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7 1. Introduction 

1. Introduction 

1.1. Motivation 

In the last decades research in the life sciences had to face a rapidly increasing 

amount of data resulting from improved experimental methods. An example is the 

large amount of data from the high-throughput methods in molecular biology. 

However, these data were found to be not sufficient to fully understand the 

complicated behavior of biological systems. In a recent and much-noticed paper 

Hiroaki Kitano trenchantly summarized the problem by noting that “identifying all 

the genes and proteins in an organism is like listing all the parts of an airplane” 

[Kitano, 2002a] which - metaphorically speaking - certainly is a precondition but not 

sufficient to fly. It became more and more clear that biological systems are 

composed of “a large number of functionally diverse, and frequently multifunctional, 

sets of elements that interact selectively and nonlinearly to produce coherent rather 

than complex behaviors” [Kitano, 2002a]. A system level understanding therefore 

requires insights in four major aspects: 

  

(1) The structure of a system which includes the physical properties of its 

intracellular and multicellular components. 

(2) The system dynamics which summarizes the behavior of the system over time 

and under particular conditions. 

(3) The mechanisms that passively control or actively regulate the state of the 

system and thereby help to identify potential targets for therapeutic 

treatments of diseases.  

(4) Strategies to modify and construct biological systems guided by predictive 

tools such as computer simulation models.  

 

Essentially, a system level understanding of biological entities in physiological and 

especially pathological states is required in order to deploy the full potential of 

modern life sciences.  

The scientific discussion of a holistic understanding of biological systems had been a 

recurrent subject since over half a century [Wiener, 1948]. However for a long time, 

due to the inherent complexity of such systems it seemed impossible to be realized. 

The extraordinary advances of computer science in the last two decades in 

combination with the steadily expanding abilities to measure biological systems 

parameters on all spatial and temporal scales are expected to help mastering this 

complexity. One of the most important contributions of contemporary computer 

science are computational models that allow to test novel hypotheses by in silico 

simulations whose predictions can be validated by experiments in vitro and in vivo 

[Kitano, 2002b]. The pluralism of causes in biological systems requires simultaneous 

measurements of system parameters across various scales. Computational models 

permit to stepwise integrate the different components on different scales and thereby 
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gradually understand their role in the context of all other components [Sauer et al., 

2007].  

The challenge to construct realistic computational models of biological systems 

typically requires an interdisciplinary effort integrating contributions from many 

different disciplines including biology, chemistry, physics, mathematics, 

engineering, and computer science. For example, mathematics typically serves as a 

unifying theoretical framework to construct biophysical and biochemical models 

whereby computer science lays the technological foundation [Maler, 2008]. In the 

last decade, this interdisciplinary approach increasingly facilitated a new holistic 

perspective onto biological entities and their interactions. This new perspective has 

been termed “systems biology” [Snoep & Westerhoff, 2005]. 

Until today systems biology already has made important contributions to many fields 

of science and has proven to be especially useful in cancer research [Manoussaki, 

2006] [Marcus, 2008]. Nevertheless, cancer is still one of the most frequent causes of 

death in modern societies. Recent studies of the American Cancer Association 

estimate the probability of developing invasive cancer at least once to be over 43% 

for males and over 37% for females [www, 18]. Therefore, the search for effective 

therapies is one of the major challenges for science today. Computational models 

contribute to the understanding of the underlying principles and mechanisms of this 

complicated multi-scale disease [Drasdo et al., 1995] [Chaplain, 1996] [Byrne et al., 

2001] [Anderson, 2005] [Jiang et al., 2005] [Block et al., 2007] [Aebersold et al., 

2009]. 

Nevertheless, despite extensive studies it is still not fully understood which factors 

determine the growth kinetics and spatial structure of tumors in different growth 

stages and in different environments, both in vitro and in vivo. In the first part of this 

thesis we establish a three-dimensional computational model for multicellular growth 

in order to elucidate the mechanisms that determine avascular tumor growth. For 

example, we study how far tumor growth is controlled by biomechanics or active 

regulatory processes by modeling monolayers and multicellular tumor spheroids 

embedded in liquid suspension, granular medium or host tissue. We shed light on 

universal biomechanical mechanisms that, as we show by comparison of computer 

simulations with published experimental data, largely determine the morphologies 

and growth dynamics of tumors. 

Moreover, computational models not only facilitate the investigation of pathological 

processes but also allow us to study mechanisms that determine biological systems 

under physiological conditions. Accordingly, in this thesis we also present an 

interdisciplinary approach to combine microscopic imaging, image processing and 

analysis and computational modeling - all in three dimensions. The integration of 

results from different scientific fields like in this case cell biology, physics and 

computer science enables us to meticulously study the fascinating process of liver 

regeneration. On the basis of the model for tumor growth developed in the first part 

of this thesis, we construct the first quantitative three-dimensional model of liver 

regeneration and use it to elucidate a yet unknown key mechanism of liver 
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regeneration. Moreover, we consider the presented interdisciplinary approach and the 

corresponding process chain exemplary for the study of tissues in general and 

especially in cancer research. 

 

1.2. Structure of the thesis 

The presented thesis is subdivided in six chapters. After this introduction, the second 

chapter focuses on the software that was developed as a part of this work. We discuss 

the cornerstones of its design and implementation, and summarize its features. The 

software implements the computational models for multicellular growth and liver 

regeneration developed later in this work together with elaborated visualization, 

image processing and image analysis techniques. Thereby it lays the foundation for 

the results presented in the subsequent chapters. 

In chapter three we construct an agent-based model for the growth of multicellular 

populations and use it to elucidate the biomechanical mechanisms that determine 

their morphologies and growth kinetics. We model different biological settings from 

two-dimensional monolayers to three-dimensional tumor spheroids realistically 

embedded in granular medium and host tissue. Thereby, we continuously increase 

the complexity of the described biological systems. We establish concrete predictions 

that allow for the validation of our model. 

In the fourth chapter, we develop an extended version of this model to study the 

complex processes during liver regeneration. We elaborate how the liver model was 

parameterized in close collaboration with experimentalists using images obtained by 

bright field microscopy and high resolution volume data generated by confocal laser 

scanning microscopy. We discuss in detail the image processing and analysis 

techniques that were used to obtain a statistically representative liver lobule as an 

initial state for our model simulations. We describe how in an iterative and 

interdisciplinary process the predictions of our model simulations stimulated new 

experiments whose results are used to further refine the model. Finally, we elaborate 

how this approach led to the elucidation of a novel cellular mechanism that we found 

to be crucial for successful liver regeneration and that may also play a role in the 

development of hepatocellular carcinoma. 

The fifth chapter comprehensively summarizes the results presented in this thesis and 

leads over to chapter six, where we conclude with a brief outlook to future work. 
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2. Cellsys software 

2.1. Introduction 

In the last decades, computer science has played an increasingly important role for 

the advancement of the life sciences. In medical and biological research the amount 

of data that is obtained by large-scale technologies for example DNA microarrays or 

genome sequencers has by far exceeded the human capacity to analyze it [Fisher & 

Henzinger, 2007]. Computational methods are required to create a coherent picture 

based on this data. However, in addition to pure data mining and analysis, the 

construction of models for biological entities on all length scales – from single 

molecules to whole organs - has become more and more important to better 

understand the complex behavior of biological systems. As elaborated in section 1.1, 

mathematics and computer science serve as unifying framework and lay the 

technological foundation for such models [Maler, 2008].  

In general, there are two basic modeling approaches: (1) mathematical models and 

(2) computational models [Fisher & Henzinger, 2007]. Mathematical models that are 

sometimes also called continuum-based models use a collection of transfer functions 

for example a system of differential equations to relate different numerical quantities 

to each other. Mathematical models can sometimes be solved analytically. In more 

complicated situations for example if the differential equations are non-linear or 

stochastic they can only be numerically approximated. 

In contrast, computational models are constructed as a composition of state machines 

which often directly represent biological entities such as cells. State machines react 

on events by state transformations. Events are often triggered locally by neighboring 

state machines. Except for very simple cases, computational models generally are 

highly non-linear and non-deterministic and thus are not amenable for analytical 

solution. In order to gain insight into the behavior of the modeled biological system, 

computational models are executed or in other words - simulated. 

Essentially, modern computers are very complex state machines and therefore are 

ideally suited for the simulation of computational models.  

In this thesis we developed a special kind of computational model termed “agent-

based model” (ABM). A widely-used acronym for ABM is “individual-based 

model”. In ABMs the complex behavior of a system arises from actions and 

interactions of autonomous elements called “agents” [Axelrod, 1997]. An agent is a 

discrete entity with its own behavior and the capability to modify this behavior based 

on local information. Typically, in ABMs no central authority controlling the agents 

exists. In general, agents interact with each other based on a spatial topology. In this 

work we use free, continuous Euclidean space in two or three dimensions. However, 

other spatial topologies for example regular grids or complex networks are also 

widely used in ABMs.  

The history of ABMs origins in the Von Neumann machine (also called Universal 

Assembler), a theoretical, self replicating machine. Inspired by Stanislaw Ulam, who 
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was von Neumann’s colleague at the Los Alamos National Laboratory in the 1940s, 

von Neumann abstracted his approach using a mathematical framework that later was 

termed “cellular automata” (see section 3.1.2). 

Today, agent-based modeling integrates ideas from several fields of computer 

science for example artificial intelligence, complex systems, game theory and 

computational sociology [Emonet et al., 2005]. ABMs have been used in an 

extraordinarily broad range of applications for example to model the stock market 

[Arthur et al., 1997], to evaluate human behavior in complex societies [Epstein & 

Axtell, 1996], to predict the spread epidemics [Bagni et al., 2002] or civil violence 

[Epstein, 2002], or potential terrorist activity [Krause, 2003]. A comprehensive and 

detailed introduction to ABMs can be found in [Axelrod, 1997]. 

The modular structure of agent-based models makes them very suited to study 

biological systems [Hartwell et al., 1999] [Emonet et al., 2005] [Griffin, 2006] 

[Thorne et al., 2007] and additionally simplifies their implementation. For example, 

[Jennings, 2000] noted the similarities of agent-based modeling and the object 

oriented paradigm in software engineering that we utilized for the implementation of 

software in this work (section 2.3). 

In order to fully exploit the rapidly increasing capabilities of recent computer 

hardware, specialized software is required that on the one hand implements the 

agent-based model and on the other hand is able to simulate, analyze and visualize it. 

In this chapter we illustrate the process of design and implementation of such 

software that we later use to study the systems biology of growing cell populations 

(chapter 3) and the regenerating liver (chapter 4).  

 

2.2. Software design 

Software design is an integral part of software engineering that encompasses the 

process of problem specification and the strategical planning of a corresponding 

software solution [Wiegers, 2003]. This includes an architectural view that structures 

the organization of software into units and describes their behavior and interactions. 

A key component of software design is a requirements analysis which approaches 

user-, functional- and performance requirements that depend on the specific field of 

application [Abran et al., 2004]. In the following, we elaborate the requirements for 

the software developed in this work. 

 

2.2.1. Requirements analysis 

In this thesis we study active and passive processes on molecular and cellular length 

scales that lead to the formation of complex multicellular structures on tissue level in 

two or three dimensions.  We encounter situations that involve many interdependent 

and interacting objects (for example cells) with specific properties and behavior. 

For example in section 3.6 we simulate three-dimensional tumor spheroids embedded 

in tissue, a situation that involves more than a million individual cells with 
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potentially very different intracellular and biophysical properties. Biomechanical 

interactions among these model cells are implemented in lattice-free three-

dimensional Euklidean space utilizing complex models of elastic body interaction 

(refer to section 3.2 for details). Thereby, the model depends on a large system of 

equations whose solution is computationally intense and requires significant amounts 

of memory. 

In section 4.3 we further increase this complexity by modeling liver cells 

(hepatocytes) that are additionally organized in a specific spatial architecture. 

Furthermore, these hepatocytes interact with a dense blood vessel network comprised 

of lobule veins and sinusoids and respond to various extracellular signals and 

chemicals. Diffusion and consumption of these chemicals are implemented by 

complex reaction-diffusion equations on three-dimensional lattices of fine 

granularity (see section 3.5). 

The software developed in this work has a number of purposes including the 

implementation of all model elements in the outlined complexity. Furthermore, the 

software is used to visualize and analyze the simulated multicellular systems that are 

a result of the model simulations. Additionally, the software implements certain 

problem-specific image processing and analysis techniques to integrate experimental 

data and modeling as elaborated in chapter 4.  

Accordingly, this leads to specific requirements in software design that involve 

considerations for example on the general architecture of the implementation (section 

2.2.2), efficient ways to manage software workflows (section 2.2.3) and specific 

technical considerations to optimize computation performance, portability and 

scalability (section 2.3). Additionally, an ergonomic user interface is required to 

provide access to the wide variety of functionality of the software (chapter 2.4) 

including its visualization features (chapter 2.5). 

Therefore, we specify the following cornerstones of software design to meet the 

described requirements. These cornerstones will guide all major technological 

choices during the implementation of software in this work. 

 

(1) Structure and modularity 
During its development we expect our software to reach a size and 

complexity where the addition of new or the modification of existing 

functional components becomes increasingly complicated due to potential 

interdependencies with existing components. In order to minimize this effect, 

we implement our software as a composition of encapsulated modules that 

have only limited and strictly defined dependencies on each other. 

Furthermore, we impose a strict semantic hierarchy on this composition of 

software components to facilitate a perspicuous structure that also improves 

efficient development and maintenance. 
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(2) Efficiency and parallelism 
We anticipate the performance of our computer simulations to be a major 

limiting factor for the maximal granularity of our model. Therefore all parts 

of the software that are critical to the overall performance are subject to 

intense optimization. This includes the implementation of parallel algorithms 

that are required to take advantage of modern multiprocessing systems. 

 

(3) Portability  
The possibility to use our software on different platforms and operating 

systems is essential for its flexible use. For example portability is an 

important precondition for the efficient utilization of parallel computing as in 

a typical academic environment highly parallel workstations and dedicated 

compute clusters often involve heterogeneous host platforms. 

 

(4) Usability  
We anticipate our model for complex biological systems to include a large 

number of parameters and associated settings regarding simulation, analysis 

and visualization. Therefore we integrate a flexible, ergonomic and graphical 

user interface in order to manage access to all relevant features of the 

software. 

 

(5) Integration of experimental data 

Images obtained by bright field microscopy (in 2D) and volumetric data sets 

obtained by confocal laser scanning microscopy (in 3D) lay the foundation 

for our model of the regenerating liver lobule (see chapter 4). The direct 

integration of methods to process and analyze such experimental data into our 

software enables us to merge information from experiment and model in a 

very effective way. Thereby we are able to directly use experimental data to 

set up model structures for example to parameterize patient-specific models.   

 

(6) Code reuse 
The reuse of source code is a common technique in software engineering that 

attempts to save time and work by reducing redundant implementations. We 

impose a strict module hierarchy on our implementation (see cornerstone 1) 

which in general facilitates code reuse for example by class inheritance. 

Furthermore, we implement abstract server modules for general purposes that 

are used by many other client modules. As a general principle, whenever an 

efficient solution for an encountered problem already has been implemented 

and is accessible we attempt to reuse this solution for example by utilizing 

libraries or implementing interfaces to external software.  
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These cornerstones of software design guide the entire process of implementation 

throughout this thesis and result in a flexible and efficient software tool that we 

named Cellsys. We use Cellsys for all model simulations and analysis in this work. 

 

2.2.2. Software architecture 

In general, the term “software architecture” designates the specific structure of a 

software system, which comprises its components, the externally visible properties of 

these components, and the relationships among them [Brown & Mcdermid, 2007]. 

The strategical planning of the architecture of software simplifies its stringent 

organization on a high level of abstraction which is an important precondition to 

manage complex software (refer to section 2.2.1 cornerstone 1) [Posch et al., 2007]. 

The architectural foundation of Cellsys is a strict functional partitioning. Thereby the 

functionality of Cellsys is subdivided (partitioned) into subsets according to a 

contentual grouping. For example all software components that implement 

functionality related to the simulation of our model, like the components that solve 

equations of motion, are associated to the functional partition “model simulation”, 

whereas all software components that implement image processing algorithms, for 

example the component that implements median filtering, are associated to the 

functional partition “image/volume processing”. Thereby software components 

within each partition realize a content-wise similar functionality and thus are 

associated to the same data structures (Table 1).  

Cellsys consists of 8 major functional partitions whereby one half concerns modeling 

and the other half concerns images and volumetric data. In general, functional 

partitions on modeling refer to the data structure “Model state” while functional 

partitions on images or volumetric data process specific data structures for images 

and volumetric data sets (Table 1). The relationships between the functional 

partitions and their associated data structures are illustrated in Fig.1. 

 

Table 1: Cellsys software functional partitioning 

 Modeling Images/volumes 

 

 

Functional 

partitions 

 

� Model parameterization 

� Model simulation 

� Model analysis 

(observation) 

� Model visualization 

 

 

� Image/volume 

parameterization 

� Image/volume processing 

� Image/volume analysis 

� Image/volume visualization 

 

 

Associated  

data 

 

 

� Model state 

 

� Images (2D) 

� Volumes (3D) 
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The data structure model state is a key component of the Cellsys software. It contains 

the current multicellular configuration and all associated data. For example a 

particular model state includes not only all properties of each model cell, but also all 

parameters that control the simulation, analysis and visualization of these cells. 

Additionally, a model state integrates the current parameterization of the image and 

volume processing algorithms. Thereby it represents a comprehensive description of 

all current settings of Cellsys. The model state is effectively stored in a binary and 

compressed form (orange arrow in Fig.1) using a specific file format. 

In general, the model state can only be modified by software components associated 

to the functional partitions model parameterization, model simulation or 

image/volume parameterization (dark red arrows in Fig.1). Typically, these 

components are controlled via the interactive graphical user interface (green arrows 

in Fig.1). Nevertheless, model simulations can alternatively be triggered using the 

batch mode (black arrow in Fig.1, for details see section 2.2.3).  

 

Fig. 1: Cellsys software architecture. 

Illustration of the relationships between the functional partitions of Cellsys and associated 

data structures including their interactions with users and hardware. 
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The data structures “Images” and “Volumes” are used to store images or stacks of 

images (volumetric data) supplemented with additional information in a binary and 

compressed form (orange arrows in Fig.1). Typically, both data structures contain 

experimental data obtained by either bright field microscopy or confocal laser 

scanning microscopy. In some situations, however, we use the current multicellular 

configuration stored in the model state data structure to generate a volumetric data 

set (magenta arrows in Fig.1). Thereby, we are able to directly compare the results of 

model simulations and the corresponding experimental data sets (see chapter 4). In 

general, the content of the data structures images and volumes is modified only by 

image/volume processing algorithms for example to facilitate image/volume analysis 

or visualization which both typically only access and not modify these data 

structures. 

All three data structures (model state, images and volumes) represent the main 

resource of Cellsys for analysis and visualization (black and blue arrows in Fig.1). 

During the incremental implementation of our software, this strict definition of the 

architecture of Cellsys has considerably helped maintain an organized and structured 

application despite the steady addition of new functional components. 
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2.2.3. Workflow 

The functionality of the Cellsys software can be accessed either (1) interactively via 

the graphical user interface or (2) non-interactively by a batch processing system. 

Both ways to use the software implicate specific workflows that are outlined in this 

section and illustrated in Fig.2.  

Whether Cellsys starts in interactive or batch mode is determined by command line 

parameters. However, only the interactive mode allows the user to access the full set 

of functionality of Cellsys, while in batch mode the accessible functionality of the 

software is limited to a few frequently used tasks. In interactive mode (blue area in 

Fig.2) a user can for example create, load and modify the model state via the 

graphical user interface. All 

changes are immediately 

visualized. Additionally, the 

user can manually invoke 

methods for example to 

analyze or persistently save the 

current model state or start a 

model simulation (green area 

in Fig.2). In contrast, in batch 

mode (red area in Fig.2) the 

software automatically loads a 

particular model state that is 

specified by command line 

parameters and then directly 

starts a model simulation 

(green area in Fig.2) without 

further interaction with the 

user. During such simulations 

the software remains in a non-

interactive state and 

consecutively conducts previ-

ously specified measurements, 

persistently saves the model 

and calculates the next model 

state until the specified 

simulation target has been 

reached. In this case, if the 

model simulation was started 

in interactive mode, the 

software returns control to the 

user and reenters an interactive 

state (blue arrow in Fig.2).  

 

Fig. 2: Cellsys common workflows. 
Illustration of the interplay of interactive (blue) and 

non-interactive (red) modes to execute model 

simulations (green). 
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In batch mode the software immediately terminates (red arrow in Fig.2). The 

graphical user interface is only initialized in interactive mode which enables Cellsys 

in batch mode to run on host architectures without display capabilities for example 

dedicated compute clusters. 

In summary, the interactive mode is typically used to prepare model simulations 

which later are carried out using batch mode. The results of these simulations are 

then visualized and analyzed again using the interactive mode. 

 

 

2.3. Implementation 

In the preceding sections, we outlined the design and architecture of Cellsys on an 

abstract and implementation-independent level and specified cornerstones to guide 

the implementation phase. The next sections substantiate these considerations and 

discuss concrete technological choices to meet the requirements defined by these 

cornerstones. 

 

 

2.3.1. Methodology: Object oriented paradigm 

The object oriented paradigm (OOP) is a software development methodology that 

lays the foundation for the modular and reusable implementation of Cellsys (refer to 

section 2.2.1 cornerstones 1 and 6) by providing a conceptual framework to manage 

the software lifecycle by applying several ideas and implementation principles. The 

main idea is to strictly encapsulate software components into self sufficient objects 

whose functionality is exclusively accessible through precisely defined interfaces. 

 
2.3.1.1. History 

The roots of the OOP can be traced to the 1960s where early ideas [Dahl, 1968] of 

object oriented concepts can be found in the Simula67 programming language which 

strongly influenced later languages especially Smalltalk and Pascal. Smalltalk was 

developed at Xerox PARC in the 1970s and first introduced the phrase “object-

oriented programming” [Kay, 1993]. In the 1980s further extensive pioneering 

research on software development methodologies [Cardelli & Wegner, 1985] 

[Nygaard, 1986] [Stroustrup, 1988] [Wegner, 1987] [Madsen & Moller-Pedersen, 

1988] was published. Since the early 1990s the object oriented approach became 

increasingly popular. Comprehensive textbooks [Booch, 1991] [Rumbaugh et al., 

1991] described the OOP as permeating the entire software lifecycle including 

analysis, design and implementation phases. Today, OOP has become the most 

widespread approach for the development of large software systems [Capretz, 2003]. 
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2.3.1.2. Key concepts 

The main elements of an object-oriented software system are objects and classes. In 

this context a class describes the abstract characteristics of an idea or physical 

component in a particular domain whereas an object represents the concrete 

realization of these characteristics. Every object is derived from a particular class and 

is termed its instance. In a platonic sense, a class is an ideal, archetypal object. 

When modeling a biological system, classes and objects often directly refer to 

biological or biophysical components of that system. For example, in chapter 3 we 

model avascular tumor spheroids whose main components are cancerous cells. In our 

software each of these cells is implemented by an individual object. However, each 

of these objects is an instance of the same class TumorCell that defines its 

characteristics. 

The internal state of an object is represented by its attributes. For example, objects 

instantiated from class TumorCell store their current age, volume and position in 

model space. In general, the internal state of an object can be manipulated only by its 

methods. When modeling biological systems, such methods often directly represent a 

particular biological functionality. For example, objects instantiated from class 

TumorCell include methods to model cellular growth, cell division, migration, 

differentiation or death. 

The object management group (OMG), a well-known international computer 

industry consortium dedicated to the development of standards for object oriented 

systems, recapitulatory defined an object as an “entity that has a unique identity, a set 

of operations that can be applied to it and a state that stores the effect of the 

operations'' [www, 13].  

Traditional imperative programming separates data from the operations to 

manipulate data. Object oriented programming transcends this approach by 

considering objects a composition of data (attributes) and associated operations 

(methods). While traditional programming is strictly causal, object oriented 

programming is intentional. Instead of defining a specific response for every possible 

program action, an object oriented approach defines functionality of interacting 

objects which leads to complex program behavior. 

Classes support the modeling of a complex domain by providing the possibility to 

construct class hierarchies. This concept is termed class inheritance.  In a hierarchy 

of classes, a class of a more specific level (termed subclass) adopts attributes and 

methods from classes of a more abstract level (termed superclass). However, a 

subclass is able to redefine this inheritance and add its own individual attributes and 

methods. For example in Cellsys the most abstract class is termed BiophysicalEntity 

and describes a generic biophysical component. A typical attribute of this class is for 

example its position in model space. An exemplary subclass of BiophysicalEntity is 

the class Cell which itself is superclass for the classes HepatocyteCell, 

SinusoidalCell or the already mentioned class TumorCell that each describe specific 

cell types. While the generic class Cell only includes common attributes of cells as 

cell volume or cell surface area, the more concrete classes add further attributes that 
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are specific for the particular cell type. In order to maintain a clear class hierarchy, in 

Cellsys objects are instantiated only from the most specific classes. In general, class 

inheritance is a key concept of the object oriented paradigm which imposes 

modularity and structure (refer to section 2.2.1 cornerstone 1) to an object oriented 

implementation. 

A further basic principle in object oriented programming is termed message passing. 

Message passing designates the process by which an object communicates to another 

object by either sending data or asking to invoke a method [Armstrong, 2006].  For 

example an object instantiated from class TumorCell may receive messages from 

another object instantiated from class NutrientEnvironment that implements glucose 

diffusion in model space (see section 3.5). For low glucose concentrations, this 

messages may invoke methods to trigger apoptosis (cell death) thereby encouraging a 

model tumor cell to die. Nevertheless, the functional details of the object that 

receives the message are strictly concealed from the sending object. This principle of 

object oriented programming is termed encapsulation which means that the methods 

of an object are accessible exclusively through an interface hiding the details of the 

implementation. This approach enables client objects of such interface to be 

independent of details of the implementation that may change in the future. Thereby 

such changes can be made more easily without interdependence between objects. 

Essentially, programming within the object oriented paradigm means organizing 

software as a community of objects instantiated from and structured by a hierarchy of 

classes that interact and communicate to each other using precisely defined 

interfaces.  
 
2.3.1.3. Discussion 

The object oriented software development methodology offers several advantages 

over traditional techniques especially for the implementation of agent-based models 

for complex systems [Booch, 1991] [Hartwell et al., 1999] [Emonet et al., 2005] 

[Griffin, 2006] [Thorne et al., 2007]. Object oriented programming imposes 

simplicity to an implementation by directly relating objects to components of the 

modeled system. This reduces the complexity of the abstraction and facilitates a clear 

structure and modularity of the implementation (refer to section 2.2.1 cornerstone 1).  

In principle object oriented software is modified by adapting the internal 

implementation of particular objects and extended by adding new objects. Due to the 

encapsulation of the implementation of objects and the resulting strict modularity in 

general such changes do not require a complete revision of the source code. 

Especially for large scientific software this local modifiability leads to an invaluable 

easing of software maintenance that is a key advantage over traditional techniques. 

Object oriented programming also facilitates software reuse (refer to section 2.2.1 

cornerstone 6) as classes can be used to instantiate objects for different functional 

subsets of Cellsys. This code reuse is multiplied by class inheritance as the definition 

of an abstract class potentially lays the foundation for many subclasses each 

instantiating many objects.  
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From a purely technical perspective a disadvantage of object oriented programming 

results from a small inherent performance und memory overhead as objects are 

normally referenced by pointers whose memory is allocated dynamically at runtime. 

A further performance overhead results from the time to find space on the heap to 

store objects. However, these efficiency penalties are very limited and of little 

importance in comparison with the benefits of object oriented programming with 

regard to software engineering. 

 

 

2.3.2. Programming language: C++  

In principle object oriented software can be implemented in a wide variety of modern 

programming languages. However, for computationally intense scientific problems 

application performance must be optimized. Together with other major factors as 

compiler efficiency and especially algorithmic optimality (refer to section 2.2.1 

cornerstone 2) the overall performance of the programming language has significant 

impact on the time that is required to solve a particular problem on a given host 

architecture. Thereby application performance effectively constrains the range of 

problems that can be addressed by a particular implementation. 

Unfortunately a precise and exhaustive performance comparison of all relevant 

programming languages is not available and may due to the wide variety of influence 

factors hardly ever been accomplished. However, there is a broad consensus that 

C++ [Stroustrup, 2000] is among the fastest languages currently available [Eckel, 

2003] [www, 01]. 

C++ is a portable (refer to section 2.2.1 cornerstone 3) and widespread programming 

language that supports object oriented programming and that rests upon a solid 

standardization by a joint ANSI/ISO committee [www, 03]. 

A further important advantage of C++ over other programming languages is the 

unrivaled availability of libraries that in many cases considerably simplify and 

accelerate software development (refer to section 2.2.1 cornerstone 6).  

Today, many C/C++ compilers including the widespread GCC (GNU Compiler 

Collection) contain implementations of OpenMP facilitating the easy introduction of 

shared-memory parallel computing into an application (refer to section 2.3.5). This 

enables Cellsys to scale with its host architecture and considerably gain performance 

on a multi-processor or multi-core system. 

Despite these advantages C++ has some disadvantages that are often a tribute to its 

high performance. For example deficient type safety and the possibility to implement 

unverified address pointers may lead to serious and difficult to debug coding errors. 

Nevertheless the C++ programming language meets all theoretical (support for 

effective object oriented programming, portability, reusability) and practical 

(performance) requirements for the implementation of Cellsys. 
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2.3.3. 3D graphics: OpenGL 

Besides the execution of model 

simulations, a key feature of 

Cellsys is the visualization of 

simulated multicellular assem-

blies and related image and 

volume data sets. Such graphical 

representations of the model are 

of great value for verifying and 

presenting simulation results. 

Moreover, often visualization is 

the most effective way to 

identify sometimes subtitle flaws 

of a model and its imple-

mentation for example by 

comparison with experimental 

images. 

 Today, the rendering of complex 

three-dimensional graphics is 

supported by widely available 

graphics accelerator cards of 

great computational power. For example the 240 parallel stream processors of a 

Nivida GeForce GTX 285 card theoretically exhibit a peak performance of more than 

a TFlop and are able to render over 1020  pixels per second. Additionally, this 

particular hardware provides a memory bandwidth of more than 159 GB per second 

[www, 12]. By exploiting this computational power we are able to render a very 

detailed and yet interactive representation of our complex three-dimensional models 

in real time.  

By now only two major application-programming interfaces (APIs) are available to 

access the features of graphics accelerator cards: (1) Microsoft DirectX and (2) the 

Open Graphics Library (OpenGL). Both APIs represent a mediation layer between 

graphics hardware and software and thus can be considered software-based 

abstractions of hardware. In the following we refer to version 10.1 of Microsoft 

DirectX and version 2.1 of OpenGL. 

While Microsoft DirectX is frequently used in computer games, OpenGL is the 

standard API for high performance visualization in engineering especially in 

computer aided design and is widely used for scientific visualization. Scientific 

software is often required to be executed on heterogeneous host architectures, 

therefore the most striking advantage of OpenGL is its portability (refer to section 

2.2.1 cornerstone 3). In contrast to Microsoft DirectX that is only available for 

Windows operating systems, OpenGL implementations are available on all major 

platforms for example all recent Windows operating systems (98, ME, 2000, XP, 

 

Fig. 3: OpenGL in Cellsys. 

Typical OpenGL-based rendering of a two-

dimensional multicellular assembly in Cellsys. Here, 

cell color indicates specific intracellular properties. 
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Vista, 2003), all Linux distributions, Unix, Irix, Solaris and all recent Apple Mac OS 

X operating systems. Additionally, OpenGL is licensed and supported by all major 

graphics hardware manufacturers (Nvidia, ATI, Intel and S3). The software 

developed in this work utilizes OpenGL to display three-dimensional graphics.  

Basically an OpenGL implementation transforms geometrical primitives and image 

data (e.g. textures) into pixels on a screen by utilizing a graphics pipeline that 

includes image and geometry paths. The image path (red in Fig.4) consists of pixel 

operations, texture assembly and rasterization, while the geometry path (blue in 

Fig.4) includes evaluation, per-vertex operations (including viewing transformations 

and primitive assembly) and rasterization. Both paths merge at rasterization stage 

and allow subsequent per-fragment operations. Since the graphics pipeline provides 

access to both image data and geometric primitives, it facilitates the implementation 

of low-level graphics functionality.  

 

 
Fig. 4: OpenGL rendering pipeline. Simplified block diagram of  

the OpenGL rendering pipeline illustrating its components and their succession. 

 

A standard implementation of the OpenGL specification includes the base graphics 

library (GL) and the graphics library utilities (GLU). While the GL library only 

features simple geometric primitives as points, lines, triangles and polygons, GLU 

provides higher-level drawing routines and additional geometric primitives including 

quadric surfaces. A quadric surface is an n-dimensional hypersurface defined by the 

locus of zeros of a quadratic polynomial [Venit & Bishop, 1996] by: 
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where M is a ( 1) ( 1)n n+ × +  matrix, V is a (n+1)-dimensional vector and C a 

constant. Quadric surfaces can describe various geometric shapes for example 
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spheres, ellipsoids and cylinders which are utilized in Cellsys as flexible basis for 

real time visualization of multicellular assemblies (see Fig.3). 

Another very useful extension of OpenGL is the graphics library utility toolkit 

(GLUT) that provides portable window management and routines for mouse and 

keyboard input [Kilgard, 1996]. Especially its open source implementation freeglut 

(freeglut.sourceforge.net) lays a foundation for the portability of Cellsys and its 

graphical user interface (refer to section 2.2.1 cornerstone 3). 

 

 

2.3.4. User interface: GLUI 

The GLUT extension (refer to previous section) also represents the technological 

basis for the OpenGL user interface library (GLUI) [www, 07]. GLUI provides all 

important elements for the construction of a portable and flexible graphical user 

interface (refer to section 2.2.1 cornerstones 3 and 4). GLUI is implemented in C++ 

and integrates a wide variety of standard base components as buttons to trigger 

actions, checkboxes to change Boolean states, radio buttons to select mutually 

exclusive options and editable text boxes to input variables of different types for 

example strings or floating point values. Furthermore, GLUI integrates very 

convenient components especially for the visualization of complex three-dimensional 

structures (e.g. multicellular assemblies). These special rotation and translation 

controllers allow a direct manipulation of the position and orientation of an object in 

3D. 

Additionally, GLUI includes panels and rollout elements for grouping sets of 

controls which considerably helps structuring an extensive user interface. Especially 

for complex applications a well structured and ergonomic user interface considerably 

increases productivity and helps to prevent errors due to invalid user input. For these 

reasons we use the GLUI library to implement the graphical user interface of Cellsys 

(also refer to section 2.4 for a brief description of its concrete realization). 

 
 
2.3.5. Parallelism: OpenMP 

In 1965 Gordon Moore (a co-founder of Intel) observed a long-term trend in the 

history of computing hardware. He proposed that since the invention of integrated 

circuits in 1958 the number of transistors  that can be placed on an integrated circuit 

without exceptional cost has increased exponentially, doubling approximately every 

two years [Moore, 1965]. This empirical trend commonly designated as “Moore’s 

law” has roughly held true since then and is expected to last at least for another 

decade. In correlation to Moore’s law, most capabilities of electronic digital devices 

have also improved at approximately exponential rate including general processing 

speed and memory capacity.   

During the last years however, the computational power of CPUs mainly has been 

improved by constructing processors that contain multiple computation cores. Recent 
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Intel desktop processors for example typically contain four processing cores (Intel 

Core 2 Quad). Multi-core processor architectures are becoming dominant in most 

areas of computing [Bliss, 2007]. To exploit the advantages of such parallel 

machines software is required to support parallel computing. 

Cellsys utilizes OpenMP (Open Multi Processing) to implement parallel processing 

on shared memory machines. OpenMP is a standardized, scalable and portable 

application program interface (API) that uses the Fork-Join Model of parallel 

execution [Quinn, 2004]. In its current version 3.0 there are specifications for C/C++ 

and FORTRAN which have been included into compilers on all major platforms 

(including Microsoft Windows XP/Vista and most Linux distributions).  

Other widespread approaches to implement parallel processing are POSIX threads 

and the message passing interface (MPI). In contrast to these methods that use 

explicit threading, OpenMP is specified by a small set of special compiler directives 

and library routines that can easily be embedded in existing C/C++ source code. This 

support for an incremental implementation is a key advantage of OpenMP. 

Furthermore OpenMP is capable of implicit communication to compensate irregular 

communication patterns and includes an advanced dynamic load balancing approach 

[Chapman et al., 2007]. 

According to Amdahl’s law the theoretical maximum speed up maxS  on a parallel 

machine with N processors (or cores) is: 
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with P the partition of the application that can be parallelized [Amdahl, 1967]. For 

Cellsys 0.95P ≈  (estimated from empirical maxS ) which allows an effective 

implementation of parallel computing. Thereby OpenMP lays the foundation for the 

high computational scalability of Cellsys (refer to section 2.2.1 cornerstone 2). 

 

 

2.4. Graphical user interface 

In general a graphical user interface (GUI) represents a mediation layer between user 

and application that enables that user to interact with the application using graphical 

symbols and pointing devices for example a computer mouse. In Cellsys the GUI 

provides a hierarchically organized access to a wide variety of functionality. In case 

Cellsys is used in interactive mode, all aspects of model parameterization, 

simulation, analysis and visualization and image/volume processing and analysis are 

controlled via the GUI. The hierarchical organization of the GUI corresponds with 

the software architecture elaborated in section 2.2.2. Accordingly, each functional 

partition is represented by a particular window that realizes a flexible and structured 

interface to the corresponding functional partition using predefined components of 
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the GLUI library (for further details refer to section 2.3.4). Such components include 

panels, rollouts (collapsible panels), checkboxes, spinners, text fields or radio 

buttons. The approach of organizing the GUI of an application corresponding to its 

functionality and common workflows considerably increases productivity and 

facilitates extensibility [Shneiderman & Plaisant, 2004]. 

Fig.5 shows the user interface of Cellsys in its fully unfolded form that reveals all 

GUI components. However, in general only a small fraction of these components is 

simultaneously visible. In the following we briefly outline the functionality within 

each particular window (Fig.5A-F) to sketch the GUI of Cellsys. 

Fig.5A shows variations of the “Create” window. This window summarizes 

functionality to create and adapt the model and corresponds to the functional 

partition for model parameterization. For example GUI components in this window 

are used to load and save model states or adjust model parameters. Initial 

configurations with a specific spatial structure or chemical environment can be 

created and the prospective behavior of cells (for example state transitions or 

intracellular responses) can be specified. 

The “Visualization” window shown in Fig.5B is used to adjust the visual depiction of 

model and image/volume data and corresponds to the functional partitions for model 

and image/volume visualization. All major properties of individual cells can be 

illustrated together with the current spatial structure of the multicellular population. 

Concentrations of chemicals in model space can be visualized along with further 

technical information for example the direction and strength of particular 

biomechanical forces. Additionally users can select from a wide variety of options to 

determine what components of the model should be shown or hidden. All changes of 

visualization settings are immediately reflected in the “Viewport” window illustrated 

in Fig.5C.  

Here, along with general information on the currently rendered cell population (in the 

upper left corner) model cells are visualized by geometric primitives and quadric 

surfaces (refer to section 2.3.3). Fig.5C shows a typical example for the depiction of 

model cell properties by a specific color coding: in the left half of the monolayer in 

Fig.5C cells are colored according to their current contact area to adjacent cells, 

while in the right half cells are colored to reflect their age. In this particular case the 

color coding reveals a decreased contact area at the monolayer border and a complex 

non-trivial distribution of cells of different age within the population. The arrows at 

the brink of the monolayer additionally illustrate the strength and direction of the 

biomechanical forces that result from cell-cell interactions. This reveals that for cells 

at the monolayer border these forces are exerted mainly in outward direction which 

later in this work is shown to play an important role in cultured cell growth (see 

section 3.3).  

The interactive and often real time display of the current model state is very helpful 

to explore and analyze multicellular structures that resulted from model simulations. 

The window “Simulate and Observe” shown in Fig.5D is used to prepare and start 

such simulations and corresponds to the functional partitions for model simulation 
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and analysis. Here, the objective of a simulation (for example growth to a specific 

number of cells) and the frequency and type of measurements during a simulation 

can be specified. For static model states various additional analyses (for example cell 

property distribution histograms) can be triggered. The “Simulate and Observe” 

window also provides functionality for obtaining screenshots and recording videos. 

Screenshots as well as microscopic images and volumetric data sets from external 

sources (for example from laser scanning microscopy) may be further processed 

utilizing the “Image and Volume processing” window shown in Fig.5E that 

corresponds to the functional partitions for image/volume processing and analysis. 

This window provides access to various specialized algorithms that can be used to 

enhance and analyze images and volumetric data sets. For example volume data sets 

can be improved by an adaptive histogram equalization filter, a median filter and 

further, more complex morphological operators (elaborated in detail in section 4.3.2). 

All major commands that are triggered using the Cellsys GUI are reflected on the 

“System console” window shown in Fig.5F. The textual output in this window 

displays important technical information (for example errors and warnings) and 

additionally could be used to journalize model modifications and simulations. 

In conjunction all GUI windows form a flexible (regarding both content and 

arrangement on screen) and organized interface to all features of the Cellsys 

software. 
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Fig. 5: The graphical user interface (GUI) of Cellsys.  

A: Create window. B: Visualization window. C: Viewport window. D: Simulate and Observe 

window. E: Image and volume processing window. F: System console. Multiple windows 

shown for A-E represent different unfolding states. For an exemplary magnification see 

Supporting Fig.1 
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2.5. Visualization 

The Cellsys software developed as part of this thesis integrates two main possibilities 

to visualize our model and associated data. On the one hand primary visualization is 

directly integrated into the graphical user interface (refer to section 2.4) and 

implements hardware-accelerated polygon-based 3D graphics utilizing OpenGL 

(refer to section 2.3.3). On the other hand, secondary visualization implements 

interfaces to external software that integrates ray tracing or direct volume rendering 

functionality. Considering different fields of application, both possibilities of 

visualization have specific advantages and disadvantages that are discussed in the 

following sections. 

 

2.5.1. Primary visualization: OpenGL 

The primary visualization component of Cellsys directly utilizes OpenGL to render 

all model elements and associated data by polygonal representations of geometric 

primitives and quadric surfaces. On adequate hardware this OpenGL rendering 

provides a fast and often real time display. In our context the term “real time” 

implicates a minimal reaction time of 40 ms which is equivalent to a screen refresh 

rate of 25 frames per second [Liu & Layland, 1973].  

The depiction of complex model structures in real time is a main advantage of 

primary visualization. Typically, the polygonal shapes that are used to represent a 

particular model element are determined by their type while the color of the shape is 

often encoded by a selected property of the model element it represents. Thereby 

OpenGL rendering directly reflects changes of the model state and for example can 

be used to verify parameter changes or explore the results of model simulations. 

Fig.6 illustrates typical examples of OpenGL rendering. Additional textual displays 

of key parameters of the current model state and dynamic legends that elucidate the 

current color encoding complement primary visualization. The coloring of frequently 

used shapes according to a subset of their properties is supported by a number of 

predefined color-schemes implemented in Cellsys in form of visualization classes. 

These classes allow the fast integration of sophisticated coloring for new model 

elements. For example in Fig.6A each model cell is represented by a sphere that 

illustrates its position and size while the color of the sphere encodes the pressure that 

is currently exerted on that particular cell (also see magnification of Fig.6A). 

A major weakness of OpenGL-based visualization in Cellsys arises from its missing 

support for realistic shadow-casting. This deficiency leads to restrictions regarding 

the perceptibility of spatial relationships between objects in 3D. Unfortunately, the 

complex three-dimensional structure often is an important property of multicellular 

assemblies. For example recent studies suggest that even minor differences in the 

surface roughness of a tumor spheroid could have major impact on its invasiveness 

[Guiot et al., 2007], also refer to section 3.6). The main reason why realistic shadow 

casting has not been implemented in Cellsys is that in most cases it impedes real time  
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Fig. 6: Examples of primary OpenGL rendering.  
A: Cell monolayer embedded in tissue (not shown). Cell color indicates the pressure that is 

exerted on particular cells (red=high, white/green=low). B: 2D image of a liver lobule for 

example showing the automatically detected necrotic area (green lines) which was rendered 

using OpenGL orthogonal projection. C: Partition of the sinusoidal blood vessel network 

with additional force visualization. Green lines indicate direction and strength of 

biomechanical forces that affect the cells (not shown). D: Volume visualization of a confocal 

data set containing lobule blood vessels. Light blue voxels are marked to be removed by a 

generalized erosion operator (details: A: section 3.6, B-D: section 4.3). 

 

rendering by introducing computationally complex visibility tests to the rendering 

process. The most common techniques to implement high quality shadows are 

shadow mapping [Williams, 1978] [Reeves et al., 1987] [Segal, 1992] and stenciled 

shadow volumes [Crow, 1977] [Everitt & Kilgard, 2002]. In principle both 

techniques require visibility tests for each light source at each rasterized fragment. A 

typical representation of a multicellular assembly in Cellsys is composed of 510 cells 

that together are represented by approximately 710  polygons (before level-of-detail 

optimizations) which on current hardware are impossible to render in real time using 
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accurate shadows. In order to overcome this limitation of the primary visualization 

we implemented interfaces to external software that either approximates shadows by 

geometrical simplifications for example isosurfaces (refer to section 2.5.3) or that 

uses ray tracing to render accurate shadows (refer to section 2.5.2.). Ray tracing 

software supports even more sophisticated lighting techniques as photon mapping 

[Jensen, 2001] but always completely abandons real time rendering.  

