alignment - Karlsruhe. Proc. 3rd Intl. Workshop

Evaluation of Ontology-based Tools (EON), 2004

[Euze94] Euzenat, J.: Brief overview of T-tree: the Tropes taxonomy building tool. In

Proc. th ASIS SIG/CR workshop on classification research, Columbus (OH US), pages 69–

87, 1994.

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 201

[FGJ+06] Felfernig A., Gordea S., Jannach D., Teppan E., Zanker M.: A Short Survey of

Recommendation Technologies in Travel and Tourism. In: ÖGAI Journal, 4/2006, Volume

25, pp. 17-22. 2006

[Flyn06] Flynn, L.J.: Like This? You'll Hate That. (Not All Web Recommendations Are

Welcome.). New York Times 2006.

[GAP07] Goy, A., Ardissono, L., Petrone, G.: Personalization in E-Commerce

Applications. The Adaptive Web 2007: 485-520

[GR04] Golovin, N., Rahm, E.: Reinforcement Learning Architecture for Web

Recommendations. Proc. ITCC2004, IEEE, 2004

[GR05] Golovin, N., Rahm, E.: Automatic Optimization of Web Recommendations Using

Feedback and Ontology Graphs. ICWE 2005: 375-386, 2005.

[GSY04] Giunchiglia, F., Shvaiko, P, Yatskevich, M.: S-Match: an Algorithm and an

Implementation of Semantic Matching. ESWS 2004: 61-75

[GYG05] Giunchiglia, F., Yatskevich, M., Giunchiglia, E.: Efficient Semantic Matching.

ESWC 2005: 272-289

[GSY05] Giunchiglia, F., Shvaiko, P. Yatskevich, M.: Semantic Schema Matching. OTM

Conferences (1) 2005: 347-365

[GYS07] Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic Matching: Algorithms

and Implementation. J. Data Semantics 9: 1-38 (2007)

[Gupt00] Gupta., A.: Some Data Integration and Database Issues in E-Commerce. Invited

talk, EDBT2000, Konstanz. http://www.edbt2000.uni-konstanz.de/invited/talks.html

[GW99] Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations.

Springer.1999.

[HKTR04] Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative

filtering recommender systems. ACM Trans. Inf. Syst. 22(1): 5-53 (2004)

[HMAC02] Hayes, C., Massa, P., Avesani, P., Cunningham, P.: An on-line evaluation

framework for recommender systems. In Workshop on Personalization and

recommendation in E-Commerce, Malaga, 2002. Springer.

[Howa60] Howard, R.: Dynamic Programming and Markov Processes, The M.I.T. Press,

1960

[HRO06] Halevy, A., Rajaraman, A., Ordille, J: Data Integration: The Teenage Years.

VLDB 2006: 9-16

Mykola Golovin References

202

[HS04] Haase, P., Sure, Y.: State of the art on ontology evolution, 2004. Available at

www.aifb.uni-karlsruhe.de/WBS/ysu/publications/SEKT-D3.1.1.b.pdf

[HSH03] ten Hagen, S., van Someren, M., Hollink, V.: Exploration/exploitation in

adaptive recommender systems. Proc. European Symposium on Intelligent Technologies,

Hybrid Systems and their Implementation in Smart Adaptive Systems, Oulu, Finland. 2003

[HYNT04] Hoshiai, T., Yamane, Y., Nakamura, D., Tsuda, H.: A Semantic Category

Matching Approach to Ontology Alignment. Proc. 3rd Intl. Workshop Evaluation of

Ontology-based Tools (EON), 2004

[ILW+00] Ives, Z., Levy, A., Weld, S., Florescu, D., Friedman, M.: Adaptive Query

Processing for Internet Applications. IEEE Data Engineering Bulletin, Vol. 23 No. 2, June

2000

[JDW01] Jin, Y., Decker, S., Wiederhold, G.: OntoWebber: Model-Driven Ontology-

Based Web Site Management. SWWS 2001: 529-547

[JFM97] Joachims, T., Freitag, D., Mitchell, T.: Web Watcher: A Tour Guide for the

World Wide Web. IJCAI (1) 1997: 770-777. 1997

[JKR02] Jameson, A. , Konstan, J. , Riedl, J.: AI Techniques for Personalized

Recommendation. Tutorial presented at AAAI, 2002

[JM03] Jin, X., Mobasher, M. : Using Semantic Similarity to Enhance Item-Based

Collaborative Filtering. In Proceedings of The 2nd IASTED International Conference on

Information and Knowledge Sharing, Scottsdale, Arizona, November 2003.

