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Abstract

Over the last decade a huge amount of experimental data on biological systems has been
generated by modern high-throughput methods. Aided by bioinformatics, the -omics’ (ge-
nomics, transcriptomics, proteomics, metabolomics and interactomics) have listed, quanti-
fied and analyzed molecular components and interactions on all levels of cellular regulation.
However, a comprehensive framework, that does not only list, but links all those compo-
nents, is still largely missing. The biology-based but highly interdisciplinary field of systems
biology aims at such a holistic understanding of complex biological systems covering the
length scales from molecules to whole organisms. Spanning the length scales, it has to in-
tegrate the data from very different fields and to bring together scientists from those fields.
For linking experiments and theory, hypothesis-driven research is an indispensable concept,
formulating a cycle of experiment, modeling, model predictions for new experiments and,
finally, their experimental validation as the start of the new iteration.

On the hierarchy of length scales certain unique entities can be identified. At the nano-
meter scale such functional entities are molecules and at the micrometer level these are the
cells. Cells can be studied in vitro as independent individuals isolated from an organism,
but their interplay and communication in vive is crucial for tissue function. Control over
such regulation mechanisms is therefore a main goal of medical research. The requirements
for understanding cellular interplay also illustrate the interdisciplinarity of systems biology,
because chemical, physical and biological knowledge is needed simultaneously.

Following the notion of cells as the basic units of life, the focus of this thesis are mathe-
matical multi-scale models of multi-cellular systems employing the concept of individual (or
agent) based modeling (IBM). This concept accounts for the entity cell and their individu-
ality in function and space. Motivated by experimental observations, cells are represented
as elastic and adhesive spheres. Their interaction is given by a model for elastic homoge-
neous spheres, which has been established for analysis of the elastic response of cells, plus
an adhesion term. Cell movement is modeled by an equation of motion for each cell which
is based on the balance of interaction, friction and active forces on the respective cell. As a
first step the model was carefully examined with regard to the model assumptions, namely,
spherical shape, homogeneous isotropic elastic body and apriori undirected movement.

The model examination included simulations of cell sorting and compression of multi-
cellular spheroids. Cell sorting could not be achieved with only short range adhesion. How-
ever, it sorting completed with long range interactions for small cell numbers, but failed for
larger aggregates. Compression dynamics of multi-cellular spheroids was apparently repro-
duced qualitatively by the model. But in a more detailed survey neither the time scales
nor the rounding after compression could be reproduced. Based on these results, the appli-
cations consistent with the assumed simplifications are discussed. One already established
application is colony growth in two-dimensional cell cultures. In order to model cell growth
and division, a two-phase model of the cell cycle was established. In a growth phase the



vi

cell doubles its volume by stochastic increments, and in a mitotic phase it divides into two
daughter cells of equal volume. Additionally, control of the cell cycle by contact inhibition
is included in the model.

After examination of its applicability, the presented model is used for simulations of
in vitro growth of mesenchymal stem cells (MSC) and subsequent cartilage formation in
multi-cellular spheroids. A main factor for both processes is the oxygen concentration.
Experimental results have shown, that i) MSC grow much better in vitro at low than at
high oxygen concentrations and ii) the MSC progeny harvested from low oxygen culture
produce higher amounts of the cartilage components aggrecan and collagen II in multi-
cellular spheroids than the ones from high oxygen culture.

In order to model these processes, IBM was extended by a stochastic model for cellular
differentiation. In this model cellular differentiation is captured phenomenologically by two
additional individual properties, the degree of differentiation and the lineage or cell type,
which are subject to fluctuations, that are state and environment dependent. After fitting
the model parameters to the experimental results on MSC growth in monoclonal expansion
cultures at low and high oxygen concentrations, the resulting simulated cell populations were
used for initialization of the simulations of cartilage formation in multi-cellular spheroids.
The model nicely reproduced the experimental results on growth dynamics and the observed
number of functional cells in the spheroids and suggests the following explanation for the
difference between the two expansion cultures: due to the stronger pre-differentiation found
after expansion in high oxygen, the plasticity of these cells is smaller and less cell adopt
the chondrogenic phenotype and start to produce cartilage. Moreover, the model predicts
an optimal oxygen concentration for cartilage formation independent of expansion culture
and a de-differentiating effect of low oxygen culture within 24h. Because all simulations
comply with the concept of hypothesis-driven research and follow closely the experimental
protocols, they can easily be tested and are currently used for optimization of a bioreactor
for cartilage production.

Cell populations are composed of individual cells and regulation of population properties
is performed by individual cell, but knowledge about individual cell fates is largely missing
due to the problem of single cell tracking. The IBM modeling approach used for modeling
MSC growth and differentiation generically includes information of each individual cell and
is therefore perfectly suited for tackling this question. Based on the validated parameter
set, the model was used to generate predictions on plasticity of single cells and related
population dynamics. Single cell plasticity was quantified by calculating transition times
into stem cell and differentiated cell states at high and low oxygen concentrations. At low
oxygen the results predict a frequent exchange between all subpopulations, while at high
oxygen a quasi-deterministic differentiation is found.

After quantifying the plasticity of single cells at low and high oxygen concentration, the
plasticity of a cell population is addressed in a simulation closely following a regeneration
experiment of populations of hematopoietic progenitor cells. In the simulation the regenera-
tion of the distribution of differentiation states in the population is monitored after selection
of subpopulations of stem cells and differentiated cells. Simulated regeneration occurs on
the time scales estimated from the single cell transition times except the unexpectedly fast
regeneration from differentiated cells in the high oxygen environment, which favors differ-
entiation. The latter case emphasizes the importance of single outlier cells in such system,
which in this case repopulate less differentiated states with their progeny.

In general, cell proliferation and regeneration behavior are influenced by biomechanical
and geometrical properties of the environment e.g. matrix stiffness or cell density. Because
in the model cells are represented as physical objects, a variation of friction is linked to cell
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motility. The cultures of less motile cells become denser at the same size and the effects
of contact inhibition of growth more pronounced. This variation of friction coefficients
allows the comparison of cultures with varying degrees of contact inhibition regarding their
differentiation structure and the results suggest, that stalled proliferation is sufficient to
explain the well-known differentiation effects in confluent colonies.

In addition, the composition of the simulated stem cell pool was analyzed regarding
differentiation. In contrast to the established pedigree models, where stem cell can only be
produced by asymmetric division, this model predicts that most of the cells in stem cell
states descend from progenitor cells of intermediate differentiation states.

A more detailed analysis of single cell derived clones revealed properties that could not be
described by the model so far. First, a differentiation gradient was observed in larger colonies,
that was the opposite of the one predicted by the model. Second, the proliferative activity
turned out to depend not only on oxygen, but also to be a property of individual clones
persisting over many generations. Because the relation slow growth/pre-differentiation also
holds for single cell derived clones, the general model of differentiation is extended by another
heritable individual property. Motivated by the decline of proliferation and differentiation
in culture and the high metabolic and epigenetic activity during cell division, each division
event is assumed to de-stabilize stem cell states. Consequently, in the model the cells age in
terms of cell divisions determines the fluctuations in stem cell states and the environment
the mean fluctuation strength.

Including this novel concept, that links aging to growth and differentiation dynamics,
into the model reproduces the experimental results regarding differentiation gradient and
persistent clonal heterogeneity. The spatial differentiation pattern can largely be explained
by the spatio-temporal growth pattern of the mono-clonal cell assembly: cells close to the
border of the cell assembly have undergone more cell divisions than those in the interior and
therefore their stem cell states are less stable. Heterogeneity of single-cell derived clones
depends on the age of the first cell in the clone. When the stem cell fluctuations equal the
mean fluctuations strength, the proliferative activity passes a maximum at a certain age
due to the destabilization of stem cell states. Thereafter the proliferative activity decreases,
because more time is spent in non-proliferative differentiated states. Considering the number
of divisions the cells have already undergone in vivo and after the initial expansion in vitro,
it can be assumed that all cells have already passed this maximum. Interestingly, the model
also predicts an optimal age for directed differentiation, when cells stably differentiate, but
have not lost the required plasticity. According to the model, this clonal heterogeneity
may be caused purely in vitro, but hypothetical simulation of in vivo aging yielded results
consistent with experiments on MSC from rats of varying age.

Finally, the detailed molecular regulation mechanisms in a multi-scale tissue model of
liver zonation was studied, in which the key molecular components were explicitly modeled.
Hence, this model resolved the intracellular regulation in higher resolution than the above
considered differentiation models which had summarized the intracellular control and dif-
ferentiation mechanisms by a few phenomenological, dynamical variables. The metabolic
zonation of the liver is essential for many of the complex liver functions. One of the vitally
important enzymes, glutamine synthetase, (GS) is only synthesized in a strictly defined
pattern. Experimental evidence has shown that a particular pathway, the canonical wnt
pathway, controls expression of the gene for GS. A model for transport, receptor dynamics
and intracellular regulation mechanism has been set up for modeling the spatio-temporal
formation of this pattern. It includes membrane-bound transport of the morphogen and
an enzyme kinetics approach to g-catenin-regulation in the interior of the cell. As an IBM
this model reproduces the results of co-culture experiments in which two-dimensional ar-
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rangements of liver cells and an epithelial liver cell line give rise to different patterns of GS
synthesis. The two main predictions of the model are: First, GS-synthesis requires a certain
local cell number of wnt releasing cells. And second, a simple inversion of geometry ex-
plains the difference between the specific GS pattern found in the liver and in the co-culture
experiments.