In addition to the visualization of the current model state, we use primary OpenGL 

rendering to display images (Fig.6B) and volumetric data (Fig.6D) for example to 

verify the results of image processing algorithms that improve or analyze such data. 

This visualization of images and volumetric data is directly integrated into the 

graphical user interface and utilizes OpenGL orthographic projection for the 

rendering images and slices through volumetric data in2D and display lists of 

geometric primitives for the three-dimensional display of volumetric data. However, 

the visualization of large volumetric data sets ( 62 10> ⋅  Voxels) is slow without 

further optimizations. Fortunately, external software dedicated to the direct rendering 

of volumetric data often includes sophisticated optimizations to handle such large 

high-resolution volume data sets. Therefore, we utilize the interface of Cellsys to 

such volume rendering software (refer to section 2.5.3) for the visualization of large 

volume data sets.  

In summary we use primary OpenGL rendering for an immediate and interactive real 

time visualization of the current model state and associated data and compensate its 

main deficiencies (the lack of realistic shadow casting and real time rendering of 

large volume data sets) by using interfaces to external software (secondary 

visualization).   

 

2.5.2. Secondary visualization: Ray tracing 

In order to complement the primary visualization capabilities of Cellsys we 

implemented interfaces to external ray tracing software. Ray tracing is a method of 

contemporary computer graphics that basically generates an image by tracing rays of 

light through pixels in an image plane [Shirley & Morley, 2001]. In the last two 

decades many sophisticated image synthesis techniques based on that idea have been 

developed. Methods as diffuse ray tracing [Cook, 1984], path tracing [Kajiya, 1986], 

Metropolis light transport [Veach & Guibas, 1997] or photon mapping [Jensen & 

Christensen, 1995] provide a high degree of photorealism for example by 

approximating global illumination. Modern ray tracing software has become a 

powerful visualization tool by implementing these lighting techniques along with 

further helpful features as constructive solid geometry [Atherton, 1983] and freeform 

surface modeling for example using isosurfaces of scalar fields. In order to utilize 

such ray tracing applications we integrated VRML 2.0 (virtual reality markup 

language) and POV-Ray (persistence of vision) interfaces in Cellsys by supporting 

the corresponding file formats.  
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The VRML interface precisely wraps all geometric primitives that are used by the 

primary OpenGL visualization to display model elements into associated VRML  

objects. This VRML representation of the model can then be accessed by compatible 

rendering software including commercial packages as Autodesk Maya, Autodesk 

3DS Max (both: [www, 04]) or free and open-source software as Rayshade [www, 

15]. Therefore such software can be used to generate images similar to the primary 

visualization but with more sophisticated lighting for example accurate shadow 

casting (Fig.7C). 

 
Fig. 7: Examples of secondary ray tracing visualization.  

A: 3D model of a liver lobule including hepatocytes (ochre) and blood vessels (red). A 

quarter of lobule has been cut out to reveal its internal structure. B: Blood vessel network 

within a model liver lobule. Vessel color indicates oxygen concentration (violet = high, 

red=low). C: 3D model of a tumor spheroid embedded in tissue (not shown) exhibiting a 

complex surface structure. D: Model tumor spheroid grown in a low oxygen environment 

showing pronounced surface fingering. Brightness of cell coloring indicates proliferation 

activity (black=low, white=high). (details: A-B: section 4.3, C-D: section 3.6)  
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The interface to the free and open-source POV-Ray software [www, 14] advances 

this approach by translating many model elements into more realistic shape 

descriptions in POV-Ray SDL (scene description language). Fig.7A/B shows 

examples for this kind of visual enhancement using the freeform surface modeling 

capabilities that have been integrated in POV-Ray. For example, Fig.7A shows a 

liver lobule (see chapter 4) where the shape of the hepatocytes (liver cells) is 

visualized by cuboidal objects rather than the simple spheres used in the primary 

OpenGL visualization. This more complex cuboidal shape more realistically mimics 

the shape of hepatocytes in vivo. In another example, Fig.7B shows the sinusoidal 

blood vessel network within a liver lobule. In this ray traced image the surface of the 

blood vessels is defined by the isosurface of a scalar field generated by overlapping 

spheres along the vessels. This visualization of blood vessels by smooth tubes that 

cast accurate shadows is again much more realistic than the overlapping spheres used 

by primary OpenGL rendering. 

Besides the more realistic representation of model elements, another major advantage 

of the POV-Ray interface is its capability to easily visualize cutouts of complex 

geometry. Partitions of arbitrary shape may be excluded from model structures to 

reveal otherwise hidden information for example within a compact population of 

cells. Fig.7 illustrates the benefits of such cutouts by exemplarily revealing the 

architecture within a lobule in Fig.7A and decreased proliferation activity in the 

interior of a compact model cell population in Fig.7D that both could not be 

recognized from the outside without cutouts.  

A further important advantage of ray tracing software is its inherent capability to 

render images with correct shadow casting. For example, Fig.7C shows a tumor 

spheroid rendered with accurate shadows that represents a typical example where due 

to a complex (rough) surface an optimal depth perception becomes important to fully 

recognize a three-dimensional structure. The capability of ray tracing software to 

render correct shadows thereby compensates the corresponding limitation of primary 

OpenGL visualization. 

Unfortunately, today ray tracing of complex structures using cutouts, multiple light 

sources and realistic shadows is not possible in real time as the superior visual 

quality is computationally expensive. Images of only moderately complex structures 

(for example model cell populations of 410≤ cells without slicing) can be rendered 

within a few seconds on recent hardware. However, images of more complex 

structures that for example include slicing or a high number of cells ( 410> ) may take 

hours to render. In many situations for single images this may be acceptable, but if a 

large number of images have to be rendered for example to generate videos, 

rendering speed rapidly becomes a limiting factor. Nevertheless, ray tracing can 

easily be parallelized and therefore multiprocessing can effectively be used to 

accelerate the calculations. Furthermore, ray tracing requires high amounts of 

memory which additionally introduces an upper limit for the complexity of structures 

that can effectively be rendered on particular host architectures. 
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In summary we use the interface of Cellsys to ray tracing software to generate 

images and videos that depict the model state in superior visual quality whenever a 

fast (or even real time) rendering is not required. 

 

2.5.3. Secondary visualization: Volume rendering  

A further complement to primary visualization in Cellsys is the interface to external 

volume rendering software. Volume rendering is a technique to construct a 2D 

projection of a 3D volume data set [Levoy, 1988] [Drebin et al., 1988]. This 

projection is calculated by evaluating a volume rendering integral [Engel et al., 2001] 

for a continuous scalar field ( )s x and viewing rays ( )x λ : 

 

( )( ) ( )( )
max

0 0

( ) exp ( )extI c s x d s x d d
λ λ

λ λ λ λ
 

′ ′= ⋅ − 
 

∫ ∫ɶ     (3) 

 

where λ is the distance and maxλ the maximal distance to the viewpoint. ( )c sɶ  is a 

transfer function for color densities and ( )extd s are extinction densities. Because an 

analytical evaluation of the volume rendering integral is often not possible, in most 

cases it is numerically approximated by substituting the integral by the Riemann sum 

[Anton, 1999]. The continuous scalar field ( )s x is generated from discretely sampled 

volume data sets typically by trilinear interpolation [www, 17]. 

Today volume rendering is commonly used for example in medicine for the 

visualization of data obtained by computer tomography (CT) and magnetic resonance 

imaging (MRI) or in computational fluid dynamics. In this work we use volumetric 

data obtained by a confocal laser scanning microscope to extract quantitative 

information from experimental data on regenerating liver lobules (refer to chapter 4). 

Methods for volume rendering can be subdivided in indirect and direct techniques. 

Indirect volume rendering generally includes methods that further process and 

analyze the volume data set and then construct the image using this secondary 

information. A common indirect volume rendering technique is to utilize the 

marching cubes algorithm [Lorensen & Cline, 1987] to extract isosurfaces within a 

volume and then render a polygonal representation of this isosurface using traditional 

polygon-based rendering [Montani et al., 1994].   

By contrast, direct volume rendering directly derives an image from the information 

within a volume data set. A common image-based direct volume rendering technique 

based on Eqn.3 is termed volume ray casting. Here, a viewing ray is generated for 

each image pixel of the projection plane. Volume ray casting is widely considered 

the volume rendering technique that provides best visual results, but it is also one of 

the most computationally complex methods [Lichtenbelt et al., 1998]. However, in 

the last years the performance of ray casting algorithms has been significantly 

improved by exploiting the massive parallelism and programmability of recent 

graphics hardware [Kruger & Westermann, 2003]. Additional optimizations as pre-
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integrated volume rendering [Engel et al., 2006] [Lum et al., 2004] reduce sampling 

artifacts and thereby further improve visual quality. 

Despite volume rendering software is not yet a down-market product, there are 

several powerful applications as PIVR (pre-integrated volume renderer) [Engel et al., 

2001], VOXX [Clendenon et al., 2006] and SPVOLREN [Stegmaier et al., 2005] 

available. Cellsys integrates interfaces to all three applications by supporting specific 

compatible RAW/DAT and multilayer TIFF file formats. 

We use PIVR to visualize large volume data sets using direct pre-integrated volume 

rendering. PIVR supports an arbitrary number of isosurfaces with diffuse and 

specular lighting without explicitly extracting a polygonal representation. The 

rendering of isosurfaces can be mixed with volume shading and semi-transparent 

volumes. Fig.8A shows a typical rendering of the sinusoidal blood vessel network 

(white) and hepatocyte nuclei (blue) within a liver lobule after several processing 

steps (elaborated in chapter 4.3). 

VOXX is especially useful to render and explore large multi-channel data sets. 

Fig.8B shows a typical multi-channel volume data set of a liver lobule obtained by a 

confocal laser scanning microscope that has been fluorescently stained by three 

different antibodies. This data set represents a typical unprocessed input volume 

whereas Fig.8A shows the corresponding resulting data set after volume processing. 

In addition to secondary visualization based on direct volume rendering we use 

indirect volume rendering implemented in SPVOLREN to render polygonal 

isosurfaces that cast shadows (Fig.8C). However, the quality of the calculated 

shadows is not comparable to those obtained by ray tracers (refer to previous 

section). Nevertheless, the capability of SPVOLREN to render such shadows in real 

time is a striking advantage which enables us to efficiently explore large volume data 

sets with complex surface structures. This real time shadow casting is especially 

useful for volume data sets directly generated from model cell populations (as 

exemplified in Fig.8C) and thereby allows compensating this main deficiency of 

primary OpenGL visualization in Cellsys. 
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Fig. 8: 

A: Example for a processed volume data

and hepatocyte nuclei (blue) (PIVR). B: Corresponding multichannel data

a confocal laser scanning microscope (VOXX). C: Isosurface of model tumor spheroid 

rendered with shadow casting (SPVOL

: Examples of secondary volume visualization.  
A: Example for a processed volume data set revealing the sinusoidal blood vessels (white) 

and hepatocyte nuclei (blue) (PIVR). B: Corresponding multichannel data set as obtained by 

a confocal laser scanning microscope (VOXX). C: Isosurface of model tumor spheroid 

rendered with shadow casting (SPVOLREN). (details: A-B: section 4.3, C: section 3.6)

36 

 
 

revealing the sinusoidal blood vessels (white) 

set as obtained by 

a confocal laser scanning microscope (VOXX). C: Isosurface of model tumor spheroid 

B: section 4.3, C: section 3.6) 
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2.6. Discussion and Summary 

In this chapter we illustrated the design and implementation of specialized software 

for the computational three-dimensional modeling, simulation, visualization and 

analysis of growing cell populations. The developed software allows the processing 

and analysis of experimental images in 2D and volumetric data sets in 3D. This 

facilitates a tight coupling of experiments and modeling that we consider an 

important precondition for tissue modeling in systems biology. We set up design 

principles and outlined a structured and hierarchical architecture that we consider 

exemplary for software engineered to implement computational models. 

Furthermore, we recommended concrete technologies for example regarding the 

software development methodology and the efficient implementation of 3D 

visualization. 

  There exist several software approaches that facilitate the modeling of cell 

populations. The most prominent are VirtualCell, E-Cell and CompuCell. VirtualCell 

is developed by NRCAM (National Resource for Cell Analysis and Modeling), USA 

[www, 11] and represents a remote user modeling and simulation environment. The 

software is implemented in Java and allows to create models, specify simulations and 

analyze the simulation results. Additionally a mathematical framework allows the 

stand-alone modeling of reaction-diffusion systems. E-Cell is developed at the 

Institute for Advanced Biosciences in Tsuruoka, Japan [www, 06] and represents a 

software platform for modeling, simulation and analysis of complex, heterogeneous 

and multi-scale systems. E-Cell also integrates numerical simulation algorithms and 

mathematical analysis methods. One of the most comprehensive approaches is 

CompuCell [www, 05], an open source software modeling environment that can be 

used for cellular modeling. CompuCell is based on the Cellular Potts Model (CPM) 

and includes a PDE solver. The software is developed at the Biocomplexity Institute, 

USA and provides a framework for the simulation of the development of 

multicellular populations and corresponding gene regulatory networks. 

However, none of these existing approaches implement a computational lattice free 

single-cell-based model that can be directly coupled with experimental data. Cellsys 

is the first software that integrates computational modeling, real time visualization of 

model results and image processing into one framework. Additionally, all these 

components are entirely supported in two and three spatial dimensions. Thereby we 

are able to set up models directly from experimental data for example volumetric 

data sets in 3D obtained by laser scanning microscopy of in vivo tissue. This unique 

capability of Cellsys lays the foundation for patient-specific computational modeling 

that in the near future will likely be of direct medical relevance. 
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3. Modeling growing cell populations  

3.1. Introduction 

3.1.1. Cell biology 

The cell is a basic structural and functional unit of all known organisms. It is the 

smallest unit that typically is considered living. Multicellular organisms such as 

plants, animals or humans are composed of a large number of cells (humans: 1410≈ ) 

that are often grouped in specialized tissues and organs [Maton et al., 1997].  

In 1665 cells were first discovered by Robert Hooke who observed cork plant cells 

(Fig.9) and described strangely looking cellulae in his book Micrographia [Hooke, 

1665]. Etymologically, the modern term cell was derived from the Latin cellula and 

means small room. Cornerstones of modern cell theory were first proposed in 1839 

by Matthias Schleiden and Theodor Schwann [Schwann, 1839] who realized that 

cells are the basic units of both plants and animals. This was later complemented by 

Rudolph Virchow’s theory Omnis cellula e cellula that suggested that every cell 

originates from another existing cell [Virchow, 1858]. Together, these ideas forever 

changed biological research. 

Since then cell biology aspired deeper and deeper insights into the processes and 

mechanisms that define biological systems especially on a cellular level. Aided by 

 
Fig. 9: The origins of cell biology. 

Drawings of the microscope (left) that Robert Hooke used to first discover cells in cork 

plants (right). Both drawings are reproduced from his book Micrographia [Hooke, 1665]. 
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technological advances as the invention of electron microscopy in 1931, since the 

1950’s, biological science has made immense progress. For example, the first 

continuous cell line was cultured by Otto Gey and co-workers in 1951. This 

significant breakthrough made it possible to maintain, grow, and manipulate cells 

outside of living organisms [Fedoroff, 1971].  

Nowadays modern microscopes allow the observation of living cells down to 

molecular scales which tremendously increased knowledge of cellular and 

subcellular structures. The inner mechanisms of cellular movement, growth and 

replication are more and more elucidated which lays the foundation for effective 

therapies of diseases that root in cellular dysfunction. A large class of these diseases 

in which cells display uncontrolled growth and division is designated as cancer. For 

decades an immense scientific effort has targeted cancer in order to understand the 

disease and discover possible therapies. However, today cancer is still the leading 

cause of deaths [www, 16]. 

During the last decades biology and medicine have become more and more 

interdisciplinary. Collaborations with other traditional disciplines of science like 

mathematics, physics and computer science have led to new fields called 

mathematical biology, physical biology, bioinformatics and computational biology. 

Emergent new disciplines such as computer science facilitated high-throughput data 

analysis and spatio-temporal modeling that greatly fueled research in the life 

sciences.   

 

3.1.2. Models 

Since the first pioneering publications [Thomlinson & Gray, 1955] [Burton, 1966] 

[Iyer & Saksena, 1970] [Greenspan, 1976] on mathematical and computational 

models in cancer research, experimentalists became increasingly aware of the 

fascinating opportunities opened up by these models. 

For example, current experimental approaches are often unable to distinguish 

between various possible mechanisms underlying important aspects of tumor 

development [Araujo & McElwain, 2004]. Accordingly, more and more models for 

multicellular morphogenesis and growth are considered to gain novel insights into 

this domain [Drasdo et al., 1995] [Byrne et al., 2001] [Chen et al., 2001] [Schwarz 

et al., 2002] [Byrne & Preziosi, 2003] [Bischofs & Schwarz, 2005] [Drasdo & 

Hoehme, 2005] [Drasdo et al., 2007] [Hoehme & Drasdo, 2009a]. 

The role of mechanics and physical interactions in the control of growth and pattern 

formation in multicellular systems is also attracting increasing interest [Huang & 

Ingber, 1999] [Salazar-Ciudad et al., 2003] [Tschumperlin, 2004] [Neagu et al., 

2005] [Forgacs & Newman, 2005] [Hoehme & Drasdo, 2009b]. Here, models can 

contribute to distinguish between experimentally observed effects that can be 

explained purely by physical interactions and those effects that require active 

regulatory changes of cell behavior or cell properties.  
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3.1.2.1. Model validation 

However, the possible benefit of model simulations largely depends on in how far 

they can be experimentally validated.  

A couple of years ago the validation of predictions from computational models of 

multicellular systems was generally impossible. This situation is rapidly improving 

now. The experimental abilities to collect information on cell-biophysical, cell-

biological and cell-kinetic properties have improved significantly in the last years. 

For example, cell proliferation (cell division) activity can be determined by the 

markers Ki-67 [Schiffer et al., 2003], BrdU or Thymidin [Alison & Sarraf, 1998], 

apoptosis (programmed cell death) by Tunnel assays [Schiffer et al., 2003] [Sayan 

et al., 2001] and diffusion constants of cells can be measured by tracking labeled 

cells [Mombach & Glazier, 1996]. The elastic modulus of cells can be determined by 

optical stretchers [Guck et al., 2001], atomic force microscopy (AFM) [Alcaraz et al., 

2003] or acoustic microscopy [Laforsch et al., 2005] and the strength of cell-cell and 

cell/substrate adhesion can be measured by AFM [Chesla et al., 1998] [Zhang et al., 

2004]. Confocal laser scanning microscopy (CLSM) [Claxton et al., 2008] which 

allows a direct, noninvasive, serial optical sectioning of intact, thick ( 150µm≤ ), 

living specimen with a minimum of sample preparation has become increasingly 

popular among biologists [Fellers & Davidson, 2007]. For example in this work 

(chapter 4.3) optical serial sections obtained by a confocal laser scanning microscope 

were used to reconstruct and analyze liver lobules in 3D [Hoehme et al., 2008] 

[Hoehme et al., 2009]. In addition, also traditional serial sections are used for the 

reconstruction of tissues in 3D [Levinthal & Ware, 1972] [Kay et al., 1996]. 

Together with recent cytometric analyses [Galle et al., 2006] these methods facilitate 

the quantification of the experimentally obtained spatio-temporal information from 

tissue morphotypes that is necessary for the comparison with the results of 

computational models.  Moreover, the technical capabilities are crossing the borders 

between different disciplines. For example, methods that previously had only been 

used by cell-biologists such as cell-cycle labeling are now also used by other 

disciplines such as engineering science and for example are combined with 

measurements on the mechanical stress within cell layers to identify the active and 

passive properties within multicellular systems [Nelson et al., 2005] [Cheng et al., 

2009]. This facilitates the construction of models for cells and tissue that vice versa 

help to further analyze biological experiments given these models properly represent 

the relevant parameters. On the level of individual cells these are for example cell-

biological parameters such as the cycle time, the control of cell cycle passage, 

apoptosis (programmed cell death) and cell-biophysical parameters such as cell 

material parameters, cell shape, and the strength and specificity of cell-cell and cell-

substrate adhesion. 

  



 

 

41 3. Modeling growing cell populations 

3.1.2.2. Model classification 

In general, models for growing cell populations can be subdivided in: 

 

1. Phenomenological, macroscopic growth laws [Marusic et al., 1994] 

2. Continuum models [Byrne & Preziosi, 2003] [Araujo & McElwain, 2004] 

[Byrne & Drasdo, 2009] [Christini et al., 2009] 

3. Agent-based models 

3.1. Lattice-based [Moreira & Deutsch, 2002] [Alber et al., 2002] 

3.2. Lattice-free [Drasdo, 2003] [Drasdo & Hoehme, 2005] [Galle et al., 

2006] [Hoehme et al., 2009] 

 

Macroscopic growth laws and continuum models describe locally averaged quantities 

and thus are often well suited for large scale phenomena [Adam & Bellomo, 1997] 

[Araujo & McElwain, 2004] where spatial properties change smoothly over a length 

scale of several cell diameters [Byrne & Drasdo, 2009]. Continuum models include 

those that represent a tumor as an elastic continuum [Jones et al., 2000], a fluid 

[Byrne & Preziosi, 2003] or kinetic equations such as the Fisher-KPP equation (the 

logistic equation extended by a diffusion term) [Swanson et al., 2000] [Drasdo, 

2005]. The Fisher-KPP equation predicts that the cell population size initially grows 

exponentially fast, and crosses over to a linear expansion of the population diameter 

at advanced stages. The exponential growth of the population size is accompanied by 

an expansion of its diameter L according to L t∝  , which we believe is not 

appropriate for compact tumors in the initial growth phase (refer to section 3.5). 

Most of the continuum approaches are deterministic. These are neither able to cover 

the correct system behavior if stochastic fluctuations become important, nor to detect 

information that is reflected only in stochastic fluctuations. 

As introduced in section 2.1, in agent-based models complex behavior of a system 

arises from actions and interactions of autonomous elements. Agent-based models, 

however, provide a higher spatial resolution and thus can be used in situations where 

tissue properties change on the scale of single cells. Most agent-based models can be 

characterized as either lattice-based or lattice-free models (for reviews, see [Moreira 

& Deutsch, 2002], [Alber, 2003], [Cickovski et al., 2005], [Merks & Glazier, 2005], 

[Anderson et al., 2007]).  

In many lattice-based models, each lattice site can be occupied by at most one cell 

[Dormann & Deutsch, 2002], [Anderson, 2000], [Alarcon et al., 2004], [Drasdo, 

2005], [Lee & Rieger, 2006], [Block et al., 2007]. These models are usually called 

cellular automaton (CA) models. Their dynamics is based on rules that are hoped to 

reflect the relevant physics. Cellular automata represent a fictitious oversimplified 

microworld [Rivet & Boon, 2001] and are based on a set of rules. Nevertheless, 

cellular automata can show a remarkable correspondence to real systems on 

mesoscopic length scales much larger than the cell diameter. However, effects such 

as cell size changes, and mechanical deformation or compression of cells or cell 
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aggregates are difficult to represent by a cellular automaton [Galle et al., 2009]. For 

example, recent measurements show that the elastic modulus of cancer cells is often 

smaller than those of normal cells [Guck et al., 2001], and therefore may be an 

important model parameter that cannot be represented in CA models in which each 

cell is represented by a single lattice site. 

A second class of lattice-based models are those in which a cell may span many 

lattice sites [Graner & J.Glazier, 1992], [Stott et al., 1999], [Hogeweg, 2000]. This 

approach permits to mimic complex cell shapes, and the cell migration dynamics is 

modeled by a stochastic dynamics controlled by a generalized energy function.  

A third class of lattice models is that in which a lattice site can be occupied by many 

cells [Radszuweit et al., 2009]. Such models are also rule-based but they permit to 

simulate growing cell populations up to the centimeter scale and thereby mimic 

growing in vivo tumors.  

Lattice-free models are not confined by any lattice symmetry and thus are able to 

represent arbitrarily small displacements. Therefore, they are particularly appropriate 

to model the dynamics of cells in complex spatial architectures in which cell 

positions can gradually change and biomechanical influences may affect cell 

migration and proliferation. Therefore, lattice free models are well suited to describe 

spatio-temporal multicellular organization processes that are difficult to represent 

using a fixed lattice. Furthermore, intracellular processes may easily be integrated 

into single cell-based models [Hogeweg, 2000] [Alarcon et al., 2004]. 

Within the class of lattice-free models, cells have been parameterized by measurable 

cell-biophysical and cell-biological parameters and approximated by quasi-spherical 

particles [Drasdo, 2003] [Drasdo & Hoehme, 2005] [Galle et al., 2006] [Hoehme & 

Drasdo, 2009a], deformable ellipsoids [Palsson & Othmer, 2000], Voronoi polygons 

[Meineke et al., 2001], or, more recently, networks of spheres in a so called “multi-

center approach” [Newman, 2005]. 

 

Different from physical particles, cells can change their parameters such as the cycle 

time, the micro-motility and the material parameters. As long as the rules that 

underlie these parameter changes, e.g. by cell regulation or differentiation have not 

been fully understood, the predictive power of models of multicellular systems 

remains limited. Nevertheless, as we will show below, even models that assume 

static parameters i.e., that do not include the regulatory machinery that controls the 

cell parameters can already explain many experimental observations. Moreover, 

points where the predictions of model simulations and experimentally observed 

behavior start to diverge may demarcate active changes of cell behavior or cell 

properties by regulation or differentiation. The ambition to attune model and 

experimental observations could iteratively stimulate informative experiments and 

model refinements that together may shed light on the studied processes. In chapter 3 

we consider different experimental situations to mimic aspects of tumor growth. The 

simulation results will be compared directly to data. In chapter 4 we use a similar 
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iterative approach to elucidate organization processes of liver regeneration in close 

iteration with experiments. 

In the following sections we elaborate the lattice-free model that was used in this 

thesis to study the growth of multicellular populations and the mechanisms of liver 

regeneration in detail. Therefore we introduce relevant biological aspects together 

with their representation in the model. The main idea for the model has been 

introduced in [Drasdo et al., 1995] and has been advanced in [Drasdo & Hoehme, 

2003] [Drasdo & Hoehme, 2005], [Hoehme & Drasdo, 2009a] and [Hoehme & 

Drasdo, 2009b]. 
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3.2. Basic model 

3.2.1. The cell 

The cell is the smallest structural and functional unit of a tissue [Alberts et al., 2008] 

and thus also represents the basic unit in our lattice-free agent-based model. Cells 

have different abilities and, to a certain degree, are self-contained and self-

maintaining. They can migrate, reproduce by cell division, respond to external and 

internal stimuli such as temperature, nutrient concentrations, pH levels or stress and 

are capable of metabolism. Cells are able to extract and use chemical energy stored 

in organic molecules. This energy is released and then used in metabolic pathways. 

Each cell stores a set of instructions for carrying out these activities. A typical cell 

size is 10 µm (bacteria: 1-5 µm, plant cells: 100µm) and a typical cell mass is 1 ng. 

All intracellular components are contained within a cell surface membrane that 

consists of a lipid bilayer with proteins embedded in it. 

There are two basic types of cells: prokaryotic and eukaryotic. Prokaryotic cells are 

relatively simple since they lack a nuclear envelope, a cell nucleus and most of the 

intracellular organelles and structures that are found in eukaryotic cells. They are 

often found in unicellular organisms for example bacteria and archaea.  

Almost all multicellular organisms, however, are composed of eukaryotic cells which 

include a variety of complex internal membrane-bound compartments, termed 

organelles, in which specific metabolic activities take place. Eukaryotic cells also 

have a cytoskeleton composed of microtubules, microfilaments, and intermediate 

filaments that play an important role in defining the cell's shape. Another major 

difference to prokaryotic cells is the presence of a cell nucleus, a membrane-

delineated compartment that envelops the eukaryotic cell's DNA that is divided into 

several linear bundles called chromosomes. Fig.10 shows prokaryotic and eukaryotic 

cells as schematic illustration and under the microscope. 

In the following we only consider eukaryotic cells and limit ourselves to a few basic, 

yet fundamental, structural and functional aspects. A detailed introduction to the 

broad fields of cell and molecular biology can for example be found in the 

monograph “Molecular Biology of the Cell” [Alberts et al., 2008].   

The basic idea of the model presented in this work is to approximate complex cells 

by isotropic, elastic and adhesive objects of limited compressibility and 

deformability. These model cells are capable of active migration, growth and 

division and are defined by cell-kinetic, biophysical and cell-biological parameters 

that can be experimentally measured. Model cells can interact with each other and 

respond to changes in their environment. This especially includes biomechanical 

influences that, as we show in this work, play an important role in morphogenesis 

and growth kinetics of multicellular populations.   
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Fig. 10: Procaryotic and eukaryotic cells.  

A: Schematic illustration of a typical procaryotic cell. B: Illustration of a typical 

eukaryotyic cell. Organelles are labelled as follows: (1) Nucleolus, (2) Nucleus, (3) 

Ribosome, (4) Vesicle, (5) Rough endoplasmic reticulum, (6) Golgi apparatus, (7) 

Cytoskeleton, (8) Smooth endoplasmic reticulum, (9) Mitochondrion, (10) Vacuole, (11) 

Cytosol, (12) Lysosome and (13) Centriole. C: Scaning electron micrograph of a 

procaryotic cell (Escherichia coli) grown in culture. D: Example of an eukaryotic 

(endothelial) cell under a confocal laser scanning microscope. Cell nuclei are stained with 

DAPI (blue), microtubules are marked by an antibody (green) and actin microfilaments are 

labelled with phalloidin (red). Images from Wikimedia Commons (public domain). 

 

For example, experiments suggest that cells may grow and divide faster if situated at 

positions of large local tissue curvature. This has been experimentally observed for 

cells growing on flat substrates [Nelson et al., 2005] and in epithelial cell layers for 

example in the lung [Ingber, 2005] [Ingber, 2006] or the pancreas [Horb & Slack, 

2000]. Cells may also sense mechanical stress to adjust their growth rate to the 

growth rate of other cells in a tissue sheet [Shraiman, 2005]. There are different ways 

in which a cell can control its physical properties and biomechanically communicate 

with its environment depending on its state of differentiation, its type and on the 

properties of its environment [Huang & Ingber, 1999]. For example, a cell can 

reorganize its cytoskeleton and thereby change its shape and mechanical rigidity. 

Furthermore, cells can control the number, placing and specificity of adhesion 

molecules which it uses to anchor in a substrate or to form contacts to its neighbor 

cells thereby controlling the strength and specificity of its substrate and neighbor-cell 

contacts [Lodish et al., 2004]. 
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3.2.2. Cell growth and division 

Cells reproduce by dividing into two daughter cells. This process of cell division 

during which cells pass their genetic heritage to the next generation is embedded into 

an ordered sequence of events designated as “the cell cycle”. In eukaryotic cells, a 

complex network of regulatory proteins governs the progression of the cell in the cell 

cycle. The essence of this system is a series of biochemical switches that respond to 

various signals from inside and outside the cell and control the main events of the 

cell cycle.  

The cell cycle consists of four distinct phases termed G1-phase, S-phase, G2-phase 

(together designated as interphase) and M-phase. Fig.11 illustrates the succession of 

these phases. In G1-phase (short for gap-1-phase) cells primarily increase their 

volume and synthesize various 

enzymes that are required for 

DNA replication in S-phase. 

Additionally, G1-phase includes 

a restriction point (also 

designated as G1 checkpoint) 

that further regulates cell cycle 

progression. For example the 

restriction point ensures that the 

cell is large enough for division 

and that enough nutrients for 

the daughter cells are available 

in the cells environment. At this 

point in the cell cycle cells can 

enter a resting state known as 

G0 and remain there 

permanently or for long time 

periods before resuming cell 

cycle progression. A cell in G0 is often called “quiescent”. 

DNA replication takes place in the subsequent S-phase (short for synthesis-phase) 

wherein cells duplicate all their chromosomes. Damage to the DNA often takes place 

during this phase. Thus after completion of replication DNA repair is initiated.  

The cell then enters G2-phase which mainly involves the production of microtubules, 

which are required during mitosis. 

The following relatively brief M-phase (short for mitosis-phase) includes 

karyokinesis (the division of the cell nucleus) and cytokinesis (cytoplasmic division). 

Furthermore, the M-phase consists of several distinct sub-phases, known as 

prophase, metaphase, anaphase and telophase.  

In prophase the chromosomes condense, the centrioles form and move towards the 

cell poles, the nuclear membrane dissolves and the mitotic spindle forms. In 

metaphase the centrioles complete their movement to the cell poles and the 

 
Fig. 11: The cell-cycle.  

Illustration of the succession of the four distinct phases 

of the cell cycle and the restriction point. 
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chromosomes line up at the cell equator.  

In anaphase the spindles begin to shorten 

which pulls apart the sister chromatids 

thereby ensuring that each daughter cell 

includes an identical set of chromosomes. In 

telophase the chromosomes decondense and 

the nuclear envelope forms. In this phase 

cytokinesis completes and thereby creates 

two distinct daughter cells. A more detailed 

description of the cell cycle can be found in 

[Alberts et al., 2008]. 

In our model we abstract from most of the 

details of the cell cycle and the process of 

cell division and focus on the biomechanical 

aspects of cell growth and division. Since 

isolated cells in cultures or suspensions 

often have a spherical shape [Drubin & Nelson, 1996] (Fig.12) we assume each 

model cell after cell division to be spherical with radius R0. During cell cycle and 

especially in the G1 and G2-phases cells deform and grow by biosynthetic activity 

[Saucedo & Edgar, 2002]. 

We implement the increase of cellular volume and the corresponding deformations 

during cell cycle by two distinct model variants. 

In variant 1 every model 

cell consists of two 

overlapping spherical 

components each of radius 

R0 (Fig.13A). During cell 

cycle, a growing model 

cell i deforms into an axis-

symmetrical dumb-bell by 

increasing the distance di 

of its spherical 

components in small steps 

0d R∆ ≪ . The current 

volume iV  of model cell i 

can be calculated by: 

 

( )
2

3
0 0

4
( ) 2 3

3 3
i

i i i

h
V d R R h

π
π

 ⋅
= − − 

 
    (4)

 
 

 

Fig. 12: Typical shape of isolated cells  
(Image by [Hengstler, 2007]). 

 
Fig. 13: Model cells during growth and division 
either A: deform into a dumb-bell shape or B: grow 

maintaining a spherical shape (also see Supporting video 1).  
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with 0 0.5i ih R d= − ⋅ . Once 02id R≥ , the model cell divides into two daughter cells. 

Directly after cell division 0id = . 

In the alternative model variant 2 each cell consists of only one spherical component 

that directly after cell division has the radius R0. During cell cycle we increase the 

radius Ri of a model cell i in small steps 0R R∆ ≪ . In this case the volume iV  of 

model cell i can be calculated by:  

 

34
( )

3i i iV R Rπ=
 
       (5)

 
 

During growth the cell remains spherical until it has doubled its initial volume  

( 02 ( )DIVV V R= ⋅ , 01.26DIVR R≈ ⋅ ). Then the model cell divides into two daughter 

cells of radius R0 that immediately after division are arranged as a dumb-bell that 

occupies the same volume as the mother cell directly before division (Fig.13B). 

Supporting video 1 illustrates the process of cell division in the model.  

Both division algorithms were originally introduced in [Drasdo et al., 1995]. In 

agreement with the experimental observations [Fidorra et al., 1981], we mimic a 

linear increase of cell volume during the passage of a cell through the cell cycle by 

appropriately choosing (A) ( )id R∆  and (B) ( )iR R∆ . 

 

3.2.3. Cell-cell interactions  

During the growth of a multicellular population, cell-cell interactions play an 

important role for tissue organization and the development of functions. These 

interactions include the communication between cells by complex biochemical 

signals and biomechanical interactions between adjacent cells. Biomechanical 

interactions often significantly stress cell membranes and especially the cytoskeleton. 

The term cytoskeleton was first introduced in 1931 by the embryologist Paul 

Wintrebert [Wintrebert, 1931] and designates a dynamic, three-dimensional structure 

that is contained within the cytoplasm [Frixione, 2000]. In eukaryotic cells, the 

cytoskeleton is composed of microfilaments, microtubules and intermediate 

filaments (see Fig.10D). The cytoskeleton maintains mechanical stability and shape 

of the cell and additionally plays an important role in cellular movement, 

intracellular transport and cell division. 

Cells in contact can form adhesive bonds that anchor in the cytoskeleton. With 

decreasing distance between cells, for example upon compression, the contact area 

between them increases and with it the number of adhesive bonds which typically 

results in an increasing attractive interaction. On the other hand, if cells in isolation 

are spherical, an increase of the contact area is accompanied by an increasing 

deformation which results in a repulsive interaction. Furthermore cells under 
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physiological conditions have only a moderate compressibility [Mahaffy et al., 

2000].  

The first contact models appeared in the 1930s in surface physics and chemistry 

[Bradley, 1932] [Derjaguin, 1934]. These pioneering publications still influence 

current research in this area [Barthel, 2008]. In this work we used two alternative 

contact models: 

 
3.2.3.1 Extended Hertz model 

In a number of cases, we model the combination of attractive and repulsive 

interactions by a modified Hertzian contact model. We extended the classical Hertz-

model [Hertz, 1882] [Landau, 1975] by a term that takes into account cell-cell 

adhesion [Galle et al., 2005] [Schaller & Meyer-Hermann, 2005]. Thereby we are 

able to describe the contact behavior of two elastic and adhesive objects with a 

circular contact area (Fig.14). The Hertz model describes the potential 
HER

ijV  of any 

two model cells of radius iR and jR  by:  

 

5 2 1
( )

5
i jHER HER

ij i j ij k

ij i j

R R
V R R d

E R R
ε= + − +

+ɶ
 
   (6) 

 

The first term of the equation summarizes the repulsive interaction while kε  adds the 

contribution from the adhesive interaction. 
HER
ijd  is the distance between the centers 

of model cells i and j and the composite Young’s modulus ijEɶ is related to the elastic 

moduli iE , jE and the Poisson’s ratios iv , jv of the model cells i and j by: 
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1
113
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ji

ij

i j

vv
E

E E
−

 −−
= +  

 
ɶ

 
      (7)

 
 

This relies on the fact that a homogeneous, isotropic elastic body is completely 

characterized by two independent material constants, for example its Young modulus 

E and its Poisson ratio ν . Due to the limited compressibility of cells, the Poisson 

ratios are chosen close to 0.5 [Alcaraz et al., 2003]. The adhesive contribution is 

approximated by: 

 
HER

k m s ijW Aε ς≈        (8)
  

where mς is the density of surface adhesion molecules in the contact area and sW is 

the energy of a single bond. 15 210m mς −≈  [Chesla et al., 1998] [Piper et al., 1998] and 
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25s BW k T≈  (T: temperature, Bk : Boltzmann constant). 23 11.38 10Bk JK− −≈ ⋅ . HER
ijA is 

the contact area between cell i and j that can be calculated by: 

 

( )i jHER HER
ij i j ij

i j

R R
A R R d

R R
π

 
= ⋅ + −  + 

    (9) 

 

Thereby the contribution of the adhesive interaction kε  is proportional to the surface 

density of receptor-ligand bonds and the receptor-ligand interaction energy [Moy 

et al., 1994]. 

 

 

The interaction force results from the negative gradient of the potential energy: 

 

( ) ( ) ( )
, ,

HER HER HER HER
ij ij ij ijHER

ij HER
ij

V d d d d d d
F

d dx dy dz

  ∂
= −    ∂   

   (10)

 
 

 
3.2.3.2. Johnson-Kendall-Roberts model 

However, in some situations, for example for cell-detachment, the extended Hertz-

model is not appropriate. An improved theory was published by [Johnson et al., 

1971]. The proposed Johnson-Kendall-Roberts (JKR) model directly includes 

adhesion and correlates the contact area to the elastic material properties and the 

adhesion strength [Carpick et al., 1999]. The JKR-model has been validated for 

S180-cells [Chu et al., 2005] and has independently been proposed to model cells in 

[Drasdo & Hoehme, 2005]. The JKR-model includes a negative loading regime that 

takes into account the hysteresis effect that occurs due to cell elongation if cells are 

 
Fig. 14: Deformations due to cell-cell interactions. 

Note the significant difference of Hertz- (left) and JKR-model (right) considering model 

cell shape and contact area (green) (image based on illustrations in [Johnson, 1985]) 
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pulled apart (Fig.14). Here, we calculate the interaction force ( )JKR JKR JKR
ij ij ijF F d≡  

numerically from the implicit equation:  

 
2 ˆ16

3ij ij

a a

R E

πγ
δ = −

ɶ ɶ
       (11)

 
 
whereby the contact radius a is determined by:  
 

 

( )23
2

ˆ ˆ ˆ3 6 3ij JKR JKR
ij ij ij ij ij

ij

R
a F R R F R

E
πγ πγ πγ = + + +  

ɶ
ɶ ɶ ɶ

ɶ
  (12)

 
 

The composite radius 1
ijR−ɶ  is given by

1 1 1
ij i jR R R− − −= +ɶ , the distance between 

model cell i and j is given by 
JKR
ij i jd R R δ= + −  where i jδ δ δ= + is 

the sum of the deformation along the 

axis between the centers of these cells. 

ijEɶ  is the composite Young modulus as 

defined in the previous section and we 

approximate m sWγ ς≈ɶ . Eqn.12 has to 

be solved implicitly to derive ( )JKR
ija F

.The value of a is then inserted into 

Eqn.11 to give δ(a) and, by 
JKR
ij i jd R R δ= + − , ( )JKR

ijd a . Plotting 

JKR
ijF  vs. 

JKR
ijd  yields ( )JKR JKR

ij ijF d  

which is not amendable to an explicit solution but can be easily fitted by a 

polynomial. We use a polynomial of degree three:  

 
3 2

3 2 1 0( ) ( ) ( ) ( )JKR JKR JKR JKR JKR
ij ij ij ij ijF d a d a d a d a≈ + + +    (13)

  

The force vector denoting the force of cell j on cell i results from  
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| |

JKR i jJKR JKR
ij ij ij

i j
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F F d
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−
=

−       
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Fig. 15: Scaled interaction energy 
Vij / FT vs. scaled distance dij for two 

interacting spheroidal cells i, j according to the 

JKR-model. Note the hysteresis behavior 

(magnification). 
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From this, the potential 
JKR

ijV
 
(Fig.15) can again be investigated by: 

 

( ) ( ) ( )
, ,

JKR JKR JKR JKR
ij ij ij ijJKR

ij JKR
ij

V d d d d d d
F

d dx dy dz

  ∂
= −    ∂   

   (15)
 

 

In comparison to the extended Hertz-model, the most important advantage of the 

JKR-model is the appropriate integration of the hysteresis effect by the negative 

loading regime which includes a negative deformation. When two spheres of radius 

R0 approach each other they spontaneously form a contact area of finite size at a 

distance 02cond R= while at 0lim(2 )R
ε

ε
→∞

+ they had no contact. If later they are pulled 

apart they still have contact at distance JKR
ij cond d≥  and exert a pull-off force that 

models hysteresis. This leads to a difference in situations in which cell detachment 

becomes important as we show in section 3.4 where we consider a piling up of 

monolayers. Note also, that for ζm=0 the JKR-model results in the classical Hertz 

model without adhesion. 

 

3.2.4. Cell migration 

Cell migration is a key process in the development and maintenance of every 

organism. In multicellular tissues individual cells employ a variety of mechanisms to 

move through spaces in the extracellular matrix and over the surfaces of other cells 

[Horwitz & Parsons, 1999]. In general, cell migration is a dynamic and cyclical 

process that, in most situations, is initiated by external signals (for example by 

chemotaxis related molecules that act as chemoattractants or chemorepellents). These 

signals are sensed and communicated into the cell interior by specialized receptor 

proteins in the cell membrane stimulating the cell to extend protrusions by 

polymerizing actin. These protrusions seek out new terrain and in the direction into 

which the cell intends to move. Once the direction for movement is established, the 

machinery for enabling movement assembles. With regard to the direction of the 

migration, adhesive complexes that are needed for traction accumulate at the front of 

the protrusion, tethering the protrusion to the substratum. Actomyosin filaments 

contract at the front of the cell and pull the cell towards the protrusion. Finally, the 

adhesive connections in the rear of the cell are released and retraction of the tail 

completes the cycle [Webb et al., 2005]. The control of this complex process is based 

on many molecules that for example serve to distinguish the front of a cell from its 

rear and whose actions are carefully timed [Lauffenburger & Horwitz, 1996]. 

The inability of cells to migrate or the pathological migration of cells to 

inappropriate locations can result in life threatening consequences for example 

congenital defects prominent in the brain. Pathological cell migration also 

contributes to widespread diseases including vascular disease, chronic inflammatory 

diseases, and tumor formation and metastasis [Horwitz & Webb, 2003]. Furthermore, 
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cell migration is central to homeostatic processes for example an effective immune 

response or the repair of injured tissues.  