[KIBG08] Koutrika, G., Ikeda, R., Bercovitz, B., Garcia-Molina, H.: Flexible

recommendations over rich data. RecSys 2008: 203-210

[KK05] Kazienko, P., Kolodziejski, P.: WindOwls-Adaptive System for the Integration of

Recommendation Methods in E-Commerce. AWIC 2005: 218-224

[KK06] Kazienko, P., Kolodziejski, P.: Personalized Integration of Recommendation

Methods for E-commerce. IJCSA 3(3): 12-26 (2006)

[KLM96] Kaelbling, L., Littman, M., Moore, P.: Reinforcement Learning: A Survey. J.

Artif. Intell. Res. (JAIR) 4: 237-285 (1996)

[KMA+01] Knoblock, C., Minton, S., Ambite, J.L., Ashish, N., Muslea, I., Philpot, A.,

Tejada, S.: The Ariadne Approach to Web-Based Information Integration. Int. J.

Cooperative Inf. Syst. 10(1-2): 145-169. 2001

[Kost96] Koster, M.: A Method for Web Robots Control.

http://www.robotstxt.org/norobots-rfc.txt. 1996.

http://www.robotstxt.org/norobots-rfc.txt

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 203

[KR05] Kirsten, T., Rahm, E.: BioFuice: Mapping-based data integration in

bioinformatics, Proc. of 3rd Int. Workshop on Data Integration in the Life Sciences

(DILS), 2005

[KR99] Konstan, J., Riedl, J.: Research resources for recommender systems. In CHI‟99

Workshop Interacting with Recommender Systems, 1999.

[KS02] Kalfoglou, Y., Schorlemmer, W.M.: Information-Flow-Based Ontology Mapping.

CoopIS/DOA/ODBASE 2002: 1132-1151

[KS03] Kalfoglou, Y., Schorlemmer, W.M.: IF-Map: An Ontology-Mapping Method

Based on Information-Flow Theory. J. Data Semantics 1: 98-127. 2003

[KS05] Kalfoglou, Y.;Schorlemmer, W.M.: Ontology Mapping: The State of the Art.

Semantic Interoperability and Integration, 2005

[KW04] KnowledgeWeb. D2.2.3: State of the Art on Ontology Alignment. EU-IST

Network of Excellence IST-2004-507482 KWEB. http://knowledgeweb.semanticweb.org/.

[KW04a] KnowledgeWeb. D1.2.2.2.1: Case-based recommendation of matching tools and

techniques. EU-IST Network of Excellence IST-2004-507482 KWEB.

http://knowledgeweb.semanticweb.org/

[Lawr03] Lawrence. , S. :Implicit feedback: Good may be better than best. Invited Talk.

Workshop on Implicit Measures of User Interests and Preferences, SIGIR2003.

http://research.microsoft.com/~sdumais/SIGIR2003/FinalTalks/Lawrence-implicit-

feedback-good-may-be-better-than-best.ppt. August , 2003. access time: 07.11.2007.

[Lenz02] Lenzerini, M.: Data Integration: A Theoretical Perspective. PODS 2002: 233-246

[Lev66] Levenshtein, V. Binary codes capable of correcting deletions, insertions, and

reversals, Doklady Akademii Nauk SSSR, 163(4):845-848, 1965 (Russian). English

translation in Soviet Physics Doklady, 10(8):707-710, 1966.

