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danke ich für ihre andauernde Unterstützung und Bestärkung. Ganz besonders bedanke

ich mich bei Christin Albin, die mir immer verständnisvoll und aufmunternd zur Seite
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1 Introduction

In everyday life we are surrounded by a multitude of computing devices, including note-

books, PDAs, mobile phones, navigation systems, MP3-players and so on. As they become

increasingly powerful, cheaper and smaller, our environment will be filled with large collec-

tions of these devices. Most of them are equipped with wireless communication interfaces,

allowing them to interact and collaborate. The formed networks of autonomous intelligent

systems open fascinating application areas, but also result in increasingly complex and

potentially unreliable systems. This opens new challenges to designers and users. Due

to the increasing complexity it will not be possible to explicitly design and manage these

systems in every detail and to anticipate every possible configuration. Thus, our technical

systems will have to act more independently, flexibly, and autonomously. They should or-

ganize themselves and adapt to an uncertain and dynamic environment while maintaining

a requested functionality.

Flexibility, self-organization, autonomy, and adaptivity are features ubiquitous in nat-

ural systems. Organic Computing is a new field of computer science that has the vision

to make technical systems more life-like in order to address the challenging requirements

raised by an increasing complexity. Organic Computing systems shall show so called self-x

properties, i.e., they should be self-organizing, self-optimizing, self-healing, self-protecting,

self-configuring, self-explaining and so on. Like in natural systems these properties shall

become apparent on the level of the whole system through the properties and interactions

of their components.

The self-x feature which is considered to be most important for Organic Computing

systems is self-organization, i.e., the adaptive and dynamic process that allows systems to

establish and maintain structure and function without external control. Self-organizing

systems bear several advantages over classical, centrally controlled systems. For instance,

failures of single components usually do not cause global malfunctions and self-organizing

systems typically scale well with their size. Therefore one objective of Organic Computing

is the identification and technical usage of the principles underlying the wide variation of

different self-organizing natural systems (Rochner and Müller-Schloer, 2005).

Closely related to self-organization is the concept of emergence (emergere, lat.: to ap-

pear, being produced, come into existence). Emergence relates to the occurrence of novel

properties on a higher system level based on the interaction of the lower level parts of the
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1 Introduction

system. Organic Computing tries to deepen the understanding of emergent behavior in

self-organizing systems and to utilize this knowledge for technical applications (Branke

et al., 2006).

Self-organization and resulting emergent effects also give rise to new problems that are

unknown in classical technical systems. Organic Computing must be able to deal with

the possibility of emerging global behavior due to unanticipated interactions between the

active components and find ways to control them (Müller-Schloer, 2004).

This thesis covers all of these aspects: the application of self-organization principles

found in nature to technical systems, the utilization of emergence for solving problems

in a decentralized and robust way, and the introduction and investigation of methods to

control emergent behavior.

1.1 Contribution of this Work

To emphasise the value of this thesis, this section enumerates our main contributions

together with the papers in which they are published. First this thesis briefly sketches

the concepts of self-organization and emergence, and gives a slightly deeper introduction

to the problem of engineering self-organizing systems with emergent properties. In the

second and third chapter we deal with emergence. We give examples of how to utilize

emergent effects and investigate how emergent behavior can be controlled. In the fourth

and fifth chapter we discuss how to create Organic Computing Systems whose components

are able to specialize for certain tasks and to cooperate in a self-organized way.

Chapter 2 investigates two decentralized systems that exploit emergent effects. In

the first part of the chapter so called Emergent Sorting Networks are introduced. These

directed networks consist of router agents with fixed positions and buffer sites that the

agents can use to store objects of different types. New objects are inserted randomly

into the network and are moved by the agents using simple local rules. At the outflow of

the networks the objects appear sorted, i.e., batches of objects of the same type can be

observed. As a macro-level property of the system the sortedness emerges from the local

rules of the agents. We study different local routing rules on varying network topologies

in terms of sorting performance and fairness. The presented results are published in

Scheidler et al. (2008).

In the second part of the chapter a decentralized algorithm for packet clustering in

networks is presented. This algorithm, which is inspired by the chemical recognition system

in ants, runs in networks in a self-organized way without any central control. Packets that

need to be grouped (clustered) according to an inherent data vector “meet” in the routers

of the networks and exchange information. From these local, decentralized interactions
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1.1 Contribution of this Work

of the packets the clustering emerges as a global system property. The algorithm was

published in Merkle et al. (2005, 2004) and Merkle et al. (2005).

Chapter 3 investigates an important question when dealing with self-organizing sys-

tems, that is, the question how to control (unwanted) emergent effects. A new approach

called swarm controlled emergence is introduced as a way to deal with this problem. A

proof of concept is given by applying the method to control an emergent effect in a nature

inspired test system. This work is submitted to an international journal and has been

partially published in Merkle et al. (2007).

A second work presented in this chapter deals with the question of controlling emergent

congestion effects in groups of ant like moving agents. The presented control methods do

not (or only slightly) alter the internal functioning of the agents, instead the environment

is modified in order to avoid the congestion. This work is published in Scheidler et al.

(2008).

Chapter 4 introduces so called Organic Support Systems as an approach to deal with

the execution of the necessary support and system care tasks in Organic Computing sys-

tems. Organic Support Systems consist of autonomous components which exhibit reconfig-

urable hardware in order to be able to adapt to the actual needs of the supported systems

by specializing for the required types of support tasks. Several aspects are treated in

the chapter. First a self-organized, social insect inspired mechanism for the allocation of

the service tasks to the support components is introduced, a work that is published in

Merkle et al. (2008, 2006). Second, the stability and performance of ant queue in-

spired methods for the partitioning and the sequential execution of the support tasks is

studied. The content of this part of the chapter is published in Scheidler et al. (2008c,

2007). Finally, as a third aspect, we investigate how to allocate the support tasks if the

supported and the supporting components are interconnected via a network. It is studied

how the decentralized clustering algorithm presented in Chapter 2 can be used to solve

this problem. This work is submitted to an international journal and is partially published

in Merkle et al. (2006).

Chapter 5 presents a work that uses interacting Pittsburgh-style Learning Classifier

Systems to evolve rule sets for solving classification problems on computing systems con-

sisting of distributed, autonomous, memory constrained components. Using this approach

the components become specialists for parts of the classification problem and learn to solve

the whole problem in cooperation. The chapter takes a deeper look at the structure and

properties of the evolved rule sets and the way the components share their knowledge. The

influence of different communication topologies and communication costs on the emerging

patterns of cooperation, on the obtained classification performance of the whole system

and on the distribution of knowledge within the system is studied. The work presented in
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1 Introduction

this chapter is published in Scheidler and Middendorf (2009) and Scheidler and

Middendorf (2009).

1.2 Self-Organization and Emergence

Self-organization and emergence are highly debated entities in many research fields such

as philosophy (Bedau and Humphreys, 2008), physics (Licata and Sakaji, 2008),

biology (Johnson, 2001), sociology (Luhmann, 1997), and several other fields of sci-

ence (Corning, 2002). For example physicists used the concepts of self-organization

and emergence to explain Bénard convection cells, psychologists to explain consciousness,

economists to explain stock market behavior, and organization theorists to explain infor-

mal networks in large companies. The collective movement behavior of animal groups,

such as swarms of bees, schools of fish, flocks of birds, and herds of mammals can be

explained as emerging from the local movement rules of the individuals. A traffic jam

is the emergent result of the interactions between drivers that make decisions based on

their local observations of the actual traffic situation. The evolution itself can be seen as

a self-organizing, emergent phenomenon. While highlighting the importance of the con-

cepts, their broad use has the disadvantage that depending on the domain the concepts

are associated with different and sometimes opposite ideas and interpretations.

We are aware that the following characterizations of the terms are too coarse to account

for some intricacies of the many different views which can be found in the literature. Espe-

cially we will not try to give exact definitions, the interested reader is referred to Degueta

et al. (2006) for a review on some definitions of emergence, respectively to Anderson

(2002) for definitions on self-organization. However the following descriptions will be suf-

ficient in the context of this thesis and relates to some common views especially from the

computer science literature (see, e.g., Banzhaf, 2009; Cakar et al., 2007; Correia,

2006; De Wolf and Holvoet, 2004; Fromm, 2005a,b; Marzo et al., 2006; Mühl

et al., 2007; Müller-Schloer and Sick, 2006; Rochner and Müller-Schloer,

2005; Yamins, 2005).

This thesis is dealing with systems consisting of a large number of interacting agents

or components that have no central control and hence are based only on local rules and

interactions. We will call such a system self-organising if it autonomously acquires and

maintains its structure in order to display a coherent behavior. That is, in response to

external circumstances and under appropriate conditions the system has the ability to

spontaneously arrange its components in a purposeful (non-random) manner. Such a

system adapts to the environment in order to be able to provide its primary functionality.

Self-organization increases the order in the system structure, i.e., the order within the
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organization and interactions of its components. Self-organizing systems are autonomous,

that is, the increase in order is reached without any external control.

When a large number of entities interact, the resulting system can show features and

behaviors which are not possessed by the individual constituents. That is, novel properties

can emerge on a higher system level. For the concept of emergence the most important

property is the micro-macro effect. It refers to the fact that the emergent effects (behavior,

structures, properties or patterns) that can be observed on a higher level of the system

(also called macro-level) are caused by the interactions of individual entities at the lower

level of the system (also called micro-level).

For the relation between the concepts of self-organization and emergence different points

of view can be found in the field of computer science: emergence and self-organization

are completely different concepts (De Wolf and Holvoet, 2004), both concepts are

synonyms (Fromm, 2006), emergence is a main property of self-organization (Holzer

et al., 2008), system showing emergence must be self-organizing (Minati and Pessa,

2006). Since in most cases that are interesting for Organic Computing emergence and self-

organization come together, we will stick with the view of Mnif and Müller-Schloer

(2006), that is, emergence is self-organized order. In this view a self-organization process

increases the order of a system and this increased order establishes as an emergent effect

that is observable on a higher system level.

Two points are important regarding this concept of emergence. First, the role of the

observer, since the concept of order depends strongly on the (human) observer’s selected

system attributes (Mnif and Müller-Schloer, 2006). Second, emergent effects are

very hard to predict, because they are novel, not possessed by the parts of the system

and are constituted through self-organized interactions between the parts of the whole

system. Some authors even define emergent effects as effects for which the optimal way of

prediction is simulation (Bedau, 1997; Darley, 1994).

1.3 Engineering Self-Organizing Systems with Emergent

Properties

Self-organizing technical systems have many attractive features. First of all they are

robust. The emergent properties on the macro-level are insensitive to fluctuations on the

micro-level processes and independent of individual components. Because self-organizing

systems are continuously re-organizing, their performance is robust against the loss of

single components, i.e., the systems show a graceful degradation behavior. Losses of

components can be tolerated because each component is simple and probably inexpensive.

Simple entities also have the advantage that such components are easy to program and
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to prove correct at the level of individual behavior. They can be implemented as (or on)

simple devices like sensors or RFID-chips. Another important feature of self-organizing

systems is their scalability. In fact, often the performance of such systems improves when

increasing the number of individual components. Last but not least these systems are

adaptive, i.e., they can deal with changing environment by re-organizing themselves. All

these properties make self-organizing systems and the resulting emergent properties very

interesting for system designers. An increasing number of researcher concern with the

question how to engineer self-organizing systems and the resulting emergent behavior.

They deal with the problem to find appropriate micro-level specifications that lead to a

desired global emergent behavior.

Traditional methodologies to design and engineer systems usually follow a top-down

approach. The design process is organized strictly hierarchical. A sequence of modelling

steps starting with a high level specification leads through several refinements finally to

a model which directly specifies the entities and their interactions. But when it comes

to design self-organizing systems and especially emergent behavior, this top-down process

conflicts with the fact that emergence is a bottom-up phenomenon. The unpredictable

bottom-up micro-macro direction in self-organizing systems makes any pure top-down

attempt useless.

These days there exists no common formal methodology for engineering self-organizing

systems with emergent properties, although some first steps are done in this direction.

Many of the proposed methodologies which shall guide developers through the process

of engineering emergent solutions are from the field of Multi Agent Systems and Agent

Oriented Software Engineering (see, e.g., Bernon et al., 2002; Gleizes et al., 2007;

Sudeikat et al., 2009; Wolf and Holvoet, 2005). Like stated before, a pure top-down

approach can not solve the problem and a formal design methodology must contain some

kind of round-trip process based on stepwise iterative enhancements that can bridge the

micro-macro distinction (Edmonds and Bryson, 2004; Fromm, 2006).

Within such a process the main question to be answered is how to find appropriate

micro-level rules that lead to a desired behavior on the macro-level. One way to de-

rive these micro-level specification is to imitate and adapt existing solutions. In the last

years many natural and artificial systems showing emergent effects have been investigated,

mostly using (individual based) simulations. For instance, simple computational models

can reproduce the mentioned collective moving behavior of animal groups in a realistic way

(Giardina, 2008). In these models each individual has a position, a current direction,

and a current speed. While moving every individual attempts to maintain a minimum

distance representing the personal space of the individual between itself and others, i.e.,

the individual avoids collisions. If there is no individual within the personal space of an

individual it steers to the average position of local neighbours and towards the average
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1.3 Engineering Self-Organizing Systems with Emergent Properties

heading of them, i.e., it gets attracted by its local neighbors and tries to align with them.

These simple interactions between the individuals are sufficient to reproduce the complex

adaptive patterns observable at the level of the group.

Cellular Automata have been used to model several emergent phenomenas. Cellular

Automatas are spatially and temporally discrete dynamical systems composed of a lattice

of extremely simple elements (“cells”). Each cell’s state is fully determined by the states of

its neighboring cells, and updated repeatedly using simple local rules. Despite the relative

simplicity of the model it can produce complex spatial and temporal patterns (Symons,

2008). For instance the model can be used to reproduce the mentioned emergence of

traffic jams (Nagel and Schreckenberg, 1992) or it can be used to model the emergent

formation of patterns in biological systems, like the pigmentation patterns of some seashells

(Deutsch and Dormann, 2005).

Even though, such extensive computational studies of emergent behavior will fail to shed

light on general metaphysical questions concerning the nature of emergence (Symons,

2008), they nonetheless can provide plausible explanations of particular cases of self-

organization and the resulting emergent behavior. The gathered experience can thus be

cumulated and a future engineer might use a large collection of basic “design patterns for

emergent effects”to apply and, if necessary, adapt them to build a desired system behavior.

First steps to systematically collect such design patterns and guidelines for designing self-

organizing systems are already done (see, e.g., De Wolf and Holvoet, 2006; Gardelli

et al., 2007; Mamei et al., 2006; Parunak and Brueckner, 2004; Sudeikat and

Renz, 2008).

Most of these patterns are inspired by natural systems. A very prominent example of

a nature phenomenon that served as a “design pattern” for several technical applications

is the pheromone trail laying behavior of ants. Through the local interactions of the

individuals with their environment ant colonies can form and maintain relatively short

trails between their nests and food sources. In the following a brief explanation how

this works is given. Individual ants deposit a chemical substance called pheromone on the

ground when they move from a food source to their nest. Other ants follow the pheromone

trail and reinforce it if they eventually find food. Over time the pheromone evaporates,

thus reducing its attractive strength. In an experimental setup, offering two possible paths

to the food that have different length, ants which followed the shorter path will return

faster and thus the pheromone on the shorter path will be stronger and attract more

ants that start new trips to the food. Eventually all ants will use the short path. This

behavior has inspired the well known Ant Colony Optimization metaheuristic that is used

to solve combinatorial optimization problems (see, e.g., Dorigo et al., 1996) but also,

for example, network traffic routing protocols (Di Caro, 2004) or the distributed control

of robot swarms (Hauert et al., 2008).
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1 Introduction

Another emergent effect found in insects that was applied to several technical systems is

a synchronization behavior found in fireflies. In South-East Asia huge swarms of tropical

fireflies synchronously emit light flashes to attract mating partners (Buck, 1988). The

ability of the insects to synchronize their flashing can be modelled using so called pulse-

coupled oscillators. Pulse-coupled oscillators influence each others only during short, pe-

riodic pulses. Every oscillator exhibits an activation state that increases over time. If

the activation level reaches a certain threshold the oscillator fires and the activation is set

back to zero. Neighbored oscillators that observe the firing increase their activation by

a small amount, which can lead to firing and a setback of the activation level, too. In

this way almost always a state emerges in which all oscillators are firing synchronously

(Mirollo and Strogatz, 1990). Inspired by this model, several distributed clock syn-

chronization algorithms for sensor, overlay, and ad-hoc networks have been developed (see,

e.g., Leidenfrost and Elmenreich, 2009; Tyrrell et al., 2007). Whereas most ap-

plications can be found in the field of network synchronization, there are also examples of

using the firefly synchronization method in other fields, for instance, Christensen et al.

(2009) proposes a completely distributed algorithm to detect non-operational individuals

in multi-robot systems.

Many other applications of self-organizing systems discovered in nature can be found,

for example, the emergent pattern formation in reaction diffusion systems has been applied

to sensor networks (see, e.g., Wakamiya et al., 2008), the behavior of ants to sort their

larvae has inspired the design of clustering algorithms (see, e.g., Handl and Meyer,

2007), models of task allocation in wasp colonies were applied in different industrial settings

(see, e.g., Cicirello and Smith, 2004), the movement rules found in herds, flocks, and

schools are used to simulate crowds in movies or computer games (see, e.g., Azahar

et al., 2008), models of the spread of epidemics have led to several robust and highly

resilient algorithms for propagating information in networks (Eugster et al., 2004), cell

adhesion processes have inspired strategies for topology forming in Peer-to-Peer networks

(Jelasity et al., 2009), and so on.

Nature inspired “emergence design patterns” can thus be very helpful for designing

system with emergent properties. But often for a given problem no such pattern exists

or an existing one has to be modified. Because of the inherent unpredictability of the

emergent effects, the only reliable way to find an appropriate micro-level specification is

then to follow, at least partly, a trial-and-error process. This means specific local rules

are implemented via simulation or directly in an existing system and it has to be tested if

the wanted macro-effects emerge. If not, the rules must be modified in a reasonable way

until the desired goal is reached. Since a pure bottom up process that tests all possible

combinations and configurations on the micro-level is not feasible, more elaborate search

methods must be applied.
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1.3 Engineering Self-Organizing Systems with Emergent Properties

The search for simple rules that generate a complex pattern resembles to the problem

of science in general (Fromm, 2006). Science tries to explain complexity by describing

complex natural phenomena using a minimum of primary principles, laws, and rules.

The scientific method uses experiments to gather evidence and numerical data in order

to validate hypotheses and theories. A continuous round-trip from the concrete world

phenomenas to the abstract model and back results in an iterative refinement of the

theory or model. The formulation of the hypotheses, principles, theories, and laws is the

non-trivial step in science. This hard step requires a lot of personal experience, creativity,

intuition, and curiosity.

Several approaches to engineer self-organizing systems somehow equal this well-known

scientific method applied to an artificial world instead to the natural world (e.g. Edmonds,

2004; Gershenson, 2007). Interchanging top-down and bottom-up phases shall lead to

a stepwise iterative enhancement of a considered solution. The way up corresponds to

experiments in science, this means synthesis and simulation of the individual actions on the

micro level. The way down corresponds to theory and means to create testable hypotheses

and to analyse how collective forces influence and constrain individual actions. A human

designer is directly incorporated in the trial-and-error based iterative enhancement of the

micro-level rules. Like in the scientific method experience and intuition are helpful.

In cases of systems with high complexity and large parameter spaces involving a hu-

man designer in the time-consuming trial-and-error process is often not efficient or even

unfeasible. In this case automated processes that search for local rules based on a desired

global behavior or a given global goal can help.

Since the complexity of the considered systems grows heavily with the number of pos-

sible local states and rules, a full search over the design space is not feasible. A more

suitable methodology for the automated (simulation based) search and design of emergent

behavior is to use Evolutionary Algorithms (EAs) (Branke and Schmeck, 2008; Zapf

and Weise, 2007). This mimics the way the observable emergent behavior found in many

natural systems has developed. Because EAs are black box algorithms they can be ap-

plied to any problem where a quality (or fitness) can be assigned to a solution and thus

the algorithm does not need any internal knowledge about the simulated system. Other

advantages are that EAs can run in parallel and cope with the uncertainty of stochastic

simulation models. Since they maintain populations of solutions EAs are able to handle

multiple objectives and uncertainty about the user preferences.

Several examples for the use of Evolutionary Algorithms to evolve local rules for self-

organizing systems exist. In the field of evolutionary robotics they have been applied to

generate self-organising behaviors in groups of autonomous robots (see, e.g., Fehervari

and Elmenreich, 2009; Trianni, 2008). In the field of cellular automata they are used,

for instance, to search for glider guns (Sapin and Bull, 2007) or to evolve automata that
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can detect edges in images (Batouche et al., 2006). In Komann et al. (2009) and

Komann and Fey (2009) EAs evolve appropriate micro-level rules to deal with the so

called Creatures’ Exploration Problem. In this problem agents are situated in a regular

grid with blocked and unblocked cells. Based on the locally perceived neighborhood final

state machines determine the next movement steps of the agents. A Genetic Algorithm

is used in order to evolve final state machines which steer the agents to visit as many

unblocked cells as possible in a given time.

In these examples the automatic trial-and-error search for appropriate micro-level rules

takes place in an offline, simulated environment. In this way a large number of different

combinations of rules can be tested with respect to a given goal. The downside of a

simulation based approach is that it is sometimes hard or even impossible to model all

influences a changing environment might have on the developed self-organized system.

Such influences can lead to unforeseen and therefore not simulated systems states. A way

to deal with this problem is to shift the search for the local behavior leading to a desired

global (emergent) behavior from the design time to the run time of the system.

A general form of systems that are able to deal with unforeseen system states and

environmental changes are so called self-adaptive systems (Cheng et al., 2009). The

“self” prefix indicates that the individual system reasons about its state and environment

and decides autonomously how to adapt and self-organize to accommodate changes in

its context and environment. In this way a self-adaptive system is able to deal with a

changing environment and emerging requirements that may be unknown at design-time.

The comparison of the actual state of the system with given higher-level objectives guides

the self-adaption process. From control engineering such a circular dependence is known

as a feedback loop. Even if, adding automation such as feedback loops can itself lead to

unexpected behavior (Brown and Hellerstein, 2005), feedback loops are seen to be

one of the main aspects that enable self-adaptive systems to deal with unforeseen system

states (Brun et al., 2009).

A first architecture for self-adaptive systems that explicitly exposes the feedback con-

trol loop is the Autonomic Element introduced by Kephart and Chess (2003) and

popularized through IBM’s architectural blueprint for Autonomic Computing (IBM Cor-

poration, 2006). IBM uses the metaphor of the autonomic nervous system, which runs

our body for us without need for conscious intervention. In the same way autonomic com-

puting systems shall function largely independently from human interventions, adapting,

correcting, and repairing themselves whenever problems occur. Autonomic Elements are

the basic building blocks of autonomic systems. They contain and manage resources and

deliver services to humans or other Autonomic Elements. An Autonomic Element con-

sists of an autonomic manager and one or more managed elements building a feedback

loop. The autonomic manager consists of sensors, effectors, and an analysis and planning
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1.3 Engineering Self-Organizing Systems with Emergent Properties

engine. This engine contains a monitor that filters the data collected from the sensors

and stores them in a knowledge base, an analysis component that compares the collected

data against desired values, a planning component that develops strategies to correct the

trends identified by the analysis component and an execution engine that finally adjusts

parameters of the managed element by means of effectors. Autonomic Elements manage

their own internal states and their interactions with the environment and other Autonomic

Elements driven by the goals and policies the designers have built into the system.

IBM’s Autonomic Computing was mainly developed for monitoring and adapting en-

terprise server applications. An approach that is more general in its focus of application

is the so called generic observer/controller architecture (see, e.g. Branke et al., 2006;

Richter et al., 2006; Schöler and Müller-Schloer, 2006). It was proposed by

several researchers in the field of Organic Computing in order to assess the behavior of

self-organizing technical systems consisting of large collections of intelligent devices and

to introduce a regulatory feedback to control the dynamics of such systems. The main

objective of the architecture is to achieve a controlled self-organised behavior, that is, to

influence the self-organizing processes on the micro-level of a system in order to control

the resulting emergent processes on the macro-level. Compared to classical system de-

sign Organic Computing Systems relaying the observer/controller architecture have the

ability to adapt and to cope with some emergent behavior for which they have not been

designed explicitly. At least three possible objectives which can be realized with an ob-

server/controller architecture exist. The objectives can be to influence the system such

that a desired emergent behavior appears, to disrupt an undesired emergent behavior

as quickly and efficiently as possible or to construct the system in a way such that no

undesired emergent behavior can develop.

Figure 1.1: The observer/controller architecture

In Figure 1.1 an illustration of the generic observer/controller architecture is given.

Three major components play a role, namely the system under observation and control

17



1 Introduction

(SuOC), the observer and the controller. The SuOC is assumed to consist of a large

collection of communicating active objects possessing certain common attributes. These

objects are relatively simple and in sum they constitute the decentralized self-organizing

system which needs to be controlled. It is assumed that the SuOC is able to run au-

tonomously even if the observer and controller are not present. The observer collects and

aggregates information on the micro level (about single objects in the SuOC) and on the

macro level (global properties of the SuOC). The observation behavior itself is variable

and is influenced by the so called observation model. The observation model selects the

attributes of interest and the needed detectors, it also chooses appropriate analysis tools

with regard to certain purposes given and selects appropriate prediction methods. The ob-

servation model can be selected by the controller and in this way the controller can direct

the attention of the observer to certain observables of interest in the current context. The

observer aggregates its observations into so called situation parameters that are reported

to the controller component. Based on the comparison of the observed with the expected

behavior the controller makes decisions about what actions are necessary to influence the

SuOC in the best (known) way.

The observer/controller architecture establishes a control loop on top of the SuOC.

Three different architectural variants are suggested: central (one observer/controller for

the whole system), distributed (an observer/controller for each subsystem), and multi-

level (one observer/controller for each subsystem as well as one (or more) for higher ob-

server/controller levels). In particular, for larger and more complex systems it will be

necessary to build hierarchically structured observer/controller systems instead of trying

to manage the whole system with one observer/controller.

A drawback of an online trial-and-error process in general is that the system must be

allowed to assess suboptimal system states in order to be able compare different control

methods and their influence on the system. In running systems, especially if executing

safety critical tasks, this is often unwanted. A solution to this problem is to extend the

observer/controller architecture to a two-level adaptation and learning architecture by

combining online adaption possibilities with a simulation based approach.

In several application of the observer/controller architecture it was shown that the result-

ing systems can show improved performance. For example, the Organic Traffic Controller

approach presented in Branke et al. (2006); Prothmann et al. (2009, 2008) can re-

duce the average delay time at controlled intersections by extending traffic light controllers

with an observer/controller architecture. Cakar et al. (2008) applies the generic ob-

server/controller architecture to the control of a multi-agent simulation of an intersection

without traffic lights in order to increase the traffic flow. Schöler and Müller-Schloer

(2005) and recently Tomforde et al. (2009) applies the observer/controller architecture

to the online adaption of parameters of network systems to dynamic environments.
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To sum up, the engineering of self-organizing systems and the question how to utilize

the resulting emergent behavior is a very active field of research in computer science.

Different concepts have been developed in order to face the problem of finding appropriate

local interactions between the components that lead to a desired global coherent behavior

of a system.
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2 Emergent Sorting and Clustering

One aim of Organic Computing is to utilize Emergence in technical systems. In this

chapter we introduce and study two examples of such systems. Many decentralized local

interactions between the entities of the systems lead to an increasing order on system

level. This emergence of order is the intended purpose of the systems: sorting objects

respectively grouping objects depending on their properties.

First we study so called Emergent Sorting Networks. These directed networks consist of

router agents with fixed positions and buffer sites that the agents can use to store objects

of different types. These objects are inserted randomly into the network. Moved by the

agents that use simple local rules, the objects traverse the network. The aim of the whole

system is to create a sorted outflow, that is, batches of objects of the same type, out of the

network. We study different local routing rules on varying network topologies in terms of

sorting performance and fairness.

In the second part of the chapter we investigate a new type of a decentralized clustering

problem. The problem is to cluster packets that are sent around in a network. We propose

an algorithm, called DPClust, for solving this problem. In this algorithm the clustering is

achieved in a decentralized manner by the routers of the network using simple local rules to

modify the packets and their cluster membership. We study the behavior of DPClust for

different problem instances and for networks consisting of several subnetworks. We apply

DPClust and two variants of DPClust to dynamic problems and study their performance.

2.1 Emergent Sorting in Networks of Router Agents

The following description of an industrial problem, arising in various industrial settings,

was given in Brueckner (2000):

Given a segment of a transport system of arbitrary layout in discrete high-

volume production [environments] composed of unidirectional line-buffers (e.g.,

conveyors) and multi-input multi-output sequential routing devices (e.g., rota-

tion tables, lifts), and assuming that the workpieces sent through the segment

are all of one product but may be differentiated on the basis of the value of

one product parameter; how may the segment be controlled in a decentralized

manner so that the outflow of workpieces occurs in batches of workpieces of the
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2 Emergent Sorting and Clustering

same product parameter value with the average batch size of the outflow being

significantly higher than that of the inflow?

This question becomes important in case the outflow of such a system is to be processed

by machines that have to pay setup costs every time the considered product parameter

changes. In order to minimize the setup cost over time, the system must minimize the

probability of a parameter change at the outflow.

Brueckner (2000) states that the solution to such a sorting problem requires a new

approach to control, based on self-organization rather than on a central controller. The

reason is that the problem is highly dynamic: at any time new workpieces may enter

the system while others leave it. Moreover, system parameters such as the volume of the

inflow may vary strongly over time. It may not even be known how many different product

variants have to be handled at a time.

The following distributed solution to the batching is proposed in Brueckner (2000):

to each sequential routing device a so-called router agent is assigned. These agents act

autonomously from each other. Agents can move a workpiece from an entry of its router

to one of its exits. In its memory the agent stores for each exit the value of the product

parameter of the last workpiece that has passed this exit. Having available multiple entries

and multiple exits, a router agent must decide on which workpiece to move to which exit.

These decisions are taken by a set of simple rules that reportedly result in a batching

(sorting) behavior of the system. That is, from the local rules of the agents and their

interaction with the traversing objects at a higher system level order observable through

an increased batch size emerges.

In the following we will study several aspects of what we call Emergent Sorting Networks,

an abstraction of the mentioned industrial system. First, we investigate and modify the set

of simple local rules for the agents presented in Brueckner (2000). Second, we introduce

and study an agent routing behavior that is based on pheromones, as used for example by

ant colonies while foraging (see, e.g., Wyatt, 2003). The original proposal was limited

to networks with square shape, as a third point, we thus study simpler networks that are

composed of router agents organized in a line. We try to deepen the understanding of

Emergent Sorting Networks by means of extensive experiments based on different routing

rules, different network layouts, different number of object types, and different number of

agents.

To the best of our knowledge, these systems of router agents have never been studied

in great detail. They were first mentioned in the context of the ESPRIT LTR project

MASCADA. In the PhD thesis (Brueckner, 2000) they served for motivating the work

carried out in the context of the thesis. And in a poster paper presented in the proceedings
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2.1 Emergent Sorting in Networks of Router Agents

Figure 2.1: Square shaped sorting network; buffer positions are depicted as squares; white
buffer positions are free; colored buffer positions indicate the types of objects
stored; agents are shown as circles; input/output sequences of objects are
shown as sequences of squares, in the same style as buffer positions

of the Genetic and Evolutionary Computation Conference (GECCO-2006) some limited

experiments were presented (Tozier et al., 2006).

2.1.1 Sorting Networks of Router Agents

Abstracting from the industrial problem we study so called Emergent Sorting Networks.

The basic components of Emergent Sorting Networks are router agents. Each router agent

a ∈ A has an input and an output buffer with n, respectively m, positions. We denote

the input buffer positions by x1, . . . , xn, and the output buffer positions by y1, . . . , ym. A

buffer position can store exactly one object of k different types t1, . . . , tk. Router agents are

connected to form a network topology by associating output buffer positions with input

buffer positions of other agents. This is done with respect to the following conditions:

(1) All input/output buffer positions must be involved in connections. (2) A one-to-one

relationship between associated output and input buffer positions must hold. (3) The

connections must be such that the resulting network is acyclic. Note that the set A of

agents contains two special agents: the so called inflow agent serves to feed the network

with incoming objects and the outflow agent produces the output of the network.

Router agents can pick up objects from their input buffer positions and move them to

a free output buffer position (if any). At each time step, in case the input position of the

inflow agent is empty it is filled with an object of random type. Thereafter, in random

order all agents apply their local routing rules. Within a time step every object can be

moved at most once. The network starts empty.

In Figure 2.1 the network structure that was originally proposed in Brueckner (2000)

is shown. Circles represent routing agents, buffer positions are depicted as squares and

arrows indicate the possible transportation direction of objects. White buffer positions
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2 Emergent Sorting and Clustering

are empty, and a colored buffer position indicates the type of object it stores. The agent

on the bottom left is the inflow agent and on the top right is the outflow agent. The

input/output sequences of objects are shown as sequences of squares, in the same style as

buffer positions. The Figure shows how a random sequence of objects is inserted into the

system. The objects are moved by the agents and traverse the network. The sequence of

object types at the outflow of the network is more sorted, i.e., batches of objects of the

same type are build.

2.1.2 Investigated Variants of Agent Behaviors

In the following the different investigated agent behaviors, i.e., the considered variants of

local routing rules are introduced in detail.

Original Behavior

The behavior of the agents used in the original system proposed in (Brueckner, 2000)

is given in the following. In this approach every agent memorizes for each of its output

buffer positions the type of the last object that was moved to this position (if any). If it

is an agents turn to perform an action the agent first tries to make a “good move”, i.e.,

the agent tries to move an object to a position for which it has memorized the type of the

object to be moved. If this is not possible, with a certain probability it moves a random

object to a random output buffer position. This probability depending on the fraction of

occupied input buffer positions to all input buffer positions. This implies that if only few

input buffer position are occupied with a high probability the agent does not move any

object. For details see Algorithm 1.

Algorithm 1 Original Behavior of an Agent a ∈ A

1: if it exists an unmoved object o of type t in the input buffer positions and a free
output buffer position yj for which the agent has memorized the type t then

2: Move o to yj

3: Memorize type of o for yj

4: else

5: if exists a free output buffer position yj and an unmoved object o in the input buffer
positions then

6: Let r be the number of unmoved objects in input buffer positions of a
7: Choose a random number p ∈ [0, 1]
8: if p < r/n then

9: Move o to yj

10: Memorize type of o for yj

11: end if

12: end if

13: end if
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2.1 Emergent Sorting in Networks of Router Agents

Pheromone Based Behavior

In the following we introduce a pheromone based variant of the agent behavior. For each

agent a ∈ A and for each object type ti (i = 1, . . . , k) we introduce a pheromone value

0 ≤ τa
i ≤ 1. All pheromone values are initially set to 1/k. If it is an agents turn to perform

an action it chooses an object based on the pheromone values for the different object types

and puts it on a random empty output buffer position. The higher a pheromone value for

a certain type, the higher the probability to choose objects of this type. The calculation of

the probabilities works in the same way as used in the well known Ant Colony Optimization

(ACO) metaheuristic (see, e.g., Dorigo and Stuetzle, 2004). The detailed formula is

given in Line 5 of Algorithm 2. After an agent a ∈ A has moved an object of type ts, the

pheromone values of agent a are updated (see Line 7 of Algorithm 2). The pheromone value

belonging to type ts is increased, thus the probability to move this type of objects again

increases. All other pheromone values are decreased. The parameter β gives the learning

rate, i.e., how strong the pheromones are updated. It has the similar functionality as the

pheromone evaporation parameter of the ACO algorithm. For this parameter appropriate

values depending on the used system parameters must be found.

Algorithm 2 Pheromone-Based Behavior of an Agent a ∈ A

1: T is the set of types of the (within this time step unmoved) objects in the input buffer
of a

2: Choose a random number p ∈ [0, 1]
3: if p < |T |/n then

4: if it exists at least one free output buffer position then

5: Choose a type ts ∈ T according to the following probability distribution:

p(ti) =
τa
i

∑

tl∈T τa
l

∀ ti ∈ T

6: Move an unmoved object o with type ts to a random free output buffer position
7: Update pheromone values: τa

j := τa
j + β(µj − τa

j ), j = 1, . . . , k, where µj = 1 in
case j = s and µj = 0 otherwise

8: end if

9: end if

New Waiting Rule

In the agents’ behaviors as given in Algorithm 1 and Algorithm 2 the agents wait depending

on the number of occupied input buffer positions. We also test a variation concerning this

original waiting rule. Using the so called new waiting rule an agent is only allowed to act

if all its input buffer positions are occupied by objects, i.e., Line 8 of Algorithm 1 and Line

3 of Algorithm 2 are replaced by ”if no input buffer position is empty then”.
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2.1.3 Experimental Evaluation

In order to study if networks need to be square-shaped for exhibiting a sorting behavior, we

also consider networks that are simply composed of a line of agents, as shown in Figure 2.2.