In the absence of chemotactic signals, isolated cells in suspension or culture medium 

have been observed to perform an active random-walk-like movement [Schienbein 

et al., 1994] [Mombach & Glazier, 1996]. Accordingly, in our model we characterize 

the observed random-walk-like movement of isolated cells by the cell diffusion 

constant 12 2 1
0 10D cm s− −≈ . More motile cells are assumed to have a larger 0D . Hence 

0D  quantifies the micromotility of model cells. 

While in mechanical contact with other cells, proliferating cells exert a pressure on 

their neighbors. The neighboring cells try to escape this pressure by moving against 

the friction caused by the other neighbor cells and extracellular material for example 

the extracellular matrix [Rosen & Misfeldt, 1980]. The movement could be partly 

passive, due to pushing, and active [Nelson et al., 2005], if cells migrate into the 

direction into which they escape the mechanical stimulus. We model the complex 

dynamics of cell migration as a friction-dominated over-damped motion with a 

stochastic contribution. In order to simplify the biomechanical interactions we leave 

aside the complex deformations of the cytoskeleton described above and model cell 

migration by Langevin-type stochastic equations of motion for each cell. 

 

The velocity of cell i is determined by: 

 

( ) 2( ) ( ( ) ( )) 2 ( )C C C
i ij j i ij i i

j

v t v t v t F D tζ ς ς η= − + + ⋅∑    (16) 

 

where ( )iv t  is the velocity of cell i, C
ijς denotes the friction between cells i and j, C

ijF  

denotes the JKR or extended Hertz – force (refer to section 3.2.3) between cells i and 

j. iς  denotes an effective friction between cell i and the extracellular matrix. ( )i tη
 
is 

an uncorrelated noise term with amplitude: 

 

)()()( tttt mnijjmin ′−=′ δδδηη      (17)

 
 

whereby i ,j denote different cells, and n,m є (x, y, z) denote the coordinates. In 

general, cells can actively control the noise amplitude A. However, the size of A has 

not been found to have a significant effect on the observed dynamics. Besides the 

noise term, the driving forces in this approach emerge from dividing cells. During 

cell division (refer to section 3.2.2) cells increase their volume and thereby exert 

biomechanical forces to cells in their neighborhood which are compressed and 

deformed and migrate in order to escape these forces. 
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3.2.5. Cell death 

In the human body, every day more than 50 million cells die [Zhivotovsky, 2004]. In 

almost all cases, cells die by either one of only two distinct mechanisms [Kanduc 

et al., 2002] [Feinstein-Rotkopf & Arama, 2009]. 

On the one hand cells may die by necrosis which designates a pathological process 

that occurs if cells are exposed to serious physical or chemical insult. On the other 

hand cells may die by apoptosis which is often also termed “programmed cell death”. 

In contrast to necrosis, apoptosis is a physiological process by which cells are 

eliminated for example during development and other normal biological processes. 

Apoptosis designates a well ordered and organized sequence of morphological 

  

 

Fig. 16: Morphological features of cell death  
(Images from [Rode et al., 2004]) 

 

events. In addition to apoptosis and necrosis, several further forms of cell death, for 

example autophagic cell death [Kourtis & Tavernarakis, 2009] or cornification 

[Lippens et al., 2009] are known. 

The major morphological differences between apoptosis and necrosis are 

summarized in Fig.16. Necrosis typically occurs if cells are exposed to an extreme 

variance of normal physiological conditions that potentially damage the plasma 

membrane for example infections, toxins, lack of oxygen, radiation or trauma. 
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Necrosis commences with an impairment of the cell’s ability to maintain homeostasis 

which leads to an influx of water and extracellular ions. This results in swelling of 

the intracellular organelles and the entire cell that, if not reversed, leads to cell 

rupture and disintegration (cell lysis). Due to the breakdown of the plasma 

membrane, cytoplasmic contents are released into extracellular fluid. By this reason, 

necrosis of cells in vivo is often accompanied by extensive damage to adjacent tissue. 

Apoptosis, in contrast, is a variant of cellular death that occurs under physiological 

conditions. Cells that are no longer required undergo apoptosis by activating strictly 

regulated intracellular machinery that orchestrates their suicide. Apoptotic cells show 

characteristic morphological and biochemical features for example chromatin 

aggregation, nuclear and cytoplasmic condensation and the formation of membrane 

bound vesicles also termed apoptotic bodies. In the final phase of apoptosis, these 

apoptotic bodies as well as the remaining cell fragments swell and lyse in a process 

termed “secondary necrosis” (refer to Fig.16). In general cells decide to undergo 

apoptosis when cellular signals that normally indicate the need for continued survival 

withdraw or when signals that indicate the need for apoptosis arise [Lauffenburger & 

Horwitz, 1996]. Apoptosis may also occur if a cell is irreparably damaged as a 

regulatory mechanism intrinsically embedded in the cells. 

In contrast to necrosis, during apoptosis cellular contents are not released and 

therefore inflammation typically does not occur. Apoptosis is essential for the 

development and maintenance of multicellular organisms [Orrenius et al., 2003]. It 

plays a vital role in embryogenesis and for example eliminates cells infected with 

viruses or cells with DNA damage. Interestingly, failure of apoptosis is also believed 

to be a major factor in the cell kinetics of tumors, both growing and regressing [Rode 

et al., 2004]. 

In our computer simulations we model necrosis and apoptosis using state transitions. 

Model cells undergo necrosis if the pressure that is exerted on them exceeds a 

specific pressure threshold NECRp . Since we do not calculate the volume of the cells 

explicitly, and since the movement of cells is strongly friction-limited so that 

calculations of the pressure by the root-mean-square-velocity (as used for gases) are 

not suitable, we define as an (approximate) measure for the pressure ip  that is 

exerted on model cell i by all adjacent cells j within interaction range by: 

 

ij
i

j ij

F
p

A

 
= −   

 
∑

ɶ

       (18)
 

 

where ijA  is the contact area between cells i and j and ijFɶ is the force in the direction 

of the normal vector of the surface of cell i (in case of adhesion: 0ijF <ɶ , in case of 

repulsive interaction 0ijF >ɶ  and in equilibrium distance 0ijF =ɶ ). If NECR
ip p> , 

model cells change their internal state from proliferating or quiescent (further 
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explained in the next section) to necrotic. Under normal conditions, necrotic cells are 

physically removed from the simulation which models cell lysis. In section 3.5 we 

additionally introduce state transitions that are based on the local nutrient 

concentration. In this case cells may become necrotic due to a lack of nutrient. 
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3.3. Monolayer cultures 

A commonly used cell culturing technique to study growing cell populations in vitro 

is the monolayer culture. In a monolayer culture cells are seeded to grow in a Petri 

dish coated with proteins and liquid media containing specified quantities of small 

molecules such as salts, glucose, amino acids, and vitamins, and furthermore growth 

factors and transferrin, which carries iron into cells [Eagle, 1955] [Ham, 1965] 

[Hayashi & Sato, 1976] [Sato et al., 1982]. Monolayers mainly form two-

dimensional colonies [Bru et al., 1998] [Bru et al., 2003] and thus are easy to 

manipulate and easy to observe [Werner & Noé, 1993] [Castell & Gómez-Lechón, 

2009]. Fig.17A shows a typical example of a monolayer culture. 

Despite recent advances in cell culturing techniques (see for example section 3.5), 

two-dimensional in vitro cell cultures remain an important experimental tool in 

understanding and analyzing the mechanisms involved in the growth dynamics of 

cell populations. Treatment strategies for a number of diseases may be tested in vitro 

with respect to their efficiency and their toxicity before being applied to in vivo 

systems. This in particular involves drug testing, radiation, and chemotherapy 

strategies against cancer [Santini et al., 1999]. 

 

 

Fig. 17: Monolayer cultures in vitro and in silico 
 A: Typical monolayer culture in vitro [Hoehme, 2007], B: Typical monolayer in the model. 

C: Monolayer growth scenario. Shown are snapshots at N = 1, 2, 30, 100, 500, 5000 and 

30000 cells, respectively. B/C: Above a certain monolayer size the main cell proliferation 

(left half of B, also see Supporting video 2) is suppressed by a form of contact inhibition in 

the interior of the monolayer due to an increased pressure (right half of B)  

 



 

 

58 3. Modeling growing cell populations 

Many types of normal cells need anchorage to grow and proliferate. When normal 

fibroblasts or epithelial cells, for example, are cultured in suspension they round off 

and usually do not divide [Burrige, 1986]. In order to commence division they need 

to be anchored in the substrate by focal contacts. Focal contacts are links of the actin 

cytoskeleton by cell-surface matrix receptors (integrins) to extracellular matrix 

(ECM) molecules, such as laminin or fibronectin. The binding of ECM molecules to 

integrins leads to the local activation of intracellular signaling pathways that can 

promote the survival, growth and division of cells. As a consequence, normal cells 

usually stop division at confluence whereby the cells form a closed layer on the floor 

of the Petri dish. 

We model monolayer cultures by constraining cell growth and division to a plane 

that represents the floor of a Petri dish. The growing cell population is thereby 

restricted to two dimensions which compared to the three-dimensional situation 

significantly reduces the computational complexity of a number of important 

calculations in the model for example the detection of the interaction partners or the 

computation of Euclidean distances. Additionally and in analogy to the experimental 

situation, simulated monolayer cultures are easy to observe and thus represent a very 

useful tool for example to test the implementation of new algorithms or to directly 

compare to experimental data.  

 

 

3.3.1. Monolayer growth kinetics 

[Bru et al., 1998] have grown two-dimensional tumor monolayer cultures from C6 

rat astrocyte glioma cells. Surprisingly, they observed a linear growth of the tumor 

diameter L with time t (Fig.19A) even if the monolayer was covered with additional 

nutrient medium. Despite all cells were in contact to the nutrient medium and hence 

no shortage of glucose (or oxygen) supply occurred, the growth was not exponential 

but linear. Moreover, above a certain population size a characteristic proliferation 

pattern formed with the highest proliferation activity close to the tumor boundary 

[Bru et al., 2003]. This suggests that the division of cells in the interior of the 

monolayer culture may be repressed by a form of contact inhibition. This finding has 

stimulated us to study whether the growth kinetics and spatial growth pattern could 

be explained by a mechanical form of contact inhibition [Drasdo & Hoehme, 2005]. 

As long as a monolayer is sufficiently small the number of cells that have to 

rearrange if a cell in the monolayer interior grows or divides remains small. 

Accordingly a growing cell in the monolayer interior is in general able to exert a 

sufficiently strong force on its neighbors to push them aside or stimulate them to 

actively migrate away. Since glucose and oxygen are not limiting, in such initial 

phase cells divide everywhere in the monolayer hence the cell population size grows 

exponentially fast. Above a certain monolayer size cells sufficiently far in the 

monolayer interior should become jammed between so many surrounding cells that 

they are neither capable of pushing their neighbors aside nor is active migration of 
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surrounding cells fast enough to generate sufficient space for interior cells to divide. 

This would result in a large pressure inside the monolayer which would relax 

towards the boundary only within a limited number of surface cell layers where cells 

still have sufficient space for migration. In this regime, 2dL dt v L τ= ≈ ∆ , where 

L∆  is the width of the proliferating rim (white in Fig.17B) and τ is the cycle time. 

Alternatively to this biomechanical approach, one may think of contact inhibition as 

initiated by the interaction of cell surface receptor molecules. In this case, if cell-cell 

attraction is present, only the outermost cells of the monolayer would be able to 

divide in which case the growth velocity would be 2l/τ ≈ 1µm/h (l: cell diameter) that 

is considerably smaller than the value of 5.8 µm/h found by [Bru et al., 2003]. Note 

that this case corresponds to the assumption of the Eden model [Eden, 1961] in 

which cells occupy sites of a lattice, at most one cell per lattice site, and cell division 

can only occur onto adjacent free lattice sites. 

Another possible alternative would be that the 

boundary cells detach from the monolayer and freely 

migrate away from compact monolayer compound. 

Such behavior can be observed for invading tumor 

cells [Weinberg, 2007] and is also shown in Fig.17A. 

In this case the boundary of the monolayer would not 

be sharp but disperse. Such a behavior is qualitatively 

modeled by the Fischer-KPP-equation in which the 

local density of cells is assumed to change by logistic 

growth and diffusion (e.g. [Xin, 2000], [Swanson 

et al., 2000]). However, the shape of the cell 

aggregates observed by Bru and co-workers suggests 

that at least for C6 rat astrocyte cells [Bru et al., 1998] 

and for HT-29 cells [Bru et al., 2003] it is not the migration of detached cells that is 

responsible for the observed linear growth regime. 

In order to model contact inhibition we defined further state transitions that 

complement the ones already defined in section 3.2.5 (Fig.18, red arrows). In the 

extended model used in this section cells stop to proliferate if they are surrounded by 

too many adjacent cells, i.e., if the pressure ip  (Eqn.18) that is exerted on model cell 

i exceeds a certain threshold QUIESp . In this case cells change their state from 

proliferating to quiescent (Fig. 18, blue arrow). However, this state transition was 

only evaluated right after cell division which models the experimental observation 

that cell only switch to G0 phase (quiescent state) at a certain restriction point in the 

cell cycle (Fig.11). If later QUIES
ip p<  cells are able to reenter the cell cycle and 

resume proliferation. This was modeled by a transition back to proliferating state 

(Fig.18, green arrow).  

Alternatively to pressure-based state transitions we modeled contact inhibition by 

deformation-based state transitions. In this case we approximated the deformation of 

 
Fig. 18: State transitions in 

the model 
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a cell i by the Euclidean distance 
HER
ijd  (as defined in section 3.2.3.1) to its nearest 

neighbor cell j. Based on this measure a cell i comes quiescent if 
HER
ijd ζ≤  (Fig.18, 

blue arrow) and resumes proliferation if 
HER
ijd ζ>  (Fig.18, green arrow), where 1 ζ−  

is a critical deformation (or compression) threshold. Again, the model cells either 

become quiescent immediately after cell division or are committed to complete the 

cell cycle. 

Since in the monolayer experiments by [Bru et al., 1998] nutrients were equally 

accessible to all cells, it was not necessary to model glucose or oxygen explicitly. 

Fig. 17B/C shows typical morphologies of a simulated growing monolayer culture 

using the described model and illustrates the formation of a layer-like proliferation 

pattern due to the described state transitions (also see Supporting videos 2 and 3). 

When the simulated monolayer reached a certain size, proliferation was mainly 

restricted to outer cell layers while in the interior almost no proliferation can be 

found due to contact inhibition in agreement with the experimental observations [Bru 

et al., 1998] [Bru et al., 2003]. As shown in Fig.19A the time development of the 

monolayer diameter in our model was also in good agreement with the experimental 

observations. 

We also tested the situation where in this surface growth regime cells in the interior 

became apoptotic due to a too long lasting extensive pressure and were removed 

from the simulation modeling cell lysis. In this scenario the monolayer expansion 

velocity v decreased only negligibly since the space left by apoptotic cells was 

immediately refilled by dividing neighbor cells. Hence apoptosis did not affect the 

total cell number in our simulations. 

Our explanation of the specific monolayer growth kinetics by proposing a form of 

mechanical contact inhibition is supported by the observation of [Bru, 2004] that 

almost each cell was in close contact to its neighbors. The inherent coupling of 

mechanical stress and cell kinetics is also supported by experiments in a number of 

publications (e.g. [Boucher et al., 1990], [Boucher et al., 1997], [Helmlinger et al., 

1997], [Gutmann et al., 1992]). 

Our model predicts that the expansion velocity can be changed by mechanisms that 

either modify the thickness of the proliferation layer L∆ or modify the cell cycle time 

τ. Our computer simulations suggest that an increase of (1) the cell motility which 

can be achieved by increasing D or, analogously, by decreasing the friction between 

cells and their environment or (2) the cell’s Young-modulus E (the cell elasticity) 

delays the cross-over from exponential to linear growth of L and increases the 

monolayer expansion velocity in the surface growth regime (Fig.19 A-D). A larger 

cell motility or smaller cell-environment friction facilitates relaxation of the 

mechanical stress in the proliferating rim. However, migration over distances large 

compared to the cell diameter was not observed within the viable rim in our 

simulations. A larger E increases the force necessary to cause the critical cell 

deformation at which a stop of cell growth is triggered. Hence both result in a larger  
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Fig. 19: Monolayer growth dynamics. 

A: Growth of monolayer diameter L(t) (filled circles: experimental data from [Bru et al., 

1998], other symbols: model simulations). An increase of the cell motility (via D), or of the 

Young modulus E result in an increase of the expansion velocity v dL dt= , and B: extends 

the initial exponential growth regime. E0 = 400 Pa, D0 = 1.27 × 10−11 cm2 s−1 is the reference 

parameter set for the simulations of Bru’s data. C: Expansion for 0.6 0.81ζ≤ ≤ . For larger ζ 

the growth velocity v dL dt=  decreases since the cells become quiescent at a smaller degree 

of deformation. For the curves denoted by the star (‘*’) in (C) and (D), E = 600 Pa, ζ= 0.81. 

For the curves denoted by ‘+’, E = 600 Pa. For all other curves E = 400 Pa. D: 
1 2

dN dt

shows a monotonic increase with decreasing ζ. Note, that 90 320µm d v µm d≤ ≤  is within 

the range observed for different cell lines in [Bru et al., 2003]. 

 

size L∆  of the proliferating rim. Also a decrease of the critical deformation (or 

compression) threshold 1 ζ−  reduced v (Fig.19 B-D). An inhibition of cell division 

triggered by a limitation of growth factors (e.g. [Alberts et al., 2002]), for example, 

would not show the predicted behavior. 
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3.3.2. Subclone analysis 

We also studied clones of cells that originate from the same mother cell. The size of 

these so called subclones reflects the capability of each cell to create a significant 

offspring which we believe reveals information on the competition of cells for free 

space. Our model predicts that adjacent cells in the monolayer with identical 

properties can form subclones of largely different size as a consequence of a 

competition of growing and dividing cells for free space (Fig.20). Those cells which 

are under slightly smaller compression can, on the average, more easily grow and 

divide than other cells which are under larger compression. At the monolayer border, 

usually the cells at outermost, convex positions are under smaller compression 

(arrow in the magnification of Fig.20A) which often allows them to outcompete 

clones which are formed by cells at concave positions. One way to experimentally 

verify this observation of clonal competition found in our computer simulations is to 

label individual cells by markers such as BrdU [Alison & Sarraf, 1998]. Once BrdU 

has been integrated into the cell’s DNA, it is passed on to its daughter cells in case 

the cell divides. Thereby it could be used to label cell subclones.  

We measure the size of the subclones by enumerating all cells in chronological order 

(based on their time of birth) from 1,...,k N=  and count the offspring ( )kN t

(Fig.20B) that arose from cell k ( 1N N=
 by definition). The average clone size was 

expected to behave as: 

 

( )
m

p

q N m
N

N

−
=        (19) 

 

where m enumerates all cells in chronological order from 1,..., pm N= the number of 

proliferating cells and q is a fit parameter. pN m=
 
in the exponential (m ∝ exp(t/τ )) 

and sd d
pN m L l= ∆ in the surface growth ( dm t∝ ) regime, where ds is the global 

surface dimension, and d the dimension into which the tumor is expanding (for 

monolayers, ds = 1, d = 2). Hence, for the three subclones labeled red, green and blue 

in Fig.20A approximately the same clone sizes would be expected while the 

observed clone sizes show significant differences. For monolayers in the surface 

growth regime the gliding average ,m mN ∆ , where m∆ denotes the window size (here 

m∆ = 100) obeys the relation: 
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This is illustrated in Fig.20C, where we have drawn: 

 

,

( / )

( )
m m s

L l m
Y N q

N m
∆

∆
≡ × ≈

−
      (21) 

 

where we have approximated mN  by ,m mN ∆ with m∆  = 100 and 510N = . The 

smaller the proliferating rim (or equivalently the expansion velocity v), the larger is 

the fluctuation of the subclone sizes given all cells have the same average τ. The 

decay of Y for small m’s (m < ∼5000) in Fig.20C indicates the exponential growth 

regime. 

 

 

  

 
Fig.20: Subclone statistics. 

A: Simulated monolayer culture where the subclones of three different cells have been 

labeled in red, blue and green. The arrow within the magnification shows a cell at a locally 

convex position of the monolayer border that has a larger probability to form a large clone.  

B: Sub-clone statistics Nk for a typical monolayer simulation for the parameters D=5D0 

(cyan), D=0.37D0 (black). C: Y as defined in Eqn.21 for the same monolayer. 
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3.4. From 2D towards 3D: Detachment from substrate 

Two-dimensional monolayer cultures are an important experimental tool to study 

growing cell populations in vitro. However, tumor cells are often able to grow and 

divide anchorage-independent and hence do not stop to grow after confluence. 

Whether cell lines grow as monolayers or also expand perpendicular to the substrate 

depends on whether certain mechanisms that control growth and apoptosis work 

properly. Different cell lines originating from the same tissue may grow very 

differently. For example, while HCT116 cells, a human colon carcinoma cell line, 

grow mainly as a monolayer, WiDr cells, a human colon adenocarcinoma cell line, 

quickly expand into the direction perpendicular to the plane of the substrate 

[Noguchi et al., 1979] [Lachmann et al., 1988]. After studying the morphology and 

growth kinetics of two-dimensional monolayers in the previous section we now 

explore the effect of simulated knockouts of growth control mechanisms and show 

that the phenotype in this case can dramatically change. In this section we study cell 

detachment and thereby take first steps towards the simulation of growing cell 

populations in 3D. 

Epithelial cells, which typically form the inner and outer surfaces of the body 

[Junqueira & Carneiro, 2005], are often subject to proliferation that depends on cell-

substrate contact and anoikis (a special type of selective programmed cell death). 

Therefore in cell cultures they typically grow to confluent cell monolayers [Li et al., 

2003] [Warchol, 2002] [Klekotka et al., 2001] forming a one-cell-thick layer which 

covers the total area of the culture dish. Often epithelial cells establish a cell polarity.  

The introduction of different oncogenes into cultured epithelial cell lines affects their 

signal transduction pathways [Orford et al., 1999] [Yan et al., 1997] [Lu et al., 1995]. 

In cell lines which normally would form cell monolayers this can result in a 

breakdown of epithelial cell polarity due to changes of the cellular adhesion 

properties [Yan et al., 1997]. Additionally, oncogenes may prevent anoikis that 

normally occurs if cells loose contact to the substrate [Stupack & Cheresh, 2002] by 

interrupting apoptotic signaling pathways [Lu et al., 1995]. Thereby the introduction 

of oncogenes may enable anchorage independent growth, which is characteristic for 

many tumor cell lines [Bates et al., 2000] [Santini et al., 2000]. The accumulation of 

such altered cells at confluence can lead to the formation of multilayers [Yan et al., 

1997] or to the formation of spheroidal aggregates [Lu et al., 1995]. In order to 

explain these phenotypic differences between non-altered and altered cells, biologists 

mainly have been focusing on the molecular mechanisms to understand how 

molecular signals from other cells or the substrate are transduced from the cell 

surface into the cell and affect the genetic control of cell proliferation and death 

[Orford et al., 1999] [Yan et al., 1997] [Lu et al., 1995]. However, epithelial cells are 

also able to recognize changes within the local microenvironment by sensing the 

degree of their own extension or compression, and thereby couple cell shape changes 

to cell migration and proliferation [Gloushankova et al., 1997]. Thus cell shape may  
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Fig. 21: Destabilization scenario of a growing monolayer 

Simulations use extended Hertz model (A) or JKR model (B). Blue color indicates direct 

substrate contact. (1) denotes no knockout, the further numbers denote knocked-out control 

mechanisms, namely, the knockout of (2) contact inhibition (3) anchorage-dependent 

proliferation and contact inhibition, and (4) anoikis (anchorage-dependent apoptosis), 

anchorage-dependent proliferation and contact inhibition. The parameters in A and B are the 

same (for details see Appendix 5). As the consequence of the hysteresis in the JKR model, 

much less cells detach from the substrate for the JKR model than for the extended Hertz 

model (4). For growth in perfect one-cell-thick monolayers (1) the differences are 

negligible. 

 

be another critical factor that influences cell proliferation, quiescence and 

death[Chen et al., 1997]. Hence, some aspects of multicellular tissue organization in 

epithelial cells can be directly attributed to the physical interaction between 

individual cells and their neighbors, and between individual cells and the substrate 

[Galle et al., 2005].Monolayer cultures in experiments are not completely flat but 

show small spatial fluctuations as a consequence of stochastic growth and re-

arrangement processes. In order to reflect this situation and facilitate cell growth that 

is not confined to a purely two-dimensional setting, we remove the explicit limitation 

to two-dimensional space that was used in the previous section to represent a well-

functioning contact inhibition of growth.  

Cells within monolayers experience forces from adjacent cells due to cell 

micromotility and proliferation that are not completely parallel to the substrate but 

have a component perpendicular to the plane of the substrate. If this perpendicular 

component of the force exerted on a cell is directed outwards, away from the 

substrate, and if it overcomes the cell-substrate adhesion force then this cell may be 

pushed out of the one-cell-thick layer that is in contact with the substrate (Fig.21). 

This situation is most likely to occur in the interior of the monolayer because of high 

local pressure as we showed in section 3.3 (Fig.17B). The probability of cell-
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substrate detachment further increases for cell lines which are either insensitive to 

contact inhibition or for which contact inhibition has completely been switched off.  

Usually cells that loose contact to the substrate do not proliferate anymore 

(anchorage-dependent proliferation) and after a period of several hours undergo 

apoptosis (anchorage-dependent apoptosis termed anoikis). In Fig.21 we study (1) 

normal monolayers (as described in section 3.3) in comparison to successive knock-

outs of (2) contact inhibition, (3) anchorage-dependent proliferation in addition to (2) 

and (4) anoikis in addition to (3). Model cells with a knocked out contact inhibition 

mechanism (2) are assumed to not stop proliferation even if a critical compression or 

deformation threshold has been overcome. Cells with additionally knocked out 

anchorage-dependent proliferation (3) do not stop to proliferate even if they have lost 

substrate contact and if furthermore anoikis (4) has been knocked out, the cells are 

assumed to not undergo apoptosis after they lost substrate contact while cells under 

normal conditions die a few hours after loss of substrate contact. 

As long as anoikis was still present (we assume an apoptotic rate of 4 h-1 according 

to [Galle et al., 2005]) a quasi-monolayer was maintained and again a surface growth 

regime with L ∝ t formed. As long as anoikis did not affect cells in the proliferating 

rim, also the monolayer growth kinetics remained unaffected. 

Only if anoikis was knocked out, a significant piling up perpendicular to the plane of 

the substrate occurred (Fig.21-4). 

Furthermore, we studied the influence of the contact model and therefore compared 

the results obtained with the extended Hertz-model and the JKR-model (both 

elaborated in section 3.2.3). The qualitative results were the same independently of 

whether the extended Hertz- or JKR-model was used. However, the hysteresis effect 

that occurs in the JKR-model led to a delay in the detachment process of cells from 

the substrate compared to the extended Hertz-model (Fig.21-A/B4). Nevertheless, 

the qualitative results in our simulations are very robust against changes of model 

details [Galle et al., 2005].  
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3.5. Tumor spheroids  

In early stages of cancer, cells in many cases suffer from a loss of growth control 

mechanisms as elaborated in the previous section. Such tumor cells are often able to 

grow and divide anchorage-independent thereby forming three-dimensional cell 

populations. It became more and more apparent that two-dimensional monolayer 

cultures, despite being a valuable experimental tool regarding important aspects of 

multicellular growth, are not suitable as a convincing in vitro model for complex 

three-dimensional cell assemblies for a number of reasons [Santini & Rainaldi, 

1999]. Solid in vivo tumors for example typically grow as three-dimensional 

aggregates embedded in tissue of other cells, are influenced by external biophysical 

stress and are exposed to non-uniform distributions of oxygen and nutrient 

concentrations. Obviously, these complex variations in a three-dimensional tumor  

 

 

Fig. 22: Multicellular tumor spheroids (MCTS). A: Scanning electron micrograph of a 

single MCTS [Yu et al., n.d.] B: Scanning electron micrograph of A431 MCTS grown for 6 

days using the gyratory rotation method. Spheroids appear regular in shape and have a 

smooth surface [Santini & Rainaldi, 1999]. C: Tumor spheroid (green) with internal cell 

death (red) [Cheng et al., 2009] D: Representative HE stained paraffin section through the 

center of a MCTS [Kunz-Schughart, 1999]. Bar = 150 µm. E: Magnification of D. Numbers 

indicate location of necrotic core (1), quiescent layer (2) and viable rim (3).  
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microenvironment cannot be reflected by two-dimensional monolayers in which for 

example all cells are equally exposed to oxygen and nutrients. 

In order to overcome the limitations of monolayer cultures, multicellular tumor 

spheroids (MCTS) have been developed (Fig.22). After the pioneering work of 

[Holtfreter, 1944] and [Moscona, 1952] who studied embryonic cell aggregates to 

examine the development of amphibians, the technique of culturing cells in three-

dimensional aggregates was later also applied to cancer research [Halpern et al., 

1966] [Schleich, 1967] [Sutherland et al., 1971]. MCTS are easy to handle in the 

laboratory and provide a much more realistic in vitro model for the three-

dimensional structure and microenvironmental conditions of in vivo tumors [Santini 

& Rainaldi, 1999]. Technically, MCTS can be cultured by various experimental 

methods for example the liquid-overlay technique [Carlsson & Yuhas, 1984], the 

spinner flask method [Sutherland & Durand, 1984] or the gyratory rotation system 

[Santini et al., 1987]. Due to the cultivation as spherical aggregates MCTS restore 

many functional and morphological features of the original tissue and for example 

were found to be similar to avascular tumor nodules or microregions of solid in-situ 

tumors regarding growth kinetics and internal spatial structure [Kunz-Schughart, 

1999]. They may also contain an extensive extracellular matrix that often differs in 

the relative amount and assembly from those of the corresponding monolayer 

cultures. In the following, we therefore extend our model in order to simulate three-

dimensional tumor spheroids and compare our results to experimental data for 

example by Freyer and Sutherland who studied the effect of glucose and oxygen on 

the growth of MCTS [Freyer & Sutherland, 1985] [Freyer & Sutherland, 1986].  

 

3.5.1. Spheroid morphology 

In contrast to monolayer cultures, in avascular tumor spheroids glucose and oxygen 

can penetrate the tumor only through its surface. Therefore, the farther a cell is 

situated in the tumor interior the less glucose and oxygen are available because those 

cells which are closer to the surface have already consumed parts of the penetrating 

glucose and oxygen. For this reason above a certain tumor diameter of about 400–

600 µm (crossover-size) MCTS usually consist of an outer shell of proliferating 

(dividing) cells, an intermediate layer of quiescent (resting) cells and an inner core of 

necrotic (dead) cells (Fig.22C-E) [Folkman & Hochberg, 1973] [Kunz-Schughart, 

1999]. Typically, the outermost viable rim measures 100 - 300 µm. [Sutherland, 

1988]. 

In order to study the potential impact of this specific morphology on tumor growth 

kinetics, we extended our model by explicitly implementing nutrient diffusion and 

consumption. We assumed glucose to be the limiting nutrient. However, in a 

situation where oxygen is the limiting factor for the growth of MCTS, the 

corresponding model could be formulated analogously. In the following we study the 

typical experimental environment in which a fixed glucose concentration c0 is  
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maintained outside the tumor [Macleod & Langdon, 2004]. The glucose diffuses with 

a diffusion coefficient Dglc and is locally consumed by the model cells with a rate gglc. 

We included this in the model by a reaction-diffusion equation (Eqn.22) that we 

solved using the explicit Euler Forward Method [Press & Vetterling, 1992]. Because 

we fulfill the Courant-Friedrichs-Lewy condition [Courant & Lewy, 1967], this 

technique combines a simple implementation with reasonable accuracy and stability. 

We use a discrete and regular lattice where each lattice cube had an edge length of 

2R (cell diameter): 
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Fig. 23: Simulated multicellular tumor spheroid.  

Typical tumor growth scenario from N(t = 0d) = 1 until N(t = 22d) = 250000 cells in the last 

picture (also see Supporting video 4). The arrows indicate the time direction. Cells in the 

outer boundary layer (white / light grey / light green) form a proliferating rim enclosing a 

layer of quiescent cells (green) and a necrotic core (yellow, red, black), where glucose has 

been depleted. The concentration of glucose is illustrated in the upper left corner of the last 

image (green = high, red = low glucose concentration). 



 

 

70 3. Modeling growing cell populations 

where ( , )n r t is the local density of cells at position r at time t . ( ) 1xΘ = for x > 0 and 

( ) 0xΘ = otherwise. We further assumed that cells can only proliferate if the local 

glucose concentration ( , )c r t  exceeds a certain threshold QUIESc . Otherwise they enter 

a quiescent state. Moreover, if ( , )c r t  falls below a second threshold NECRc  

( )QUIES NECRc c≥  cells undergo necrosis. In contrast to apoptosis [Alison & Sarraf, 

1998], cells undergoing necrosis first swell and then lyse by fragmentizing into 

pieces (for details also see section 3.2.5 and Fig.16). Accordingly, necrotic cells were 

usually not included in the cell count N. We studied the case in which lysis is very 

fast and therefore immediately removed necrotic cells from the simulation. 

These nutrient-based state transitions complement the biomechanical state transitions 

defined in section 3.3.1 (refer to Fig.18). 

Fig.23 shows a typical time series of the tumor morphology and illustrates the layer-

like proliferation pattern of MCTS in our model simulations. In agreement with the 

experimental observations [Folkman & Hochberg, 1973] [Sutherland, 1988] [Kunz-

Schughart, 1999], we found the highest proliferation activity close to the tumor 

boundary where the local concentration of glucose is the highest, while inside the 

tumor beneath an intermediate layer of quiescent cells a necrotic core formed 

(Fig.23).  

 

3.5.2. Spheroid growth kinetics 

Freyer and Sutherland investigated the effect of glucose (C6H12O6) and oxygen (O2) 

on the growth of EMT6/Ro mouse mammary carcinoma cell spheroids [Freyer & 

Sutherland, 1985] [Freyer & Sutherland, 1986]. They reported that during the first 3–

4 days the number of cells N grew exponentially fast [Freyer & Sutherland, 1985]. 

After 4 days, N continued to increase only sub-exponentially (Fig.24A-C) 

accompanied by a linear growth of the tumor diameter L (Fig.24D). Guided by the 

Gompertz growth law, which is characterized by exponential growth in early stages 

and saturation at later stages [Laird, 1964], Freyer and Sutherland concluded that the 

sub-exponential regime of N indicates saturation [Freyer & Sutherland, 1985]. 

In reanalyzing that data we found that plots of log(N) vs. log(t) (Fig.24A) and 3 N

vs. t (Fig.24B) (t denotes time) suggest a power-law-like behavior 3N t∝  rather than 

a saturation as long as the glucose and oxygen medium concentrations were not too 

small [Drasdo & Hoehme, 2005]. This indicates that curve fitting by purely 

phenomenological growth laws, such as the Gompertz law, can be misleading. 

The time developments of the tumor diameter and population size in our model both 

showed a very good agreement with the experimental findings (Fig.24B-D). After an 

initial exponential increase of the cell population size (Fig.24C), we found that our 

computer simulations suggest that asymptotically 3 ( )N t t∝  that is 3( )N t t∝  

(Fig.24A). Note, that although the spread of the curves for N(t)1/3 for the two glucose  
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Fig. 24: Tumor spheroid growth kinetics. 

A: Population size N(t) for tumor spheroids in experiments [Freyer & Sutherland, 1985] 

[Freyer & Sutherland, 1986] in a log-log plot for different medium glucose c0 and oxygen 

concentrations o0. (1): c0, o0 not known [Freyer & Sutherland, 1985] (2): c0 = 16.5 mM, o0 = 

0.28 mM, (3): c0=16.5 mM, o0=0.07 mM, (4): c0=0.08 mM, o0=0.28 mM. The time axis for 

the data sets (2)-(4) has been rescaled as indicated in the legend to show a power-law 

behavior in all data sets. B: Model simulations (lines) to the data sets (2) and (4) (symbols). 

Shown is N1/d vs. t (d = 3 for spheroids). C: Initial phase of growth of population size N for 

the data sets (2) and (4) in a lin-log plot. D: Corresponding plots of the tumor diameter L vs. 

t for the simulations in (B). 

medium concentrations c0 = 0.8 mM and c0 = 16 mM was significant (Fig.24B shows 

that N(t) grows much faster for c0 = 16 mM than for c0 = 0.8 mM), there was almost 

no spread in the corresponding L(t)-curves (Fig.24D). Apparently, L(t) was almost 

unaffected by the 20-fold change of the glucose medium concentration while N(t) 

was not. Hence, glucose medium concentrations in the range 0.8 mM ≤ c0 ≤ 16 mM 

seem to have no influence on the growth of the tumor diameter L which therefore 

cannot be determined by glucose control in this case. Since the cell population size N 

did change significant for different nutrient medium concentrations, it must be the 

size of the necrotic core that is controlled by c0. Along this line of argument, our 

model suggests the same mechanical form of contact inhibition that was already able 

to explain the existence of the linear expansion regime of the monolayers diameter 

(in section 3.3) to be a likely mechanism that could play an important role in the 

control of tumor growth.  
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Note that despite the existence of a (cell-free) necrotic core N ∝ t3, L ∝ t and thus N 

∝ L3 which seems to be a contradiction at least for large necrotic core sizes, because 

in case the average cell size remains the same for all L, one obtains N ∝ L3 only if the 

total cell count includes the necrotic cells. In this case N ∝ L3 would denote cells 

distributed over the tumor volume 34 3 ( 2)V Lπ= ⋅ .  If cells in the necrotic core 

were not included in the cell count, N ∝ L2 as long as neither the average cell size nor 

the average cell density changes. This, however, is in contrast to the experimental 

data that suggests N ∝ L3. 

However, this pretended contradiction can be resolved by taking into account that the 

median cell volume cV  has been observed to decrease with increasing tumor 

diameter as 
1

cV L−∝  [Freyer & Sutherland, 1985]. This can immediately be seen in 

case the size L∆  of the viable rim is much smaller than the tumor diameter L. Here: 

 

3 3 2 34
( )

3
c iV N V r r L L N Lπ π∝ = − ≈ ∆ ⇔ ∝     (23) 

where 
1

cV L−∝ has been used. Here ir r L= −∆ is the inner radius of the viable rim, 

2r L=  the tumor radius and V is the tumor volume. Accordingly, for the model 

simulations shown in Fig.24 we removed the necrotic core and hence did not include 

it in the total cell count. Furthermore, we modeled a decrease of the median cell 

volume with L (
1

cV L−∝ ) as observed by [Freyer & Sutherland, 1985] by assuming 

that daughter cells are slightly smaller than their mother cell. Thereby N ∝ L3 even if 

the viable cells N are confined to a surface layer of constant width. So interestingly, 

the decrease of the median cell size and the cell loss due to necrosis in the center of 

the tumor spheroid occur in such a way, that still N ∝ L3 is maintained. In a more 

recent model [Hoehme & Drasdo, 2009a] we suppressed the assumption that 

daughter cells are smaller than the mother cell and assumed instead, that most of the 

cell growth occurs after the cell has passed the restriction point. This is sufficient to 

observe the correct relation of the median cell volume versus the tumor diameter.  

The growth velocity 2 ev L τ≈ ∆ increases with the effective thickness L∆ of the 

proliferating rim. eτ denotes the effective cycle time which was determined from the 

cycle time distribution [Drasdo & Hoehme, 2005]. The small effect of c0 on v 

suggests that c0 has almost no effect on L∆  in agreement with the conjecture by 

[Mueller-Klieser, 2000]. Moreover, we eliminated the quiescence threshold from our 

simulation for c0 = 16 mM (by choosing QUIES NECRc c= ) and found v to remain almost 

the same. The explanation for this observation could be that the quiescent cells are 

already under considerable pressure (Fig.23) and hence have a significantly larger 

than average cycletime. Therefore they hardly contribute to the tumor expansion 

velocity. Since most cell divisions occur close to the boundary, a quiescent threshold 

has to be sufficiently close to c0 to have a major impact on L∆ . 
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On the other hand we found the necrotic core at the same L to be larger for smaller 

c0: the width of the viable rim L∆  was about 140 µm for c0 = 16.5 mM and about 80 

µm for c0 = 0.8 mM respectively. In order to verify our prediction that v may largely 

be triggered by a biomechanical form of contact inhibition due to mechanical stress 

rather than by nutrient limitation, we studied 0c →∞
 (no nutrient limitation). In this 

case we obtained a growth velocity v which was only ∼15% above the value for c0 = 

16.5 mM, whereby the minor increase of v with c0 likely resulted from a small 

contribution of expansion forces from cells in slightly larger viable rims for 0c →∞ . 

Nevertheless, this observation supports our prediction that the growth kinetics of 

MCTS could be largely determined by the same biomechanical form of contact 

inhibition that also determined the growth of monolayer cultures. 

 

3.5.3 Discussion 

Recently, agent-based models of multicellular spheroids have been studied by 

different authors. For example [Schaller & Meyer-Hermann, 2005] assumed that 

cells move deterministically by being pushed by dividing cells. The authors obtained 

a good agreement of their results with the experimental observations of the 

population size but unfortunately did not consider the tumor diameter. Lattice-based 

models of tumor spheroid growth have been considered for example by [Dormann & 

Deutsch, 2002], [Stott et al., 1999] [Jiang et al., 2005] [Radszuweit et al., 2009]. 

[Dormann & Deutsch, 2002] considered a cellular automaton model in which each 

cell was represented by one lattice site and included the effect of nutrients. [Stott 

et al., 1999] used a generalized Potts model in which each cell was represented by 

many lattice sites but did not include the effect of nutrients. Both models are two-

dimensional and in both models the authors qualitatively compared their findings to 

the diameter growth observed by [Folkman & Hochberg, 1973] but did not compare 

to data on the population size. [Jiang et al., 2005] established a multiscale stochastic 

Monte-Carlo simulation model also based on the generalized Potts model. Here, each 

cell occupied up to 64 nodes on a three-dimensional lattice. The authors include an 

intracellular regulatory Boolean network that controlled the G1-S-phase transition of 

the cell cycle. Their results show a good agreement with the experimental data. 

However, they did not adjust their biophysical parameters to experimental 

observations. For example, the cell-cell and cell-matrix-interaction strengths were 

taken from simulations about cell-sorting scenarios in [Glazier & Graner, 1993] and 

seem to be significantly too large. [Byrne & Drasdo, 2009] derived a continuum-

based model from the agent-based model elaborated in this work. For dense 

aggregates, the authors achieved a remarkable agreement of the two model types. 

Nevertheless, models of multicellular tumor spheroids are slowly converging. Off-

lattice models of MCTS like the one presented in this work have the advantage that 

they permit the use of the same models for cell-cell and cell-matrix interactions as 

experimentalists utilize to analyze their measurements on cells [Chu et al., 2005].  
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3.6. Tumor growth into host tissue 

3.6.1. Introduction 

During the avascular stages of tumor growth that we considered in this work, an in 

vivo tumor typically expands into space that is already occupied by the surrounding 

tissue. A growing tumor must thus overcome the forces and mechanical stress 

exerted by the host tissue (the tumor microenvironment). The biophysical properties 

of this tissue are therefore likely to influence the development of tumor spheroids. 

A number of hypotheses have been proposed on the question of how and to what 

extent the physical interaction of tumor and host tissue influences tumor morphology 

and growth kinetics during cancergenesis [Gartner et al., 1992] [Vaage, 1992]. 

Nevertheless, many aspects of these complex interactions still remain to be 

experimentally elucidated [Gordon et al., 2003].  

 

 
Fig. 25: Influence of the tumor microenvironment. 

A: Tumor spheroid (dark grey) with invasive branches generated from U87MGmEGFR 

glioblastoma cell line placed in a cube filled with gel [Gordon et al., 2003]. B: Spheroid 

(green) with anisotropic shape influenced by mechanical stress (bright field image, scale 

bar: 50 µm). Red arrowheads show the edge of planar cracks in the agarose gel. C: Stress 

field visualized by micro beads (red) D: 3D visualization of spheroid in B/C (images from 

[Cheng et al., 2009]). 

[Helmlinger et al., 1997] conducted the first quantitative experimental study of 

spheroid growth inhibition by mechanical stress. The authors illustrated the 

biomechanical influence of the tumor microenvironment by growing tumor spheroids 

embedded in agarose gels of different concentration and thus rigidity. Regardless of 

host species and tissue of origin, increased mechanical stress led to significantly 

decreased maximal tumor spheroid sizes which for example in human colon 

carcinoma decreased from a diameter of 400 µm (in 0.5% agarose) to 50 µm (in 

more rigid 1% agarose). More recently, another group demonstrated that also the 

shape of tumor spheroids is dictated by the shape of the solid stress field (Fig.25) by 

using agarose gels and co-embedding fluorescent micro-beads [Cheng et al., 2009]. 