[Lieb95] Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In Proc.of the

14th International Joint Conference on Articial Intelligence (IJCAI). 1995

[LRO96] Levy, A., Rajaraman, A., Ordille, J.: Querying Heterogeneous Information

Sources Using Source Descriptions VLDB 1996: 251-262

[LSY03] Linden, G. , Smith, B. , York, J.: Amazon.com Recommendations: Item-to-Item

Collaborative Filtering. IEEE Internet Computing. Jan. 2003

[Mahe96] Mahadevan, S.: Average Reward Reinforcement Learning: Foundations,

Algorithms, and Empirical Results, Machine Learning , Special Issue on Reinforcement

Learning (edited by Leslie Kaebling), vol. 22, pp. 159-196, 1996.

http://knowledgeweb.semanticweb.org/
http://knowledgeweb.semanticweb.org/

Mykola Golovin References

204

[MAK+04] Michalowski, M., Ambite, J., Knoblock, C., Minton, S., Thakkar, S., Tuchinda,

R.: Retrieving and Semantically Integrating Heterogeneous Data from the Web, IEEE

Intelligent Systems., Vol. 19, No. 3, pp. 72-79, 2004.

[MASR02] Middleton, S., Alani, H., Shadbolt, N., De Roure, D.: Exploiting Synergy

Between Ontologies and Recommender Systems. Semantic Web Workshop 2002

[MB87] MacGregor, R. Bates, R.: The LOOM knowledge representation language.

Technical Report ISI/RS-87-188, USC/ISI, 1987. Also appears in Proceedings of the

Knowledge-Based Systems Workshop held in St. Louis, Missouri, April 21, 1987.

[MBNL99] Madria, S., Bhowmick, S., Ng, W., Lim, E.: Research Issues in Web Data

Mining. DaWaK 1999: 303-312

[MD00] Melnik, S., Decker, S.: A Layered Approach to Information Modeling and

Interoperability on the Web. ECDL 2000 Workshop on the Semantic Web. 21 September

2000, Lisbon Portugal.

[MGR02] Melnik, S., Garcia-Molina, H, Rahm, E.: Similarity Flooding - A Versatile

Graph Matching Algorithm. Proc. Intl. Conf. Data Engineering (ICDE), 2002

[MJZ03] Mobasher, B., Jin, X., Zhou, Y.: Semantically Enhanced Collaborative Filtering

on the Web. EWMF 2003: 57-76

[MJZ04] Mobasher, B., Jin, X., Zhou. Y.: Semantically Enhanced Collaborative Filtering

on the Web. Proc. European Web Mining Forum, LNAI, Springer 2004

[MR07] Mahmood, T., Ricci, F.: Learning and adaptivity in interactive recommender

systems. ICEC 2007: 75-84

[MR07a] Mahmood, T., Ricci, F.: Towards Learning User-Adaptive State Models in a

Conversational Recommender System. LWA 2007: 373-378

[MR08] Mahmood, T., Ricci, F.: Adapting the interaction state model in conversational

recommender systems. In Proceedings of the ICEC '08, vol. 342. ACM, New York.

[MR09] Mahmood, T., Ricci, F.: Improving recommender systems with adaptive

conversational strategies. In Proceedings of the 20th ACM Conference on Hypertext and

Hypermedia HT '09. ACM, New York, NY, 73-82.

[MRB03] Melnik, S., Rahm, E., Bernstein, P.: Rondo: A programming platform for

generic model management. In: Proceedings of SIGMOD, pp. 193–204. 2003

[MRS01] Middleton, S., De Roure, D., Shadbolt, N.: Capturing knowledge of user

preferences: ontologies in recommender systems. K-CAP 2001: 100-107

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 205

[MRV09] Mahmood, T., Ricci, F., Venturini, A.: Learning Adaptive Recommendation

Strategies for Online Travel Planning. In Information and Communication Technologies in

Tourism 2009, Pages: 149-160, Springer.

[MRVH08] Mahmood, T., Ricci, F., Venturini, A., Höpken, W.: Adaptive Recommender

Systems for Travel Planning. In Information and Communication Technologies in Tourism

2008, proceedings of ENTER 2008 International Conference, Innsbruck, Springer

[MS99] Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing,

MIT Press: 1999.

[MSR03] Middleton, S., Shadbolt, N., De Roure, D.: Capturing interest through inference

and visualization: ontological user profiling in recommender systems. K-CAP 2003: 62-69

[MSR04] Middleton, S., Shadbolt, N., De Roure, D.: Ontological user profiling in

recommender systems. ACM Trans. Inf. Syst. 22(1): 54-88 (2004)

[MSS+01] Mädche, A., Staab, S., Stojanovic, N., Studer, R., Sure. Y.: SEAL - A

Framework for Developing SEmantic portALs. In: BNCOD 2001 - 18th British National

Conference on Databases. Oxford, UK, 9th - 11th July 2001, LNCS, Springer Verlag,

2001.