Figure 2.2: Line shaped sorting network

All presented results were obtained by simulation. We use the following notation for

the different options outlined before. The notation XY Z consists of three letters, where:

• X ∈ {B, P}. Hereby, B denotes the original agent behavior (Algorithm 1), and P

denotes the pheromone-based agent behavior (Algorithm 2).

• Y ∈ {o, n}. Letter o refers to the original waiting rule, i.e. the probability to

act is proportional to the fraction of occupied input buffer positions, whereas n

corresponds to the system using the new waiting rule, i.e., the agents only act when

all their input buffer positions are occupied.

• Z ∈ {s, l}. This identifier refers to the network structure. Letter s indicates a

square-shaped network, and letter l refers to a network in shape of a line.

Measures of System Performance

We measure the performance of the system as the probability that at the outflow a change

in the object type can be observed. The lower this probability, the longer the batches of

objects of the same type and therefore the better the performance of the sorting network.

This measure will henceforth be denoted by pc. If not stated otherwise, for each parameter

set 50 000 time steps were simulated.

Additionally, the number of time steps that the objects spend in the systems (plus max-

imum and mean of these values) and how many objects leave the systems when simulating

1 000 000 time steps were measured.

Tuning

As mentioned previously, the pheromone-based agent behavior requires an appropriate

setting of the parameter β ∈ [0, 1]. In order to find good values for this parameter the

values β ∈ {0, 0.05, 0.1, . . . , 1.0} have been tested in different sorting networks. From the
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Figure 2.3: Tuning results for systems for the pheromone based systems Po* (top) and
Pn* (bottom) for the square (left) and the line topology (right); 5 object types;
circles indicate lowest values found

results for every system parameter combination we determine the value of parameter β that

leads to the best performance pc. These values were used in all subsequent experiments

with pheromone based systems.

In Figure 2.3 tuning results of the pheromone based systems in terms of the measure

pc, i.e., the probability of a type change in the outflow, are presented. Each subfigure

contains four performance curves, corresponding to four different network sizes: 16, 64,

144, and 256 agents. Circles in the plots indicate the lowest measured pc for each network

size. Following conclusions can be made: First, in square-shaped networks an agent should

always try to repeat the action of the previous time step (β = 1). Second, in line-shaped

networks the more agents used, the smaller the value of β should be. Third, the optimal

value for β also depends on the different waiting rules and also slightly on the number of

types (results not shown).
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Figure 2.4: Performance pc over the number of agents for systems *o* (left) and systems
*n* (right) for 3 (top) and 5 (bottom) types.

2.1.4 Results

Figure 2.4 presents the probability of a type change pc for the original system as well as

for the proposed variants. Results are shown for different numbers of object types {3, 5}

dependent on the number of agents.

Concerning the original waiting rule (systems ∗o∗ in Figure 2.4(a) and (b)), one can

observe that the sorting in the line-shaped networks is in general better than the sorting

in the square-shaped networks. This trend becomes stronger the more object types are

used. A second observation that can be made is that the pheromone-based systems greatly

improve over the original systems when line-shaped networks with many agents are used.

The opposite is the case for square-shaped networks.

Interestingly, the results concerning the new waiting rule of the agent behaviors (systems

∗n∗ in Figure 2.4(c) and (d)) look quite different. Here the original system in conjunction

with a square-shaped network (Bns) works best. When three types of objects are in the

systems, square-shaped networks outperform line-shaped ones. However, when the number
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Figure 2.5: Performance results concerning higher numbers of types (a); throughput of all
systems (b)

of types is increased, the performance of the pheromone-based system on a square-shaped

network drops, but the performance of the line-shaped networks improves.

In order to study this effect in more detail, we performed experiments using up to 12

different object types. In the outcome the three systems Bns, Bnl, and Pnl showed

the best performance. Their results are given in Figure 2.5(a). An interesting effect can

be observed here. The results show that for a low number of object types the system

Bns outperforms both line-shaped systems, but when there are more object types in the

systems the number of agents becomes important: Using few agents system Bnl is best,

whereas using many agents Pnl is the best performing system.

When comparing the performance of the systems with the original waiting rule (*o*) to

the performance of systems using the changed waiting rule (*n*), there is a clear advantage

of the modified systems. The best-performing system with the new waiting rule (Bns)

performs always better than the best-performing system with original rule (Pol).

System Average Standard Deviation Maximum

bos 257.5 354.7 16194
bol 241.7 16.1 341
pos 335.8 203.9 5600
pol 381.1 13.30 482

bns 302.9 301.1 11155
bnl 433.8 19.20 587
pns 527.6 310.2 6158
pnl 496.0 11.20 600

Table 2.1: Results concerning the time objects stay in the system.
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In the second column of Table 2.1 the average time an object spends in the different

systems is given. The third column contains the standard deviation of these times and

the fourth column provides the maximal time an object spent in the system. In general,

the pheromone-based systems are characterized by a longer ”average time in system” but

the ”maximal time in system” is greatly reduced as compared to the original systems. The

line-shaped networks show a short ”maximal time in system” and are more fair since the

times the different objects stay in the system has a lower variance. In addition, we can

observe that the changed waiting rule (systems ∗n∗) leads to an increase in both average

and maximal time that an object stays in the system.

In Figure 2.5(b) the throughput is given, i.e., the number of objects that traverse the

system in 1 000 000 simulation steps. It can be seen that in systems using the original

waiting behavior more objects leave the system, because the agents can act more often

and do not need to wait. Pheromone based systems have a lower throughput than the

original systems, because in pheromone based systems the waiting rule is always applied,

whereas in the original system the waiting rule is only applied if no “good” move can be

made (see Line 1 in Algorithm 1).

2.1.5 The Increase of Order in Emergent Sorting Networks

Based on local decisions of the router agents the proposed Emergent Sorting Networks

sort random sequences of objects of different types. As a result an increase of order can

be observed on system level. As stated in Section 1.2, Mnif and Müller-Schloer

(2006) defines emergence as the formation of order from disorder based on self-organising

processes. In the same work an approach to quantify emergence is proposed. This measure

is based on Shannon’s information theory, in particular on the information-theoretical

entropy.

To calculate the proposed measure is done as follows. Given an enumerable attribute

A of the system, the relative frequency of the occurrence of each possible attribute value

i can be represented as probabilities pi. The entropy of the system regarding attribute A

is given by

HA = −
∑

pi log2 pi.

The unit of entropy is bit and gives the amount of information stored in the observed

attribute. The quantitative emergence is then defined as “the increase of order due to self-

organised processes between the elements of a system S in relation to a starting condition

of maximal disorder” (Mnif and Müller-Schloer, 2006):

Emergence MA = Hmax −HA −Hview,
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where HA is the entropy value of the system as defined above, measured at a certain

point of time, Hmax serves as a reference value in order to normalise HA and Hview is the

amount of entropy that depends both upon the chosen attribute and the abstraction level.

Observations made on a higher abstraction level result in a lower entropy value.

In the following we will neglect Hview and study how the choosen perspective influences

the observed increase of order Hmax−HA in Emergent Sorting Network systems. Consider

an Emergent Sorting Network sorting objects of k types. As the observed attribute we

choose the object types in the outflow of the network. To calculate the information-

theoretical entropy of the outflow the relative frequencies of the object types are used.

Because only a constant number of objects can actually be in the network, the relative

frequencies of the different types are the same as in the inflow of the network. Thus, the

entropy of the outflow is the same as the entropy of the inflow. No increase of order can

be quantified observing the object types. As an example consider the inflow rbgbgrrgb

(different observable object types are denoted by symbols r,g,b,. . . ) and the outflow

rrrgggbbb. The relative frequency of all symbols is 1/3 in both strings, which leads to an

entropy −3 · 1
3 log2

1
3 = 1.584963 bits for both.

We now consider another attribute, i.e., in terminology of Mnif and Müller-Schloer

(2006) we change the observation model. We observe the changes of the object types, i.e.,

we consider a “color blind” observer that can only determine that a type change occurred

but not exactly which types were involved. That is, we consider the entropy of binary

strings in which the symbol 1 denotes an observed change of the objects’ type in the outflow

and the symbol 0 stands for no change. For example, the inflow sequence rbgbgrrgb

translates to 11111011, whereas the outflow rrrgggbbb is represented as 00100100. For

a given probability p of a type change (this is the also measure we used in our simulation

experiments) the relative frequency of the symbol 1 (respectively 0) is p (respectively 1-p).

Thus, the increase of order can be calculated as:

H(p) = −p log2 p− (1− p) log2(1− p).

When using k different object types, the probability that a type change occurs in the

random inflow is (k − 1)/k and that two successive objects have the same type has the

probability 1/k respectively. Therefore, the entropy of the inflow is Hmax = H((k−1)/k).

Using this entropy as reference, for an (empirically measured) type change probability p

in a system with k different object types we can calculate the emergence as

H((k − 1)/k)−H(p).
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As an example consider a system with k = 10 different object types and an observed

type change probability p = 0.7. In the random input sequence the probability of a type

change is (k− 1)/k = 0.9. Thus, when the random input sequence traverses the Emergent

Sorting Network the type change probability decrease from 0.9 to 0.7. This leads to an

increase of order of

Hmax −HA = H((k − 1)/k)−H(p) = 0.4689956− 0.8812909 = −0.4122953.

Thus for a “type blind” observer the entropy in the considered attribute has increased,

i.e., the order has decreased.

We change the observation model again. As the observed attribute we now consider the

exact types of two successive objects. That is, the symbols representing possible attribute

values are tupels of two types. For example, the sequence of objects rbgbgrrgb translates

to (rb)(bg)(gb)(bg)(gr)(rr)(rg)(gb), where (rb) is the symbol representing an ob-

served type change from type r to type b. Hence, k different “even” symbols representing

two consecutive objects of the same type exist, e.g., (rr) or (gg), and k · (k − 1) differ-

ent “odd” symbols relating to type changes, e.g., (rg), (gr) or (rb), can be observed.

Given a (measured) type change probability p, the probability to observe an even symbol

is (1 − p)/k and the probability to observe a change from a specific type to another one

(e.g., (rb)) is p/(k(k− 1)). Thus, the entropy under this observation model of an outflow

consisting of objects of k different types and an observed probability of a type change p

can be calculated as

H(p, k) = −k
1− p

k
log2

1− p

k
− k(k − 1)

p

k(k − 1)
log2

p

k(k − 1)

= −(1− p) log2

1− p

k
− p log2

p

k(k − 1)

Calculating the increase of order in the example system with k = 10 object types and

an observed type change probability p = 0.7 now leads to M = H(0.9, 10)−H(0.7, 10) =

1.928255.

As have be shown, depending on the observers view on the Emergent Sorting Network

systems no, a negative, or a positive increase of order can be calculated. Thus, this

confirms the mentioned importance of the view of the observer and emphasises a careful

application of emergence measures based on the information-theoretical entropy.

32



2.2 Decentralized Packet Clustering

2.2 Decentralized Packet Clustering

In the following we will study a second system utilizing emergence. Again, based on

many local decentralized decisions of the autonomous parts of the system, a desired global

property emerges. This desired property is the grouping of objects in a way, that the

similarity of objects within the same group is higher than between objects from different

groups. That is, a so called clustering for the objects is generated. In the considered

system the objects are packets in a network and the decentralized decisions are made by

the routers of the network.

2.2.1 Distributed and Ant-Inspired Clustering

Clustering as the“identification of homogeneous groups of objects” (Arabie et al., 1996)

is one of the core processes in data mining and important for many other applications in the

sciences, as well as in commercial and economics areas. Usually clustering is performed as

an unsupervised task for the classification of patterns (observations, data items, or feature

vectors) into groups called clusters. Unsupervised means that the types and characteristics

of the clusters are unknown in advance and have to be discovered in the clustering process.

For a comprehensive overview of clustering methods and applications (see, e.g., Everitt

et al., 2001; Gan et al., 2007; Jain et al., 1999).

Distributed clustering referes to algorithms and methods for parallelizing and distribut-

ing clustering algorithms and has been addressed for example in the Distributed Data

Mining community, for a detailed survey the interested reader is referred to Kargupta

and Sivakumar (2004). In recent years, with the evolution of large peer-to-peer networks

distributed clustering became an important and intensively studied field (Datta et al.,

2006a). Also in the field of sensor networks techniques are required for the distributed

clustering of dynamic data streams (Beringer and Hüllermeier, 2006; Gaber et al.,

2005; Hua et al., 2009; Lambertsen and Nishio, 2004).

k-Means

One of the most often used algorithms for clustering is called k-means. This iterative algo-

rithm starts with a set of k initial data vectors, called center points. Within one iteration

each object is assigned to its nearest (measured, e.g., with respect to the Euclidean dis-

tance) center point. All objects that are assigned to the same center point form a cluster.

For each cluster its centroid is computed and these centroids form the new center points for

the next iteration of the algorithm. The algorithm stops when some convergence criterion

has been met, e.g., the center points have not changed or a maximal number of iterations

has been done.
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Several distributed or parallel versions of the k-means algorithm have been proposed

in the literature. The aim of most of these algorithms is to provide a fast parallel or

distributed implementation of k-means or one of its variants. Problems here are how

to exchange the necessary information between the processors (see e.g. Datta et al.,

2006b; Dhillon and Modha, 2000; Eisenhardt et al., 2003) or how to distribute

the workload, for example, on shared-memory multi-core machines (Chu et al., 2007).

Variants of k-means have been proposed to work on peer-to-peer systems (Datta et al.,

2009) as well as for dynamic stream data mining (Shah et al., 2005).

Ant-Based Clustering

Several clustering algorithms have been proposed that are inspired by the behavior of ants.

Ant based clustering and sorting has several different sources of inspiration. First and most

famous is the clustering behavior of ants that relates to two types of behavior that can

be observed in real ants. First is the formation of cemeteries (piles of corpses of dead

nest mates) that can be found, for example, in the ant Pheidole pallidulais (Deneubourg

et al., 1990; Theraulaz et al., 2002). The second, more sophisticated behavior is the

spatial arrangement of items of different kinds according to their properties. This can

be observed for example in nests of the ant Leptothorax unifasciatus, where larvae are

arranged depending on their size.

In Deneubourg et al. (1990) a model was introduced to explain this clustering be-

havior. In this model agents (representing ants) move randomly on an array of cells. In

this array initially randomly distributed items are located. The agents make probabilistic

choices to pick up or drop items depending on the fraction of cells occupied by items in

a defined neighborhood. Eventually this behavior leads to the emergence of clusters of

items. In Chapter 3.3 this model will be introduced in more detail.

Although this clustering model was developed for use in collective robots, soon it was

applied to data analysis, too. Lumer and Faieta (1994) proposes a basic ant-based data

clustering algorithm closely related to the ant clustering model described in Deneubourg

et al. (1990). Later several authors introduced modifications and extensions to this algo-

rithm: speeding up the algorithm by moving directly to items (Monmarché et al., 1999),

introducing pheromone values (Abraham and Ramos, 2003; Ramos and Merelo,

2002) or kernel functions (Peterson et al., 2008) to guide the ants to interesting regions,

the adaptive setting of the algorithm parameters (Handl et al., 2006; Vizine et al.,

2005), transportation of entire heaps of items (Kanade and Hall, 2003), introduction of

a short term memory (Handl and Meyer, 2002; Peterson et al., 2008), communica-

tion between the agents (de Oca et al., 2005a), hybridization with other heuristics for

example fuzzy c-means and k-means (Gu and Hall, 2006) or neural networks (de Oca
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et al., 2005b), and using fuzzy rules for dropping and picking up items (Kanade and

Hall, 2003; Schockaert et al., 2004, 2007).

In Handl et al. (2003a,b) ant-based clustering is compared with k-means cluster-

ing, with a hierarchical agglomeration clustering method, and with one-dimensional self-

organizing map clustering. It is shown that ant-based clustering performs competitively

to these standard algorithms.

Another source of inspiration for ant based clustering algorithms is the self-assembling

behavior of ants, i.e., the ability of ants to build live structures with their bodies. In

Azzag et al. (2003) an algorithm called AntTree is proposed. In the algorithm every

ant represents a data vector and is initially placed on the root of a tree. Based on their

similarity with the ants already attached to the root, the ants move and attach themselves

to the tree. The algorithm is used for example for texture segmentation (Channa et al.,

2006).

A third possibility is to see clustering problems as optimization problems with the clus-

tering quality as objective function. Runkler (2005) uses the Ant Colony Optimization

metaheuristic to solve clustering problems, e.g., to cluster the lung cancer test data in the

UCI Machine Learning Repository.

Labroche et al. (2002, 2003a,b) proposes an approach for ant inspired clustering

that is inspired by the chemical recognition system of ants. By continuously exchanging

chemical cues ants are able to discriminate between nestmates and intruders, and in this

way they can create homogeneous groups of individuals sharing a similar odor. In the pro-

posed algorithm the objects to be clustered are represented by artificial ants and clusters

as ant nests. Ants (objects) can belong to nests (clusters). In the algorithm iteratively two

random chosen ants meet and depending on the objects they represent and an adaptive

threshold they determine whether they accept each other as being from the same nest.

When two ants A and B meet different rules are applied: (1) If A and B are without a nest

and accept each other, they build a new nest. (2) If A has no nest and B already belongs

to a nest and A accepts B, then A joins in the nest of B. (3) If A and B accept each other

and are already in the same nest they feel more comfortable in this nest (the comfortable

feeling is an estimation on how good the ant fits into its cluster). (4) If A and B do not

accept each other although they are in the same nest, the ant that feels less comfortable

has to leave the nest. (5) If A and B accept each other and are from different nests, the

ant from the smaller nest joins in the bigger one. It has been shown, that applying these

rules iteratively the algorithm eventually finds a good clustering of artificial as well as real

data sets.

An extension of AntClust called Visual AntClust uses two dimensional vectors as labels

for a nest (Labroche et al., 2003b). The values of these labels are chosen so that nests

with similar ants are placed nearby within the two dimensional space and are changed
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dynamically in the algorithm during meetings of the ants. It was shown in Handl et al.

(2003a,b) that AntClust and Visual AntClust lead to competitive results when compared

to k-means clustering for a fixed k.

2.2.2 Problem Formulation

In the following we study a new scenario for clustering that is relevant for distributed

applications in networks. We assume that information packets for such an application

are send around between the servers of the network. Additionally to the server nodes we

assume router nodes in the network. In each server node an application process is running

that uses the information in the packets that are send to it. In order that the application

process can handle the packets appropriately we assume that the information packets

have to be clustered according to a data vector that each packet contains. Additionally

each packet contains its cluster identification number. Since the application is distributed

over several application processes that run decentralized in the network and there is no

central process that knows all packets and could do the clustering, we are interested in a

Decentralized Packet Clustering.

In the following we will concentrate on the clustering problem and do not model the

servers in our problem formulation. It depends solely on the application processes running

on the servers, how the clustering information in the packets is used. Possible applications

are manifold. For instance, in Section 4.5 of this thesis the Decentralized Packet Clustering

is used for a network based approach to the problem of task allocation in so called Organic

Support Systems. Janson et al. (2008) used the method for the decentralization of

swarm intelligence algorithms that run on systems of connected, autonomous components.

2.2.3 The DPClust Algorithm

The DPClust algorithm is executed by the routers of the network and realizes the Decen-

tralized Packet Clustering. The idea behind DPClust is that every information packet (in

the following we call information packets simply packets) contains additionally to its data

vector and its cluster number an estimation of the centroid of its actual cluster. While

traversing the network, packets meet copies of other packets in the routers. If the travers-

ing packet is assigned to the same cluster as the copied one, the data vector of the copied

packet is used to update the packet’s estimation of the centroid of the cluster. If, on the

other hand, the copied packet is from a different cluster, for the traversing packet it has to

be decided based on the two available centroid estimations if it is assigned to the cluster

of the copy. Before the packet leaves the router its copy replaces the old copy. In this way

packets do not need to wait for other packets to meet in the routers, the routers just copy

and store the relevant information from the last packet.
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Figure 2.6: Scheme of DPClust in a router; structure of a packet (top); router with packet
at different stages (bottom): 1) incoming new packet, 2) DPC information of
the new packet is compared with the copy of the DPC information from the
last packet, 3) DPC information of the packet is possibly changed and copied
into the DPC memory of the router, 4) the packet leaves the router

DPClust has some similarities with the AntClust algorithm (see last Section). AntClust

is also based on local meetings of artificial ants representing the objects that are to be clus-

tered. When meeting, the ants make decisions about their nest (cluster) membership based

on local information carried by the ants as well. The differences between DPClust and

AntClust are the following: (1) DPClust uses centroid estimations, whereas in AntClust

no centroids play a role. (2) In DPClust a packet is always associated to a cluster, whereas

in AntClust there can be ants without a nest. (3) In DPClust packets only meet copies

of other packets, thus only one of the meeting partners can be modified. (4) In DPClust

there is no such thing as a “comfortable feeling”.

DPClust can be seen as a form of a distributed k-means algorithm since estimated

centroids play a central role for determining the cluster of an information packet. The

algorithm runs in the routers of the network but the computational effort of the routers

is small. Also the memory requirements of the algorithm in the routers is small. Each

packet does not store much additional information and the algorithm does not establish

a control protocol that requires communication between the routers. There is no central

control in a network using DPClust and the clustering emerges from the interactions of

many packets within the routers.

More technically, consider a set of Packets P = {P1, P2, . . . , Pn} that are send around

in the network. Each packet Pi ∈ P contains a data vector vi. Based on this data

vectors the packets have to be clustered. DPClust extends every packet Pi by a number
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ci, which denotes the actual cluster the packet is assigned to, and a vector zi that is

the packet’s estimation of the centroid of this cluster. Together with the data vector

this is called the DPC information of the packet. A packet might contain additional

information, e.g., header information and application data but this is not relevant for the

clustering algorithm. Thus, a packet Pi can be characterized by its DPC information, i.e.,

Pi = (vi, ci, zi) for i ∈ [1 : n].

The cluster Cl is defined as the set of all packets with cluster number l, i.e. Cl =

{Pi | ci = l}. Thus the generated clustering C = {C1, . . . , Cmax{ci}} is a partition of the

set of all packets P.

A router only stores a copy of the DPC information of the last packet that has passed

the router. The main idea of DPClust is that the router compares the information of an

arriving packet Pi = (vi, ci, zi) with the corresponding information P = (v, c, z) that were

copied from the predecessor packet. If both packets are assigned to the same cluster (i.e.,

they have the same cluster number ci = c) the centroid estimation zi of the new packet is

updated by moving it into the direction of the data vector v of the stored packet. If, on the

other hand, the cluster numbers of the packets are different, the router decides whether

to reassign the new packet to the cluster of the copied one. This decision is made, when

the distance between the data vector vi and the centroid estimation zi is larger than the

distance to the estimated centroid z of the copied packet P . Formally and in more detail

DPClust is given in Algorithm 3 (see also Figure 2.6).

2.2.4 Experiments

Test Networks

Each network N consists of a set of r ≥ 1 subnetworks N1, N2, . . . , Nr. Each subnetwork

contains at least one router and each router is assigned to a subnetwork. Thus when

R = {R1, R2, . . . , Rm} with m ≥ r is the set of routers and Ri is the set of routers

assigned to subnetwork Ni then (R1,R2, . . . ,Rr) is a partition of R. We assume that the

routers within a subnetwork are fully connected. We study three types of topologies for

the connection of the subnetworks, namely ring networks, fully connected networks, and

star networks. A ring network N consists of a directed ring of subnetworks N1, N2, . . . , Nr

so that N(i+1) mod r is the successor of Ni. In the fully connected network each subnetwork

is directly connected to every other subnetwork. In the star network the subnetwork N1

is connected to every other subnetwork and vice versa.

Each packet is assigned to a subnetwork. Let f(i) be the index of the subnetwork

packet Pi is assigned to. For our experiments we assume that all packets already exist in

the network from the start and that all packets have an unlimited life time. In general our

methods will also work when new packets arrive or packets are removed from the network
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Algorithm 3 DPClust

Let P = (v, c, z) be a copy of the data vector, the cluster number, and the estimate
of the centroid of the last packet that was processed.

Let Pi = (vi, ci, zi) be a new arriving packet.

if Pi is in the same cluster as P , i.e., ci = c

then update the estimate of the centroid of Pi by

zi := (1− β) · zi + β · v

where 0 < β ≤ 1 is a parameter that determines the relative influence of the
other packets data vector and the old estimate zi of packet Pi

else if the distance of vi to the centroid z is smaller than to its own centroid zi, i.e.
vi − zi > vi − z

then Pi is assigned to cluster of P , i.e., ci := c, zi := z
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(a) (b)

Figure 2.7: Schematic view of a ring network (a) and a star network (b); routers within a
subnetwork are fully connected

(a similar situation is modelled later by connecting subnetworks that were not connected

before) or if the data vector of the packets is changed over time.

Algorithm 4 Test Scenario for Ring Networks

Initialization

repeat

i) Randomly choose a packet Pi ∈ P with uniform probability.

ii) With probability α > 0 set f(i) := f(i)+1 mod r, i.e., assign Pi to the successor
subnetwork of its actual subnetwork.

iii) Randomly choose a router Rj ∈ Nf(i) with uniform probability.

iv) Apply DPClust in router Rj to packet Pi.

until stopping criterion is met

An example of the implementation of a test scenario can be found in Algorithm 4.

Basically, the algorithm describes how packets move in the ring network. Parameter 0 ≤

α ≤ 1 in the algorithm is called the exchange parameter and it determines the probability

of packet exchanges between a subnetwork and its successor subnetwork. Note, that the

algorithm can easily be modified to fit other network topologies. For fully connected

networks Step ii) is: With probability α set f(i) := f(j) with j 6= i uniformly chosen from

1, 2, . . . , i − 1, i + 1, . . . r, i.e., assign Pi to a random subnetwork. For the star network

setting the exchange rate for the inner network N1 to α·r
2 and for all other r− 1 networks

to α·r
2·(r−1) , ensures that the expected number of packets that change their subnetworks is

the same as for a ring network with exchange rate α.

40



2.2 Decentralized Packet Clustering

−5 0 5 10 15

−
5

0
5

10
15

(a)

−5 0 5 10 15

−
5

0
5

10
15

(b)

−5 0 5 10 15

−
5

0
5

10
15

(c)

Figure 2.8: Example instances of the test datasets: Square1 (a), Square5 (b), Size5 (c)

Initially each packet Pi ∈ P is assigned to a random subnetwork, i.e., f(i) is chosen

uniformly in [1 : r], and to a random cluster, i.e., ci is chosen uniformly from [1 : k], where

k is parameter of the algorithm and gives the initial number of clusters. The estimate of

the centroid is set to the data vector of a random packet, i.e., zi := vh where h is chosen

uniformly from [1 : n].

Problem Instances

To test DPClust we used the same type of problem instances as have been studied in

several other papers on ant-based clustering (e.g., Handl et al. (2003b); Matake et al.

(2007)). The problem instances determine the distribution of the data vectors of the

packets. There are two types of instances, both consisting of two-dimensional data vectors

from four classes. One data set is defined for investigating the influence of class overlaps

and the other data set for investigating the influence of different class sizes.

For the first type of instances called Square each of the four data classes contains 250

data vectors. The data vectors are generated by a two-dimensional normal distribution

with standard deviation 2. The centers of the normal distributions of the four classes are

arranged in a square. The test data sets Square1 to Square7 differ by the distance between

the class centers, which is 10, 9, . . . , 4 respectively. The second type of instances called

Sizes is similar to Square1 problem, but the number of data vectors of the classes differs.

For problems Sizes1 to Sizes5 the ratio between the size of the three small classes (which

are of equal size) and the size of the large class is 2, 4, . . . , 10 respectively. Examples of

test instances of type Square1, Square5 and Size5 are depicted in Figure 2.8.
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F-Measure

For the evaluation of our method we apply the F-Measure (Rijsbergen, 1979). This

measure uses the real partition of the packets into classes for calculating how well the

algorithm grouped the packets into clusters.

Let si be the number of packets that belong to class i. Let nj be the number of packets

in cluster j and let nij be the number of packets which belong to class i and are assigned to

cluster j (j ≤ k), where k is the number of clusters generated by the clustering algorithm.

For each class i and cluster j the so called precision is defined as pij = nij/nj and the

so called recall as rij = nij/si. The F-Measure for a clustering with respect to the given

partitioning into classes is defined as

F-Measure =
∑

i

si

n
max
j≤k

{

2 · pij · rij

pij + rij

}

.

The higher the F-Measure, the better a given clustering and a perfect clustering has a

F-Measure of 1.

Simulation Parameters

If not stated otherwise, for parameter β the value 0.1 was used and the standard test

instance was Square1. All results are averaged over 50 runs. For DPClust and for the

k-means algorithm the parameter k = 4 was used. In the following a step of an algorithm

means as many iterations of the test scenario were done as packets were present in the

network (for most experiments 1000 packets were used).

2.2.5 Results

To illustrate the behavior of DPClust four snap-shots from a run of DPClust in a network

with only one router on an instance of Square1 are depicted in Figure 2.9. In the figure

each packet Pi is depicted by an arrow that connects its data vector vi with the actual

estimation zi of the centroid of its cluster. The cluster number ci is indicated by the grey

value of the arrow. Figure 2.9(a) shows the random situation at the start of the run. As

can be seen in Figure 2.9(b) after 40 time steps the distances of the packets data vectors

to the estimated cluster centroids became smaller. Well formed clusters have not been

found in this state of the simulation. It can be observed that the centroid estimates do not

approximate the real centroids well, as very different centroids with the same grey value

occur can be seen. This is not surprising because at this stage of a run the packets are

often changing their clusters. In the later stage depicted in Figure 2.9(c) the quality of

the clustering has increased and most of the clusters contain only packets from one or two
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(a) (b)

(c) (d)

Figure 2.9: Behavior of DPClust on Square1 at steps 0 (a), 40 (b), 80 (c), and 120 (d);
for each packet Pi an arrow connects the data vector vi with the estimation zi

of the centroid of the cluster; the grey value of an arrow indicates the cluster
number
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classes. Finally well formed cluster that correspond to the real classes are found (Figure

2.9(d)).

In the following DPClust is compared to the k-means algorithm. The experimental

setup is the same as used before, i.e., a network with one router. It is shown later that

the results of DPClust are very stable with respect to a changing number of routers. The

results show that both algorithms perform equally well on the Square instances (see Figure

2.10(a)). Note that vertical bars in result graphs show the standard deviation. It is obvious

that an increasing overlap between the classes leads to decreasing F-Measure values for

the clustering of both algorithms. On the Size instances both algorithms have difficulties

for large size differences between the clusters (see Figure 2.10(b)). But k-means performs

better than DPClust for size differences that are larger than 2. It has to be mentioned here

that the initialization is an important factor for DPClust. As stated before, data vectors

of random packets are used for the initial centroids of both algorithms. Thus, most of

these centroids point to the large class after initialization. This is a difficult situation for

both algorithms, but it seems k-means can deal better with it.

The influence of parameter β is shown in Figure 2.10(c). Recall, that β determines how

strong the centroid estimation of a packet traversing a router is influenced by the data

vector of the copied DPC information that are stored in the router. It can be seen in the

figure that the higher the value of β, the faster the F-Measure of the system converges

to the maximum. Figure 2.10(d) shows the average deviation of the estimated centroids

of the packets from the true centroids of the clusters. Clearly, large values of β lead to

high deviations of the estimated centroids to the true centroids. In the following we use

β = 0.1 to ensure that DPClust converges in a reasonable time and the difference between

the estimated and the real centroids are not too large.

Figure 2.11 shows the influence of the number of routers on the clustering behavior of

DPClust. It is surprising that this influence on the quality of clustering is so small. This

indicates that DPClust will work successfully in large networks with many routers working

in parallel. Note, that the reason for the shifted curve of 8000 routers is that it takes some

time until all routers have received at least one packet.

For packet clustering in networks it is interesting to investigate networks of loosely

connected subnetworks. Figure 2.12(a)-(d) shows the results for DPClust on ring networks

consisting of different numbers of subnetworks for varying exchange probabilities α. The

results show that the algorithm has difficulties to find a good (global) clustering when

the packet exchange rate between the subnetworks is very small (e.g., α ≤ 0.002 for 4

subnetworks). The more subnetworks in the ring, the smaller the F-Measure. It converges

to approximately 0.65 (0.55, 0.43) for 2 (4, 16) subnetworks when using α = 0.0005. For

32 subnetworks the F-Measure is still improving after 10000 evaluations. The reason for

this behavior is the following. Soon after the first time steps in every subnetwork a good
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Figure 2.10: Performance of DPClust and k-means on Square (a) and Size (b) problem
instances; DPClust: convergence behavior (c) and mean deviation between
estimated centroids and true centroids (d) for β ∈ {0.01, 0.05, 0.1, 0.2, 0.5}

clustering is established, i.e., most packets from the same class have the same cluster

number and most packets from different classes differ in the cluster number. The cluster

numbers which are assigned to the same class in the different subnetworks are the same

only by chance, typically they will differ. Hence, when a packet changes its subnetwork

very likely the corresponding cluster in the new subnetwork has a different number. The

good message is that DPClust finds a consistent numbering of the clusters when the packet

exchange rate between the subnetworks is reasonable high (for α = 0.016 the final large

value of the F-Measure is reached after about 400 steps for up to 8 subnetworks). Not

surprisingly, the larger the parameter α, that is, the larger the number of exchanged

packets, the faster the system finds a consistent numbering. On the other hand the larger

the number of subnetworks, the longer this takes.
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Figure 2.11: Influence of the number of routers (8, 80, 800 or 8000 routers)

In the experiments corresponding to Figure 2.12(a-e) the total number of packets was

1000 for all tests. Thus the networks with a large number of subnetworks had less packets in

each subnetwork. In order to study the influence of the number of packets we experimented

with an increased number of packets (2000) in a ring network with 8 subnetworks. The

results are shown in Figure 2.12(f). While the general appearance of the curves is very

similar compared to the results of 1000 packets (see Figure 2.12(e)), it can be observed

that it takes slightly longer for the larger number of packets and smaller exchange rates

to reach the same F-Measure values.

Results regarding the influence of the connection topology between the subnetworks are

given in Figure 2.13. Shown is the performance of DPClust on a fully connected and on a

star network, both consisting 8 subnetworks. Comparing the depicted curves to the ones

of the ring network with 8 subnetworks (Figure 2.12(e)), it can be seen that the F-Measure

in the fully connected network increases faster and in the star network slower than in the

ring network. The reason is that it is more unlikely in fully connected subnetworks that an

inconsistent numbering in the subnetworks persists for long. On the other hand, in the star

network it seems to be more difficult to establish the same numbering in all subnetworks.

If two outer subnetworks differ in the numbers associated with the same class, in order

to establish a consistent numbering the center subnetwork has to “decide” for one of both

alternatives. This is a hard task in the presence of the relatively high packet exchange in

the center subnetwork.

In the following the behavior of DPClust in case of dynamic network exchange rates is

studied. Especially situations are considered in which formerly disconnected subnetworks

become connected. In the experiments DPClust was run for 400 steps in each of 4 sub-
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(d) 32 subnetworks
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(e) 8 subnetworks
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(f) 8 subnetworks, 2000 packets

Figure 2.12: Performance over time of DPClust in ring networks with 2 (a), 4 (b), 16 (c), 32
(d), and 8 (e-f) subnetworks using a total number of 1000 packets (respectively
2000 for (f)); packet exchange parameter α ∈ {0.0005, . . . , 0.032}; 1 router in
each subnetwork
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(a) fully connected network
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Figure 2.13: Performance of DPClust in a fully connected network (a) and a star net-
work (b) with 8 subnetworks over time; packet exchange parameter α ∈
{0.0005, . . . , 0.032}, 1 router in each subnetwork

networks separately (α was set to zero). Thereafter the subnetworks were connected by

setting α = 0.016 (respectively α = 0.032). Additionally to the global F-Measure (over

all 1000 packets) also the local F-Measures in the subnetworks, i.e., with respect to the

packets that are actually in the subnetworks, is calculated. In Figure 2.14(a) and (b) the

global and the mean of the local F-Measures over time are depicted for a ring network

with 4 subnetworks. The figure shows that the average local F-Measure has the maximal

possible value 1 before the subnetworks are connected. This shows that at this point a

good clustering in the subnetworks is established. The global F-Measure is small because

of the differing numbering of the clusters in the subnetworks. After the subnetworks are

connected at time step 400 the average local F-Measure decreases because packets from

other subnetworks enter and an overall consistent numbering has to be found again. It

is encouraging how fast this happens and the local F-Measure increases to the old value.

The influence of the packet exchange rate between the connected subnetworks can be seen

by comparing Figures 2.14(a) and (b). A higher exchange parameter α = 0.032 leads to a

stronger decrease of the local F-Measures but also to a faster convergence to the maximal

F-Measure after the connection of the subnetworks.