Further analysis revealed that that one reason for this observation was suppression of 

proliferation and induction of apoptosis in regions of high mechanical stress. 
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Additionally, the shape of a multicellular tumor spheroid may have a secondary 

impact on its growth dynamics. As elaborated in section 3.5, in avascular stages of 

tumor growth, glucose and oxygen can only enter the tumor through its surface. This 

leads to multi-layer tumor morphologies since cells in the tumor interior die because 

of nutrient lack. Therefore the diameter of an avascular spherical tumor is typically 

limited to 2-4 mm [Macklin & Lowengrub, 2007]. However, if the tumor surface is 

non-spherical as experimentally observed in [Bredel-Geissler et al., 1992] [Mueller-

Klieser, 1997] [Hedlund et al., 1999] [Enmon et al., 2001] [Frieboes et al., 2006], 

additional nutrients would be available in the tumor interior because of the increased 

ratio between the tumor surface and volume. This could lead to a prolonged tumor 

growth. Along this line of argument, a compact, spherical tumor shape would be 

favorable from a therapeutical point of view. 

In order to model the biomechanical influence of an embedding host tissue on the 

kinetics and morphologies of growing tumor spheroids, we simulated multicellular 

aggregates (cell type A) as elaborated in the previous sections growing either within 

a microenvironment of other cells (cell type B) that we considered tumor host tissue, 

or in a granular medium of cell-like behavior. 

Regarding the model, the only difference between the growing tumor cells of type A 

and their environment of cells of type B was that we assumed the latter to always 

remain quiescent (non-dividing). An embedding granular medium was modeled by 

host tissue of no intrinsic motility ( 0 0D = ). In contrast to an embedding tissue of 

cells that may be further influenced in complex ways by signaling and interactions 

with enzymes, the biomechanical properties of granular medium can be precisely 

controlled and thus are more directly verifiable in experiments. In the following the 

term “host tissue” encompasses both models of the embedding tissue.  

We assumed the embedding material to be adhesive. As explained in section 3.2.3, 

the strength of adhesion was defined by the density of adhesion molecules ζm. In 

general, we assumed ζm = ζAA = ζBB = ζAB = 1015m-2 , where ζAA (ζBB)  denotes the 

density of adhesion molecules in case of an interaction between two cells of type A 

(B) and ζAB  denotes the density of adhesion molecules in case of an interaction 

between a cell of type A and another cell of type B or an element of the granular 

medium. In this section, we used pressure based state transitions as described in 

section 3.3.1. 

We believe the introduction of an embedding granular medium and moreover of host 

tissue with additional micromotility to be a significant steps towards a more realistic 

modeling of an in vivo situation. In order to study the detailed impact of the 

biophysical properties of the embedding host tissue (granular cell-like medium or 

type B model cells) on growing cell clones, we modified the properties of the 

embedding material. We systematically varied its motility (section 3.6.2.), initial 

density (section 3.6.3.), elasticity (section 3.6.4), adhesion properties (section 3.6.5.) 

and average cell size (section 3.6.6.). Furthermore, we studied the impact of non-

uniform stress induced by a anisotropic environment (section 3.6.7) and additionally  
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Fig. 26: Illustration multicellular growth embedded in tissue.  

The coloring of the growing tumor (cell type A) reveals the distribution of proliferation 

activity: cells of white color have divided within the average cell cycle time, whereas green 

cells have not divided for two times the average cycletime (yellow = 4 times, red = 6 times, 

black = more than 10 times). The coloring shows that proliferation mainly takes place at the 

population border. The embedding tissue (cell type B) is colored light grey. The dynamics 

of this growth process are also illustrated in Supporting Video 5.    

 

verified our findings in a highly regenerative situation considering cytolysis (section 

3.6.8). After analyzing fractal and branching properties of certain dendritic 

morphologies (section 3.6.9) we compared our findings to experimental data by 

[Helmlinger et al., 1997] and [Galle et al., 2006] (section 3.6.10.). We always 

analyzed two- and three-dimensional populations to further improve the robustness 

of our results. 

We started our simulations with a single cell of type A embedded in 4 52 10 4 10⋅ − ⋅  

particles of the granular medium or cells of type B. The exact number of elements of 

the embedding material depended on their initial density and the spatial dimension of 

the simulation. All elements of the embedding material (granular particles or cells of 

type B) were randomly arranged (uniform distribution) in a circular (2D), spherical 

(3D) or anisotropic environment (Fig.26). During a particular simulation, the initial 

volume of this outer environment was constant and enclosed by an impermeable 

wall. Therefore the growing cell clone of cells of type A (the multicellular tumor 

spheroid) pushed away and more and more compressed the constant number of 

elements of the embedding material (the surrounding host tissue). Considering 

pressure-based state transitions as elaborated in section 3.3, this ultimately led to a 

saturation of growth. 

We studied in how far biomechanical influences of the host tissue could explain 

experimentally observed tumor morphologies and growth kinetics. Furthermore by 

using the inverse information, we were able to predict situations wherein active 

regulation mechanisms were likely to control the behavior of the cells. 
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3.6.2. Variation of host tissue motility 

In a first study, we analyzed the impact of the motility of cells in an embedding 

tissue on tumor morphology and growth. Variations of cellular motility can be 

caused for example by molecular changes in the complex coordinated cytoskeletal 

actions that are required for active cell movement [Walsh & Young, 2008].  

In our model we varied cell motility in the embedding tissue by modifying the cell 

diffusion constant DT for cell type B. In the following sections D0 designates a 

reference cell diffusion constant which also was used for cells of type A. In this 

section no granular medium was considered because granular particles were assumed 

to have no intrinsic motility (DT = 0).  

We found a variation of the motility of the embedding cells of type B to have a 

strong impact on the surface properties and growth kinetics of the expanding 

multicellular population. All described influences were found in both, two-

dimensional (Fig.27C-E) and three-dimensional (Fig.27A-B) settings. For example, a  

 

 
Fig. 27: Impact of host tissue motility. 

A: Compact tumor cell population (cell type A) growing into embedding tissue (cell type B, 

colored gray) in 3D (DT=D0). One quarter of both was cut out. Tumor cell coloring as 

described in Fig.26. B: A decreased motility of cells in the embedding tissue (DT=0.05D0) 

led to a dendritic tumor morphology. C: Compact tumor monolayer in 2D (DT=D0), D: 

Intermediate morphology in 2D (DT=0.25D0), E: Dendritic tumor monolayer in 2D 

(DT=0.05D0). Also see Supporting videos 6-9. 
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decreased motility of cells of type B (DT = 0.05D0) resulted in a significantly rougher 

spheroid surface (Fig.27B) or monolayer border (Fig.27E). Effectively such decrease 

of motility of the host tissue increased the viscosity of the tumor microenvironment 

which indicated a Saffman-Taylor-like instability [Saffman & Taylor, 1958]. 

Consistent with this assumption, in the model a continuously decreased motility led 

to continuously increased dendritic structures of increasing ramification, refinement 

and surface roughness (Fig.27C-E). The expanding clusters tended to grow only at 

the tip of their dendritic fingers where the local stress was smaller than in the 

interior. This led to local fluctuations of small wavelength on the scale of single 

cells. Surprisingly, we found this variation of motility to have only minor impact on 

the width of the proliferating rim. Nevertheless, decreased motility of the embedding 

cells reduced the expansion velocity of the embedded cell population (Fig.31) 

because the total number of proliferating cells located at tips of dendritic fingers was 

smaller compared to the continuous proliferating front of non-dendritic populations. 

We also found populations with dendritic morphologies to be less dense regarding 

the number of cells in a given volume which on the one hand resulted in saturation of 

growth at a lower total number of cells. On the other hand, however, compared to 

compact tumors, dendritic populations showed significantly (+50%) increased 

saturation radii which reflects the increased capability to biophysically invade a 

highly compressed embedding medium (Fig.31) since for a given number of cells the 

radius of gyration is larger for branching structures than for compact cell aggregates. 

If this prediction could be experimentally verified it would have direct therapeutic 

relevance because an important aspect of tumor treatment is to minimize tumor 

invasiveness. 
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Fig. 28: Impact of initial cell density and elasticity of tumor host tissue. 
A: Tumor monolayer growing embedded in tissue (colored grey) of decreased initial cell 

density (ρT ~3500 cells per mm²), B: Tissue of increased density (ρT ~7000 cells per mm²), 

C: Same setting as (B) only with additionally lowered motility of the embedding cells (DT = 

0.05D0), D: Same as (A) but with lowered host tissue motility (DT = 0.05D0), E: Alternative 

coloring of a section of (H) where tumor cells were colored black and embedding cells were 

colored according to the pressure (Eqn.18, p.55) exerted on them (black/red=high, 

yellow=medium, green=low), F: Tumor growing into host tissue (not shown here) in 3D 

(~5*105 cells). Host tissue of decreased density (ρT = 0.8ρ0). Also see Supporting videos 10 

and 11. G: Same as (F) only with increased host tissue density (ρT = 1.2ρ0, 105
 cells). Also 

see Supporting videos 12 and 13. H: Tumor monolayer (E=450 Pa) growing into host tissue 

of lowered elasticity (ET=300 Pa), I: Same as (H) only with increased tissue elasticity 

(ET=1000 Pa), K: Same setting as (I) only with additionally lowered tissue motility (DT = 

0.05D0). Red framed inset: magnification of embedding tissue. L: Same setting as (H) only 

with additionally lowered tissue motility (DT = 0.05D0). The coloring of tumor cells (A-D, 

H-L) shows their proliferation activity and corresponds to the description in the caption of 

Fig.26. 
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3.6.3. Variation of host tissue cell density 

A second important biophysical property of the tumor host tissue is its initial cell 

density. Both in vitro and in vivo, the average cell density varies from cell line to cell 

line and additionally depends on environmental factors for example the local nutrient 

concentration or cytoxic substances [Blomquist et al., 1993] [Johansson & Granéli, 

1999] [Alberts et al., 2008]. 

In our simulations we model different cell densities by changing the number of 

embedding cells or granular objects initially seeded into the free volume. Thereby, 

we studied initial cell densities (ρT) between 3500 and 7000 cells per mm² whereby 

the reference cell density (ρ0) was 5250 cells per mm². 

An increase of the initial cell density in the host tissue (ρT = 7000 cells per mm²) led 

to a significantly reduced expansion velocity of the growing tumor, an earlier 

saturation of growth at a smaller diameter and a proliferating rim of smaller width 

during growth (Fig.28B, Fig.31). Interestingly, if we decreased the initial cell density 

in the host tissue (ρT = 3500 cells per mm²) we observed the formation of large 

wavelength border fluctuations indicating the formation of fingers. We believe the 

fingers (Fig.28A) form if cells at the surface of the growing clone are able to 

establish sprouts between the bodies of embedding cells (or granular particles) 

thereby invading the environmental material. At smaller densities of the surrounding 

matter the formation of sprouts is more likely than at high densities because the 

pressure on the surface is smaller and therefore it is more likely that at some 

locations the pressure is below the critical pressure pQUIES at which cells cannot enter 

the cell cycle. Once the cell has entered the cell cycle it can more easily find 

locations between cell (particle) bodies if the density of the extracellular material is 

small. This favors finger formation. Between neighboring branches the pressure is 

elevated because the material is squeezed. Accordingly, we found the hypothesized 

increased pressure in concave areas of the growing tumor (Fig.28E), where we 

calculated the pressure as elaborated in section 3.2.5. (Eq.18). 

Additionally, we studied the impact of the tumor host tissue in case ρT and DT were 

simultaneously varied. We found the influence of the discussed variations of ρT to be 

consistent regarding the expansion velocity (Fig.31), saturation size and width of the 

proliferating rim (Fig.28C,D). Surprisingly, we found the growth of a tumor cell 

population embedded in host tissue of simultaneously decreased motility (DT = 

0.05D0) and increased initial cell density (ρT = 7000 cells per mm²) to be highly 

inhibited (Fig.28C). If this finding could be verified in experiments where the 

properties of the tumor host tissue were modified as described, the predicted 

suppression of tumor growth could have direct therapeutical implications. 

The small wavelength Saffman-Taylor-like instability that we described for growing 

populations embedded in tissue of (solely) lowered motility remained unaffected by 

variations of the initial density (Fig.28D). Again, tumor cell populations developed 

dendritic morphologies and showed an increased capability to biophysically invade a 

highly compressed embedding host tissue.  
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As in the previous section, a

continuously varied ρT

Supporting Video 10-13

 

 

3.6.4. Variation of host tissue

Another important property of the 

has been found that tumors and their associated stroma have a lower elasticity than 

normal tissue [Gieni & Hendzel, 2008

compress and eventually collapse blood and lymphatic vessels in their vicinity 

[Padera et al., 2004]. 

In general, cell elasticity is largely determined by the biophysical properties of the 

cytoskeleton, a complex and d

inner surface of the fluid lipid bilayer (

that cellular elasticity 

cytoskeleton [Safran et al.

to dynamic cell behavior as cell movement, cell shape changes or cell division. 

However, the highly non

and a detailed, experimentally

the elasticity of the cytoskeleton can be measured by an increasing number of 

experimental techniques as bulk rheology, traction force microscopy or

microscopy. In our model we introduced cell elasticity using the contact models 

described in section 3.2.3. In corresponding computer simulations we found the 

variation of elasticity of granular particles or type B cells of the embedding tiss
  

Fig. 29: Impact of

. A: An increase of the elasticity of the embedding tissue (

wavelength fluctuations 

had an inverse, smoothen
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As in the previous section, all described influences changed cont

T and were found in both, 2D and 3D (Fig.

13). 

host tissue elasticity 

Another important property of the tumor host tissue is its elasticity.

has been found that tumors and their associated stroma have a lower elasticity than 

Gieni & Hendzel, 2008] which enables them to more effectively 

compress and eventually collapse blood and lymphatic vessels in their vicinity 

ell elasticity is largely determined by the biophysical properties of the 

a complex and dynamic cross-linked protein network anchored to the 

inner surface of the fluid lipid bilayer (refer to section 3.2.1). Experiments suggest 

that cellular elasticity can be influenced by substances that depolymerize the 

al., 2005]. Furthermore, cellular elasticity is closely coupled 

to dynamic cell behavior as cell movement, cell shape changes or cell division. 

he highly non-linear elastic properties of a living cell are difficult

experimentally validated model still remains elusive. 

the elasticity of the cytoskeleton can be measured by an increasing number of 

techniques as bulk rheology, traction force microscopy or

microscopy. In our model we introduced cell elasticity using the contact models 

described in section 3.2.3. In corresponding computer simulations we found the 

variation of elasticity of granular particles or type B cells of the embedding tiss

: Impact of the elasticity of the tumor host tissue in 3D.

. A: An increase of the elasticity of the embedding tissue (ET = 300 Pa) led to large 

 (see Supporting video 14) whereas B: a decrease (

had an inverse, smoothening effect on the tumor surface. 
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continuously as we 

found in both, 2D and 3D (Fig.28F,G, see 
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ell elasticity is largely determined by the biophysical properties of the 

linked protein network anchored to the 
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influenced by substances that depolymerize the 

cellular elasticity is closely coupled 

to dynamic cell behavior as cell movement, cell shape changes or cell division. 

difficult to study 

validated model still remains elusive. Nevertheless, 

the elasticity of the cytoskeleton can be measured by an increasing number of 

techniques as bulk rheology, traction force microscopy or atomic force 

microscopy. In our model we introduced cell elasticity using the contact models 

described in section 3.2.3. In corresponding computer simulations we found the 

variation of elasticity of granular particles or type B cells of the embedding tissue to  
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have a complex influence on a growing cell population. In previous simulations, the 

elasticity of the embedding tissue ET was chosen to be equivalent to the elasticity of 

the growing tumor (type A) for which we assumed a Young’s modulus of elasticity E 

= 450 Pa [Davidson et al., 1995] [Lekka et al., 1999]. However, an increase of 

elasticity of the host tissue from a Young’s modulus of elasticity ET = 450 Pa to ET = 

300 Pa) led to a proliferating rim of increased width and an amplification of large 

wavelength fluctuations (Fig.28H, Fig.29A), whereas a decrease of the elasticity of 

the embedding tissue (ET = 1000 Pa) had the inverse effect (Fig.28I, Fig.29B). 

Furthermore, an increase of host tissue elasticity also led to an increased growth 

velocity of the tumor accompanied with saturation at an increased population size 

(Fig.31).  

If additionally to the variation of ET in the type B cells also the motility was 

decreased (DT = 0.05 D0) we observed a further amplification of the described 

influences (Fig.28K,L). Interestingly, in case the elasticity and motility of the tumor 

microenvironment were both decreased (ET = 1000 Pa, DT = 0.05 D0), the growth of 

the embedded tumor spheroid was found to be highly inhibited (Fig.28K). If 

experimentally validated, this finding may have direct therapeutical implications. 

The small wavelength Saffman-Taylor-like instabilities and the corresponding 

increased capability of the tumor to biophysically invade highly compressed host 

tissue that we already observed for cells embedded in tissue of lower motility (DT = 

0.05 D0) were not influenced by changes of the host tissue elasticity. 

 

 

3.6.5. Variation of tumor and host tissue adhesivity 

We further studied the impact of selective cell-cell adhesion [Takeichi, 1987] 

[van der Linden, 1996] whereby cells of a specific type adhere exclusively to cells of 

the same type rather than to other cells. In general, intercellular adhesion is mediated 

by transmembrane proteins (selectins, integrins, cadherins and the immunoglobulin 

(Ig) superfamily). Except for the last all of them require Ca2+ and Mg2+ in order to 

work properly. Therefore, many adhesive interactions are Ca2+ or Mg2+ dependent 

[Alberts et al., 2008]. Moreover, in tumor spheroids a greatly increased adhesion was 

found for CoCl2 induced hypoxia, while ionizing radiation had an inverse effect 

[Indovina et al., 2006].  

In the past decades many techniques have been developed to measure cellular 

adhesion, for example [Benoit et al., 2000] used a modified version of atomic force 

microscopy to measure adhesion forces between living cells and surfaces at the 

molecular level. 

In our model the strength of the adhesive forces was determined by the density ζ of 

the corresponding receptors on the cell surface (section 3.2.3). As introduced before, 

we typically chose ζAA = ζBB = ζAB = 1015m-2 [Chesla et al., 1998] [Piper et al., 

1998]. In addition to this reference situation, we studied two cases: (1) elements of 

the embedding tissue (granular particles or cells of type B) selectively adhered 
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among each other ζAA = ζBB = 1015m-2 and ζAB = 0 and (2) elements of the 

embedding tissue were not adhesive ζAA = 1015m-2 and ζBB = ζAB = 0 . In both cases 

the growing tumor cells were assumed to be selectively adhesive. In both cases, there 

was no adhesion between growing tumor cells and the embedding tissue (ζAB = 0).  

In case (1) adhesion led to the local formation of patches of larger cell density within 

the embedding tissue (red framed inset in Fig.28). The expanding clone of tumor 

cells then preferably grew between these patches. We found this to have an 

amplifying effect on the formation of large wavelength surface fluctuations. The 

locally smaller density of the host tissue also increased the expansion velocity of the 

growing cell population and its saturation radius. We found the width of the 

proliferating rim to almost remain the same. Therefore the patch formation is likely 

to be responsible for the described changes of morphology and growth dynamics. In 

case (2), where embedding cells (or granular particles) are not coherent, no local 

patch formation occurred which left cells of the host tissue uniformly distributed. 

This resulted in an approximately constant cell density within the embedding tissue. 

We found this uniform density of the tumor microenvironment to lead to decreased 

large wavelength surface fluctuations and a decreased growth velocity (Fig.31). 

Nevertheless, the formation of small wavelength Saffman-Taylor-like instabilities in 

case of simultaneously lowered embedding tissue motility (DT = 0.05D0) remained 

unaffected by variations of the embedding tissue adhesivity. 

 

 

3.6.6. Variation of average cell size of host tissue 

In the preceding sections the size (diameter) l of the growing tumor cells (type A) 

and the size lT of the elements of the embedding tissue (granular particles or type B 

cells) were identical (lT = l). However, cell size is known to vary significantly 

between different cell types and tissues and even within the same cell type. 

Nevertheless, the average cell size of a specific cell line or tissue is often well known 

due to its straightforward accessibility with bright field and electron microscopy. 

Most eukaryotic cells, for example, have an average size (diameter) of 10 - 25 µm. 

However, the average cell size is not a constant. It can be influenced by various 

factors for example cytoxic substances [Alberts et al., 2008] or genes involved in 

growth control [Saucedo & Edgar, 2002].  

Cell size may become important for example if a tumor grows into a tissue which is 

mainly composed of (in the average) smaller or larger cells (lT ≠  l).  

In order to study the influence of the size of elements of the tumor host tissue 

(granular particles or type B cells) on the growth kinetics and morphologies of a 

growing tumor cell population, we analyzed its growth into an embedding tissue 

composed of elements of different size (lT ≠  l). Thereby we studied sizes in the 

range of typical eukaryotic cells (10 µm – 25 µm). 
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Fig. 30: Impact of cell size in the embedding tissue. 

A: Morphology of a monolayer tumor cell population (black) growing embedded in cells 

(not shown) of decreased size (lT=10µm). Note the red/green-framed magnifications 

showing the encasement of the small host tissue cells. B: Growth into host tissue of 

increased cell size (lT=25µm), C: Reference population with unchanged cell size (lT = l = 

15µm), D: Decreased cell size (lT=10µm) and simultaneously increased adhesivity between 

embedding cells (ζT = 5ζm), E: Same setting as (D) but with decreased motility of 

DT=0.05D0. Note the blue-framed magnification illustrating the strong branching (Saffman-

Taylor) in this situation. 

 

For example, if we decreased the element size in the host tissue to lT = 10 µm (l = 

15µm), we found large wavelength border fluctuations to nearly vanish along with an 

increased probability for embedding objects to be encased by the growing tumor cell 

population (Fig.30A). This amalgamation of growing cells and embedding objects is 

likely to cause the observed surface smoothening, because if we increased the 

adhesivity among the embedding objects, which largely prevented their commixture 

with the growing tumor cells, we again found large wavelength surface fluctuations 

(Fig.30D). Note, that the smaller wavelength of these fluctuations (compared to 

previous sections) corresponds to the decreased element size in the host tissue.  

If we additionally decreased the motility of the host tissue (DT = 0.05D0), we again 

found the small wavelength Saffman-Taylor-like instability. The repeated 

observation of this low-motility induced instability indicates that it is a very robust 

influence of the host tissue on a growing tumor (Fig.30E). 

For an increased average element size in the host tissue (lT = 25 µm, l = 15 µm), we 

found an increase of large wavelength border fluctuations (Fig.30B) regardless of the 

adhesivity of the embedding objects. We assume that host tissue that is composed of 

elements of larger or even the same size (compared to the tumor cells) inherently 
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Fig. 31: Comparison of growth kinetics in 2D. 

A (red line): Reference simulation. DT = D0,  ρT = ρ0 = 5250 cells per mm², E = 450 Pa, ET = 

450 Pa, no selective adhesion was assumed and no cytolysis occurred, B (red dotted line): 

Lowered host tissue motility (DT = 0.05 D0), C (black line): Increased initial cell density in 

the embedding tissue (ρT ~ 7000 cells per mm²), D (blue line): Decreased initial cell density 

in the host tissue (ρT ~ 3500 cells per mm²), E (green line): Increased host tissue elasticity 

(ET=300 Pa), F (orange line): Decreased host tissue elasticity (ET=1000 Pa), G (black dotted 

line): Increased initial cell density and decreased motility (ρT ~ 7000 cells per mm², DT = 

0.05 D0), H (blue dotted line): Decreased initial cell density and motility (ρT ~ 3500 cells per 

mm², DT = 0.05 D0), I (green dotted line): Increased host tissue elasticity (ET=300 Pa) and 

lowered motility (DT = 0.05 D0), K (orange dotted line): Decreased host tissue elasticity 

(ET=1000 Pa) and lowered motility (DT = 0.05 D0), L (grey line): Reference simulation (A) 

with cytolysis. 

 

 

biophysically hampers the encasement of embedding objects that we observed for 

smaller embedding objects (lT = 10 µm). Furthermore, we found larger embedding 

objects (lT = 25 µm) to result in a slightly decreased expansion velocity, whereas 

smaller embedding objects led to a slightly increased growth velocity. In both 

situations, the width of the proliferating rim and the saturation size of the growing 

population remained unchanged. 
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3.6.7. Non-uniform stress 

In an in vivo situation it seems unlikely that mechanical stress induced by the host 

tissue that encloses a growing tumor cell population is uniformly distributed across 

its surface. In order to experimentally model such non-uniform stress, [Helmlinger 

et al., 1997] grew multicellular spheroids of different cell lines (LS174T, BA-HAN-

1, rhabdomyosarcoma and MCaIV) in vitro in cylindrical glass capillary tubes with 

an internal diameter of 1 mm. The authors found a reversible modulation of the 

spheroid shape induced by non-uniform stress. The radial stress increased faster than 

the axial stress and thus an orthotropic stress field established.  

In another, more recent study [Cheng et al., 2009] used agarose gels and fluorescent 

micro-beads to demonstrate that the shape of tumor spheroids is dictated by the shape 

of a solid stress field (see Fig.25) and to analyze this effect in more detail. 

In our model, we exemplarily studied the same experimental setting as in 

[Helmlinger et al., 1997] by changing the shape of the environment of the embedding 

objects (granular particles or type B cells) into a tube (Fig.32B) of a diameter of 1 

mm. In this case, we found the same anisotropic growth (Fig.32C) as it had been 

observed experimentally by [Helmlinger et al., 1997]. Beyond this phenomenological 

similarity, the biomechanical cell-cycle control in our model simulations (section 

3.3) was able to provide an explanation for the observed stress dependent modulation 

 

 

Fig. 32: Impact of non-uniform stress. A: 2D monolayer population growing within a 

rectangular area of embedding cells (grey), coloring of the tumor cells is the same as in 

Fig.27, also see Supporting video 15, B: Outer view of cylindrical environment (diameter = 

1mm) inducing non-uniform stress as described in [Helmlinger et al., 1997] C: 3D 

multicellular spheroid of 2.5*105 cells grown inside (B) with a anisotropic shape. D: Cross-

section of (C) showing the pressure exerted on tumor cells (red=high pressure, green=low) 

E: Cell cycle state (white= in cell cycle, grey=quiescent, black=necrotic), F: Proliferation 

activity (colors as in Fig.27). 
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of the tumor shape. We found cells in positions close to center height to be under 

increased stress (Fig.32D) induced by the cylindrical environment, which locally 

triggered an increasing number of cells to remain in G0 (quiescence) (Fig.32E). 

These cells then did not contribute to cellular proliferation anymore (Fig.32F) which 

led to the experimentally observed anisotropic axial growth (Fig.32A/C). In the 

recent study of [Cheng et al., 2009], our prediction that cell proliferation might be 

suppressed in regions of high mechanical stress was convincingly experimentally 

validated. 

If we compared the length of the radial axis (a) of the cell populations with the length 

of their longitudinal axis (b), we found values similar to those measured by 

[Helmlinger et al., 1997]. For example, for the monolayer shown in Fig.32A we 

found b aω= =1.73, while for the cell clone shown in Fig.32C we found ω =2.11. In 

the corresponding experiment Helmlinger measured ω =2.23 for LS174T spheroids 

in 0.7% agarose.  

In case the anisotropic cell population was released from its glass capillary, after 15 

days [Helmlinger et al., 1997] observed a significantly reduced variation of radial 

and longitudinal axis of ω =1.05. This suggests that anisotropic growth mostly 

vanishes if the non-uniform stress is alleviated which was also successfully captured 

by our model as after 15 days we found ω =1.13.  

In summary and in correspondence with experimental findings [Helmlinger et al., 

1997] [Cheng et al., 2009] our model suggests that non-uniform stress strongly but 

reversibly influences morphogenesis of growing cell populations. In addition to 

purely biomechanical interactions that are amplified for example by contact 

inhibition, stress may be sensed at the molecular level also leading to variations in 

intracellular growth parameters. [Cheng et al., 2009], for example, found that the 

mitochondrial pathway [de Freitas et al., 2006] [Adams & Cory, 2007] regulates 

solid stress induced apoptosis.  

 

 

3.6.8. Cytolysis of apoptotic cells 

Cytolysis, which is also designated as osmotic lysis, is a degenerative cellular 

process that involves the destruction of the outer cell membrane. This causes excess 

water to move into the cell and ultimately leads to the dissolution of the affected cell. 

A majority of current assays for measuring cytolysis are based on the detection of 

changes in plasma membrane permeability and either the subsequent leakage of 

components (e.g. cytoplasmic enzymes) or uptake of dyes which are normally not 

able to enter the cell (e.g. Trypan blue or propidium iodide).  

In our model we introduced cytolytic processes to validate the robustness of our 

findings from preceding sections in a more dynamic and regenerative environment. 

In order to model cytolysis, we assumed that after a certain time clt∆  apoptotic tumor 

cells were dissolved without any remains. In comparison to the preceding sections, 

where the main fraction of cell proliferation took place at the borders of the  
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Fig. 33: Impact of cytolytic cell renewal. 

A: Tumor cell population growing into host tissue (grey) of lowered motility (DT = 0.05D0) 

with cytolysis (∆tcl = 12h) (see Supporting video 17). B: Reference simulation (DT = D0, see 

Fig.27) but with cytolysis (see Supporting video 16). Black patches indicate areas, where 

recently cells were dissolved and the empty space had not yet been filled by growing cells 

(black arrows). The coloring is equivalent to Fig.27. C/D: Alternative stainings of (A/B) 

where the host tissue is colored red, proliferating cells are colored ochre, quiescent cells are 

grey and apoptotic cells (before cytolysis) are black, empty space remains white. E/F: 

Alternative stainings of (A/B) where cells are colored according to their compression 

(red=high, green=low compression). Also see Supporting videos 18 and 19 where ∆tcl = 4d. 

 

population, the introduction of cytolysis led to much more complex and highly 

dynamic proliferation activity patterns (Fig.33A,B). We suggest considering the 

corresponding Supporting videos 16 and 17 as only these fully reveal the dynamics 

of the changing proliferation patterns. Nevertheless, snapshots of Supporting video 

17 shown in Fig.33A/B reveal proliferating regions (colored white) even in the 

interior of the tumor cell cluster. In this situation of constant cell renewal no tumor 

cells remained arrested in G0 for a long time (as for example those colored red or 

black in Fig.27, 28 or 32). The reason for this was that densely packed cells in G0 

became apoptotic and then were removed by cytolysis after ∆tcl. Thereafter surviving 

tumor cells in vicinity of recently dissolved cells (black in Fig.33A/B, see arrows) 

were able to migrate into the freed space and reenter the cell-cycle because of 

temporarily lowered cell density and thus lowered pressure (Fig.33 E/F). If there was 

no additional nutrient limitation of growth as for example in 2D (refer to section 3.5), 

cytolysis largely destroyed (Fig.33 C/D) the typical layered proliferation pattern 

(section 3.5.1) of growing cell populations. 
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Furthermore, the constant cell renewal introduced oscillations to the growth kinetics. 

Nevertheless, the mean kinetics of population size and radius growth remained the 

same compared to the corresponding simulations without cytolysis (Fig.31). 

Moreover, we found no further changes of any of the previously described 

biomechanical influences of the tumor host tissue on the morphologies and growth 

dynamics of tumor cell populations. We therefore consider the results presented in 

previous sections to be robust and especially not depending on cell proliferation to be 

confined to the border or surface of a multicellular population. 

 

 

3.6.9. Quantitative analysis of dendritic morphologies 

In order to systematically quantify the observed morphological changes we measured 

the fractal dimension of the embedded tumor cell clone. The fractal dimension is a 

measure for the irregularity of a complex object [Dubuc et al., 1989]. The fractal 

dimension or, more formally, the Minkowski-Boulingand or box-counting dimension 

df  is given by: 
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whereby the analyzed structure is overlayed with a grid of element width ε  and 

( )N ε  designates the total number of grid elements that that structure [Schroeder, 

1992]. 

The radii of our three-dimensional tumor cell populations were too small to establish 

a robust measure of df and therefore we limited the analysis in this section to 

embedded tumor monolayers. In the following, we used the box-counting method as 

proposed in [Dubuc et al., 1989] and [Feng et al., 1996] to obtain df.  

In two dimensions, we expected N(t) ~ L2, which we approximately found for 

compact populations (Fig.31A, df = 1.98). For populations with a more dendritic 

border we expected N(t) ~ Ldf with df < 2. In agreement with this assumption, we 

found df = 1.73 (Fig.27E) for tumor cell populations growing into a host tissue of 

reduced motility (DT = 0.05D0). Furthermore, we found df =1.70 for populations 

growing into host tissue composed of smaller cells (lT = 10µm) of increased selective 

adhesivity (ζT=5ζm) (Fig.30D). The Minkowski-Boulingand dimension further 

decreased to df =1.66 if we additionally lowered the motility of the embedding cells 

(Fig.30E). 

We further analyzed the morphologies observed in our model simulations by 

counting the number of dendritic fingers of a growing tumor cell clone in different 

constant distances from its center of mass. In order to ensure that all morphological 

features had been fully established, the counting algorithm was applied only to 

populations whose growth already had been saturated.  
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We counted the number of dendritic branches by measuring the cell density ( , )d Rϕ

around a circle of radius R that had its center at the center of mass of the population 

and 0 2ϕ π≤ < . For cell populations with a dendritic morphology ( , )d Rϕ  was a 

complex oscillatory function. We calculated the number of dendritic fingers ( )B R  

and their average width ( )Rα  for different radii (Fig.34) by analyzing the oscillations 

of ( , )d Rϕ . We observed both, ( )B R  and ( )Rα  for a broad range of radii R. 

However, in order to obtain robust results we ignored very small radii at which the 

morphologies of the populations had not been properly established and large radii 

near saturation size for which the branching was influenced by the outer environment 

(Fig.30).  

Interestingly, we found the number of dendritic fingers (averaged over 5 realizations) 

to increase linearly with R (Fig.34) and their width to be constant. This observation 

was confirmed by the average number of branches ( )Rβ within a given segment 

along a specific radius R which was found to be also approximately constant (Fig.34 

inset). For the most dendritic population (Fig.30E) we found an average width of the 

dendritic fingers of ( )Rα = 97.6 µm, while for less branched populations we found 

( )Rα = 242.1 µm (Fig.27D) and ( )Rα = 376.4 µm (Fig.27C).  

 

 
Fig. 34: Quantitative analysis of dendritic morphologies. 

Number of dendritic fingers at a specific distance R from the center of mass of the tumor cell 

population. Red line: Population C in Fig.30, Dark red line: Population B in Fig.30, Orange 

line: Population D in Fig.30, Blue line: Population E in Fig.30, Inset: Average number β(R) 

of dendritic fingers for a given length on a circular segment. 
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3.6.10. Comparison to experimental data 

In order to validate our results, we compared our model simulations with 

experimental data by [Helmlinger et al., 1997] and [Galle et al., 2006]. Both grew 

multicellular tumor spheroids (LS174T and WiDr cell lines) in an inert matrix 

(agarose gels). In this experimental setting the growing cell population had to 

displace the agarose gel in order to further expand. Thereby, the agarose gel was 

increasingly compressed by the growing cell clone and thus exerted an increasing 

mechanical stress to the expanding population. [Helmlinger et al., 1997] 

demonstrated that such solid stress inhibits tumor growth and leads to a saturation of 

growth. However, if the stress was alleviated by enzymatic digestion of the agarose, 

the tumor spheroids were found to resume growth after 2-4 days. [Helmlinger et al., 

1997] repeated this experiment with BA-HAN-1, rhabdomyosarcoma and MCaIV 

tumor spheroids and found the results to be robust for different host species or tissue 

of origin. 

The model for tumor cell populations growing into an embedding tissue elaborated in 

this section represents a natural extension of the experimental setting described by 

[Helmlinger et al., 1997]. The explicit modeling of the tumor microenvironment 

using individual objects (granular particles or type B cells) allowed us to study the 

biomechanical influences of the embedding tissue more realistically in comparison to 

its experimental approximation by an agarose gel with rather homogenous properties. 

We consider this increase in detail an important step towards the modeling of in vivo 

systems. 

We mimicked the different concentrations of agarose studied by [Helmlinger et al., 

1997] and [Galle et al., 2006] by varying the initial density ρT in the host tissue 

thereby modulating the mechanical stress exerted on the growing cell population. As 

shown in Fig.31 for two-dimensional tumor cell populations, a variation of ρT 

changed both, the expansion velocity and the saturation size of the growing cell 

clones. Interestingly, in a three-dimensional setting we were able to obtain a good 

agreement (Fig.35) with the experimental results of both [Helmlinger et al., 1997] 

and [Galle et al., 2006] only by varying ρT. Considering the variety of complex 

biophysical influences of the tumor host tissue on growing cell populations discussed 

in the preceding sections, however, this indicates that the common experimental 

models using agarose may not be sufficient to study all important aspects of these 

influences. Especially the wide variety of influences of the host tissue on tumor 

morphology can evidently not be captured by agarose-based models. 

Additionally, we were able to mimic the experimentally observed resume of growth 

in case the embedding tissue was removed [Helmlinger et al., 1997]. In our model, 

we represented the enzymatic digestion of agarose by removing all objects of the 

host tissue (granular particles or type B cells). Thereafter, due to the alleviation of 

pressure which previously had been exerted by the embedding tissue, cells that until 

then had remained in G0 (quiescence) successively reentered the cell-cycle. After 2-3 
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Fig. 35: Comparison with experimental data in 3D. 

Filled symbols: Experiments by [Helmlinger et al., 1997]. Black circles: LS174T spheroids, 

1.0% agarose gel, Red triangles: 0.8% agarose gel, Blue diamonds: 0.5% agarose gel, Green 

squares: 0.3% agarose gel. Empty symbols: Experimental data by [Galle et al., 2006]. Red 

squares: WiDr spheroids, 5.0% agarose gel, Blue circles: 2.5% agarose gel. Lines: Model 

simulations. Red line: Simulation modeling LS174T spheroids in agarose gel of low 

concentration (ρT = 207 310⋅ cells/mm³), Green line: High agarose concentration (ρT= 611
310⋅ cells/mm³), Blue line: Simulation modeling growth of WiDr spheroids (ρT= 225 310⋅

cells/mm³). Symbols in inset: Experimental data on growth alleviation by [Helmlinger et al., 

1997] 0.7% agarose gel, Line in inset: Model simulation of ρT= 215 310⋅  cells/mm³ and 

removal of complete host tissue at t = 30d (black arrow). 

 

 

days a proliferating rim at the surface of the once embedded population had 

reestablished and led to further growth. The expansion velocity again crossed over to 

a linear regime and even slightly increased in comparison to the initial growth 

velocity before saturation. We believe this to be caused by the complete alleviation 

of mechanical stress due to the removal of all cells of the embedding tissue. Again, 

these findings were in very good agreement (Fig.35 inset) with experimental data 

obtained by [Helmlinger et al., 1997]. 
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3.7. Discussion and Summary 

In the third chapter of this work we established an agent-based biophysical model for 

the growth of multicellular populations that approximates cells by isotropic, 

homogeneous elastic adhesive objects. We elaborated the detailed modeling of 

structural properties of the cells for example concerning their cytoskeleton or cell-

cell interactions and complemented them with more dynamic properties of the 

modeled cells for example regarding cell migration, growth and division. In principle 

all model parameters can be experimentally determined. 

On this basis we studied the growth of multicellular populations thereby successively 

increasing the degree of realism in our model. We started by modeling two-

dimensional monolayer cultures and compared our model to experimental data 

obtained by [Bru et al., 2003]. We proposed a biomechanical form of contact 

inhibition of cellular growth that largely explained the experimentally observed 

growth kinetics and population morphologies. Thereby we reached a remarkable 

agreement of model and experiment regarding many aspects of monolayer growth.  

Subsequently, we crossed over to the third dimension by studying substrate 

detachment whereby normally two-dimensional monolayers due to the failure of 

certain control mechanisms expand perpendicular to the monolayer plane. A failure 

of growth control mechanisms is known to play an important role in the development 

of cancer [Hanahan & Weinberg, 2000]. 

Furthermore, we studied the growth of three-dimensional avascular tumor spheroids 

and additionally included nutrient diffusion and consumption into our model. We 

could show that the previously proposed biomechanical form of contact inhibition 

also determines the growth kinetics of tumor spheroids and that the nutrient 

concentration mainly controls the size of the necrotic core.  

In the last section of this chapter we further increased the degree of realism of our 

model by simulating the growth of multicellular populations embedded in a granular 

medium of cell-like behavior or in a tissue of other cells. We studied the biophysical 

impact of this environment on growth dynamics and population morphology of 

tumor cell clones by systematically varying the motility, density, elasticity, 

adhesivity and size of the embedding objects. We modeled two- and three-

dimensional cell populations and observed Saffman-Taylor-like instabilities leading 

to fractal interfaces and an increased ability of tumor cells to invade harsh 

environments if the motility of the embedding cells was small. Furthermore, we 

observed larger wavelength fluctuations as a consequence of decreased density, 

increased elasticity, strong adhesion or increased object size of the embedding tissue. 

We predicted inhibition of growth for specific tissue properties and achieved a good 

agreement with experimental data by [Helmlinger et al., 1997] and [Galle et al., 

2006].  

In general, the comparison with experimental results is especially helpful to identify 

in how far cells may be controlled by simple, mainly physically motivated influences 

and at which point "intelligent" regulation mechanisms that have emerged on the 
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time scale of evolution control the properties of a cell. For example, we found that 

the fraction of apoptotic cells in the interior of a cell population was significantly 

reduced if cells that became quiescent as a response to mechanical stress actively 

down-regulated their elasticity. Such active regulation of the physical properties of 

the cells may also explain the decrease of apoptosis at increased stress observed by 

[Helmlinger et al., 1997] which without active regulation could not be explained by 

our model. Nevertheless, despite we currently did not yet consider active regulation 

and angiogenesis that are known to take place in vivo, we were able to mimic 

experimental data in vitro for example by [Helmlinger et al., 1997] and [Galle et al., 

2006] very precisely. Therefore, we believe our model for tumor spheroids growing 

into embedding tissue to be an important step in the direction of the in vivo situation.  

However, in order to establish a model for a specific in vivo situation that would 

exhibit a tremendously increased predictive strength, one cannot solely relate to 

published data. We believe that a very close coupling of experimental data including 

three dimensional in vivo imaging techniques and modeling is required to iteratively 

advance the model also by refining the experimental techniques and stimulating new 

informative experiments. In the next chapter of this thesis we elaborate an example 

that follows this strategy by investigating the fascinating process of liver 

regeneration. 
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4. Modeling the regenerating liver lobule 

4.1. Introduction 

4.1.1. The liver 

The liver is the largest solid organ of the human body [Chisari et al., 2001]. It is 

located in the upper left quadrant of the abdominal cavity (Fig.36A) and consists of 

two main (left and right) and two accessory (quadrate and caudate) lobes 

(Fig.36B,C). Alternatively, the liver can be subdivided into sectors and segments 

with afferent and efferent blood supply and biliary channels. This functional 

description of liver anatomy was first described by Claude Couinaud [Couinaud, 

1954] [Sutherland & Harris, 2002]. The sectors of the liver are considered 

independent as there is no collateral circulation between them [Burt et al., 2006]. 

Segments are numbered clockwise from II to VIII and the caudate lobe represents 

segment I. This specific partitioning corresponds to the many functions of the liver of 

which until today over 500 different have been identified. The most prominent 

functions are processing of digested food from the intestine and converting it into 

energy, plasma protein synthesis and the production of bile, cholesterol and 

hormones [Elias & Sherrick, 1969]. The liver also plays a vital role in fighting 

infections by mobilizing macrophages which in the liver are known as Kupffer cells. 

It contains over 50% of all macrophages in the human body. Furthermore, the liver 

stores glycogen, iron, vitamins and other essential chemicals and thereby regulates 

their concentrations in the blood [Kuntz & Kuntz, 2008]. One of the most important 

functions of the liver, however, is the detoxification of blood. The blood from the 

intestine contains high levels of bacteria, bacterial endotoxins, antigen-antibody 

complexes and other toxic substances [Chisari et al., 2001]. A healthy liver almost 

completely filters these harmful organisms and substances by specialized 

metabolization and secretion processes. A complete failure of this detoxification 

functions could be lethal within 24 hours. 

On a smaller length scale, the liver is organized in repetitive functional units called 

liver lobules (Fig.36D,E). These lobules mainly consist of hepatocytes (liver 

parenchymal cells), endothelial (sinusoidal) cells, Kupffer cells, stellate (Ito) cells, 

oval cells and bile duct cells [Fausto & Campbell, 2003] [Burt et al., 2006]. The most 

common cells in the liver are hepatocytes which account for approximately 80 - 90 

% of the liver mass [Cunningham & Horn, 2003] [Taub, 2004]. 

In humans after the age of five years most hepatocytes are arranged in one-cell-thick 

columns, commonly designated as hepatic plates or muralium simplex (green in 

Fig.36D,E) [Elias & Sherrick, 1969]. This specific columnar architecture maximizes 

contact between blood and hepatocytes [Chisari et al., 2001].  