[MR08] Massmann, S., Rahm, E.: Evaluating Instance-based Matching of Web

Directories. Proceedings of the 11th International Workshop on Web and Databases

(WebDB 2008), Vancouver, Canada, 2008.

[MWK00] Mitra, P., Wiederhold, G., Kersten, M.: A Graph-Oriented Model for

Articulation of Ontology Interdependencies. EDBT 2000: 86-100

[NM03] Nakagawa, M., Mobasher, B.: A Hybrid Web Personalization Model Based on

Site Connectivity. Proc. 5th WEBKDD workshop, Washington, DC, USA, Aug. 2003

[Noy04] Noy, N.: Semantic Integration: A Survey Of Ontology-Based Approaches.

SIGMOD Record 33(4): 65-70. 2004

[NS05] Noy, N., Stuckenschmidt, H.: Ontology Alignment: An annotated Bibliography.

Semantic Interoperability and Integration 2005

[NUU95] Nuutila, E.: Efficient Transitive Closure Computation in Large Digraphs. Acta

Polytechnica Scandinavica, Mathematics and Computing in Engineering Series No. 74,

Helsinki 1995, 124 pages. Published by the Finnish Academy of Technology. ISBN 951-

666-451-2, ISSN 1237-2404, UDC 681.3.

[OF01] Omelayenko, B., Fensel, D.: An Analysis of B2B Catalogue Integration Problems.

ICEIS (2) 2001: 945-952

Mykola Golovin References

206

[OF01a] Omelayenko, B., Fensel, D.: An Analysis of Integration Problems of XML-Based

Catalogs for B2B Electronic Commerce. DS-9 2001: 221-235

[OF01b] Omelayenko, B., Fensel, D.: A Two-Layered Integration Approach for Product

Information in B2B E-commerce. EC-Web 2001: 226-239

[PP04] Preda, M., Popescu, D.: Using Reinforcement Learning to Generate Adaptive Web

Recommendations, Advances in Intelligent Systems – Theory and Applications

AISTA‟2004, November 15-18, Luxembourg, 2004

[PP04] Preda, M., Popescu, D.:Using Reinforcement Learning to Generate Adaptive Web

Recommendations, Advances in Intelligent Systems – Theory and Applications

AISTA‟2004, November 15-18, Luxembourg, 2004

[PP05] Preda, M., Popescu, D.: Personalized Web Recommendations: Supporting

Epistemic Information about End-Users. Web Intelligence 2005: 692-695

[PPPS03] Pierrakos, D., Paliouras, G. , Papatheodorou, C. , Spyropoulos, C. : "Web Usage

Mining as a tool for personalization: a survey". User Modeling and User-Adapted

Interaction, v. 13, n. 4, pp. 311-372, 2003

[Prud06] Prudsys AG: "Individuelle Produktempfehlungen bei quelle.de", August 2006,

http://www.prudsys.de, access date: 2007-11-12.

[PSF02] Perugini, S., Goncalves, M., Fox, E.: A Connection-Centric Survey of

Recommender Systems Research CoRR cs.IR/0205059. 2002

[PSF04] Perugini, S., Goncalves, M., Fox, E.: Recommender Systems Research: A

Connection-Centric Survey. J. Intell. Inf. Syst. 23(2): 107-143. 2004

[PZ03] P. Paulson, A. Tzanavari: Combining Collaborative and Content-Based Filtering

Using Conceptual Graphs. Lecture Notes in Computer Science 2873 Springer 2003

[Quin93] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman, 1993

[RB01] Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.

VLDB J. 10(4): 334-350 (2001)

[RB06] Rahm, E., Bernstein, P.: An online bibliography on schema evolution. SIGMOD

Record 35(4): 30-31 (2006)

[RCT04] E. Reategui, J. Campbell, R. Torres, R. Using Item Descriptors in Recommender

Systems, AAAI Workshop on Semantic Web Personalization, San Jose, USA, 2004

[Rijs79] Van Rijsbergen, C.: Information Retrieval. 2nd Edition, Butterworths, London,

1979.

http://www.prudsys.de/

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 207

[RN94] Rummery, G., Niranjan, M.: On-line qlearning using connectionist systems.