Figure 2.14(c-d) shows the same scenario but using star and fully connected networks

(the subnetworks were connected with α = 0.016 as well). The curves for the fully con-

nected network are quite similar to the corresponding curves for the ring network. Again,

the fully connected network can converge a little faster than a ring network. However for

the star network the global F-Measure increases slower after opening the connection. This

is in accordance with the observations that have been made in the static scenarios. It

is interesting that there is a clear difference between the inner subnetwork and the outer
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Figure 2.14: Average local and global F-Measure in a ring (a-b), a fully connected (c) and
in a star network (d) with 4 subnetworks: no packet exchange (α = 0.0) was
done for the first 400 steps, then α was set to 0.016 (0.032 for (b)); for the
star network the local F-measure is shown separately for the inner subnetwork
and an outer subnetwork

subnetworks of the star network. In the inner subnetwork the local F-Measure decreases

stronger than the local F-Measures in the ring or fully connected networks, whereas the

decrease is much less for the outer subnetworks. This is because the inner network re-

ceives more packets from other subnetworks than the outers do, as the exchange rate is

(α · r)/2 = 0.032 for the inner and (α · r)/(2r − 2) = 0.012 for each outer subnetwork.

The F-Measures over time for a single typical run of DPClust in a star network with

4 subnetworks are depicted in Figure 2.15. It is evident from the figure that the local

F-Measure in the inner subnetwork decreases much stronger after opening the connection

than the local F-Measures in the outer subnetworks. As stated before, this is because

the inner subnetwork receives three times more packets from outside than each outer

subnetwork. Moreover it can be seen that in one of the outer subnetworks the local

F-measure remains significantly higher. The reason is that for this run all three outer
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Figure 2.15: Single run of DPClust in a star network with 4 subnetworks: shown are the
local F-Measures for the inner subnetwork and the three outer subnetworks:
no packet exchange (α = 0.0) was done for the first 400 steps, then α was set
to 0.016

subnetworks evolved different cluster numberings. The subnetwork with the higher local

F-measure was the “winner” in this run with respect to the renumbering of the local

clustering, i.e., its numbering was finally adopted by the other subnetworks. Clearly it can

also happen that two or three of the subnetworks use the same numbering (or partially

equal numberings). In this case it can typically be observed that only for one or none of

the outer subnetworks the local F-Measure decreases strongly after the connection.

2.2.6 Dynamic Problem Instances

In this subsection we study dynamic clustering instances, i.e., we assume the packets

data vectors vi are changed over time (e.g., by the application processes). It will be

shown, that DPClust does not perform very well on dynamic problem instances. Therefore,

additionally to DPClust we introduce two modified variants, called d-DPClustcz and d-

DPClustzc. These variants do store the centroid estimations in the routers instead of in

the packets.

d-DPClustcz

For algorithm d-DPClustcz each packet Pi = (vi, ci) consists of a data vector vi and a

cluster number ci. Each router r stores a vector of estimated centroids Zr = (z1
r , . . . , z

|C|
r ).

For a packet Pi that arrives at router r the cluster number ci is determined by using the

distances of its data vector vi to the estimated centroids zj
r , j = 1, . . . , |C| that are stored

in the router. A packet is assigned to the cluster for which this distance is minimal, i.e.,

ci = argminj ||vi−zj
r ||. Thereafter the router’s centroid estimation for cluster ci is modified
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according to zci
r = (1− β) · zci

r + β · vi. The parameter β has the same use in d-DPClustcz

as in DPClust.

Note, that in algorithm d-DPClustcz the centroid estimations of two routers r1 and r2

may have a different order (in the sense that zi
r1

corresponds to the centroid estimation zj
r2

with i 6= j). Therefore, the routers r = 2, . . . , |R| iteratively reorder their centroids after

every e ≥ 1 time steps. The reordering is done according to a permutation π for which
∑|C|

i=1 ||z
π(i)
r − zi

r−1|| gets minimal. To be able to do this exchange step the routers must

communicate directly to exchange the needed data.

d-DPClustzc

The d-DPClustzc algorithm works similar to d-DPClustcz. The difference is that in d-

DPClustzc the router centroid estimation is modified before the packet’s cluster is deter-

mined. That is, first the modification of the centroid estimation is applied to zci
r . After-

wards the cluster number for Pi is determined similarly to d-DPClustcz, i.e., the cluster

is determined by ci = argminj ||vi − zj
r ||. A router exchange step as in d-DPClustcz is not

needed.

2.2.7 Experiments

In the following the dynamic problem instances and three new cluster validity measures

are introduced. The reason for using other measures is that in the investigated problem

instances a large overlap of data vectors from different classes can happen. In case of an

overlap the data points of the classes are indistinguishable for any algorithm. Therefore, it

makes no sense to use clustering measures like the F-Measure which take the real partition

of the packets into classes into account. The following introduced measures do not need

any knowledge about the classes of the packets.

Dynamic Problem Instances

The first problem instance called T1 is a dynamic version of the Square1 data set (see

Section 2.2.4). At the begin of a simulation an instance of Square1 is generated. Recall,

the generated data vectors are from four classes with the four center points (0, 0), (0, 10),

(10, 0), and (10, 10) and 250 data vectors in each class. For every class j ∈ {1, 2, 3, 4} an

uniformly distributed random moving direction ∆vj = (∆v1
j , ∆v2

j ) ∈ [−1, 1]2 is chosen.

After every time step of the simulation all data vectors vi are moved according to vi =

vi + ∆vc(i) · v where c(i) ∈ {1, 2, 3, 4} denotes the class of packet Pi and parameter v is

used to adjust the strength of the dynamics, as it relates to the moving velocity of the

classes. If the center point of a class would leave the predefined cluster area A = [−10, 20]2

in a dimension k, then the sign of ∆vk
j is flipped, i.e., the moving direction of the class is
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Figure 2.16: Problem instance T1 dynamic case (v = 0.1); 100 time steps between the
figures; arrows indicate direction and velocity of the classes

0 100 200 300 400

Figure 2.17: Problem instance T2 at time steps 0, 100, . . . , 400; velocity parameter v =
0.05; the framed area gives the border for reflecting the moving class

reflected at the border of the area. In Figure 2.16 an example for the problem instance of

type T1 is given for different time steps.

Problem instance T2 consists of two classes with center points (0, 0), (0, 10) and 500 data

vectors in each class. The class with center point (0, 0) does not move (i.e., ∆v1 = (0, 0)),

and the second class initially moves to the bottom along the vertical axis (∆v2 = (0,−1)).

The cluster area for instance T2 is A = [−10, 10]× [−10, 20].

Silhouette Coefficient

Recall, a clustering C = {C1, C2, . . .} is a partition of all packets P. Since the data vectors

vi are parts of the packets Pi the clustering C implies a partition of the set of data vectors

as well. To keep things simple, in the following we directly use the clustering C as a

clustering of the data vectors vi, that is, we write vi ∈ Cj in case Pi = (vi, ci) ∈ Cj .
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In Kaufman and Rousseuw (1990) the so called Silhouette Coefficient is defined as

follows. Let d(v, C) be the distance of the data vector v to the geometric centroid of the

data vectors vi ∈ C. Let γ1(v, C) be the number of the cluster which is the nearest cluster

to data vector v, i.e., γ1(v, C) := arg minj d(v, Cj) and let γ2(v, C) be the cluster which is

second nearest cluster to data vector v, i.e., γ2(v, C) := γ1(v, C \ Cγ1(v,C)). The Silhouette

Coefficient si for data vector vi is defined as the normalized difference:

si :=
d(vi, Cγ2(vi,C))− d(vi, Cγ1(vi,C))

max{d(vi, Cγ1(vi,C)), d(vi, Cγ2(vi,C))}

The Silhouette Coefficient SC is defined as the average value over all si:

SC :=
1

n

n
∑

i=1

si.

Empirical studies show that SI > 0.7 indicates an excellent separation between the

clusters, a value between 0.5 and 0.7 indicates a clear assignment of data points to clusters,

values between 0.25 and 0.5 indicate that there are many data points that cannot be clearly

assigned, and SI < 0.25 indicates that it is practically impossible to find significant cluster

centers (Kaufman and Rousseuw, 1990). For dynamic test instances SC∅ denotes the

average Silhouette Coefficient SC over all measured time steps.

Dunn Index

The Dunn index measures the minimal ratio between cluster diameter and inter-cluster

distance for a given clustering C. Let d(Ci, Cj) be the average distance of all pairs of

elements in Ci and Cj , and let diam(C) be the maximal distance between two elements

of cluster C. Then the Dunn index DI can be computed as

DI =
min{Ci,Cj∈C} d(Ci, Cj)

max{C∈C} diam(C)
.

A low Dunn index indicates a fuzzy clustering, whereas a value close to 1 indicates

a near-crisp clustering. The Dunn index tries to identify well separated and compact

clusters. DI∅ denotes the average DI value over all measured time steps.

Sum of Squares

Let v̂l be the geometric centroid of cluster Cl. The Sum of Squares criterion is defined as

SS =
1

|C|

∑

l=1...|C|





∑

vi∈Cl

||vi − v̂l||
2

|Cl|




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and measures the compactness of a clustering. The smaller the value SS, the more

compact the clustering. SS∅ denotes the average Sum of Squares SS over all measured

time steps. In contrast to SC∅ and DI∅, which have to be maximized, the average Sum

of Squares SS∅ has to be minimized for a good clustering.

2.2.8 Results

The experimental results of the clustering algorithms k-means, DPClust, d-DPClustcz and

d-DPClustzc on static and dynamic problem instances are presented in the following. If

not stated otherwise parameter β = 0.1 is used for all algorithms and e = 10 for d-

DPClustcz. The number of iterations is 20 000 per test run. All tests using dynamic data

sets were started with the same initial random seed for the different algorithms, to ensure

that the problem instances are the same in every simulation step. As for DPClust the

initial centroid estimations of the routers in d-DPClustcz and d-DPClustzc are the data

vectors from randomly chosen packets. Results are averaged over 50 runs.

As a reference again the k-means algorithm is chosen. To solve the dynamic problem

instances in every simulation step k-means is performed until it is converged. The centroids

that are finally found in a simulation step are used to initialize the centroid estimations

of the subsequent k-means run. Note again, that k-means is a centralized algorithm with

global knowledge of the data vectors.

Static Problem Instances

To evaluate the new algorithms and measures we first present results for static problem

instances. In Figure 2.18 the Silhouette Coefficient SC (calculated at the end of the

simulations) of the four algorithms on problem instances Sizes, s ∈ {2, 4, 6, 8, 10} is shown

for a network with a single router. Note, that d-DPClustcz outperforms k-means. For large

values of k the initial center points are mostly chosen from large class of data vectors.

Thus, k-means starts very likely with a partition of the large class into several smaller

clusters and combines some of the smaller classes into one cluster. In contrast to k-means,

algorithm d-DPClustcz has the ability to escape from this situation.

In Figure 2.19 the Silhouette Coefficient over time for the algorithms DPClust, d-

DPClustcz, and d-DPClustzc in networks with 1, 10, 100, and 1000 routers is given.

Although d-DPClustcz leads to very good results on the static problem instances, its

convergence speed gets worse if the ratio between number of routers and packets gets too

large. Hence, d-DPClustcz applicability in dynamic situations may be bad for a large

number of routers. It should be noted that the reordering step of the routers can be time

consuming if the number of clusters gets too large.
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Figure 2.18: Silhouette coefficient for k-means, DPClust, d-DPClustcz, and d-DPClustzc

on Sizes, s ∈ {2, 4, 6, 8, 10}; one router

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200

 

S
C

step

1
10

100
1000

(a) DPClust

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  200  400  600  800  1000  1200  1400

 step

1
10

100
1000

(b) d-DPClustcz

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200

 step

1
10

100
1000

(c) d-DPClustzc

Figure 2.19: Convergence Speed on problem instance Size1; different lines correspond to
different number of routers; shown is the silhouette coefficient SC at different
time steps

Dynamic Problem Instances

In Figure 2.20 the results of DPClust on the dynamic instance T1 for different class veloci-

ties v and varying parameter β are given. The Silhouette Coefficient shown in Figure 2.20

attests that DPClust performs poorly on this problem instance for class velocities v ' 0.2.

Moreover, due to the moving data vectors it can happen that clusters get lost, i.e., that

there are no more packets which belong to a certain cluster. In algorithm DPClust, in

contrast to the other algorithms, this is definitely irreversible. Whereas to a small extent

this effect can be reduced by adapting β, the loss of clusters sometimes even happens for

very low dynamics v ≈ 0.01. For high dynamics often only one cluster survives (see Figure

2.20(b)). Therefore we exclude DPClust from further investigations on dynamic instances.

In the following we study the performance of d-DPClustcz and d-DPClustzc on instances

T1 and T2. In Figure 2.21 the values of the average Silhouette Coefficient SC∅, the average

Dunn index DI∅, and the average Sum of Squares SS∅ are depicted for the algorithms d-
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Figure 2.20: Silhouette Coefficient (a) and the average number of clusters (b) after 20 000
steps for DPClust on problem instance T1

DPClustcz, d-DPClustzc, and (as reference) for k-means. The extent of dynamic changes

varied with v ∈ {0.01, 0.02, 0.05, 0.1, . . . , 10}. Note, that v & 5 is a very high cluster

velocity. With respect to all three validity measures both variants of d-DPClust show a

very good clustering behavior for v . 1 on both problem instances. They perform only

slightly worse than the centralized k-means algorithm. For highly dynamic situations

(v & 1) the performance of d-DPClustcz is better compared to d-DPClustzc.

However on problem instance T2 d-DPClustcz performs slightly worse than d-DPClustzc

for v < 1. The reason for this is illustrated in Figure 2.22. This figure depicts the

Silhouette Coefficient in the first 400 steps. In this time frame one class crosses the other

class completely (see Figure 2.17). As can be observed in the situation of a strong overlap of

the classes d-DPClustzc can maintain a good clustering as the SC is never worse than 0.45.

Algorithm d-DPClustcz on the other hand has quite some trouble and the SC fluctuates

strongly, but stabilizes again after the classes leave each other alone again. Note, the

chance for such a strong overlap in instance T1 is much smaller than in instance T2, which

is the reason why d-DPClustcz performs better on T1.

Int the following the d-DPClust variants are investigated on T1 in networks with more

than one router. In Figure 2.23 the performance in terms of SC∅ for d-DPClustcz using

10, 100, and 1000 routers is given for varying class velocities v. The result depicted in

Figure 2.23(a) emphasize that in networks with 10 routers strong dynamics lead to a bad

performance of d-DPClustcz. How strong the cluster velocity v influences the performance

depends on the frequency of router exchange steps: the less frequent, the worse the results.

Regarding the results for higher number of routers two observations can be stated. First,

when using many routers the influence of the frequency of router exchange steps becomes

less. That is, even when aligning the numbering of the clusters every time step, this

does not increase the performance compared to less frequent exchange steps. Second, the
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Figure 2.21: Performance of d-DPClustzc, d-DPClustcz, and k-means: Given are average
Silhouette Coefficient SC∅ (a-b), average Dunn index DI∅ (c-d) and aver-
age Sum of Squares SS∅ (e-f) for problem instance T1 (left) and T2 (right);
dynamic change v ∈ {0.01, 0.02, 0.05, 0.1, . . . , 10}
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Figure 2.23: Performance on problem instance T1 with respect to SC∅ of d-DPClustcz

with different number of routers each for different values of parameter e ∈
{1, 10, 100, 1000}

performance of d-DPClustcz becomes better again for highly dynamic situations. The

increasing values of SC∅ for 1000 routers with v & 2 can be explained in the following

way. Figure 2.24(a) shows the average movement of all estimated cluster centroids of all

routers until simulation step T , defined as

1

T · |C| · |R|
·

T
∑

t=1

∑

Ri∈R,Cj∈C

||v̂t
ij − v̂t−1

ij ||,

where v̂t
ij is the estimated cluster centroid of cluster Cj in router Ri at time step t.

It can be observed that for highly dynamic situations the estimated cluster centroids in

networks with few routers do change very strong. Whereas, in networks with many routers

there is nearly centroid movement can be stated, i.e., the cluster centroids remain almost

the same. Hence, applied on many routers the algorithm does not follow the moving

classes. Nevertheless, data vectors close to a non-moving cluster centroid are assigned to
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Figure 2.24: d-DPClustcz: average movement of the estimated cluster centroids of the
routers for different values of v and different number of routers (1, 10, 100,
1000) (a); d-DPClustzc: Silhouette Coefficient SC∅ for 10, 100, and 1000
routers (b)

the cluster. Although there is no tracking behavior, this leads to an increasing value for

SC∅.

The results for d-DPClustzc given in Figure 2.24(b) emphasize that for very low and

very high dynamics d-DPClustzc shows the same performance regardless of the number

of routers in the network. But for intermediate values (v ≈ 1) systems with less routers

perform better. The results of d-DPClustzc are very promising since in all cases, even with

strong dynamics like v = 10, it holds SC∅ > 0.55.

2.3 Summary

In this chapter we investigated two typical systems showing emergent behavior. First we

presented a study of emergent sorting effects exhibited by a certain type of networks of

router agents. In addition to the original proposal of such networks, we examined variants

and extensions, including a pheromone-based agent behavior. The experimental results

show that the sorting performance strongly depends on the shape and the size of the

network, the number different object types, and the agent behavior.

Furthermore, we dealt with the problem of clustering a set of packets that are send

around in a network of routers. We proposed an algorithm called DPClust which can

be executed by the routers without direct information transfer and with minimal use of

computational and routing resources. It was shown that DPClust has similar performance

as k-means on some standard benchmark problems while it is worse on others. However,

our main focus was to investigate whether DPClust is robust and successful for networks of
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different topologies. The results are promising and show that DPClust performs well, even

in loosely connected networks. Additionally we investigated DPClust and two introduced

variants on dynamic problem instances. It was shown that DPClust performs poorly in

dynamic situations since it can happen that the algorithm looses clusters. On the other

hand, the new DPClust variants called d-DPClustcz and d-DPClustzc can cope in general

well with dynamic problems. While d-DPClustcz mostly has a better average performance,

d-DPClustzc can better handle situations with large numbers of routers.

In both investigated systems, the Emergent Sorting Networks and the Decentralized

Packet Clustering, large populations of interacting elements without central control and

hence based only on local rules generate macroscopic behaviors not existent on the element-

levels. As we have shown these emergent behaviors scale well with the number of entities

(agents, packets, routers), a typical property of self-organizing systems. For the DPClust

algorithms we have seen that the emergent behavior is robust in dynamic situations, like

in case of a sudden connection of former unconnected networks or the dynamic change of

the data vectors. Both investigated systems are examples of the technical utilization of

emergence, as the emergence of order, showing as sorted respectively clustered objects, is

the main purpose of the systems.
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Emergence in complex technical systems is an ambivalent property. On the one hand,

as seen in the last chapter, emergent effects can be an intended goal of a system design.

Principles of emergent behavior of natural systems have been successfully applied in many

cases to increase the capabilities of technical systems or to design algorithms with improved

performance. Most researchers have considered mainly these positive aspects of emergent

behavior. On the other hand recently concerns came up that self-organized computing

systems which consist of many autonomous components might show an emergent behavior

that is neither wanted nor has it been intended or foreseen to occur when the systems were

designed. In this a new approach for controlling emergent effects called swarm controlled

emergence is introduced and its application on a nature inspired test system is shown. In

the second part of the chapter another way to control emergent behavior is investigated.

Namely the possibility to control a system of ant-like moving agents by changing the

environment instead of changing the behavior of the agents.

3.1 Negative Emergence

In self-organizing technical systems emergent behaviors can occur that has not been in-

tended and that has negative consequences for the system. Such negative emergent be-

havior with unwanted effects can be observed in everyday life and somehow we must deal

with them. The following examples show that this is often not a trivial task.

The network of neurons in the human brain forms a dynamic system that shows non-

linear, complex and chaotic interactions and activities. Within an epileptic seizure these

neuronal networks change from their normally complex, chaotic activity to a synchronized

state in which all the neurons are doing the same thing at the same time (Ohayon et al.,

2004). One way to treat epilepsy is to implant a medical device, called brain pacemaker,

into the brain to send electrical signals into the tissue. Even if the exact mechanism of

action of this deep brain stimulation is not known, it helps to control or even prevent the

emergence of the abnormal, synchronized firing of neurons.

In 1850 more than 700 French soldiers marched lock-step over the rope bridge of Angers.

226 soldiers died after the bridge began to vibrate and collapsed. This tragedy is an ex-

ample of a resonance catastrophe, a situation where a building is destroyed by vibrations.
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The vibrations emerge through the accumulated energy in the system due to periodic stim-

ulation in the eigenfrequency of the system. Today, beside the use of vibration absorbers,

it is not allowed to march lock-step over a bridge in order to avoid such a catastrophe

again.

In technical systems that are created as self-organizing collections of self-interested

agents, as the result of many locally reasonable agent decisions, highly dysfunctional

dynamics, called social pathologies, can emerge (Jensen and Lesser, 2002). Social

pathologies occur when improvements in the local performance of the agents do not im-

prove the system performance. This can lead to problems like inefficient resource allocation

(Hardin, 1968), suboptimal collective decision processes (Klein et al., 2003) and several

more. Klein et al. (2005) describes an emergent oscillation effect in the use of a resource

in peer-to-peer systems, induced by a delayed view of the peers on the resource’s queue.

To handle this problem, the authors suggest the spreading of misinformation, which was

found to dampen oscillations and improve system performance.

From an engineers points of view, to implant electrodes into the brain without exactly

knowing the mechanism of action, to simply prohibit marching lock-step over bridges and

to spread misinformation in order to improve a system might sound like strange problem

solutions. But these examples show that to cope with the question how (negative) emergent

behavior can be reduced or prevented, or more general, how to “control” self-organization

and emergence, new kinds of thinking may be required.

An obvious question to ask is, what makes it hard to apply standard control mechanisms

to complex self-organizing technical systems ? There are multiple reasons for that. First,

the parts of self-organizing technical systems must exhibit a sufficient degree of freedom to

be able to self-organize and to generate, if intended, useful emergent properties on a higher

system level. This means in fact, that all possible system states can not be foreseen in

advance, which is usually required for standard approaches for designing robust systems.

Second, due to the distributed character and the complex, often non-linear, relations

between the parts of the systems, it is hard or even impossible to find single points to

impose reasonable control over the whole system.

Unwanted emergent behavior in technical systems, also called negative emergence (Mnif

and Müller-Schloer, 2006; Müller-Schloer and Sick, 2006) or emergent misbe-

havior (Mogul, 2006), generates the need for new approaches to deal with it. Especially

when designing systems that solve safety-critical tasks, methods must be developed which

leave sufficient degrees of freedom for self-organization while keeping control over resulting

emergent effects to avoid negative emergence.

A way to deal with unforeseen system states is to create systems which rely on feed-

back loops. A feedback loop can guide the system by comparing the actual state of the

system with given high-level objectives/goals. In Section 1.3 we introduced self-adaptive
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systems, the autonomic element, and the observer/controller architecture as possible de-

sign methodologies for such systems. Two examples for preventing negative emergence

using feedback loops implemented by using the observer/controller architecture are given

in the following.

Preventing Bunching in Lift Systems

Using certain (simple) lift group control systems, under heavy traffic load conditions a

phenomenon called bunching can be observed. When the bunching effect occurs the lifts

tend to synchronise and serve the floors in form of a wave. The lifts behave like a huge,

single lift with the capacity equal to the sum of the individual lifts. Bunching itself cannot

be expected beforehand nor its occurrence be predicted from the system description. Since

it affects the performance of the lift system negatively it is considered as an example for

negative emergence (Mnif and Müller-Schloer, 2006).

In Ribock et al. (2008) the generic observer/controller architecture is applied to a

lift group traffic control system to evaluate its applicability for preventing bunching. The

SuOC (system under observation and control) is formed by the lifts and the passengers

waiting at the floors. The only observed parameters are the lift positions and the travelling

directions of the lifts. For controlling the lifts two simple methods were implemented that

modify the lift’s view on the environment and thus affect the local behavior of the lifts. It

was shown that a bunching effect can be prevented autonomously by such a system.

Preventing Cannibalistic Behavior in Chicken Farms

If chickens perceive a wounded chicken they chase this chicken and pick on it. The chasing

and picking of a wounded chicken attracts more chicken and a deadly crowd of chicken

builds. Since eventually this leads to the death of the wounded chicken, the emergence of

such spatial, moving clusters of chicken is sure an unwanted negative emergent effect.

In order to observe, classify, and control this behavior automatically in Mnif et al.

(2007) the observer/controller paradigm is studied in a simulation, which reproduces the

collective cannibalistic behavior of chickens. An entropy-based measurement method taken

from Mnif and Müller-Schloer (2006) was used to observe the spatiotemporal chicken

patterns. To reach the final goal of maximising the lifetime of the simulated chickens the

controller part of the system disperses chicken swarms or even prevents their formation by

emitting noise which frightens the chicken.

3.1.1 Drawbacks of Feedback Loops

As shown, the use of feedback loops like promoted in the observer/controller architecture,

is one way to control emergence in technical systems. Different grades of distributions can
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be assumed for these feedback loops. In the most centralized case one global loop controls

the system and tries to reach given goals. Here the controlling part has a global view on the

system and can measure the global system states, if needed. In large distributed systems

such a global feedback loop is not always applicable, since sometimes it is not possible to

collect all needed information in a reasonable time or the amount of this data is to large.

In such cases a decentralized distributed organization of feedback loops, each controlling

only subsystems, is needed (Cakar et al., 2007). The distributed local feedback loops

only have a local view on the system and their direct control interventions only affect

specific subsystems. This is an important point, since the realisation of a global goal for

the whole system must emerge through the realisation of the local goals of the introduced

local feedback loops. At the end, to design such decentralized local feedback loops can

again lead to the problem of how to engineer emergent effects.

Beside the problem of feedback loops in large decentralized systems, there are situations

where its even not possible to add a feedback loop to a system. If a system is already in

use and the necessity for control did not show up in its design phase, it can be too costly

to modify the system. For example “a clear case of emergent misbehavior” (Mogul, 2006)

is the so called ethernet capture effect (Ramakrishnan and Yang, 1994). Ethernet

hardware has been in significant use for serveral years, but this problem has not been

seen until the hardware was fast enough to fully exploit the timing allowed in the ethernet

specification. To exchange all the ethernet hardware is definitely no option and so other

ways of dealing with the problem have to be found.

In general the options to control a self-organizing system without changing its existing

parts are limited, since the only way to do so is by adding something. In case the system is

scalable in the number of components, a way to impose control is to add new components

to the system. These components have to interact with the system in the same way the

other components of the system already do, but they can be designed to use a different

behavior. Results of this may be that the emergent effect disappears or is changed and

also new emergent effects may occur on system level. A second option is to leave the

agents as they are and to add something that changes their environment. We will discuss

both ideas in the following Sections.

3.2 Swarm Controlled Emergence

In some natural and technical systems it can be observed that a small fraction of individuals

can influence a whole group and in this way have an effect on the emergent behavior on

system level. For instance consider the model of collective movement behavior of animal

groups introduced in Section 1.3. In this model the global emergent movement results

from the local rules of the individuals. Recently developed models of moving animal
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groups divide the population into naive and“informed” individuals (Couzin et al., 2005).

Whereas naive individuals follow the classical collective motion rules, members of the

informed sub-population update their orientations according to a weighted average of

the “normal” social rules and a fixed “preferred” direction, shared by all the informed

individuals. These models can explain how a small fraction of informed individuals can

guide the whole group into a desired direction, as for example found in bees moving to

a new nest side (Janson et al., 2005). Also the introduction of artificial individuals

can influence the moving directions and aggregation behavior of real animal swarms, for

example shown in experiments with fish (Sumpter et al., 2008) or cockroaches (Caprari

et al., 2004). A small fraction of (artificial) individuals, using a slightly different behavior,

is able to influence the collective emergent movement of the animal group in a significant

way.

A subset of the individuals is thus able to control emergent effects on system level.

From the systems point of view there is no difference between these controlling individuals

and the usual ones, since both interact in the same way with the rest of the system. We

stipulate this principle as a general method for controlling emergent effects in technical

systems and call this approach swarm controlled emergence. Swarm controlled emergence

means to introduce so called control agents or control components into a system in order to

control emergent effects on system level. The new system consisting of usual and control

components will show new properties, i.e., the emergent effect which is intended to be

controlled can disappear or change. Even new effects can occur. In this way “to control

emergence” is an emergent effect itself, based on the interaction of a swarm of control

components/agents with the system.

A schematic comparison of a feedback loop based control approach and the swarm

controlled emergence approach is given in Figure 3.1. The circles and their connections

represent the self-organizing components of the system with their local relationships and

interactions. On a higher system level emergence occurs. In the feedback loop controlled

system depicted in Figure 3.1 (a), local and global measures of the system state are

observed and based on these information and (e.g. learned) knowledge the system is

influenced to control the emergent effect. To impose control the components of the systems

are often designed to have some kind of control interfaces.

Comparing the swarm controlled system depicted in Figure 3.1(b) there is no special

kind of control effectors needed. The system is controlled through the introduction of

control components (depicted as circles with a “C”) that infer in the same way with other

components as the usual components do. A prerequisite for applying swarm control is that

the system must be scalable in terms of components, i.e., there must be the possibility

to introduce and integrate new components into the system or at least there must be the

possibility to exchange some of the components against control components. The gener-
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(a) (b)

Figure 3.1: (a) Controlling emergence through the introduction of a feedback loop following
the centralized observer/controller approach; (b) controlling emergence using
the swarm controlled emergence approach through the introduction of control
components

ality of the method should not be overestimated and the applicability must be considered

from system to system. There are cases where it makes not much sense to use a swarm

controlled approach. Preventing the mentioned cannibalistic behavior in chicken farms by

introducing robotic or genetically modified control chickens or controlling the discussed

bunching effect of lifts by installing additional lifts or by employing control passengers

could work, but it probably makes not much sense. Swarm controlled emergence is an

additional possibility for controlling emergence beside others.

To design the behavior of the control components leads the problem already discussed

in Section 1.3, i.e., the problem of how to engineer emergent effects in general. Beside the

use of “design patterns for emergent effects” for example taken from nature self-organizing

systems, it was suggested that a manual or automatic trial-and-error process can help to

find appropriate local rules. This means in case of designing control components experi-

ments must be made by applying test implementations of the control components to the

real systems or by testing them via simulations. If possible, this search process for good

control components and depending parameters can be (at least partially) done automat-

ically, for example by using evolutionary algorithms or by simply sampling the possible

parameter spaces. Often it will be necessary to engineer and test the control components

manually. This can make an excessive search for appropriate behaviors and parameters

necessary.
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The introduction of a second swarm of components with different behavior into a system

is not only useful in terms of controlling emergent effects, but it can also lead to a deeper

understanding of the emergent effects in the considered system. For example, it can show

how robust an emergent effect is, that is, how many“misbehaving” components the system

can handle. As an example consider the network protocols relaying on the emergent self-

synchronisation found in fireflys which we introduced in Section 1.3. A potential attacker

might try to disturb or control the system by infiltrating it with adversarial nodes that

do not follow the usual firefly algorithm. From the point of view of the attacker the

swarm controlled emergence approach is used to influence an existing system. To make

the network protocols more robust and to find ways to prevent the possibility of such

attacks they need to be investigated in advance.

3.3 Applying the Swarm Controlled Emergence Approach to Ant

Based Clustering

In the following we will apply the swarm controlled emergence approach to a well known

model of emergent behavior in social insects. The model, which was already briefly in-

troduced in Section 2.2.1, explains the clustering behavior of ants and was proposed in

Deneubourg et al. (1990). Recall, in this model agents (representing ants) move ran-

domly on an array of cells with randomly distributed items. The agents, also called

clustering agents, make probabilistic choices to pick or drop items depending on the frac-

tion of cells occupied by items in their neighborhood. Eventually this behavior leads to

the emergence of clusters of items. The formation of clusters, as a higher system level

property, is an emergent effect in the model (Handl et al., 2003b). This model is cho-

sen to test the swarm controlled emergence approach, because it is well known and has

been studied in many variants and applications. For example, Samaey et al. (2008)

used the model to illustrate their approach of an equation-free macroscopic analysis of

self-organizing emergent systems.

The task we are dealing with in the following, is to control or even prevent the emergent

clustering effect in systems implementing this model. We assume the size of the array,

the number of randomly distributed items and the number the clustering agents and

their probability functions for picking and dropping, to be given and fixed. The task of

controlling/preventing the clustering must be realized without modifying these given parts

in any way. We apply the swarm controlled emergence approach by introducing different

numbers and types of control agents. Since the given systems are assumed to be fixed,

these control agents are restricted to interact with the systems like usual clustering agents

do. They can pick up, carry, and drop items and they have the same perception of the

67



3 Controlled Emergence

system as clustering agents, i.e., they can measure the fraction of occupied cells in their

neighborhood. We further assume their internal functioning to be very similar to the

one of the clustering agents. That is, the behavior of the control agents is realized by

the use of modified probability distributions for picking and dropping items. The same as

clustering agents, they move randomly in the array and they have no memory or any other

sophisticated behavior. These relatively restricted assumptions keep the investigations

of this proof of concept of swarm controlled emergence manageable and simple. When

applying swarm controlled emergence to control emergent effects in technical systems, the

realizable implementations of agents in general determine the possible behaviors of control

agents.

We investigate systems that contain clustering agents in combination with additionally

introduced control agents. The outcomes and dynamics of these systems is compared to

systems without control agents. The systems are simulated over a number of time steps.

The final item distributions are visually observed and several measures are applied in order

to quantify the influence of the different parameter settings on the simulations outcome.

Not much work has been done on the topic of ant-based clustering systems using agents

with different behavior at the same time yet. In Lumer and Faieta (1994) the agents

have different velocities, what can be seen as having different behavior. In Handl et al.

(2006) the sorting agents change their behavior over time. There is a phase a different

neighborhood function is used. This causes the agents to not do the normal sorting, instead

they spread out the items. Such a phase was shown to improve the overall sorting results.

A work using different agents at the same time is given in Magg and Boekhorst

(2006); Magg and te Boekhorst (2007). These papers consider a two dimensional

array with movable items. Two types of agents, called Dozers and Grabbers, act within

this array by moving items and dropping pheromone. Dozers keep areas free of particles

by pushing them to the next wall or pile, whereas Grabbers carry away items and try

to drop them in free areas with few pheromone. The resulting distribution patterns for

different ratios of these two types of agents and different pheromone dropping variants

are analysed visually and by using an entropy measure. In contrast to our work the used

movement, picking, and dropping rules differ strongly from the one used by Deneubourg

et al. (1990). Also we do not incorporate a pheromone which affects the behavior of the

agents.

3.3.1 A Model of the Pile Formation in Ants

The basic model used in our study was proposed in Deneubourg et al. (1990). This

simple agents based model was developed to explain the clustering behavior in ants, i.e.,

the pile formation of indistinguishable items (brood items or dead nestmates). A behavior
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that has been found in real ants colonies and in other social insects as well. In the model

several items are distributed in a two-dimensional toridial array of cells (at most one item

per cell). Agents are distributed within the array and in one time step each agent moves

randomly to one of the four directly neighbored array cells. Thereafter, if the agent does

not carry an item and there is an item located at its new position, the agent picks up

the item with a certain probability. If the agent already carries an item and the new

position of the agent is empty, the agent drops its item with a certain probability. The

probabilities for picking and dropping items depend on the items within the neighborhood

of the agent. Formally, the probabilities pclust
pick for an unladen cluster agent to pick up an

item and pclust
drop (f) for a laden cluster agents to drop its item are given by:

pclust
pick (f) =

(

k+

k+ + f

)2

and pclust
drop (f) =

(

f

k− + f

)2

,

where f is the neighborhood function and k+ > 0, k− > 0 are threshold parameters.

Different methods for defining the neighborhood function f have been proposed. One

method is to count how many items were encountered by the agent within a given time

window and define f as the fraction of time steps where the agent moved across cells that

were occupied by an item. Another way to determine f is to calculate the fraction of cells

that are occupied with item in the von Neumann neighborhood of the agent. In our study

we use the latter definition.

3.3.2 Anti-Clustering

The aim is to construct control agents which behave similar to the standard clustering

agents but can, when added to an existing clustering system, reduce (or prevent) the

clustering effect. We call these control agents anti-clustering agents, or AC-agents. As

mentioned before the different types of anti-clustering agents, which will be introduced

in the following, behave the same way as the clustering agents. The cluster agents and

AC-agents only differ in the probability distributions for dropping and picking up items.

Reverse AC-agents

For reverse AC-agents the probabilities that a clustering agent picks up an item or drops

an item in a certain situation are swapped. Such an agent will drop (respectively pick up)

an item with the same probability as a cluster agent would pick up (respectively drop) an

item in the same neighborhood f :

prev
pick(f) = pclust

drop (f) =

(

f

r+ + f

)2
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prev
drop(f) = pclust

pick (f) =

(

r−

r− + f

)2

where r+ and r− are the threshold values used for reverse agents. In most experiments

both parameters r = r+ = r− are set to the same value.