The liver is provided with a dual blood supply: branches of both, the hepatic artery 

(bringing highly oxygenated blood) and portal vein (transporting blood to the liver 

from the intestine) guide blood to the periportal regions of the liver lobules. From 

there it flows through microvessels along the hepatocyte columns that are lined by 
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fenestrated endothelial cells usually named sinusoidal cells (yellow in Fig.36D) and 

drains into the central vein. These microvessels are called sinusoids. Furthermore, 

the lobules contain bile ductules that carry bile away to larger bile ducts 

[Michalopoulos & DeFrances, 1997] (Fig.36D,E). 

Fig. 36: Liver anatomy and the liver lobule.  
A: Anterior (front) view of the localization of the liver (dark red) in the human abdominal 

cavity. B: Superior (top) view of the liver. C: Inferior (bottom) view. A-C from [Gray, 

1998]. D,E: Schematic illustration of a liver lobule (from: [www, 10]). 
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4.1.2. Liver regeneration after intoxication with CCl4 

The liver has the fascinating capability to regenerate up to 80% of its mass and 

restore its functionality after intoxication, infection, injury or surgical resection. This 

unique property of the liver has likely been known for over two thousand years. The 

myth of Prometheus indicates that, for example, the ancient Greeks knew about liver 

regeneration. In the Greek mythology Prometheus is a Titan who stole the fire from 

Zeus and gave it to the mortals. As a consequence, Zeus punished Prometheus by 

having him chained to a rock while an eagle ate his liver every day only to have it 

regenerate in the night and to be eaten again the next day [Hesiod, 700 BCE] [Frazer, 

1983] (Fig.) . Prometheus first appeared in the poem Theogony (Greek: εογονιαΘ ) 

that is attributed to the Greek poet Hesiod who lived in the eighth century before the 

Common Era.  

Liver regeneration presumably 

has evolved to protect animals 

from the consequences of liver 

loss caused by food toxins 

[Michalopoulos & DeFrances, 

1997] [Fausto, 2000] 

[Michalopoulos & DeFrances, 

2005] [Michalopoulos, 2007]. 

Since the first description of 

major liver resection in [Keen, 

1899] the understanding of 

hepatic anatomy and operative 

techniques have improved 

considerably [Helling, 2006]. 

Today, the mechanisms of liver 

regeneration are increasingly 

studied on a functional, cellular 

and molecular level [Pahlavan 

et al., 2006]. Many insights are 

gained by experiments studying 

liver regeneration after partial 

hepatectomy (HPx) and 

intoxication in animals and in vitro cell cultures [Michalopoulos & DeFrances, 1997] 

[Sato et al., 1999] [Blindenbacher et al., 2003]. A typical way to experimentally 

induce a loss of hepatic tissue in vivo is by administration of hepatic toxins. Carbon-

Tetrachloride (CCl4) is often used for that purpose [Lafdil et al., 2006] [Nussler 

et al., 2006] [Hengstler et al., 2005] [von Mach et al., 2004]. CCl4 causes hepatocyte 

necrosis primarily in the peri-central areas of the liver lobules, because only peri-

central cells express CYP2E1 that metabolically activates CCl4 [Gómez et al., 2006]. 

 

Fig. 37: Liver regeneration in Greek mythology. 
A kylix (drinking cup) from Sparta dated 550 BCE 

showing figures from Greek mythology. Left: Atlas, 

a Titan that holds the world on his shoulders, Right: 

Prometheus, whose liver is being eaten by an eagle. 
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In contrast to other tissues, such as the bone marrow or skin, regeneration in the liver 

does not depend on a small group of progenitor or stem cells [Michalopoulos & 

DeFrances, 1997] [Michalopoulos & DeFrances, 2005] [Michalopoulos, 2007]. In 

general, regeneration is carried out by proliferation of the remaining mature 

hepatocytes. Additionally, the other hepatic cell types, namely biliary epithelial cells, 

fenestrated endothelial cells, Kupffer and Ito cells also proliferate contribute to the 

regeneration of the lost hepatic tissue. However, liver regeneration after toxic insult 

is not only a matter of cell proliferation but also of the capacity of the new cells to 

organize themselves in the characteristic three-dimensional columnar architecture 

that is found in healthy liver lobules (muralium simplex) as described in the previous 

section. In order to guarantee liver function this architecture has to ensure that the 

blood can freely flow from the portal vein through the sinusoids into the central vein 

within each liver lobule, and that the arrangement of the new liver cells facilitates 

maximum exchange between the blood and the hepatocytes (Fig.36D,E).  

Recent research on liver regeneration has focused on molecular pathways and 

mechanisms involved [Michalopoulos, 2007] [Juskeviciute et al., 2008]. In contrast, 

considerably less is known about how liver cells coordinately behave to restore the 

described functional lobule architecture and thus many of the fundamental 

mechanisms underlying the complex process of liver regeneration remain to be 

elucidated.  

 
4.1.3. Systems biology of the liver 

Contemporary hepatology roots in the clinical descriptions of the ancients that 

inspired the classical works of the French and German schools of the 19th century 

[Chisari et al., 2001]. The influence of Rudolph Vichow [Virchow, 1858] and those 

who followed dominated the studies of the liver until the 1950s when biochemistry 

increasingly elucidated the structure and regulation of hepatic function.  

In the last decades, amazing advances in cellular and molecular biology, 

immunology, chemistry, biophysics, mathematical biology and computer science 

have greatly facilitated our understanding of liver biology and pathobiology and have 

led hepatology to exciting discoveries. 

Many of the questions that still remain are of pronounced multidisciplinary nature 

and thus require interdisciplinary collaborations to be answered. A systems biology 

approach (refer to section 1.1) that strives for a larger, system-level perspective 

[Kitano, 2002b], also by combining knowledge from different scientific disciplines, 

seems to be ideally suited to gain insights into the complex processes that determine 

liver regeneration.  

In the following chapter 4 of this work we combined recent advances in biology, 

physics and computer science to iteratively set up the first single-cell-based three-

dimensional model of liver regeneration. We used this model to study liver lobules 

after intoxication with CCl4 and were able to show how a systems biology approach 
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can lead to novel insights and a deeper understanding of the complex process of liver 

regeneration.  

In order to reach this goal, we adapted the agent-based model used in the previous 

chapter to the liver domain. As a first step, we set up a two-dimensional model of a 

schematic liver lobule to introduce and study the basic mechanisms of liver 

regeneration in a simple and very controllable 2D environment (section 4.2). In the 

next section 4.3, we extended this preparatory work and set up a more detailed three-

dimensional model to obtain more exact and verifiable results. We closely coupled 

this model to experimental data obtained by bright field and confocal laser scanning 

microscopy. Furthermore, we showed how data from both micrographic techniques 

can be made accessible to spatial modeling by image processing, reconstruction and 

analysis techniques (section 4.3.2). We then iteratively improved the model by 

comparison with experiments that were directly stimulated by our model predictions.  

In summary, the described combination of image processing, quantitative image 

analysis, modeling and experiments (all in 3D) represents an exemplary 

interdisciplinary systems biology procedure that enabled us to elucidate a yet 

unknown mechanism that we believe is essential for successful liver regeneration.  
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4.2. Modeling liver regeneration in 2D 

4.2.1. Model extensions 

Single-cell-based models are particularly suited to represent the spatio-temporal 

multicellular organization processes within the complex architecture of a liver lobule 

since they permit to directly relate to spatial structures that vary on the length scale 

of individual cells [Drasdo, 2000] [Drasdo & Löffler, 2001] [Meineke et al., 2001] 

[Drasdo & Hoehme, 2005] [Drasdo et al., 2007]. In order to adapt the model 

elaborated in the previous chapter to the liver domain and create a simple two-

dimensional representation of a single lobule, we had to implement only minor 

changes and additions to consider the specific situation in the liver. In the next 

sections we describe these new aspects that involve lobule architecture (section 

4.2.1.1.), hepatocyte polarity (section 4.2.1.2.) and the dynamics of the intoxication 

and regeneration process (section 4.2.1.3.). 

 
4.2.1.1. Lobule architecture 

A healthy liver typically consists of approximately 103 (mouse) – 106 (human) liver 

lobules (section 4.1.1, Fig.36D,E). Several concepts for the histological description 

of these repetitive functional units exist. Kiernan described the “classical hepatic 

lobule” with portal tracts in its periphery and a central vein in its center [Kiernan, 

1833] while Mall proposed the “portal lobule” by focusing on the portal tract [Mall, 

1906]. Based on vascular injection studies Rappaport and co-workers introduced the 

concept of the “liver acinus” that still described the liver as composed of segments of 

several hepatic lobules but had as its central axis a terminal branch of the portal vein, 

hepatic artery, and bile duct [Rappaport et al., 1954]. Based on detailed 

angioarchitectural studies, Matsumoto and co-workers  refined the concept of 

Kiernan and implied that the periportal tracts of the lobules form a three-dimensional 

continuity, while in their central area discrete branches establish [Matsumoto et al., 

1979] [Matsumoto & Kawakami, 1982]. Later, this description of lobule histology 

was validated by several histological studies [Lamers et al., 1989a] [Lamers et al., 

1989b]. 

Since after intoxication with CCl4 similar processes occur in all affected liver 

lobules, we modeled only a single lobule according to the concept described in 

[Matsumoto & Kawakami, 1982]. Accordingly, we assumed a hexagonal lobule 

shape with a central vein in the center of the hexagon and three portal triads at three 

of its edges (Fig.38C). 

Despite liver lobules are composed of a number different cell types, in the two-

dimensional model elaborated in this section, we only considered hepatocytes. 

Nevertheless, hepatocytes are the main constituents of a typical liver lobule and 

account for approximately 80 - 90 % of the liver mass [Cunningham & Horn, 2003] 

[Taub, 2004].  
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As described in the last section, lobules are pervaded by a complex network of small 

blood vessels that connect the portal tract with the central (centrilobular) vein. These 

sinusoids are composed of a discontinuous layer of fenestrated endothelial cells. 

Fig. 38: Reconstruction of a schematic liver lobule. 

A: Bright field micrograph of a Hematoxilin-Eosin stained liver section. B: Schematic lobule 

in which important functional elements are highlighted. The blue dots denote hepatocyte 

nuclei. CV(PV) denotes the position of the central (portal) vein. A selection of clearly visible 

sinusoids is highlighted in green. In general, they are radially oriented towards the central 

vein. Sinusoids coming from the PV merge and thereby approximately maintain sinusoid 

density. The position of the lobule border is marked by cyan straight bars indicating the 

approximately hexagonal shape of the lobule. Despite the fact that hepatic plates are difficult 

to follow in 2D, the location of the cell nuclei visible in a particular slice confirms that a cell-

column between two adjacent sinusoids is typically one-cell thick. C: Schematic liver lobule 

in a computer simulation. Cells accentuated in blue color illustrate the typical arrangement of 

the hepatocytes in hepatic plates D: We subdivided the lobule into three zones, a central zone 

(red) close to the cells are assumed to die as a consequence of intoxication by CCl4 (yellow), 

a mid-zone (violet) and a peri-portal zone (green) to directly compare the proliferation 

pattern to the experimental observations by [Gebhardt & Burger, 1987] shown in Fig. 40. 
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Oxygenated blood originating from the hepatic artery and deoxygenated, nutrient-

laden blood from the portal vein pours into the sinusoids and mixes as it flows from 

the portal tracts to the central vein. In contrast to the three-dimensional model later 

introduced in section 4.3, in this section we did not explicitly consider sinusoids and 

only modeled larger blood vessels. Biomechanical interactions among hepatocytes 

and between hepatocytes and veins were modeled utilizing the same elastic models 

(extended Hertz- and JKR-model) that were used for cell-cell interactions in chapter 

3 of this thesis. 

As described before, hepatocytes and endothelial cells that line the sinusoids together 

form a specific architecture, where the hepatocytes are arranged in hepatic columns 

(Fig.36D,E, Fig.38) [Elias & Sherrick, 1969] to maximize contact between blood and 

hepatocytes [Chisari et al., 2001]. We mimicked this specific columnar architecture 

(Fig.36D,E, Fig.38) by initially arranging the model cells in columns concentrically 

radiating from the central vein (blue in Fig.38C).  

In this section, the characterization of a typical, average liver lobule (Fig.38) was 

preliminarily performed by determination of (i) the mean number of hepatocytes 

between the central vein and the portal tract, (ii) the mean size of the hepatocytes and 

(iii) the mean number of hepatocyte columns in the inner, midzonal and peripheral 

ring of the lobule using bright field micrographs of liver cross-sections (Fig.38A/B). 

This resulted in key features of a typical liver lobule (Tab.2) that were used to set up 

a schematic model lobule in 2D (Fig.38C) which served as initial state for all model 

simulations in this section. In addition to the estimation of the model parameters 

from liver cross-sections, we parameterized our model by measurable quantities from 

published experimental data (for a comprehensive summary of all parameters refer to 

Appendix 5). 

We are aware that several details of this schematic lobule deviate from genuine liver 

lobules. Besides sinusoids were not considered, for instance the diameter of the 

hepatocytes is known to vary and hepatocyte columns generally are not arranged in 

straight but in more irregular and three-dimensional chains. 

 

Table 2: Key parameters of the schematic liver lobule in 2D. 

Parameter Value Description 

RL 9 cells Average number of hepatocytes between the 

central vein and the portal tract 

RC 25 µm Average size of the hepatocytes 

NCpv 22 columns Mean number of hepatocyte columns in the inner 

ring of the lobule (also see Fig.36D) 

NCmz 36 columns Mean number of hepatocyte columns in the 

midzonal ring of the lobule 

NCpp 45 columns Mean number of hepatocyte columns in the 

peripheral ring of the lobule 
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However, note that the described 2D model represented only the first step towards a 

realistic 3D model (section 4.3). But we will show that already this minimalistic 

approach in 2D was able point in the direction of several key factors of successful 

liver regeneration. 

 

4.2.1.2. Hepatocyte polarity 

In close relation to their numerous metabolic functions, hepatocytes are known to 

have specialized membrane domains that, for example, are responsible for sinusoidal 

transport or bile canalicular secretion [Depreter et al., 2002]. The existence of these 

functionally diverse membrane domains is termed hepatocyte polarity. In 

hepatocytes, these domains are typically classified in (1) apical or bile canalicular 

and (2) basolateral domains [Chisari et al., 2001]. Apical domains are 

morphologically characterized by the existence of microvilli and junctional 

complexes while basolateral domains are typically in contact to the blood [Bartles 

et al., 1985] [Maurice et al., 1994]. Experiments with hepatocyte-sinusoidal cell co-

cultures suggested that hepatocyte polarity also influences selective cell-cell 

adhesion [Hoehme et al., 2009]. 

In the 2D model, we phenotypically represented hepatocyte polarity by introducing a 

specific type of hepatocyte adhesion that depended on the location of the membrane 

domains that in turn was determined by the orientation ψ  of the hepatocytes. We 

studied two cases: For (A) isotropic (non-polar) hepatocytes we assumed the 

interaction forces between adjacent hepatocytes to only depend on the distance but 

not on the orientation of the cells (Fig.39A). This situation corresponds to the model 

elaborated in section 3.2. For (B) polar hepatocytes, however, we assumed that cell 

adhesion molecules were placed only in certain membrane domains of the hepatocyte  

 

 
Fig. 39: Hepatocyte polarity. 

The distribution of adhesion molecules on the surface of the hepatocytes is denoted by light 

green color (light red = no adhesion molecules). Dark green color illustrates the part 

adhesive region that contributes to cell-cell interactions between the two exemplarily shown 

cells (dark red = no adhesive interaction in this region). Straight lines indicate the 

orientation of the cells. In case (A) of an isotropic distribution of adhesion molecules, the 

strength of cell-cell adhesion is independent of cell orientation. In case (B) of an anisotropic 

distribution of adhesion molecules, however, cell-cell adhesion depends on the relative 

orientation of the cells. Here, hepatocytes are considered to be polar, whereby the size of the 

light green region in (B) determines the degree of polarity (in our simulations 15φ = � ). 
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surface (Fig.39B) [Drasdo et al., 2007]. The interaction force 
pol

ijF  between adjacent 

polar cells was then proportional to the overlap area of the membrane regions that 

were covered with adhesion receptors: 

  
adh
ijpol

ij ij

ij

A
F F

A
=        (25)

 
 

where
adh
ijA denotes the overlap area of the adhesive membrane regions, ijA  the total 

contact area and ijF  the interaction force if cells were isotropic (case A). Note that 

the strength of adhesion was maximal if the adhesive regions completely overlapped. 

The size of the adhesive surface area further depended on the angle Φ that 

determined the proportions of apical and basolateral membrane regions (blue color in 

Fig.39). 

In case (B) where we considered polar hepatocytes we permitted cell orientation to 

change which effectively corresponds to an active relocation of the membrane 

domains. For simplicity we modeled this by energy minimization which can be 

shown to be an alternative to forced-based single-cell dynamics [Drasdo et al., 2007]. 

For this purpose each cell was rotated within a time period rott∆  by an angle θ  

( 2 )θ π≪ . The probability RotP  that this orientation change in 2D was accepted 

depended on the resulting energy change ∆V and was calculated by
/min(1, )TV F

RotP e−∆= , whereby ∆V = V(after rotation) – V(before rotation) and TF  was 

a reference energy [Drasdo & Hoehme, 2005]. Furthermore, V was linked to the 

force ijF  by 
, `

ij
ij i j

V V
≠

= ∑  and ij
ij

ij

V
F

d

∂
= −

∂
 where the sum was formed over all pairs of 

cells i and j and ijd  was the distance between cells i and j. This definition ensured 

that orientation changes that led to a decrease of the configuration energy were 

always accepted while those which led to an energy increase were only accepted with 

probability / TV Fe− ∆ . For isotropic cells (case A) we did not consider orientation 

changes since they did not modify the total energy stored in the multicellular 

configuration.  

 

 

4.2.1.3. Hepatocyte migration and lobule veins 

 

We modeled the complex dynamics of hepatocyte migration as a friction-dominated 

over-damped motion with a stochastic contribution by Langevin-type equations of 

motion for each cell as described in section 3.2 [Drasdo & Hoehme, 2005] [Drasdo 

et al., 2007] [Hoehme et al., 2007]. Additionally, we considered interactions of 

hepatocytes with the central and portal veins of the lobule. The elastic properties of 

these relatively large blood vessels were modeled analogously to cell-cell 
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interactions using the extended Hertz model. Thereby for isotropic cells (case A), the 

velocity of cell i was determined by: 

 

( ) 2( ) ( ( ) ( )) 2( ) ( )C C C C
i ij j i ij i i

j

CV PV
iz im

z m

v t v t v t F D t

F F

ζ ς ς η= − + + ⋅ +

+

∑

∑ ∑
  (26)

 

 

where ( )iv t  denotes the velocity of hepatocyte i, C
ijς  the friction between hepatocytes 

i and j, XF  summarizes the repulsive and adhesive forces between hepatocytes i and 

j (X=C), between hepatocyte i and central vein z  (X=CV)  and between hepatocyte i 

and portal vein m (X=PV). Typically, m=3 and z=1. 
C
iς denotes an effective friction 

between hepatocyte i and its surrounding extra-cellular matrix and ( )i tη
 

was 

modeling an uncorrelated noise term. 

In case we considered polar hepatocytes (case B), the velocity of hepatocyte i was 

determined by: 
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whereby in contrast to Eqn.26 forces explicitly depended on the orientation ijψ  of 

hepatocyte i and j. 

 

 
4.2.1.3. Intoxication and regeneration process 

In a healthy liver almost all hepatocytes remain quiescent (in G0 resting state) and 

only approximately one cell per thousand undergoes proliferation at any given time 

[Diehl & Rai, 1996] [Court et al., 2002]. CCl4 administration disturbs this situation 

and induces cell death in a ring of 2-5 cell layers adjacent to the central vein 

[Gebhardt & Burger, 1987]. Cell death peripheral of this inner ring was rare and thus 

was not considered in the model. 

Experiments [Gebhardt & Burger, 1987] [Hoehme et al., 2007] show that after CCl4 

induced liver damage hepatocytes start to divide in large numbers. In order to 

analyze this hepatocyte proliferation, we determined the fraction of BrdU positive 

nuclei in the periportal (pp), midzonal (mz) and perivenous (pv) zone of the lobule 

(Fig.38D) during different time periods after intoxication (for details refer to section 

4.2.2.). The specific design of this analysis was chosen in correspondence with the 

experimental schedule in [Gebhardt & Burger, 1987]. As shown in Fig.40, initially 

the highest fraction of BrdU positive hepatocytes was observed perivenous. Later 
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Fig. 40: Hepatocyte proliferation in experiment and model. 

Number of BrdU-labeled cells per mm2 as published in [Hoehme et al., 2007]. 

 

proliferation also increased in the midzonal and periportal zone, which was 

accompanied by decreased BrdU incorporation in perivenous hepatocytes. This 

suggests that an intoxication by CCl4 leads to a wave of proliferation that starts in the 

surviving hepatocytes adjacent to the necrotic lesion and continues to the midzonal 

and peripheral cells. Therefore, the probability for a particular hepatocyte to divide at 

a certain point in time seems to depend on its location within the lobule.  

We directly integrated these experimental findings into our model by actively 

stimulating hepatocyte proliferation (red vertical lines in Fig.40) such that the 

experimental situation was closely mimicked (Fig.40). We assumed that hepatocytes, 

after receiving a stimulus, enter proliferation phase and thereafter on the average 

need 10 hours to enter S-phase. Furthermore, we assumed a length of the S-phase of 

8 hours and an average intrinsic cell cycle time of τ = 24h as determined by 

[Vintermyr & Døskeland, 1987]. In all other aspects, hepatocyte growth was 

modeled as described in section 3.2.2.  

We considered two alternative mechanisms of cell orientation after division. We 

either assumed (1) that after (or during) cell division cells orient themselves towards 

the central vein or (2) in a purely random direction. In this section we termed case (1) 

“directed cell orientation” (DCO) which ensured that cells tended to arrange 

themselves in the experimentally observed typically concentric hepatic columns. By 

dropping this assumption in case (2) we studied the consequence of a failure of DCO. 

We termed this case “random cell orientation” (RCO). 
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4.2.2. Experimental procedures 

4.2.2.1. Administration of CCl4 and BrdU and preparation of livers 

Male Sprague Dawley rats (200-300 g; Charles River) were fed ad libidum with 

standard diet (Alma 1003, Botzenhart, Kempten, Germany). Liver damage was 

induced by intraperitoneal CCl4 administration at three subsequent days (day 0: 750 

µl/kg; day 1: 750 µl/kg; day 2: 500 µl/kg). CCl4 was dissolved in an equal volume of 

corn oil. This particular schedule had been chosen, because it guaranteed cell death 

of all hepatocytes within two to four cell layers from the central vein [Gebhardt & 

Burger, 1987]. In contrast, an only single injection of CCl4 killed only a fraction of 

hepatocytes within this region which would render conditions for modeling more 

difficult. Controls (n=3) received injections of corn oil. In order to study regeneration 

after CCl4 induced liver damage, hepatocyte proliferation was quantified after 

administration of 5-bromodeoxyuridine (BrdU). BrdU was administered to cover 

periods of 10 h. For this purpose five intraperitoneal injections of 80 µg BrdU/g body 

weight dissolved in physiological saline were given at intervals of 2 h. Six 10 h BrdU 

exposure periods were analyzed, namely 16-26, 40-50, 70-80, 78-88, 88-98 and 98-

108 h after the first injection of CCl4. Three rats were studied for each period. 

Preparation of the livers was performed immediately after the 10 h BrdU exposure 

periods. For this purpose rats were anaesthetized by intraperitoneal injections of 

phenobarbital (2 ml/kg of a 30 mg/ml stock solution). The livers were perfused by 

the portal vein with physiological saline for 5 min, followed by perfusion with 30 ml 

icecold 3.5% paraformaldehyde in PBS. Afterwards, the fixed liver was removed, 

incubated in 3.5 % paraformaldehyde for 30 min and embedded in paraffin in order 

to cut 3 µm thick slices. A typical slice representing a liver lobule is shown in 

Fig.38A, in Fig.38B the characteristic structures within a liver lobule are illustrated. 

Hepatocytes from male Sprague Dawley were isolated as described [Reder-Hilz 

et al., 2004] [Carmo et al., 2004] [Osterod et al., 2001] [Osterod et al., 2002]. 

 

 
4.2.2.2. Immunostaining of BrdU and glutamine synthetase 

For immunostaining of BrdU paraffin slices were deparaffinized by warming the 

slices to 45°C followed by a short heating to 65°C in order to liquefy the paraffin. 

Subsequently, the slices were washed for 10 min in xylene and hydrated in an 

ethanol gradient. Endogenous peroxidase was blocked by incubation with 0.5 % 

H2O2 in methanol for 30 min. After washing in distilled water, slices were incubated 

in 1N HCl for 7 min at 60°C followed by washing in ice-cold distilled water. 

Subsequently, the slices were washed in PBS, pH 7.4, incubated with goat serum 

(diluted 1:10 in PBS, pH 7.4) for 30 min, washed in a solution of 0.5% Tween 20 in 

PBS (pH 7.4) for 30 min, incubated with the first antibody (monoclonal mouse anti-

BrdU, 1:30; DAKO) for 2 h at room temperature, followed by washing in PBS and 

incubation with the secondary antibody (sheep anti-mouse IgG, peroxidase coupled; 
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1:300 in PBS; Boehringer, Mannheim) as indicated by the manufacturer. Slices were 

washed in Tris buffer (100 mM; pH 7.6) and stained with a solution of 50 mg 

diaminobenzidine, 200 mg aminotriazole in 100 ml 100 mM Tris, pH 7.6, to which 

33 µl 30% H2O2 were added immediately before use. As soon as a brown stain 

occurred (usually 4-8 min) slices were washed in PBS, pH 7.4. A similar procedure 

was applied for immunostaining of glutamine synthetase using a rabbit anti-rat 

glutamine synthetase antibody. After washing in PBS, pH 7.2 with 1.1 mM MgCl2, 

incubation with the secondary antibody (donkey anti-rabbit; galactosidase coupled; 

1:40 in PBS, pH 7.2 with 1.1 mM MgCl2, Amersham) was performed for 2h at room 

temperature. 

Subsequently, slices were washed in PBS, pH 7.2 with 1.1 mM MgCl2, stained with a 

5-bromo-4-chloro-3-indolyl-β-D-galactopyrazoside solution at 37°C for 30 min as 

described [Bondi et al., 1982]. Afterwards, slices were washed in PBS, pH 7.4, 

dehydrated in an ethanol gradient and mounted in Eukitt. For evaluation, photos of 

liver lobules were taken and subdivided into periportal, midzonal and perivenous 

regions using a procedure described by [Lamers et al., 1989a]. This technique is 

based on lines connecting the central vein and respective periportal fields. These 

lines are subdivided into three equal sections (33 and 66% marks) and interconnected 

at the 33 and 66% marks. In each region the fraction of BrdU positive nuclei and the 

number of BrdU positive nuclei per mm2 was determined. At least 5000 hepatocytes 

were evaluated per rat. Mean values and standard deviations of the rats from each 

treatment group were calculated. 
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4.2.3. Results 

 4.2.3.1. Simulating liver regeneration in 2D 

Based on the schematic two-dimensional liver lobule and the corresponding model 

adaptions discussed in section 4.2.1., we were now able to simulate the regeneration 

of a model lobule after CCl4 intoxication (Fig.41). Initially, the model parameters 

were chosen to reflect the in vivo situation as closely as possible such that computer 

simulations and experimental observations were in good agreement (Fig.40). 

Therefore, in the following the model shown in Fig.41 is referred to as “reference 

model”. 

 

In the computer simulations discussed in this section, the behavior of the hepatocytes 

within the regenerating liver lobule was mainly controlled by five model parameters:  

 

(1) Probability of cell division (denoted by PCD) at a defined position within the 

lobule at a given time. In the reference model, this probability was determined by the 

above described in vivo experiments by [Gebhardt & Burger, 1987] whose results 

were directly integrated into our model (Fig.40). Accordingly, PCD was calculated by 

the number of proliferating cells per mm² within each zone of the lobule divided by 

the total number of cells per mm²  

(2) “Directed cell orientation” (DCO). 
Hepatocytes are typically arranged in columns. We modeled this behavior in 2D by 

assuming that hepatocytes (initially and after cell division) were oriented towards the 

central vein. In the reference model (Fig.41) we assumed directed cell orientation 

(DCO). Alternatively, we studied the case where hepatocyte orientation after division 

was random (RCO).  

(3) Cell cycle duration.  
In the reference model, according to in vitro studies the duration of an average cell 

cycle was assumed to be 24 hours [Vintermyr & Døskeland, 1987].  

(4) Cell micromotility. This parameter controlled the velocity of rearrangements 

necessary for a cell to adapt to changes in its local environment for example due to 

cell divisions. Furthermore, isolated cells are known to migrate randomly as it has 

been experimentally observed for hepatocytes [Hengstler, 2008] and other cell lines 

[Schienbein et al., 1994].  

(5) Cell polarity. Cells within multicellular configurations tend to maximize their 

cell-cell contacts since this minimizes the total configuration energy. For isotropic 

cells this minimum energy configuration is hexagonal [Galle et al., 2003] (Fig.42A), 

while for polar cells the minimum free energy configuration favors columns [Drasdo, 

2000] (Fig.42B). 
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The reference model simulation mimics a typical experimental regeneration scenario 

after CCl4 intoxication in an otherwise healthy liver (Fig.41). Initially, an inner ring 

of hepatocytes dies due to toxic damage and leaves debris, indicated by brown color 

in Fig.41. Cell death is followed by a wave of proliferation that starts in the surviving 

hepatocytes next to the inner ring of dead cells and continues to the peripheral 

hepatocytes. This wave of proliferation initially leads to an increased degree of 

disorder, but finally the characteristic columnar microarchitecture within the lobule 

was largely restored within a 7 day process.  

 
  

 

Fig. 41: Typical 2D model simulation of liver regeneration after CCl4 intoxication in a 

schematic liver lobule at A: t=0, B: 1, C: 2, D: 3, E: 4 or F: 7 days. A: After intoxication, an 

inner ring of hepatocytes dies indicated by brown color. B: This is followed by proliferation 

(dark brown cells), first close to the central vein, then gradually spreading towards the 

periportal zone (C-E). F: After seven days the microarchitecture characterized by columns 

of hepatocytes was almost completely restored (also refer to Supporting video 20). 
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4.2.3.2. Variation of key model parameters  

In the previous section, model parameters were chosen to reflect the in vivo situation 

in a healthy liver as closely as possible to set up a reference model (Fig.41). In a next 

step we systematically modified five major parameters in the two-dimensional model 

in order to study their influence on the regeneration process. 

 

The model allowed predictions of three endpoints:  

 

(i) The cell mass in the lobule during regeneration which was approximated 

by the cellcount and compared to the reference model. 

(ii) The size of the necrotic lesion in the lobule center. After CCl4 

administration cell death around the central vein led to a hepatocyte free 

area (necrotic lesion) that was closed with a specific velocity and to a 

certain degree (corresponding to the size of the remaining lesion). The 

model allowed predictions of the area of the necrotic lesion in a time 

dependent manner. 

(iii) The microarchitecture of the liver lobule. The model predicted whether 

the normal microarchitecture characterized by columns of hepatocytes 

was maintained or destroyed after the cell count had reached its saturation 

value.  

 

Reduction of the probability PCD to enter the proliferation cycle (model parameter 1) 

by 50% resulted in a 15% reduction of the liver lobule mass compared to the 

reference simulation while a doubling of this probability led to an increase of lobule 

mass by 30% (Fig.45C). For higher PCD the microarchitecture of the lobule tended 

towards hexagonal structures. In contrast, a smaller PCD supported maintenance of 

the columnar structure found in healthy liver, although closure of the central lesion 

was impaired (Fig.45D). 

The influence of directed cell orientation (DCO, model parameter 2) is illustrated in 

Fig.44 and Supporting videos 20-25, where the situation for DCO was compared to 

random cell orientation (RCO) for different micromotilities. For RCO, the speed of 

recovery of the cell count within the lobule after CCl4 intoxication was the same as 

for DCO (Fig.45A). However, as soon as proliferation took place the characteristic 

columnar microarchitecture of the hepatocytes was destroyed by cell divisions in 

random directions which led to a high degree of disorder (Fig.44B,D,F; Supporting 

videos 23-25). This was accompanied by a slower closure of the central necrotic 

lesion (Fig.45B). Therefore, we found the orientation of the hepatocytes towards the 

central vein (DCO) to be of utmost importance for the restoration of the 

microarchitecture of the lobule. 

 

Modification of the cell cycle duration (model parameter 3) mainly influenced the 

regeneration speed. Shorter cell cycle duration led to a faster closure of the central 

necrotic lesion (Fig.45D). However, a decrease in cell cycle duration also increased 
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the tendency of the hepatocytes to form pathological hexagonal patterns as the 

hepatocytes had less time to relax disturbances by more frequent cell divisions. 

Cell micromotility (model parameter 4) directly affected the speed at which 

hepatocytes were able to rearrange and migrate to their final location (Fig.44, 

Supporting videos 20-25). As shown in Fig.44 and Fig.45B, a higher micromotility 

permitted a faster adjustment to changes in the local cell environment and therefore 

led to faster closure of central necrotic lesion. This also influenced the 

microarchitecture of the lobule. On the one hand, if micromotility was too low, the 

capability of the hepatocytes to find local configurations of low energy, which in 

case of polar hepatocytes tended to be columnar arrangements, was limited. On the 

other hand, if the micromotility was too high, the disorder generated by the stochastic 

movement of the hepatocytes outweighed its positive effects and simultaneously 

impaired the lobule microarchitecture. Furthermore, after intoxication we found the 

hepatocytes to preferentially migrate into the direction of the central vein. This active 

movement was mainly triggered by cell-cell interaction forces. 

 

 

Table 3: Influence of main model parameters  

on different aspects of liver regeneration.  
We compare the influence of the listed parameter variations to the reference model (Fig.41) 

that reflects the in vivo situation in a healthy animal as closely as possible. “+” means that 

this change has a positive effect on the corresponding, whereas “o” means that there is no 

effect and “-” indicates a negative effect. 
 

Model 

parameter 

Change Regener-

ation of 

liver 

mass 

Velocity of 

closure of 

the 

necrotic 

lesion 

Quality 

(completion) 

of closure of 

the necrotic 

lesion 

Restoration of 

liver micro-

architecture 

1. Probability of 

cell division 

(PCD) 

Increased + + + - 
decreased - - - + 

2. Directed cell 

orientation 

enabled o + + + 
disabled 

(RCO) 
o - - - 

3. Cell cycle 

duration 

shorter o + + - 
longer o - - + 

4. Cell 

micromotility 

increased o + + - 
decreased o - - - 

5. Hepatocyte 

polarity 

enabled o o o + 
disabled o o o - 
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Hepatocyte polarity (model parameter 5) had only minor influence on the dynamics 

of the regeneration of the cell mass or the central necrotic lesion but was found to be 

required to maintain a columnar architecture within the lobule especially on a longer 

time scale. As shown in Fig.42 and Fig.43 on a larger time scale, isotropic cells 

tended to arrange into pathological hexagonal patterns, whereas polar hepatocytes in 

the same situation were able to maintain a columnar arrangement. 

The complex influence of each of the five major model parameters on the different 

aspects of liver lobule regeneration is summarized in Tab.3. 

 

 

 

Fig. 42: Long time behavior of the cell pattern. 

 A: For long times (here: 20 days), isotropic cells tended to locally arrange into hexagonal 

patterns (accentuated in red). This was a consequence of isotropic cell–cell interactions 

since in two dimensions a cell with six interaction partners had the lowest energy and 

therefore formed the most stable patterns. However, hexagonal order is experimentally 

observed only in pathological cases (see Fig.43). B: Polar hepatocytes, in contrast, after 20 

days tended to locally maintain columnar patterns (accentuated in blue). 
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Fig. 43: Columnar vs. hexagonal hepatocyte arrangement. 

In healthy livers, hepatocytes are arranged in columns. After regeneration, models with 1) 

increased cell division, 2) RCO, 3) significantly increased or decreased micromotility and 4) 

isotropic cell-cell adhesion, however, tended to a pathological hexagonal hepatocyte 

arrangement. A columnar microarchitecture as in healthy livers can only be found after liver 

regeneration if certain mechanisms were included in the model. A-C show the typical 

localization of seven model hepatocytes that initially were arranged in columns (green cells 

in A) but depending on model parameters after regeneration have adopted a pathological, 

hexagonal (red cells in B, mechanisms 1 + 4) or normal, columnar arrangement (blue cells in 

C, DCO and polarity). Hexagonal hepatocyte arrangements were also experimentally 

observed in pathological conditions of the liver, such as D: in cirrhotic nodules (from: 

[www, 08]) or E: liver adenomas (from: [www, 09]) 
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Fig. 44: Illustration of the influence of DCO (model parameter 2) and cell micromotility 

(model parameter 4) on the regeneration process. The latter was characterized by the 

effective friction coefficients which were obtained by dividing the coefficients ζ≈0.1kg/s 

used in our reference simulation (C) by a=0.2 in (A,B) and a=5 in (E,F). An increase in the 

value of parameter “a” corresponded to a decrease in the effective friction coefficient and 

consequently to an increase in cell motility. In (A,C,E; left column) cell division was 

oriented towards the central vein (DCO). In (B,D,F; right column) it was random (RCO). 

The black lines denote cell orientation (compare to Fig. 39). Generally, DCO resulted in a 

global orientation of cell columns towards the central vein (A,C,E). Otherwise, the normal 

microarchitecture of the liver lobule was lost (B,D,F). The degree of global orientation 

towards the central vein was found to be approximately independent of cell micromotility. 

For all parameter choices the temporal proliferation pattern was in excellent agreement with 

the experimental observations in [Gebhardt & Burger, 1987]. In none of the simulations cell 

orientation changes were permitted. In computer simulations where we permitted cell 

reorientation (not shown), we found the orientation order in A, C, E to be destroyed while 

the cell positions remained unaffected. Despite cell migration, for DCO the cell orientation 

towards the central vein was maintained. However, dislocations occurred that led to locally 

hexagonal pattern as explained in the text.  
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Fig. 45: Regeneration dynamics in the model 
A: The temporal development of the cell count in a liver lobule during regeneration was 

found to be insensitive to changes of cell orientation (DCO/RCO) and cell migration. B: The 

velocity and quality of the regeneration of the initial necrotic lesion was found to increase 

continuously with increasing ability of the cells to optimize their cell orientation (model 

parameter 2) and for faster cell migration (model parameter 4). C/D: With increasing PCD 

(model parameter 1) the velocity and quality of the regeneration also increased (dark green 

and magenta lines). Stochastic influences in cell movement were found to have no 

measurable influence (red and orange lines). A decreased cycle time (model parameter 3), 

however, led to an increased regeneration speed and quality (light green and dark blue lines). 

 

4.2.4. Discussion 

In this section, we established a spatio-temporal computational model of the liver 

lobule regenerating after CCl4 intoxication in 2D. Behavior of the cells in our model 

was mainly controlled by five model parameters, namely (1) probability of cell 

division, (2) directed cell orientation (DCO), (3) cell cycle duration, (4) cell 

micromotility and (5) polar cell-cell adhesion. One of the advantages of this minimal 

model was the possibility to systematically modify these model parameters and 

predict their influence on specific aspects of the regeneration process in a simplified 

and thus controllable environment (Tab.3). Due to the two-dimensional setting, the 

results of the corresponding computer simulations were easy to observe and could 

directly be compared to experiments. 
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Within physiologically relevant parameter ranges, we found DCO to be crucial for 

maintenance of the columnar microarchitecture in the liver lobule. In our model 

DCO defined the ability of two daughter cells to orient themselves in the direction of 

the central vein. Elimination of DCO (for example by replacement with RCO) did 

not influence the regeneration of the lost cell mass but severely impaired the 

restoration of the liver microarchitecture and led to pathological, hexagonal cell 

structures. Furthermore, the regeneration of the central necrotic lesion was delayed.  

However, although DCO was able to largely ensure a columnar microarchitecture 

during the regeneration within 7 days, long time simulations showed that after 20 

days the columnar pattern had transferred into a locally hexagonal pattern (Fig.42A). 

This pathological arrangement represents a low state of energy allowing the cells to 

maximize cell-cell contacts [Galle et al., 2003] whereas healthy columnar structures 

represent a higher state of cell-cell adhesion energy. Since general multicomponent 

systems (here a component is a cell) tend to lower their energy, the model predicts 

that additional stabilizing factors must be active in healthy livers maintaining the 

columnar structure on a longer time scale. 

We found hepatocyte polarity to be a candidate for such stabilizing factor. 

Elimination of hepatocyte polarity caused an increase in the number of hexagonal 

structures while its presence in interplay with DCO maintained a columnar structure 

in the lobule even on a longer time scale (Fig.42B, Fig.43). Elimination of both, 

hepatocyte polarity and DCO led to a complete loss of columnar architecture and 

caused severe hexagonal structures (Fig.43B). Similarly but to a lower degree, also 

increased probability of proliferation (model parameter 1) promoted formation of 

hexagonal structures. Interestingly, these kinds of structures had been experimentally 

observed in several pathological states of the liver, such as cirrhotic nodules 

(Fig.43D) and adenoma (Fig.43E) [Nussler et al., 2006]. In both pathological 

conditions the probability of cell division (model parameter 1) is known to be 

increased, which supports our model predictions. Whether these liver diseases are 

associated with alterations of other model parameters remains to be elucidated. 

The model further predicted an increased micromotility to have a positive effect on 

the velocity and completeness of the regeneration of the necrotic lesion whereas a 

decreased micromotility impeded regeneration. 

Most recent research on liver regeneration has concentrated on regeneration 

networks controlling hepatocyte proliferation. Relevant growth factors include HGF, 

IL-6, TGFα, VEGF, FGF1, FGF2, Angiopoietins 1 and 2, PDGF, HB-EGF, Jagged, 

Delta and stem cell factor [Michalopoulos & DeFrances, 2005]. In addition, 

neurotransmitters of the sympathetic nervous system have been shown to induce 

effects on many liver cell types, including hepatocytes. It can be expected that these 

parameters influence model parameter 1 (probability of cell division).  

In contrast, only little is known about the mechanisms controlling model parameter 2 

(DCO). However, our model predicts DCO to be crucial for the restoration of the 

microarchitecture of the liver lobule. Furthermore, it is well-known that an intact 

microarchitecture is a precondition for optimal liver function [Burt et al., 2006]. The 
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lobule architecture has to ensure a free blood flow from the portal vessels through the 

sinusoids into the central vein. Each obstruction of the sinusoids will hinder blood 

flow and is likely to compromise exchange between blood and the hepatocytes.  

 

In an in vivo situation, at least three factors can be expected to support the columnar 

microarchitecture within the lobules:  

 

(i) Fenestrated endothelial cells (sinusoidal lining cells) may 

biomechanically or biochemically guide the hepatocytes. After partial 

hepatectomy and as a consequence of hepatocyte proliferation, the 

formation of cell clusters containing 10-14 hepatocytes had been observed 

[Martinez-Hernandez & Amenta, 1995]. These clusters were devoid of 

sinusoids. Four days after hepatectomy, however, processes from Ito cell 

infiltrated into the hepatocyte clusters. This infiltration was followed by 

fenestrated endothelial cells, and in this manner the normal columnar 

microarchitecture was restored [Martinez-Hernandez & Amenta, 1995]. 

(ii) Chemical gradients between the periportal tract and the central vein may 

lead to local concentration differences by which hepatocytes may sense 

the direction of the central vein. In a typical liver lobule, the oxygen 

concentration, for example, decreases from the portal field towards the 

central vein [Burt et al., 2006].  

(iii) As predicted by the two-dimensional model, hepatocyte membrane 

polarity is likely to support the columnar microarchitecture [Chisari et al., 

2001]. 

  

The minimal two-dimensional model presented in this section did not yet include 

these complex biomechanical or biochemical interactions of hepatocytes with non-

parenchymal and sinusoidal cells. We also did not yet consider the portal blood flow 

which is known to affect liver regeneration [Nobuoka et al., 2006] [Fan et al., 2002].  

Nevertheless, already the minimal two-dimensional model was able to predict three 

key factors with significant relevance for a successful liver regeneration in our 

model: (1) directed hepatocyte orientation, (2) hepatocyte polarity and (3) 

micromotility. 

Many of the aspects that were missing in the 2D model, however, will be included 

into a more elaborated three-dimensional model in the next section. This advanced 

model will also be much more tightly coupled to experimental data which will allow 

us to shed further light on the complex mechanisms involved in liver regeneration. 
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4.3. Modeling liver regeneration in 3D 

4.3.1. Introduction: Liver systems biology 

The minimal two-dimensional model introduced in the previous section already 

pointed in the direction of several important aspects that are likely to influence liver 

regeneration. The model simulations especially predicted the specific columnar 

microarchitecture of the lobules to be a major factor for a successful liver 

regeneration. However, as discussed in section 4.2.4, a more detailed model is 

required to better capture the complex mechanisms of liver regeneration in vivo. 

Besides hepatocytes, such extended model should consider the blood vessels system 

within the lobules (veins and sinusoids) which is known to have a pronounced three-

dimensional structure [Matsumoto & Kawakami, 1982] and further biochemical 

factors that are likely to influence liver regeneration. 