Technical Report CUED/F-INFENG/TR 166, Cambridge University. 1994.

[RS03] Rahm, E., Stöhr, T.: Data-Warehouse-Einsatz zur Web-Zugriffsanalyse. Web &

Datenbanken 2003: 335-362

[RT05] Rahm, E., Thor, A.: Citation analysis of database publications, SIGMOD Record

34(4), 2005.

[RTA+05] Rahm, E., Thor, A., Aumueller, D., Do, H. H., Golovin, N., Kirsten, T. : iFuice

- Information Fusion utilizing Instance Correspondences and Peer Mappings. 8th

International Workshop on the Web and Databases (WebDB). 2005-06

[RTA07] Rahm, E., Thor, A., Aumueller, D.: Dynamic Fusion of Web Data. XSym 2007:

14-16

[SB98] Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press,1998.

[SBH02] Shani, G., Brafman, R., Heckerman, D.: An MDP-based recommender system. In

Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages

453-460, 2002.

[Schw93] Schwartz, A.: A reinforcement learning method for maximizing undiscounted

rewards. Proceeding of the Tenth Annual Conference on Machine Learning, pages 298--

305, 1993.

[SF98] Spiliopoulou, M., Faulstich, L.: WUM - A Tool for WWW Ulitization Analysis.

WebDB 1998: 184-103

[SHB05] Shani, G., Heckerman, D., Brafman, R.: An MDP-based recommender system.

Journal of Machine Learning Research 6: 1265-1295, 2005.

[Shop07] Shop.org. The State of Retailing Online. Study. http://www.shop.org

[SKKR00] Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of Recommendation

Algorithms for E-Commerce. Proc. ACM E-Commerce, 2000.

[SKR01] Schafer, J., Konstan, J., Riedl, J.: E-Commerce Recommendation Applications.

Data Min. Knowl. Discov. 5(1/2): 115-153 (2001)

[SKR02] Schafer, J., Konstan, J., Riedl, J.: Meta-recommendation systems: user-controlled

integration of diverse recommendations. CIKM 2002: 43-51

[SM01] Stumme, G., Maedche, A.: FCA-MERGE: Bottom-Up Merging of Ontologies.

IJCAI 2001: 225-234

Mykola Golovin References

208

[SP01] Spiliopoulou, M., Pohle, C.: Data Mining for Measuring and Improving the

Success of Web Sites. Data Min. Knowl. Discov. 5(1/2): 85-114. 2001.

[SRQ00] Stöhr, T., Rahm, E., Quitzsch, S.: OLAP-Auswertung von Web-Zugriffen. GI-

Workshop Internet-Datenbanken 2000: 95-104

[SS01] Sinha, R., Swearingen, K.: Comparing recommendaions made by online systems

and friends. In: Proceedings of Delos-NSF Workshop on Personalisation and

Recommender Systems in Digital Libraries. 2001.

[SSR98] Santamaria, J., Sutton, R., Ram, A.: Experiments with reinforcement learning in

problems with continuous state and action spaces. Adaptive Behavior, 6(2), 1998.

[Sutt96] Sutton, R. :Reinforcement learning and information access, in AAAI Stanford

Spring Symposium on Machine Learning and Information Access, March 1996.

[Swet63] Swets, J.: Information retrieval systems. Science 141, 245–250, 1963.

[TAK03] Thakkar, S., Ambite, J., Knoblock, C.: A view integration approach to dynamic

composition of web services. In Proceedings of 2003 ICAPS Workshop on Planning for

Web Services, Trento, Italy, 2003

[TAR07] Thor, A., Aumueller, D., Rahm, E.: Data Integration Support for Mashups. Sixth

International Workshop on Information Integration on the Web, IIWeb, 2007. Vancouver,

Canada. 2007-07

[TAXT03] The Active XML Team. Active XML Primer. Technical report, Gemo, INRIA-

Futurs, Orsay. July 2003.

[TB07] Thess, M., Bolotnicov, M.: XELOPES Library Documentation Version 1.2.3,

Prudsys AG, June 2007, http://www.xelopes.de, access date: 2007-07-09.