Summarizing the results presented in this thesis, it can be concluded that properties such
as the occurrence of memory effects and single cells pursuing fates far off the population
average could be essential for biological function. Considering the role of single cells in many
tissues, the use of individual based methods, that are able to take such effects into account,
can be expected to be a very valuable tool for the problems of systems biology.
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Introduction

Bioinformatics and Systems Biology

Around the turn of the millennium the amount of information on biological systems started
growing very rapidly. Genome projects for many different species ranging from viruses and
bacteria to plants and mammals have been completed [1]. Sequencing uses only fragments of
DNA and the question arises, how the sequence can be reconstructed from these fragments,
how to assemble the genome. By computational methods the problem of genome assem-
bly can be solved even for the amount of data produced by high-throughput sequencing.
However, bioinformatical methods are not only applied for genome assembly, but also for
many other problems related to sequence data. Only attaching biological information to
a sequence makes it useful. This entails identifying known structures and predicting new
elements. Additionally, information on evolution and phylogeny can be derived from genome
comparison. Finally, all the data must be stored, managed and made accessible to queries.
Indeed, many problems of bioinformatics are directly related to genomics, the study of the
genomes, but high-throughput data and the related problems are produced by all other
-omics, too [2]: transcriptomics studies the transcriptome, the set of all RNAs produced in
a cell at a time, which in contrast to the genome is very dynamic. Proteomics addresses the
proteome, the set of all proteins occurring in a cell, metabolomics the set of all metabolites
with the sub-fields of sugars, lipids, amino acids and nucleotides and, finally, interactomics
the interactions of molecules [3].

Despite the huge progress in acquiring data on many levels of molecular control, many
aspects of the complex dependencies at the various levels of regulation remain unclear. In
other words, as Kitano states: ‘Identifying all the genes and proteins in an organism is like
listing all the parts of an airplane (... and) by itself it is not sufficient to understand the
complexity underlying the engineered object’ [4]. All the molecular information is important
and necessary for understanding the organization of the organisms made of these molecules,
but the complexity, that emerges from their interaction, exists on a higher level of orga-
nization. An interdisciplinary research approach which combines biology with computer
sciences, mathematics, systems theory and engineering sciences into one ‘systems biology’
is expected to make a major contribution to this understanding. Therefore the so-called
discipline of systems biology pursues a holistic multi-scale approach and aims at developing
close-to-reality models of physiological processes at all levels which have to be considered:
molecules, cells, tissues and entire organisms (see Fig. 1).

An illustration of the length scales involved in this approach, which cover several orders of
magnitude, is given by a carcinogenic mutation. The function of many important regulatory
molecules depends on single amino acids. A mutation of a single nucleic acid in the gene
for such a regulatory molecule may lead to unregulated, excessive growth and a tumor. The
tumor itself damages surrounding tissue that is essential for the function of the affected
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Figure 1: Length scales in Systems Biology The length scales addressed in Systems Biology
stretch from nanometer scale over several orders of magnitude to meters. Molecular regulatory
action as found in transcription or in single events within a pathway happens on the nanometer
scale. Pathways themselves include a whole cascade of molecular events and, for example, connect
the cell’s surface to the nucleus. The cells themselves harboring these pathways have diameters of
several micrometers. Their functional compounds, the tissues, stretch from micrometer to several
centimeters to form organisms like a human body measuring up to meters.

organ. Decline of the function of an organ clearly affects the organism. Hence, a mutation
on the sub-nanometer scale may propagate to the meter-scale of the whole organism (see
Fig. 1). The notion of such relations makes systems biology to seek integration of all these
levels into an understanding of the whole system. Approaches cover target prediction, e.g.
of micro RNAs [5] and models for folding into functional structures [6, 7], models for in vitro
cell colonies [8,9] up to flux models for the metabolism of single organs [10] and compartment
models for cell numbers and effects on the level of an organism [11].

An important aspect of systems biology is the close collaboration of modelers and exper-
imentalists [12]. The concept of interactive hypothesis-driven research clearly defines this
general request for experiment and theory to generate synergies (see Fig. 2, [4]). Experi-
mental ‘wet lab’ procedures yield data used by the ‘dry lab’ for development of models that
fit the data. In silico experiments with these models are the used to generate predictions
and new hypotheses. After the ‘theoretical turn’ the hypotheses are fed back to the ‘wet
lab world’ and follow-up experiments are designed to test the models. Well designed exper-
iments are able to evaluate the predictions and their results are used for a new iteration of
the cycle. Thus, each of these goal-oriented iterations bundles efforts in ‘wet’ and ‘dry lab’
and yields more sophisticated experimental and theoretical concepts.
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Where Do the Data Come From? A Few Examples

After unraveling the structure of the DNA molecular biologists have started to sequence
and assemble genomes and annotate putative elements for a long list of species (see for ex-
ample http://www.ncbi.nlm.nih.gov). This sequence data motivates projects like ENCODE
(ENCyclopedia Of DNA Elements), which aims at identifying all functional elements in the
human genome (http://www.genome.gov/10005107, [13]). The combination of sequencing
and computational analysis has unraveled many aspects of biological regulation that remain
to be integrated into a system-level understanding.

The most prominent group of the transcription-translation machinery, the proteins,
provide vital function in metabolism, cellular structure and signaling. New experimental
techniques like fluorescence correlation spectroscopy, fluorescence resonance energy transfer,
circular dichroism spectroscopy, the engineering of small functional mutations and many
additional method advances have produced an explosion of insight into protein dynamics,
structure and, thus, specific function and their role in the organism ( [6] and references
therein).

The presence of proteins in a cell population has been probed since the 1980’s by western
blotting, an analytical technique using gel electrophoresis to separate the molecules and
detect them with antibodies, even in activated phosphorylated states [14]. The disadvantage
of this procedure is the averaging over many cells from one sample without the possibility
to resolve information on single cell level or even sub-cellular localization. This problem
is solved by the application of radioactive markers or staining dyes in situ. Techniques
using radioactive markers are extremely sensitive, because almost every single disintegration
can be detected and since every biologically relevant element is available as a radioactive
isotope, they can be integrated into virtually every molecule, which can then be located by
autoradiography. Disadvantages are the lack of flexibility compared to staining dyes and
that the technique is not suited for high-throughput methods. In contrast, staining dyes
highlight features of interest like proliferative activity by attaching dyes to related molecules,
which subsequently can be detected (e.g. see [15]). Improvement of the staining technique
is introduced by the use of fluorescent dyes, which substantially lower the signal-to-noise
ratio. Different wavelengths of excitation (illuminating) and emission (detected) light allow
detection of much smaller protein concentrations. Applied in confocal microscopy they even
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Figure 3: Fluorescence micro-
graph of endothelial cells. Nu-
clei are stained blue with DAPI, mi-
crotubules are marked green by an an-
tibody bound to FITC and actin fila-
ments are labeled red with phalloidin
bound to TRITC. From WikiCommons.

allow in vivo imaging, as shown for bovine pulmonary artery endothelial cells in Fig. 3, and
reconstruction of three-dimensional structures [16]. Fluorescence microscopy has also been
applied by our experimental collaborators to detect commitment to the chondrogenic lineage
in cell cultures derived from mesenchymal stem cells (MSC, see Chapter 3 and 5).

Another group of regulatory molecules, the RNAs made of ribonucleic acid, are consid-
ered increasingly important for cellular function. Their functions stretch from information
transfer as messenger RNA (mRNA) over active participation in protein synthesis as transfer
and ribosomal RNA (tRNA, rRNA) to regulation by non-protein-coding RNAs like imple-
mented by microRNA (miRNA) and small interfering RNA (siRNA) post-transcriptional
regulatory mechanisms. Employing the principle of RNA interference experimentally, al-
lows transient knock-down of a target protein by inhibiting its translation and thus provides
an important tool for studying protein function [17].

A more sophisticated method permits inducible and permanent gene knock-out in mice
by site specific DNA recombination of the loxzP-Cre recombination system. Introducing the
binding sites (lozP-sites) for the recombination enzyme Cre up- and downstream of the
knock-out gene in one mating partner and an inducible Cre gene with a cell type-specific
promoter in the other yields inducible knock-out mechanisms in cells of defined types of the
F1 generation [18,19]. After activation of the enzyme, it cuts out the target gene and causes
a permanent knock-out [20]. In a similar way one can generate knock-ins, causing e.g. an
over-expression or inducible constitutive expression of the desired protein. An example for
the use of a knock-out system is given in the experimental results on liver zonation (see
Chapter 6).

Biophysics has also contributed substantially to understanding tissue organization, since
cellular function is directly related to physical properties. Measurements of elastic and
adhesive properties of tissues and single cells by micropipette aspiration techniques [21],
atomic force microscopy (AFM) [22], optical stretcher [23] or phase-sensitive acoustic mi-
croscopy [24] have revealed for example that some cancer cells and malaria infected red
blood cells can be distinguished by their mechanical properties [25].
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The combination of experimental techniques, computation, data storage and analysis has
facilitated the generation of a huge amount of data. High-throughput experimentation, but
also clinical studies of great extent have contributed considerably to this information pool,
which remains to be fully understood and integrated. However, on the investigated length
scales some basic entities of matter and modeling can be identified. Atoms and molecules
are such entities of matter, while cells occupy a similar position in organs and organisms
and, finally, individual organisms in ecosystems and society. In the following section the
unique position of single cells regarding system-level understanding will be outlined.