Only little is known about how cells coordinately behave to restore the columnar 

microarchitecture during liver regeneration. Research in this field is hampered by a 

lack of techniques that allow quantification of tissue architecture and its 

development. In order to bridge this gap and shed light on the underlying processes 

and mechanisms we have established a procedure based on confocal laser scans, 

image processing and image analysis that allows three-dimensional tissue 

reconstruction as a foundation for quantitative computational modeling.  

Our procedure uses three parameter types: (Lobule) architectural parameters to 

quantify the static liver lobules, (regeneration) process parameters to quantify the 

regeneration process and modeling parameters to characterize the computational 

model. We utilize the architectural parameters to set up the initial state of a detailed 

computational model of liver lobule regeneration after toxic damage. For 

determination of the process parameters, we complemented conventional techniques 

such as BrdU incorporation with new techniques of processing and analysis of the 

experimentally obtained 3D confocal images to extract quantitative information that 

otherwise would be inaccessible, such as the spatio-temporal proliferation pattern of 

hepatocytes in 3D and the contact area between hepatocytes and sinusoidal cells 

during the regeneration process. We identified possible mechanisms underlying the 

observed regeneration process by analyzing a wide range of model variants within 

plausible physiological model parameter ranges followed by a quantitative 

comparison of the simulation results with the experimental observations using the 

same process parameters for both, experiments and simulations. Finally, we utilized 

the computational model to guide further experiments by predicting the most 

informative experiments to select the correct out of several possible mechanisms 

underlying regeneration. Using this strategy we identified a novel mechanism, which 

we named hepatocyte-sinusoid alignment (HSA), an alignment of daughter cells after 

hepatocyte division along the closest sinusoid. Model simulations and experiments 

demonstrated that HSA is a key mechanism necessary for the regeneration of the 

functional architecture of the liver lobule that cannot be replaced by alternative 
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mechanisms. Quantitative sp

organization represents a generic way to merge information from different sources to 

synergistically obtain new quantitative and qualitative insights into tissue 

organization processes. We believe our procedure is widely applicable in the systems 

biology of tissues. 

 

4.3.2. Image processing: From microscopy to model

In order to establish a quantitative three

we first reconstructed and quantitatively described 

based on experimental data (section 4.3.2.1)

by confocal laser scanning microscopy to reconstruct

structure of the sinusoidal 

restoration (section 4.3.2.2) and analysis (section 4.3.2.3) 

laser scans have been used to 

determine and analyze the

of hepatocyte nuclei

4.3.2.4). We subsequently used 

these reconstructions to obtain 

information on the tissue 

microarchitecture (section 4.3.2.5) 

that until today 

experimentally accessible.

All results were validated using 

transgenic mice (section 4.3.2.

Furthermore, we used bright field 

microscopy to further elucidate the 

dynamics of the destruction and 

regeneration processes (section 

4.3.2.7). Based on thi

combination of 2D and 3D images, 

we obtained statistical 

distributions for the architectural 

and process parameters. In order to capture variations among different liver lobules 

we studied 56 lobules (26 confocal laser scans and 30 bright field micrograp

different mice. From the obtained parameter distributions we generated 

representative liver lobule

simulations. Alternatively, we used a single confocal data

concrete (section 4.3.2.9
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mechanisms. Quantitative spatio-temporal computational modeling of tissue 

anization represents a generic way to merge information from different sources to 

synergistically obtain new quantitative and qualitative insights into tissue 

We believe our procedure is widely applicable in the systems 

4.3.2. Image processing: From microscopy to model 

In order to establish a quantitative three-dimensional model of the regenerating liver 

we first reconstructed and quantitatively described the architecture 

based on experimental data (section 4.3.2.1). We used volumetric data

confocal laser scanning microscopy to reconstruct the full three

structure of the sinusoidal blood vessel network by a sequence of image processing, 

restoration (section 4.3.2.2) and analysis (section 4.3.2.3) steps. The same 

have been used to 

the position 

of hepatocyte nuclei (section 

We subsequently used 

these reconstructions to obtain 

information on the tissue 

architecture (section 4.3.2.5) 

until today is not 

experimentally accessible. 

results were validated using 

(section 4.3.2.6). 

Furthermore, we used bright field 

microscopy to further elucidate the 

dynamics of the destruction and 

regeneration processes (section 

). Based on this 

combination of 2D and 3D images, 

we obtained statistical 

distributions for the architectural 

and process parameters. In order to capture variations among different liver lobules 

we studied 56 lobules (26 confocal laser scans and 30 bright field micrograp

different mice. From the obtained parameter distributions we generated 

liver lobule (section 4.3.2.8) as initial configuration for our model 

simulations. Alternatively, we used a single confocal data set to parameterize 

9) lobule. 

 

Fig. 46: Volumetric experimental data.

Spatially consecutive images obtained by confocal

laser scanning microscopy.
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modeling of tissue 

anization represents a generic way to merge information from different sources to 

synergistically obtain new quantitative and qualitative insights into tissue 

We believe our procedure is widely applicable in the systems 

model of the regenerating liver 

 of liver lobules 

volumetric data sets obtained 

the full three-dimensional 

by a sequence of image processing, 

The same confocal 

and process parameters. In order to capture variations among different liver lobules 

we studied 56 lobules (26 confocal laser scans and 30 bright field micrographs) from 

different mice. From the obtained parameter distributions we generated a 

as initial configuration for our model 

set to parameterize a 

 
Volumetric experimental data. 

Spatially consecutive images obtained by confocal 

microscopy. 
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4.3.2.1. Experimental data 

In order to reconstruct and analyze liver lobules in 3D we obtained volumetric data 

sets using a confocal laser scanning microscope (Olympus, Germany, FV1000). A 

key advantage of confocal microscopy is its capability to produce in-focus images of 

thick specimens. This process termed optical sectioning allows three-dimensional 

reconstructions of topologically complex features. Approximately 150 µm thick 

vibratome slices of mouse liver tissue had been immunostained using simultaneously 

antibodies directed against ICAM and DPPIV (for details see section 4.3.4). Nuclei 

were visualized by DAPI (for a collection of typical data sets see Supporting Fig.2). 

Each data set consisted of 50-120 spatially consecutive images (layers) of effectively 

0.5 µm offset (Fig.46) each revealing a depth of 1 µm per layer. Each layer was 512 

x 512 pixels in size, typically represented 318 x 318 µm and included 3 color 

channels (RGB) that corresponded to the local intensity of fluorescent light emitted 

by the costained specimen. This intensity ( )I χ was available in normalized form (0 ≤ 

( )I χ  ≤ 1) and covered 256 different levels corresponding to an 8 bit resolution per 

channel. The software Cellsys (chapter 2) was used to integrate this partly 

overlapping image information into a single volume data set for each specimen. For a 

typical scanning depth of 100 µm such volume data set consisted of approximately 

25 million voxels (volume elements) each possessing a particular intensity of ( )I χ

(for 2D images ( , )x yχ = , for 3D volumetric data ( , , )x y zχ = ). 

Images and volume data sets obtained by bright field or confocal laser scanning 

microscopy often exhibit significant deficiencies considering their suitability for 

direct automated analysis. Various difficult to predict factors as the adjustment of the 

microscope, thickness of the pictured slice or efficiency of the staining often lead to 

extensive fluctuations of contrast, brightness and color saturation that, together with 

sensor inherent noise, complicate the automated analysis of such images. Therefore 

often image enhancement algorithms must be applied in order to prepare microscopic 

images or volume data for image analysis. 

In general, the process of image enhancement seeks to improve the visual appearance 

of pictured structures such that they become better suited for analysis by a human or 

a machine [Pratt, 2007]. In this work our first priority was suitability for machine 

processing. Until today, there exists no unifying theory of image enhancement due to 

the lack of a generally accepted standard of image quality which could serve as 

criterion [Pratt, 2007]. Nevertheless, as the sole purpose of all image and volume 

processing algorithms in this thesis was to prepare experimental images for 

automated analysis, we used the fitness for this purpose as a criterion. 

Most image enhancement algorithms fall into two categories: (1) spatial domain 

algorithms and (2) frequency domain algorithms. While spatial domain algorithms 

directly manipulate pixels of an image plane or voxels of a volume, frequency 

domain algorithms modify the Fourier transform of an image or volume [Gonzalez & 

Woods, 2007]. All image enhancement algorithms used in this work operate in the 
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spatial domain. In general spatial domain techniques are denoted by the expression: 

 

( )( ) ( )g T fχ χ=          (28) 

 

where ( )f χ  is the input image or volume, ( )g χ  is the output image or volume and 

T is an operator on f that is often defined over a neighborhood of χ . 

Many spatial domain image enhancement techniques involve image histogram 

processing [Gonzalez & Woods, 2007]. The normalized histogram of an image with 

intensity levels I is (for each color channel) a discrete function: 

 

( ) /k kH I n n=         (29)
  

where kI  is the thk  intensity level and typically0 255k≤ ≤ . kn  is the number of 

image elements (pixels or voxels) with intensity level kI  and n is the total number 

image elements.  

A common deficiency of microscopic images is poor contrast that results from a 

reduced image intensity level range [Pratt, 2007]. Additionally, the images are often 

locally or globally too bright or dark. However, these deficiencies can be 

automatically improved by a technique called histogram equalization (HE) or 

histogram linearization. Thereby the transformed output image is given by the 

equation: 

 

( )
( )

0

( )
I

j
j

HE H I
χ

χ
=

= ∑ .        (30) 

 

( )HE χ  maps each image element with an intensity level ( )I χ  to the corresponding 

image element with intensity level ( )HE χ  in the output image. This transformation 

leads to images whose intensity levels cover the entire intensity range and thereby in 

general are of improved contrast and brightness (Fig.47). Note that all information 

for this transformation can be extracted directly from the input image and thereby 

requires no further parameterization. Fig.47A-C shows typical microscopic images 

obtained by a bright field micrograph that exhibited deficiencies of contrast and 

brightness. Fig.47D-F shows the corresponding images after application of the 

histogram equalization technique whereby these problems had been resolved. The 

processed images were then accessible for analysis (section 4.3.2.7). 

However, since histogram equalization is based on the histogram of the entire input 

image, it is not able to selectively improve contrast in regions of the image that 

exhibit poor contrast while preserving regions with already good contrast. For this 

purpose, a more advanced technique was developed by [Tom & Wolfe, 1982]. The 

method is called adaptive histogram equalization (AHE) and utilizes only the 
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histograms ( , )AHE
kH I Ψ  of local contextual regions AHEΨ  of the image. Thereby, 

improved contrast can be obtained in all regions of the image. Several improved 

variants have been presented by [Pizer et al., 1987], [Stark & Fitzgerald, 1996], 

[Gillespy, 1998], [Kim et al., 2001] and [Wang & Tao, 2006]. These improved 

algorithms produce superior results for many applications. However, adaptive 

histogram equalization remains a computationally demanding algorithm whose major 

problem is the amplification of noise in image regions of low intensity gradients 

[Acharya & Ray, 2005]. 

 
 

Fig. 47: Histogram equalization in 2D 
A-C show typical bright field micrographs of low contrast and varying brightness. D-F show 

the corresponding images after histogram equalization. 
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4.3.2.2. Sinusoidal network reconstruction 

In the experimental data sets obtained by the confocal laser scanning microscope the 

intensity of the red color channel corresponded to antibodies directed against ICAM 

while the green color channel yielded information on antibodies directed against 

DPPIV staining. DPPIV staining visualized preferentially the bile canalicular 

interface between hepatocytes, whereas ICAM was expressed on the sinusoidal cells 

and not on the hepatocytes. Brightness and contrast of these images were relatively 

low. Additionally, the intensity of the immunostaining in some cases varied 

considerably within the volume due to inhomogeneous penetration of the antibodies 

(Fig.48A). This complicated the interpretation of the experimental data and required 

more complex image enhancement transformations in order to prepare the data sets 

for analysis.  

 

We used an adaptive histogram equalization (AHE) technique as proposed in [Pizer 

et al., 1987] to compensate the described deficiencies. Histogram modification was 

applied to each voxel at position ( ), ,x y zχ =  within the data set based on the averaged 

histogram of all voxels within a local spherical neighborhood AHEΨ  with a radius of 

64 voxels. The AHE transformation significantly increased contrast and equalized 

brightness within the volume (Fig.48B). However, the amplitude of impulse noise 

inherent in confocal micrographs (e.g. due to sensor noise) was also increased. The 

amplification of noise is a well-known problem of histogram equalization algorithms 

[Acharya & Ray, 2005]. Nevertheless, in our situation the problem could be solved, 

because noise related voxels could easily be identified in later processing steps. 

In the following we focus on the combined information obtained from ICAM (red) 

and DPPIV (green) immunostaining which yielded the most robust information on 

 

Fig. 48: Enhancement of confocal data. A: Typical image layer before image processing 

steps. Note the low brightness at the borders of the image and the overall poor contrast. B: 

The same image after AHE exhibiting increased contrast and equalized brightness. 
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the vessel network architecture within liver lobules. Due to additive color 

superposition this local combination of stainings is shown in Fig.48B in yellow 

color. On this basis, we now applied a sequence of morphology-based volume 

processing operators to reconstruct the lobule architecture and enhance the signal-

noise ratio to prepare segmentation of the vessel network.  

We used two elementary operators that can be characterized as generalized erosion 

and dilatation volume transformations. For each voxel of intensity I(χ) (0 ≤ I(χ) ≤ 1) 

at position χ  we determined the fraction ( ), , GEDχ αΦ Ψ  of voxels within a spherical 

neighborhood GEDΨ  that exceed an intensity threshold α . GEDΨ contains all voxels 

within a  radius ( )GEDR Ψ  that was chosen in the range of the average sinusoid 

diameter. On this basis we defined generalized erosion (GE) and dilatation (GD) 

operators as:   
 

GE: If ( ), , GEDχ αΦ Ψ  ≤ GEα  : I(χ)=0, else I(χ)=1,    (31) 

GD: If ( ), , GEDχ αΦ Ψ  ≥ GDα  : I(χ)=1, else I(χ)=0,    (32) 

 

where GEα and GDα  are iteration-dependent thresholds.  

An initial application of the GE operator ( ( )0.5, 2GEDRα = Ψ = , for a comprehensive 

summary of all parameter ranges see Appendix 5) removed most of the impulse noise 

in our data sets (Fig.49C) and resulted in a binarized volume ( { }( ) 0,1I χ = ). 

Subsequently, we used the concatenation of GD and GE operators which together 

may be characterized as a generalized closing operator on the one hand to further 

reduce noise and on the other hand to reconstruct vascular structures by filling minor 

holes and bridging small discontinuities. By continuously applying the same number 

of both elementary operators we ensure to maintain fundamental structure 

dimensions within their original sizes.  

Subsequently, we used an additional morphological operator (CC) for a further, more 

powerful restoration of vessel discontinuities and to close remaining cavities within 

already restored structures (e.g. the lumina of the sinusoids). Here, for each voxel at 

position χ we determined the fraction ( ), , CCRχ αΘ of vectors of length CCR  that 

originate in χ, go off in arbitrary direction and have at least one intersection with a 

voxel whose intensity exceeds the thresholdα .  

 

CC: If ( ), , CCRχ αΘ  ≥ CCα  : I(χ)=1, else I(χ)=0    (33) 

 

with CCα  being an iteration-dependent threshold. Typically, we chose CCα = 0.9 and 
CCR  along known vascular structure sizes to preserve the original vessel architecture. 

 



 

 

126 4. Modeling the regenerating liver lobule 

 
Fig. 49: Vascular network enhancement. A-D: Images show a maximum intensity 

projection. A: Before adaptive histogram equalization (AHE), B: After AHE, C: After initial 

GE-Operator (red voxels are removed), D: After CC-Operator (green voxels are added), E: 

Volume data before enhancements (equivalent to A), F: Volume data after enhancement. 

(See Supporting video 26) 
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In order to efficiently implement the CC operator, we approximated ( ), , CCRχ αΘ  

utilizing 20 random sample vectors in uniformly distributed directions. 

Furthermore, we discretized these vectors using the Bresenham algorithm 

[Bresenham, 1996]. We found that the iterative application of the CC operator very 

effectively closed internal cavities in the reconstructed vascular network while 

preserving the outer vessel surface (Fig.49D). In order to finalize the volume 

enhancement process, we cropped the volume data set by discarding outer layers 

with no voxels exceeding the intensity thresholdα . We also removed all remaining 

very small ( 0.001%≤  of the volume) isolated 6-connected sub-structures (Von 

Neumann neighborhood) that are assumed not to contribute to the lobule vessel 

network. Both steps considerably decreased the computational complexity of later 

volume analysis steps. 

 

 
4.3.2.3. Analysis of lobule vessel network 

On the basis of the enhanced volume data set we next conducted a volume analysis to 

gather quantitative information on the blood vessel network within the lobules.   

In a first step we determined the position of the central vein. The detection algorithm 

relies on the fact that neither the cytoplasm of the cells nor the lumina of vessels 

within the lobule are stained by any of the used markers. Therefore voxels associated 

to the cytoplasm or the lumina tend to have low intensity values in all color channels. 

Especially the central veins could easily be identified as relatively large tubes free of 

ICAM as well as DPPIV staining. We determined the position of the central vein in 

each layer by analyzing spatially averaged intensities (refer to Fig.50A) using a 

circular kernel whose radius AVGR  considerably exceeds the sinusoid vessel radius 

and the mean sinusoid-nuclei distance (typically 25AVGR = voxels). The central vein 

was then assumed to be localized at the center of mass of the largest 4-connected 

assembly of voxels with averaged intensities below a threshold AVGα . The lumen of 

the central vein is lined with endothelial cells stained by ICAM. This information 

was used to further refine the shape of the central vein to increase the precision of its 

reconstruction. We then used the obtained information on the position, orientation, 

radius and shape of the central vein to parameterize the central vein in our model 

liver lobule (sections 4.3.2.8 and 4.3.2.9). 

In a second step we constructed an undirected graph to extract a simple, robust 

representation of the sinusoids within the lobule in order to quantify the 

corresponding vessel network. Algorithmically, the construction of this “sinusoids 

graph” is closely related to the construction of the topological volume skeleton that 

can be calculated by a medial axis transform [Gonzalez & Woods, 2007]. The 

topological volume skeleton is defined as the locus of the centers of all maximal 

inscribed hyper-spheres of radius GR . An inscribed hyper-sphere is maximal if it 

cannot be completely embedded in any other inscribed hyper-sphere. Next, we 
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constructed the sinusoids graph by iteratively determining the positions of its nodes 

and edges by analyzing the foreground voxels ( ( ) 1I χ = ) of the enhanced volume data 

set from section 4.3.2.2. Additionally, we associated a radius to each (spherical) node 

that later was used for extracting quantitative information on the sinusoidal network 

(refer to Fig.50B). (1): In a preparatory step, we calculated the radius ( )G
iR χ  of the 

maximal inscribed hyper-sphere (in our three-dimensional case: a sphere) for all 

voxels i (at position iχ ) within the volume. At this point, we considered all voxels to 

be unprocessed. (2): We started the construction of the sinusoids graph with voxel j 

of maximal ( )G
jR χ . In case multiple ( )G

jR χ  were equal, we randomly selected one 

from those. At position jχ  we now added the first node k of the sinusoids graph and 

stored its radius ( )G
jR χ . Furthermore, we considered all voxels overlapped by node k 

associated to this node and therefore processed. (3): We now continued the 

construction of the sinusoids graph by adding node m at position nχ of the voxel n 

with maximal ( )G
nR χ  that is located on the surface of node k. Again all voxels that 

are overlapped by node m with radius ( )G
nR χ  were considered processed. We also 

added an undirected edge between the nodes k and m.  

The process of adding the next node on the surface of the last (step 3) was iterated 

until no unprocessed voxels remained on the surface of the last node. This 

corresponds to a depth-first-search. (4): If any voxels remained unprocessed, we 

repeated the construction from step 2. Each of these iterations added a new part of 

 

 

Fig. 50: Vascular network analysis. A:  Multi-channel intensity average ( 25AVGR =
voxels) of the reference volume (Fig.48). Red indicates low and green indicates high 

averaged intensity. The black cross marks the detected position of the central vein. B: 

Sinusoids graph. Black lines show edges and red spheres show nodes and associated radii. 

Lower left corner: magnification of nodes in sinusoid graph. 
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the sinusoids graph that was not connected to any existing parts. Therefore the 

resulting graph could be considered both undirected and unconnected. When no 

unprocessed voxels remained, the construction algorithm terminated. 

We used the resulting graph to extract quantitative information for example on the 

sinusoid radii including their average value and distribution within the lobule. 

Furthermore, we calculated the mean minimal distance between two neighboring 

sinusoid vessels to determine the density of the network and analyze branching 

properties (see Table 4 for a list of all obtained parameters). By averaging the results 

of volume enhancement and analysis over many liver lobules (see Supporting Fig.2 

and Supporting Fig.3 for an overview of typical data sets) we obtained statistically 

robust quantitative values that laid the foundation for the parameterization of the 

model lobule that served as a starting point for our computer simulations (section 

4.3.2.8). The results of the volume analysis were also used without averaging to set 

up a model for a specific, concrete liver lobule (section 4.3.2.9). 

 
4.3.2.4. Quantification of hepatocyte characteristics  

Besides the analysis of the vascular network, we also used the same volume data sets 

to obtain quantitative information on the hepatocytes within the lobule. The blue 

color channel yielded intensity values that originated in a DAPI-staining which labels 

cell nuclei of both hepatocytes and non-parenchymal cells by forming fluorescent 

complexes with double-stranded DNA. However, especially the blue color channel in 

our confocal laser scanning micrographs suffered from high noise levels (Fig.51A). 

In general, confocal laser scanning micrographs are subject to noise from a number 

of sources including inherent sensor noise or channel transmission errors [Pratt, 

2007]. In addition to continuous noise that has a flat power spectral density and in 

analogy to white light is also termed white noise, we consider noise in our images to 

be dominated by impulse noise that leads to intensity spikes of random location, 

amplitude and spectral content. 

Most traditional noise cleaning algorithms [Graham, 1962] [Rosenfeld et al., 1969] 

[Nathan, 1970] and especially linear noise filtering techniques perform well on 

images with continuous noise. However, they incline towards too strong smoothing 

for images with impulse noise. Median filtering is a nonlinear signal processing 

algorithm originally developed by [Tukey, 1971] that commonly is considered a 

cornerstone of current image processing. It is widely used for smoothing and removal 

of image noise distortions [Baxes, 1994] [Haralick & Shapiro, 1992] [Yin et al., 

1996] as it preserves edges more effectively than a linear smoothing filters 

(Fig.51C). Recently, [Weiss, 2006] presented a fast logarithmic-time (O(logRk)) with 

Rk the radius of the filter kernel) variant of median filtering scalable to any kernel 

radius and image bit-depth. This fundamental advancement eliminated the (until 

then) major disadvantage of median filtering, namely its relatively high 

computational cost. 

In order to prepare our confocal laser scanning micrographs for analysis, we 

complemented the volume enhancement steps as described in section 4.3.2.2. with 
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median filtering. We used adaptive histogram equalization as proposed in [Pizer 

et al., 1987] to equalize brightness and enhance contrast (Fig.51A) and applied a 

sequence of GE and GD operators that already removed parts of the impulse noise 

(Fig.51B). In contrast to the filigree structures of the sinusoidal blood vessel 

network, hepatocyte nuclei were typically compact spherical structures whose 

staining with DAPI in general led to large intensity gradients (Fig.51A). Therefore, 

we additionally applied a non-linear 3x3 median filter that almost eliminated the 

remaining image noise (Fig.51C).  

 

 

 

 

Fig. 51: Hepatocytes enhancement and analysis.  
A: Volume data sets (blue channel) after adaptive histogram equalization (AHE) (high 

brightness=high intensity). B: Noise reduction by GE operator (red voxels are removed). C: 

Volume data set after enhancement and classification of hepatocyte nuclei. D: Delaunay 

triangulation. Vertices (red dots) are given by the center of mass of hepatocyte nuclei.  
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The resulting volume was then binarized ( { }( ) 0,1I χ = ) using an intensity threshold 

HEPα  (typically HEPα = 0.8) to reduce the computational complexity of later analysis 

steps. All foreground voxels ( ( ) 1I χ = ) within the volume data set were partitioned 

into isolated, 6-connected subsets. We used a morphological classification inspecting 

diameter, volume and shape of each subset to differentiate between hepatocyte 

nuclei, nuclei of non-parenchymal cells and artifacts. Typically, hepatocytes have 

one or two nuclei of approximately spherical shape. In our experiments, we found an 

average diameter of 9.3 µm for hepatocyte nuclei (Fig.52A). The diameter of non-

parenchymal cell nuclei is known to be significantly smaller. We found an average 

diameter of 5.6 µm (Fig.52A). 

 

 

 

Fig. 52: Statistical analysis of lobule properties. 

A: Distribution of nucleus diameters of hepatocytes and non-parenchymal cells. B: 

Distribution of hepatocyte volume (µm³) in reference dataset. C: Distribution of sinusoid 

orientation (in comparison to a perfect alignment in the direction of the central vein).  

 

In the following, we focused our analysis on voxel subsets classified as hepatocyte 

nuclei (Fig.51C). By calculating the center of mass for each subset, we obtained a set 

of points P. On the one hand, P was used to directly study hepatocyte positions. On 

the other hand, however, a number of more complex analyses were conducted based 

on a refined Voronoi decomposition of metric three-dimensional space 

[Aurenhammer & Klein, 2000] that was constructed using P. Fig.51D shows P (red 

points) and the corresponding Delaunay triangulation [Okabe et al., 2000] for our 

reference volume data set. The Delaunay triangulation is the dual structure of the 

Voronoi diagram and for example allows the simple determination of cell-cell 

neighborhoods. Traditional Voronoi decomposition associates each point in space to 

its nearest base point. We refined this approach using additional information from the 

analysis of the vascular network to associate parts of the volume to sinusoidal vessels 

or the central vein instead of Voronoi cells representing hepatocytes. We then used 

this refined Voronoi decomposition to analyze hepatocyte characteristics. For 

example, we found an average hepatocyte diameter of 23.3 µm (see Table 4 for a list 

of all obtained parameters).  
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4.3.2.5. Quantification of tissue microarchitecture 

In order to quantify the tissue microarchitecture of the liver lobules we analyzed the 

surface contact area of each hepatocyte to other hepatocytes and adjacent sinusoids. 

The segmentation of the sinusoids (section 4.3.2.2) and the hepatocyte nuclei 

(section 4.3.2.4) laid the foundation for the calculation of a refined Voronoi space 

decomposition as described in the previous section that we utilized to calculate these 

contact areas. We used the positions P of the hepatocyte nuclei as base points for the 

construction of the Voronoi diagram and additionally confined the extension of the 

Voronoi cells by 1) a maximal radius that was chosen along typical hepatocyte cell 

sizes and 2) the sinusoids (Fig.53). Thereby each point in the volumetric data set was 

associated to either a specific hepatocyte (defined by the nuclei that served as its base 

point) or a sinusoid. Only a small fraction of the volume (< 5%) remained 

unassociated which was caused for example by the lumina of large vessels (Fig.53). 

By comparison with the original experimental data we found the fraction of the 

volume data set associated to each hepatocyte by this technique to be a good 

approximation for the shape of this hepatocyte. We next used this shape 

approximation to calculate the fraction of the surface of each hepatocyte that was in 

contact to 1) neighboring hepatocytes, 2) adjacent sinusoids or 3) unassociated space. 

The average fraction of the hepatocyte surface that was in contact with sinusoids 
C
SinuAɶ  seemed to be a robust measure for liver lobule function and thus was used as 

process parameter in our model. We found a rapid decline of C
SinuAɶ during the first two 

 

 
Fig. 53: Quantification of tissue microarchitecture.  

Refined Voronoi space decomposition. White = vascular network, blue = hepatocyte nuclei, 

red = hepatocyte-hepatocyte surface contacts, green = hepatocyte-sinusoid surface contacts. 
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days after administration of CCl4. During the regeneration process, however, C
SinuAɶ  

recovered to its original value after 16 days (Fig.62C). In liver disease, such as 

hepatocellular cancer, we found a significantly (unpaired t-test: p=0.0015) decreased 
C
SinuAɶ  that is likely to contribute to compromised liver function in liver tumors of mice 

(Fig.55). 

 

 

4.3.2.6. Validation by different staining procedures 

So far all described reconstructions were based on confocal laser scans of mouse 

liver tissue immunostained by antibodies directed against ICAM and DPPIV. 

Although the technical quality of theses stainings was excellent it can never be 

completely excluded that the antibodies lead to unspecific staining patterns that may 

compromise the quality of reconstructed tissue. In order to validate the so far 

obtained data we performed the same reconstructions described in sections 4.3.2.1 – 

4.3.2.5 using mouse liver tissue in which the relevant structures were stained by 

completely different techniques: (1) hepatocytes were visualized by transgenic 

expression of enhanced green fluorescent protein (EGFP) under control of a modified 

albumin promoter (alfp/Cre), (2) sinusoidal cells were visualized by antibodies 

directed against CD31 (for experimental details see section 4.3.4, for typical 

examples refer to Supporting Fig.3). 

Most algorithms used to reconstruct the lobule architecture were identical to the 

techniques used during the analysis of the confocal data sets stained with 

ICAM/DPPIV. Nevertheless, after an initial adaptive histogram equalization filtering  

 

 
Fig. 54: Alternative CD31 / EGFP / DAPI staining.  

A: Typical image layer before image processing steps. Note the fluctuating brightness of the 

image and the relatively poor contrast. B: The same image after adaptive histogram 

equalization exhibiting increased contrast and equalized brightness. 
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of the EGFP/CD31 data sets (Fig.54), we segmented the sinusoidal network by a 

technique similar to the one used in section 4.3.2.3 to reconstruct the central vein by 

averaging intensity values (Fig.50A). In this case, however, the algorithm relied on 

the fact that the lumina of the sinusoidal vessels within the lobule were not stained by 

any of the used markers (EGFP, CD31, DAPI) and therefore voxels associated to 

these lumina tended to have low intensity values in all color channels. In order to 

apply this method to reconstruct the sinusoids we used a circular kernel whose radius 
AVGR  that was chosen in the range of the average sinusoid diameter and thus was 

considerably smaller than the one used in section 4.3.2.3. The sinusoids could then 

be identified as tubes free of EGFP as well as CD31 staining. This basic 

segmentation of the sinusoids was subsequently used as starting point for the 

reconstruction of the sinusoidal network by application of the morphological 

operators described in section 4.3.2.2. Importantly, the same results were obtained 

using this strategy compared to the data obtained with ICAM/DPPIV co-staining as 

described in sections 4.3.2.1 – 4.3.2.5. 

 

 

4.3.2.7. Quantification of destruction and regeneration process 

In the previous sections we obtained quantitative parameters that described the static 

architecture of a liver lobule in 3D regarding its vascular network and parenchymal 

cells. However, to model the process of lobule regeneration after intoxication with 

CCl4, further experimental data on the dynamics of this process was required. 

Parameters describing the destruction and regeneration process were named: 

“process parameters”. To describe the centrilobular cell death and subsequent 

hepatocyte proliferation induced by CCl4 administration to mice, we additionally 

analyzed paraffin slices from livers prepared between 12 hours and 14 days after 

administration of CCl4. Mice received BrdU injections to cover a period of 6 hours 

before the livers were prepared (section 4.3.4). BrdU is incorporated into newly 

synthesized DNA of replicating cells (during the S-phase of the cell cycle) and thus 

is commonly used to detect proliferating cells. Incorporated BrdU was visualized by 

immunostaining, which resulted in brown staining of nuclei that had incorporated 

BrdU. 

We analyzed 30 images (see Supporting Fig.4 for typical examples) taken on 8 

different time points (0, 1, 2, 3, 4, 8 and 16 days after intoxication with CCl4) of 3 

different mice per time period. For each image we obtained the number and positions 

of hepatocytes and non-parenchymal cells and differentiated their proliferation status 

using the BrdU staining.  

We assumed lobules to have a hexagonal shape and studied variations from the 

corresponding regular hexagon. We found the mean variation of edge lengths from a 

regular hexagon to be approximately 20% with no systematic tendencies. By 

calculating the area of the lobules, we were able to obtain robust and normalized 

(Aref = 0.21 mm²) cell density measures for proliferating and non-proliferating cells 

(Fig.57A, Fig.57D).  
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Furthermore, we calculated the area of the pericentral necrotic lesion caused by the 

intoxication with CCl4 that could clearly be distinguished from the surviving 

hepatocytes (Fig.57). The necrotic area was maximal 1-2 days after CCl4 

administration (Fig.57B) when the average hepatocyte density within the lobule was 

minimal (Fig.57A). We obtained its precise extension and area using a “seeded 

region growing segmentation” algorithm based on intensity values [Shapiro & 

Stockman, 2001] typically using a threshold intensity of NECα = 0.85. The results of 

this segmentation are illustrated in Fig.56 by the green striped areas.  

By combining the information on cell positions and the extension of the necrotic 

area, we were able to analyze the minimal Euclidean distance of each cell to the 

central necrosis (illustrated in Fig.56A). Additionally, we associated each cell to a 

layer that refers to the pericentral necrosis using refined 2D Voronoi space 

decomposition, whereby the hepatocyte layer next to the central dead cell area was 

considered cell layer 1, hepatocytes in contact with cell layer 1 formed cell layer 2, 

etc. (illustrated in the right half of Fig.56B). Compared to Euclidean distances such 

layer association had proved to be a more robust measurement for the distance of a 

cell to the central necrosis that also exhibits better scaling properties for variable cell 

and lobule sizes. Therefore, the technique of cell layer association had been applied 

to describe the distribution of BrdU positive hepatocytes over the liver lobule 

(Fig.57D).  

BrdU incorporation into 

hepatocytes peaked 2-3 days after 

CCl4 administration. Furthermore, 

the distribution of proliferating 

hepatocytes over the lobule was not 

homogeneous and preferentially 

occurred in the hepatocyte layers 

next to the dead cell area 

(Fig.57D). The spatio-temporal 

BrdU-incorporation pattern was 

later used as an input parameter to 

determine proliferation in our 

computational model.  

The pericentral hepatocyte marker 

glutamine synthetase as evidenced 

by mRNA expression, 

immunostaining and enzyme 

activity analysis showed a transient 

decrease (Supporting Fig.5-7). This 

demonstrates that the dynamics of 

destruction and regeneration of the 

pericentral hepatocytes is in 

agreement with previously reported 

 
Fig. 55: Hepatocyte surface contact analysis. 

Fraction of surface area of hepatocytes in contact 

with sinusoids (orange) and other hepatocytes 

(grey) in normal liver tissue and liver carcinomas 

obtained by method described in 4.2.3.5. 
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observations [Hoehme et al., 2007] [Michalopoulos, 2007] [Michalopoulos & 

DeFrances, 2005] [Michalopoulos & DeFrances, 1997]. The number of macrophages 

was observed to increase in the necrotic zone which was accompanied by increased 

RNA of CD68 (Supporting Fig.8). This may explain the rapid disappearance of the 

dead cell mass. A transient decrease of ATP content  

 

 
Fig. 56: Analysis of lobule regeneration dynamics. Images show representative paraffin 

slices of liver tissue of mice at different time periods after administration of CCl4 illustrating 

the emergence and regeneration of the central dead cell area. BrdU positive nuclei had been 

visualized by immunostaining. Blue lines denote the approximate lobule borders. Colored 

dots mark cell positions (green=BrdU positive hepatocyte with one nucleus, red=BrdU 

negative hepatocyte with one nucleus, cyan=BrdU positive hepatocyte with two nuclei, 

yellow=BrdU negative hepatocyte with two nuclei, blue=BrdU positive non-parenchymal 

cell, magenta=BrdU negative non-parenchymal cell). The green striped area shows the 

extension of the central necrotic lesion. / A: Controls (without CCl4). Lines denote minimal 

Euclidean distances of cells to the necrotic area, B: 2 days after CCl4 administration. The 

area of the central necrotic lesion is maximal. The right half illustrates the association of 

cells to layers using refined Voronoi space decomposition (red=cell in direct contact with 

necrosis, green=layer 2, etc.), C: 4 days after CCl4 administration. Regeneration progresses. 

D: 8 days after CCl4 administration, the regeneration is complete. 
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(Supporting Fig.9) as well as albumin, CYP3A11 and BSEP RNA expression, factors 

responsible for differentiated liver functions, a transient increase of AFP and 

ubiquitin RNA expression (Supporting Fig.5) and also the macroscopical appearance 

of the analyzed livers was in agreement with a destruction and regeneration process. 

Within 8 days the central necrotic area was closed (Fig.57B) and the liver mass 

restored (Fig.57A). As soon as the central dead cell areas had been regenerated it 

became difficult to histologically identify the central veins. This was achieved by 

glutamine synthetase immunostaining of neighboring slices (Fig.57E/F). It is 

important to note that the structure of the sinusoidal network remained almost 

unaffected by CCl4 (Fig.4F).  

In order to quantify the liver lobule microarchitecture, we measured the hepatocyte-

sinusoid and the hepatocyte-hepatocyte contact areas. We validated this measure by 

comparing healthy liver and liver carcinoma (Fig.55). We found that in normal liver 

35.8±2.3% (mean ± standard deviation) of the hepatocyte surface is in contact with 

other hepatocytes and 48.5±2.5% with sinusoids. In liver carcinomas the respective  

contact areas are 48.1±3.6% (hepatocytes) and 39.1±2.3% (sinusoids) illustrating the 

significant (unpaired t-test: p=0.0015) decrease in hepatocyte-sinusoid contact and a 

corresponding increase of hepatocyte-hepatocyte-contact in liver tumors. Since both 

measures are complementary we below only consider the hepatocyte-sinusoid 

contact area at which the exchange of metabolites between blood and hepatocytes  

 

 

Fig. 57: Process parameters for quantification of the regeneration process.  
Three mice were analyzed 0, 1, 2, 3, 4, 8 and 16 days after administration of CCl4. At least 

two liver lobules were analyzed per mouse. A: Hepatocyte density which reflects the lobule 

mass, B: Area of central necrosis with time, C: Hepatocyte-sinusoid contact area, D: 

Distribution of BrdU-positive cells in liver lobule. E: Red hand drawn lines in E and F show 

the approximate extension of the liver lobule. F: Central veins were identified by 

immunostaining for glutamine synthetase (GS). 
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Table 4: Lobule parameters obtained by volume analysis. 

 The plausibility of all parameters was verified using unprocessed experimental images. 

Parameter values were obtained by analysis of 26 different lobules. 

Parameter 

 

Source Value ± Standard deviation 

 

Lobule 

Confocal scanning depth Confocal data 95 ± 57 µm 

Lobule height in model - 250 ± 0 µm 

Lobule area (2D slice)  Bright field microscopy 0.21 ± 0.05 mm² 

Lobule radius in model  

(2D slice) 
2 / 3 3R A= A… lobule 

area (regular hexagon) 

284.3 ± 56.9 µm 

(12.2 ± 2.4 hepatocytes) 

Lobule volume in model - 
3 3 352.5 10 12.5 10 mm− −⋅ ± ⋅  

Area of necrotic lesion 

before regeneration 

Image analysis 0.073 ± 0.011 mm² 

Radius of necrotic lesion 

before regeneration 
1

nec necR A π −=
  

(circular necrotic lesion)
 

149 ± 22 µm  

(6.4 ± 1.0 hepatocytes) 

Sinusoids 

Radius of sinusoid 

vessels 

Volume analysis 4.75 ± 2.25 µm 

Orthogonal minimal 

vessel distance  

Volume analysis 16.45 ± 4.22 µm 

Non-branched segment 

length 

Volume analysis 43.1 ± 18.9 µm 

Mean branching angles Volume analysis 32.5° ± 11.2° 

Vessel volume in lobule Volume analysis 7.4 ± 1.1% 

Hepatocytes 

Hepatocyte volume Volume analysis 5 61.2653 10 3.915 10− −⋅ ± ⋅
mm³ 

Hepatocyte size Volume analysis 23.3 ± 3.1 µm 

Hepatocyte density Image analysis 1889 ± 341 cells/mm² 

Next neighbor distance Volume analysis 21.6 ± 13.1 µm 

Diameter of hepatocyte 

nucleus 

Image analysis 9.3 ± 4.4 µm 

Central vein 

Length in Volume Volume analysis 107 ± 69 µm 

Radius Volume analysis 41.2 ± 32.1 µm 

Inclination to viewing 

plane 

Volume analysis 6.6° ± 4.1° 
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occurs. Also during the regeneration process after intoxication with CCl4, the 

hepatocyte-sinusoid contact transiently decreases with a minimum at day 2 and 

subsequently recovers until day 16 (Fig.57C).  

 
 
4.3.2.8. Construction of a representative initial model state 

The previous analyses (sections 4.3.2.1 – 4.3.2.5) provided robust information on all 

major architectural parameters (see Table 4) of liver lobules in 3D. On that basis we 

set up a representative model liver lobule that served as starting position for our 

model simulations. 

The general shape of this representative lobule is an 8-faced polyhedron defined by a 

6-edged polygonal base and a parallel 6-edged polygonal top. The distance between 

base and top determines the height of the model lobule. The analyzed volume data 

sets typically covered a lobule height of 50-100 µm which corresponds to 2-4 

hepatocyte layers. In the model lobule we extrapolated this information using a 

lobule height of 250 µm which corresponds to approximately 10 hepatocyte layers. 

The base and top 6-sided polygons only moderately differ from regular hexagons. 

These minor variations of the lobule shape are in agreement with our findings from 

2D bright field micrographs (see section 4.3.2.7). Within this polyhedral 

environment, we first constructed a model vascular network (Fig.58A) whose 

properties correspond to the parameters obtained from confocal volume data sets (see 

section 4.3.2.2 and 4.3.2.3). Position and orientation of the central vein in the model 

are defined by the line connecting the centers of the top and base hexagon of the 

polyhedral environment. The radius of the model central vein corresponds to 

experimentally obtained values (section 4.3.2.3).  

Starting at the surface of the model central vein we now iteratively added model 

sinusoids as concentric segments (Fig.52C) using a distribution of segment length, 

segment radius and branching properties that corresponds to the experimentally 

obtained properties of the vascular network (section 4.3.2.3). In the periportal area 

the so far approximately concentric model sinusoids gradually change their 

orientation towards the model portal veins that are located at three edges of the 

lobule polyhedron as illustrated in Fig.58A. The sinusoids graph extracted from 

concrete confocal volume data sets often is unconnected mainly due to the technical 

limitation of confocal laser scanning microscopy to a depth of approximately 150 

µm. However, we assume the sinusoidal blood vessel network in the lobule to be 

connected and therefore the described construction algorithm was designed to 

generate a connected model vascular network.  This connectivity is of significant 

advantage for the modeling of biomechanical interactions with hepatocytes or when 

modeling blood flow through the model vascular network. We further imposed a 

direction to the model sinusoidal network according to the direction of physiological 

blood flow from the portal veins to the central vein. 

  



 

 

140 4. Modeling the regenerating liver lobule 

 
Fig. 58: Initial model state in 3D. 

A: Vascular network in the model. The outer vessel triad includes a bile duct (green), a 

portal artery (red) and a portal vein (blue). B: Initial model state including hepatocytes 

(ochre) and vessels (red). Parts of the lobule are not shown. 
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Nevertheless, despite these differences between the sinusoids graph and the vascular 

network in the model, both are equivalent regarding all major architectural 

parameters (see Table 4). In the second phase of the construction of the model lobule 

we added hepatocytes to the existing vessel network. Currently we only include 

parenchymal liver cells into our model. However, hepatocytes are known to account 

for approximately 80 - 90 % of the liver mass [Cunningham & Horn, 2003] [Taub, 

2004]. Analyzing confocal laser scans of mouse liver tissue we observed that 

hepatocytes have a relatively narrow size distribution (see Table 4) that also is 

roughly constant over time and independent from their position between the 

pericentral area and the periportal field. Based on these observations, all model 

hepatocytes are assumed to have the same size (23.3 µm). Statistical analysis of the 

experimental data showed no spatial correlation between the positions of hepatocytes 

within the confocal volume data sets. Therefore we iteratively added model cells at 

uniformly distributed random positions within the model lobule only considering 

constraints imposed by the already existing hepatocytes and the model vessel 

network. New model hepatocytes were added until cell density in the model lobule 

(the polyhedral environment) reached the experimentally observed value (1889 

cells/mm²). 

In the last phase, the constructed assembly of model cells and sinusoids was allowed 

to biomechanically relax until cell-cell and cell-sinusoid forces had been equilibrated 

(Fig.58B, also see Supporting videos 33-35). However, only minor spatial changes 

occurred during this relaxation process and the resulting model configuration still 

complied with all experimental parameters. Interestingly, during this relaxation the 

hepatocytes tended to align along sinusoidal vessels thereby organizing themselves 

(at least partly) in columnar structures that were also observed in experiments. 

However, we found this inherent organization process induced by the concentrically 

oriented sinusoids to be relatively weak and to have only minor influence during 

regeneration. 