[TGR05] Thor, A., Golovin, N., Rahm, E.: Adaptive website recommendations with

AWESOME. VLDB J. 14(4): 357-372, 2005.

[THG+09] Thor, A.,Hartung, M., Groß, A., Kirsten, T., Rahm, E.: An Evolution-based

Approach for Assessing Ontology Mappings - A Case Study in the Life Sciences. Proc. of

BTW2009.

[TK07] Taghipour, N., Kardan, A.: Enhancing a Web Recommender System based on Q

Learning. LWA 2007: 21-28

[TKG07] Taghipour, N., Kardan, A., Ghidary, S.: Usage-based web recommendations: a

reinforcement learning approach. RecSys 2007: 113-120

[TKR07] Thor, A., Kirsten, T., Rahm, E.: Instance-based matching of hierarchical

ontologies. BTW 2007: 436-448

Mykola Golovin Web Recommendations for E-Commerce Websites

14 Summary 209

[TM07] Tintarev, N., Masthoff, J.: A Survey of Explanations in Recommender Systems.

ICDE Workshops 2007: 801-810. 2007

[TR04] Thor, A., Rahm, E.: AWESOME - A Data Warehouse-based System for Adaptive

Website Recommendations. Proc. 30th Intl. Conf. on Very Large Databases (VLDB),

Toronto, Aug. 2004

[TR07] Thor, A., Rahm, E.: MOMA - A Mapping-based Object Matching System. Proc. of

the 3rd Biennial Conference on Innovative Data Systems Research 2007

[VMP03] Velegrakis, Y., Miller, R., Popa, L.: Mapping adaptation under evolving

schemas. In VLDB 2003, Proceedings of 29th International Conference on Very Large

Data Bases, September 9-12, 2003, Berlin, Germany, 2003.

[VMP04] Velegrakis, Y., Miller, R., Popa, L.: : Preserving mapping consistency under

schema changes. VLDB J. 13(3): 274-293, 2004.

[VMPM04]Velegrakis, Y., Miller, R., Popa, L., Mylopoulos, J.: ToMAS: A System for

Adapting Mappings while Schemas Evolve. ICDE 2004: 862 [Wang06] Wang, T.: Action

Selection in Bayesian Reinforcement Learning. AAAI 2006

[Watk89] Watkins, C.: Learning from delayed rewards. PhD thesis, University of

Cambridge, Cambridge, England. 1989.

[Yao95] Yao, Y. Y.: Measuring retrieval effectiveness based on user preference of

documents. J. ASIS. 46, 133–14, 1995.

[YP05] Yang, Y., Padmanabhan, B. : Evaluation of online personalization systems: a

survey of evaluation schema and a knowledge-basedapproach, Journal of electronic

commerce, 2005.

Mykola Golovin References

210

Nick Golovin Web Recommendations for E-Commerce Websites

Appendix 211

APPENDIX 1. SCREENSHOTS OF WEB RECOMMENDATIONS

Figure A1.1. Screenshot of the product detail page of the website

http://www.softunity.com (EC). The recommendations are shown on the right side. Up to

five recommendations are shown for each products, if available. Depending on the screen

resolution of the client browser, three, four or five recommendations are visible without

scrolling.

Figure A1.2. Screenshot of the website http://dbs.uni-leipzig.de (EDU). The

recommendations are shown on the right. Up to two recommendations are shown, if

available.

http://www.softunity.com/
http://dbs.uni-leipzig.de/

Nick Golovin Appendix 2. Examples of Recommendation Optimization

212

APPENDIX 2. EXAMPLES OF RECOMMENDATION OPTIMIZATION

A2.1 Examples of weight learning for the algorithm REW_ONLY_0

Figure A2.1. Learning weights for the product “Singles 2 – Wilde Zeiten(Hammerpreis)”.

Figure A2.2. Learning weights for the product “Anno 1701(PC)”.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

1
9

0
8

1
8

1
5

2
7

2
2

3
6

2
9

4
5

3
6

5
4

4
3

6
3

5
0

7
2

5
7

8
1

6
4

9
0

7
1

9
9

7
8

1
0

8
8

5
1

1
7

9
2

1
2

6
9

9

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t

ECD008010M (Singles 2 - Wilde Zeiten (Hammerpreis))

ECD000879K (Singles - Flirt
up your Life!)