Significance of Single Cells

Cells are the basic entity of life. The strongest evidence for this unique position is
that all life is based on cells [17]. Although a vast variety of species exists, concerning
the basic principles it does not matter if bacteria or mammals are considered. All cells
use heritable genetic information, undergo metabolism to maintain homeostasis and follow
the principle Omnis cellula e cellula (Every living cell comes from another living cell) by
Rudolf Virchow [17,26]. Especially for almost all metazoa the importance of a cell can
be illustrated by reformulating Virchow’s principle to Every living organism comes from
a zygote. A zygote is produced by fertilization and combines the information of the two
haploid germ cells. Thus, the moment of fertilization represents the first time the complete
genetic information of the unique organism exists. During development the whole organism
is produced from this first cell by cell division, cell death, differentiation and rearrangement
processes. An adult human body is composed of some 10'* cells of about 210 cell types,
arranged in the main organ systems like respiratory, circulatory and reproductive system
(see Fig. 4). Despite their totally different shape and function, all these cells carry the same
genetic program inside. This single global program gives rise to all the different cell fates. In
close proximity, individual cells of very different types are found. For example, the function
of the intestine depends on the amount of the mucus secreted by the goblet cells (Fig. 5).
This mucus weakens chemical and shear stress and therefore the secreted amount of mucus
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Figure 5: Goblet cells in the villus
secrete the mucus that protects the ab-
sorptive cells from shear and chemical
stress. Their fraction is precisely regu-
lated and increases with the length of
the intestine and the solidity of the di-
gested food. This regulation is a nice
example how important cellular proper-
ties are controlled at the length scale of
individual cells. Reproduced from [27].

goblet cells

and the number of goblet cells depends on the intestinal position. Hence, the precise control
of the density of goblet cells represents an example of functional cellular properties at the
length scale of single cells, and highlights the role of the entity cell. But how do the cells
take those important decisions on their fates?

Cellular fates Basically, each cell’s fate can be seen as a sequence of cellular states. Cel-
lular states can be seen from two different angles. First, one can focus on observations of
the phenotype and have a closer look at the functional state of a cell. It is imprinted in the
distribution of proteins necessary for a particular function. Therefore, an appropriate set
of such proteins can serve as a marker system for a specific functional cell type. Currently
such markers are frequently used to assess cellular function or malfunction. Examples used
in Chapters 3 and 5 are markers of the chondrogenic lineage. Because aggrecan and colla-
gen II are main components of cartilage, chondrocytes can be identified by probing these
molecules [28]. Indicators for malfunction are the widely used cancer markers representing
an important diagnostic tool [29]. However, to thoroughly understand the emergence of
such functional phenotypes it is crucial to unravel the regulation leading to the production
of these functional proteins.

This leads to the second notion of cellular state, the regulatory state, which is given
by the abundance and localization of regulatory molecules like RNAs, transcription factors,
silencers etc [17]. Part of this regulation are the epigenetic marks on histones and DNA,
which recently attract increasing attention [30,31]. Quantifying the (co-)localization of all
regulatory molecules and their state at once is impossible, but assessing some putative key
molecules is indispensable for understanding regulatory mechanisms in the cell. Techniques
for assessing the occurrence of these molecules for quantifying cellular states have been
mentioned in the previous section and include various blotting techniques, molecule-specific
histological and fluorescent staining for microscopy or immuno-precipitation (IP) [17,18].

On every stage the following development of the cell’s state is determined by three
main factors: the global program encoded in the DNA, the cell’s present regulatory state
and its environment. The DNA provides the global information on all cellular products
and metabolism, and can be seen as the global and non-changing program [17,32]. The
regulatory state is given by proteins, RNAs as well as other types of signaling and metabolic
molecules, their state and localization. Note that this includes also the set of expressed
genes and activation pattern of enzymes and signaling cascades [32]. Extending the view of
the DNA as the global program, this second level would correspond to its state of execution.
The third factor, the environment, is source and drain of raw material and waste, but also
of information. One could call it in- and output of the biological program. The environment
not only includes the chemical composition of the surrounding medium regarding nutrients,
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oxygen and signaling molecules, but also geometrical and mechanical properties, like stiffness
and assembly of the extra-cellular matrix (ECM) or properties of neighboring cells, which
influence cellular fate decisions [33,34].

Between the three factors, that determine cellular fates, are strong interdependences aris-
ing from cellular activities. The most obvious and general activity relating the three factors
is metabolism. On one hand, metabolism uses the recipes of the DNA, the information on
presently activated processes encoded by regulatory state and energy and chemical build-
ing blocks from the environment. On the other hand, the molecules, which are produced
by metabolism, set the regulatory state and are released into the environment not only as
waste but also as signaling molecules and ECM. Considering the close relation of regulation
and metabolism and the weakening of the boundary between the global DNA program and
epigenetics as part of the regulatory state ties the three factors together [35]. In general, the
history of transcription and therefore preceding regulatory states is recorded by epigenetic
marks and controls the activation of the global DNA program [36].

The Cell in its environment Of course, different functional cells need to fulfill different
functional requirements. For example neurons and lymphocytes are very different cells. Neu-
rons have to supply their stable structure for signal transduction, while lymphocytes function
includes migration to the infected site and thus a very variable shape. Some elementary bi-
ological phenomena like cell sorting may even be reduced to purely physical processes. Foty
et al. [37] claim that patterning processes of embryonic cells like envelopment of one cell
type by another and cell sorting are solely governed by differential adhesion (see Sec. 2.2
and 2.4). Similarly, cellular orientation within multicellular aggregates may be explained
by aligned distribution of cell-cell adhesion molecules on certain cell geometries [38,39] and
related biophysical cellular properties have been shown to affect tumor growth kinetics in
simulation studies of a monolayer [9,38]. But although these phenomena may be realized
by physical effects involving unchanging cellular states, one has to keep in mind that these
biophysical properties are subjected to cellular regulation.

In general, cells gather information about the biophysical properties of their environment
by adhesion molecules like cadhering and integrins. Mechanical fores are transduced via the
adhesion molecules into the cell’s interior, where they serve as an input for regulation of
cell adhesion and cytoskeletal reorganization. These systems therefore represent mechano-
sensors [40,41]. The importance of this mechano-sensory view of a cell has been addressed
by introducing the concept of cells as tensegrity structures [42]. By mechano-chemical
transduction the mechanical signals sensed by the cell are translated and transferred into
the regulation machinery as has been shown for coupling of focal adhesion complexes to
extracellular signal-regulated protein kinase (ERK) pathway [43,44]. Further examples for
coupling mechanics to molecular regulation are reviewed in Discher et al. [45]. The spectrum
of cellular responses to environmental stimuli covers all aspects of cell behavior: migration
[46], differentiation [33,47,48], and cell death and proliferation [42] have been shown to
depend on the biomechanical environment.

A very important function of differentiated cells is the generation of a specific environ-
ment. This environment includes in all tissues a varying content of extracellular matrix
(ECM), whose function is not limited to providing a habitat. It also separates different tis-
sues, bears stress and strain and contributes to transport and storage e.g. of growth factors.
Most obvious is the ECM in tissues where matrix-cell ratio and mechanical stress are very
high, like in bones, tendons and cartilage, but ECM is also present even in the brain or the
spinal chords [17]. To guarantee a functional skeleton, in bone osteoblasts and osteoclasts
are constantly remodeling their environment [49].
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Another activity, that is also controlled by biophysical input as mentioned above is the
cell migration. Cell migration occupies a unique position in development and homeostasis.
Differentiation alone is not sufficient for establishing the immense complexity in mammalian
bodies. Clearly the blueprint involves the development of cellular phenotypes carrying out
specialized functions. But the precise assembly of these cells is essential for function and
involves continuous rearrangement processes like gastrulation, neural tube closure or life-
long wound healing and intestinal cell replacement ( [17,50] and refs. therein). Thus in
addition to deciding which fate to adopt, the cells need to decide where to settle. How do
the cells know which place to go to? Apart from mechanical stimuli cell motion can be
triggered by chemical signaling [51].

In summary, cells do not only construct their environment and adopt their own properties
according to a deterministic fate, but also the mechanical information on their environment
serves as an input for the regulatory machinery of the cell. Thus, these complex interdepen-
dencies introduce a strong feedback, that a successful systems biology needs to understand
in an interdisciplinary fashion.

Requirements for stability. The interdependence between regulatory state and environ-
ment could suggest, that environmental perturbations can spread into all areas of cellular
organization and cause malfunction on all levels. Since formation of structures like tissues
and organs, homeostasis and maintenance of function involves highly orchestrated cell be-
havior, the question arises how robustness can be achieved against the natural variability
in conditions. Under varying conditions an exceedingly strict program, which lacks flexi-
bility to compensate such variations, would produce very different outcomes and not the
desired function. On the other hand unambiguous rules are necessary for establishing and
maintaining the complex metazoan body architecture. Without abundant coordination,
feedback and checkpoints such robustness cannot be realized [12]. Coordination, feedback
and checkpoints require cell communication and intracellular processing of the transmitted
information on all levels. Different strategies for cell-cell communication like hormones and
nerves are found in even the simplest metazoan animals [52]. These means of communication
are the most obvious and may already facilitate the feedback necessary for organism-wide
regulation. Cell-matrix interaction may conceal many less obvious, but equally important
feedback mechanisms, which may be hard to unveil, because communication processes are
mainly studied by quantifying the response to a single stimulus introduced into the network
or by blocking single channels of information flow. Since redundancy is another impor-
tant concept in robust systems [12], this approach may not be sufficient to unveil the basic
principles of organization in biological systems.

In the last paragraphs it became clear that the cells themselves control their development
and integrate a variety of signals from their environment. These signals reflect environmental
conditions outside the organism as well as cellular signaling over all distances within the
organism [17]. Considering the number of signaling channels, cells must be understood as
information processing agents. In order to guarantee survival of the organism they belong to,
these agents need to cooperatively maintain physiological conditions even in an unfavorable
environment and therefore aim at a global goal. To fulfill this task, they need to integrate
and interpret the signals independently, each of them containing the recipe how to do so. In
short, cells are:



AGENT-BASED/INDIVIDUAL-BASED MODELING 9

autonomous. In principle each cell can survive outside the organism, as proven by in vitro
experiments.

reactive. Cells adapt to their environment in many senses as discussed above.

proactive. Organization in procaryote colonies and multicellular organisms aims at the
benefit of the cellular assembly.

Exactly these properties characterize the concept of agents in the field of computer
science and modeling as will be shortly reviewed in the following section.