For the representative initial configuration of the 3D lobule model (Fig.58) the 

hepatocyte-sinusoid contact area was 51.0±1.2% of the hepatocyte surface which 

was close to the experimental value of 48.5±2.5%. Note that this parameter cannot be 

directly tuned as it is fully determined by the architectural parameters 
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4.3.2.9. Construction of a concrete initial model state 

The information obtained on the vascular network, the central vein and the 

hepatocytes within the lobule can also be used to set up an initial model state that 

represents a specific liver lobule. Preconditions are high quality confocal laser scans 

that include an entire lobule (Fig.59A). Such concrete model state is less 

representative in comparison with a model state that was constructed using averaged 

information from many lobules (section 4.3.2.8). However, specimen-specific model 

states (Fig.59B, also see Supporting videos 36-38) allowed us to verify our 

simulation results by excluding artifacts that may have been introduced by averaging. 

Furthermore, a concrete initial model state allows simulations that can make 

predictions for a specific tissue specimen which lays the foundation for patient-

specific modeling. 

 

 
Fig. 59: Modeling a concrete liver lobule. 

A: Fully processed volume data set. White=sinusoids, blue=hepatocyte nuclei.  

B: Corresponding concrete initial model state. Grey overlapping over the left half of the 

model state shows the corresponding vascular network (A). 
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4.3.3. Model extensions 

4.3.3.1. Hepatocyte migration and sinusoids 

We extended the model elaborated in section 4.2. by introducing a detailed blood 

vessel network that included not only central and portal veins but also the 

microvessels (sinusoids) connecting them [Hoehme et al., 2009]. In this setting, we 

again simulate cell migration as a friction-dominated over-damped motion with a 

stochastic contribution by a stochastic equation of motion for each cell [Drasdo, 

2005] [Drasdo et al., 2007] [Hoehme et al., 2007]. 

 

For isotropic cells, the velocity of cell i is determined by: 
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where ( )iv t  is the velocity of hepatocyte i, X
ijγ denotes the friction between 

hepatocytes i and j (X=C) or between hepatocyte i and sinusoid j (X=S) and iγ

denotes an effective friction between hepatocyte i and the extracellular matrix. X
ijF  

denotes the JKR or extended Hertz - force between hepatocytes i and j (X=C),  

between hepatocyte i and sinusoid j (X=S), between hepatocyte i and central vein j 

(X=CV) or hepatocyte i and portal vein j (X=PV) . ( )k tω  denotes the velocity of 

sinusoid k. ( )i tη is an uncorrelated noise term with amplitude: 

 

 ( ) ( ) ( )in jm ij mnt t t tη η δ δ δ′ ′= −       (35) 

 

whereby i and ,j denote different cells, and n,m є (x, y, z) denote the coordinates.  

 

In case we consider anisotropic, polar hepatocytes and an active directed migration, 

the velocity of cell i is determined by: 

 

( )

( )

2( ) ( ( ) ( )) ( ) 2 ( )

( ) ( ) ( ( ) ( )) ( )

C C C
i ij j i ij ij i i

j

CV PV S S Active
iz i im i ik k k ik i i

z m k

v t v t v t F D t

F F v t t F F

ζ γ ψ γ η

ψ ψ γ ω ψ

= − + + ⋅ +

+ − + +

∑

∑ ∑ ∑
  (36) 

 

whereby in contrast to Eqn.34 forces depend on the orientation ijψ  of hepatocyte i 

and j or the angle iψ  of the hepatocyte i to veins and sinusoids, respectively. Active
iF

denotes a force that results from active cell migration for example in direction of a 
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mechanical or chemical gradient.  For a chemical gradient, .cF Active
i ∇= χ  For a 

mechanical gradient, 

 

( ) 21 2 ( )Active C
i ii i i

F p r D tγ η  = − Θ ∇ ⋅∆⌢     (37)

  

with iii rrr −=∆ ' . Here, Θ(x) = 1 if x≥0 and zero otherwise is the Heaviside step 

function and 
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is a measure for stress of cell i by adhesion or external forces. It is zero only if the 

cell is isolated. We implemented this by shifting a cell by a distance of [0, ]d qR∈  

into a random direction. We then calculated the difference ∆p(t+∆t) = pi(t+∆t) – 

pi(t) using Eqn.38 and added a corresponding force contribution to the equation of 

motion (Eqn.36) as indicated if this difference was not larger than zero (∆pi(t+∆t) ≤ 

0). If it was larger than zero then we tried another shift; at most Ns different shifts 

were tested. If for none of the shifts ∆pi(t+∆t) ≤ 0, then we did not add any force 

contribution to Eqn.36. We have tested the algorithm with [0.3,2]q ∈  and 

[50,500]sN ∈  and found that the results do not depend critically on the values of q or 

Ns within these ranges. In the simulations described in the following sections we 

have chosen q = 0.6 and Ns = 200. We assumed for simplicity that: 
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where ( )adh
ij ijA ψ  is the area of the overlapping regions that are able to form adhesive 

bond within the contact area ijA  of interacting hepatocytes and sinusoids and X
ijF  is 

the interaction force in case of isotropic hepatocytes. For a complete list of all model 

parameters see Appendix 5. 

 

4.3.3.2. Hepatocyte reorientation in 3D 

Extending the concept introduced in section 4.2, for polar cells we permitted cell 

orientation changes in three dimensions. For simplicity we modeled these by energy 

minimization (the Metropolis algorithm) instead of numerically integrating equations 

for the torques. Energy minimization provides an alternative to a forced-based 

single-cell dynamics [Drasdo et al., 2007]. Within each time interval ∆t for each cell 

a rotation trial around three space-fixed axes by angles δβi with i=1, 2, 3, δβi є [0, 

δβmax), with δβmax ≪  π/2 was performed, using the algorithm of Barker and Watts as 
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explained in [Drasdo et al., 2007]. The probability PRot that the rotation trial is 

accepted was calculated by min(1, )TV F
RotP e−∆=  where ∆V=V(t+∆t)-V(t). 

∑ <
∆+=∆+

N

ji ij ttVttV )()(  is the total potential energy after the orientation change, 

V(t) the total potential energy before the orientation change. FT is a reference energy 

[Drasdo & Hoehme, 2005]. Energy and force are linked by Eqn.15. The Metropolis 

algorithm ensures that orientation changes that lead to a decrease of the energy of the 

multicellular configuration are always accepted while those which lead to an energy 

increase are only accepted with probability TV Fe−∆ . 

For isotropic cells we do not consider orientation changes since they do not change 

the total energy of the multicellular configuration. 

 
4.3.3.3. Sinusoid and vein model 

The sinusoidal network and the central and portal veins of the liver lobule are 

modeled as semi-flexible chains of spheres of radius SinuR  that are connected by 

springs. In all models the velocity ( )i tω of model sinusoid i is determined by: 
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where S
ikγ denotes the friction between sinusoid i interacting hepatocytes k, Spring

iF  

are spring forces that arise from the chain connections and C
imF  summarizes the 

repulsive and adhesive forces between sinusoid i and interacting hepatocytes m.  

 
4.3.3.4. Further model extensions 

Moreover, we considered a possible influence of morphogenes either transported 

with the blood into the liver lobules or secreted by the necrotic cells close to the 

central vein. For the diffusion, secretion and dissociation of the morphogenes, a 

reaction-diffusion equation as elaborated in section 3.5.1 was used. 

 

We considered two starting configurations: (i) a representative liver lobule that has 

been generated by averaging over the architectural parameters of 26 liver lobules 

(section 4.3.2.8) and (ii) a concrete liver lobule that has been reconstructed from a 

specific confocal data set to avoid possible artifacts that may arise from averaging 

(section 4.3.2.9). 
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4.3.4. Experiments 

4.3.4.1. Mice and administration of substances.  

Male C57BL/6N mice, 11-14 weeks old (Charles River, Sulzfeld, Germany) were 

used for the regeneration experiments. The mice were fed ad libidum with Ssniff 

R/M-H, 10 mm standard diet (Ssniff, Soest, Germany) and all experiments were 

approved by the local authorities. 1.6 g CCl4/kg body weight was administered in 

corn oil using a stock solution of 0.4 g/ml. Three mice were analyzed at each of the 

time periods given in the results section. Mice received injections of 80mg BrdU/kg 

body weight (in 0.9% NaCl solution) 6, 4, and 2h before preparation of the livers, 

respectively. To generate the Tie-2-tTA transgenic reporter mice a construct 

containing the Tie-2 promoter and enhancer governing the expression of tTA was 

injected into the pronucleus of fertilized mouse eggs. The tetO-Cre and the EGFP-

reporter mice, where EGFP expression is activated by Cre-mediated excision of a 

STOP-cassette, have been described previously [Saam & Gordon, 1999], [Constien 

et al., 2001]. The Tie-2 tTA transgene was established and exposed to doxycycline as 

described in [Deutsch et al., 2008]. For validation of the reconstructed liver lobules 

we used Alfp-Cre transgenic mice [Kellendonk et al., 2000] and mated them to the 

above mentioned EGFP-reporter mice where hepatocytes were EGFP marked. Fig.60 

illustrates the experimental design used to study daughter cell orientation as 

elaborated in section 4.3.5.3. 

 

 
Fig. 60: Experimental design for the analysis of daughter cell orientation. Mice received 

1.6 g/kg CCl
4 
followed by injection of BrdU two days later, when proliferation is maximal. 

Subsequently, liver tissue was prepared at different time intervals after BrdU injection and 

immunostained for BrdU positive nuclei. Three mice were analyzed per time interval. 

 
4.3.4.2 Excision and fixation of liver tissue 

After the specified period of time the mice were sacrificed. To avoid any degradation 

of RNA the abdominal cavity was immediately opened and the whole liver was 

carefully excised without damaging the liver capsule. Then the tissue was separated 

into three different parts. One part of about 5mm3 in size was frozen in liquid 

nitrogen and then stored at -80°C for later RNA isolation. The two larger parts of 

about 1cm3 in size were used for immunohistochemical analysis. For the preparation 
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of vibratome slices one of them was collected in 4% paraformaldehyde (Sigma, 

Munich, Germany) and penetrated for 48h at room temperature and then stored in 

PBS at 4°C until further use. The latter part of the liver was embedded into paraffin. 

For this purpose it was transferred to paraffin embedding cassettes (Carl-Roth, 

Karlsruhe, Germany) and stored in 4% paraformaldehyde for 48h at 4°C.  

 
4.3.4.2. Immunostaining of the cytoskeleton using vibratome slices 

Using a vibratome (Leica, Wetzlar, Germany) slices of 50-150µm thickness were 

prepared prior to the immunostaining and collected in phosphate buffered saline 

(PBS; 2.7mM KCl, 1.5mM KH2PO4, 140mM NaCl and 6.4mM Na2HPO4.12H2O). 

All following steps were performed on a flat shaker at a frequency of 150 table 

movements per minute (IKA, Staufen, Germany). To block unspecific binding sites 

for the used antibodies the slices were incubated for 3h at room temperature with 3% 

bovine serum albumin (BSA; Serva, Heidelberg, Germany) / 1% Tween®20 (Sigma, 

Munich, Germany). 

Rhodamin labeled phalloidin (Biotrend, Cologne, Germany; 1:100 dilution) was used 

to stain the cytoskeleton. Primary antibodies were directed against either CD31 (BD, 

Heidelberg, Germany; raised in rat, 1:50 dilution), ICAM (Proteintech Group, 

Manchester, UK; raised in rabbit, 1:100 dilution), dipeptidyl peptidase IV (DPP IV; 

BD, Heidelberg, Germany; raised in goat, 1:25 dilution), 5-bromo-2-deoxyuridine 

(BrdU; Serotec, Düsseldorf, Germany; raised in rat, 1:25 dilution), b-actin (Sigma, 

München, Germany, raised in mouse; 1:25 dilution) or glutamine synthetase (BD 

Transduction Laboratories, Heidelberg, Germany; raised in mouse, 1:1000 dilution). 

Cy2-, Cy3- and Cy5-labelled secondary antibodies (Dianova, Hamburg, Germany) or 

the avidin-biotin-complex-method (ABC) with diaminobenzidine (DAB; Dako, 

Glostrup, Denmark) were applied to visualize the primary antibodies.  

Incubation with the different primary antibodies using the listed dilutions was 

performed over night at 4°C on a shaker with the above specified parameters. All 

antibodies were diluted in a solution of 0.3% BSA / 0.1% Tween®20 in PBS. The 

incubation period was followed by three subsequent washing steps in PBS at room 

temperature for 10min each. All secondary antibodies labeled with fluorescent dyes 

were applied in a 1:100 dilution and incubated with the slices over night at 4°C on a 

shaker to visualize bound primary antibodies. In the case of multi-labeling the second 

antigen was stained after finishing the first one. If not specified differently, antigens 

of CD31 and ICAM were stained using Cy3-labelled secondary antibodies, whereas 

b-actin was visualized using Cy2-labelled secondary antibodies. In case of DPP IV, 

Cy5-labelled secondary antibodies were applied. The procedure of incubation was 

exactly the same as for the first antigen. Following these stainings the slices were 

incubated with 4',6-diamidino-2-phenylindole (DAPI, Invitrogen, Karlsruhe, 

Germany) at a concentration of 2.35µg/mL for 2h at room temperature to identify the 

nuclei. After three washing steps using PBS the vibratome slices were transferred to 

a water filled Petri dish and mounted on SuperfrostPlus slides (Menzel, 
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Braunschweig, Germany) using aqueous Mowiol mounting media and stored in the 

dark at 4°C until further analysis. 

 
4.3.4.3. Immunostaining of BrdU using paraffin slices 

Formalin-fixed liver tissue was washed in PBS for 48h, dehydrated through an 

ethanol gradient (four times 5min in 70%, 90% and 95% ethanol, respectively, 

followed by three times in 100% ethanol). Subsequently, tissue specimens were 

incubated four times in xylene (Carl-Roth, Karlsruhe, Germany) and incubated over 

night in xylene/paraffin (1:1) at 60°C. Afterwards, tissue specimens were incubated 

twice in 60°C paraffin for 3h, followed by embedding in paraffin. Slices of 5µm 

were prepared using a microtome (Microm, Walldorf, Germany) mounted onto 

SuperfrostPlus slides, and heated for 20min at 60°C.  Sections were then 

deparaffinized by five times washing in Rotihistol (Carl-Roth, Karlsruhe, Germany) 

for 5min each, followed by hydration through a descending ethanol gradient (100%, 

95%, 90%, and 70% ethanol for 5min each) and 5min in PBS. During the next step 

the sections were boiled twice in a microwave oven for 7min in 0.01M citrate buffer 

(Carl-Roth, Karlsruhe, Germany; pH 6.0). Endogenous peroxidase was blocked by 

30min incubation in a solution of 7.5% H2O2 in methanol at room temperature. All 

further incubations were performed in a humidified chamber. Unspecific binding 

sites were blocked by 3% BSA / 0.1% Tween®20 / PBS using 100µL per section. 

Subsequently, endogenous biotin and avidin were blocked using a commercially 

available kit (Avidin-/Biotin-Blocking-Kit, Vector Lab., Burlingame, USA) 

according to the manufacturer’s instructions. Leaving out a washing step the 

blocking solution was dripped off carefully and the primary antibodies (rat-anti-

BrdU, Serotec, Düsseldorf, Germany; 1:25 diluted) were incubated on the tissue 

section for 1h at room temperature. Before proceeding with the next incubation step 

the slides were washed three times 5min in PBS. Biotinylated secondary antibodies 

(Dianova, Hamburg, Germany; raised in goat, 1:250 diluted) were chosen to detect 

the primary antibodies. After 1h incubation at room temperature the slices were 

washed again for three times 5min in PBS. Streptavidin-horseradish-peroxidase 

(Dianova, Hamburg, Germany; 1:500 diluted) was incubated on the tissue sections 

for 1h at room temperature. After three times 5min washing in PBS the slices were 

incubated for 5min at room temperature with DAB (Dako, Glostrup, Denmark) 

freshly prepared according to the manufacturer’s instructions. Following this the 

slides were rinsed for 10min under tap-water and then counter stained using Mayer’s 

hemalum (Merck, Darmstadt, Germany) for 90s. Again the slides were rinsed for 

10min under tap-water and then dehydrated using the graded ethanol series (70%, 

90%, 95%, and 100% for 90s each) and four times 90s of Rotihistol. Using Entellan 

(Merck, Darmstadt, Germany) the slides were mounted and stored in the dark at 

room temperature until further analysis.  
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4.3.4.4. Confocal microscopy  

All slices were screened shortly after the staining procedure using appropriate 

microscopes. As for the vibratome slices stained with fluorescent dyes a confocal 

microscope (Olympus FV-1000) was used. Excitation and emission wavelengths 

were used as specified by the manufacturer. The colors were mapped as following: 

Cy2 – green, Cy3 – red, Cy5 - green, DAPI – blue. In case, Cy3 and Cy5 were 

detected in one slice the mapping was as following: Cy3 – red, Cy5 – green, DAPI – 

blue. In all cases the different dyes could be detected very specifically with no cross-

talk between the channels.  

For reconstruction of whole liver sections, z-scans using stained vibratome slices 

were performed. Firstly the range of possible scans was determined. Laser 

parameters such as intensity, amplification and threshold of the signal were adjusted 

over the whole liver section to assure constant capturing of images regardless of the 

scan depth. Acquired image stacks were then processed using Imaris software.  

 

4.3.4.5. Bright field microscopy 

Screening of DAB-stained slices was done using a conventional bright field 

microscope (Olympus BX41). Images were acquired and organized using cell^M 

software (Olympus).  

 

4.3.4.6. Induction of mouse liver tumors 

Mouse liver tumors were available to us from a previously conducted experiment 

[Marx-Stoelting et al., 2008]. Tumors were induced in 6 weeks old male C3H/HeJ 

mice by single intraperitoneal injection of N-nitrosodiethylamine (90µg/kg body wt.) 

followed by continuous exposure of mice to phenobarbital (0.05% in diet). Following 

sacrifice of mice isolated tumors were immediately frozen in liquid nitrogen and 

stored until at -70° until analysis. 
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4.3.5. Results 

4.3.5.1. Simulating liver regeneration in 3D 

We started our analyses with the model that was elaborated in chapter 3 of this thesis 

to quantitatively mimic the growth dynamics and morphologies of growing cell 

populations [Drasdo & Hoehme, 2005] [Drasdo et al., 2007] [Hoehme & Drasdo, 

2009a]. In the following, we call this initial approach “model 1”. In model 1 we 

assumed random orientation of cell division, no morphogen that influences the 

direction of cell movement and an unspecific homogeneous isotropic adhesion of 

hepatocytes to other hepatocytes and to the sinusoids (Fig.61A, Supporting video 

33). Despite this model was in good correspondence with the experimental findings 

regarding the average hepatocyte density (Fig.62A) it could not explain the 

experimentally observed dynamics of the regeneration process, because closure of 

the central necrotic lesion was too slow (Fig.62B). Furthermore, the hepatocyte-

sinusoid contact area did not correspond to the experimental data (Fig.62C). We 

verified this finding by simulations over the wide range of physiologically valid 

parameters modifying hepatocyte micromotility, hepatocyte-hepatocyte and 

hepatocyte-sinusoid adhesion, hepatocyte-hepatocyte and hepatocyte-matrix friction 

   

 
Fig. 61: Regeneration in the model starting with a representative liver lobule.  

A-C partly show cross sections (compare to Fig.58B) of model simulations; A: Result of 

simulation with model 1 after 10 days. B: Result of simulation with model 2 after 10 days C: 

Illustration of the regeneration process (after t=0,2,4 and 10 days) with model 3 (also see 

Supporting videos 33-35).  
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Fig. 62: Quantitative comparison of experimental data and model.  
A: Average hepatocyte density. B: Area of central necrosis. C: Hepatocyte sinusoid contact 

area. Lines denote model simulations whereas the box plots represent experimental data. 

 

and changed the biophysical properties of hepatocytes and sinusoids. For example, 

strongly increased micromotility resulted in detachment of hepatocytes migrating 

individually into the necrotic lesion (Supporting Fig.10). However, a detachment of 

single cells from the regeneration front was not observed in our experiments. 

Therefore, the maximum micromotility must be considered to arise from forces that 

do not exceed that of hepatocyte-hepatocyte adhesion. We concluded that without a 

mechanism that directs hepatocyte migration into the necrotic zone without leading 

to detachment of single hepatocytes the lesion cannot be closed at the necessary 

speed. We tested morphogen and mechanical force gradients to direct migration of 

the hepatocytes towards the necrotic area. We additionally introduced polar 

hepatocytes as described in section 4.2.1.2 and modified cell-cell adhesion in the 

model such that adjacent polar hepatocytes only form adhesive bonds at their apical 

sides. This reduced adhesion with the sinusoids and thereby increased cell migration 

speed. The best data fit was obtained with a model (model 2) that integrated polar 

hepatocytes with a micromotility that was biased into the direction of the necrotic 

area and thereby directed cell migration. Model 2 (Fig.61B, Supporting video 34) 

was in agreement with the experimental observations regarding hepatocyte density 

(Fig.62A) and successfully mimicked the regeneration dynamics (Fig.62B). A bias in 

the micromotility may be caused by a local mechanical- or a morphogen gradient as 

long as both affect only 2-5 cell layers at the edge of the necrotic lesion. We found 

that if all hepatocytes in a lobule would be affected the lobule architecture would be 

distorted. We modeled the influence of gradients caused by cytokine secretion of 

dead or dying hepatocytes from the central necrotic region or cytokine transport with 

the blood. However, none of those model variations was able to successfully restore 

the lobule microarchitecture (Fig.62C). After 16 days the representative model 2 

showed a hepatocyte-sinusoid contact area of only 37.1±1.1% which is significantly 

lower compared to the experimental situation (48.5%±2.5%). 
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4.3.5.2. Hepatocyte-sinusoid alignment 

Since neither model 1 nor model 2 were able to fully explain the experimentally 

observed data we included a further mechanism into our model that we named 

hepatocyte-sinusoid alignment (HSA). HSA means that daughter hepatocytes after 

cell division align themselves along the closest sinusoid, such that the line 

connecting the centers of the two daughter cells is parallel to the local orientation of 

the closest sinusoid. This mechanism could be seen as a refinement of the “directed 

cell orientation” proposed in section 4.2 based on experimental observations. The 

first experimental evidence that sinusoids may serve as an aid to orientation of 

regenerating hepatocytes came from our tie2-reporter mice. Sinusoidal cells survive 

after administration of CCl4 even in the central region of the lobule where almost all 

hepatocytes die. However, since sinusoidal cells are very thin they may easily be 

overlooked in the central dead cell mass when paraffin slices are prepared and 

stained by conventional techniques (Supporting Fig.11). We first noticed their 

presence in the central dead cell mass using tie2-reporter mice carrying three 

constructs, whereby the transactivator protein tTA was formed under control of the 

tie2 promoter, tTA causes expression of Cre recombinase after binding to the 

responsive element of the second construct and Cre recombinase catalyzes the loxP 

site-specific recombination of DNA leading to removal of the STOP cassette in the 

third construct. (Fig.63A). 

Consequently, cells with tie2 promoter activity and their progeny were EGFP 

marked. Livers of untreated tie2-reporter mice expressed EGFP only in endothelial 

cells of veins and other vessels, whereas the sinusoidal cells remained unmarked 

(Fig.63B). A completely different picture was obtained after administration of CCl4 

to tie2-reporter mice. A relatively high fraction of sinusoidal cells especially in the 

dead cell area started to express EGFP (Fig.63C,D). This result was confirmed by 

qRT-PCR analysis, where an intermittent increase of tTA RNA and a permanent 

increase of EGFP RNA expression were observed after injection of CCl4 (Supporting 

Fig.12). This result shows that the sinusoidal cells in the dead hepatocyte area 

survive, but may be stressed and begin to show tie2 promoter activity, which is 

known to be involved in vessel remodeling [Saharinen et al., 2008]. In order to 

visualize the state of the sinusoidal network we immunostained sinusoidal cells with 

ICAM antibodies and reconstructed the network in healthy livers and two days after 

CCl4 administration. Although the sinusoidal network showed some degree of 

destruction, the basic network structure remained intact (Fig.63E,F). Analysis of the 

numbers of hepatocytes and sinusoidal cells showed that the majority of sinusoidal 

cells survived even in the central area where almost all hepatocytes were killed by 

CCl4 (Supporting Fig.13). This prompted us to study the hypothesis that sinusoidal 

cells may play a role during the regeneration process and to include the HSA 

mechanism into our model.  

We found the resulting model 3 (Fig.61C, Supporting video 35) to be in excellent 

agreement with all experimental observations including hepatocyte density (Fig.62A)  
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and regeneration dynamics (Fig.62B). Furthermore, the lobule architecture was 

restored as after 16 days and the hepatocyte-sinusoid contact area was 50.4% which 

corresponds to the experimental situation (48.5%±2.5%) (Fig.62F). Fig.61C 

illustrates a typical computer simulation with model 3 (see also Supporting video 

35). In summary, our regeneration of the liver architecture.  From a sensitivity 

analysis our model predicts that the alignment of daughter cells along the closest 

sinusoid must occur within at most about two hours after cell division. 

 
Fig. 63: Sinusoidal cells survive in the central dead cell area of the liver lobule after CCl4 

poisoning and activate the tie-2 promoter. A. Constructs of the triple transgenic tie2-reporter 

mice. B. Liver tissue of an untreated tie2-reporter mouse. Green fluorescence (EGFP) 

indicates tie2 promoter activity that is positive in the endothelial cells of a vein (white arrow 

in upper right image). Sinusoidal cells are visualized by CD31 immunostaining (light red in 

the lower left image) and nuclei by DAPI (blue in the lower right image). The merged 

picture (upper left image) demonstrates that endothelial cells of the vein but not the 

sinusoidal cells express EGFP (yellow). C and D. Two days after CCl4 administration some 

of the sinusoidal cells start to express EGFP. C. EGFP green fluorescence. D. Green, red and 

blue merged fluorescence. The central dead cell area is characterized by loss of nuclei and 

increased red background fluorescence. A substantial fraction of the sinusoidal cells within 

the central dead hepatocyte area survives and starts to express EGFP as a reporter of tie2-

promoter activity. E: 3D-reconstructed lobule before and (F) after CCl4 administration. 

While the hepatocytes (blue) die, the sinusoids (grey) remain largely intact. 
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4.3.5.3. Experimental validation of hepatocyte-sinusoid alignment 

In a next step we experimentally tested the prediction of the computational model by 

determining the degree of alignment of hepatocytes after cell division along 

sinusoids. For this purpose we reconstructed the three-dimensional sinusoidal 

network as well as resting hepatocytes (BrdU negative) and hepatocytes after cell 

division (BrdU positive) from confocal laser scans (Fig.64). BrdU positive nuclei 

were visualized by green fluorescence whereas the cell borders appeared red due to 

phalloidine staining. We applied an experimental design, where BrdU was injected 

48h after CCl4 administration, when hepatocyte proliferation was close to its 

maximum. Livers were prepared at time intervals between 8 hours and 14 days after 

BrdU injection (experimental design: Fig.60). Two-dimensional analysis of paraffin 

slices suggested that daughter cells are well aligned in the direction of the sinusoid 

(Fig.64A-C). However, in two-dimensional analyses the result may be compromised 

by the choice of the cutting plane. Therefore, we reconstructed and analyzed the full 

three-dimensional structure of the lobules (as described in section 4.3.2) and 

identified all pairs of BrdU-positive neighboring hepatocytes.  

Adjacent hepatocytes whose nuclei incorporated BrdU can either have emerged from 

the same mother cell by cell division or because or can have entered the S-phase by 

chance almost simultaneously. For peaks of proliferation activity (t = 2–3 days), we 

determined a chance of 20-30% for the latter case by studying the spatial pattern of 

the proliferating cells in our computer simulations. We neglected cases where more 

than two adjacent nuclei incorporated BrdU because it was rare (< 5 %). Hence, 

about 20-30% misaligned cells would still not contradict our model prediction of 

proliferating cells alignment along the closest sinusoid. If adjacent BrdU positive 

hepatocytes are daughter cells, the line connecting the centers of mass of their nuclei 

defines a vector c
�

 that could be used to describe their orientation. This orientation 

was then compared to the orientation s
�

 of the most adjacent sinusoid that could 

easily be extracted from the sinusoids graphs. The angle α  that we use as a measure 

for the alignment of hepatocytes and sinusoids was then calculated using the scalar 

product for vectors by: 

 

cos( )
c s

c s
α

⋅
=

⋅

� �

� �        (41) 

 

where c
�

and s
�

 are vectors. The closer this angle is to zero the better is the 

alignment. 8 hours after BrdU injection (the earliest analyzed time period) the 

majority of daughter cells showed a good alignment to the neighboring sinusoid 

(Fig.64; Supporting Fig.14). The simulation result with model 3 showed an excellent 

agreement with the experimentally observed angle distribution while in models 1 and 

2 the orientation angle was uniformly distributed in [0,π/2] (Fig.64E). 
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Fig. 64: Experimental validation of HSA. 

A: Immunohistochemistry staining in bright field microscopy; BrdU-positive nuclei in dark 

brown. B: Confocal microscopy image. green: BrdU positive cells, blue: non-proliferating 

hepatocytes, red: lectin (cell boundaries; sinusoids). Notice the pair of BrdU-positive cells 

indicated by the white arrow is oriented in parallel to the neighboring sinusoid indicated by a 

yellow arrow. C:  Three dimensional reconstruction of two daughter cells that are oriented in 

the direction of the neighboring sinusoid D: 3D distribution of BrdU-positive cells and 

sinusoids. The inset shows the connecting line of daughter hepatocytes (red) and their 

orientation (angle α) with regard to the closest sinusoid (blue line). E: density-distribution for 

angle α in experiments and models 1-3. 
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4.3.6. Discussion 

Development, architecture and function of tissues depend on interactions between 

cells that can vary in time and space [Hui & Bhatia, 2007]. Such interactions occur 

primarily by direct contact or secretion of soluble factors. In particular, liver function 

and dysfunction depend on its microarchitecture. Blood flows through the sinusoids 

thereby getting into contact with hepatocytes before it outflows into the central vein 

(Fig.36D,E and Fig.58B). The quantitative analysis of the liver lobule 

microarchitecture suggests that during evolution an optimal sinusoidal architecture 

has formed to guarantee an efficient exchange between blood and hepatocytes. Liver 

function is compromised if the hepatocyte-sinusoid contact area decreases. 

Obviously, the two most abundant cell types of the liver, hepatocytes and sinusoidal 

cells are crucial for maintenance of liver microarchitecture. However, analysis of 

hepatocyte-sinusoid interactions and their influence on liver microarchitecture is 

experimentally challenging. Conventional techniques were insufficient in describing 

three-dimensional spatio-temporal processes, so no techniques were available that 

allowed for quantification of liver microarchitecture. Therefore, we established a 

process chain that utilizes the synergies from experiment, image analysis and direct 

spatio-temporal modeling. As starting point we reconstructed liver lobules from 

confocal laser scans such that the position of all individual hepatocytes and 

sinusoidal cells as well as all further relevant information on lobule architecture were 

correctly captured. We introduced architectural parameters to quantify lobule mass 

and structure. The architectural parameters served to define the initial state of our 

computational model. In order to quantify the regeneration process after CCl4 

induced necrosis of hepatocytes close to the central vein and to permit a quantitative 

comparison with the simulation results of our model, we introduced process 

parameters.  

These parameters were experimentally determined in regenerating mouse liver 

covering a period of 0 - 16 days after intoxication with CCl4 and included (1) a 

measure for the spatio-temporal pattern of cell proliferation, (2) a measure for the 

liver lobule mass, (3) a measure for the area of the necrotic lesion, and (4) a measure 

to describe liver lobule microarchitecture, namely, the hepatocyte-sinusoid contact 

area reflecting liver function. By model simulations we have demonstrated that if any 

of these parameters would have not been taken into account we would have failed to 

correctly identify the key mechanisms involved in liver regeneration after CCl4 

intoxication. Parameter 1 served as an input parameter and – together with our 

abstract but still realistic description of a cell - ensured that the lobule mass was 

restored (parameter 2). However, if cell migration is completely dictated by physical 

interaction forces, the cells accumulate in the periportal zone and the lesion is not 

closed (Fig.61A, Supporting video 33). Only if hepatocytes actively migrate towards 

the necrotic zone, it is closed (parameter 3). Several lines of evidence suggest that 

dead or dying hepatocytes indeed cause surviving hepatocytes to migrate in their 

direction: (I) Time lapse videos of cultivated mouse hepatocytes demonstrate that 
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vital hepatocytes are attracted by dead hepatocytes (Supporting video 27 and 28), (II) 

filopodia extend several micrometers ahead of the hepatocytes at the edge of the dead 

cell area (Supporting Fig.10), (III) some hepatocytes show stress fiber formation as 

evidenced by phalloidine staining similar to hepatocytes in vitro showing a high 

scattering activity (Supporting Fig.15). We also included the known polarity of 

hepatocytes into the model that implicates a reduced adhesion between hepatocytes 

and sinusoids that leads to reduced hepatocyte-sinusoid friction. However, none of 

the mechanisms ensured that the hepatocytes aligned properly. They locally formed 

double- instead of single-cell thick columns by pushing apart adjacent sinusoids 

thereby increasing the hepatocyte-hepatocyte contact area at the expense of the 

hepatocyte-sinusoid contact area (Fig.61B, Supporting video 34).  

Only when we introduced a new mechanism, the alignment of daughter hepatocytes 

in the direction of the closest sinusoid - a so far unrecognized process which we 

named hepatocyte-sinusoid alignment (HSA) – then the simulated tissue architecture 

was in agreement with the experimentally obtained data. Importantly, by a model 

parameter sensitivity analysis within all model variants we could show that HSA 

could not be substituted by including any other likely mechanisms into the model. 

Therefore, the model unambiguously predicted that HSA must take place and that 

complete regeneration is not possible without HSA. In order to experimentally 

validate the model prediction of HSA, we three-dimensionally reconstructed and 

analyzed the orientation of daughter hepatocytes in relation to the sinusoids. The 

results of this analysis (Fig.64E) confirmed the model prediction.  

As previously already recognized, sinusoidal cells are central to triggering 

hepatocyte proliferation [LeCouter et al., 2003], [Maher, 1993], [Ping et al., 2006], 

[Michalopoulos & DeFrances, 2005], [Malik et al., 2002]. An important mechanism 

is that intoxication by CCl4 causes a more than 5-fold increase of HGF in sinusoidal 

cells leading to increased proliferation of hepatocytes [Maher, 1993]. Besides HGF 

also IL-6 and TNF-alpha are secreted by sinusoidal cells contributing to the 

proliferative stimulus [Malik et al., 2002], whereas the same cells also secrete the 

mito-inhibitor TGF-beta1, which after a spectacular phase of hepatocyte proliferation 

terminates liver regeneration [Michalopoulos & DeFrances, 1997]. Because of the 

influence of sinusoidal cells on hepatocyte proliferation, we wondered whether 

cytokines secreted by sinusoidal cells might also explain HSA. Some explorative 

experiments indeed led to results supporting this hypothesis. When we co-cultured 

hepatocytes and sinusoidal cells under the time-lapse microscope, we observed that 

hepatocytes are attracted by sinusoidal cells and tend to maximize the hepatocyte-

sinusoidal contact area (Supporting video 29-32; Supporting Fig.16). This is 

plausible, because HGF does not only induce proliferation but also serves as a 

chemoattractant for hepatocytes [Michalopoulos & DeFrances, 1997], 

[Michalopoulos & DeFrances, 2005] and thus may provide a mechanism that 

contributes to the proposed HSA. In this case, the hepatocyte alignment along the 

sinusoid should not occur during but subsequent to cell division. In order to test this 

hypothesis we performed pilot experiments and studied the orientation of mitotic 
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spindles by tubulin staining in 2D slices using the same liver samples that have been 

applied for analysis of daughter cell orientation. In contrast to the above described 

BrdU positive daughter cells, the mitotic spindles were not systematically aligned in 

the direction of the sinusoids (Supporting Fig.17). This data suggests that the 

orientation of the mitotic spindles of hepatocytes may be random but the daughter 

cells realign themselves in the direction of the closest sinusoid within a short period 

of time. The analysis of mitotic spindle orientation in 3D turned out to be challenging 

and is currently under investigation. However, we mimicked the mechanism in 

computer simulations by replacing the alignment of dividing cells along the closest 

sinusoid in model 3 by the following two sub-mechanisms: (1) cell division in 

random direction corresponding to a random orientation of the mitotic spindle and 

(2) attraction of hepatocyte cells by a short range morphogen that was secreted from 

the sinusoids. We found that morphogen-induced attraction of hepatocytes by 

sinusoids could explain HSA if one additionally assumes the re-establishment of 

hepatocyte polarity after cell division. Without that re-establishment, hepatocytes 

formed columns with at least two cell layers between the sinusoids induced by local 

energy minima.  

In conclusion, we have shown that HSA represents a so far unrecognized essential 

mechanism to restore liver microarchitecture. It will be interesting to further 

investigate the role of HSA in liver diseases such as cirrhosis and hepatocellular 

carcinoma where microarchitecture is compromised.  
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5. Summary 

In the presented thesis we elaborated a general agent based model for multicellular 

populations. We used this model to shed light on the processes that determine the 

growth of avascular tumor spheroids and studied the key mechanisms of liver 

regeneration. 

In order to make such analyses possible, we developed a comprehensive software 

tool that allowed us to effectively simulate, visualize and analyze the constructed 

computational model. We started with a minimal model for two-dimensional 

monolayers which are a common experimental technique for in vitro cell cultures. 

We successively advanced our model in order to reflect an in vivo situation more 

closely for example by simulating complex three-dimensional tumor spheroids 

embedded in granular medium and host tissue.  

We proposed a biomechanical form of contact inhibition that was able to explain the 

experimentally observed linear growth of the diameter in monolayer cultures [Bru 

et al., 1998] [Bru et al., 2003] and their specific proliferation pattern where cells 

mainly proliferate at the monolayer border. Furthermore, our model could mimic the 

growth dynamics of monolayer cultures very precisely.  

Subsequently, we considered three-dimensional cell aggregates by studying substrate 

detachment whereby normally two-dimensional monolayers due to the failure of 

certain control mechanisms expand perpendicular to the monolayer plane. Failure of 

growth control mechanisms is known to play an important role in the development of 

cancer [Hanahan & Weinberg, 2000]. By additionally introducing nutrient diffusion 

and consumption, we established a further extended model for three-dimensional 

tumor spheroids which are a common experimental model in therapeutically oriented 

cancer research. Surprisingly, we found that the proposed biomechanical form of 

contact inhibition also explains the growth of these tumor spheroids. Thereby, our 

model suggests in agreement with experimental data [Freyer & Sutherland, 1985] 

[Freyer & Sutherland, 1986] that the nutrient concentration in the environment of a 

growing tumor, which is widely believed to control its growth, only determines the 

size of its necrotic core. Moreover, also in this three-dimensional situation our model 

precisely mimicked the growth dynamics and proliferation pattern of tumor 

spheroids in vitro where the necrotic core is enclosed by an intermediate layer of 

quiescent cells and an outer layer of proliferating cells [Kunz-Schughart, 1999]. 

We further advanced our model for the growth of three dimensional cell populations 

even closer towards in vivo tumors by including aspects from the surrounding tissue. 

We showed that the biomechanical properties of an embedding tissue have a major 

impact on the growth dynamics and morphology of growing cell populations by 

systematically varying the biophysical properties of the embedding tissue. Our model 

predicts Saffman-Taylor-like instabilities leading to fractal interfaces and an 

increased ability of cells to invade harsh environments if the motility of the 

embedding cells is small. We additionally observed large wavelength instabilities as 

a consequence of decreased density, increased elasticity, strong adhesion or 
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increased cell size of the embedding tissue or granular medium. Interestingly, we 

found a nearly complete inhibition of tumor growth for specific properties of the 

embedding tissue which, if experimentally validated, could have direct therapeutical 

implications. 

Furthermore, we achieved a remarkable agreement with experimental data on tumor 

growth dynamics by [Helmlinger et al., 1997] and [Galle et al., 2006]. However, the 

large variety of complex influences predicted by our model strongly indicates that 

the widespread experimental technique of embedding growing tumor spheroids in 

agarose gels [Helmlinger et al., 1997] [Galle et al., 2006] [Cheng et al., 2009] may 

not be sufficient to realistically capture all the biomechanical effects of an 

embedding tissue. Effects due to the granularity of the surrounding tissue, for 

example, are missing in experiments like those performed in [Helmlinger et al., 

1997]. 

In contrast to chapter three where we mainly compared our model to published in 

vitro data, in chapter four we investigated a particular in vivo situation and studied 

the fascinating process of liver regeneration after intoxication with CCl4, a 

prototypical substance for drugs inducing pericentral liver damage. 

We established a procedure to use three-dimensional confocal laser scans to 

reconstruct in vivo tissues by image processing and image analysis. We then 

combined this very detailed and quantitative information with a further advanced 

version of our repeatedly experimentally validated model. We started with a minimal 

two-dimensional model for the regenerating liver lobule that nevertheless led to first 

impressions of the specific impact of the various factors that influence liver 

regeneration. On that basis we extended our model and created the first three-

dimensional agent-based model of the regenerating liver lobule.  

By capturing a 16 day regeneration process, our model underlined the importance of 

the complex columnar microarchitecture within the liver lobules, which is formed by 

hepatocytes and sinusoids. This microarchitecture ensures optimal exchange of 

metabolites between blood and hepatocytes. The model unambiguously predicted a 

so far unrecognized mechanism, the alignment of daughter hepatocytes along the 

orientation of the closest sinusoid, which we named hepatocyte-sinusoid alignment 

(HSA), as essential for liver regeneration. Only if HSA was included into the model 

the simulated tissue architecture was in agreement with the experimentally obtained 

data and no other likely mechanism could replace it. In order to experimentally 

validate the model prediction of HSA, we analyzed the orientation of daughter 

hepatocytes in relation to the sinusoids in three-dimensions. The results of this 

analysis clearly confirmed the model prediction and thus verified HSA as a yet 

unknown key mechanism of liver regeneration. 

During this analysis we introduced novel techniques that made currently 

experimentally not accessible information available by image processing and 

analysis of volumetric datasets obtained by confocal laser scanning microscopy. In 

addition to the three-dimensional analysis of HSA, we used a similar approach to 

obtain further currently not experimentally available information on the average 
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contact area between hepatocytes and sinusoids. Surprisingly, we found this 

parameter to allow for an automatic differentiation between normal liver tissue and 

hepatocellular carcinoma. The further pursuit of this finding will be interesting. 

 

In summary, in this thesis we present an interdisciplinary approach to combine 

microscopic imaging, image processing and analysis and computational modeling - 

all in three dimensions. The integration of methods and results from different 

scientific fields like cell biology, physics and computer science enabled us to obtain 

new insights in cancer research and hepatology. 

We therefore consider the presented interdisciplinary approach and the 

corresponding procedures exemplary and widely applicable in the systems biology of 

tissues in general. 
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6. Outlook 

In the last chapter of this thesis, we give a brief outlook to a selection of current and 

future research directions that ground on the results presented in this work. Because 

most of these studies are neither finished nor published, we only sketch out the basic 

ideas and do not go into detail. The following should merely illustrate some of the 

perspectives opened up by this work. 

 

In general, the computational complexity of our model largely depends on the 

mimicked situation. As a result the duration of the corresponding computer 

simulations spans a wide range from a few minutes to several months in extreme 

cases. For example, a 14-days simulation of a single regenerating liver lobule in 3D 

takes about 2 hours computation time on a recent workstation utilizing only a single 

processor core. Therefore in this particular example, a 100 fold increase of 

computational complexity of the model simulations seems feasible (200 hours ~ 8 

days). This underlines that our model can still be considered very extensible in both 

granularity directions. On the one hand, on a cellular scale intracellular evolution 

(section 6.1) and regulation (section 6.2) can readily be implemented. Both 

extensions would lead to further intercellular heterogeneity. On the other hand, on a 

multicellular scale we started to extend our liver model towards larger system sizes 

and incorporated multiple interacting liver lobules (section 6.3) which brings us 

closer to the simulation of the whole liver and opens up the possibility to study for 

example partial hepatectomy or diseases like hepatocellular carcinoma that cannot be 

modeled within a single liver lobule.   

 

6.1. Somatic evolution 

In traditional evolutionary biology and ecology evolution commonly designates the 

adaption of a species of genetically varying individuals driven by natural selection 

and genetic drift. Germ line mutation and recombination across generations lead to 

differences in survival and reproduction fitness. Natural selection of the fittest 

individuals is mainly driven by abiotic factors, competitors, predators and parasites 

[Crespi & Summers, 2005]. In general evolutionary changes proceed across very 

long periods of time typically hundreds of thousands of years. However, in the 

presence of significant gene flow microevolution of populations can still occur 

rapidly [Sparkman et al., 2009] [Hendry & Kinnison, 1999] [Bell et al., 2004].  

In the last decades molecular biology has started studying evolutionary processes on 

a cellular rather than on population scale. For example, carcinogenesis has been 

recognized as evolutionary process involving selection among cancer cells [Greaves, 

2000]. In contrast to the evolution of populations, the evolution of cancer cells arises 

from variations in cellular replication, apoptosis and senescence. Phenotypic changes 

origin in somatic mutation, epigenetic alteration and genetic instability. Main 

selective pressures are intercellular competition for resources as space, nutrient, 

waste disposal or immune system responses [Crespi & Summers, 2005]. Somatic 
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cellular evolution in carcinogenesis proceeds – in comparison to the evolution of 

populations - on a much shorter time scale of years or even months. This commonly 

results in rapid adaption of cancerous cells towards persistent survival and 

unrestrained growth with potentially lethal consequences for the host individual. 