ECD008010L (Singles 2 -
Wilde Zeiten (Download-
Version, 518.6 MB))

ECD008039M (Singles
Extended Version (PC))

ECD008104M (Singles 2 -
Wilde Zeiten Special Edition
(PC))

ECD538018K (Singles - Flirt
up your life!)

ECD538019M (Singles 2
Triple Trouble)

0

0,005

0,01

0,015

0,02

0,025

1

1
0

3
9

2
0

7
7

3
1

1
5

4
1

5
3

5
1

9
1

6
2

2
9

7
2

6
7

8
3

0
5

9
3

4
3

1
0

3
8

1

1
1

4
1

9

1
2

4
5

7

1
3

4
9

5
1

4
5

3
3

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t

ECD008136M (Anno 1701 (PC))

ECD008136L (Anno 1701
(Download-Version MB))

ECD008137M (Anno 1701
(It.))

ECD008264M (Anno 1701
Limited Edition)

ECD560129D (Elder Scrolls
IV: Oblivion (PC-DVD))

ECD605001B (Anno 1701 -
Das offizielle Strategiebuch)

ECD865274 (Anno 1701
(NDS))

ECD900031D (Anno 1701
(Frz.))

Nick Golovin Web Recommendations for E-Commerce Websites

Appendix 213

A2.2 Example of weight learning for the algorithm REW_DEC_0

Figure A2.3. Learning weights for the product “Singles 2 – Wilde Zeiten(Hammerpreis)”.

Figure A2.4. Learning weights for the product “Anno 1701(PC)”.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

1
9

0
8

1
8

1
5

2
7

2
2

3
6

2
9

4
5

3
6

5
4

4
3

6
3

5
0

7
2

5
7

8
1

6
4

9
0

7
1

9
9

7
8

1
0

8
8

5
1

1
7

9
2

1
2

6
9

9

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t

ECD008010M (Singles 2 - Wilde Zeiten (Hammerpreis))

ECD000879K (Singles - Flirt
up your Life!)

ECD008010L (Singles 2 -
Wilde Zeiten (Download-
Version, 518.6 MB))

ECD008039M (Singles
Extended Version (PC))

ECD008104M (Singles 2 -
Wilde Zeiten Special Edition
(PC))

ECD538018K (Singles - Flirt
up your life!)

ECD538019M (Singles 2
Triple Trouble)

0

0,005

0,01

0,015

0,02

0,025

1
1

5
5

8
3

1
1

5
4

6
7

2
6

2
2

9
7

7
8

6
9

3
4

3
1

0
9

0
0

1
2

4
5

7
1

4
0

1
4

1
5

5
7

1
1

7
1

2
8

1
8

6
8

5
2

0
2

4
2

2
1

7
9

9

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t

ECD008136M (Anno 1701 (PC))

ECD008136L (Anno 1701
(Download-Version MB))

ECD008137M (Anno 1701
(It.))

ECD008264M (Anno 1701
Limited Edition)

ECD560129D (Elder Scrolls
IV: Oblivion (PC-DVD))

ECD605001B (Anno 1701 -
Das offizielle Strategiebuch)

ECD865274 (Anno 1701
(NDS))

ECD900031D (Anno 1701
(Frz.))

Nick Golovin Appendix 2. Examples of Recommendation Optimization

214

A2.3. Examples of weight learning for algorithm REW_PEN_0

Figure A2.5. Learning weights for the product “Singles 2 – Wilde Zeiten(Hammerpreis)”.

Figure A2.6. Learning weights for the product “Anno 1701(PC)”.

-0,015

-0,01

-0,005

0

0,005

0,01

0,015

0,02

0,025

0,03

1

8
0

1

1
6

0
1

2
4

0
1

3
2

0
1

4
0

0
1

4
8

0
1

5
6

0
1

6
4

0
1

7
2

0
1

8
0

0
1

8
8

0
1

9
6

0
1

1
0

4
0

1

1
1

2
0

1

1
2

0
0

1

1
2

8
0

1

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t

ECD008010M (Singles 2 - Wilde Zeiten (Hammerpreis))

ECD000879K (Singles -
Flirt up your Life!)