Agent-Based /Individual-based Modeling

After initially being used widely in ecological [53-55] and social sciences [56, 57] agent-
based or individual-based modeling (IBM) has become a common method in biomedical
research and bioinformatics [58,59]. Although systems biology has its main focus on gene
and protein interactions, system level understanding requires the understanding of multi-
cellular organization with its feedbacks as discussed above. Hence it not only requires the
modeling of the intracellular compartment, but also modeling that accounts for the cellular
and multicellular level, since the cells not only receive and process information, but also
generate it and spread it over many length scales. Therefore agent technologies and multi-
agent systems constitute an emerging area in bioinformatics and systems biology.

A multi-agent system consists of autonomous, although reactive decision-making entities,
the agents. Each agent individually assesses its situation and takes decisions on the basis of
appropriate rules [60]. From these rules and the interaction of the agents complex phenomena
can result, and being able to capture such emergent phenomena is one of the most important
aspects of IBM [57]. The whole is more than simply the sum of its parts, and this simple
statement is typical for biological systems. Typical indicators for the emergence of such
complex behavior are the following [57]:

1. Individual behavior is nonlinear and can be characterized by thresholds, if-then rules,
or nonlinear coupling. Describing discontinuity in individual behavior is difficult with
differential equations.

2. Individual behavior exhibits memory, path-dependence, hysteresis, non-markovian be-
havior or temporal correlations, including learning and adaptation.

3. Agent interactions are heterogeneous and can generate network effects. Flow equations
usually assume at least locally homogeneous mixing, but the topology of the interaction
network can lead to significant deviations from predicted behavior.

4. Averages will not work. Differential equations tend to smooth out fluctuations. IBM
does not, which is important because under certain conditions fluctuations can be
amplified: the system may be linearly stable for small, but unstable to larger pertur-
bations.

Each of these points is an essential feature of biological systems. Cell division is controlled
by the cell cycle control system, which contains various check-points [17]. Positive auto-
feedback is an essential tool for triggering developmental actions [61]. Epigenetic regulation
imprints the cell’s history on DNA organization [31]. Maintenance of a small population of
stem cells represents a strong, but important heterogeneity in the adult organism [62], thus
emphasizing the role of individual outlier cells.

Regarding cellular systems the IBM approach is intuitively closer to reality than differ-
ential equations. In contrast to widely used differential equations IBM can easily include
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fluctuations on the scale of single cells. It also allows to assign different rules to differ-
ent cells, to employ a varying number of cells and enables coarse graining by considering
not only single agents but subgroups and aggregates with equal or similar properties [59].
In biological processes environmental conditions frequently change in space and time and
the position of each individual cell may become crucial for decision making, for example
in patterning processes such as the zonation of the liver (see Chapter 6, [59]). Therefore,
the representation of cells as agents with a spatial representation can be expected to be-
come crucial for modeling this sort of system. Finally, IBM permits to include stochastic
fluctuations inherent in most biological processes and sometimes even necessary for certain
outcomes (see Chapter 4). Summing up these advantages, IBM can be seen as the direct
natural description of biological systems composed of many individual cells.

On long timescales evolution incorporates learning and problem solving as sought by the
efforts in artificial intelligence. The variety in different ecosystems offers an inspiring wealth
of dynamic solutions on all levels, from molecules to ecosystems. Considering this extent
of individuality, it is not surprising, that ecology was the first discipline to adopt the IBM
approach.

IBM has been formulated by Merelli as another level of software abstraction transcending
methods, functions and objects as flexible problem-solving computational entities, which is
formulated in the GeneWeaver project [58]. Already realized, more moderate applications of
an agent based approach stretch from modeling cellular pathways [63] to tissue patterning
[59] and stem cell analysis and simulation [64].

Motivated by the above discussion the model presented in this thesis follows the IBM
philosophy. In contrast to many other realizations of IBMs on structured lattices [65-67]
it is based on a spatial lattice-free representation of cells to avoid lattice-artifacts. Similar
models have successfully been applied to:

e growth and pattern formation processes for epithelial cells under standard culture
conditions [8,68]

e growth of avascular tumors in suspension [9,69, 70]

e spatial-temporal organization of regenerative tissue like in intestinal crypts [71,72].

e morphogenesis like in blastulation and gastrulation [73].

e collective cell motion in the slime mold Dictyostelium [74-76].

Organization of the Thesis

The first chapter of this thesis introduces a basic individual-based model for biological
cells that will be used throughout this thesis. The basic model is a biophysical model
that mimics cells as homogeneous isotropic elastic spheres and includes cell-cell and cell-
matrix interaction, cell motion, cell growth and diffusion of nutrients and oxygen. Additional
modifications and extensions to the basic model presented in this chapter will be presented
in the course of this thesis.

In the second chapter this model is applied to cellular motion, sorting of multi-cellular
aggregates of different cell types and a biophysical compression experiment. The idea is
to analyze to which extent this simple model of cells that neglects complex cell shapes
and molecular control is already able to capture important multi-cellular observations. For
modeling cellular motion, a representation of cellular filopodia replaces the random Langevin
forces and in the section on cell sorting the purely contact-based Hertz model is an extended
to longer interaction distances .
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Oxygen-dependent in vitro growth and differentiation of mesenchymal stem cells (MSCs)
are modeled in the third chapter. Mesenchymal stem cells are multipotent progenitor cells
that persist in adult life and can form bone and cartilage. A noise-driven phenomenological
model for differentiation is introduced and added to the biophysical IBM. It assigns the in-
dividual agents that represent the cells a state variable for differentiation. The emergence of
functional chondrocytes, which are needed for cartilage production, is controlled by environ-
mental information. After fitting the model to experimental data on cell proliferation, the
observed differentiation behavior is reproduced with this set of parameters. Furthermore, it
generates predictions on optimal culture conditions for maximizing cartilage production.

The individual-based modeling approach unfolds its potential in the fourth chapter by
monitoring the fates of individual cells regarding differentiation dynamics. The analysis of
individual cell fates generates the first predictions on in wvitro MSC cell plasticity, regen-
eration dynamics of population structures regarding differentiation and the composition of
the population’s stem cell compartment. In contrast to the composition of the stem cell
compartment, cell plasticity and regeneration of population structure are predicted to be
closely related and to depend heavily on the environment.

A more detailed analysis of individual clones in MSC derived cell cultures reveals that
growth and differentiation potential are persistent properties. The fifth chapter addresses
this clonal heterogeneity, which is not captured by the stochastic differentiation model, by
introducing an age related destabilization of stem cell states. Based on the results in three
different species, this model for stem cell aging is used for modeling of spatial and clonal
heterogeneities in MSC colonies. It predicts an optimal age for differentiation and, based on
a few simple hypotheses even captures in vivo aging qualitatively.

Finally, in the last chapter a molecular pathway is included as a regulation mechanism
into the individual cell based model. Activity of the enzyme Glutamine Synthetase (GS) is
one indication of the zonation of the liver and controlled by the canonical wnt pathway. Wnt
transport and signaling is modeled including receptor dynamics and intra-cellular regulation,
the latter represented by an ODE based enzyme-kinetics approach. The model is applied to
de novo glutamine synthetase induction in vitro and in vivo.

In the conclusion, the results are discussed regarding the importance of individual based
modeling for biological, in particular multi-cellular systems.
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The Spherical Cell Model

1.1 Background: The Biological Cell

The Latin word cellula means small room. It was an intuitive description of the functional
unit of a biological cell chosen by Robert Hooke after studying cork with a microscope [77].
Exactly this separation of space addressed by cellula gives to the construct of a single
cell its importance as the elementary unit of life. A cellular membrane divides space into
the cell’s interior and exterior. The interior harbors the whole metabolism of a cell and
provides necessary conditions for processes like transcription, protein synthesis, cytoskeletal
reorganization and signaling. The cell’s exterior provides sources of e.g. nutrients necessary
for the metabolic activity and information. Nutrients have to be transported into the cell,
the cell needs to dispose waste, environmental information must enter the cell and signals be
released into the environment. All these tasks are performed by trans-membrane proteins
as gatekeepers for molecular traffic, receptors for molecular signals and adhesion molecules
for cell attachment. These molecules, crucial for cellular functions, are situated within the
membrane and guarantee the cell’s interaction with it’s exterior.

Besides metabolism cellular activities involve movement. Monocellular organisms search
for nutrients, but multicellular ones cooperate in fascinating complex interactions involving
orchestrated cell motion like in early embryonic development, wound closure and homeostasis
[51]. Thus, cell motion has been the subject of intense studies of migration in populations as
in the multi-cellular phases in the life cycle of Dicytostelium [78] or neural tube closure [50]
down to the molecular basis of migration in focal adhesion sites [43].

All cellular actions including metabolism, attachment and migration finally aim at the
main feature of life, self reproduction. A cell’s fission into two daughter represents the only

way to create new cells.

13
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Figure 1.1: Spherical tumor cells
in a hydrogel model system. In
order to develop a three-dimensional
model system for tumor metastasis in
bone prostate tumor cells are cultivated
in the hydrogel network. In the bio-
compatible network they proliferate and
form tumor spheroid without larger de-
viation from spherical cell morphology.
Shown are confocal fluorescence micro-
graphs of three sections in the planes
indicated by the colored lines. With per-
mission taken from [80].

1.2 One Cell and its Morphology

The surface tension of lipid vesicles makes them adopt a spherical shape like a bubble. Cells
in suspension often do the same [79], but for biological function in an organism cells depend
on the internal mechanical structures provided by the cytoskeleton. It is a general observa-
tion that for cellular polarity directional signals like e.g. extracellular contacts, chemotactic
signals are required. If a cell happens to be in an environment lacking this kind of signals
like suspension or multicellular aggregates it adopts an approximately spherical shape. In
Fig. 1.1 this is shown in a fluorescence micrograph of prostate cancer cells cultivated in a
hydrogel, which mimics the geometry of the bone marrow. This and other similar observa-
tions suggest to approximate the shape of a cell in isolation by a sphere. Hence a spherical
cell shape is chosen for the model presented in this thesis. The simple spherical geometry
allows to represent cells only by center position ¥; and radius R;.