As an extreme case of the reverse AC-agent behavior we introduce the so called strict

reverse AC-agents, or just strict AC-agents. They pick up items with probability 1 if there

is any other item in their neighborhood and drop items only if there is no item in the

neighborhood. Such a behavior is denoted by r = 0, since its the same as the reverse

AC-agents behavior for the threshold parameters r+ = r− close to zero.

An alternative possibility to revert the behavior of the clustering agents is to reverse

the probability of picking and dropping so that prev
pick(f) = 1 − pclust

pick (f) and prev
drop(f) =

1−pclust
drop (f). But since these functions lead to very similar probability distributions as the

ones that are used for the definition of the reverse AC-agents further investigations of the

corresponding AC-agents are omitted.

Inverted neighborhood AC-agents

Inverted neighborhood AC-agents have the same behavioral rules as cluster agents, but

they have an inverted perception of the neighborhood, i.e., on every neighbored cell (but

not on the cell they are currently placed) they see an item when the cell is empty and

otherwise they see no item. Thus, these agents drop items with higher probability when

less item are in their neighborhood. Formally, the probability to pick up an item pinv
pick(f)

and to drop an item pinv
drop(f) are

pinv
pick(f) = pclust

pick (1− f) =

(

i+

i+ + 1− f

)2

pinv
drop(f) = pclust

drop (1− f) =

(

1− f

i− + 1− f

)2

,

where i+ and i− are the threshold values used for inverted neighborhood AC-agents.

Random AC-agents

Introducing sufficient randomness in the behavior of the agents in the sense that items are

transported to random cells can obviously hinder a strong clustering. Random AC-agents

always pick up items when they enter an occupied cell. If such an agent carries an item, it

drops it on an empty cell with a fixed probability t > 0. Formally, for random AC-agents

the probability to pick up an item prand
pick (f) and to drop an item prand

drop (f) are

prand
pick (f) = 1 prand

drop (f) = t.
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Figure 3.2: Probabilities to pick up (a) and to drop (b) an item for the different types
of agents (cluster agents, reverse AC-agents, inverse neighborhood AC-agents
and random AC-agents); f denotes the fraction of occupied cells in the neigh-
borhood

In Figure 3.2 examples of the probability functions to pick up or drop items for the

different agents are given.

3.3.3 Clustering Measures

One central aspect for our study is to measure how the characteristics of emerging cluster-

ings changes for different systems of agents. In order to make the results not dependent

on a single way to quantify the results several measures for the degree of clustering are

used.

Number of Clusters Nd

The number of clusters Nd is the number of different connected regions of cells where each

cell has more than d items in its neighborhood. In other words, the measure counts the

number of high density regions. If not stated otherwise the considered density level is

d = 75 and the used neighborhood is the same as used by the agents (by default a von

Neumann neighborhood with radius 10).

Spatial Entropy Es

Gutowitz (1995) and Bonabeau et al. (1999) suggest to measure the spatial entropy

to track the dynamics of ant based clustering. This measure can be used to classify

spatial distributions of items according to their cluster validity on different spatial scales.

To calculate the spatial entropy the (two-dimensional) cell array A is partitioned into so
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called s-patches, i.e., subarrays of size s× s. Let pI be the fraction of cells in a s-patch I

that are occupied by an item. Then the spatial entropy Es at scale s is defined as

Es = −
∑

I∈{s−patches}

pI log pI

Hierarchical Social Entropy S

Balch (2000) proposes the so called hierarchical social entropy measure which is defined

as described in the following. Let R = {r1, . . . , rN} be the items for which the measure is

to be calculated and for each pair of items in R let d(ri, rj) be a dissimilarity measure.

Based on the dissimilarity measure a hierarchical clustering can be calculated as follows.

Initially each item is assigned to its own cluster. Then iteratively the two most similar

clusters are merged, until there is one single cluster left. We choose the complete linkage

method for calculating the dissimilarity between two clusters, which is defined as the

maximal dissimilarity between two arbitrary items of these clusters (for more details on

hierarchical clustering see, e.g., Day and Edelsbrunner, 1984).

The hierarchical clustering leads to a dendrogram which visualizes the agglomeration

process in a binary tree, where the leaves of the tree represent the items. Two nodes are

siblings if their corresponding clusters are agglomerated during the hierarchical clustering.

A cut through the dendrogram at level h ≥ 0 defines a clustering C(h) = {C1, . . . , CM(h)},

where M(h) is the number of clusters at h. For every cluster C ∈ C(h) the maximum

dissimilarity between all pairs of items ri, rj ∈ C is smaller or equal than h, i.e., d(ri, rj) ≤

h and the dissimilarity between all pairs of clusters C1, C2 ∈ C(h) is larger than h.

The hierarchical social entropy of a set of items R is defined as

S(R) =

∫ ∞

0
H(R, h)dh,

where H(R, h) = −
∑M(h)

i=1 pi log2(pi) is the simple social entropy of R at level h and

pi = |Ci|
|R| is the proportion of items in the i-th cluster Ci ∈ C(h). Note, that the hierarchical

social entropy is invariant in relation to the scale of the dissimilarity measure. Balch

(2000) uses the measure to calculate the diversity of a set of robots and to distinguish

between fine grained and coarse grained clustering situations. In Figure 3.3 two clustering

situations, the resulting dendrograms, and the values of the social entropy at different

levels are depicted.
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Figure 3.3: Hierarchical social entropy; shown are two clustering situations on a 50 ×
50 array with corresponding dendrogram, social entropy values at different
taxonomic levels and hierarchical social entropy value

3.3.4 Experiments and Results

For all experiments a two-dimensional array of cells with size 500 × 500 is used. In the

initial state the items and agents are distributed randomly within this array. The number

of cluster agents is set to 50 and different numbers of AC-agents are added to the system.

The neighborhood of an agent is defined as the von Neumann neighborhood with radius

10, i.e., all cells for which dx +dy ≤ 10 holds are in this neighborhood, where dx and dy are

the absolute distances of the considered cell to the cell of the agent in the two dimensions.

The threshold parameters for the clustering agents are chosen as k+ = 0.05 and k− = 0.3,

since this leads to a good clustering performance for the used item densities. If not stated

otherwise, the results are given after 50 million simulation steps.

No AC-Agents

For reasons of comparison the clustering behavior of a system without AC-agents is studied

first. Figure 3.4(a) shows the clustering behavior of such a system after different time

steps for 1000 and 7000 items. It can be seen that there is a strong clustering with a

decreasing number of clusters over time in both cases. At the same time step in systems

with 7000 items more clusters can be observed than in systems with only 1000 items.

Figure 3.4(b) shows this effect quantitatively using the N75 measure. During the first few

million simulation steps an increasing number of clusters emerge. After a maximum is

reached the number of clusters slowly decreases. The reason is that clusters disappear and

the items of these vanishing clusters are inserted into other clusters. These results coincide

with the findings of Theraulaz et al. (2002). The influence of the number of items on

the clustering measures N75, E25, and S at different time steps is shown in Figures 3.4(c),

3.4(d) and 3.4(e). For all three measures at a given simulation time in systems with more

items the values of the clustering measure are higher. Both entropy measures decrease
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Figure 3.4: System with only clustering agents; (a) distributions of 1000 items (top row)
respectively 7000 items (bottom row) at simulation steps 100 000, 1 000 000,
2 000 000, 10 000 000 and 50 000 000 (from left to right); (b) number of clusters
N75 for different number of items over time; (c) ((d), (e)) number of clusters
N75 (respectively, spatial entropy E25, hierarchical social entropy S) at different
time steps for different number of items
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(a) 1000 items, 100 inv.
AC-agents

(b) 1000 items, 1000 inv.
AC-agents

(c) 7000 items, 100 inv.
AC-agents

(d) 7000 items, 1000 inv.
AC-agents

Figure 3.5: Example distributions of different number of items for different numbers of
inverted neighborhood AC-agents

with an increasing number of simulation steps because the emerging clustering increases

the order in the system. The comparison of the values of the two entropy measures is

difficult. Even at time step zero, when there is a “perfect” disorder in the systems, the

values differ.

Inverted Neighborhood AC-Agents

The influence of inverted neighborhood AC-agents on the clustering is shown in Figure

3.5. After experimenting with different values of the parameter i+, a value of i+ = 0.3 has

been used for the simulations because for this value the inverted neighborhood AC-agents

had the strongest influence.

It can be seen that 100 inverted neighborhood AC-agents have a very small influence on

the clustering and even 1000 inverted neighborhood AC-agents can not hinder a clustering.

The only effect is that the clusters become more diffuse, i.e., more cells within the clusters

area are not occupied by items. For the inverted neighborhood AC-agents regardless of

the chosen value for parameter i+, the probability to drop an item in a neighborhood with

f ≈ 0.2 is nearly the same as for f = 0. This is the reason why the inverted neighborhood

AC-agents are so weak and the inverted neighborhood AC-agents are no good choice for

preventing a clustering.

Random AC-Agents

Figure 3.6(a) shows sample distributions of the items at simulation step 50 000 000 for

different numbers of random AC-agents with parameter t = 0.1. It can be seen the more

random agents are introduced into the system the less clustering occurs. When the number

of random AC-Agents is the same as the number of clustering agents the clusters become

diffuse. When the system has about twice as much random AC-Agents as clustering agents

75



3 Controlled Emergence

no larger clusters of items occur. These results hold independent of the number of items

that have been tested. Hence, the random AC-Agents are possible candidates to be used

as anti-clustering agents.

In Figure 3.6(b) the influence of parameter t which denotes the probability that a random

AC-agent drops an item is depicted. The figure shows that the strength of clustering

strongly depends on that parameter t. If the value of t is high it is likely that the random

agents drop a picked up item very fast again. Thus, the items are not transported very

far and therefore the random AC-agents have only a small influence on the system. If

the parameter t is small the random AC-agents are likely to carry an item for a long

time without dropping it. In this case their influence on the clustering is not very strong,

too. Intermediate values of t (0.05 ≥ t ≥ 0.1) used by larger numbers (≥ 60) of random

AC-agents can prevent a strong clustering. To quantify the dependency of the system of

parameter t the spatial entropy measure E25 is shown in Figure 3.7 for different numbers

of random AC-agents and different values of t. The figure shows that the t values where

the entropy is highest (and the clustering is weakest) are smaller for a larger number of

random AC-agents. Thus, the larger the number of random AC-agents, the shorter the

time they should carry the items.

Reverse AC-Agents

Figure 3.9 shows sample item distributions for a system with 50 reverse AC-agents for

different values of parameter r and different numbers of items. Several effects can be

observed. First, reverse AC-agents with the same parameters as the clustering agents

(second row) can not hinder a clustering, although they make the clusters more diffuse.

Second, for a small number of items (≤ 2000) the lower the r parameter, the more diffuse

the patterns become. Third, for a large number of items (≥ 3000) the clusters disappear

for medium values of r but for small values of r clusters occur. The values of r that lead

to the occurrence of clusters depends on the number of items. For example, for r = 0.0025

in the system with 7000 items about 10 large clusters are clearly visible. Whereas no such

clusters occur for a system with 5000 items and the same r value (for r = 0.001 clusters

are visible also for the case of 5000 items).

The fact that clusters occur for a low r value and a high number of items can be

explained in the following way. The lower the r value, the smaller is the probability of

dropping an item if there are other items within the neighborhood. For the strict reverse

behavior (r = 0, last row), the probability of dropping an item is nearly zero if there

is any item in the neighborhood. In situations where almost every cell in the array has

a neighboring item and r has a low value (for example, for 3000 items and parameter

r = 0.001) the probability of dropping an item is very small in most cells. Therefore, the
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(a)

(b)

Figure 3.6: (a) Example distributions of different number of items using varying numbers of
random AC-agents with parameter t = 0.1; (b) Example distributions of 7000
items using different numbers of random AC-agents and varying parameter t
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Figure 3.7: Spatial Entropy E25 using different numbers of random AC-agents for varying
parameter t; maximum values are marked by circles

AC-agents spend all their time carrying items in search for places to drop them, whereas

the clustering agents can build clusters from the remaining items.

To investigate the system in more detail we consider the clustering measure Nc. Figure

3.8 depicts for different parameters r and different numbers of items the values of N75 3.8(a)

and N10 3.8(b). Measure N75 shows that only for high or low values of r in combination

with a high number of items clusters of high density occur. This fits with the observations

that can be made from Figure 3.9 and shows that for medium values of r the reverse

AC-Agents work well. Measure N10 shows that for medium values of r and larger number

of items many (1500) small clusters of low density 3.8(a) are build.

The spatial entropy E25 and the hierarchical social entropy S depending on r are de-

picted in Figure 3.10(a) and 3.10(b). Since low entropy values signalize a strong clustering,

high values are deserved in terms of anti-clustering. It can be observed that the entropy

values depend not only on the chosen parameter r but also on the number of items. For

example, when there are 3000 items in the system a value of r = 0.005 leads to the highest

spatial and hierarchical social entropy, i.e., the strongest anti-clustering effect. On the

other hand for 7000 items a value of approximately r = 0.05 is best.

In summary, it can be noted that a number of reverse AC-agents that is similar to the

number of clustering agents is able to prevent a strong clustering when the parameter

values are chosen adequately. To confirm this statement, simulations were done with a

system that was initialized with a clustered situation. In this case the reverse AC-agents

destroy the initial clustering successfully. Hence, the reverse AC-agents can be classified as
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Figure 3.8: System with 50 reverse AC-agents; number of clusters with a certain density
for different parameters r and different number of items; (a) results for N75;
(b) results for N10

efficient anti-clustering agents because they “win” against the same number of clustering

agents.

To study the effect of the number of reverse AC-agents in more detail, sample distribu-

tions of different numbers of items for systems with 35 reverse AC-agents using different

values of r are given in Figure 3.11. Comparing these distributions with those for an equal

number of clustering agents and AC-agents (Figure 3.9) it can be noticed that for r ≥ 0.01

the outcome looks quite similar. Only for lower values of r and higher number of items the

distributions of the items differ strongly. For instance, a clear difference can be observed

comparing 35 reverse AC-agents with 59 reverse AC-agents in case of r = 0.001 and 4000

items. In the former occur empty areas between the clusters, whereas in the latter these

areas are densely filled with items (Figure 3.9 and 3.11).

Comparing the values of the entropy measures for 35 reverse AC-agents (Figure 3.12(a)

and 3.12(b)) with the ones for 50 reverse AC-agents (Figure 3.10(a) and (Figure 3.10(b))

it can be observed that for 1000 items there is nearly no difference. For 3000 and 7000

items using values of r ≥ 0.01 also no difference can be seen. The entropy measures for

7000 items and values of r < 0.01 are slightly smaller for 35 reverse AC-agents than for

50 reverse AC-agents and there is a stronger shift near r = 0.005. But the main difference

can be observed for systems with 3000 items and values of r < 0.01. Here the entropy

measures are much smaller when using only 35 reverse AC-agents. For example, the spatial

entropy E25 is 6.3 for 50 strict AC-agents (this means reverse AC-agents with r = 0) but

only 4.7 when using 35 of these anti-clustering agents. This indicates a strong clustering

at these values. The value r = 0.005 leads to the strongest anti-clustering effect when
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Figure 3.9: System with 50 reverse AC-agents; example distributions of items for different
number of items and different values of parameter r; second row r+ = 0.05
and r− = 0.3 (same values as for clustering ants)
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Figure 3.10: (a) Spatial entropy E25 and (b) social hierarchical entropy S for 50 reverse
AC-agents using different number of items for varying parameter r

using the same number of reverse AC-agents as clustering agents. But when using only 35

AC-agents these value for r leads to the worst results.

The emergence of empty areas between the clusters that can be observed for 35 reverse

AC-agents, small values of r and high number of items, can be explained as follows. At

the beginning of the simulation the same happens as in a system with more (for example

50) reverse AC-agents. A part of the items is distributed equally by the reverse AC-

agents, whereas from the other items the cluster agents form clusters. In situations where

the neighborhood function is low the clustering agents are not very “strong” since the

probabilities of picking an item and dropping it are nearly the same (compare f ≈ 0.1 in

Figure 3.2). Therefore, the clustering agents act nearly randomly in such a neighborhood.

On the other hand in regions with a high density (within or next to already existing

clusters) the clustering agents become “stronger”. Thus, next to clusters the clustering

agents are nearly as strong as the reverse AC-agents. Since they outnumber the reverse

AC-agents they can move all items of the area next to the clusters.

An important observation at this point is the fact that there are parameter settings

(for example r = 0.001 and 3000 items) for which the number of clusters after a certain

simulation time is even less than in a system without reverse AC-agents. This is because

at the beginning only a part of the items are clustered by the clustering agents and the

remaining items are equally distributed by the reverse AC-agents. This leads to a smaller

number of clusters, i.e., less“crystallization points” in the rest of the simulation. Therefore,

also at the end the number of clusters is smaller.

This effect is interesting from an anti-clustering point of view, because it has to be elim-

inated as far as possible. It is also interesting in terms of ant based clustering algorithms

because it shows that the incorporation of a second type of agents could help improve the
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Figure 3.11: Example distributions of items after 50 ∗ 106 time steps for different number
of items and different parameter r+ and r− used for the 35 reverse AC-agents
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Figure 3.12: System with 35 reverse AC-agents for different number of items and different
values of r; (a) spatial entropy E25; (b) social hierarchical entropy S

clustering process. Because of this the effect is studied in more detail in the following.

To keep things simple, the following investigations concentrate on reverse AC-agents with

parameter value r = 0, i.e., strict AC-agents.

First the influence of the number of strict AC-agents has on the system is studied.

In Figure 3.13(a) sample item distributions for varying numbers of strict AC-agents and

items are depicted. For a fixed number of items the distributions are very similar for any

number of 50 or more strict AC-agents. The analogous statement holds also for 20 or less

AC-agents. If all runs with more than 3500 items are compared it can be seen that there is

no observable difference. The remaining cases are more interesting, i.e., simulations with

20 to 50 strict AC-agents and at most 3500 item (framed part of the figure). In these

simulations the resulting distribution strongly depends on the exact parameter values. In

Figure 3.13(b) the spatial entropy for the interesting region is given. Three regions can

be distinguished here. In the first region the anti-clustering works well, i.e., the spatial

entropy is high. The second region has a very low spatial entropy, because of a strong

clustering. And the third region is a small region in the upper right corner of the graph,

where the number of items is ≥ 3000 and the number of strict AC-agents is ≥ 40. In

this region the spatial entropy has medium values because the relating simulations lead to

some clusters within equally distributed items. These findings suggest that the strength

of the anti-clustering agents depends strongly on the chosen parameters. This shows that

the anti-clustering problem is not a trivial one.

The evolution of the spatial entropy E25 of a system with 2500 items over time is given

in Figures 3.14(a) and 3.14(b). It can be observed that at the end a medium number (e.g.,

30) of strict AC-agents leads to the lowest E25. Figure 3.14(b) shows that spatial entropy

values for systems with 30 strict AC-agents become smaller than for systems with 50 strict
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Figure 3.13: (a) System with different number of strict AC-agents; distribution of items
for different numbers of items; (b) spatial entropy E25 for parameter values
that correspond to the framed area (a)

AC-agents after about 16 million simulation steps. Thus, the introduction of a medium

number of strict AC-agents can improve the clustering in terms of spatial entropy.

To make sure this interesting effect is not the result of a larger total number of agents

(clustering agents plus AC-agents) two systems with a total number of 80 agents are

compared, i.e., one system with 80 clustering agents and one with 50 clustering agents

and 30 strict AC-agents. The results are shown in 3.14(c). Although the spatial entropy

E25 for 80 clustering agents shows lower values than when using only 50 clustering agents,

the values are still worse than for systems with a mixture of 50 clustering and 30 strict

AC-agents. The same holds for the number of clusters N75 and the social hierarchical

entropy S - every measure suggests a significant better clustering for the agent mixture.

This shows that a mixture of different types of agents can improve the clustering compared

to a system of clustering agents.

3.4 Congestion Control in Ant Like Moving Agent Systems

In the last section we introduced the swarm controlled emergence approach and investi-

gated how to control the emergent pattern formation of items in a cell array that was

originated by the interaction of the items with randomly moving agents. No direct inter-

action between these agents took place. In the following we shift our attention to systems
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Figure 3.14: Spatial entropy E25 over time for different number of strict AC-agents (a) and
(b); measures E25, N75, and S for systems using 80 cluster agents compared
to systems with 50 cluster agents and 30 strict AC-agents (c)

of moving agents that interact directly. Direct interaction means that the agents are not

allowed to move over each other ,i.e., agents are obstacles for other agents.

Different models for the movement of the ant Leptothorax unifasciatus within a nest

have been introduced in Sendova-Franks and Lent (2002). It was shown that small

differences in the movement behavior can lead to spatial sorting of the ants (i.e., on average

over time ants with different behavior can be found in different areas of the nest), whereas

the degree of the sorting depends on the particular movement model. In the model with

the strongest sorting there is an attraction point in the nest center, which establishes

a centripetal force on the ants. In natural ant nests this can be a CO2 gradient which

is assumed to point to the center of a brood chamber (Cox and Blanchard (2000);

Nicolas and Sillans (1989)). In Scheidler et al. (2006); Scheidler (2005) this
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model has been investigated and modified slightly to avoid an unnatural blocking effect in

the nest centre.

In Scheidler et al. (2006) we adapted the movement models to fit the requirements

of systems of moving artificial agents influenced by multiple attraction points. Hereby, we

assumed the agents have to visit one of several service stations from time to time (e.g., to

recharge their batteries or to drop items they have collected). It was shown that emergent

patterns in the distribution of the agents can occur even when only slight behavioral

differences between the agents exist. These patterns are determined by the relative size

of the influence area of the service stations. These results can find application in swarm

robotic systems which exhibit different service stations for the robots. It was also shown,

that using the ant inspired movement models an unwanted congestion can emerge at the

service stations if there is a larger number of agents in the system.

In the following we investigate different methods for reducing and controlling this (neg-

ative) emergent congestion effects. Like the swarm controlled emergence approach the

considered control methods do not need to use any global information or additional sen-

sory data. Two of the methods modify the environment of the agents and leave the internal

functioning of the agents unchanged, whereas the third studied method does only a slight

change to the behavior of the agents.

3.4.1 Agent Model

Similar as in Sendova-Franks and Lent (2002) the shape of an agent is modeled as

a disc with radius ρ. The center of the disc (xi, yi) represents the position of agent i

. Each agent has an actual direction of movement αi, which is measured as the angle

relative to the lower border of the rectangular simulation area. The point at position

(xi + ρ cos αi, yi + ρ sinαi) models the center of the agents head. From the center of the

head every agent can sense obstacles within a range of distance σ, called sensing range

(see Figure 3.15).

Figure 3.15: Agents are modeled as discs; ρ - radius; O - center of the body; α - direction
of movement; H - center of the head; σ - sensing range
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Agent i collides with agent j if agent j is within the sensing range of agent i, i.e., when

the distance between the center of the head of agent i and the center of the body of agent

j is smaller than σ + ρ. Similarly, an agent collides with the nest wall when the euclidean

distance between the center of its head and the wall is less than the sensing range. For

our experiments the body of an agent has radius ρ = 0.01, the sensing range is σ = 0.006.

The movement model used corresponds to the repulsive ant model from Scheidler

et al. (2006). This model is a mixture of the centripetal ant model and the avoiding

ant model from Sendova-Franks and Lent (2002), and was introduced to overcome

the problem that agents get stuck near the focal point. Each agent i has a parameter

0 ≤ µi ≤ 1 that influences its moving behavior, modelling the behavioral differences

between the agents. In Sendova-Franks and Lent (2002) and Scheidler et al.

(2006) fixed values of µi were used for the experiments.

Here we investigate a movement model where the parameter µi can varies over time

and models the actual state of an agent. The higher µi, the faster the agent can move.

The value of µi is increased in case agent i visits a certain service area. The motivation

behind this is that the agent gets new power or becomes unladen at the service station.

During free movement of an agent its value µi decreases, modelling the use of power or

the influence of the weight of collected items.

Movement when unobstructed

If there is no obstacle (wall or other agent) within its sensing range an agent moves and

turns at each time step. The agent moves distance νi in direction αi, i.e., xi ← xi+νi cos αi

and yi ← yi + νi sinαi. The values νi representing the velocities of the agents dependent

on the internal parameters µi of the agents as follows: νi = (1 − µi)νs + µiνf where the

parameters νs and νf , 0 < νs < νf < 1 denote the slowest and the fastest velocity. They

are set to νs = 0.0006 and νf = 0.006 in our experiments.

The agent changes its movement direction by αi = αi +θi, where θi is the turning angle.

For the calculation of this turning angle the clinotaxis model from Grünbaum (1998) is

used: θi ← pu(1− µi)χ + pbµiτ · (1− cos(φi))/2 where χ = 15◦, τ = 30◦ are constants and

the values of pu and pb, determining the direction of turning, are randomly chosen from

{−1, 1}. The parameter φi denotes the angle between the actual moving direction αi and

the vector towards the service point. The larger this value is the stronger the agent will

turn.

Agents with large value µi will be less affected by their φi as agent with small µi (see

Fig. 3.17(b)). Therefore, for agents with small value µi the attraction to the service point

is stronger than for agents with large value µi.
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(a) (b)

Figure 3.16: Effect of different values of the parameter µi on the turning behavior when
unobstructed; Z is the service point; (a) for large µi there is only a slight
difference between moving from or to the service point; (b) for small µi the
turning angle becomes significantly smaller the smaller the angle between
actual moving direction and the vector to the service point is

Movement when obstructed

(a) (b)

Figure 3.17: Turning behavior when colliding with an agents (a) or a wall (b)

If a wall or another agent is within the sensing range of an agent, it will not move,

but only make a turn. It avoids the obstacle explicitly by turning into the same direction

until it can move again. To determine the turning direction assume that agent i collides

with agent j. The sign of the scalar product between the vector that is perpendicular to

the vector of the moving direction of agent i and the vector from the center of agent i

to the center of agent j determines the direction of turning: θi ← sign((− sin αi, cos αi) ·

(xj − xi, yj − yi))U(0, Θi), Θi = 60◦ is a constant. A collision with the wall is handled

analogously.
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(a) (b)

Figure 3.18: Distribution of the agents for different number of agents after 2000 time steps;
(a) 90 agents; (b) 150 agents; the smaller the value µi of an agent the brighter
is its color; the service area is the white circle in the middle

3.4.2 Emergent Congestion

The experiments took place in a quadratic area with side length 1. At the start of a simu-

lation run the positions of the agents are distributed randomly with uniform distribution

over this area. The values of the internal parameters µi are chosen randomly with uniform

distribution between 0 and 1. In the center of the field there is a circular service area with

radius 0.04 representing a service area. If an agents position (i.e., the center of its body)

is within the service area its internal parameter µi is set to 1. If agent i moves (e.g., the

agent is unobstructed) the value of µi is decreased by a fixed value 0.001 until µi = 0.

Observe that the smaller the value of µi is the slower moves the agent and also the higher

is the attraction force to the service area.

Figure 3.18 shows the distribution of the agents after 2000 time steps for different

number of agents. As can be observed depending on the system size there can occur a

congestion situation. A system with 90 agents works without strong congestion at the

service station. Agents with small value µi (bright color) tend to be close to the service

station. Agents with large value µi are nearly randomly distributed over the whole field.

This is different for a system with 150 agents. Here nearly all agents can be found close to

the service station. Directly at the service station agents with large value µi are located.

They cannot move away because the way is blocked by the agents with small value µi that

try to move into the service area. As shown later, for this system the agents cannot do
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much useful work (if that means that the agents should ideally move over the whole field).

Altogether, the observed congestion is an unwanted effect of the system that depends on

colony size.

3.4.3 Congestion Control

To resolve a possible congestion of the agents at the service point we introduce three

different congestion control methods. The goal of these methods is to resolve the congestion

either by leaving the behavior of the agents unchanged or by changing the behavior of the

agents only slightly but without need for introducing any new type of sensory information

or global knowledge. The first two control methods CP and CW do not change the agent

behavior and the third method CD changes only the sensing range of the agents.

Control Method CP

Control method CP introduces two parallel walls next to the service station that form a

pipe. The idea of this method is that agents that have visited the service station and have

a high value µi might be able to move away from the service station through the pipe

whereas only few of the agents that have a small value µi might use the pipe to move to

the service station.

Figure 3.19: Distribution of agents for a system with 150 agents after 2000 time steps using
congestion method CP

An example of a pipe can be seen in Figure 3.19 where the distribution of the agents

for a system with 150 agents after 2000 time steps using the congestion methods CP is

given. It can be seen that there is much less congestion by slow agents with small value

µi within the pipe for method CP than outside of the pipe next to the service area. It can

also be seen that the agents with high value µi can move through the pipe.
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Control Method CW

Control method CW is to introduce two additional walls on two sides of the service station.

Each wall has a small opening in the middle that is next to the service station. The idea

of this method is that slow agents with small value of µi might be forced to wait behind

a wall and therefore do not block the service station. Hence, the agents that have visited

the service station can move away from it. An example for this control method CW can

be seen in the middle of Figure 3.20.

Figure 3.20: Distribution of agents for a system with 150 agents after 2000 time steps using
congestion method CW

For method CW it can be seen that the congestion around the service area is much less

compared to the system without congestion control. Agents with high value µi can be

found in different parts of the field and not only next to the service area, as it was the

case when no congestion control is used.

Control Method CD

The third control method CD changes the behavior of the agents slightly. Here the sensing

range σi of agent i depends on the internal parameter µi. The sensing range is calculated

as follows: σi = 2ρ − 1.4µiρ. The idea behind this method is that agents with a small

value of µi that move to the service station have a larger sensing range and therefore leave

some space when they are next to other agents. This space can be used by the agents that

have visited the service station and therefore have a large value µi to move away from the

service station.

For method CD the distribution of the 150 agents after 2000 time steps is shown in

Figure 3.21. The figure shows that at least some agents with high value µi that have
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Figure 3.21: Distribution of agents for a system with 150 agents after 2000 time steps using
a congestion method CD

visited the service station can move away from it because the agents with small value µi

leave some space between each other.

3.4.4 Comparison of the Methods

To compare the performances of the control methods with an uncontrolled system, over

the first T time steps the total energy consumption of the system PT is measured. This

is done in the following way. Recall, if an agent reaches the service area its value µi is

increased by adding the value 1 − µi so that µi = 1 holds afterwards. The sum over all

values 1−µi for all i and every time when the value µi is increased can be seen as measure

of the performance of the system. Since agents that move use energy and agents that can

not move do not use energy the total energy consumption is a measure how freely the

agents can move on average.

The given results were generated from 20 independent runs for every parameter com-

bination, each lasting 10 000 time steps. Figure 3.22 shows the total energy consumption

PT for a system without congestion control and systems with congestion control. It can

be seen that for a small number of agents, since no congestion occurs, the system without

congestion control has the highest performance. This is no surprise because the congestion

control methods slightly hinder the agents to move freely within the field when there is

no congestion. But when the number of agents becomes larger than 100 the performance

of the system without congestion control decreases very fast. For more than 130 agents

this system has the worst performance. For a medium number of agents the system with

method CW is the best. But for a large number of agents this method is not much better

than a system without congestion control. For a larger number of agents (more than 210)
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Figure 3.22: Total energy consumption PT for different number of agents measured over
10 000 time steps for a system without congestion control and systems with
the different congestion control methods

the system with method CD is clearly the best. Method CP is better than the system

without congestion control for more than 135 agents but it is worse than the two other

methods.

Beside the reduction of congestion, fairness for service is another important measure

for the collective behavior of agents. In the considered system, e.g., the waiting times for

service have to be similar. We measured the fairness of the system in two different ways.

First, at the end of a given time interval of length T for every agent the total amount

of values that have been added to µi for all its visits of the service station is measured.

Then the relative standard deviation (RSD) of these values for all agents has been taken

as a measure for the fairness of the system (the lower the variance means the more fair

the system is).

The behavior of the systems with respect to this fairness measure is shown in the left

part of Figure 3.23. It can be seen that the system without congestion control is most fair

for a small number of agents (less than 110 agents). For a larger number of agents the

system with the CD method is the best.

The second measure of fairness is defined as follows. Let τ(T ) be the mean waiting

time of the agents where the waiting time of an agent is defined as the length of the time

interval from the time when its internal parameter (µi) becomes zero until the time when

it reached the service area (measured over a simulation run over T time steps). Let σ(T )

be the standard deviation of these waiting times. A dimensionless measure for the fairness

is then by σ∗(T ) = σ(T )/τ(T ). Note, that for this measure only the waiting times of the

agents that reached the service point are considered. Hence, a congested system may still
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Figure 3.23: Fairness for different number of agents measured over 10 000 time steps for a
system without congestion control and systems with the different congestion
control methods; first fairness measure RSD (left), second fairness measure
σ∗ (right)

be fair, if there is only a small subset of agents that are served and these agents have

similar waiting times.

The behavior of the systems with respect to the second fairness measure is shown in

the right part of Figure 3.23. It can be seen that the system the CD method is most fair

(independently of the number of agents). For small number of agents (less than 110) the

system without congestion control is the second most fair system. For larger number of

agents the system with method CP is the second best.

3.5 Summary

In complex self-organizing technical systems consisting of many autonomous components

emergent effects may occur that are neither wanted nor have it been intended or foreseen

in the design phase. To make the systems reliable it is necessary to take care of this

problem. A general way is to introduce feedback loops to make the systems self-adaptive.

We introduced another approach for controlling or preventing (unwanted) emergent

effects, called swarm controlled emergence. This approach uses a swarm of control compo-

nents / agents introduced additionally into the system. As a proof of concept, we tested

our approach by using it to prevent the emergent clustering in the well known model of

the clustering behavior of ants. Three different types of control agents have been investi-

gated for this system. Namely, random AC-agents, inverted neighborhood AC-agents, and

reverse AC-agents. The inverted neighborhood AC-agents could not prevent the cluster-

ing process which shows that simply reversing a part of the standard agents behavior is
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not enough to prevent the clustering. Using a moderate number of individuals and well

chosen parameter values the random and the reverse AC-agents can prevent the clustering

successfully. An interesting effect occurred when a medium number of certain reverse AC-

agents was introduced into the system. In this case an increased strength of the clustering

effect was observed. This is an interesting point for two reasons. First, it shows that its

no trivial task to design a control swarm, since its inference with the system may lead to

new or even stronger negative emergent effects. Second, concerning the special case of ant

based clustering, the investigations show that a system of two types of agents can lead to

a stronger clustering than a system with only one type of agents. A fact which may be

used for the design of clustering algorithms.

In the last part of the chapter we have studied how to control emergent congestion

effects in agent systems with ant inspired movement rules. Three methods which do not

or only slightly change the behavioral rules of the agents were proposed. It was shown

experimentally that the proposed methods can significantly reduce the congestion and are

also fair for systems with a large number of agents.
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This chapter introduces Organic Support Systems. These systems take care of the execu-

tion of necessary support and system care tasks in Organic Computing Systems. Organic

Support Systems are based on autonomous collaborating components called helpers. We

assume that helper components are equipped with reconfigurable hardware in order to

adapt to the actual need of the supported system by specializing for the required types

of support tasks. The specialization comes with costs because reconfiguration operations

take time and configurations supporting certain types of tasks lead to worse performance

on other types. Three different aspects of the self-organized and decentralized organiza-

tion of the helper system are studied: First, inspired from models of task allocation in

social insects, we introduce a mechanism for allocating tasks in Organic Support Systems.

Then we investigate the stability and the performance of ant queue inspired methods for

support tasks partitioning. Finally, as a third aspect, we introduce support task allocation

in networks based on a decentralized clustering algorithm.

4.1 Introduction

In the following we study models of Organic Computing Systems which consist of two

types of components. A schematic view of the system model is given in Figure 4.1. In the

upper part of the figure the worker components are depicted. Worker components model

the part of the Organic Computing System that is responsible for the normal work of the

system. We do not make many assumptions regarding these components and the work

they do, aside from that they need certain types of service/support task to be executed

from time to time. As usual for Organic Computing systems, the workers are autonomous,

adaptive, and collaborating. The structure of the worker system can be highly dynamic,

as workers may disappear or new worker enter the system.

The organic support system depicted in the lower part of Figure 4.1 executes the needed

service tasks for the worker system. It consists of so called helper components (or just called

helpers). Helper possess reconfigurable hardware in order to be able to adapt to the actual

needs of the worker system. Like the workers, the helpers are assumed to be autonomous

and loosely coupled, i.e., there is no predetermined interaction pattern. The structure of

the organic support system is assumed to be dynamic, that is, helpers can disappear or
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Figure 4.1: Model of the considered computing systems; the Organic Support System con-
sisting of loosely coupled autonomous helper components executes service tasks
for the worker components

new helpers can enter the system. Thus, a centralized decision making is not feasible. The

decisions about which tasks to execute and how to configure the reconfigurable resources,

i.e., how to specialize, are made by the helper components their self.