During carcinogenesis most types of cancer acquire a number of nested genetic 

mutations that are believed to be essential for the transformation of normal to 

malignant cells. Hanahan and Weinberg outline six “hallmarks of cancer” that are: 

 

(1) Self-sufficiency in growth signals (SG) 

(2) Insensitivity to anti-growth signals (IA) 

(3) Evasion of apoptosis (EA) 

(4) Unlimited replicative potential (LR) 

(5) Sustained angiogenesis (SA) and 

(6) Tissue invasion and metastasis (TI) 

 

[Hanahan & Weinberg, 2000]. The accumulation of these hallmark mutations is 

known to be an evolutionary and developmental process involving selection, 

stabilization of gene expression and even heterochronic dedifferentiation [da Costa, 

2001]. Whether a cell subclone of varying genotype prevails, depends on its ability to 

outcompete other cells in its local environment in survival capability and growth 

velocity. In this thesis, however, model cells were assumed to be genetically 

homogeneous. Microevolutionary selection among cancer cells has therefore not yet 

been considered. However, clonal heterogeneity is believed to be an important 

characteristic and key advantage of tumors surviving in harsh environments for 

example due to chemotherapeutic treatment or nutrient shortage [Hoehme & Drasdo, 

2009a]. Aspects of evolution have already been studied, for example for growing cell 

populations [Anderson et al., 2006], in early development [Hogeweg, 2000], and for 

cell migration [Drasdo & Kruspe, 2005]. Some models assumed direct effects on the 

parameters of the cells [Anderson et al., 2006] [Drasdo et al., 2007], others include  

 

 

Fig. 65: Accumulation of hallmark mutations leading intercellular heterogeneity. 

Ultimately, invasively growing cell clones (green) dominate the cell population. 

Abbreviations: SG: self-sufficiency in growth signals, IA: insensitivity to anti-growth 

signals, EA: evasion of apoptosis, LR: unlimited replicative potential, SA: sustained 

angiogenesis and TI: tissue invasion and metastasis 
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regulatory networks and couple the state of these networks either to the parameters or 

the behavior of the cells [Hogeweg, 2000] [Drasdo & Kruspe, 2005]. 

However, agent-based models are particularly well suited to integrate 

microevolutionary changes on the level of an individual agent (cell). For example, 

Fig.65 shows a model cell population in a homeostatic, stable condition (Fig.65, left 

image) in which single cells randomly acquire hallmark mutations as described by 

[Hanahan & Weinberg, 2000]. Mutations in individual cells then lead to the 

development of cell-clones of increased fitness that outgrow the other cells. Within 

these fitter clones more hallmark mutations can accumulate which ultimately leads to 

a rapidly accelerated and invasive growth (Fig.65,right image; Supporting Video 39). 

Furthermore, we started to study phenotypic changes in cell behavior or properties 

that were caused by genetic heterogeneity. We study morphological changes on a 

multicellular scale and predict variations in tumor growth kinetics caused by these 

changes. For example, Fig.66 shows two monolayers growing in embedding tissue as 

elaborated in section 3.6 only here cells were assumed to have heterogeneous 

properties. This kind of analysis can predict what phenotypic changes on the level of 

a single cell may lead to fitter cell clones that are able to outcompete other cells. In a 

next step we thereby can predict the impact of such changes on multicellular level. 

From a therapeutical point of view, this information can be utilized to study what 

changes on cellular level may favor or prevent certain, potentially harmful 

phenotypes on multicellular level from forming. Such analysis could even show how 

to trigger their regression and thus could be used to optimize cancer treatment. 

 

 

Fig. 66: Analysis of the impact of phenotypical changes of cell properties and behavior 
on the morphology of multicellular populations. A: The capability of cells to migrate has a 

large impact on their fitness. Clones of higher migration velocity (darker red) show an 

increased fitness and outgrow cell clones of lower migration velocity (brighter red).  

B: Reduced cell-cell adhesion (predominantly yellow cell clone) leads to more invasive 

growth patterns compared to cells of increased cell-cell adhesion (rose color) (also see 

Supporting video 40 ). The embedding tissue is shown in dark magenta. 
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6.2. Active intracellular regulation 

In case of a significant limitation of nutrient and oxygen supply, cells are known to 

actively adapt their behavior to survive such disfavorable conditions. In vivo, cells 

for example secrete angiogenesis factors that trigger endothelial cells of the 

neighboring blood vessels to divide, form sprouts towards and eventually penetrate 

the growing tumor to nourish it [Hanahan & Folkman, 1996] [Bergers & Benjamin, 

2003]. Oxidative stress by extreme hypoxia, for example, can lead to changes in 

protein synthesis [Sutherland et al., 1986]. In that reference the authors observed that 

many of these changes can also be triggered by glucose deprivation. It is widely 

accepted that tumor cells switch to anaerobic glycolysis which permits the cells to 

generate ATP even under hypoxia. 

For example, we study how cell populations can survive critically low nutrient 

concentrations if single cells adapt individually to the disfavorable conditions by 

actively regulating their properties or behavior [Hoehme & Drasdo, 2009a]. We 

believe that it is crucial to understand the possible variability of phenotypes of cells 

and cell populations in order to permit predictions for an in vivo situation. Fig.67 

exemplarily illustrates the survival of a cell population under disfavorable conditions 

by active regulation of cell micromotility. In this case, active regulation on a cellular 

level has a strong impact on the morphology of the multicellular population which 

shifts from a compact spherical shape towards a dendritic morphology (Fig.67).  

 

 

Fig. 67: The effect of active regulation of the micromotility in two (A,B) and three (C,D) 

dimensions. In case the micromotility is independent of the local glucose concentration, the 

cell populations saturate at the size shown in (A/C) for two/three dimensions. In case the 

micromotility increases with the local glucose concentration, however, finger-like 

morphologies with hollow regions inside the cluster form (B,D). The coloring of the 

substrate in (A,B) and the cells in (C,D) indicates nutrient concentration (green=high, 

red=low). Also see Supporting Video 41. 
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Active regulation has also been observed in the transition from an in-situ tumor, 

which is well separated from its surrounding tissue, to an invasive cancer. For 

example, cells down-regulate cell-cell adhesion, and eventually detach and invade 

the surrounding tissue [Weinberg, 2007]. The down-regulation of cell-cell contacts is 

triggered or at least accompanied by a down-regulation of E-cadherin/β-catenin 

complexes in the cell membrane followed by a the release of free β-catenin into the 

cytosol which, if its degradation by a proteosome apparatus involved in the Wnt-

pathway is not fast enough, enters the cell nucleolus and triggers the processing of 

Tcf-related gene cascades eventually leading to an increase of cell migration [Ramis-

Conde et al., 2008]. 

In general, active regulation can be successively included into our models either 

phenomenologically by variation of cell parameters depending on certain conditions 

(e.g. the local nutrient concentration) [Hoehme & Drasdo, 2009a] or by explicit 

modeling of intracellular pathways [Ramis-Conde et al., 2009]. 

 

6.3. Further model improvement 

We started to further improve the lattice-free agent-based model used in this work. 

For example, the use of spheres to represent the shape of model cells is 

computationally very efficient but in certain scenarios, e.g. for active cell shape 

changes, may not be a very realistic approximation. 

Furthermore, the forces resulting from the contact models described in section 3.2.3. 

for certain configurations, e.g. in the interior of a growing tumor, may not prevent an 

unphysical compression of cells. This is often in direct violation of the chosen 

material parameters. In these cases, the volume that is available to each cell may be  

 

 

Fig. 68: Improvement of cell shape. 

 A: Illustration of a Voronoi space decomposition in 3D based on a spherical cell population 

(rose) and B: the resulting and in many cases more accurate cell boundaries. 



 

 

167 6. Outlook 

significantly smaller than the volume of the corresponding spherical model cell. 

Thereby certain biomechanical aspects of the model that at least partly relate to the 

cell volume (e.g. the intracellular pressure) may be misrepresented. Furthermore, 

under such conditions the contact area between two interacting cells resulting from 

the extended Hertz or JKR model may be erroneous. Therefore, we started to 

implement an improved description of cell shape based on three-dimensional 

Voronoi space decomposition [Klein, 2005]. Fig.68 exemplarily illustrates such 

space decomposition that can be used to more accurately represent cell shape. 

 

6.4. Towards whole liver modeling 

A natural extension of the three-dimensional model of an individual liver lobule 

developed in this thesis would be a model of multiple interacting lobules (Fig.69). 

Despite the liver lobule is the structural and functional building block of the liver, 

many diseases and other aberrant states like partial hepatectomy and hepatocellular 

carcinoma affect the liver on the scale of multiple liver lobules. 

During partial hepatectomy, for example, a part of the whole liver is resected 

[Michalopoulos & DeFrances, 1997] [Sato et al., 1999] [Blindenbacher et al., 2003]. 

In the following complex hypertrophic and hyperplasic regeneration processes the 

size of the remaining liver lobules increases until a nearly complete recovery of the 

original liver mass within days. Subsequently, liver function is restored within two to 

three weeks [Court et al., 2002]. However, the exact mechanism and the interplay of 

hepatic cells and cytokines are not fully understood. Furthermore, modeling the key 

mechanisms of liver regeneration after partial hepatectomy is of high clinical 

 

 

Fig. 69: Multi-lobule model.  
A: Model integrating 7 liver lobules in 3D (green outline encompasses a single liver lobule). 

B: Corresponding blood vessel network. 
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relevance because patients with liver metastasis often undergo liver resection. After 

surgery in a fraction of those patients, however, regeneration is delayed leading to 

severe and potentially life threatening liver insufficiency [Nagino et al., 2001]. 

On the foundation of our analysis of liver regeneration after intoxication that we 

elaborated in this thesis (chapter 4), an extended multi-lobule model could help to 

shed light on the important mechanisms of liver regeneration after partial 

hepatectomy. 

Moreover, we started to use such multi-lobule model not only to optimize cancer 

treatment but to model hepatocellular cancer itself. Fig.70 illustrates first steps in this 

direction where we modeled the growth of a solitary encapsulated tumor, a special 

form of hepatocellular carcinoma, with a three-dimensional multi-lobule model that 

consisted of seven interacting liver lobules. 

 

 

Fig. 70: Simulation of hepatocellular carcinoma. 

 A: Hepatocellular carcinoma in vivo. A cirrhotic liver with a solitary encapsulated tumor 

(Image from [Burt et al., 2006]). B: Solitary tumor (green) growing within a multi-lobule 

model. C: Cross section of B. D: Deformations of the blood vessel network within the liver 

lobules (compare to the healthy state shown in Fig.69B). Colors denote the pressure on the 

blood vessels (see legend). Also see Supporting Videos 42 and 43. 
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Supporting Fig. 1: Exemplary component window (Creation) of graphical user interface 

of Cellsys. For an overview see Fig.5. 
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 Supporting Fig. 2: Typical confocal micrographs (ICAM / DPPIV/ DAPI) 
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 Supporting Fig. 3: Typical confocal micrographs (CD31 / EGFP / DAPI) 
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 Supporting Fig. 4: Typical bright field micrographs 
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Supporting Fig. 5: RNA expression of genes known to be down (A-D) or upregulated (E,F)  

during liver regeneration. Analyses were performed at time intervals between 1 and 30 days after 

administration of 1.6 g/kg CCl
4 
to mice. Glutamine synthetase (GS), albumin, cytochrome P450 

3a11 (Cyp3a11) and bile salt export pump (BSEP) RNA were transiently down regulated after 

administration of CCl
4
. In contrast, alpha-fetoprotein (AFP) and ubiquitin were transiently 

upregulated. The results suggest a process of liver damage induction and regeneration that is in 

agreement with previously published reports (review: [Michalopoulos & DeFrances, 1997] 

[Michalopoulos & DeFrances, 2005] [Michalopoulos, 2007]). Data were obtained from three 

mice per time period.  
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Supporting Fig. 6: Immunostaining of glutamine synthetase (GS) of paraffin slices from liver 

tissue of mice before as well as 2, 4, 8, and 16 days after administration of CCl
4
. The data 

illustrate a transient decrease in GS protein levels at 2 and 4 days after administration of CCl
4
, 

whereas after 8 and 16 days GS expression is similar to that of controls.  
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Time after CCl
4
-

administration  

[d]  

GS-activity  

[mU/mg protein]  

0  249 ± 11.1  

1  245 ± 16.7  

2  205 ±  85.2  

3  51 ± 8.8  

4  11 ± 1.9  

5  26 ± 3.8  

6  94 ± 13.6  

8  138 ± 19.6  

16  269 ± 20.9  

Supporting Fig. 7: Glutamine synthetase activity of liver tissue from mice at time 

intervals of 1 to 16 days after administration of 1.6 g/kg CCl4. Similar to the data for RNA 

expression (Supporting Fig.5) and immunostaining (Supporting Fig.6) a transient decrease 

was also observed for activity of GS. Data are mean values and standard deviations obtained 

from three mice per time interval. We observed in independent experiments that GS 

immunostaining (Supporting Fig.6) and GS activity after CCl4 intoxication (Supporting 

Fig.7) did not correlate perfectly. Immunostaining shows a decrease already 2h after CCl4 

administration whereas a decrease in activity is not observed before day 3. On the other hand 

recovery of the activity took longer than restoration of immunoreactivity. We did not study 

the reason of the observed discrepancy, because the documentation of a destruction and 

recovery process seemed sufficient for the purpose of the present study. 
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Supporting Fig. 8: Time dependent increase of CD68 RNA expression in liver tissue 

after administration of 1.6 g/kg CCl
4
. Data were obtained from three mice per time period. 

The immunostained liver slice shows a central necrosis after CCl
4
 intoxication. White arrows 

indicate the nuclei of some infiltrated macrophages. 
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Supporting Fig. 9: Administration of CCl
4
 causes a rapid decrease in ATP content in 

mouse liver tissue (blue boxes). Control mice (green boxes) received the solvent only (100 

µl corn oil, i.p.) which did not cause a decrease in ATP content. Data were obtained from 

three mice per time period. The present figure gives supplemental information to Fig.62B 

where the time course of the dead cell area in the center of the liver lobule is shown. 

According to Fig.62B the dead cell area peaks 24h after administration of CCl
4
. However, 

“dead cell area“ as shown in Fig. 62B is defined as a cell mass, where no nuclei are visible. 

It should be considered that first signs of toxicity, such a decrease in ATP content are visible 

much earlier compared to the degradation of nuclei. The models presented in this article do 

not focus on molecular details of the destruction process but present a situation where 

destruction of the pericentral region of the liver lobule by CCl
4
 is complete after 24h.   
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Supporting Fig. 10: Evidence that hepatocytes migrate into the central dead cell area 
caused by CCl

4
 administration. A. Liver lobule 2 days after CCl

4
 administration. At this 

stage the border between the surviving hepatocytes and the dead cell area appears relatively 

smooth. B. Four days after CCl
4
 administration some hepatocytes extend into the dead cell 

area and form filopodia (arrows).   
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Supporting Fig. 11: Mouse liver tissue 48 h after i.p. administration of 1.6 g/kg CCl4. 
Paraffin slices have been immunostained for BrdU. The picture shows two central veins 

surrounded by dead cell masses. Using this or similar conventional staining techniques for 

paraffin slices it is difficult to realize that the basic structure of the sinusoidal network is 

intact, even in the central necrotic area where almost all hepatocytes are dead. 
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Supporting Fig. 12: Administration of 1.6 g/kg CCl
4 
induces tie2 promoter activity in 

tie2/Cre/EGFP triple transgenic mice as evidenced by a transient increase in Cre 

recombinase and a permanent increase in EGFP RNA expression. Data are mean values and 

standard deviations from three mice per time period.  
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Supporting Fig. 13: Administration of 1.6 g/kg CCl
4 
reduces the number of hepatocytes 

in a pericentral area of the liver lobule. In contrast, the number of sinusoidal cells is not 

reduced in this area. Data were obtained from three mice per time period. 
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Supporting Fig. 14: BrdU positive cells are well aligned in the direction of the sinusoids. 
Mice received i.p. injections of 1.6 g/kg CCl

4 
and BrdU was administered two days later, 

when hepatocyte proliferation is maximal. The yellow lines indicate the orientation of the 

sinusoids. However, the complex three-dimensional orientation of the sinusoids complicates 

a purely two-dimensional analysis. Therefore, we established a three dimensional type of 

reconstruction as shown in Fig. 64D. Using this technique we identified 17 pairs of BrdU-

positive cells from which 14 showed an excellent alignment while three pairs of BrdU-

positive cells were misaligned. However, BrdU-positive cells may either be neighbors since 

they emerged from the same mother cell by cell division or since they entered the cell cycle 

simultaneously by chance. Using our computational model we determined that about 30% of 

the BrdU-positive cell pairs are expected to be neighbors by chance which is able to explain 

the three pairs of misaligned cells.  
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Supporting Fig. 15: Stress fiber formation.  
Some hepatocytes in regenerating livers after CCl

4
 administration show stress fiber 

formation (arrows) as evidenced by phalloidine staining. This is similar to hepatocytes in 

vitro cultivated on collagen monolayers (72h; [Godoy et al., 2009]) where hepatocytes start 

to show a similar formation of stress fibers. It is known from in vitro experiments that 

formation of stress fibers indicates an increased migration (scattering) activity. In both 

examples stress fiber formation has been visualized by staining of the actin cytoskeleton.  
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Supporting Fig. 16: Hepatocytes are attracted more by 

sinusoidal cells than by other hepatocytes.  
In order to study the degree by which cells attract each other we 

studied time lapse videos of subconfluent hepatocytes (hepatocyte 

monocultures) and of subconfluent hepatocyte/sinusoidal cell 

cocultures for 48h. Representative examples are shown in Supporting 

videos 29-32. As a measure for cell-cell attraction we counted the 

number of “contact events“ where cells actively touch each other 

without forming permanent cell-cell contacts. Significantly more 

cell-cell contact events were observed between hepatocytes and 

sinusoidal cells than between hepatocytes in monocultures cultivated 

under similar conditions (Mann-Whitney test, P=0.029). The 

difference cannot be caused by differences in motility, because 

hepatocytes show a higher motility than sinusoidal cells. Together 

with the time lapse videos of hepatocyte/sinusoidal cell cocultures 

(Supporting videos 29-32) the data show that hepatocytes are 

attracted by sinusoidal cells and try to maximize the contact area 

with the latter. 
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Supporting Fig. 17: Orientation of mitotic spindles in relation to the sinusoids. 

A. and B. show mitotic spindles that are not aligned in the direction of the 
neighboring sinusoids. C. Example of a well aligned mitotic spindle. However, in 
this preliminary two-dimensional study the majority of analyzed mitotic spindles 
were not aligned in the direction of the sinusoid as shown in A. and B. The same 

liver samples already shown in Fig.64 were used for the analyses of mitotic spindles. 
Mice received 1.6 mg/kg CCl4, 48h later BrdU was injected and the livers were 

prepared 8h after BrdU injection. D. Probable mechanism of hepatocyte-sinusoid 
alignment (HSA) Initially, the orientation of the mitotic spindle is random. However, 
after cell division the daughter cells rapidly realign themselves in the direction of the 
sinusoid. Nevertheless, a validation of these preliminary results in 3D is still pending. 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 2: Supporting Videos

Appendix 2: Supporting V

All Supporting Videos are available on DVD and online at 

 

Supporting Video 1: Illustration of cell division in the model (algorithm variant B).

 

Supporting Video 2: Illustration of two

development of cell states (white = proliferating, grey = quiescent).

 

Supporting Video 3

(coloring according to Supporting Video 5).

 

Supporting Video 4: Illustration of three
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: Supporting Videos 

All Supporting Videos are available on DVD and online at www.hoehme.com/phd/videos

Illustration of cell division in the model (algorithm variant B).

Illustration of two-dimensional monolayer growth and the 

development of cell states (white = proliferating, grey = quiescent).

3: Illustration of monolayer growth and cell division activity 

(coloring according to Supporting Video 5). 

Illustration of three-dimensional tumor spheroid growth from 

N=1 to N=
55 10⋅ cells. 
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www.hoehme.com/phd/videos 

 
Illustration of cell division in the model (algorithm variant B). 

 
dimensional monolayer growth and the time 

development of cell states (white = proliferating, grey = quiescent). 

 
growth and cell division activity 

 
dimensional tumor spheroid growth from 
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Supporting Video 5: Illustration of two-dimensional multicellular growth embedded 

in tissue (grey). Cells of white color have divided within the average cell cycle time, 

whereas green cells have not divided for two times the average cell cycle time (yellow 

= 4 times, red = 6 times, black = more than 10 times) (DT = D0 ). Also see Fig.26. 

 

 
Supporting Video 6: Three-dimensional tumor spheroid growing into an embedding 

tissue (not shown) of reference motility (DT = D0). Note, the relatively smooth surface of 

the tumor. The corresponding image is shown in Fig.27A. 

 

 
Supporting Video 7: Three-dimensional tumor spheroid growing into an embedding 

tissue (not shown) of decreased motility (DT = 0.05D0). Note, the very rough, dendritic 

surface of the tumor (also see Supporting Video 8). Refer to Fig.27B. 
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Supporting Video 8: Embedding tissue of tumor shown in Supporting Video 7. The 

embedding tissue (the embedded tumor is not shown) clearly reveals the dendritic 

structure of the tumor. 

 

 
Supporting Video 9: Dendritic monolayer embedded in tissue of lowered motility (DT 

= 0.05D0). Cell coloring corresponds to the description in the caption of Supporting 

Video 5. Refer to Fig.27E. 

 

 
Supporting Video 10: Tumor growing into host tissue (not shown here) of decreased 

density (ρT = 0.8 ρ0). Refer to Fig.28F 

 

 

 
Supporting Video 11: Host tissue of tumor (not shown here) from Supporting Video 

10. Refer to Fig.28F. 
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Supporting Video 12: Tumor growing into host tissue (not shown here) of decreased 

density (ρT = 1.2 ρ0). Refer to Fig.28G 

 

 
Supporting Video 13: Host tissue of tumor (not shown here) from Supporting Video 

12. Refer to Fig.28G. 

 

 
Supporting Video 14: Three-dimensional tumor spheroid growing into embedding 

tissue (not shown here) of increased elasticity (ET=300 Pa). Note, the large wavelength 

surface fluctuations. Refer to Fig.29A. 

 

 
Supporting Video 15: Monolayer growing in an anisotropic environment (grey). Cell 

coloring corresponds to the description in the caption of Supporting Video 5. Also refer 

to Fig.32A. 
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Supporting Video 16: Tumor cell population growing into host tissue (grey). In this 

simulation cytolysis was activated ( clt∆ =12h) and we used the reference host tissue 

motility (DT = D0). Cell coloring corresponds to the description in the caption of 

Supporting Video 5. Refer to Fig.33B.  

 

 
Supporting Video 17: Tumor cell population growing into host tissue (grey). In this 

simulation cytolysis was activated ( clt∆ =12h) and we used a decreased reference host 

tissue motility (DT =0.05D0). Cell coloring corresponds to the description in the caption 

of Supporting Video 5. Refer to Fig.33A. 

 

 
Supporting Video 18: Tumor cell population growing into host tissue (grey). In this 

simulation cytolysis was activated ( clt∆ =4d) and we used the reference host tissue 

motility (DT = D0). Cell coloring corresponds to the description in the caption of 

Supporting Video 5.  
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Supporting Video 19: 

simulation cytolysis was activated (

motility (DT = 0.05D0). Cell coloring corresponds to the description in the caption of 

 

Supporting Video 20:

intoxication in a schematic liver lobule. Here we used DCO and the reference 

hepatocyte micromotility (a=1).

 

Supporting Video 21: Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used DCO and a decreased hepatocyte 

micromotility (a=0.2). Refer to Fig.44A.

 

Supporting Video 22: Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used DCO and an increased hepatocyte 
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 Tumor cell population growing into host tissue (grey). In this 

simulation cytolysis was activated ( clt∆ =4d) and we used a decreased host tissue 

). Cell coloring corresponds to the description in the caption of 

Supporting Video 5.  

: Typical 2D model simulation of liver regeneration after CCl

intoxication in a schematic liver lobule. Here we used DCO and the reference 

hepatocyte micromotility (a=1). This simulation is designated as “reference simulation” 

in the text (Fig.44C). 

Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used DCO and a decreased hepatocyte 

micromotility (a=0.2). Refer to Fig.44A. 

Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used DCO and an increased hepatocyte 

micromotility (a=5). Refer to Fig.44E 
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Typical 2D model simulation of liver regeneration after CCl4 

intoxication in a schematic liver lobule. Here we used DCO and the reference 

This simulation is designated as “reference simulation” 

 
Model simulation of liver regeneration after CCl4 intoxication in 

2D in a schematic liver lobule. Here we used DCO and a decreased hepatocyte 

 
Model simulation of liver regeneration after CCl4 intoxication in 

2D in a schematic liver lobule. Here we used DCO and an increased hepatocyte 
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Supporting Video 23: Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used RCO and the reference hepatocyte 

 

Supporting Video 24: Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used RCO and a decreased hepatocyte 

micromotility (a=0.2). Refer to Fig.44B.

 

Supporting Video 25: Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used RCO and an increased hepatocyte 

 

Supporting Video 26: Visualisation of volume data after reconstruction of sinusoidal blood 

vessel network (white) after enhancement. Refer to Fig.49F.
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Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used RCO and the reference hepatocyte 

micromotility (a=1). Refer to Fig.44D. 

Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used RCO and a decreased hepatocyte 

micromotility (a=0.2). Refer to Fig.44B. 

Model simulation of liver regeneration after CCl

2D in a schematic liver lobule. Here we used RCO and an increased hepatocyte 

micromotility (a=5). Refer to Fig.44F. 

Visualisation of volume data after reconstruction of sinusoidal blood 

vessel network (white) after enhancement. Refer to Fig.49F. 
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Model simulation of liver regeneration after CCl4 intoxication in 

2D in a schematic liver lobule. Here we used RCO and the reference hepatocyte 

 
Model simulation of liver regeneration after CCl4 intoxication in 

2D in a schematic liver lobule. Here we used RCO and a decreased hepatocyte 

 
Model simulation of liver regeneration after CCl4 intoxication in 

2D in a schematic liver lobule. Here we used RCO and an increased hepatocyte 

 
Visualisation of volume data after reconstruction of sinusoidal blood 
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Supporting Video 27: Time lapse video showing an actively scattering hepatocyte that is 

attracted by a dead hepatocyte. Hepatocyte isolation and cultivation was performed as 

described by [Brulport et al., 2007] and [Klingmüller et al., 2006]. 

 

 
Supporting Video 28: Another variation of Supporting video 27. 

 

 
Supporting Video 29: Time lapse video showing hepatocyte-sinusoidal cell co-cultures. 

Hepatocytes show a much higher scattering activity compared to the co-cultured sinusoidal 

cells. One hepatocyte is attracted by two co-cultured sinusoids, one in the upper and one in 

the lower part of the image. The hepatocyte scatters between the two sinusoidal cells and 

tries to stay in contact with both of them. 
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Supporting Video 30: Time lapse video showing hepatocyte-sinusoidal cell co-

cultures. In the first part of the video one hepatocyte approaches a sinusoidal cell (in 

central position) from the right hand side and aims at maximizing the contact area with 

the sinusoidal cell. Next, a second hepatocyte approaches from the left hand side and 

also contacts the sinusoidal cell. Supporting videos 29 and 30 illustrate that sinusoidal 

cells attract the hepatocytes and that hepatocytes maximize their contact area with 

sinusoidal cells.  

 

 
Supporting Video 31: Time lapse video showing hepatocyte monoculture. In contrast 

to sinusoidal cells hepatocytes do not attract each other. 

 

 
Supporting Video 32: Time lapse video showing hepatocyte monoculture. In contrast 

to sinusoidal cells hepatocytes do not attract each other (variation). 
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Supporting Video 33: Simulation of liver regeneration in a representative (averaged) 

lobule in 3D. Video shows the time development of model variant 1 (see section 4.3) 

during 16 days. The model simulation partly shows cross-sections. Refer to Fig.61A. 

 

 
Supporting Video 34: Simulation of liver regeneration in a representative (averaged) 

lobule in 3D. Video shows the time development of model variant 2 (see section 4.3) 

during 16 days. The model simulation partly shows cross-sections. Refer to Fig.61B. 

 

 
Supporting Video 35: Simulation of liver regeneration in a representative (averaged) 

lobule in 3D. Video shows the time development of model variant 3 (see section 4.3) 

during 16 days. The model simulation partly shows cross-sections. Refer to Fig.61C. 

 

 
Supporting Video 36: Simulation of liver regeneration in a concrete lobule extracted 

from a single confocal dataset in 3D. Video shows the time development of model 

variant 1 (see section 4.3) during 16 days. The model simulation partly shows cross-

sections. 
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Supporting Video 37: Simulation of

from a single confocal dataset in 3D. Video shows the time development of model 

variant 2 (see section 4.3) during 16 days. The model simulation partly shows cross

 

Supporting Video 38: Simulation of liver regeneration in a concrete lobule extracted 

from a single confocal dataset in 3D. Video shows the time development of model 

variant 3 (see section 4.3) during 16 days. The model simulation partly shows cros

 

Supporting Video 39

heterogeneity. Ultimately, invasively growing cell clones (green) dominate the cell 

population. Refer to Fig.65 in chapter 6.1

 
 
 
 
 
 
 

Appendix 2: Supporting Videos 

Simulation of liver regeneration in a concrete lobule extracted 

from a single confocal dataset in 3D. Video shows the time development of model 

variant 2 (see section 4.3) during 16 days. The model simulation partly shows cross

sections. 

Simulation of liver regeneration in a concrete lobule extracted 

from a single confocal dataset in 3D. Video shows the time development of model 

variant 3 (see section 4.3) during 16 days. The model simulation partly shows cros

sections. 

39: Accumulation of hallmark mutations leading intercellular 

heterogeneity. Ultimately, invasively growing cell clones (green) dominate the cell 

population. Refer to Fig.65 in chapter 6.1 for further explanations.
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heterogeneity. Ultimately, invasively growing cell clones (green) dominate the cell 

for further explanations. 
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Supporting Video 40: 

leads to more invasive growth patterns compared to cells of increased cell

adhesion (rose color) The embedding tissue is shown in dark magenta. Refer to Fig.66B 

and chapter 6.1 for further explanations.

 

Supporting Video 41: The effect of active regulation of the micromotility which in this 

population  had been increased to survive nutrient shortage. The video shows a tumor 

population in 3D. Colors denote nutrient concentration (green = high, red = low 

concentration). For det

 

Supporting Video 42: 

 

Supporting Video 43:

vessels are shown (no hepatocytes). The video reveals the dramatic effects of a solitary 

tumor on the blood vessels within the lobule. For details see section 6.4 and Fig.70.
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 Reduced cell-cell adhesion (predominantly yellow cell clone) 

leads to more invasive growth patterns compared to cells of increased cell

The embedding tissue is shown in dark magenta. Refer to Fig.66B 

and chapter 6.1 for further explanations. 

The effect of active regulation of the micromotility which in this 

population  had been increased to survive nutrient shortage. The video shows a tumor 

population in 3D. Colors denote nutrient concentration (green = high, red = low 

concentration). For details refer to section 6.2. 

 Solitary tumor (rose) growing within a multi-lobule model. For 

details see section 6.4 and Fig.70. 

: Same simulation as in Supporting Video 42 but only the blood 

vessels are shown (no hepatocytes). The video reveals the dramatic effects of a solitary 

tumor on the blood vessels within the lobule. For details see section 6.4 and Fig.70.
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Abstract class A class that is not able to have instances. An abstract 

class typically serves as a generalized blueprint for its 

instantiated subclasses. 

 

Apoptosis One of the two major types of cell death (compare to 

Necrosis). Also termed “programmed cell death”. Cells 

that undergo apoptosis commit suicide in a 

physiologically regulated process as a consequence of 

internal or external signals. 

 

C6 rat astrocyte glioma cells 

 

Animal neuroglial cell line of neuroepithelial origin 

[Bru et al., 1998]. 

 

Class A descriptor or blueprint for a collection of objects (or 

subclasses) whose behavior and structure is logically 

similar. Typically objects are instantiated from a class. 

 

Concrete class A class that is allowed to have instances (objects). 

 

Crossover size (point) Defined as the diameter (time) at which the tumor 

growth dynamics crosses over from one growth regime 

to another. Within this thesis, we usually refer to the 

transition between the exponential and the surface-

growth regime  

 

EMT6/Ro cells Murine cell line [Freyer & Sutherland, 1986]. 

 

Encapsulation A basic principle in the object oriented software 

development paradigm, whereby the internal details of a 

class or object are hidden from the view of other classes 

or objects. Thereby, an encapsulated object can often be 

maintained or modified without affecting other parts of 

the system. 

 

Hepatocyte Hepatocytes are the parenchymal cells of the liver and 

account for approximately 80 - 90% of the liver mass 

[Taub, 2004]. In healthy lobules, hepatocytes are 

arranged in a special columnar microarchitecture. 

 

Hertz model Classical contact model that describes the interaction of 

homogeneous, elastic, and isotropic bodies [Landau, 

1975]. We extended the Hertz model by a term that 

takes into account cell-cell adhesion.  
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Inheritance The mechanism by which the relationship of 

generalization and specialization (class hierarchy) 

between classes is implemented. Due to inheritance a 

subclass automatically acquires the properties and 

behavior of its superclasses. 

 

Instance A single object is often called an instance in the context 

of its affiliation to a particular class. 

 

Intrinsic cycle time Duration of the cell cycle of an average isolated cell not 

affected by physical interactions with neighboring cells. 

 

JKR model Johnson–Kendall–Roberts contact model that describes 

the interaction between homogeneous, elastic, and 

isotropic bodies [Johnson et al., 1971]. The JKR-model 

includes a hysteresis effect that becomes important e.g. 

in case of cell detachment processes. 

 

Linear velocity–force 

relationship 

Velocity (v) changes proportionally to exerted force (v 

∝ F; F: total force). This assumes that the migration 

velocity of a cell as a response on an external 

mechanical stimulus or force is approximately 

proportional to the strength of the stimulus.  

 

Message In the context of the object oriented paradigm, a 

message is a request to an object to provide a specific 

functionality or information. Typically, a message 

invokes a method of an object or the transport of 

information. 

 

Message passing A basic principle of the object oriented paradigm that 

describes the way that objects interact by sending each 

other messages trigger methods or transport 

information.  

 

Method The implementation of a certain functionality (typically) 

of an object. 

 

Monolayer Monolayer cultures are a common experimental tool for 

two-dimensional in vitro cell cultures [Bru et al., 2003]. 

 

Necrosis One of the two major types of cell death (compare to 

Apoptosis). Cells may die by necrosis if they were 

exposed to serious physical or chemical insult.  
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Necrosis of cells in vivo is often accompanied by 

extensive damage to adjacent tissue. 

 

Object A single entity in a given application domain or 

software system. Within the object oriented paradigm, 

objects have an identity, properties (a state) and 

functionality (behavior). Objects are instances of a class. 

 

Sinusoid Sinusoids are small blood vessels in the liver that have a 

discontinuous (fenestrated) endothelium. 

 

Software architecture Describes the components of a software system and the 

relationships between them. 

 

Spheroid Short for “Multicellular Tumor Spheroid” (MCTS). 

Tumor cells are often able to grow and divide 

anchorage-independent. Therefore, they can be grown in 

suspension, not being attached to a substrate, where they 

form growing spherical aggregates termed MCTS. 

MCTS are a common experimental technique for three-

dimensional in vitro cell cultures [Kunz-Schughart, 

1999]. 

 

Subclass A (less general) class that acquires features of a more 

general cell higher in class hierarchy. A subclass 

typically adds particular characteristics of its own. 

 

Superclass A (more general) class that represents an abstraction of 

the common properties and behavior of its subclasses 

(lower in class hierarchy). 
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ABM  Agent-based model 

AFM Atomic force microscopy  

AHE Adaptive histogram equalization 

API  Application programming interface 

BrdU Bromodeoxyuridine  

CCl4 Carbon-Tetrachloride 

CLSM Confocal laser scanning microscopy  

CPM  Cellular Potts Model  

DAPI 4',6-diamidino-2-phenylindole 
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DCO Directed cell orientation 

DNA Deoxyribonucleic acid 

DPPIV Dipeptidyl Peptidase IV 

ECM Extracellular matrix  

EGFP Enhanced green fluorescent protein 

GCC  GNU Compiler Collection 

GD Generalized dilatation 

GE  Generalized erosion  

GL  Graphics library 

GLU Graphics library utilities  

GLUI OpenGL user interface library  

GLUT  Graphics library utility toolkit  

GS Glutamine synthetase  

GUI Graphical user interface 

HSA Hepatocyte-sinusoid alignment  

HE Histogram equalization 

HPx Partial hepatectomy 

ICAM Intercellular adhesion molecule 

JKR Johnson-Kendall-Roberts (model) 

MCTS Multicellular tumor spheroids  

MPI Message passing interface  

MRI Magnetic resonance imaging  

MZ Midzonal 

NRCAM National Resource for Cell Analysis and Modeling  

OGL Open Graphics Library (Open GL)  

OMG Object management group  

OMP Open Multi Processing (Open MP) 

OOP  Object oriented paradigm  

PIVR Rre-integrated volume renderer 

POV  Persistence of vision (raytracer) 

PP Periportal 

PV Perivenous 

RCO Random cell orientation 

SDL Scene description language 

VRML Virtual reality markup language 
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Parameter Symbol Unit Value Chapter Source 

Model cell parameters 

Position of cell i ix  - - 3,4 - 

Cell size (diameter) l µm 

10 3.3 [Bru, 2006] 

14 3.4-3.6 [Freyer & Sutherland, 1985] 

23.3 4 * 

Initial radius of  a 

cell (after cell 

division) 

R0 µm l/2 3,4 - 

Current radius of a 

model cell i 
Ri µm R0 - 1.26R0 3,4 - 

Change of cell radius 

per growth step in 

cell growth 

algorithm 2 

R∆  µm ≪R0 3,4 [Fidorra et al., 1981] 

Current volume of a 

model cell i 
Vi  µm3 Eqn.4 

Eqn.5 
3,4 - 

Cell compartment 

distance  
di µm 0 - 2R0 3 - 

Change of 

compartment 

distance per growth 

step in cell growth 

algorithm 1 

d∆  µm ≪R0 3 [Fidorra et al., 1981] 

Cell cycle time τ
 h 

18 3.3 [Bru, 2006] 

22 3.4-3.5 [Freyer & Sutherland, 1986] 

21-22 3.6 [Noguchi et al., 1979] 

24 4 [Vintermyr & Døskeland, 1987] 

Young’s modulus of  

a cell i 
Ei 

Pa 
450 

(300-1000) 
3,4 

[Davidson et al., 1995] 

[Lekka et al., 1999] 

Poisson number of a 

cell i 
vi 

- 0.4 3,4 
[Mahaffy et al., 2000] 

[Alcaraz et al., 2003] 

Cell diffusion 

constant 0D , 0
CD

 

2

cm

s
 

20-12 

( 20-12-10-11) 
3,4 [Beysens et al., 2000] 

Cell orientation ψ
 - 0 - 2π  4 - 

Size of polar 

adhesive region 
φ

 - 12π  4 [Burt et al., 2006] 

Cell orientation 

change in time t∆  
( )tθ ∆

 - φ≪  4 - 
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Population parameters 

Population diameter L µm - 3,4 - 

Width of the 

proliferating rim 
L∆

 µm - 3 - 

Expansion velocity 

of cell population 
v µm/d - 3 - 

Size of subclone 

arisen from cell i 
Ni(t) cells - 3.3 - 

Average cell volume cV
 µm³ - 3.5 - 

Box counting 

dimension 
df - 1 - 3 3 [Dubuc et al., 1989] 

Experimentally 

observed probability 

for proliferation at 

position χ  at time t 

PCD
 

- 0 - 1 4 [Gebhardt & Burger, 1987] 

Parameters of the embedding medium 

Initial cell or particle 

density in the 

embedding tissue 
Tρ

 2

cells

mm  
3500 - 7000 3.6 [Alberts et al., 2008] 

Young’s modulus of 

the embedding tissue 
ET Pa 300 - 1000 3.6 

[Davidson et al., 1995] 

[Lekka et al., 1999] 

Diffusion constant of 

embedding tissue 
DT 

2

cm

s  
0.05 – 1.5D0 3.6 [Beysens et al., 2000] 

Receptor density in 

interactions among 

tumor cells (type A) 
ζAA 

 
2m −

 
0 - 1510≈  3.6 

[Chesla et al., 1998] 

[Piper et al., 1998] 

Receptor density in 

interactions among 

embedding cells 

(type B) or granular 

particles 

ζBB 
 

2m −
 0 - 1510≈  3.6 

[Chesla et al., 1998] 

[Piper et al., 1998] 

Receptor density in 

interactions between 

tumor cells and cells 

of type B (or 

granular particles) 

ζAB 
 

2m −
 0 - 1510≈  3.6 

[Chesla et al., 1998] 

[Piper et al., 1998] 

Cell size of the 

embedding tissue 
lT µm 10 – 25 3.6 [Alberts et al., 2008] 

Contact mechanics parameters 

Reference energy TF  J 10-16 3,4 
[Schienbein et al., 1994] 

[Beysens et al., 2000] 

Receptor density mς  2m −  
1510≈  

( 14 1610 10− ) 
3,4 

[Chesla et al., 1998] 

[Piper et al., 1998] 
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Binding energy 

single bond sW  Bk T  25≈  3,4 [Beysens et al., 2000] 

Effective cell-cell 

friction coefficient 
γ , Cγ  kg/s 0.1 3,4 - 

Effective cell-

sinusoid friction 

coefficient 

Sγ  kg/s 0.02 - 0.2 4 - 

Potential in Hertz 

model 
HER

ijV  - - 3,4 Eqn.6 

Cell center distance 
HER
ijd  m - 3,4 - 

Contact area 

between cell i and j 

in Hertz model 

HER
ijA  m2 - 3,4 Eqn.9 

Interaction force in 

Hertz model 
HER

ijF
 

Pa - 3,4 Eqn.10 

Potential in JKR 

model 
JKR

ijV  - - 3,4 - 

Cell surface distance 

in JKR model 

(considers 

deformations) 

JKR
ijd  m - 3,4 - 

Contact distance in 

the JKR model cond  m - 3,4 - 

Interaction force in 

JKR model 
JKR

ijF  Pa - 3,4 Eqn.15 

Reaction diffusion parameters 

Glucose diffusion 

constant 
Dglc 

2cm

s
 10-6 3,4 [Casciari et al., 1988] 

Glucose 

consumption rate 
glcg  

mg

cell h⋅
 

7.5 

(7.5-21) 
3,4 [Casciari et al., 1992] 

Initial glucose 

concentration 
c0 mM 0.8 - 16.5 3,4 [Freyer & Sutherland, 1986] 

Image and volume processing parameters 

Position of a voxel 

in the data set 
χ  - - 4 - 

Kernel of AHE  AHEΨ  voxel R  = 64  4 - 

Kernel of GE and 

GD algorithm 
GEDΨ  voxel R  = 2-6  4 - 

General intensity 

threshold 
α  - 0.5 4 - 

Threshold of GE 

algorithm GEα  - 
0.15-0.35 
(Iteration-

dependent)  
4 - 
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Threshold of GE 

algorithm GDα  - 
0.45-0.70 
(Iteration-

dependent)  
4 - 

Length of  sample 

vectors in CC 

algorithm 

CCR  voxel 10 4 - 

Threshold of CC 

algorithm CCα  - 0.9 4 - 

Radius of the kernel 

used for the intensity 

averaging 

AVGR  voxel 25  4 - 

Threshold for 

intensity averaging AVGα  - 
0.0 – 0.2 
(Iteration-

dependent)  
4 - 

Threshold for 

binarization HEPα  - 0.8 4 - 

Threshold intensity 

for seeded region 

growing 

segmentation 

NECα
 - 0.5 4 - 

Cell state transition parameters 

Pressure exerted on 

model cell i 
Pi Pa - 3,4 Eq.18 

Pressure threshold 

for transition to 

necrosis 

pNECR Pa 200-2000 3,4 - 

Pressure threshold 

for transition to 

quiescence 

PQUIES Pa 100-500 3,4 - 

Deformation 

threshold for 

transition to 

quiescence 

ς  - 
0.7 

(0.6-0.9) 
3,4 - 

Inactivation 

threshold 
cNECR 3

mg

mm
 

66 10−⋅  3 - 

Quiescent threshold cQUIES 
3

mg

mm
 

52 10−⋅  3 - 

Time until cytolysis clt∆  h 12 - 96 3.6 - 

Sinusoid parameters  

Sinusoid vessel 

radius SinuR  µm Sinul  / 2 4 
* 

Sinusoid vessel 

diameter Sinul  µm 4.75 4 
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Sinusoids Young’s 

Modulus SinuE  Pa 
600 

(300-1000) 
4 - 

Sinusoids Poisson 

number Sinuυ  - 0.4 4 - 

 

* … Quantitative analysis of volume datasets obtained by confocal laser scanning  
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