1.3 Interaction

Virtually all biological phenomena must be understood as the interplay of many cells in
cooperating or competing relations. Cells deform under stress, may adhere to extracellular
matrix or surfaces and may form multicellular tissues. As mentioned in the introduction,
the cellular behavior depends to a great extent on the mechanical interactions with the
environment, which makes these interactions crucial for modeling cellular aggregates. In the
following the repulsive forces are modeled by the Hertz theory for deformation of spheres,
which is used frequently in AFM labs to analyze the response of biomaterials [81,82].

1.3.1 The Hertz model: Elastic, repulsive forces

The Hertz model provides expressions for the radius of the contact surface and the contact
load at the normal contact of two elastic spheres [83,84]. In the simulations contact areas
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and contact forces determine the dynamics in each time step, and must be calculated for
each cell contact. For two spheres ¢ and j the model relates interaction force F' to the radius
r of the contact area and surface deflection ¢ by the analytic expressions [83,84]:
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3 7 J ()
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where v; denotes sphere i’s Poisson’s ratios, F; its Young’s moduli and R; its radii. The
cellular radius R, Poisson’s ratio v and Young’s modulus F are all experimentally measurable
quantities. Typical values lie around R = 5 — 10um, v = 0.4 — 0.5 and E = 400 — 2000Pa
[81,85]. Given these quantities, the Hertz model allows to calculate the contact forces F
and the radius of the contact areas r as a function of the cell positions for any two cells in
contact (6 > 0) from
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Note, that sphere-plane interaction is given by the limit R; — oo.

The simple form of the Hertz model comes at the cost of being based on several as-
sumptions [86]. The material of the spheres in contact is assumed to be isotropic, homoge-
neous and linearly elastic, while the deformation must be small. Biological cells are neither
isotropic nor homogeneous and highly non-linear in their elastic behavior [87], but for pro-
cesses on a certain time scale and for small deformations the approximation by the Hertz
model is reasonable. Of course, this imposes limitations for the applicability of the model,
which will be discussed in appropriate context in Chapter 2, but the fact that the growth
behavior of cell populations does not depend on the details of the interaction [88] supports
its application.

5 (1.3)

1.3.2 Adhesion energy

In tissues and multicellular aggregates cells are tied together by cell-cell or cell-matrix
contacts mediated by adhesion molecules like cadherins, integrins or ephrin and its recep-
tor [89,90]. To model cell adhesion the distribution of surface molecules on the cell membrane
is assumed to be homogeneous. This approximation, which averages over variations in the
surface density of adhesion molecules like in focal adhesions, allows to model the adhesion
energy of a contact Vaan,i; proportional to the contact area A;;. The constant of proportion-
ality is given as €;; = min(g;, 0,;) Vsp, subsuming the number of matching adhesion molecules
in the contact area due to dimerization as the minimum of their surface densities on both
cells and the binding energy of a single dimer V;;,. The adhesion energy of a contact of two
cells 7 and j is therefore given by

RiR,
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Figure 1.2: Modified Hertz Potential and Derived Force for some parameters used in the
simulations. a) Shown is the modified Hertz potential Vi,oa as a function of cell-cell distance for
two equal cells of radius R = 5um, Poisson’s ratio v = 0.4, adhesion energy of ¢;; = 60, 100, 140 x
107°N/m and Young’s Moduli E = 450, 1000, 1500Pa. b) The force F}; derived by differentiation
for the same parameter. The equilibrium distance is given by the root and lies around a relative
deformation of 5-10%.

The strength of adhesion is given by €;; and depends on the cells in contact, more precisely
on the cells’ surface densities of adhesion molecules. Moreover it includes the contributions
of several distinct adhesion molecules, each existent as ligands and receptors. However, this
calculation of the adhesion energy implies that contact area can be approximated by the
Hertz model. Often, adhesion increases the contact area at a given distance. This contri-
bution is taken into account in the Johnson-Kendall-Roberts (JKR) model which moreover
includes a hysteresis behavior. In the JKR-model cells detach at a larger distance than
the distance at which they come into contact. However, as shown in Drasdo et al. [88] for
simulation of growing monolayers, the modified Hertz model used in this thesis and the
JKR-model yield very similar results.

1.3.3 Total potential

To obtain the full potential Eq. (1.4) is integrated to the interaction potential and the
adhesive term given by Eq. (1.5) is added:

‘/rnod = VHertz + Vadh (16)
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The interaction force entering into the equation of motion introduced below is derived by
partial differentiation of the total potential Vi,,q with respect to the space coordinates x,
y and z. For the radial symmetry, the interaction force acts in direction of the center-to-
center unit vector with a modulus given by the derivative of Eq. (1.6) with respect to the
deformation §.
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For some parameter F and € used in following simulations the potential Vi,,q and the
derived force F' are shown in Fig. 1.2. The adhesion parameter ¢ was chosen in accordance
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Figure 1.3: Trajectory of a hematopoietic
CD133+ cell. A hematopoietic CD133+ cell is
followed over 4h in a culture dish. Shown is the
trajectory of its geometric center of gravity. The
outline of the moving cell is shown every 17 min.
The resulting pattern of motion is strongly remi-
niscent of a Brownian particle.

to Frisch and Thoumine [91] in order to set the equilibrium distance at about 5-10% relative
deformation. Eq. (1.3) and Eq. (1.7) are used for calculation of the contact area and the
force, respectively, both as function of the center-to-center distance d;; = R; + R; — 0.

1.4 Cellular Motion

1.4.1 TIsolated cells

In absence of external signals many migratory active cells exhibit a random walk-like be-
havior similar to Brownian motion [92,93]. An example for the reminiscence of Brownian
motion is shown by the trajectory of a hematopoietic CD133+ cell in Fig. 1.3. The main
difference between Brownian motion and cell motion is that Brownian motion is a passive
process, but cells are living and actively moving objects. And they do differ slightly from
the thermally driven process of Brownian particles. As shown by Dieterich et al. [94] for
kidney cells driven by an unknown mechanism different from inertia they exhibit at short
time scales an exponent 3(¢) of the mean square displacement (MSD) (Az?) oc t*®) smaller
than in the ballistic regime of a Brownian particle. At long time scales, where the MSD
for Brownian motion is linear in time, ((¢) decreases to ~ 1.3. Considering the relatively
short distances (about their own diameter) the cells move within a couple of hours the small
deviation from Brownian motion motivates a Brownian particle modeling approach. The
Brownian motion model has also been applied to living cells, and the diffusion coefficient
used for quantifying cellular motion [92]. A very intuitive approach to Brownian motion has
been proposed by Langevin in 1908, which is presented here in some detail [95].

The Langevin equation

The Langevin equation in absence of external forces reads as follows:

d . ..
m = =y F ), (1.8)
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where m is the particle mass, & its position, - its friction coefficient and Fstoch 5 gtochastic
force of modeling the random collisions of a Brownian particle with the liquids molecules.
Using the equipartition theorem for f degrees of freedom at a thermal energy kT

<;m£‘2> = ngT (1.9)

and the postulate of uncorrelated random forces acting on the particle
<ﬁ5t°Ch(t)> =0, (1.10)

finally one obtains the solution for the mean square displacement:

(@*) =

where f is the number of degrees of freedom and kg7 the thermal energy at temperature
T. In the long time limit ¢ > ~/m the solution yields with the corresponding diffusion
coefficient D = kpT/~ and only considering translational degrees of freedom the well known
result for the mean square displacement:

in/BT[(t— %(1 _e*(’Y/m)t)]’ (1.11)

(z*) = 2dDt. (1.12)

Microorganisms and cells are subject to large friction compared to forces of inertia. As soon
as they do not actively move they stall. This is reflected in a very low Reynold’s numbers
of R ~ 107° which relates the forces of inertia to friction. A very low Reynold’s number
allows to neglect inertia and to simplify Eq. (1.8) to

NI = Ftoch(t), (1.13)

In order to perform simulations a recipe is needed to quantify the random force in the
equation of motion (1.13). For multi-cellular systems cell-cell interaction forces and contact-
dependent friction have to be included (see below).

Random forces: Langevin noise as cell activity

Numeric integration of Eq. (1.13) requires a discretization of time. To derive the consistent
stochastic force Eq. (1.13) is considered for time step ¢;_1 — t; = t;—1 + At and associated
displacement Ax;:

AT 4
L= [toch 1.14
Ty = F (1.14)

With the assumption of uncorrelated noise <131f5t°‘3hﬁ;t°(‘h> = ¢d,j, where c is a constant to
be determined, summing over n time-steps and averaging the squared displacement yields

2>. (1.15)

Requiring <Ax2(t)> = 2fDt and comparing coeflicients gives a relation for the discrete
random forces that depends on the time step At:

{(Az(nAt))?) = %nAt <‘ﬁstoch

B 2dD~?