In this chapter we discuss three different aspects of the decentralized service task al-

location in Organic Support Systems. In Section 4.2 we assume that the reconfigurable

resources of the helper can be divided into parts of equal size that can be configured inde-

pendently for different types of service tasks. The more resources configured for a certain

task type the faster tasks of this type and the slower tasks of other types can be executed

on the helper. We apply local, social insect inspired task allocation and specialization

strategies for the helpers and investigate the performance of the modelled systems.

A second aspect comes into play, when the tasks are large and the helpers have not

enough resources to execute a whole task at once. In such a case the task can be divided

into parts which can be executed by different helpers successively. Inspired by task par-

titioning methods found in real ants, we introduce and investigate local strategies for the

helpers to decide to which subtask to specialize.

As a third point we use the decentralized packet clustering algorithm introduced in

Chapter 2.2 to allocate service tasks, if the workers and the Organic Support System are

connected via a router based network. The clustering algorithm groups the support task

requests based on similar resource requirements. The helpers specialize to a certain group

of tasks and in this way the reconfiguration costs can be kept small.
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4.1.1 Reconfigurable Hardware

We assume that the helper components exhibit reconfigurable hardware in order to be

able to adapt to the worker system. Reconfigurable hardware devices are devices in which

the functionality of the logic gates and the connections between them are customizable

at run-time. This special type of hardware fills the gap between hardware and software,

achieving higher performance than software, while maintaining a higher flexibility than

hardware. The most common type of reconfigurable hardware devices are SRAM-based

field-programmable gate arrays (FPGAs). They consist of an array of computational el-

ements and routing resources, whose functionality is determined through programmable

configuration bits. In order to change the functionality, i.e., to reconfigure the hardware,

the new configuration bits have to be transmitted onto the FPGA. For a survey on recon-

figurable computing, see e.g., Compton and Hauck (2002).

Please note that the term “task” in the field of reconfigurable computing usually refers

to an implementation of a concrete function, for instance the Fast Fourier Transformation

(FFT) and the term “task allocation” refers to the question of a good placement of the

implementing circuits on the reconfigurable chip (see, e.g., Lu et al., 2009). This is not

the problem we are dealing with in this chapter. In our context a task is a concrete instance

of a problem which has to be solved, i.e., to calculate the FFT for some concrete data.

Task allocation, as used here, means to find an appropriate configured helper component,

i.e., a helper implementing circuits for executing the task (efficiently).

Systems of interconnected reconfigurable devices, so called multi-FPGAs, are used

mainly for rapid-prototyping of complex ASIC (Application Specific Integrated Circuit)

designs and akin applications. The structure of multi-FPGA systems is static and the

main research topic is how to partition and distribute a given hardware design over multi-

ple FPGAs. A problem more similar to the problem we are dealing with in this chapter is

the problem of load-balancing in systems of interconnected FPGAs (Bakos et al., 2006;

Kindratenko et al., 2007). On the other hand compared to the fixed system struc-

ture and implementations of the tasks in the multi-FPGA field, Organic Support Systems

are highly dynamic systems of interconnected reconfigurable components. Tasks can be

implemented several times in the system and can even be implemented in different ways.

To the best of our knowledge, to investigate the problem of a decentralized, self-organized

task allocation in dynamic systems of reconfigurable components is a new field of research.

The aim of this work is to consider this problem from an abstract complex system point

of view. We investigate an abstract model of the worker system and the needed support

tasks. No assumptions about how the configuration data gets to helper are made and we

abstract from questions concerning the transfer of input/output data and the implicated

latencies. The considered helper components do not use a specific type of reconfigurable
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hardware, e.g., a FPGA from a particular vendor, instead a simple cost model for the

reconfiguration and execution times is used.

In the following we will briefly sketch some points of this model. Specific properties

of the used models are given in the particular sections, if needed. Whereas in previous

implementations of reconfigurable hardware a reconfiguration operation had to specify the

configuration bits for the whole chip, today’s reconfigurable hardware devices usually are

partially reconfigurable. That is, it is possible to reconfigure only a part of the chip and

only the configuration data for the changed part has to be transmitted. In our model of

the helpers we therefore assume the cost of a reconfiguration depends linear on the fraction

of changed resources.

For the cost of task execution we also assume a linear cost model, i.e., the more resources

(chip area) can be used for a task, the faster it can be executed. Clearly, this simple

cost model does not fit for every real task implementation, since not every problem can

be parallelized in arbitrary granularity. But it is a reasonable cost model, since using

techniques like loop unrolling and tree height reduction can lead to a linear area-time

dependency (see, e.g. Ferrandi et al., 2007) and it has been shown that treating the

area-time trade-off for FPGA designs as multi object optimization problems often leads

to quasi linear Pareto fronts (Holzer et al., 2007).

4.1.2 Models of Division of Labour in Social Insects and their Application

Social insects organize their work in sophisticated ways. The observed principles are in-

teresting for the design of organic computing systems, because the organization of work in

insect colonies shows many desirable properties for technical systems. The organization is

based on local communication only and no central control exists. Therefore there is no sin-

gle point of failure and the system is robust against the loss of single individuals. Colonies

of social insects can adapt to a changing environment, e.g., to the loss of individuals or to

a changing task composition, in an efficient way.

A colony has to perform a number of tasks, such as feeding the brood, foraging for

resources, maintaining the nest and defending the colony. The allocation of individuals

to these different tasks requires continuous adjustments in order to response to external

changes, like the amount of food available and internal changes, like changing mortality

of foraging individuals.

To explain the adaptive self-organizing task division in social insect colonies, several

theoretical models have been proposed. Stimulus-threshold models are one standard type

of models that are used in the literature (see, e.g. Beshers and Fewell, 2001; Bonabeau

et al., 1996, 1998; Theraulaz et al., 1998, 1991). In these models each individual has

a personal threshold value for each task. This threshold determines the preference of the
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individual to start to work for that task. In addition, for every task a stimulus value exists

that determines the task’s necessity to be done. The probability that an individual works

for a task depends on the relative size of its threshold value for the task and the stimulus

value of the task. The lower the threshold value and the higher the stimulus value, the

more likely the individual starts to work for the task.

Varying response thresholds over the individuals lead to a division of the different tasks

over the individuals, since certain individuals are more likely to work for certain tasks.

The variation in the response thresholds of the individuals is partly caused by genetic

differences (Waibel et al., 2006), but also by the fact, that the individuals are able

to learn in a certain extend. To model a simple form of learning the stimulus-threshold

models have been extended to the so called threshold reinforcement models, where the

thresholds can change over time. It is assumed that the threshold of an individual for a

task decreases when the individual works for the task and vice versa it increases when

the individual does not work for the task (Bonabeau et al., 1998; Theraulaz et al.,

1998). Thus, individuals can specialize over time to certain tasks.

Different functions, determining the probability of an individual to engage in a task as

a function of the task stimulus S, are proposed in the literature. Most often functions of

the form

P =
Sn

Sn + Tn
(4.1)

are used, where T denotes the personal threshold of the individual for the task and

usually the parameter n = 2 is chosen. Clearly, for S ≪ T the probability of engaging

task performance is close to 0, and for S ≫ T this probability is close to 1.

Many applications of response threshold models in technical systems exist, for example,

in scheduling (Cicirello and Smith, 2003, 2004; Kittithreerapronchai and An-

derson, 2003; Nouyan et al., 2005), robotics (Agassounon and Martinoli, 2002;

Jones and Mataric, 2003; Krieger et al., 2000; Krieger and Billeter, 2000; La-

bella et al., 2006), sensor networks (Haboush and Shrimpton, 2005), mail retrieval

problems (Goldingay and Mourik, 2008; Price and Tino, 2004), and in multi agent

systems (Ferreira et al., 2005).

Another important behavioral mechanism in ants is the so called task partitioning. To

partition a task means, that one particular task is done by different individuals. For

example, it can be observed that the task of food collection is shared by workers that

collect the food (forager ants) and workers that use or store the food (receiver ants). A

direct transfer of material between individuals happens. The time taken to meet a transfer

partner, also called queueing delay, is a very important factor that influences the efficiency

of the system. A model — called ant queue model — for the task partitioning behavior in
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ants is proposed in Anderson and Ratnieks (1999a,b). It is shown by simulations that

queuing delays occur even when the proportions of foragers and receivers in the colony

are optimal meaning that the work capacities of these two groups are equal. It is further

shown that the queuing cost may, potentially, act to select against task partitioning in

small-colony species, thereby restricting task partitioning with direct transfer to species

with large colonies.

Pini et al. (2009) uses task partitioning as a way to reduce the interference between

cooperating robots in a spatially constrained harvesting task. The task of delivering prey

objects to a home zone is divided into two subtasks. Robots working on the first subtask

harvest prey objects from a source area. Within a transfer zone they pass them to robots

working on the second subtask, which is to finally store the objects in the home zone. A

simple, threshold based method to allocate the individuals to the subtasks is presented. It

is shown that task partitioning and thereby the avoidance of physical interference between

the robots, can increase the system performance.

An interesting similarity of the task division model and the task partitioning model is

that specialization of the agents can increase the throughput of the system, but changing

the specialization comes with a cost. The difference between the models is that in the

task division models the agents specialize to different types of tasks, whereas in the task

partition model the agents specialize to a part (subtask) of a task. In the following two

sections we first investigate a self-organized task allocation method for Organic Support

Systems that partly relies on the task division model. Thereafter the model of task par-

titioning is used to inspire a method for the organization of task partitioning in Organic

Support Systems.

4.2 Self-Organized Task Allocation

In the following we will propose and investigate methods for the self-organized allocation

of service tasks in Organic Support Systems. Self-organized means that no central control

component allocates the tasks on the appropriate helpers. Instead, the helpers themselves

decide about the acceptance of a requested service task. This is in analogy to social insects,

where individuals have to decide wether to engage in an encountered task as well. In some

species of social insects individuals can become specialists for a task, adapt, and get better

in performing that specific task. Analog to this phenomenon, in case of accepting a task,

a helper reconfigures in order to increase the amount of computing resources that are

available for the type of task accepted.

Here basic scenario is considered: Workers send requests for service tasks to the support

system. These request are randomly offered to helpers until they are accepted. If the

helpers are too restrictive in their task acceptance, it can happen that it takes a long time
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4.2 Self-Organized Task Allocation

Figure 4.2: The execution time of a certain type of tasks depends on the number of slices
configured for that type; reconfiguration time depends on the number of re-
configured slices

until a task is executed. If, on the other hand, the decision to accept a service task is

made to frivolously, it can happen, that the task is executed on a bad configured helper.

This results in a long time until the execution of the tasks as well. Our aim is to create

systems that deal with the tradeoff between these cases.

4.2.1 Model of the Helper Components

The reconfigurable resources of a helper, i.e., the area on its reconfigurable device, is

divided into q parts of equal size, called slices. Service tasks are of different types and

each slice can be configured and work for exactly one of these types. A helper can only

work at one task at a given time and the number of slices allocated for the task type

determines how fast the task can be executed. The more resources configured for a certain

task type the faster tasks of this type are executed by the helper. The execution time of

a task is given as q
k
· te, where te > 0 is the execution time of a task on a helper which

has all resources allocated to the task type and k is the number of slices configured for the

task (1 ≤ k ≤ q).

The slices of a helper can be reconfigured independently from each other. A reconfig-

uration (operation) has the effect that the type of tasks that can be executed on a slice

is changed. When reconfigurating a helper can change the associated task type of any

number of slices. The time of a complete reconfiguration of a helper is tr > 0 and the time

to reconfigure k slices is k
q
· tr.

In Figure 4.2 an example of the helper model is given. The resources of the depicted

helper are divided into q = 10 slices. The helper has configured four slices to work for task

type one. Therefore, to execute a service task of type one takes 10
4 te time. If the helper

allocates two more slices for task type one this will take 2
10 tr time for the reconfiguration.
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4 Specialization in Organic Support Systems

Figure 4.3: A typical scenario in the worker helper system

With the new configuration of six slices for task type one the helper only needs 10
6 te for

the execution of a service task of type one.

We denote the helpers of the system with H1, . . . , Hn, where n is their total number.

A helper H, that has a proportion of ≥ 1/2 of its slices configured for tasks of type i is

called specialized for tasks of type i. In this chapter we assume that only two types of

service tasks (type 1 and type 2) exist. Let s(H) = i if H is specialized to tasks of type i,

i ∈ {1, 2}. H is fully specialized for tasks of type i when all slices are configured for this

type of tasks. The degree of specialization of a helper is the relative number of slices that

are configured for the type of tasks the helper is specialized to. Let sj , j ∈ [1 : n] denote

the degree of specialization of helper Hj . Let sij , i ∈ {1, 2}, j ∈ [1 : n] denote the relative

number of slices that helper Hj has configured for task type i.

4.2.2 Model of the Computing System

Let m be the number of workers. At each time step a worker needs the assistance of a

helper with some probability. This probability is called the request rate and denoted by

0 ≤ r ≤ 1. The relative request rate 0 ≤ p ≤ 1 is the probability that a service request

is of type one. The relative request rate for service task type two is (1 − p). A worker

that needs servicing of type i searches for a helper and requests a service task of type i,

i ∈ {1, 2}. If the request is accepted the service task is executed by the helper. If the

request is not granted the worker will continue to search for a helper. We assume here

searching means that a random helper is contacted. The first request that a worker does

when it needs service is called initial requests. The communication with the helper takes

time tc ≥ 0 (no matter whether the request was successful or not).
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4.2 Self-Organized Task Allocation

Figure 4.29 depicts a typical scenario in the system. Worker I needs a service task of

type one to be executed and sends a service request to helper H1. H1 accepts the request,

reconfigures one more slices to task type one, and executes the task. Worker II needs a

task of type two to be executed and sends the request to H1. This time H1 denies the

request, since it has only few slices configured for task type two. Worker II sends the

request again and helper H2 accepts to execute the task.

4.2.3 Task Acceptance and Reconfiguration Strategies

The task acceptance strategies and the reconfiguration strategies for the helpers are pre-

sented in this section. The task acceptance strategy determines if a helper accepts a offered

service task. In case the task is accepted the reconfiguration strategy determines how the

helper reconfigures before executing the task.

Optimal Specialization

We first determine the optimal percentage of slices a helper should configure for the two

task types for given fixed relative request rates p for task type one and 1− p for task type

two.

Let us assume that the (normalized) run time for a task on a fully specialized helper is

te = 1. Then the run time for a task of type i on a helper Hj which has a fraction of sij of

its slices configured for i is 1/sij . The expected mean runtime for a task on a helper Hj

is calculated from the expected runtimes of both types of tasks:

p 1
s1j

+ (1− p) 1
s2j

2
.

Therefore, the optimal percentage g(p) of slices configured for task type one, leading to

the lowest expected mean task runtime, is:

g(p) =
p−

√

p− p2

2p− 1
. (4.2)

A plot of this function is given in Figure 4.4. The optimal percentage of slices configured

for task type two is 1− g(p) = g(1− p), respectively.

Task Acceptance Strategy

An important aspect of the system is the strategy that is used by the helpers to decide

whether a request for service should be accepted or not. A helper that gets a request

always accepts the request when it is specialized for the corresponding task type, i.e., it

has at least q/2 of its slices configured for the type: sij ≥ 0.5. This is because with this
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Figure 4.4: Optimal specialization level for one helper depending on the relative request
rate

configuration the time to execute the task is at most twice as high as the execution on a

fully specialized helper. Otherwise, the probability that it accepts the request depends on

a personal threshold value, a stimulus value, the degree of specialization, and the relative

request rate of that type of tasks. The stimulus value for a type of tasks is the number of

tasks of this type minus the number of tasks of the other type counting all tasks that are

actually requested by the workers. Let Tij , i ∈ {1, 2}, j ∈ [1 : n] denote the threshold of

helper Hj for task type i and Si the stimulus of task i ∈ {1, 2}. Incorporating Formula

4.1 from the threshold response model of task allocation in social insect, the probability

that helper Hj accepts a request for task i is defined as

P :=







min

{

1, fi(p, sij) +
S2

i

S2

i +T 2

ij

}

if sij ≤ 0.5

1 else

(4.3)

where the function fi(p, sij) is defined in the following.

For defining the function fi that is used in this formula, we consider the case of a single

helper with a fixed configuration, constant service request rates and stimulus values for

both tasks of zero. We now define f in a way, that Hj rejects a fraction of tasks (of the

type it is not specialized for) that it has an optimal configuration for the resulting relative

request rates of both tasks. Without loss of generality assume that Hj is specialized for

task type two (i.e., s2j > 0.5). Since S2 = 0 it follows from Formula 4.3 that all tasks of

type two are accepted and that tasks of type one are rejected with probability f1(p, s1j).

The function f is determined such that the relative rates of tasks that are accepted by

Hj are optimal for its current specialization, if this is possible. Otherwise, the relative

number of requests for task one is too low for an optimal degree of specialization. In this

case all tasks of type one are accepted. Observe, that the relative request rate accepted
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4.2 Self-Organized Task Allocation

for task type one is pf1(p, s1j)/[pf1(p, s1j)+ (1− p)]. Using Formula 4.2 assuming that for

this rate the actual specialization s2j is optimal

g(pf1(p, s1j)/[pf1(p, s1j) + (1− p)]) = s1j

leads to

f1(p, s1j) = (p/(1− p)) · s2
1j/(1− s1j)

2.

The case of Hj is specialized to task type one is handled accordingly. Clearly, this definition

of f is heuristic and not necessarily optimal for a computing system with several helpers.

Reconfiguration Strategies

In the first proposed reconfiguration strategy a helper that performs a service task always

performs a reconfiguration operation so that the number of slices that can execute the

corresponding task type is increased by one (unless all slices have already been configured

for the corresponding type of tasks). We call this the 1-slice reconfiguration strategy.

A possible problem of the 1-slice strategy is that the execution time of a service task is

very long when only few slices execute it. Therefore we also studied a variant of the 1-slice

strategy that is different for the case that a request is accepted when the helper is not

specialized for the task. In this case the helper reconfigures itself so that half of the slices

are configured for the accepted type, i.e., the helper immediately specializes to the task

type, before the execution starts. We call this the 1+half-slice reconfiguration strategy.

4.2.4 Analysis of a Two Helper Support System

In this section we analyze a computing system with two helpers theoretically. The aim

of this section is to determine the configurations and strategies for rejecting requests, in

order to minimize the expected total time needed for execution and communication. To

make the analysis possible, a few changes of the standard computing system model are

made for this subsection:

i) A worker whose initial request for service was rejected, sends the request to the

other helper which must accept the request. This is different from the standard

model where a rejected request is repeated by sending it to a randomly chosen

helper (possibly to the same helper again).

ii) The relative number of slices sij of helper j configured for task type i can be any real

value in [0, 1]. This is different from the standard model where the this is a discrete

parameter with values in 0
q
, 1

q
, 2

q
, . . . , 1 where q is the number of slices of a helper.
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Figure 4.5: Relative request rates for the analysed two-helper support system

iii) The system is static in the sense that the configuration of a helper can not be changed

and the relative request rates of the tasks are fixed.

It is assumed that the probability that a worker which needs service first contacts helper

Hj is the same for j = 1 and j = 2. Assume that requests for tasks of type i are always

accepted by helper Hj , j ∈ [1, 2]. Recall that sjj is the proportion of slices configured

for tasks of type j of helper Hj . Let fj be the fraction of accepted requests of type i,

i 6= j, i, j ∈ {1, 2}, by helper Hj , depending on the specialization level sjj . Note, that the

execution time of each service task on a fully specialized helper is assumed to be 1.

The expected total execution time e for both tasks is

e :=

[

p

s11
+

p(1− f2)

s11
+

(1− p)f1

1− s11

]

+

[

1− p

s22
+

(1− p)(1− f1)

s22
+

pf2

1− s22

]

.

This time consist of the expected execution time p/s11 and (1 − p)/s22 for the requests

of type j that arrive directly at Hj , the expected execution time p(1 − f2)/s11 and (1 −

p)(1 − f1)/s22 for the requests of type i that have been rejected by Hj (j 6= i), and the

expected execution times (1 − p)f1/(1 − s11) and pf2/(1 − s22) for the requests of i that

arrive directly at Hj (j 6= i) and are accepted.

Give the cost of one communication operation c the expected communication costs ω

are

ω := 2c + c · [ p(1− f2) + (1− p)(1− f1) ] .

They consist of the costs for the first communication for each request plus the costs

for the second communication that is necessary when a request is rejected. The expected

total execution and communication time for a task is C = e + ω.
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4.2 Self-Organized Task Allocation

C can be rewritten as

C = f1 ·A + f2 ·B + D,

where the terms A, B and D only contain the variables p, c, s11 and s22. It easy to see,

that for any values of these variables in order to minimize C, it must hold that fi = 0 or

fi = 1 for i ∈ {1, 2}, depending on the signs of the terms A, B and D. This means helper

Hj either rejects all request for tasks of type i, j 6= i or it accepts all these tasks. The

following four cases can occur:

i. f1 = 0, f2 = 0 :

Figure 4.6: Both helpers always reject.

In this case each helper Hi rejects all requests for tasks of type j, j 6= i. To achieve

a minimal total execution and communication time it is best when both helpers are

fully specialized, i.e., sii = 1, i ∈ {1, 2}. Then it follows that C := 2 + 3 · c.

ii. f1 = 1, f2 = 1 :

Figure 4.7: Both helpers always accept.

Both helpers accept all requests and no additional communication occurs. For arrival

rate p follows the lowest expected total execution and communication time can be

reached with specializations s11 = 1 − s22 = g(p) = (p −
√

p− p2)/(2p − 1), as

shown in Section 4.2.3. Therefore C = 2(2p−1)2
√

p(1− p)/(p−
√

p(1− p))(p−1+
√

p(1− p)) + 2c. Note, that C = 4 + 2c for p = 1/2 and limp=1 C = 2 + 2c.
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iii. f1 = 1, f2 = 0 :

Figure 4.8: Helper H1 always accepts and Helper H2 always rejects.

In this case H2 rejects all request for tasks of type one. Therefore it is optimal when

it is fully specialized for task type two (s22 = 1). For H1 this leads to arrival rates of

2p for requests of type one and (1− p) for requests of type two. Hence, the relative

rate for requests of type one is 2p/(p+1) and the optimal value for the specialization

of H1 is s11 = g(2p/(p + 1)). The formula for the resulting expected total execution

and communication costs is omitted because it is lengthy (the cost values are shown

in Figure 4.9(a)).

iv. f1(.) = 0 and f2(.) = 1:

Analogous to case iii.

Figure 4.9(a) shows the expected total execution and communication costs for all four

cases. In Figure 4.9(b) for each of the treated cases (i)-(iv) the regions of the parameters c

and p are depicted where this particular case is optimal, i.e., leads to the minimal expected

total execution and communication costs. For large communication costs c and values of

p that are neither very small nor very large, it is optimal when all requests are accepted

(ii). If the communication costs are small and the values of p are not too extreme then it

is optimal when each helper rejects one type of requests (i). For large (small) values of p

it is optimal when H1 rejects (respectively accepts) all requests of type 2 and H2 accepts

(respectively rejects) all requests of type 1 (iii and iv).

In Figure 4.10 the optimal specialization level s11 of helper H1 is shown for different

relative arriving rates p for tasks of type one and communication costs c. In case (i) and

in case (iv) H1 is fully specialized for tasks of type one. For p = 0.5 and c > 2 exactly half

of the slices are configured for both of the task types.

Note, that in a dynamic situation where the relative request rates or the communication

cost change, there can be a strong difference in specializations necessary in order to have

the lowest possible expected total execution and communication costs. For instance, the

optimal specialization level of H1 for c = 2.25 and p = 0.75 is 0.644, whereas it is 1
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Figure 4.9: Two helper system: hyperplanes corresponding to cases (i)-(iv) show the ex-
pected total execution and the additional communication costs divided by the
number 2 of helpers

when changing to p = 0.8. Therefore, when dealing with dynamic situations and changing

environments in real systems, it has to be considered carefully if its necessary to always

configure to the optimal configuration. This may lead to larger overall costs, especially in

the case of large reconfiguration costs.

4.2.5 Experiments

If not stated otherwise the following parameter values have been used for the simulation

of the computing system. The execution time of the two used types of tasks is te and the

communication cost is tc = 1
10 te. The number of workers was set to m = 100 and the

number of helpers to n = 10. Each helper has q = 10 slices and the time to reconfigure

all slices of helper is ten times longer than the time for execution, i.e., tr = 10te. For all

tasks and helpers the same threshold value T := Tij = 100, i ∈ {1, 2}, j ∈ [1, 10] was used.

All results are averaged over 20 runs. The standard reconfiguration method is the 1-slice

strategy.

The average time from the initial requests to the end of the execution of the service tasks

is called sojourn time and the absolute number of service tasks that have been finished in

a certain time is called throughput. We refer to the computing system with self-organized

task allocation as introduced here just as the self-organized system. The simulation results

of the self-organized system are compared to a system with static helpers. This system

is called S-system and consists of helpers which have allocated an equal number of their
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Figure 4.10: Optimal specialization levels s of helper H1 for different relative request rates
p for tasks of type 1 and communication costs c

slices to every task type. In the S-system helpers do not perform any reconfiguration,

therefore no reconfiguration costs occur.

From Theoretical to Empirical Analysis

In order to show the relevance of the theoretical analysis in Section 4.2.4 we investigate a

self-organized system with n = 10 helpers which are divided in two classes (5 helpers each).

Similar as in the theoretical analysis the helpers are either fully specialized or partially

specialized with a specialization level as given in Section 4.2.4. This leads to four different

systems, depending on the configurations that are used in the two classes. For the analysis

of the sojourn times systems using relative request rates p ∈ {0, 0.00025, 0.0005, . . . 0.02}

and communication costs c ∈ {0.1, 0.125, 0.15, . . . 2.0} have been simulated. For the anal-

ysis of the throughput relative request rates p ∈ {0, 0.0025, 0.005, . . . 0.2} and communica-

tion costs c ∈ {0.1, 0.35, 0.6, . . . 20.0} have been tested. The results are averaged over 10

runs.

Figure 4.11 shows which of the four systems has the lowest sojourn times using helpers

with (a) 10 slices and (b) 106 slices depending on the relative request rate p and the
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Figure 4.11: Areas with smallest sojourn times for the different system configurations de-
pending on the relative request rate p and the communication costs c
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Figure 4.12: Areas with largest throughput for service request rate 0.02 depending on the
relative request rate p and the communication costs c
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Figure 4.13: Self-organized system compared to the static S-system

communication costs c. A service request rate of r = 0.02 was used to analyze the sojourn

times, because for higher request rates the sojourn times are mainly determined by the

communication costs. White colored points represent the system with fully specialized

helpers in both classes, the darkest color represents the system where all helpers are

partially specialized to be able to execute both types of tasks and in the grey areas stand

for the systems which are a mixture of a fully and a partially specialized class. Similar as

in the theoretical analysis, four different areas can be observed (compare Figure 4.9(b)).

For every area one of the four configuration strategies leads to the smallest sojourn times.

Comparing both figures it can be clearly seen, that there is a discretization effect in case

the helpers have only 10 slices. This small number of slices leads to more than 4 different

areas of optimal behavior. The reason for this is, that the overall costs represented as

hyperplanes in the landscape of communication costs and arrival rates are more step-like

when less slices are used. The intersections of these hyperplanes for finding the best

configuration strategy leads to a structure that can be see in the Figure 4.11(b).

In Figure 4.12 it is shown which of the four systems has the largest throughput depending

on the relative request rate p and the communication costs c. In this case the (high) service

request rate r = 0.2 has been used. In contrast to the empirical analysis of sojourn times,

too small arrival rates lead similar throughput rates for all four systems, since the systems

are able to fulfill all requests. Again, like in the theoretical analysis, four different areas

occur for which one of the four configuration strategies leads to the largest throughput.

Also here, a discretization effect appears if the helpers have a small number of slices.

Static Request Rates

We compare the self-organized system and the S-system in situations with fixed service re-

quest rates and fixed relative request rates. First the influence of the communication costs

tc on the throughput of the systems is investigated. Figure 4.13(a) shows the through-
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put of the self-organizing system divided by the throughput of the S-system for service

request rates r ∈ {0.01, 0.005, 0.002, . . . , 0.00001} and communication costs tc/te ∈ {0.01,

0.02, . . . , 20}. It can be seen that for high service probabilities and small values of tc/te

(< 1), the throughput of the self-organized system is almost twice as high as for the

S-system. Note, that high service request rates are the case when an Organic Support

System is particularly important. The throughput of the S-system is better only for small

rates r and high relative communication costs (tc/te & 2). The reason is that in the

self-organized system the requests are rejected with some probabilities and this implies

additional communication costs. For small rates r and communication costs of tc/te . 10

the performance of both systems is similar.

Figure 4.13(b) compares the sojourn times of the self-organized system and the S-

system (note that Figure 4.13(a) and 4.13(b) show the same parameter space but the axes

are inverted). The performance of both systems differs significantly for most parameter

combinations. For small values of tc/te (< 1) the sojourn times of the self-organized

computing system are smaller for all tested probabilities of service. Note that for a small

service probability (e.g., r = 10−5) both systems have the same sojourn times for tc/te = 1.

The reason is, that in the self-organizing system a worker needs approximately 2 requests

to find a fully specialized helper and in the S-system all requests are accepted but need

twice the time to be executed. For approximately tc/te = 1 this behavior leads to the same

sojourn times (≈ 2·tc+te in the self-organized system and ≈ tc+2·te for the S-system). For

higher communication costs (tc/te & 1) the sojourn times of the S-system become better

because the additional communication operations needed in the self-organizing system

become to expensive in comparison to the speedup in execution.

In the following an oscillation effect that is typical for many self-organized systems is

demonstrated. First we consider a very simple system with only one helper that has only

one slice in a situation with a service request rate of 0.01. Figure 4.14(a) shows the number

of actual requests for tasks of type 1 and type 2 over time. It can be seen, that these values

oscillate. The reason is that a helper configures for one type of tasks and rejects requests

for the other type. When the number of requests for the rejected type increases, the

corresponding stimulus value increases as well. This leads to an increased probability that

the helper reconfigures its slice and executes the tasks. Compared to a simple S-system

with one helper that has two slices the figure shows that the actual number of requests

that are waiting is smaller in the self-organized system.

The oscillating behavior occurs also in more complex systems of more than one helpers.

This can be seen in Figure 4.14(b) for a system with n = 10 helpers where the reconfigu-

ration time is 30 times larger than te. In this case of high reconfiguration costs the system

reacts slowly.
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Figure 4.14: Number of actual requests in the self-organized system compared to the re-
spective S-system; 1,2: actual number of request of the type, sum (sum∗):
total number of actual requests for the self-organized system (respectively for
the S-system)
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Figure 4.15: Self-organized computing system: throughput for different thresholds T and
different degrees of dynamics a

Environment with Changing Service Probabilities

To investigate the behavior of the self-organized system in dynamic situations the case of

changing relative request rates was investigated. In the experiments the service request

rate was set to r = 0.2 and the relative request rate was exchanged between p = 0.2 and

p = 0.8 every a/te = {10, 20, 50, 100, 200, 500, 1000, 2000, 5000} time steps. Obviously the

threshold parameter T = Tij has a strong influence on the adaptiveness of the support

system. The higher T the more unlikely that the helpers reconfigure (comp. Equation 4.3).

Threshold values T ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 10 000} were investigated. For

each combination of a/te and T the throughput within 3000 · te time steps was measured.

Note, that a/te = 2000 was a situation where the request rate was changed only once in

the simulated time interval.
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Figure 4.16: Self-organized service system: throughput difference between the standard
system (using the 1-slice reconfiguration strategy) and a system using the
1+half-slice reconfiguration strategy for different thresholds T and different
degrees of dynamics a

The experimental results regarding the self-organized system using a reconfiguration

time tr/te = 10, communication cost tc/te = 0.1 and different number of slices q ∈

{1, 10, 100} are depicted in Figure 4.15. The throughput of the self-organized system has

to be compared to the average throughput of ≈ 14100 that is achieved by the S-system.

For very large threshold values T the self-organized service system is not very adaptive.

In all tested cases the best performance is achieved for the extreme values of a/te = 10 or

a/te = 2000. The reason is that using a/te = 2000 does not require a strong adaptiveness,

since the relative request rate only changes once. On the other side, a/te = 10 switches

the relative request rate that fast, that in the end the situation is the same as for a fixed

relative request rate of p = 0.5. Such a situation also does not require adaptiveness and

hence a high value of T leads to a good performance. The worst throughput is achieved

in situations with many slices and small value for T . In such situations it is likely that a

helper excepts a request, even when it has a bad configuration for the corresponding type

of tasks. This can lead to large execution times of the tasks (recall that using only one out

of k slices for a task increases the execution time by factor k compared to an execution

with full specialization).

Figure 4.16 compares the results of the standard self-organized system (using the 1-slice

reconfiguration strategy) with one where the 1+half-slice reconfiguration strategy is used.

Since both strategies are the same for 1 slice results are shown only for systems with

10 and 100 slices. The motivation to introduce the 1+half-slice reconfiguration strategy

was to make the system more easily adaptive for changes of the relative request rates for

different types of tasks. It can be seen in the figure that the 1+half-slice reconfiguration

strategy obtains for 10 slices a higher throughput for higher threshold values (and not too

small values of a, recall that a/te ≤ 30 leads to a situation that is similar the a situation
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with constant service probabilities). For 100 slices (where a higher adaptivity is even more

important) the 1+half-slice reconfiguration strategy is better than the 1-slice strategy.

Only for situation with very high threshold values T > 5000 and very small values of

a/te ≤ 30 the standard reconfiguration strategy is better.

4.3 Collective Decision Making in Organic Support Systems

As pointed out in the last Section in case of very high communication costs the helper

do best, if they accept all service tasks directly and do not reject any request, because

rejecting is very expensive in this case. When its obvious a priori, that the communication

cost exceed the task execution times, the support system does not need have the ability

to reject service requests. In such a case, for given arrival rates of the different task types,

there is one optimal configuration that should be used for all helpers. This configuration

must be chosen in a way, that the helpers are able to execute the incoming task mix

most efficiently. Assuming dynamic changes in the arrival rates of the tasks and non-

trivial relationships between the number of slices configured for a task type and the task

execution time, the search for and the decision about the best configuration for all helpers

becomes a hard task.

Brutschy et al. (2008); Brutschy (2007) propose ant-inspired strategies for solving

this problem. This work applies principles that are found to be used by the ant Tem-

nothorax albipennis when looking for a new nest site. Particularly, a part of the helper

components in the support system is assigned to be so called scouts. These scouts con-

figure themselves to new configurations and evaluate them by executing the actual task

mix. If a scout considers a configuration to be superior than the actual used helper con-

figuration, it starts to recruit other scouts. These scouts also assess the new configuration

and may also start to recruit other scouts. As soon as a certain number of scouts prefer

a particular candidate configuration, the scouts switch their behavior and start to recruit

the remaining helper components to the new configuration.

These ant inspired strategies for making a collective decision about what configuration

to employ are analyzed experimentally and are compared to a non-adaptive reference

strategy. On all tested environments, the ant-inspired adaptive strategy proves to be

versatile and very robust. Using the ant-inspired strategies, the scout components are

able to find good configurations even in complex configuration spaces.

4.4 Task Partitioning in Organic Support Systems

In the first investigation we assumed that a task can be executed on a fraction of the

resources of a helper. In this section we will investigate the case that the resources of a
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helper are not sufficient to finish a whole task using one configuration. In such a situation

the tasks have to be partitioned into subtasks that can be executed successively. When a

helper has finished a subtask there are two possibilities. First, the helper can reconfigure in

order to meet the resource demands of the next subtask or second, the task, i.e., the result

of the partly execution, can be transferred to another helper that is already appropriately

configured. For the execution of a whole task all its subtasks have to be executed in the

right order and on appropriately configured helpers.

To keep things simple, we assume that only one type of support tasks is needed by the

worker system and an unlimited number of these tasks wait in the worker system to be

executed. In order to maintain a good performance of the support system, i.e., a high

throughput of tasks, it is necessary to minimize the time helpers are not working. Beside

executing subtasks, helpers can wait for other helpers or can perform a reconfiguration.

A helper has to wait for other helpers if it has finished its subtask but no appropriate

configured helper for the next subtask is available or in case the helper has to wait for a

new task after it has finished and transferred its previous task successfully.

Figure 4.17: Schematic view of the execution of a task in the task partitioning system

To minimize waiting times (also called queueing delays) it is crucial to equalize the work

capacities of the groups of helpers specialized to the different subtasks. This means that

in a given time interval the Organic Support System executes the same number of every

type of subtask. For example, if a subtask takes much more time to be executed than the

other subtasks, the throughput of the system is best, if most helpers are working for that

type of subtask. In the case of equal subtask execution times the system has the lowest

waiting times, if there is the same number of helpers working for the different subtasks.