ECD008010L (Singles 2 -
Wilde Zeiten (Download-
Version, 518.6 MB))
ECD008039M (Singles
Extended Version (PC))

ECD008104M (Singles 2 -
Wilde Zeiten Special
Edition (PC))
ECD538018K (Singles -
Flirt up your life!)

ECD538019M (Singles 2
Triple Trouble)

-0,015

-0,01

-0,005

0

0,005

0,01

0,015

0,02

1
1

6
6

9
3

3
3

7
5

0
0

5
6

6
7

3
8

3
4

1
1

0
0

0
9

1
1

6
7

7
1

3
3

4
5

1
5

0
1

3
1

6
6

8
1

1
8

3
4

9
2

0
0

1
7

2
1

6
8

5

R
e

co
m

m
e

n
d

at
io

n
 r

u
le

 w
e

ig
h

t

ECD008136M (Anno 1701 (PC))

ECD008136L (Anno 1701
(Download-Version MB))

ECD008137M (Anno 1701
(It.))

ECD008264M (Anno 1701
Limited Edition)

ECD560129D (Elder Scrolls
IV: Oblivion (PC-DVD))

ECD605001B (Anno 1701 -
Das offizielle Strategiebuch)

ECD865274 (Anno 1701
(NDS))

ECD900031D (Anno 1701
(Frz.))

Nick Golovin Web Recommendations for E-Commerce Websites

Appendix 215

APPENDIX 3. EC-FUICE DATA PREPARATION SCRIPT

// Get Softunity ontology

$suonto:=queryInstances(Ontology@Softunity,\"ALL\");

// Get Ebay ontology

$ebonto:=queryInstances(Ontology@Ebay,\"ALL\");

// Get Amazon ontology, except for the manually pruned nodes and their

children

$amonto:=queryInstances(Ontology@Amazon,\"ALL EXCEPT

14238651,554846,547084,

547086,528052,528030,547088,554416,1099832,525470,13325641,547644,1039674

,14238441,

738564,656070,1099834,3118641,13503881,13533241,13532261,13531771,1353275

1,1027142,

1027152,1027162,1027180,1027190,1027208,1027218,1027228);

//load pre-caclulated onto mapping Amazon->Ebay

$amebontom:=map($amonto,Ebay.ontoAmazon2EbayMerged);

//create inverse onto mapping

$ebamontom:=inverse($amebontom);

//load pre-caclulated onto mapping Amazon->Softunity

$amsuontom:=map($amonto,Softunity.ontoAmazon2SoftunityMerged);

//create inverse onto mapping

$suamontom:=inverse($amsuontomm);

//compose onto mapping Softunity->Ebay from mappings Softunity->Amazon

and Amazon->Ebay

$suebontom:=compose($suamontomm,$amebontom);

//create inverse onto mapping

$ebsuontomm:=inverse($suebontomm);

//get mapping from Ontology to products for Softunity, the product ids

are loaded into object cache

$suontoprod:=map($suonto,Softunity.OntoProd);

//get all Softunity products from object cache

$suprod:=queryInstances(Product@Softunity,\"1=1\");

// get all attributes for Siftunity products into attribute cache

getInstances($suprod);

//create mapping from Sofunity products to Ebay products

$suebprod:=map($suprod,Ebay.Softunity2Ebay);

// Load ontology to product mapping from Amazon. Products are loaded by

querying all ontology categories to get

// the products which belong to these categories

$amontoprod:=map($amonto,Amazon.OntoProdBulk);

//get the list of products

$amprod:=range($amontoprod);

//get all atributes for products

getInstances($amprod);

$amebprod:=map($amprod,Ebay.Amazon2Ebay);

// for ebay products, we do not use all but only those which have

correspondences either on Amazon or on Softunity

$ebprod:=union(range($amebprod),range($suebprod));

//Ebay has too large number of products for all attributes to be loaded

in one operation.

// We are using loop to load the product attributes in portions

Nick Golovin Appendix 3. EC-Fuice data preparation script

216

$i:=0;

while $i<=9 do

 $ebprodtemp:=queryInstances($ebprod,"[id] like '%"+$i+"'");

 getInstances($ebprodtemp);

 $i:=$i + 1;

end;