A O (1.16)

stoch istoch
<F1- F >



1.4. CELLULAR MOTION 19

This result is used in the simulations. Since Gaussian distributed random numbers obey
(XiX;) = 026y, (1.17)

one concludes from Eq. (1.16) to use random forces in d dimensions, which are equally
distributed in direction and have a modulus drawn from a Gaussian distribution of variance

0? =2dvy*D/At (1.18)

This approach relates the three quantities cellular friction v (for a spherical cell in suspension
Stokes friction 7stokes = 677), cellular diffusion coefficient Do and the stochastic forces
Fstoch representing the active motility of the cell. If the cell is not floating in an aqueous
environment, but is attached to some substrate, cell motion always involves rupture and
formation of binding sites established by surface molecules like cadherins and integrins.
During cell motion, new attachment sites called focal adhesions are formed at the leading
front, which are used to pull the cell forward. They persist until they are released at the
back [43]. Therefore surface attachment allows the cell to move, but also to resist being
pushed. Thus, surface attachment affects both, active and passive forces. If a biological cell
is subject to a mechanical stimulus, it is neither purely pushed away nor does it move in
this direction without the stimulus. Active and passive motion are hard to separate. This
tight relation of friction and active and passive motion if reflected by the dependence of
the stochastic forces on cellular friction, and should be kept in mind when using such an
Langevin approach to cell motion.

In summary, motion of an isolated cell is modeled by solving Eq. (1.14) with random
forces obeying Eq. (1.18). The simulation parameter mainly controlling cell motility is the
cellular diffusion coefficient D.q1, but into calculation of the Langevin forces in the equation
of motion enter also the cell radius Rq;, the cellular friction coefficient v and the time step
At. Typical cellular diffusion coefficients are of the order ~ 5-0m?/s.

1.4.2 Cell populations

In populations cells interact touching, compressing, pushing, but also adhering, pulling and
dragging. Regarding the equation of motion, these interactions can be grouped into forces
caused by an interaction potential and friction. Both kinds of interaction require cells to be
in contact and enter as additional coupling terms the equation of motion Eq. (1.14), which
for cell ¢+ now reads:

(D +45™)F + > T5S (& — 4)) = FS + > Fef + Frroch, (1.19)
(i:3) (i.5)

where both sums run over all cells j in contact with cell i. F‘fs, F’;;C and E-StOCh are the inter-
action forces with the substrate and cell j and the stochastic Langevin force, respectively.
5™ is the friction coefficient of the cell in a medium and a scalar, while I'{* and I'{ are 3 x 3
matrices and separate tangential and radial components of movement by different friction
constants v and -, respectively:

Lij = (9 = ) (Fij @ 735) + 7l (1.20)

where 7;; is the center-to-center vector between cells ¢ and j. For 7, = 7 the calculation of

friction forces simplifies to a scalar multiplication 'yf. Distinction between friction of radial
and tangential motion leads to a more complex system of linear equations and to dramatic
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much slower simulation performance. Thus, this simple case was used in all presented
simulations. Using a finite time step At in the simulations this yields a system of linear
equations for the displacements AZ;:

(D8 + A8 AT; + Y DS(AT; — AZ)) = At | B+ 37 Fee  Fetoch | (1.21)

(4,4) (4,4)

1.4.3 Friction

In a cellular aggregate friction is the quantity relating force to displacement. Asin Eq. (1.18),
friction is related to active movement. Cells respond to a force, a mechanical stimulus, by
crawling away. According to the relation active motion-passive motion mentioned above, the
forces occurring in Eq. (1.21) can be interpreted as mechanical stimuli that initiate active
cellular motion. A more motile cell as a larger diffusion constant in the same medium in
which a less motile cell has a smaller diffusion constant. This again links active motion to the
physically passive friction in the model. As for the adhesion energy, the surface distribution
of adhesion molecules causing friction is assumed to be homogeneous and, thus, the friction
coefficient 7., to be proportional to the contact area A;, of a cell with another surface:

Yiz = NizAiz, (1.22)

where iz denotes the type of contact, i.e. medium, substrate or cell and 7;, the contact
type-dependent friction constant. A;, is calculated from its radius r given by Eq. (1.3).
Thus already an intrinsic dependence on the compression force is included.

1.5 Cell Proliferation

The cell cycle is the course of events that a cell passes between two successive divisions.
This process requires to duplicate the DNA, and to provide each daughter cell with a copy
of the DNA after division. The DNA is duplicated in S phase (S for synthesis) and after S
phase chromosome segregation and division occurs in M phase (M for mitosis). But the cell
needs also to double all other components before dividing again, which is done in the gap
phases, G| between M and S, and G5 between S and M. G, S and G, phase are also termed
the inter-phase [17]. Depending on external conditions like nutrient supply, cell density or
other factors, many cells do not divide for a long time. They enter a quiescent resting state
called Gg. In fact many functional differentiated cells do not proliferate any more and stay
in Go.

In the model the cell cycle is divided in inter-phase and M phase. During inter-phase, a
cell doubles is volume by stochastic increments, and during the mitotic phase, a cell divides
into two daughter cells of equal volume (Fig. 1.4). It has been shown that this growth
process results in an approximately I'-distributed growth time of the cells with a certain
population average [9]. The population average of the growth time 7 can easily be measured
in vitro and used as an input for the simulations. For example the growth time in Chapter 3
is found to be for a fast growing clone ~ 12h. The cell cycle length distribution can by
measured by cohort experiments using radioactive thymidin [96].

Normal cells stop proliferation if they grow to a confluent monolayer. This is termed
‘contact inhibition of growth’. At high cell densities proliferation stops and cells enter the
quiescent state Go. Here this effect is modeled similar to [88]. A cell undergoes growth
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Figure 1.4: Cell cycle in the model. Sub-
suming S phase and the gap phases G and Go
it is assumed that a cell doubles its volume dur-
ing the interphase. Afterward it divides into two
M-Phase daughter cells of identical volume inheriting all
properties, e.g. elasticity and differentiation.

Interphase

arrest if the sum of the deformation forces on it exceeds a critical value F:

> |Fyjl + |Fis| > F., (1.23)

<ij>

where the sum runs over all neighboring cells j. F;; and Fj; denote the contact forces exerted
on cell ¢ by a cell j and the substrate s, respectively.

1.6 Transport and Consumption

Nutrients like glucose, oxygen and signaling molecules are of essential importance for all
cellular processes. In non-vascularized cell aggregates like avascular tumor spheroids the
lack of nutrients causes a necrotic core beyond a certain tumor size [9], in mesenchymal stem
cell culture oxygen heavily influences cell fate regarding differentiation [97] (see Chapter 3).
The same accounts for the wnt signaling molecule and its inhibitor Dkk, which are studied
in the context of liver zonation in Chapter 6. All three chemical species, oxygen, wnt and
Dkk are transported by diffusion in these systems. If oxygen is available, it is consumed by
the cells at a constant rate C, which leads to a radial oxygen gradient in the cell aggregates,
which impacts cellular behavior. the oxygen gradient can be calculated by solving the
reaction-diffusion equation

Ore(Z,t) = DAc(Z,t) — Cn(Z, ), (1.24)

where ¢(Z, t) represents the oxygen concentration of the considered substance, D its diffusion
coefficient, C' the consumption rate per cell and n(Z,t) the cell density.

Another application of a reaction-diffusion equation, that involves more complicated
processed is given in Chapter 6. The morphogenes wnt and Dkk are not consumed, but are
produced by the cells, bind and unbind to surface receptors and degraded.
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Migration and Related Phenomena

2.1 Cell Motion

Cellular motion is modeled according to Langevin’s approach to Brownian particles. This
fundamentally implies that the cells migrate by anchoring in a substrate (Petri dish or
ECM). In the following section the results for an isolated cell driven by Langevin forces
and an alternative approach are compared. The alternative approach generates forces by a
representation of cellular filopodia. Both approaches are applied within cell populations. It
turns out that two qualitatively different interpretations in multicellular systems are possible.

2.1.1 Single cell motion
Langevin equation

Simulations of the motion of an isolated cell in two and three dimensions were performed
using Eq. (1.18) and the cell’s position was recorded in each time step. In the simulations the
cell performs a perfect random walk as shown exemplary by a trajectory in two dimensions
over ~ 1.4h in Fig. 2.1a. To compare the results to theory, the mean square displacement
was calculated for the total displacement and additionally for all three coordinates z, y and
z in a sliding window approach from the time series of positions. Fitting the theoretical
mean square displacements <Ar2> = 2dDt of Brownian motion to the resulting data repro-
duced the diffusion constant D in all considered cases and served as a self-consistency check
(Fig. 2.1b-d). A vanishing mean displacement (Ar) = 0 holds for all directions as implicated
by the assumption of uncorrelated noise. The distribution of the stochastic forces represent-
ing the noise, which were generated in the 2D simulation is shown below in Fig. 2.4a. The
small cellular diffusivity D = 1 x 1071%m? /s was chosen in the same order of magnitude
as found for aggregates of embryonic cells by Mombach et al. [92]. For simulations on a
substrate three-dimensional random forces were generated according to Eq. (1.18) and sub-
strate adhesion € was chosen to avoid loss of contact. Due to restriction of motion to the
plane of substrate the results for the simulation reproduce the 2D scenario. This scenario
demonstrates, that although the friction coefficients and therefore the noise amplitudes vary
with the contact area to the plane, the relation friction-forces of Eq. (1.18) yields consistent
results with the theory of Brownian motion.

23
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Figure 2.1: Characteristics of simulated Single Cell Motion. a) In the model a single cell
performs a perfect random walk as shown exemplary by the trajectory in two dimensions covering
~ 1.4h (cellular diffusion coefficient D = 1 x 107'®m?/s, cell radius R = 5um, medium viscosity
n = 10°Ns/m?, time step At = 20s). b)-d): The resulting mean (square) displacements are in good
agreement with (Ar?) = 2dDt as shown by linear fits for simulations in b) 2D, ¢) 3D, d) 3D, but on
a flat substrate. The diffusion coefficient is reproduced and displacements in the spatial directions
are equal as expected for uncorrelated motion, if no constraint, e.g. a substrate is present. The
simulation on a substrate shows that consistent results are also produced for varying random forces
due to changing substrate friction.