To ensure that the support system executes roughly the same number of the different

subtasks within a certain time interval, the system needs to allocate the appropriate num-

ber of helper for the different types of subtasks. Since there is no global control, the helpers

have to decide on their own for which subtask to configure, i.e., the system of helpers has

to self-organize their specialization. These decisions can be made using different strate-

gies (called reconfiguration strategies). A simple strategy would be that a helper never

transfers a task to an other helper and instead, by repeatedly reconfigurating, it does all
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the work on its own. Clearly this is not the best strategy for the realistic case that the

reconfiguration time is much higher than the subtasks execution time. More complex re-

configuration strategies incorporate locally observed information like the actual queueing

delay of the helper.

Not only the question how well the desired task partitioning is reached has to be con-

sidered when analysing different reconfiguration strategies. It is also interesting how fast

a strategy can adapt and how stable it is in case of perturbations. Perturbations can

occur if helpers leave or new helpers enter the support system (because of malfunctions

or a spatial separation) or, for example, in the case of changing execution times of the

subtasks. The reconfiguration strategies also have to be investigated with regard to their

scalability, e.g., their application in support systems of different size.

4.4.1 Model of the System

The support tasks are divided into I subtasks which have to be executed successively, i.e.,

subtask i has to be executed before subtask i + 1. A helper is always configured in a way

that it can perform exactly one type of subtasks. A helper is called to be of type i if it

is configured for subtask i. It is assumed that the transfer of a task takes a certain but

negligible amount of time.

Figure 4.18: Possible states of a helper configured for subtask type i

Figure 4.18 shows the possible states of a helper. If a helper of type i has executed a

subtask it goes into waiting state for transferring the task to a helper of type i + 1. If

there is a suitable configured helper (already waiting or showing up after a while) the task

is transferred to this other helper. After transferring a task to another helper the helper

itself goes in waiting state for a transfer of a task to execute subtask i again. Exceptions

are helpers for subtask 1 since it is assumed that they can always start a new task and

helpers for the last subtask I, because these do not need to transfer the task to other
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helpers. Thus, all other helpers can be in two different waiting states, either a helper is

waiting to get a new task or it is waiting for an appropriate helper transfer the task.

A helper can decide to reconfigure to another subtask. If a helper has finished the

execution of subtask i and is in waiting state for transfer there is also the possibility that

the helper reconfigures to type i + 1. After that reconfiguration the next subtask of the

actual task can be executed immediately. On the other side if a helper of type i was

waiting for a new task it can also reconfigure to subtask i − 1 and go into waiting state

for this type.

The decision to reconfigure to a certain subtask depends on the used reconfiguration

strategy. This strategy is based on local information only, i.e., without any explicit knowl-

edge of the number of helpers configured for the different subtasks. The local information

taken into account by the helper is the experienced queueing delay. Long waiting times for

getting new tasks, observed by helpers configured for subtasks type i + 1, are caused by

too few helpers for subtask i. It is reasonable for some helpers of type i + 1 to reconfigure

to subtask i. This reconfiguration will decrease the number of helpers for subtask type

i + 1 immediately and will raise the number of helpers for the subtask i after a certain

time needed for reconfiguration. This delay in the effect of the reconfiguration operations

can lead to an overreaction of the whole system. On the other hand if the strategy of the

helpers is too rigid, the system stays in a suboptimal state for too long after a perturbance.

The reconfiguration strategy must balance between these effects.

In the following an example of the mentioned overreaction of the system is given. Assume

a support system of eight helpers which have to execute tasks divided into two subtasks of

equal run time. The reconfiguration of a helper needs two time steps. The reconfiguration

strategy of the helper is to reconfigure with a probability of 0.5 in case they have to wait,

i.e., when no transfer partner was found. In Figure 4.19 an example of the effect of this

strategy is given. At the first shown time step six helpers are configured for subtask one

and only two helpers can work on subtask two. Such an imbalanced situation may occur,

for instance, if accidentally helpers disappear. Helper H2 transfers its task to H3 and H7

to H5. Since there is no helper configured for subtask two left, helper H1, H4, H6 and H8

have to wait. Using the reconfiguration strategy these four helper decide with probability

0.5 to change their configuration to subtask two. This leads to H4 and H8 deciding to

reconfigure. In the next shown time step both helpers are in reconfiguration mode, but still

too few helpers are available to execute subtask two. Again two helpers (H1 and H2) have

to wait. This time H2 decides to switch its type to subtask two. In the following time step

H4 and H8 have finished their reconfiguration and there are four helper of type two but

only three helper of type one. One helper of type two (H3) which has to wait switches to

task one now. Finally, in the last shown time step an equal proportion of helpers configured

for the two task types is present in the system. The system started in a situation where
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Figure 4.19: Example of a system run of the support system; depcited are eight helper
starting in a configuration of six helper of type 1 and two helper of type 2

there were too few helpers configured for subtask two. Due to local decisions of the helpers

and the assumed reconfiguration delay, the systems reaction was too strong and even led

to an intermediate situation where there were to few helper configured for subtask one.

Clearly performance and adaptivity of the systems depends on the used reconfiguration

strategy of the helpers. In the following different reconfiguration strategies are investi-

gated. We start with a highly unbalanced distribution of helpers for the different subtasks,

more precisely we set the configuration of all helpers to subtasks one, and observe how

fast and how well the systems can recover. To avoid artifacts, the initial start time of a

helper, i.e., the time when it starts executing the first subtask, is randomly distributed in

[0, te], where te is the mean execution time for a subtask on this helper.

If not stated otherwise, the following parameters were used for the simulations. The

number of subtasks is I = 2, the number of helpers is h = 1000, the reconfiguration time

is τ = 20. The execution time for the subtasks te is normal distributed with mean 1 and

variance 0.01, i.e., te ∼ N(1, 0.01). The time for transferring a task is set to zero.

4.4.2 Reconfiguration Strategy simple

In the first investigated reconfiguration strategy called simple a certain percentage of the

helpers always reconfigures, i.e., to switch its specialization from one type of subtasks

to another type. A fixed parameter p ∈ (0, 1] determines the switching rate, i.e., the
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Figure 4.20: Number of active helpers for both subtasks over time when using strategy
simple; 1000 helpers were used

probability for a helper to switch from type i to type (i + 1) mod I before starting with

the next subtask. If a helper decides to switch when executing a subtask it finishes this

subtask and switches afterwards. The idea behind this strategy is to equalize the number

of helpers for every subtask. Observe, that strategy simple implies that for a large number

of helpers always some helpers exist that are in a phase of reconfiguration.

In Figure 4.20 the behavior of the support system using the simple strategy is shown

for 1000 helpers and switching rates p = 0.01 (left) and p = 0.05 (right). The figure

shows the number of active helpers (i.e., helpers that are not in reconfiguration mode) for

both subtasks. When using a small value for p (0.01) the numbers of active helpers for

both subtasks slowly converge to around 400. When using the larger switching rate (0.05)

the number of helpers for both subtasks converge to 200. This is because larger p values

lead to more helpers switching their type and while in reconfiguration mode they can not

execute subtasks. The oscillation of the number of helpers around time step 200 with a

decreasing amplitude for p = 0.05 is an example of the mentioned overreaction.

Since always a fraction of the helpers are in reconfiguration mode, the performance of

systems using the simple strategy is not optimal. In the next section we introduce a

strategy which lead to a decreasing fraction of reconfigurating helpers over time.

4.4.3 Reconfiguration Strategy wait

In the second reconfiguration strategy, called wait, each helper has a so called waiting

threshold that determines the maximal time interval that the helper will stay in waiting

state. For helper j configured for subtask type i > 1 the waiting threshold Tj is the

maximal time the helper waits for being contacted by a helper of type i− 1 to get a new

task. The threshold Tj is also the maximal time helper i < I waits for a helper of type

i+1 to transfer the task to. If a helper has been waiting for time Tj it starts to reconfigure
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Figure 4.21: Number of active helpers for both subtasks over time when using strategy
wait with identical waiting thresholds Tj for all helpers; 1000 helpers were
used

to change its type. If a helper of type i < I has reconfigured to subtask i + 1 it starts

immediately with the execution of subtask i+1 of the task that it has. If a helper of type

2 has reconfigured itself to subtask 1 it starts immediately with the execution a subtask

of type 1 (Recall, that it is assumed that always a new task exists). If a helper of type

i > 2 has reconfigured itself to subtask i− 1 it goes into waiting state again.

Waiting Threshold Distribution for the wait Strategy

First we investigate the wait strategy using the same fixed waiting thresholds for all

helpers. In Figure 4.21 the behavior of the system is shown for waiting thresholds Tj = 2

and Tj = 20. Two interesting observations can be made:

First, the number of helpers is strongly oscillating for time t < 600 and Tj = 2 (respec-

tively t < 400 and Tj = 20). For example, for Tj = 20 the number of helpers of type 1

oscillates 5 times between ≈ 0 and > 990 before a more stable situation is reached. The

reason for this is, that often a large number of helpers decide to respecialize within a very

small time interval. This is obviously an unwanted behavior.

Second, in the stable state the difference in the number of helpers of both types can be

large. For larger values of Tj this effect is stronger. For Tj = 2 the difference between the

number of helpers of type 2 and type 1 in the stable state is 541-459=82. For Tj = 20

this difference is 607-393=214. The reason for this is, that when all waiting delays become

smaller than the thresholds Tj no helper will switche anymore. Consequently, the optimal

proportion of helpers can not be reached.

With identical thresholds for all helpers the wait strategy leads to oscillations because

to many helpers start to reconfigure at the same time. To overcome this problem we new

use different waiting thresholds for the helper. Using an exponential distribution for the
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waiting thresholds Tj ∼ Exponential(p) (i.e., f(x) = p · e−px is the corresponding density

function) leads to a constant rate of helpers that switch their subtask, when the waiting

time for one type of subtasks increases. The parameter p is fixed and does not change

over time. If a helper gets into a waiting state it generates a new random (exponentially

distributed) threshold Tj . All following investigations for the wait strategy are made with

exponentially distributed waiting thresholds.

Number of Helpers

The influence of the number of helpers in the support system is depicted in Figure 4.22.

Three different values for the switching rate parameter p ∈ {0.01, 0.05, 0.2} were inves-

tigated for systems of h ∈ {10, 1000} helpers. The results of systems with 10 helper do

not differ very much from the results obtained with 1000 helper, beside the fact that the

curves are more steplike. Using the (small) value p = 0.01 the number of the helper for

the two subtasks slowly approach each other (Figure 4.22(a) and 4.22(b)). A higher value

p = 0.05 leads to a slight overreaction of the system (Figure 4.22(c) and 4.22(d)). The

desired equilibrium is already reached at around time step 150, which is faster than in the

systems with p = 0.01. Figure 4.22(f) shows strong oscillations in the number of helpers

for p = 0.2 and 1000 helpers. For h = 10 helpers these oscillations occur very roughly

too, as can be seen in Figure 4.22(e). Although showing different dynamics finally all

parameter settings lead to a convergence in the desired state where the same number of

helper is specialized for the two subtasks.

Different Subtask Execution Times

So far in the investigated systems the assumed execution times for both subtasks were

equal. In this case the systems equalize the number of helpers for both subtasks. Note,

that this adaptation leads to a maximal performance, as no helper will switch its type,

and therefore no reconfiguration overhead will occur. In the following we investigate

situations where the execution times for both types of subtasks differ. To reach an optimal

performance, the system needs to converge to a state where the relation between the

number of helpers of both types is the same as the relation of their mean execution times.

In the experiments the execution time for subtasks of type 1 is set to te ∼ N(1, 0.01).

The execution time for subtasks of type 2 are set to te ∼ N(0.5, 0.005) (respectively

te ∼ N(0.1, 0.001)). The switching rate parameter for the exponential distribution of the

waiting times Tj was set to p ∈ {0.01, 0.05, 0.2}. Results are depicted in Figure 4.23. The

adaptation process shows the desired behavior. For example, when the execution time of

subtask type 1 is two times higher than the execution time for subtasks of type 2, the
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Figure 4.22: Number of active helpers for both subtasks over time when using strategy
wait using exponentially distributed waiting thresholds
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(a) te of subtask 1 two times higher, p = 0.01
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(b) te of subtask 1 ten times higher, p = 0.01
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(c) te of subtask 1 two times higher, p = 0.05
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(d) te of subtask 1 ten times higher, p = 0.05
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(e) te of subtask 1 two times higher, p = 0.2

0 50 100 150 200

0
20

0
60

0
10

00

# 
H

el
pe

rs

subtask 1
subtask 2

(f) te of subtask 1 ten times higher, p = 0.2

Figure 4.23: Number of active helpers for both subtasks over time when using strategy
wait for different subtask execution times; mean execution time for subtask
type 1 two times higher (left) or ten times higher (right) than for subtask
type 2
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number of helpers for subtask 1 converges to 667 and the number of helpers of type 2 to

333. For the different settings of p again different dynamics show up.

Dynamically Changing Execution Times

To investigate the adaptiveness of systems using the wait strategy we studied the influence

of dynamically changing execution times. We used te ∼ N(1, 0.01) for one type of sub-

tasks, and te ∼ N(0.25, 0.0025) for the other type of subtasks. The execution times were

alternated at times t = 200, t = 400, and t = 600. Again, we used p ∈ {0.01, 0.05, 0.2}

for the switching rate parameter. Results are given in Figure 4.24. For small p = 0.01

the adaptation process is too slow to reach a converged state before the next change of

subtasks execution times. For large p = 0.2 again oscillations can be observed, and for

medium p = 0.05 a smooth and fast adaptation is possible. In all experiments the param-

eter p had a strong influence on the dynamics of the system. Later in this chapter we will

investigate the influence of p on the performance, i.e., the number of executed tasks.

Number of Subtasks

Results concerning support systems which divide a task into more than two subtasks are

depicted in Figure 4.25. Again reconfiguration strategy wait was used for service tasks

with 5 and 10 subtasks. Note, that a helper that is configured for subtask i may reconfigure

only to subtask of type i − 1 or i + 1, if possible. To which type of subtasks the helper

reconfigures depends on whether it could not find a helper of type i + 1 to transfer its

tasks or whether the helper could not find a helper that is ready to execute a subtask of

type i− 1. In Figure 4.25 it can be seen that the system manages to converge to a stable

state where approximately a fraction of #helpers/#subtasks of all helpers are configured

for every type of subtask (equal execution times for the subtasks were used).

4.4.4 Theoretical Analysis of Reconfiguration Strategies

In this section we model the proposed system using delay differential equations. In the

first part of the section the simple strategy is analyzed with respect to its fixed-points and

its stability. After that we will show numerical solutions for initial value problems of the

strategy simple and the strategy wait with exponential distributed waiting thresholds.

We assume in this section that there are only two subtasks. Let γi : T 7→ [0, 1], i ∈ {1, 2}

be the fraction of helpers of type i in the system, that are working for subtask i at time

t ∈ T . Let τ be the time needed for reconfiguration of a helper. Then a helper that

switches at time t− τ goes into reconfiguration mode and will increase the number of the

helpers configured for its new task type at time t. Formally, we have the following delay

differential system to describe the system when using strategy simple.
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Figure 4.24: Number of active helpers for both subtasks over time when using strat-
egy wait under the condition of dynamically changing execution times; ex-
ecution times for both subtasks normally distributed with N(1, 0.01) and
N(0.25, 0.0025); execution times changed at time step t = 200, t = 400, and
t = 600
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Figure 4.25: Number of active helpers over time when using strategy wait and 5 (top) or
10 (bottom) subtasks

dγ1

dt
= −p · γ1(t) + p · γ2(t− τ)

dγ2

dt
= −p · γ2(t) + p · γ1(t− τ)

(4.4)

Standard Approach of Analyzing the Stability

One way of analyzing the stability of a delay differential equation system is similar as

for ordinary differential equation systems. Let J0 be the Jacobian matrix with respect to

(γ1(t), γ2(t)) evaluated at the equilibrium point, and let Jτ be the Jacobian matrix with

respect to (γ1(t − τ), γ2(t − τ)) evaluated at the equilibrium point. Using the Jacobian

matrices J0 and Jτ of the system, one can calculate the characteristic equation of the

equilibrium point. The characteristic functions of such delay differential systems are so

called quasi-polynomials which have the form P (λ) + Q(λ)e−λτ = 0 with P and Q being

polynomials in λ. Formally the characteristic equation is

det
[

J0 − λI + e−λτJτ

]

= 0 (4.5)

where I is the identity matrix. Applied to our system we look for solutions of

det

[

−p− λ p · e−λτ

p · e−λτ −p− λ

]

= λ2 + 2λp + p2 − p2 · e−2λτ = 0 (4.6)
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If any of the solutions of the characteristic equation has positive real parts, then the

equilibrium point is unstable. If they all have negative real parts, then the equilibrium

point is asymptotically stable. It is easy to see that the quasi-polynomial in Equation

(4.6) has a solution λ = 0, hence the stability is undecidable to linear order.

Improved Approach of Analyzing the Stability

Instead of using the delay differential equation system (4.4), that describes the behavior of

the number of helpers at a certain time, we investigate the number of active helpers (i.e.,

the number of helpers, that are not in reconfiguration mode) and the difference between

the number of helpers of type 1 and type 2. Formally, let Γ1(t) := γ1(t) + γ2(t) and

Γ2(t) = γ1(t)− γ2(t). This results in two delay differential equations that can be written

as follows.
dΓ1

dt
= −p · Γ1(t) + p · Γ1(t− τ) (4.7)

dΓ2

dt
= −p · Γ2(t)− p · Γ2(t− τ) (4.8)

In Cooke and Grossman (1982); Freedman and Kuang (1991) delay differential

equations of the following type are analyzed:

dΓ(t)

dt
+ α

dΓ(t− τ)

dt
+ βΓ(t) + γΓ(t− τ) = 0 (4.9)

where τ, α, β, γ are real constants. Equation (4.8) can be written in the form of (4.9) with

α := 0, β := p, and γ := p. It was shown in Freedman and Kuang (1991), that there

can be no switch in stability in Equation (4.8) when the delay τ is changed. For τ = 0

any point is an equilibrium point for Equation (4.7), and only Γ2(t) = 0 is an equilibrium

point for Equation (4.8). Hence, a stability analysis of the ordinary differential equation

in Equation (4.8) with τ = 0

dΓ2

dt
= −p · Γ2(t)− p · Γ2(t) = −2 · p · Γ2(t)

can be used to characterize the stability of the difference of the number of helpers of the

different types. For this equation the roots of the characteristic equation λ + 2 · p = 0

have all negative real parts (if p > 0). Therefore the equation is asymptotically stable.

This leads immediately to the fact that Equation (4.8) is asymptotically stable for every

reconfiguration time τ . Thus, for every starting condition the difference of the functions

γ1 and γ2 will converge to 0.

The delay differential equation as given in Equation (4.7) is more complicated, as λ = 0

is a solution of the characteristic equation. Equation (4.7) can be written in the form of
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Figure 4.26: Dynamics of Equation 4.7 (a) and Equation 4.8 (b) over time; Equation (4.7)
is stable but not asymptotically stable, it converges to different values for
different values of p or τ ; Equation 4.8 is asymptotically stable, it converges
to 0 for all starting conditions and all values p and τ

Equation (4.9) with α := 0, β := p, and γ := −p. It was shown in Freedman and Kuang

(1991), that for |α| < 1 and β + γ = 0 Equation (4.9) is stable, but not asymptotically

stable. Hence, the sum of helpers that are active at time t as described in Equation (4.7)

is a stable (but it is not asymptotically stable).

We have shown that the difference of active helpers for both tasks Γ2(t) is asymptotically

stable and converges always to zero. Together with the fact that the sum of helpers Γ1(t)

that are active at time t is also stable, it follows that the number of helpers for the two

task types γ1(t) and γ2(t) have to be stable.

The stability analysis for the difference (respectively sum) of the number of active helpers

is illustrated in Figure 4.26 for different values of parameters p and τ . Note, that for

large reconfiguration times τ and large values of p the number of active helpers converges

to a relatively small value. The smaller τ and p become, the less helpers will be in

reconfiguration mode, when the system has converged.

Initial Value Problems

For reconfiguration strategy simple the stability could be analyzed analytically. Unfor-

tunately, we were not able to find an explicit solution for the given differential equation

system. Therefore, we investigate numerical solutions to initial value problems in the

following for both reconfiguration strategies.

Consider the reconfiguration strategy wait with exponentially distributed waiting thresh-

olds. Assume t1 and t2 are the execution times for the two subtasks. Then within a time

unit the helpers specialized for subtask i ∈ {1, 2} can execute γi/ti subtasks. Without

loss of generality assume helpers for subtask two can not execute as many tasks as helpers
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for subtask one, then the number of helpers for subtask one which are in waiting state is

γ1(t)−
t1
t2
·γ2(t). Since the waiting thresholds of these helpers are exponentially distributed

with parameter p the system can be modeled with the following delay differential equations

dγ1

dt
= −p ·max{0, γ1(t)−

t1
t2
· γ2(t)}+ p ·max{0, γ2(t− τ)−

t2
t1
· γ1(t− τ)}

dγ2

dt
= −p ·max{0, γ2(t)−

t2
t1
· γ1(t)}+ p ·max{0, γ1(t− τ)−

t1
t2
· γ2(t− τ)}

(4.10)

In Figure 4.27 the numerical solutions for the number of helpers are depicted for recon-

figuration strategies simple (left column) and wait (right column). The initial conditions

for the delay differential equation system are such, that γ1(t) = 1 and γ2(t) = 0, t ∈ [−τ, 0],

i.e., all helpers are specialized for subtasks of type 1. The reconfiguration time was set to

τ = 20, and parameter p was set to values 0.01 (weak switching intensity), 0.05 (medium

switching intensity), and 0.2 (strong switching intensity). For p = 0.01 and both reconfig-

uration strategies the number of helpers smoothly converges to its final value. For strategy

wait γi converges to 0.5. This is not the case for strategy simple. Note, that as shown

for strategy simple the number of active helpers is stable, but not asymptotically stable.

For strategy simple the number of helpers in reconfiguration mode strongly depends on

the value of p. For p = 0.05 the numerical solution converges to 0.25, and for p = 0.2 it

converges to 0.1.

Comparing the numerical solutions of the delay differential equation system (Figure

4.27) with the discrete event simulation for many helpers (number of helpers h = 1000,

Figure 4.20 and Figure 4.23) , it can be seen, that the differential equations approximate

the proposed system very well. If the number of simulated helpers becomes too small, this

close correspondence becomes weaker.

System Performance

The bottleneck of the system is the type of subtask where the least tasks are executed.

Hence, the normalized performance φ(T ) of the system in the time interval [0, T ] can be

measured as

φ(T ) =
1

T

∫ T

t=0
min

(

γ1(t)

t1
,
γ2(t)

t2

)

The maximal performance that can be achieved for t1 = t2 = 1 is φ(T ) = 1/2. In this

case 50% of the helpers work for each type of subtask and no helper is in reconfiguration

mode.
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(b) wait, p = 0.01
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(c) simple, p = 0.05
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(d) wait, p = 0.05
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(e) simple, p = 0.2
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Figure 4.27: Solving the initial value problem; comparison for number of active helpers
(γ1(t) and γ2(t)) in systems using reconfiguration strategy simple and wait
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Figure 4.28: Solving the initial value problem; depicted is the normalized performance
φ(T ) measured over interval [0, T ] with T ∈ {20 · 2i, i ∈ [0 : 12]} (i = 0:
bottom line i = 12: top line) for the two different reconfiguration strategies

The normalized performance φ(T ) is depicted in Figure 4.28 for both reconfiguration

strategies and different length of time intervals T ∈ {20 · 2i | i ∈ [0 : 12]} for the case

t1 = t2 = 1. It can be seen, that a good performance can be achieved for strategy simple

only if p is small (less than 0.01). For p = 0.1 the maximum normalized performance

φ(T ) is only 0.173. In contrast to this, for strategy wait the normalized performance

φ(T ) converges to 1/2 for each value of p when T is getting larger. Unfortunately, we

could not derive a general explicit form for the normalized performance φ(T ) analytically.

Nevertheless, an analytical analysis has been done for the case T = 2·τ and both strategies.

We present the analysis for strategy wait with subtask execution times t1 = t2 = 1 in the

following. In the beginning all helpers are specialized for subtask 1 (i.e., γ1(t) = 1 and

γ2(t) = 0 for t ∈ [−τ, 0]). Hence, γ2(t) = 0 and φ(t) = 0 holds for t ∈ [0, τ ]. Thus, an

explicit form for γ1 can easily be derived by solving the differential equation dγ1

dt
= −pγ1(t)

with initial value γ1(0) = 1. The solution is γ1(t) = e−pt. Since p · γ2(t − τ) = 0 holds

for t ∈ [0, 2 · τ ] this solution is valid in the interval t ∈ [0, min(2 · τ, χ)] where χ is the

first intersection point of γ1 and γ2 with t > 0. Considering γ2 on the interval [τ, χ]

we have to solve the differential equation dγ2

dt
= −pγ2(t) + pe−p(t−τ) with initial value

γ2(τ) = 0. The solution γ2(t) = 1 − pe−p(t−τ). Since there is only one intersection of γ1

and γ2 possible for t ∈ [0, 2 · τ ] the normalized performance φ(2 · τ) can be computed as

1/(2 · τ)(
∫ χ

t=τ
γ2(t) + (2 · τ −χ) · γ1(χ)). For larger T an explicit solution was not possible.

Numerically it can be shown (compare Figure 4.28), that the normalized performance

for strategy wait reaches its maximum value for the value p ≈ 0.025 for every investi-

gated value of T . This shows that there is no need to adapt the parameter p in systems

that use the strategy wait, regardless of low or high dynamically changing environmental

conditions.
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4.5 Networks with Reconfigurable Helper Units

The task allocation model investigated in Section 4.2 assumed that the workers choose

randomly a helper to request service. But in real systems which have a decentralized

organization the workers and helpers might be connected via a network without directly

knowing about each other. In this section we study a more complex scenario by assuming

a network infrastructure that consists of worker nodes, routers, and helper nodes. If

the workers need service they create request packets that include information about the

resource demands of the service task they need to be executed. The service request packets

are send into the network and are forwarded (randomly) by the routers to the helpers.

The helpers receiving the requests can decide about accepting them or forwarding them

into the network again.

Figure 4.29: Model of the computing system; Workers and Helpers are connected via a
fully connected network of routers

The aim of the system is to execute as many service tasks as possible while maintaining

small overall reconfiguration costs for the helpers. We use the network, i.e., the routers,

to help to organize the task allocation, based on the decentralized clustering algorithm

as presented in Section 2.2. By clustering the service requests into groups of tasks with

similar resource demands, the helpers can specialize to tasks of a certain cluster and will

have only small reconfiguration costs. We compare this method with two simple task

allocation methods that only take the local reconfiguration cost into account.

4.5.1 System Model

In the model presented in Section 4.2 it was assumed that a helper can execute a task on a

fraction of its resources. The more resources allocated to the specific task type the faster

this type of service tasks can be executed in this model. In Section 4.4 we investigated
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how to partition tasks in the organic support system, if tasks are to large to be executed

on one helper. In this case the helper have to use all of their resources for executing the

subtask they are specialized to. In the following we assumed that in order to execute a

task, the helper has to use all its resources and meet exactly the resource demands of the

service task, i.e., the needed configuration of slices. The execution time of the tasks is

assumed to be one and is the same for all tasks. On the other hand, the reconfiguration

time depends on the number of resources that must be reconfigured.

Each packet Pi has an actual hop counter mi. The hop count gives the number of helpers

that have been visited by the packet. If a packet is rejected by a helper this counter is

increased by one. If the counter of a packet exceeds a threshold value TTL (time to live)

the service request packet is dropped. The fraction of dropped packets (in relation to all

packets) is called the (packet) drop rate.

Let D be the number of different resources needed for executing a service task on a

helper. The i-th service request packet Pi in the computing system is characterized by a

vector vi := (v1
i , . . . , v

D
i ) that describes the resources needed for the corresponding service

task, i.e., the helper configuration that is required to execute the service task. For the sake

of convenience we denote Pi = (vi, mi). Note, that w.l.o.g we can assume
∑D

j=1 vj
i = 1.

If a service task with resource demand vi is to be executed by a helper, this helper node

must be configured such that the fraction v1
i (respectively v2

i , . . . , v
D
i ) of its slices is mode

1 (respectively mode 2, mode 3, . . ., and mode D). Hence, if wj = (w1
j , . . . , w

D
j ) with

∑D
j=1 wj = 1 is the actual configuration of helper Hj (wh is the fraction of slices that are

configured in mode h), then ||vi−wj || denotes the costs for a reconfiguration of helper Hj

from its actual configuration to the new configuration that is required by service packet i.

In the following it is assumed that service request packets Pi determine D = 3 resource

demands, i.e., vi is a three dimensional vector (vi = (v1
i , v

2
i , 1− v1

i − v2
i ) ∈ [0, 1]3, v1

i + v2
i ≤

1). We define the measure ||.|| for costs of the reconfiguration of Hj from configuration

(w1
j , w

2
j , 1− w1

j − w2
j ) to configuration (v1

i , v
2
i , 1− v1

i − v2
i ), as the number of slices which

have to be changed:

max(|v1
i − w1

j |, |v
2
i − w2

j |, |(1− v2
i − v1

i )− (1− w2
j − w1

j )|). (4.11)

When D = 3, configurations can be visualized as a point in an equilateral triangle with

height 1 (see Figure 4.30). For every point in the triangle the sum of the distances to the

right, bottom, and left line is 1. Let the distance from the bottom (respectively left and

right) line equal v1 (respectively v2 and 1− v1 − v2).

The system model is investigated in a step-based simulation. The simulation steps

are realized in two main phases. Within the first phase all communication operations take

place. We do not explicitly model the worker components in our simulation model. Instead
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(v1, v2, 1 − v1 − v2) = (1, 0, 0)

Figure 4.30: The resource requirements of a service request (v1, v2, v3) with v3 := 1−v1−v2

are depicted within an equilateral triangle with height 1

a fixed number of service request packets with random resource demands are generated

and send to random routers. The number of newly created service packets per time step

is also called the (packet) arrival rate. Moreover in the first phase all operations in the

network are performed with all packets that are currently in the network. Especially, if the

used task allocation method applies the d-DPClust algorithm for clustering the request

packets, this is also done in the first phase by the routers of the network. In the second

phase of the simulation step all helpers accept or reject the request packets according

to the implemented task allocation method and, if necessary, the reconfiguration of the

helpers is done.

4.5.2 Simple Task Allocation Method (S-TAM)

The simple task allocation method (S-TAM) is straightforward: The decision on accep-

tance or rejection of a service request is based on the locally measured reconfiguration

costs that would occur if the request is accepted. If the costs would exceed a given thresh-

old, the helper rejects the request. Formally, each helper Hj has an associated parameter

rj called acceptance distance. Let wj be the actual configuration of helper Hj . A service

request packet Pi is accepted if the reconfiguration cost do not exceed the acceptance

distance, i.e., ||vi−wj || ≤ rj . If the reconfiguration is considered to be too expensive, i.e.,

||vi−wj || > rj , then packet Pi is rejected by helper Hj and is sent to another node in the

network or dropped. Using small parameter values rj leads to many rejected requests and

therefore to a high drop rate. On the other side, large values of rj cause high total recon-

figuration costs. Hence, a tradeoff exists between the drop rate and the reconfiguration

costs.

We extend this approach to make it adaptive in order to cope with dynamically changing

resource demands. This is done by allowing the thresholds rj , that are used for the

decision of accepting a request, to change over time. Helpers locally estimate the number
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of rejected requests of the system and change their acceptance threshold based on the

estimated system behavior. The following method is used for an adaptable version of

S-TAM, denoted as A-S-TAM:

A helper Hj can change rj only due to a local estimation of the drop rate of the system.

This estimation is done by using simple exponential smoothing on the locally observed

drop rate of a helper. If the hop counter of a requesting packet is zero (mi = 0), then the

corresponding helper is the first helper that was requested for help. If the hop counter of a

packet is TTL (mi =TTL), then the corresponding helper is the last one that is requested

for help, i.e., if this last helper does not accept the service request packet, the packet will

be dropped.

We equip every helper with an estimation tmax (respectively t0) of the fraction of packets

in the system that have a hop counter of TTL (respectively zero). If a packet with

mi =TTL arrives at the helper, the estimation tmax is modified according to tmax :=

ρ · tmax + (1− ρ), otherwise tmax is changed according to tmax := ρ · tmax. The parameter

ρ determines the influence of recent packet requests. Note, that tmax tends towards 1 if

only packets with a maximal hop counter are observed, and tmax tends towards 0 if no

such packets request arrive. Analogously, the smoothed estimation t0 of the fraction of

packets with hop counter zero is modified according to t0 := ρ · t0 + (1− ρ) when the hop

counter of an arriving packet is 0 and t0 := ρ · t0 otherwise. A locally estimated measure

for the percentage of dropped packets is then determined by d := tmax/t0. Let γ be the

drop rate, that should not be exceeded by the A-S-TAM (γ is a parameter of A-S-TAM).

If a helper identifies an estimated drop rate d in the system, that is too high (i.e. d > γ),

then it increases its acceptance distance by a factor r+. If a helper identifies a drop rate

in the system, that is too small (i.e., d ≤ γ), then it decreases its acceptance distance by a

factor r− := 1/r+. The pseudo code of A-S-TAM that is executed in one simulation step

in each helper is given in Algorithm 5.

4.5.3 Clustering based Task Allocation Method (C-TAM)

In the C-TAM method the service packets that are sent through the network are clustered

according to their resource needs. For this purpose the Decentralized Packet Clustering

introduced in Section 2.2 is used. The clustering puts packets for services that have similar

resource requirements into the same cluster. Each helper can specialize to service requests

from one of these clusters and preferably perform only the requests. Since the resources

that are needed for the service tasks within one cluster are similar with respect to their

resource demands, this will lead to small reconfiguration costs.

To cluster the service requests the decentralized clustering algorithm d-DPClustzc is

used. Recall that for this method the packets contain a cluster number additionally to
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Algorithm 5 A-S-TAM in each helper (one simulation step)

1: GIVEN:

w: current configuration state of the helper
r: current acceptance distance of the helper
γ: drop rate not to be exceeded
tmax: smoothed estimation for the fraction of packets with mi = TTL
t0: smoothed estimation for the fraction of packets with mi = 0
ρ: influence of old estimations
I : set of indices of request packets Pi = (vi, mi), i ∈ I
TTL: time to live

2: accept:=TRUE
3: for i ∈ I do

4: tmax := ρ · tmax

5: if mi == TTL then

6: tmax := tmax + (1− ρ)
7: end if

8: t0 := ρ · t0
9: if mi == 0 then

10: t0 := t0 + (1− ρ)
11: end if

12: mi := mi + 1
13: compute costs needed for reconfiguration c := ||w − vi||
14: if c≤r and accept==TRUE then

15: packet Pi is accepted:
16: - reconfigure helper: w := vi

17: - execute vi in this simulation step
18: - do not accept any further packets in this step: accept:=FALSE
19: else

20: packet Pi is rejected:
21: if mi > TTL then

22: drop Pi

23: else

24: send Pi to another helper
25: end if

26: end if

27: end for

28: estimate drop rate: d := tmax/t0
29: if d > γ then

30: increase acceptance distance: r := r · r+

31: else

32: decrease acceptance distance: r := r/r+

33: end if
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Algorithm 6 C-TAM in each helper (one simulation step)

1: GIVEN:

w: current configuration state of the helper
ch: current cluster number of the helper
p: probability of cluster number changing
I: set of indices of request packets Pi = (vi, ci, mi), i ∈ I

2: accept:=TRUE
3: while i ∈ I do

4: set ch := ci with probability p
5: if ch == ci and accept==TRUE then

6: packet Pi is accepted:
7: - reconfigure helper: w := vi

8: - execute vi in this simulation step
9: - do not accept any further packets in this step: accept:=FALSE

10: else

11: packet Pi is rejected:
12: if mi == TTL then

13: drop Pi

14: else

15: mi := mi + 1
16: send Pi to another helper
17: end if

18: end if

19: end while

the data vector. Formally, a service request packet Pi = (vi, ci, mi) for the C-TAM is thus

characterized by vi (the vector that describes the resources needed), the associated cluster

number ci ∈ {1, . . . , nc} and the hop counter mi.

Each helper in the network has an associated number ch relating to the cluster the

helper is actually specialized to. If the cluster number of a service request packet that is

received by a helper is identical to its ch value, the service task is executed by the helper.

If, on the other hand, the ch is different from the packet’s cluster number, there is a fixed

probability p that the helper changes its specialization to the cluster of the packet. If the

helper does not change its specialization the service request is rejected and the packet is

sent to another node in the network. If the hop counter of the packet equals the time to

live the packet is dropped. Note, that a service request is also rejected if the helper is

already executing another service request at the same simulation time step. The pseudo

code of C-TAM is given in Algorithm 6. Note, that the cluster number of a request packet

is changed only by the routers according to the estimated centroids of the clusters. Hence,

this is not a part of the algorithm that is executed in each helper.
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4.5.4 Influence of Parameters on C-TAM

The experimental setup and parameters for the simulation of the model were the following.

If not stated otherwise all test runs in this section were performed in a scenario, where

all service requests are from up to four different areas, called classes, of the configuration

space. A snapshot from a typical test scenario is depicted in the right part of Figure 4.30.

Figure 4.31: Resource requirements of service requests of four different classes

Note, that a partitioning of the service requests that leads to small costs is not given in

advance, as packets have a random cluster identity when they are created. Within each

class of service requests the individual requests are chosen uniformly distributed. The

center of request class 1 is (1/3, 1/3, 1/3), the center of classes 2 (respectively 3 and 4) are

(2/3, 1/6, 1/6) (respectively (1/6, 2/3, 1/6) and (1/6, 1/6, 2/3)). Clearly this is an artificial

problem instance and realistic requests will have more dimensions and not regularly or

even completely randomly distributed resource requirements. But the main properties of

the problem are given: distributed requests in a reconfiguration space and an according

similarity measure.

If not stated otherwise in each simulation step 50 service requests packets were sent into

the network. 50 helpers components and 50 routers nodes were used. The probability

p that a helper changes its cluster was set to 0.01 (if not stated otherwise). Parameter

β that influences the update of the centroid estimation in a router was set to 0.1. If

a centroid estimation has not changed by the last 100 packets that arrived at a router,

the new centroid estimation is set to the corresponding configuration of the next arriving

packet. Each result that is given in the following is averaged over 10 simulation runs, i.e.,

each pair of cost/drop values is averaged over 10 independent simulations. Simulation

runs were performed over 10 000 steps. The shown reconfiguration costs are the overall

reconfiguration costs that were spent by the helpers when executing the service requests

(Equation 4.11) divided by the number of all service requests, that have been created

during a simulation run and the number of simulation steps.
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Number of Clusters

We investigated the behavior of C-TAM with respect to the drop rate of the service request

packets and the reconfiguration costs for test runs with different number of service request

classes. For 1 request class (class 1), 2 request classes (classes 3 and 4), or 4 request classes

(all classes) the number of clusters that are used by the decentralized clustering algorithm

has been varied with nc ∈ {1, 2, . . . , 10} (see Figure 4.32(a), 4.32(c), and 4.32(e)). The

results are depicted in the left column of Figure 4.32 when using a maximal life time of

the packets TTL ∈ {1, 5, 10, 50}. It can be seen that there is a clear trade-off between

the drop rate and the reconfiguration costs. When using a larger TTL value, the drop

rate is reduced significantly. The reduction of the reconfiguration costs for an increasing

number of clusters nc depends strongly on the number of request classes. When 2 or 4

request classes are used there is a sharp bend in the corresponding curves, as the algorithm

utilizes its adaptability. When nc is smaller than the number of request classes, then some

helpers have to execute service request of more than one class. This leads to relatively

high reconfiguration costs as can be seen in Figures 4.32(c) and 4.32(e), where packets

from 2 or 4 service request classes were put into the network. For example, when 2 request

classes and TTL=5 are used, the costs are reduced from 0.28 when using nc = 1 to 0.07

when nc = 2 is used. A further increase of nc (larger than the number of service request

classes) reduces the costs only slightly. The small reduction results from the fact that the

service requests within one class vary slightly with respect to their resource requirements.

Therefore the reconfiguration costs of the helpers can be reduced slightly when the service

requests of one class are split into several clusters. The disadvantage is that the packet

drop rate increases with a higher number of cluster.

Work Load

In the following we compare simulations for the C-TAM where the computing system has

different work loads, simulated by using the different arrival rates {1, 5, 10, 15, . . . , 50}.

The number of clusters for the decentralized clustering algorithm was set to nc = 4 and

similar to Subsection 4.5.4 the number of service request classes was 1,2, or 4. The results

are depicted in the right column of Figure 4.32.

Obviously, when using a very small (and unrealistic) value of TTL=1 the drop rate is

very high (always larger than 0.69). This value is interesting because it shows the average

fraction of packets that are not executed by a single helper. The small number of service

requests that are executed leads only to small reconfiguration costs. When using a higher

TTL the drop rate decreases significantly, e.g., for TTL=5 it is less than 0.3 in all cases.

The increase in reconfiguration costs is relatively small in this case (less than 0.13 when

using 4 service request classes and an arrival rate of 10). When the value of TTL is 50
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Figure 4.32: C-TAM: Drop rate/reconfiguration cost trade-off for different scenarios; left
column: dots on lines correspond to number of clusters nc ∈ {1, . . . , 10} (from
left to right); numbers at dots indicate number of clusters used; right column:
dots on lines correspond to arrival rates of {1, 5, 10, 15 . . . , 50} (from right
to left) packets per simulation step; numbers at dots indicate arrival rate;
number of service request classes: 1 (top), 2 (middle), 4 (bottom)
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Figure 4.33: C-TAM: Drop rate/cost trade-off for different probabilities p that a helper
changes its cluster when an arriving packet has a different cluster number;
p ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0} (from left to right)

nearly no packets are dropped in all the investigated scenarios. Also the reconfiguration

costs are small in this case (always < 0.13).

Changing Cluster Number of Helper Units

A strong influence on the adaptability of the helpers has the parameter p, which is the

probability that a helper specializes to the cluster of an arriving packet. When p becomes

larger the number of rejected packets decreases and the reconfiguration costs increase.

Note, that when using p = 1 no service request is rejected due to its cluster identity (only

when the helper is executing another service request a packet is rejected). Rejecting a

large number of packets leads to an increased drop rate. Drop rates and reconfiguration

costs were measured when using a cluster changing probability of p ∈ {0.001, 0.005, 0.01,

0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}. The results are depicted in Figure 4.33 for TTL values

of 1, 5, 10, and 50. The smaller the TTL values the stronger the decrease of the drop

rate with increasing p. E.g, when using TTL=5 the drop rate is decreased from 0.4 (for

p = 0.01) to 0.1 (for p = 1). But for high values of p the reconfiguration costs become

large (they increase from 0.040 to 0.17 for TTL=5 when p increases from 0.01 to 1).

Dynamically Adding and Removing Request Classes

To show the adaptability of C-TAM a dynamic scenario was investigated where the set

of service request classes changes. Starting with only one request class (class 1) we suc-

cessively added classes 2, 3, and 4 every 1000 simulation steps (i.e., packets of the corre-

sponding classes are created and send to the network). After that, the classes 2, 3, and 4

were removed again successively every 1000 steps. In Figure 4.38 the results are depicted
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Figure 4.34: C-TAM: Reconfiguration costs (a) and drop rate of packets (b) shown over
a simulation run where service request classes are added successively (simu-
lation steps 2000, 3000, and 4000) and then removed (simulation steps 5000,
6000, and 7000); initially (steps 0-999) only one service request class is used;
results are given for nc ∈ {1, 2, 4}

for nc ∈ {1, 2, 4} clusters. When the number of cluster is set to one each additional request

class increases the reconfiguration costs significantly, as the helper have to be reconfigured

between the different service request classes very often. When dividing the requests into

nc = 4 clusters, the average reconfiguration costs are much smaller. The additional recon-

figuration costs that occur after a new class has been added are due to the fact, that request

classes have to be partitioned with less clusters (or are not partitioned at all). This leads

to higher intra-class reconfiguration costs. These reconfiguration costs are much smaller

than the inter-class reconfiguration costs. These results show the fast adaptive behavior

of the decentralized clustering component based on DPClust in the given scenario.

4.5.5 Comparison of C-TAM, S-TAM, and A-S-TAM

In this subsection we only use one request class with center c = (1/3, 1/3, 1/3) and in-

vestigate the influence of the (dynamic) change of the size of this class. Similar as in the

previous Subsection for a new service request (v1
i , v

2
i , 1−v1

i −v2
i ) the value v1

i (respectively

v2
i ) is chosen randomly from the interval [c1 −∆, c1 + ∆] (respectively [c2 −∆, c2 + ∆]).

Here different values for ∆ are used. The maximal value for ∆, namely ∆max was set to

1/3. Typical snapshots of a request class with maximal size (∆ = 1/3) and minimal size

(∆ = 1/30) are given in Figure 4.35.

Note, that in this subsection relative reconfiguration costs will be used to make the

reconfiguration costs of request classes with different value of ∆ comparable and summable.

More exactly, if the value of ∆ for the request class is reduced by a factor k (relative to its

146



4.5 Networks with Reconfigurable Helper Units

(a) (b)

Figure 4.35: Snapshot for resource requirements of a service request (v1, v2, v3); one class
of service requests; service request class is scaled over time from (a) ∆ = 1/3
to (b) ∆ = 1/30

maximal size for ∆ = 1/3), the reconfiguration costs are multiplied by the same factor k.

If not stated otherwise all further experimental settings were chosen as in Section 4.5.3.

The parameter ρ for the estimated drop rate was set to 0.99.

Influence of ∆

We first investigated the performance of C-TAM and S-TAM for different but fixed values

of ∆ ∈ {1/30, 2/30, . . . , 1/3}. C-TAM was run with 1, . . . , 10 clusters. For S-TAM we used

6 different acceptance distances r ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. For each simulation run

the drop rate and the relative reconfiguration costs were measured within 10 000 simulation

steps. Results are depicted in Figure 4.36. The three dimensions of the figure are the drop

rate, the relative reconfiguration costs per service request, and the value of parameter ∆.

It can be clearly seen that the performance of C-TAM is independent of ∆: the drop

rate and the relative reconfiguration costs are nearly identical for all 10 different values of

∆. Depending on a predefined acceptable drop rate (or predefined relative reconfiguration

costs) the number of clusters in the C-TAM should be chosen. While using only one cluster

leads to a drop rate of 0.04 and relative reconfiguration costs per request of 0.691, using

10 clusters increases the drop rate to 0.486 but decreases the relative reconfiguration costs

per request to 0.126. In contrast to that, S-TAM is strongly dependent on ∆. For example

when using the acceptance distance r = 0.1 the drop rate ranges from 0.554 (when using

∆ = 1/3) to 0.037 (when ∆ = 1/30 was applied).
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Figure 4.36: C-TAM and S-TAM: Reconfiguration costs and drop rate; S-TAM: using
fixed acceptance distances r ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}, C-TAM: num-
ber of clusters 1, . . . , 10; simulation runs with 10 different request classes
(∆ ∈ {1/30, 2/30, . . . , 1/3}); the smaller the number of clusters in C-TAM,
the smaller the drop rate becomes; the larger the acceptance distance r in
S-TAM, the smaller the drop rate becomes; the projection on the bottom
plane is determined from the results for ∆ = 1/3

Dynamically Changing the Value of ∆

In contrast to S-TAM, in the A-S-TAM method the acceptance distances in the helpers are

increased if the drop rate becomes too large. Hence, A-S-TAM may handle many scenarios

much better. This is studied in the following experiment. For the first 1000 iterations ∆

had a constant value of 1/3. The request class was then shrunk by linearly changing the

value of ∆ from 1/3 to 1/30. This linear decrease of ∆ was done from iteration 1001 to

iteration 2000. (This leads to an overall value of 100 000 service request from time step

zero).

In Figure 4.38 the drop rate and the relative reconfiguration costs are given over time

(simulation steps 1001 to 2000) for i) C-TAM when using 4 clusters, ii) S-TAM with accep-

tance distance r = 0.2, and iii) A-S-TAM with parameter r+ for adapting the acceptance

distance with r+ ∈ {1.0005, 1.001, 1.0025, 1.005}. The threshold for the drop rate to be

achieved was set to γ = 0.25, i.e., if the locally measured drop rate d is larger (respec-

tively smaller) than 0.25, the acceptance distance of the corresponding helper is increased

(respectively decreased). As seen in the previous subsection, the C-TAM is nearly indepen-

dent of ∆ and the drop rate (respectively relative reconfiguration costs) remains basically
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Figure 4.37: A-S-TAM, S-TAM, and C-TAM: (a) Reconfiguration costs and drop rate;
(b) drop rate and (c) reconfiguration costs over time; dynamically changing
the request packets: until iteration 1000 ∆ was fixed to 1/3, from iteration
1001 to 2000 ∆ was decreased linearly from 1/3 to 1/30; C-TAM using 4
clusters; S-TAM using acceptance radius 0.2; A-S-TAM with different values
for adaptation factor r+
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Figure 4.38: A-S-TAM: drop rate over time when using different adaptation values r+ ∈
{1.001, 1.0025, 1.005}

constant at ≈ 0.25 (respectively ≈ 0.12). Depending on ∆, S-TAM (or A-S-TAM with

r+ = 1.001) may perform better than C-TAM, but the relative reconfiguration costs are

increased from ≈ 0.1 (time step 1001) to ≈ 0.3 (time step 2000), which clearly shows the

lack of an adaptive behavior. With increasing value of r+ A-S-TAM becomes more adap-

tive, but the overall performance gets worse. For r+ = 1.005 the relative reconfigurations

costs are always larger than 0.18.

Furthermore, r+ in the A-S-TAM has to be chosen with care. If r+ is too large, then the

average acceptance distances of the helpers may underestimate (respectively overestimate)

the real drop rate. The reason is, that the influence of changing the acceptance distance

needs some time to show effect. In such a case the acceptance distances will be decreased

(respectively increased) too much. This will lead to a too large (respectively too small)

drop rate and the system shows an oscillating behavior as shown in Figure 4.38. In the

given scenario the aimed drop rate γ is 0.5 and all helpers start with an acceptance distance

of 1. All other parameters were chosen according to the default values. For r+ = 1.005 and

r+ = 1.0025 it can be clearly seen, that the aimed drop rate is not achieved as smoothly

as for r+ = 1.001, but only by an oscillating behavior of the acceptance distances in the

helpers, that lead to the depicted oscillations of the drop rate.

Summarizing the empirical investigation we can say, that the C-TAM shows a very

good adaptive behavior and a very good performance. While achieving nice results for

situations where adaptation to the environment is not necessary, the S-TAM fails to show

good performance in dynamically changing scenarios. Using the A-S-TAM overcomes this

problem, but the parameters of the A-S-TAM have to reflect the degree of dynamics of a

given scenario. In contrast to that, the C-TAM achieves a very good trade off for drop
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rate and reconfiguration costs, which remain basically constant also in case of a strong

dynamical change.

4.6 Summary

In this chapter we introduced the idea of Organic Support Systems. These systems consist

of a number of so called helper components that are responsible for the execution of service

and support tasks for a given worker system. Using reconfigurable hardware the helper

components are able to adapt to the actual needs of the supported system by specializing

on the required types of support tasks. We studied different aspects of the organization

of such systems.

Inspired from models of task allocation in social insects, we introduced a mechanism

for the allocation of the support tasks to the helper components. We studied different

strategies for the helpers to decide about acceptance of service tasks and about how to

reconfigure their resources. For a system of two helpers analytical results were presented.

The optimal degree of specialization under different costs for reconfiguration and commu-

nication relative to the execution time has been derived theoretically. For systems with

a larger number of helpers we presented experimental results. It was shown that these

systems can adapt to dynamic situations with changing rates for service requests. For

certain parameters the systems can show an oscillation effect, which must be considered

carefully if applying the methods.

In the second part of the chapter it was assumed that single service tasks are split

into subtasks that have to be executed successively. Helper components decide locally for

which subtasks to specialize. An uneven distribution of workload over the helper leads to

unnecessary waiting times. It was shown, that a threshold based reconfiguration strategy

with exponentially distributed threshold values performs better than simple strategies

that use the same threshold for all helpers or use a fixed probability for changing the

specialization. Modelling the systems as delay differential equation systems, we were able

to proof the stability of a simple probability based strategy. The numerical solution of

initial value problems has shown that the theoretical models fit the simulation outcome of

the systems well.

The third part of this chapter studied Organic Support Systems in which the workers

and helpers are connected via a router based network without directly knowing about each

other. Workers send request packets including resource demand information of the service

task they need to be executed into the network. We empirically compared a method for

task allocation, based on the decentralized clustering algorithm presented in Section 2.2,

thoroughly with other allocation schemes. The simulations have shown that the clustering
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based system has a strong adaptive behavior in static and dynamic scenarios and that the

decentralized clustering is able to reduce the reconfiguration costs significantly.
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of Memory Constrained Components

Evolutionary Computation, Machine Learning, and, as a combination of both, Learning

Classifier Systems provide powerful tools for the creation of self-organizing and adaptive

computing systems. This chapter starts with a brief introduction on how these methods

have been applied in Organic Computing so far.

In the second part of the chapter we use interacting Pittsburgh-style Learning Classi-

fier Systems to evolve rule sets for solving classification problems on computing systems

consisting of distributed, autonomous, memory constrained components. Using this ap-

proach the components become specialists for parts of the classification problem and solve

the whole problem in cooperation. A deeper look at the structure and properties of the

evolved rule sets and the way the components share their knowledge is taken. The influ-

ence of different communication topologies and the consideration of communication costs

on the emerging patterns of cooperation and on the obtained classification performance of

the whole system is studied.

5.1 Evolutionary Computation and Machine Learning in Organic

Computing

To reach the design goals of Organic Computing, i.e., to create autonomous, adaptive,

life-like systems, researchers do not solely rely on inspirations from nature, they also

use knowledge from other fields of computer science. Especially the fields of Machine

Learning and Evolutionary Computation provide a wide variety of different solutions for

creating Organic Systems which can learn and evolve and in this way adapt to changing

environments. Independently of initial designs or external interventions such systems can

learn about their environment over time, adapt to their user, survive breakdowns and

attacks, and react sensibly, even if they encounter a new situation for which they have

not been programmed explicitly. In the following we will give an overview on how these

methods have been applied to Organic Computing yet.
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5.1.1 Evolutionary Computation

Evolutionary Algorithms (EA) mimic biological evolution principles such as reproduction,

mutation, recombination, natural selection, and survival of the fittest in order to solve (op-

timization) problems. In EAs a set of candidate solutions to a problem forms a population.

In an iterative process new populations are evolved by repeatedly selecting good solutions

and generating new solution based on the selected ones. The selection mechanism acts as

a force to increase the quality of the solutions, since the probability for worse individuals

to be selected is usually smaller. On the other hand, the generation of the offspring by

recombination and mutation creates the necessary diversity and thereby facilitate novelty.

For an introduction to evolutionary computation see, e.g., De Jong (2006).

Several applications of EAs in Organic Computing can be found. First there are the

aleady mentioned works Branke and Schmeck (2008) and Komann and Fey (2009).

Kaufmann and Platzner (2007) proposes an architectural concept for intrinsically

evolvable embedded systems. In this approach within a reconfigurable hardware system

new configurations are evolved online using EAs and in this way, the system can adapt

to dynamic environments. König et al. (2006) proposes the concept of Organic Sensing

Systems, based on medium granularity field-programmable mixed-signal arrays. Beside

other metaheuristics it is suggested to use genetic algorithms implemented in the unit

responsible for the reconfiguration algorithm. Igel and Sendhoff (2008) uses evolu-

tionary algorithms for the design of Artificial Neural Networks that are specialized to

certain problem classes. The authors claim that the resulting Neural Networks are able

to adapt to a specific problem of this problem class in a very efficient and robust way and

that this makes such a “second order learning” interesting for the application in Organic

Computing systems.

5.1.2 Machine Learning

Machine Learning as a branch of computer science is concerned with the development

of algorithms that allow computers to learn, based on given data, to make intelligent

decisions (for an introduction see, e.g., Alpaydin, 2004). An example of the application

of machine learning, more precisely of a so called supervised learning method, in Organic

Computing is the utilization of Hidden Markov Models in Krüger et al. (2008). This

work presents a system consisting of autonomous collaborating units for dynamic gesture

recognition relying on Organic Computing principles.

Another branch of Machine Learning is the so called Reinforcement Learning (RL), the

computational approach to learn from the interaction with an environment. RL means

“. . . learning what to do - how to map situations to actions - so as to maximize a numerical

reward signal . . . ” (Sutton and Barto, 1998). Reinforcement Learning algorithms
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view the target problem as an unknown environment that provides feedback in terms

of a numerical reward signal and attempt to solve the problem by interacting with the

environment and by trying to obtain as much reward over time as possible.

Figure 5.1: Interaction between an agent and the environment in the Reinforcement Learn-
ing framework.

Usually the learner respectively decision-maker is called an agent. Everything outside

the agent, i.e., the things it interacts with, is called the environment (compare Figure

5.1). The agent interacts with the environment at a sequence of discrete time steps t =

0, 1, 2, 3 . . . . At each time step t, the agent can perceive the state st of the environment

through its sensors and can perform an action at of actions available in state st. As a

consequence of this action the environmental state changes to st+1 and the agent receives

a reward signal rt+1. This reward signal is the most important aspect of RL and separates

it for example from supervised learning, since never the correct input/output pairs are

presented, nor sub-optimal actions are explicitly corrected.

Reinforcement Learning methods can be used to solve classification problems. Informally

spoken, to solve a classification problem is to assign a labeling to a set of objects that fulfills

certain criteria. If the properties of the given objects form the environment for the agent

and the possible actions represent different classes (labels), the agent can learn to classify

(label) objects correctly. For this purpose it is only necessary that correct classifications

(actions) lead to a higher reward than incorrect ones.

5.1.3 Learning Classifier Systems

Learning Classifier Systems (LCS) combine Reinforcement Learning and Evolutionary

Algorithms and were first described in Holland (1992) (for an overview see, e.g., Sigaud

and Wilson, 2007). LCS compute solutions consisting of rules or entire rule sets and

apply reinforcement learning to estimate their quality in terms of problem solution. A
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Genetic Algorithm is used to discover rules/rule sets that improve the current solutions.

There are two main approaches for the design of LCSs, namely the Michigan and the

Pittsburgh approach. In Michigan-style learning classifier systems the Genetic Algorithm

operates on a set of rules and every rule has an associated fitness value. In contrary, in

Pittsburgh style learning classifier systems whole rule sets are evolved (De Jong and

Spears, 1991).

Comparing two representatives of these both approaches, namely XCS (Wilson, 1995)

as a Michigan-style LCS and GAssist (Bacardit, 2004) as a Pittsburgh style LCS, both

systems show comparative performance results (Bacardit and Butz, 2005). While

GAssist has the tendency to ignore additional problem complexity by evolving compact

rule sets, XCS tends to over-fit the training data. On the other hand GAssist has slight

problems with handling many output classes as well as huge search spaces.

Learning classifier systems were used for several applications in Organic Computing. For

instance, Bernauer et al. (2008) incorporates a modified XCS into a design method-

ology for a Autonomic-System-on-a-Chip (ASoC). Implemented in hardware the classifier

system can learn to find the optimal operating point (performance, temperature, power

consumption, and soft error rate) of an AMD Opteron Quadcore. The resulting system is

self-configuring and can adapt to its environment or to unforeseen situations. The Organic

Traffic Control approach presented in Prothmann et al. (2008) attempts to find and

apply good parameters for traffic light controllers depending on specific traffic demand

situations. An Evolutionary Algorithm is used for an off-line optimisation of parame-

ters by simulation. This is combined with a Learning Classifier System that selects and

evaluates parameters on-line. A work concerning adaptive network protocol configuration

using a modified variant of the XCS system is presented in Tomforde et al. (2009).

The classifier system is used to find a parameter sets that ensure the best possible system

performance in dynamic environments. Like in the Organic Traffic Control the system

evolves new rules offline via simulation. The authors demonstrate the usefulness of the

proposed approach by applying the system to a Peer-to-Peer protocol and evaluate the

achieved results. Schöler and Müller-Schloer (2005) uses Fuzzy-XCS a fuzzy variant

of the XCS classifier system to monitor the status of an adaptive protocol stack for mobile

terminals. The classifier system is able to detect protocol stack performance degradation

and can modify the parameters of the system in order to establish normal performance

again. Richter et al. (2008) reduces the complexity of learning tasks by dividing it

into smaller sub-problems. An Organic Computing related multi-agent scenario is used to

show improvements in learning speed.

Most of these examples have a centralized system structure. But Organic Computing

systems often consist of many loosely coupled components which have to self-organize and

cooperate to reach a given system goal. If these components need to exhibit (learned)
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knowledge about a specific problem, the question arises how to organize the way they

work together in a reasonable way.

Plenty work on related questions usually referred to as cooperative multi agent learning

(for an overview see, e.g., Panait and Luke (2005)) exists. Specifically in the field of

Organic Computing Buchtala and Sick (2007) presents an architecture of so-called

Organic Nodes that face classification problems. These nodes cooperate by exchanging

functional knowledge, acquired from local observations of the environment using radial

basis function neural networks. Richert et al. (2005) investigates a multi agent scenario

where no direct knowledge exchanges occurs, rather the agents learn action sequences

through imitation. Imitation occurs by means of observing other agents and applying

sequences of observed basic behaviors. In both papers, locally acquired knowledge is

spread over the components of the OC systems. Such an approach is reasonable if spreading

knowledge is more easy than acquiring knowledge on every component on its own and if

the components have enough resources to store the all the information.

In the following we investigate the opposite case. We assume the components of the

systems to be restricted in memory and therefore in the possible knowledge they can

store. In such a case it is reasonable that the individual components store only parts of

the available knowledge and cooperate by “asking” each other when facing problems they

can not solve on their own. In our approach to organize such a cooperation the knowledge

when and who to ask is also learned and not predetermined.

5.2 An Approach to Evolve Cooperating Classification Rules

Sets

Classification is an important task for many computing systems and a main field of applica-

tion for Machine Learning techniques. In the following we study how to solve classification

problems on decentralized computing systems consisting of autonomously acting compo-

nents with communication abilities. The components are assumed to have a restricted

memory size. An example for such a system is a sensor network, were the sensors can use

wireless communication but typically have a memory that can store only a small amount

of information. Binary strings, called classification requests, arrive randomly at the com-

ponents of the system. This models for example local sensory data at sensor nodes. The

goal of the system is to yield correct classifications of these classification requests.

Here we propose to use a rule based approach to solve the classification task. The

knowledge of a component is represented as a single set of rules. Every rule consists of a

condition and an action part. If an incoming request matches the condition of a rule, the

action propagated by this rule is executed. As common in classifier systems, these actions
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Figure 5.2: The best rule sets evolved in the training phase using coevolving Pittsburgh-
style learning classifier systems can be deployed onto the memory constrained
components.

represent the demanded classifications. Since only a limited number of rules can be stored

on the memory constrained components, only a limited number of correct classifications

can be done by a single component. In order to solve more complex classification problems,

we allow the components to cooperate. In this way the components can specialize for parts

of the classification problem and use the knowledge of other components by delegating

classification requests they can not solve on their own. The possible actions of the rules

are extended by special actions that can propagate to delegate the matched request to a

certain component. In this way a request can be forwarded over several components until

a component is found which has a rule to classify the request.

In this chapter we investigate the question how appropriate rule sets for the components,

i.e., how specialists for certain parts of the problem and the needed cooperation, can be

generated. Figure 5.2 gives a schematic view of our approach. In a so called training

phase the components of the system are simulated as agents in a multi-agent system.

In the simulation the knowledge of every single agent is represented as a Pittsburgh-style

learning classifier system. This means every agent exhibits and evolves an entire population
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of rule sets. In the training time the LCS systems of the agents learn how to solve the

given classification problem by evolving fixed length rule sets that might cooperate by

the delegation of requests. For example, in Figure 5.2 agent A has evolved a rule which

propagates the action B, that is, a rule to delegate the matched requests to agent B.

The size of the rule sets is restricted in order that a single rule set fits into the limited

memory of the components. After the (offline) evolution in the training phase every agent’s

best rule set can be deployed on the respective component. The generated rules contain

knowledge about correct classifications and knowledge about correct cooperation (which

leads to correct classifications). In the following investigations we will mainly focus on the

training phase and investigate the structure and properties of the evolved rule sets and

the way the components share their knowledge.

To use a Pittsburgh-style classifier system with fixed length rule sets guaranties that the

evolved rule sets fit into the component’s memory and also have a high strength in terms

of classification performance. The drawback is, that because Pittsburgh-style classifier

systems need much memory the approach only works offline in a simulation of the system.

In order to design systems capable of online learning, i.e., the co-evolution of cooperating

rule sets directly on the components, it would be necessary to use a classifier systems

which can deal with a limited memory. To the best of our knowledge this problem has

not yet been addressed in the literature. It is an interesting question if and how LCSs,

for example Michigan-style systems, like the accuracy based XCS or the strength based

ZCS (Wilson, 1994), can be modified to work with a limited memory and to generate a

bounded number of rules which still give a good overall reward. The modifications of XCS

presented in Dawson (2003) can reduce the population size needed by the system. But

still the number of rules always exceeds the number of rules needed to solve the investigated

problems optimally. The question, if these systems can generate the best possible rule sets

in case the used population sizes are smaller than the needed number of rules for solving

the considered problem optimally, is not answered yet.

The idea behind co-evolving cooperating LCS systems in this form is quite new and

the intention of the results presented here is to illustrate the power and usefulness of

such systems in principle. Many interesting questions regarding evolving cooperating LCS

systems remain which could not be covered in the scope of this thesis, but will be addressed

in future research. At some points possibly interesting questions, design alternatives, and

research directions are mentioned.

In the literature little work about co-evolving Learning Classifier Systems can be found

(Bull, 2001). Potter and Jong (2000); Potter et al. (1995) investigates systems

of several co-evolving populations of cooperating classifier systems. In contrast to the

work presented here, the communication within these systems is limited to an occasional

broadcast of representative individuals. In Bull (1999) cooperating Pittsburgh classifier
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systems with the possibility to communicate are used to evolve the control of a wall

climbing robot. As in our work it is not predetermined which agents communicate, instead

the communication has to be learned, too. The need for cooperation in this system comes

from the fact that the different populations of classifiers are assigned to different functions

(legs of the robot) and have to work together to achieve the global goal of movement. The

novelty of our investigation is the assumption that the agents have only limited resources

(memory). This limits the possible “knowledge” of the agents and leads to a pressure for

cooperation.

5.2.1 A Simple Pittsburgh-style Classifier System

The used Learning Classifier System is a Pittsburgh-style LCS and shares many similarities

with the GAssist System.

A rule consists of a condition and an action part and is denoted by: [condition →

action]. The condition part is a string with a fixed length over the alphabet {0, 1, #}. The

action part is a character from the alphabet {0, 1, A, B, . . .}. An action ’0’ (’1’) represents

a classification into the class 0 (respectively, 1). Note that the to solve the classification

problems studied in this work only two classes are required. But if classification problems

with more classes are to be solved, the possible actions can easily be extended. Agents are

denoted by A,B,C,... . The action for sending a request to a specific agent is denoted

by the name of the agent. For instance, in a system with three agents the possible actions

for the rules of agent B are ’1’,’0’,’A’ and ’C’, where action ’A’ (resp. ’C’) stands for

sending the request to agent A (resp. agent C).

A classification request is a string over the alphabet {0, 1}. All conditions and all

requests have length m ≥ 1. A rule matches a request iff for every i ∈ [1, m] the ith

character of the condition equals ’#’ or is the same as the ith character of the request. For

example the rule [#0 → 1] matches the requests ’00’ and ’10’, but not ’01’ and ’11’.

A rule set consists of a fixed length list of rules. The rules of a rule set have a fixed

order. Like in GAssist these rule sets work as decision lists (Rivest, 1987), which means a

request is compared from the first (top) rule to the last (bottom) rule until it first matches

a rule. The last rule, called default rule, has a condition of the form ##. . . # and therefore

matches all requests. Note, that this rule is not counted into the rule set size.

The LCS uses a near-standard generational Genetic Algorithm (GA), which operates

on a set of 300 individuals (rule sets). Within one cycle of the GA first the fitness of all

individuals is calculated. Thereafter, a new generation is formed by repeatedly selecting

two parents with a high fitness, generating two offspring rule sets from these parents,

and inserting these offsprings into the new population. The offspring is derived from the

parents by applying a crossover and a mutation operator. Note, that the best individual of
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a generation is taken directly into the offspring generation (elitism). How these operators

are implemented in detail is given in the following.

Fitness Calculation

Every rule set of the population has an associated fitness value that reflects how well this

rule sets performs in solving the classification problem. The fitness of a rule set is the

mean reward the rule set gets when all possible problem instances are matched. As an

example consider the problem to classify all 4-bit numbers which are “≥ 8 or odd” as ’1’

and all other 4-bit numbers as ’0’. A correct classification leads to a reward of 100 and a

wrong one it gets zero reward. Consider the following example rule sets:

Rule Set I Rule Set II

1### → 1 #1## → 1

#1#1 → 1 ###1 → 1

#### → 0 #### → 0

Fitness 87.5 Fitness 75

Rule Set I classifies all strings which represent numbers ≥ 8 correctly (first rule), but

the odd numbers 1 and 3 (strings ’0001’ and ’0011’) are classified wrongly as ’0’ since

they only match the default rule. On the other hand Rule Set II classifies all odd numbers

correctly but the strings ’0100’ and ’0110’ (numbers 4 and 6) are classified as ’1’ and the

strings ’1000’ and ’1010’ (8 and 10) are classified as ’0’, which is wrong in both cases.

Rule Set I classifies 14 of 16 instances correctly which gives a fitness of 7/8 ∗ 100 = 87.5

and Rule Set II is correct on 12 of 16 instances which leads to a fitness of 3/4∗100 = 75.0.

As stated before, as a consequence of the constrained memory of the components the

system uses fixed length rule sets, i.e., rule sets with a fixed number of rules. If the number

of rules is too small for a given problem, the rule sets can not classify all requests correctly

and therefore will not have the maximal fitness. For instance, if the rule set size is 1 in

the above given example no rule set can get the maximal fitness of 100.

Selection

The LCS uses the so called Tournament Selection (Goldberg and Deb, 1991). This

operator holds a tournament between a fixed number of individuals randomly chosen from

the population (in this work three individuals are chosen). The individual with the highest

fitness from this group is selected as one parent. For the second parent the same selection

mechanism is applied again.
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Crossover

Like in GAssist the crossover operator is taken from GABIL (De Jong et al., 1993).

This operator defines a cut point within the two parent rule sets to combine them to two

offspring rule sets. For example a crossover of the two example rule sets with the cut point

after the first character of the second rule looks like this:

Rule Set I Rule Set II Offspring I

1### → 1 1### → 1

# + ##1 → 1 → ###1 → 1

#### → 0 #### → 0

Offspring II

#1## → 1 #1## → 1

1#1 → 1 + # → #1#1 → 1

#### → 0 #### → 0

Note, that offspring I classifies all instances of the toy problem correctly and has the

maximal fitness of 100.

The crossover operator is applied with a probability ρ = 0.6 on the two selected parents.

If it is not applied the parents form the offspring directly.

Mutation

The mutation operator flips a randomly chosen position inside the rule set. If this position

is in the condition part of a rule the corresponding character is altered into one of the

remaining two possibilities with equal probability. To mutate the action part of a rule

the new action is chosen uniformly from all possible actions (without the actual action).

The mutation operator is applied with an individual wise probability of µ = 0.6 on the

offspring before inserting them into the new population.

5.2.2 Training Phase

Like stated before, the evolution of appropriate rule sets which solve a desired classification

problem takes place within the training phase of the system. In this phase the memory

constrained components are simulated in a multi agent scenario. Every agent, representing

a specific component, exhibits a Learning Classifier System of the kind described in the
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previous subsection. Thus, an agents encapsulates a set of rule sets that co-evolve with

the rule sets of other agents.

Within one GA step for every agent the fitness of all its rule sets is calculated. For

this purpose every rule set of an agent is matched against every possible request of the

considered problem exactly once. How the possible requests look like depends on the spe-

cific classification problem. This is computationally expensive, since a problem size of m

can lead to up to 2m different request strings. On the other hand this ensures the exact

calculated fitness for this study and eliminates a possible influence of a random request

arrival (which would be a more realistic scenario) on the results. Facing more complex

problems, i.e., problems with a large number of possible request strings, it can be reason-

able to use more elaborate ways for the training, for example a windowing mechanism like

ILAS (Bacardit and Garrell, 2003).

Figure 5.3: Schematic view of the classification of a request

An example classification process of a request during the fitness calculation is given in

Figure 5.3. Note that the LCSs of both agents hold and work on whole populations of

rule sets, but only one rule set of every agent is depicted in the figure. For agent A the

depicted rule set is the one for which the fitness is to be calculated. For agent B the rule

set which has actually the highest fitness is depicted. This rule set is also called actual

best rule set. Agents always use their actual best rule set to answer requests from other

agents.
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In the figure first a binary request arrives at agent A (1). This request is matched by the

third rule of the actually considered rule set of agent A (2). Like stated before a specific

request is compared against every rule of the rule set from top to bottom. The action of

the first matched rule is executed. Execution means that either the request is classified or

the request is send to another agent specified by the action. In the example the propagated

action ’B’ refers to send the request to agent B (3). In the example the request is matched

against the actual best rule set of agent B (4). If a matched rule propagates an action

which is a classification (either the class ’0’ or ’1’) this result is delivered back. In the

example the classification result ’1’ is delivered back to agent A (5). Agent A sends the

result to the environment (6). At the end the LCS of the agent which gets the request

from the environment is rewarded. In the example this is the LCS of agent A (7). Note,

when the evolved rule sets are deployed and work on the real components, the classification

process works exactly the same except that there is no reward. To avoid unlimited request

delegation, agents which get a request twice classify this request as a dummy class which

gives reward zero in every case.