Filopodia

Attached to a substrate surfaces, migratory cells move by protrusions called lamelli- and
filopodia. They develop focal adhesion sites in the protrusions, pull the cell body over them
and release the focal adhesion sites at the rear. In order to study, if the direct implemen-
tation of the migration mechanism instead of phenomenologically mimicking active random
movement by a Langevin force, a representation of filopodia was introduced into the model.
We assume in our model that each cell has a fixed number of filopodia Ng), represented by
random radial vectors emerging from the cells surface similar to Fig. 2.2. Their length [ is
Gaussian distributed around an mean length [y with a variance o;.

As filopodia need to be attached on the substrate filopodia are restricted to 2D and their
direction is uniformly distributed in [0, 27). Hence the probability distribution for angle and
length are

p(¢) = o (2.1)

p(l) = —=se 0 . (2.2)
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Figure 2.2: Filopodia of Macrophages. From WikiCommons.

For simplicity adhesion molecules are assumed to be uniformly distributed along the filopo-
dia. The force Fy, assigned to a filopodium, which is attached to the substrate, is therefore
proportional to its length lg),:

Fﬁlo = ClﬁIm (23)

where the constant of proportionality c is related to the average width, adhesion molecule
density and the force of rupture of a single bond. Filopodia are sensitive extension of the
cell and gather information on the environment. Because no relevant information can be
obtained by a filopodium attached to the substrate, the filopodia are assumed to be newly
formed in each simulation step, seeking for information. Therefore, the persistence of the
filopodia is exactly one time step. The force entering into the equation of motion Eq. (1.14)
instead of the Langevin force is the sum of forces of all individual filopodia, because here no
filopodium is preferred by an environmental clue e.g. contact to another cell.

8
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7 fit <?Z>_ ﬁ@@
A
il wm . .
v o5 & Figure 2.3: Agreement of Langevin and
= ﬁ@@p the alternative filopodia approach The agree-
A 4 W@@M’ ment of both representations of active cell motion
g 3 is shown by comparison of the mean square dis-
2 e placements. In the filopodia simulation their num-
1 o ber is Ngi, = 6. Although the forces are generated
0 differently, both models are equivalent.
0 1 2 3 4 5 6
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Figure 2.4: Histograms of forces for
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The mean square displacement of a simulation of a single cell using filopodia is compared
to the Langevin approach and a good agreement is found (Fig. 2.3). For further comparison
the distribution of forces is shown in Fig. 2.4 for (a) modulus of Langevin forces, (b) the
z-component of the total filopodia force F,, and (c) its modulus for a varying number of
filopodia (6, 8, 12, 16, 20, 30, 40 and 50). In contrast to the modulus with a maximum
around the force F'(ly) associated with the mean length [y, each component, here F, , is
Gaussian distributed around zero like for the Langevin forces, causing a Brownian trajectory
as in the Langevin approach. This means, the Langevin approach can be used equivalently
in Eq. (1.14) to a more complex generation of the active force. The final force resulting from
the joint action of all filopodia forces can be changed by the parameter for each individual
filopodia, but also by Ngj, as shown in Fig. 2.5. The total force scales with /Ng), like the
mean end-to-end vector of a ideal chain known from polymer physics although the step length
is Gaussian distributed. The scaling of the width of the distributions of the z-component
on the other hand simply follows the Central Limit Theorem [98].

2.1.2 Cell populations
Langevin equation

Modeling cell populations is the next step towards modeling tissue. Therefore simulations
of various densities of non-adherent cells were performed in two dimensions on a fixed do-
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main with periodic boundary conditions. Using the random forces as given by Eq. (1.14)
and calculating the mean square displacement surprisingly reveals two effects as shown in
Fig. 2.6a. First, the cells turn out to become more motile with increasing density. Second,
although more motile at high densities, they slow down on longer distances. This observa-
tion contradicts the intuitive expectation, that cells slow down in higher cell densities like
humans tend to move slower than normal in a crowd. To reduce the cells active forces at
high friction Eq. (1.18) can be interpreted slightly different as found in [8]:

2dyvyo D 2dFr~y
(FiFy) = o0 = AtT 0ij- (2.4)

At

Fp = ~yD is an energy equivalent subsuming the cellular diffusion coefficient and the cell’s
pure Stokes friction. Here friction, which increase with cell density, now enters linearly, not
quadratic. The resulting mean square displacements are shown in Fig. 2.6. Now the cells
slow down at higher cell densities, but the slope of mean square displacement still decreases
for long distances.

In both cases the cells move faster on small distances than on longer distances for high
cell densities. This effect becomes more pronounced with increasing cell density and, thus,
with decreasing mean free path length. To obtain a measure for the mean free path length

50

—— 10cells
30 cells

16

—— 10cells
30 cells

40 —=— 60 cells
—=— 100 cells

—=— 60 cells
—=— 100 cells

<AP> | um2

Figure 2.6: Mean square displacements of 2d simulations with Langevin forces for
varying cell densities without cellular adhesion. The MSD for the two interpretations of
the random forces exhibit different behavior. a) Calculation according Eq. (1.18) oc ~? results
in motility increasing with population density, while b) calculation according according Eq. (2.4)

o v yield the contrary. In both cases the slope mean square displacements decreases for higher
displacements.
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Figure 2.7: Average neighbor distance and onset of linear regime of MSD. a) The
evolution of the average neighbor distance (center-to-center) is calculated by a Delauny triangulation
for 80 cells without adhesion on a 100pum x 100pum domain as an estimate for the mean free path
length. After equilibration a mean distance of ~ 14.4um is found. b) The increments of the mean
square displacement Aa; (Ar?) = (Ar®) (nAt) — (Ar?) ([n + 1JAt) indicate the onset of linear
behavior. The noisy, original data is smoothed twice in order to allow an estimate of At ~ 5h for
the the onset of normal diffusion behavior proportional to .

or average neighbor distance, each conformation was Delaunay triangulated based on the
cell centers and the average Delaunay bond length was computed (see Fig. 2.7a). When this
mean pathway derived from the Delauny triangulation is compared with the onset of the
linear behavior of the mean square displacement (see Table 2.1) they roughly coincide. This
allows the conclusion, that cell-cell interaction limit cellular motility at higher densities.
Simulations with various fixed time steps showed an influence on mean square displacement,
but increase of motility persisted independent of the simulation time step (not shown).

Filopodia
Random forces: filopodia

In multicellular aggregates filopodia are used as sensory extensions of the cell. Because they
are not allowed to penetrate other cells, the vectors representing them are cut off at the point
of intersection with the surface of other cells, and the filopodia are regarded to be attached
to the surface. In order to model filopodia as information seeking elements, the strength
of interaction is assumed to depend only on the cell type. Hence, filopodia attached to the
substrate are assigned a force proportional to its length, while filopodia of cell i attached to
cell j are assigned a force depending on cell types. The force on cell i is assumed to act in

Nr. of cells 1 10 30 60 80 100
I-j/,um - 325 229 15.0 144 127

V(A2 Jpm — — - 6.9 50 44

Table 2.1: Average neighbor distance and onset of linear regime of MSD for varying
cell numbers. The average neighbor distance gives an estimate of the mean free path length
I =d;; — 2R (R = 10pm) and is calculated by a Delauny triangulation. It coincides roughly with
the root of the mean square displacement /(Ar2). at the onset of its linear behavior. ‘-’ denotes
no clear estimate.
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the direction of the center-to-center vector and is therefore given by:
Fij = Cijniij, (2.5)

where C; is a constant determined by the cell types and 7i;; the center-to-center vector
pointing from cell j to cell . Note, that according to actio=reactio an anti-parallel force
of the same magnitude is exerted on the other cell. The constant C;; may be viewed as a
special case of differential adhesion, such that filopodia connect cells proportional to their
surface density of adhesion molecules.

In biological cells an adhesion site is developed over time, if it is attached to the right
structure [41,99]. Therefore, the filopodia attached to other cells are assumed to persist
until one of the following occurs:

1. a filopodium contact is replaced by Hertz contact.
2. a filopodium is elongated past a maximum length I,,.
3. the strain of a filopodium e = Al/l in one time step exceeds a threshold epay.

Note, that if more than one filopodium connects cell 7 and a cell j their forces sum up.

Because in the model filopodia are not allowed to penetrate other cells, the effect of
filopodia is very restricted in dense cell aggregates. In fact, the effect of filopodia is limited
to the cells at the periphery of a colony. Their filopodia are not cut off, but generate forces
attached to the surface, which are the only active forces entering into the equation of motion.
Thus, no significant rearrangement is seen in this case.

An interesting behavior is found for the case of no adhesion. If filopodia do not to adhere
to other cells, but prefer only to adhere to the substrate, an equidistant patterning of cells
is observed as shown for a cell density of 60cells/10*um? in Fig. 2.8.

For cells with no difference in adhesion this representation of filopodia in dense aggregates
cannot generate substantial forces. They are cut at the surface of direct neighbors and do
not reach beyond. Cells in the interior stick almost motionless together while forces are only
generated by filopodia of cells at the boundary of the colony, which pull these cells away
from the colony. Whether the cells leave the colony depends on the adhesive forces.

2.1.3 Discussion

Applying the model presented in Chapter 1 to a single isolated cell generates Brownian
behavior, mimicking the experimentally observed behavior [92,93]. For a single, isolated cell
a simple representation of filopodia yields equivalent behavior to the Langevin approach,
although the distributions of the moduli of the generated forces differ qualitatively. While
the Langevin approach is Gaussian distributed for both, total force and spatial components,
summing the forces over all filopodia yields a distribution of the total force similar to an
Erlangen distribution. Nevertheless, due to the Central Limit Theorem each component of
the total force is Gaussian distributed like the components of the Langevin force. Therefore
both approaches give equivalent results for isolated cells in each spatial direction. Mean and
width of the distributions depend on the number of filopodia and the constant of propor-
tionality relating filopodia and force.