Recall, the fitness of a rule set is defined as the mean reward generated classifying all

possible requests within one GA step. It is irrelevant for the reward if the classification is

done directly or through the interaction with other agents. From the point of view of the

LCS there is no difference between actions for classifications and actions for delegating

requests to other agents. The LCS matches a problem instance (a request), propagates

an action and gets a reward associated with this action. This is an important point,

because this is the usual way a LCS works and no modification is needed at this point.

The knowledge about rewarding delegations is learned in the same way and stored in the

same rules as the knowledge about the rewarding classifications.

After the fitness of all rule sets of all agents is calculated the genetic algorithm of every

agent is invoked to generate new populations of rule sets. Since the fitness of rule sets

is connected to the fitness of other rule sets within other agents, the genetic algorithm

co-evolves populations of cooperating rule sets.

When the training phase is finished every agent has evolved an actual best rule set.

To calculate the fitness of the whole system a situation is considered as it would be if

the evolved rule sets are applied to the components (for example the sensors of a sensor

network). In this case only the best rule sets of the agents are transferred onto the

according components. It is assumed that in average every possible request arrives at

every component. Therefore the fitness of the whole system is the mean of the reward all

components get when classifying all possible requests. This value is called system fitness.
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5.3 Experiments

If not stated otherwise for given parameter sets the systems are trained 1000 steps (fitness

evaluations and invocations of the GA). All results are made of 10 independent runs.

5.3.1 The Incremental Multiplexer Problem

The m-multiplexer is a boolean function defined for strings of length m = n + 2n. The

first n bits are used to encode an address in the remaining 2n bits and the value of the

function is the value of this addressed bit. For example the 6 multiplexer has two address

bits and 22 = 4 data bits. Here the value of 101011 is 1 since the first two bits 10

represent the index 2 (in base ten) which refers to the third bit of the last 4 bits (index

0 refers to the first bit). Given a binary string to the learning classifier system it will

response with a classification of the string, which is a value of 0 or 1. This response will

lead to a high reward of 1000 if it is the multiplexer function of the input string and

lead to a low reward 0 otherwise. Multiplexer problems are commonly used problems

in learning classifier system research. These problems are considered to be interesting

because the function to be learned is irregular but does allow for generalizations to be

made. Generalization means the introduction of the # symbol into the rules at positions

which does not contribute to the solution. For example, a perfect minimal solution rule

set of the multiplexer problem of size 6 may look like this:

001### → 1

01#1## → 1

10##1# → 1

11###1 → 1

###### → 0

The rule 10##1# → 1 matches the previously given example ’101011’ but also it matches

for example ’101111’ or ’100010’ and always gives the correct classification ’1’.

The mostly used sizes of the multiplexer problem are m = 3, 6, 11 and 20. In Davis

et al. (2002) an extension called incremental multiplexer problem (IMP) of the original

multiplexer problem is introduced to allow for more intermediate problem sizes. The m-

IMP is the same as the m multiplexer for m = n + 2n. For other L the L-IMP uses as

many address bits as the m + 1 multiplexer, but only addresses are allowed which code

integers smaller or equal to m− n− 1. For instance, the string 10010101 can be found in

the 8-IMP, since the address 100 = 4 refers to the last bit of the string, on the other hand

the string 10110101 will not be found.
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m 6 9 11
k

1 625.00 583.33 562.50
2 750.00 666.67 625.00
3 875.00 750.00 687.50
4 1000.00 833.33 750.00
5 1000.00 916.67 812.50
6 1000.00 1000.00 875.00
7 1000.00 1000.00 937.50
8 1000.00 1000.00 1000.00

Table 5.1: Highest possible fitness a single agent can earn with a rule set of size k at the
m-IMP

2 rules on 6-IMP 4 rules on 9-IMP

11###1 → 1 #01#1###1 → 1

#0##1# → 1 0001##### → 1

###### → 0 #11###1## → 1

#10##1### → 1

fitness: 750.0 fitness: 833.33

Table 5.2: Examples of rules sets generated by systems with one agent; both rule sets have
the highest possible fitness for the given number of rules

The highest possible fitness a single agent can have with fixed length rule sets of size

k at the m-IMP (incremental multiplexer problem of size m) is given in Table 5.1 (Note

again, the number given as the size of the rule sets is without counting the default rule).

In the following some typical examples of evolved rule sets are given and discussed. In

Table 5.2 two rule sets generated by a system with one agent are shown. The left rule

set was generated on the 6-IMP problem and the possible number of rules the agent was

allowed to use is 2. The resulting rule set has a fitness of 750.0. Note, the rule [11###1

→ 1] can be found in an optimal solution generated by a system without a constrained

number of rules, too. All requests matching this rule will be classified correctly. On

the other hand the second rule [#0##1# → 1] is too general. It classifies requests of the

form 10##1# and 001#1# correctly but the requests 000#1# get a wrong classification.

Nevertheless an agent with this rule set still have the highest possible fitness. This is

because with the more precise rule [10##1# → 1] both 001#1# and 000#1# would be

matched by the default rule which is correct in only one case.

The right rule set given in Table 5.2 was generated by one agent on the 9-IMP using

a rule set size of 4. The resulting rule set has the maximal possible fitness obtainable by
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Agent A Agent B

011###1## → 1 ##1###### → A

001#1#### → 1 1#0####1# → 1

101#####1 → 1 #1###1### → 1

##0###### → B 00#1##### → 1

######### → 0 ######### → 0

fitness: 1000 fitness: 1000

Table 5.3: Example of rules sets generated by two agents with a rule set size constrained
to 4 on the 9-IMP problem

a single agent (833.33). In Table 5.3 examples of evolved rule sets for a system with two

agents solving the same problem with the same restriction (rule set size 4) are given. It

can be seen that both agents specialize to a part of the problem. Agent I classifies all

request with character 1 at the third position and sends requests with a 0 at this position

to Agent II and vice versa. In the end both agents can classify all possible requests and

this leads to the maximal fitness of 1000. Using two rules for sharing the problem, the

two agents use in sum 8 rules to act as good as one agent with 6 rules could (6 rules are

needed to solve the 9-IMP correctly).

Two examples of evolved rule sets for a system with two agents solving 9-IMP and a

rule set size of 3 are given in Table 5.4. On the top the two agents can both get a fitness

of 833.3 which is the same as one agent with 4 rules can get (compare Table 5.1). Again

there is a “cooperation” rule in both agents which divides the problem into two parts. The

example on the bottom of Table 5.4 shows that it is also possible, that the system evolves

and gets stuck in less good solutions. Agent I evolved a new default rule (a rule matching

every request) and sends requests not matched by its first two rules to Agent II. Agent II

has no “cooperation” rule and thus Agent I profits, acting as a “parasite” and gets a high

fitness. For the system it is nearly impossible to get out of this. Agent II will not evolve

any “cooperation” rule because most requests send to Agent I are “reflected” and this leads

to zero reward. On the other hand, for Agent I there is no need for cooperation since this

would lead to less overall reward for Agent I. The system fitness is 812.5, which is less

than the fitness of 833.3 a system with two cooperating agents can reach.

In Table 5.5 three cooperating rule sets evolved on the 11-Multiplexer problem are

given. As can be seen it is also possible that an agent evolves more than one delegation

rule (Agent A evolved two delegation rules).

In Figure 5.4(a) the system fitness of systems solving the 9-IMP problem with 1, 2, and

3 agents depending on the rule set is given. It is obvious that agents with a rule set size

of 1 can not get a higher fitness by cooperation, but already agents with two rules can. It
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Agent A Agent B

01####### → B #10##1### → 1

##1#1###1 → 1 #0####### → A

##0####1# → 1 011###1## → 1

######### → 0 ######### → 0

fitness: 833.3 fitness: 833.3

Agent A Agent B

1#1#####1 → 1 10#####1# → 1

011###1## → 1 00##1#### → 1

######### → B 0#0##1### → 1

######### → 0 ######### → 0

fitness: 875.0 fitness: 750.0

Table 5.4: Two Examples of rules sets generated by two agents with a rule set size con-
strained to 3 on the 9-IMP problem

Agent A Agent B Agent C

010##1##### → 1 110######1# → 1 001#1###### → 1

##0######## → B ##1######## → C ##0######## → B

0#1######## → C 10#####1### → 1 101#####1## → 1

#0######1## → 1 0001####### → 1 #1####1#### → 1

########### → 0 ########### → 0 ########### → 0

fitness: 937.5 fitness: 875.0 fitness: 937.5

Table 5.5: Example of evolved cooperating rule sets on the 11-Multiplexer Problem for
three agents

168



5.3 Experiments

60
0

70
0

80
0

90
0

10
00

60
0

70
0

80
0

90
0

10
00

60
0

70
0

80
0

90
0

10
00

rule set size

sy
st

em
 fi

tn
es

s

1 2 3 4 5 6

1 agent
2 agents
3 agents

(a) 9-IMP

60
0

70
0

80
0

90
0

60
0

70
0

80
0

90
0

60
0

70
0

80
0

90
0

rule set size

sy
st

em
 fi

tn
es

s

1 2 3 4 5 6 7 8

1 agent
2 agents
3 agents

(b) 11-IMP

Figure 5.4: System fitness on the Incremental Multiplexer Problem of sizes 9 and 11 using
one, two, and three agents as a function of the rule set size

can be observed that in general systems with more agents can get a higher reward when

the restricted rule set size is smaller than the number of rules the problem needs to be

solved in the best possible way. But naturally there is a bound when the allowed size of

the rule set reaches the number of needed rules cooperation has no effect anymore. For

example to solve the 9-IMP problem optimally only 6 rules are needed. Thus, in systems

with a rule set size of 6 cooperation can not lead to better results at the 9-IMP. But for

the larger problems like the 11-IMP sure cooperation in systems using rule set size 6 can

improve the system fitness (see Figure 5.4(b)).

In Figure 5.5 the time step at which the best reached fitness for 1, 2, and 3 agents on

the 9-IMP problem is given. It can be seen that the more rules the rule sets have the more

time it takes to reach the best value. But at a certain rule set size the time steps needed

to reach the highest possible fitness become less again. For example considering only one

agent the time the system needs to get to the highest value grows until a rule set size of 8

and sinks thereafter. It has to be noticed that for one agent with 6 rules it takes less time

to get to the maximal fitness of 1000 as for an agent with a rule set of size 8.

5.3.2 The Incremental Parity Problem

The incremental parity problem of size m (m-IPP) is defined for binary strings of length

m. The correct classification of a string is its parity, that is 0 if the number of ’1’s in the

string is even and 1 otherwise. If a request is classified wrong the system gets 0 reward.

For a proper classification the reward is the integer value corresponding to the request

string plus one. To classify the request 11110 correctly gives a reward of 31 and thus is

more valuable for the system than the correct classification of 000110 which only gives a

reward of 7.
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Figure 5.5: Time step at which the best fitness was reached on the 9-IMP problem

The reason for introducing a second test problem is twofold. In the multiplexer problem

every correct classified request gives the same reward. In the IPP the different requests

lead to different reward values. Thus, it can be tested if the system can concentrate the

limited rules on the most valuable requests. The second and more important reason is

that in order to solve the IPP optimally many more rules are required than for the IMP.

Whereas to solve the m-IMP optimally less than m rules are needed, to solve the m-IPP at

least 2(m−1) rules must be used. This is because the IPP does not allow for generalisation,

i.e., the use of ’#’ in the condition part of the rules. Thus the IPP is more practical to use

for our experiments when we study how a large group of agents distributes the knowledge.

k highest fitness k highest fitness k highest fitness k highest fitness

1 9.250 5 12.531 9 14.844 13 16.188
2 10.156 6 13.219 10 15.281 14 16.344
3 11.000 7 13.844 11 15.656 15 16.438
4 11.812 8 14.375 12 15.938 16 16.500

Table 5.6: Highest possible fitness one agent can get on the 5-IPP problem for specific rule
set sizes k

The incremental parity problem with strings of length m = 5 (5-IPP) is the default

problem used in the following experiments. The maximal possible reward an agent can

get with a rule set of size k at the 5-IPP problem is given in Table 5.6. Note, to reach the

maximal reward of 16.5 at least 16 rules are needed.

In Table 5.7 two example rule sets generated by a system with only one agent are given.

The size of the left rule set was restricted to two and the right rule set has a size of 4.

The both most valuable rules [11111 → 1] and [11100 → 1] can be found in both rule

170



5.3 Experiments

2 rules on 5-IPP 4 rules on 5-IPP

11001 → 1

11100 → 1 11111 → 1

11111 → 1 11010 → 1

##### → 0 11100 → 1

##### → 0

fitness: 10.15625 fitness: 11.8125

Table 5.7: Examples of rules sets generated by systems with one agent; both rule sets have
the highest possible fitness for the given number of rules

Agent A Agent B

1#0## → B 1#1## → A

11111 → 1 #1#10 → 1

0#1## → B #1#01 → 1

#0#10 → 1 #0#11 → 1

#1#00 → 1 #0#00 → 1

##### → 0 ##### → 0

Fitness: 15.375 Fitness: 14.1875

Table 5.8: Example of rules sets evolved by two agents with rule sets of size five on the
5-IPP problem

sets. They give a reward of 32 (respectively 29) for the correct classification of ’11111’

(respectively ’11100’). The rule set with a size of 4 also matches the third and the fourth

most valuable requests. These results show that the Pittsburgh-style classifier system

evolves rule sets which get the maximal possible reward for a fixed number of rules.

An example of evolved cooperating rule sets generated by two agents on the 5-IPP

problem is presented in Table 5.8. The evolved division of the problem is more complex

than for example the one given in Table 5.3 where the decision which agent classifies what

requests was only determined by one bit. The shown solution has even a higher fitness

(14.78125) than one agent with 8 rules could get (14.375). This shows that there is no

fixed distinction between “rules for cooperation” and “rules for classification”.

In Figure 5.6(a) the system fitness of systems with 1, 2, and 3 agents depending on the

allowed rule set size is given. Regarding only the results of systems using only one agent

it can be noticed that in most runs these systems are able to evolve rule sets which have

the highest possible fitness. This means the used Pittsburgh style classifier system with a

fixed rule set size works like intended. It can get the highest possible fitness not only on

171



5 Specialization and Cooperation in Systems of Memory Constrained Components

10
12

14
16

10
12

14
16

10
12

14
16

rule set size

sy
st

em
 fi

tn
es

s

1 3 5 7 9 11 13 15

1 agent
2 agents
3 agents

(a)

10
12

14
16

10
12

14
16

10
12

14
16

rule set size

sy
st

em
 fi

tn
es

s

2 3 4 5 6

10 agents
20 agents
50 agents

(b)

Figure 5.6: System fitness on 5-IPP for one, two, and three agents (a), and 10, 20, and 50
agents (b)

problems like the multiplexer where every classification gives the same reward, but also on

problems where there is an unequal reward distribution. Furthermore Figure 5.6(a) shows

that the more agents are used, the better the performance of the system is. The same as

for the multiplexer problem, also for the incremental parity problem the agents start to

cooperate and this eventually leads to a higher system fitness.

To investigate if this still holds when using a large number of agents, we simulated

systems of 10, 20 and 50 agents. The resulting system fitness for different restrictions in

rule set sizes on the 5-IPP problem are shown in Figure 5.6(b). Again it can be observed

that the more agents in the system, the higher the resulting system fitness. When using a

large number of agents the systems can reach the maximal fitness even for small rule set

sizes. When restricting the rule set size to 5 most of the time all systems are able to reach

the maximal fitness. For systems of 20 or 50 agents this is still the case for rule set size 4.

Even with a very small rule set size of 3 the systems are able to reach a quite high fitness,

50 agents actually can reach the maximal fitness in this case sometimes.

5.4 Evolved Communication Patterns

To investigate the evolved communication patterns between the agents, i.e., how they

cooperate and distribute requests, the paths of the requests have been recorded and are

represented by a graph called communication graph. In this graph agents are depicted

as circles. The size of the circle corresponds to the number of requests which have been

classified by the corresponding agent. Between two agents A and B a directed link is

drawn, if A has sent a request to B. The width of a link corresponds to the number of

requests which have been send between the agents that are connected by the link.
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(a) 10 agents, rule set size 2 (b) 10 agents, rule set size 10

(c) 50 agents, rule set size 2 (d) 50 agents, rule set size 10
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Figure 5.7: Examples of evolved communication graphs (a-d); Size of agents relates to the
number of classifications done; mean outgoing degree (e) and mean path length
(f) for 10, 20, and 50 agents as a function of the rule set sizes
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Figure 5.8: Fractions of non-classifying agents for systems of 10, 20, and 50 agents depend-
ing on the rule set size (a); fraction of classifications done by different fractions
of agents performing most of the classifications (b)

The number of agents a specific agents sends requests to is called the outgoing degree

of the agent. The number of agents a specific agents directly gets requests from is called

incoming degree. Regarding the effort for classification it is interesting how many agents

a request passes until it is classified, i.e., how far a request is send through the network.

This value is called path length. The mean outgoing degrees of the agents in systems of 10,

20, and 50 agents using different rule set sizes are depicted in Figure 5.7(e). The outcome

of these experiments regarding the mean path length can be seen in Figure 5.7(f).

In Figure 5.7 typical examples of resulting communication graphs are given. In Figure

5.7(a) an evolved network using 10 agents with rule sets constrained to a size of 2 is given.

First it can be noticed that every agent sends requests to other agents. There can be

found even two agents which send their requests to two other agents. Since the rule set

size is 2 this implies that at least these agents have no “own” knowledge, since they use all

their rules for delegating requests. The mean outgoing degree for networks with 10 agents

and rule set size 2 is between 1 and 1.5 and in mean a request passes 3 agents until its

classification.

When using larger rule sets the number of outgoing links increases. As an example

consider Figure 5.7(b), which shows the communication graph of a system with 10 agents

and a rule set size restricted to 10. In mean every agent sends requests to three other

agents and it takes about 4 hops to classify a request. Since it needs 16 rules to reach the

maximal fitness, in principle two agents with rule sets of size 10 could solve the problem.

But the evolved systems delegate more requests as needed because there is no force in the

system towards less communication.
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In systems with 50 agents and a small rule set size of 2 agents can be found which get

requests from a high number of agents. For instance in the network given Figure 5.7(c)

there is one agent which gets requests from 25 agents. The second most incoming degree

is 15, but the mean incoming degree in this system is around 1.8. The mean outgoing

degree between 1.5 and 2 shows again that most of the agents do not classify at all. The

path length is slightly higher than when using less agents. This suggests that only a few

agents have “real knowledge” and the other agents use this knowledge by delegating all

their requests. When using a larger rule sets size of 10 the outcome looks a little different

(Figure 5.7(d)). The highest incoming degrees are near 10 and the mean incoming degree

is around 3.4. The outgoing degree is approximately 3 and the path length a request takes

through the system is around 4.

These results signify that the larger the rule set, the less agents requests have to pass

until classification. The reason is, the more rules the agents have, the less need for cooper-

ation because the agents can evolve more classification rules for their own. The outgoing

degree, i.e., the number of agents an agent sends requests to, is also growing with the size

of the rule sets, whereas in Figure 5.7(e) it seems there is a saturation around 3.

The depicted communication graphs suggest an unbalanced distribution of the classifi-

cations done by the agents. Some agents classify a lot of requests and others do not classify

at all. To investigate this observation in more detail, the fraction of non-classifying agents,

i.e., agents which only delegate requests, was measured. The results for 10, 20, and 50

agents are given in Figure 5.8(a). Following observations can be made. The more agents

used in the system, the higher the fraction of agents that delegate all their requests to

other agents. For instance, consider the case of a rule set size of 5. Using 10 agents leads

to about 30% of non-classifying agents, whereas from 50 agents even 80% exhibit no “own”

knowledge.

Additionally, the agents were ranked according to the number of classifications they did.

The fraction of all classifications that have been done by the highest 10% agents of this

ranking (respectively, 30%, 50%) is shown Figure 5.8(b). The plotted results suggest that

a small fraction of the agents did most of the classifications of the system. For example

the top 10% of agents in terms of number of classifications in systems of 50 agents and

rule set size of 10 did about 80% of all classifications.

The unbalanced knowledge distribution can be explained with the fact that it seems

to be more easy to evolve rules for delegation than rules for classification. For example,

assume agent A already has a high fitness, i.e., it can classify most requests correctly and

Agent B has a low fitness. If B evolves a rule that delegates some requests to A this will

instantly make B perform better. To evolve such a rule has a high probability because

only a mutation of the action part of any of B’s rules, changing the propagated action

to ’A’, is needed. The more general the new delegation rule, i.e., the more wild cards ’#’
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Figure 5.9: A typical run of a system with 50 agents; stable system phases are intercept
by phases of reorganization

are in the condition, the more requests are delegated to A and therefore the higher B’s

fitness. That means that any mutation changing a position in the condition of the rule

to ’#’ will lead to a higher fitness immediately. In sum, compared to the evolution of a

correct classification rule, it is much more easy to generate a correct delegation rule. This

is because of two reasons. First, as shown, the evolution of a delegation rule has a high

probability and B can not do wrong if A has a high fitness. Second, the gain of reward

for the delegation rule is much higher than for a correct classification rule since with only

one rule B can earn a reward at least as high as A. After B has evolved the new rule other

agents with low fitness only need to evolve delegation rules to A or B to get better. This

is the reason for the observed communication graphs with the unbalanced distribution.

In Figure 5.9 a typical evolution of the fitness of the agents (top - thick line marks

the system fitness) and the mean path length (bottom) of a system with 50 agents over

time is given. As can be seen, after around 450 time steps all observed values stay at

constant values for about 150 time steps. After this phase, at a point near time step 600,

a reorganization of the whole system occurs. Starting from 16.315 the fitness of the system

fluctuates for approximately 100 time steps between 11.90 and 16.323 and finally becomes

constant again at a value of 16.3193. The average of the mean path lengths decreases from

7.33 to 6.5 in the reorganization phase.
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These phases are typical and have been observed in most simulation runs. This behavior

can be explained by the fact, that although the actual best rule sets of all agents do not

change, there is still an evolution of new rule sets within the population pools of the

agents. If one agent evolves a new best rule set this can imply that the fitness of other

agents changes. This can start a cascade of changes within the system.

This leads to the interesting question if the system can get into a suboptimal state in

terms of system fitness from which it can hardly escape. If ’agent A gets better’ implies

that ’agent B gets worse’ and when B gets better A gets worse, this could lead to an

unlimited reorganization of the system. Investigation regarding these questions must be

In the system as proposed and investigated here only the agent that gets the request

from the environment is rewarded and all other agents involved in the classification of the

request are not. Rewarding all involved agents could prevent an unlimited reorganization.

But

5.4.1 Communication Topologies

So far we assumed that each agent can send requests to every other agent directly, or in

other words the communication network of the agents was assumed to be fully connected.

In real Organic Computing systems the components will probably be spatially distributed

and an underlying communication topology will be present. In such a topology the compo-

nents have only a limited number of neighboring components which they can send requests

to and receive requests from. For example in sensor networks the transmission range of

the wireless communication is limited and sensors can only communicate with their close

neighbors directly.

In this subsection we restrict the direct communication possibilities of the agents by

introducing a communication topology and investigate its influence. In addition to the

case of a fully connected communication network two other topologies, namely the ring

and the grid topology, are studied. In the ring topology each agent can send requests to

exactly two other agents, forming a single bidirectional pathway for requests - a ring. In

the grid topology the agents are arranged in a grid and each agent has up to four neighbors

depending on its position in the grid (agents at the corners have two and agents at the

borders have only three neighbors).

Examples of resulting communication graphs on the ring and grid topology are given in

Figure 5.10. Shown are two ring networks build by 20 agents and two grid networks build

by 49 agents. The rule set size used to generate the two top (resp. bottom) graphs was

2 (resp. 10). It can be noticed that the same effect as in the fully connected case occurs.

Some agents (depicted by very small or no circles) do very little or even no classifications

and delegate all their requests to neighboring agents. Also there are some agents which do
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(a) ring, 20 agents, rule set size 2 (b) grid, 49 agents, rule set size 2

(c) ring, 20 agents, rule set size 10 (d) grid, 49 agents, rule set size 10
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Figure 5.10: Evolved communication graphs on ring and grid topologies (a-d); System
fitness (e) and mean path length (f) using 50 (resp. 49) fully, ring or grid
connected agents as a function of the rule set size
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many of classifications for the system (depicted as large circles). Furthermore some highly

used connections where lots of requests are passed over (depicted by thicker arrows) can

be recognized. Using of a high rule set size (10) in comparison to low size (2) leads to

more connections and a little weaker effect of unbalanced knowledge distribution. These

observations do not differ much from the case of a fully connected topology.

Figure 5.10(e) shows the system fitness, i.e., the mean reward over all agents for all

possible requests, of systems using 50 (respectively 49) agents in fully, ring, and grid

topology. No big difference between the three topologies can be noticed. This shows that

the influence of the communication topologies on the system fitness is only marginal. For

rule set size 2 the average fitness was 10.8 (respectively 12.3, 11.3) for the fully connected

topology (respectively the ring topology, grid topology). For rule set sizes≥ 5 no significant

difference could be observed. Hence, in this case the different communication topologies

do not significantly influence the ability of the systems to reach the maximal fitness.

The topology has a strong influence on the mean length of the paths along which requests

are send through the system. Figure 5.10(f) shows the mean path length for systems of

50 fully connected agents, 50 agents in a ring topology, and 49 agents that are connected

by a grid topology. It can be seen that the mean path length for the ring topology shows

the highest values and the largest variance at small rule set sizes. In the test runs some

requests passed 40 or more agents along the ring topology before they were classified. For

larger rule set sizes the difference between systems with a ring topology and with a grid

topology to systems of fully connected agents becomes smaller but is still observable.

To sum up, it can be stated that the restriction of the agents’ communication possibilities

through the introduction of a ring or a grid topology does not observably influence the

possibility of the systems to reach the maximal fitness, but can increase the mean path

length dramatically. This can lead to an increased communication overhead when applying

the evolved rule sets on a real system.

5.4.2 Communication Costs

Two properties of the evolved communication patterns are very likely to be unwanted in

real systems. First is the fact that the system can evolve unexpected long path lengths,

i.e., requests may take long paths through the system until they are classified. This might

be a flaw because communication always leads to energy consumption and usually for small

components like sensors in sensor networks energy is a crucial resource and the reason why

communication must be reduced to a minimum. Second, the distribution of knowledge

is very unbalanced, as only a few agents classify most requests and the remaining agents

only delegate requests to these agents. This becomes disadvantageous in situations were

the system has to be robust with respect to (temporary) failures of the agents.
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(a) fully, comm. cost 0 (b) ring, comm. cost 0 (c) grid, comm. cost 0

(d) fully, comm. cost 0.1 (e) ring, comm. cost 0.1 (f) grid, comm. cost 0.1

(g) fully, comm. cost 5 (h) ring, comm. cost 5 (i) grid, comm. cost 5

Figure 5.11: Influence of communication costs on the communication graph; communica-
tion cost 0 (a,b,c), 0.1 (d,e,f) and 5 (g,h,i) on the different topologies
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In the following a force towards less communication is induced in the system through

the introduction of communication cost in the training phase. Communication costs are

realized by decreasing the reward the system gets for a classification by a fixed amount for

every additional communication operation that was used. For instance, the classification

of the request ’10000’ in the 5-IPP usually gives a reward of 16. If the request passes

three agents until classification and the communication costs are 5 the resulting reward is

16− 2 ∗ 5 = 6.

In Figure 5.11 example communication graphs evolved under the influence of different

communication costs for the three test topologies are given. Without communication

costs (top row) there is an unequal distribution of the number of classifications done by

the agents. As already observed “hot spots” evolve, i.e., agents which do most of the

classifications of the systems. The introduction of small communication cost of 0.1 has

a strong influence on the distribution of knowledge in the system (Figures 5.11(d),(e)

and (f)). Note that this cost is 10 times smaller than the reward for the least valuable

classification, which is reward 1 for the request ’00000’. Obviously, there are more agents

classifying requests and less non-classifying agents. When using high communication cost

of 5 there is overall less communication in the system and there even evolve agents which

do not communicate at all.
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Figure 5.13: Influence of communication costs on the system fitness (a) and the mean path
length (b) for the different topologies

Figure 5.12 quantifies these findings in more detail. The shown results are generated

on systems of 50 agents (respectively 49 for the grid topology) and using a rule set size of

5. For the three test topologies the fractions of non-classifying agents are given in the left

part of the figure. As can be seen without communication costs roughly 50% of the agents

in the fully connected topology (resp. ≈ 20% in the ring and ≈ 30% in the grid topology)

do not do a single classification and delegate all received requests to other agents. The

introduction of communication cost changes the outcome strongly and leads to systems

without non-classifying agents at all, i.e., every agent classifies at least one request it gets.

The right part of Figure 5.12 shows the contribution of the top 10% (resp. 30%) of the

agents, ranked dependent on the number of individually performed classifications, to all

classifications of the system. Following observations can be made. Using no communica-

tion cost leads to the stated unbalanced knowledge distribution, where 10% (resp. 30%) of

the agents perform ≈ 50% (resp. 70%) of the classifications of the whole system (in case

of the fully connected topology these values are even higher). Introducing communication

cost has a strong influence, as the fraction of classifications done by the most classifying

agents rapidly decreases. For example, using communication cost 0.1 in the fully con-

nected topology lowers the fraction of classifications done by the best 10% of the agents

from ≈ 80% to ≈ 30%. This supports the interpretation that the distribution of classifi-

cation knowledge over the agents becomes more balanced when using communication cost

in the evolution process.

In Section 5.4.1 it is shown that the communication topology has only a slight influence

on the system fitness but a strong influence on the mean path length. Its influence on the

evolved distribution of knowledge can be seen in Figure 5.12. When no communication

cost are applied the fractions of non-classifying agents and classifications done by 10%

(resp. 30%) of the most classifying agents are highest if the agents are fully connected and
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Figure 5.14: Correlation of the incoming degree and the number of classifications without
(a) and with (b) communication cost of 0.1; dots represent agents in fully
connected systems of 50 agents and rule set size 10

lowest for the ring topology. That is, the knowledge is more evenly distributed in the grid

and in the ring compared to the fully connected topology.

Under the influence of increasing communication costs the mean path length decreases

rapidly as shown in Figure 5.13(b). For instance, when communication is for free systems

of 50 agents connected as a ring sometimes even evolve mean path lengths larger than 20

hops. On the other hand, even with low communication costs the mean path lengths in

the experiments were not higher than 5. High communication costs lead to mean path

lengths of 1, what means that there is hardly any communication.

The influence of the communication costs on the system fitness can be seen in Figure

5.13(a). High communication costs reduce the system fitness significantly. But with small

communication costs systems that are fully connected or connected as a grid can get a

maximal fitness in most of the test runs. Only the agents connected in a ring topology suffer

slightly from communication cost 0.1. This is because at a certain point of the evolution of

the system the path lengths in the ring are long for some requests. If the communication

costs for the classification of these request would be larger than the expected reward, rules

delegating these requests are not evolved.

Figure 5.14 gives the correlation between the incoming degree of an agent, i.e., the

number of agents it gets requests from, and the number of classifications done by the

agent. Compared to Figure 5.14(a) where no communication costs are applied Figure

5.14(b) shows a strong correlation between the number of classifications done and the

incoming degree of the agents. This means that in systems evolved under the influence

183



5 Specialization and Cooperation in Systems of Memory Constrained Components

of communication costs agents that get requests from many other agents also have much

classification knowledge.

5.5 Summary

In this chapter we studied a first approach to generate suitable rule sets for solving clas-

sification problems on systems of autonomous, memory constrained components. It was

shown that a multi agent system that uses interacting Pittsburgh-style classifier systems

can evolve appropiate rule sets. The system evolves specialists for parts of the classifica-

tion problem and cooperation between them. In this way the components overcome their

restricted memory size and are able to solve the entire problem. It was shown that the

communication topology between the components strongly influences the average number

of components that a request has to pass until it is classified. It was also shown that the

introduction of communication costs into the fitness function leads to a more even distri-

bution of knowledge between the components and reduces the communication overhead

without influencing the classification performance very much.

If the system is used to generate rule sets to solve classification tasks on real hardware

systems, communication cost in the training phase can thus lead to a better knowledge

distribution and small communication cost. That is, in this way the system will be more

robust against the loss of single components and longer reliable in case of limited energy

resources.
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Organic Computing is a new field of computer science that has the vision to make future

technical systems more life-like in order to address the challenging requirements raised by

their increasing complexity. Complex living systems are often self-organizing and show

emergent behavior that makes them robust, adaptive, and reliable. The aim of Organic

Computing is to identify and adapt the underlying principles of self-organization and

emergence found in natural systems, in order to design technical systems that exhibit

the same properties and in order to be able to develop methods to control the resulting

technical systems. This thesis covered all these aspects: We utilized emergent effects for

solving sorting and clustering problems in a decentralized and robust way. We investigated

how to control emergent effects by using control swarms or by modifying the environment

of the system. We applied self-organization principles found in social insects to the task

allocation in Organic Computing Systems. And we used evolutionary methods to evolve

systems of specialized cooperating components.

First we investigated two typical self-organizing systems that exploit emergent effects.

Emergent Sorting Networks sort random sequences of objects of different types while

these objects are traversing the networks. We proposed an algorithm called DPClust for

decentralized clustering of packets in networks that is executed by the routers. The purpose

of both systems, the Emergent Sorting Networks and the Decentralized Clustering, is to

create order, that is, to sort objects and to cluster data vectors. As this is achieved in

an emergent fashion, i.e., through the interaction of the systems’ entities these systems

outline the utilization of emergence in a technical context. As shown the systems show

typical properties of self-organizing system: they scale well with the number of entities

(agents, packets, routers) and are robust and adaptive.

An important question when dealing with self-organizing systems is how to control

(unwanted) emergent effects. A new approach called swarm controlled emergence was

introduced to deal with this problem. This approach uses a swarm of control components

introduced in addition to the normal components of a system. A proof of concept was given

by successfully applying the approach to control the emergent clustering effect in a well

known model of the clustering behavior of ants. An interesting observation was made when

a medium number of a certain type of control agents was introduced into the system. In this

case an increased strength of the clustering effect was observed. This shows that it is not a
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trivial task to design control swarms. A second investigated form of unwanted emergence

can occur in form of congestion effects in systems of ant like moving agents. In order to

control these effects we modified the environment and have shown experimentally that this

can significantly reduce the congestion. Both methods for controlling emergent effects, i.e.,

the introduction of control components and the modification of the environment do not

need to modify the controlled system, i.e., they can be applied to technical systems that

are already in use.

In Organic Computing Systems consisting of a large number of active components there

will be the necessity for support and system care. We introduced so called Organic Support

Systems, a distributed self-organizing system of so called helper components to take care

of these accruing tasks. The helpers exhibit reconfigurable hardware in order to be able to

adapt to the actual needs of the supported systems by specializing for the required types

of support tasks. Several aspects were treated. First, we applied models of task allocation

in social insects to implement a self-organizing, adaptive, and scalable mechanism for

the allocation of the support tasks to the helper components. Second, we used a model

of task partitioning in ants to successfully design a system that can allocate the helper

components to the different subtasks of the service tasks is a self-organized and robust

way and showed that the system can deal well with a changing environment. Third, for

the case the supported system components and the helper components are connected via

a network we proposed to use a task allocation method based on the DPClust algorithm.

This part of the thesis has shown that self-organization methods for task allocation found

in social insects can be successfully applied to technical applications resulting in robust,

adaptive, and scalable systems.

In the last part of the thesis we studied an approach to generate suitable rule sets for

solving classification problems in Organic Computing systems consisting of autonomous,

memory constrained components. It was shown that a multi agent system that uses

interacting Pittsburgh-style classifier systems can evolve appropriate rule sets. The system

evolves specialists for parts of the classification problem and cooperation between them. In

this way the components overcome their restricted memory size and are able to solve the

entire problem. It was shown that the communication topology between the components

strongly influences the average number of components that a request has to pass until it

gets classified. It was also shown that the introduction of communication costs into the

fitness function leads to a better distribution of knowledge between the components and

reduces the communication overhead without influencing the classification performance

very much. This is an important finding if the system is to be applied on a real hardware

system. This part of the thesis has shown evolutionary processes can create self-organizing

systems of cooperating components that evolve interesting communication patterns on

system level.
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The thesis has shown that self-organization principles from nature can help to design

scalable technical systems that consist of a large number of autonomous interacting com-

ponents. Utilizing emergent effects such system are robust against the loss of single com-

ponents and adaptive to changing environments. Moreover the thesis has shown that

methods can be developed that enable to control emergent behavior in such self-organizing

systems.
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icz, L Thiele, and G Tröster (editors), Proceedings of the 20th InternationalConference

on Architecture of Computing Systems (ARCS2007), volume 4415 of Lecture Notes in

Computer Science, 209–223. Springer.

202



Bibliography

Mogul JC (2006). Emergent (mis)behavior vs. complex software systems. In SIGOPS

Operating Systems Review, 40(4): 293–304.
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