Contrary to intuition in cell populations motility increases with cell density if Langevin
forces are calculated using Eq. (1.18), where the cell’s friction coefficient v enters quadratic
in the calculation of the active forces. Friction and repulsive forces are related by the
Hertz contact areas. Hence, with increasing friction both, repulsive and active forces grow,
which therefore leads on average to bigger displacements. Comparison of the mean free
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Figure 2.8: Equidistant patterning by filopodia action. Initial and final configuration of
a simulation using 10 filopodia, that do not adhere to other cells. Because the filopodia generate
forces only attached to the substrate, cells at the rim start to spread, the next layer follows and
finally an equidistant distribution establishes.

path length and the distance associated with the onset of the linear regime of the mean
square displacement confirms this conjecture. However, Christley et al. [100] report that
in mesenchymal condensation islands, where cell density is higher, cells move slightly faster
than outside, providing an example for such behavior in a system, which is of interest for
medical application.

For systems of cells slowing down with density an appropriate model for active non-
directed motion is given by Eq. (2.4), where an energy equivalent Fr = oD is defined and
friction ~ only enters linear. This results in decreasing motility with increasing cell density
as seen for most in vitro cultures of one cell type.

In cell populations simulated filopodia are cut off at the intersection point with the
surface of a neighboring cells. They adhere to either the substrate plane or, if both cells
adhere, to a neighboring cell’s surface. If the colonies are dense, in the model the filopodia
are always cut down and do not generate any force. This could be circumvented by probing
the cells’ environment more thoroughly and detect gaps using chains or semi-flexible rods.
But the computation methods necessary for such an approach would be far more complicated
and restrict the application of this model to small cell numbers.

Interestingly, in regeneration phenomena in the liver directed movement and cell divi-
sion has been suggested to play a major role in an efficient regeneration [101]. Langevin
forces support pressure relaxation inside a cell colony in an undirected way, while such a
representation of filopodia could explain orientated motion into non-occupied spaces. As
a consequence a faster growth dynamics can be expected. By another choice of filopodia
parameter even the two scenarios shown in Fig. 2.6 could be explained. The cells should
move faster if short filopodia give rise to greater forces and slow down with density if the
filopodia exert smaller forces.

However, for the parameter choices in this thesis the filopodia approach is only suited
for modeling two completely contrary scenarios: first a equidistant separation of single cells
like found for ‘proneural’ groups of competent epithelial cells in Drosopohila, which arrange
using their filopodia for lateral inhibition [102]. The second scenario is condensation of cells
without further motion in the interior.
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Figure 2.9: Neighbor numbers in a typical sorting process. The number of neighbor of
equal cell type are used as a measure for the degree of sorting. Shown is this values for interior
cells (green), all cells (red), and exterior cells (black) using a) the Hertz model and b) extended
long-range interaction. Initial configuration of the 216 cell is a 3D checker board pattern. a) The
cells does not sort completely within 14h for the short ranged Hertz interaction. b) For long-range
interaction maximum sorting is reached within minutes.

Since in the following applications cellular aggregates or 2D colonies are considered, this
representation of filopodia will not be used for further simulations, but the results for single
cell motion support the use of Langevin forces as active cellular forces.

2.2 Cell Sorting

2.2.1 Sorting and differential adhesion

One of the main questions in developmental biology is how complex patterns emerge in mul-
ticellular organisms. Orchestrated cell motion is fundamental for achieving such processes.
A simple and well studied case of a simple rearrangement process is cell sorting. To em-
phasize the importance of sorting, exceptional examples are the simple metazoa Trichoplaz
adhaerens and Hydra. After dissociation and re-aggregation of the cells both species are able
to regenerate a vital organism [103,104]. An explanation for cell sorting, patterning and
other self-assembly processes was early given by the differential adhesion hypothesis (DAH),
which states that sorting is driven by different adhesion of the involved cell types [105]. Re-
cently it has been confirmed by transfected L cells expressing adhesion molecules in measured
amount [37].

Here the DAH is incorporated into the model as two and three cell types differing in
surface densities and type of adhesion molecules. According to the DAH the different ad-
hesion strength between the cell types is expected to result in cell sorting. Simulations in
two and three dimensions have been performed using initial configurations of lamellar and
checkerboard patterns. As a measure of the sorting process the number of contacts of each
type to the same type averaged over the population have been recorded.

Sorting is not accomplished in two and three dimensions and reasonable timescales for
Hertz interaction with differential adhesion. Together with Langevin dynamics cells tend
to stay in their local minima unless their Langevin forces are increased. Increasing these
fluctuations causes the cells to leave the aggregate. Of course, leaving the aggregate could
be impeded by further constraints added to the model of adhesion and migration. However,
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Figure 2.10: Cell sorting of 3x200 cells in 2D. Initial (a) and final configuration after 18d.
Despite the small cell number (200 + 200 + 200 cells) and long-range attraction (deysosr = 20um and
oLr = 10um), cell sorting is not completed.Adhesion strengths are c11 = 15, c12 = 10, c13 = 1,
C22 — 7, C23 = 2.5 and C33 = 1.5.

these findings do not support the DAH for the model used in this thesis, which is based on
spherical cells and fluctuations according to a Langevin approach.

2.2.2 Long-range attraction

Cellular protrusions like cilia, lamelli- and filopodia allow cells to explore their environment
and/or to exert forces on their environment via adhesion sites. The filopodia introduced
in Sec. 1.4 are an example for such extensions. They explore the cell’s environment only
by random sampling. Increasing the number or frequency of these samples the cell gathers
more information until it virtually knows all about its environment with in the range of
its extensions. This motivates a deterministic extension of the filopodia to a long-range
interaction potential up to a cut-off length determined by the maximal length of filopodia.
Following Palsson [75] this is done by a smooth extension of the modified Hertz potential
Eq. (1.7), resulting in an interaction force given by:

1—12 1-p2\ 1 RiR; RiR;
%(Tf + #)  mis (Bi+ Ry — dij)*?—meij o8-
F = o diy SR+ R (2.6)

R;R; —(Ri+R;—di;)?
—moVsp RH—I%]' exp( ( QUéR i) ) : R+ Rj < dij < deytofr

where the decay of the long-range potential outside the contact distance is parametrized
by the width of the Gaussian opg and the range of interaction by the cutoff distance of
interaction deytofr-

Using the Eq. (2.6) the sorting is improved substantially. Typical evolution of neighbor
numbers are shown for Hertz and the extended long-range interaction in Fig. 2.9. For
small aggregates it completes quickly in two and three dimensions. But for larger cell
aggregates, still much smaller than biological systems (= 30.000 cells in [106]), sorting
does not complete on reasonable timescales. In Fig. 2.10 initial and final configuration of
a sorting simulation in two dimensions is shown. After a fast initial reorganization (see
Fig. 2.9) further sorting happens increasingly slow. After 18d sorting of the cells has not



2.3. COMPRESSION AND RELAXATION 33

R Mo - - 1o -
F,— [ Kk
D2 . S1 1
| | ———llk
Iy /Y
H/2 DU SRR SIS
R H
—» R1 Fp o 1 Hy Fa ky _Fp
Ky -Kp v > . W -
Ry
| i | u
a b L*& [T

Figure 2.11: Scheme of compressed cell aggregate and generalized Kelvin-body
model. a) Shown are the geometrical quantities of a compressed cell aggregate that enter
the Laplace equation (2.7) used for calculation of the surface tension. b) The generalized
Kelvin-body model for the dynamic response of the cell aggregates is composed of two
parallel Maxwell models and a surface tension element.

completed. For the discussion the see the discussion of Sec. 2.3, because limitations of the
model regarding cell sorting are related to the processes relevant to compression.

2.3 Compression and relaxation

2.3.1 Experiment and theoretical model

Phase ordering in liquids is caused by co- and adherence. The comparison of liquids and
cells and the analogy of the processes and phenomena has generated the DAH mentioned
above [106]. This analogy to liquids also includes the concept of surface tension [107,108].
It has been reported that aggregates of embryonic tissue cells relax after a deformation and
round up again, which is reminiscent of liquids. The main difference exists in two separated
time scales depending on duration of compression. For short compression times a cellular
aggregate shows a very elastic response. After long lasting compression, if the rounding
up completes, it does only after several hours or days [107]. However, these properties do
not represent global features of cells, but are restricted to certain cell types like Hydra or
embryonic cells. Nevertheless, the similarity to continuum mechanics motivated application
of its concepts for studying cellular aggregates of living embryonic cells and their viscoelas-
tic properties. While the relaxation process of the compression force allows estimation of
the viscoelastic constants under the assumption of a particular model, an approach to the
hypothesized surface tension of certain cell aggregates is given by its geometry. Analysis of
the images of compressed and equilibrated aggregates yields its surface tension according to

the Laplace equation:
FPe u 1 1
Ap = —9u _ 4+ — 2.7
P R U(RIJ’RQ)’ 27)

where the radii Ry, Ry and Rz are given by the evaluation of the micrographs according
Fig. 2.11a. This leads to surface tensions o for the germ cell lines covering a range of
1...20 x 1073 N/m [107,109].



34 CHAPTER 2. MIGRATION AND RELATED PHENOMENA

1e-06
© Sim.Data
Double Exp
Single Exp ——
z
S 1e-07 \
('
+ EE:Q‘W‘,
1e-08 + +
100 200 300 400 500
a b Simulation time / min

Figure 2.12: Equilibrium shape and fit of compression force. a) Equilibrium shape
after compression of the cell aggregate in the reference simulation. b) Force of the same
simulation over simulation time and single and double exponential fit of Eq. (2.9). The
much better double exponential decay fit gives relaxation times 71 ~ 13min and 75 ~ 72min.

The generalized Kelvin-body model used for modeling of the viscoelastic behavior is seen
in Fig. 2.11b. The dynamics follows the differential equation

M1 M2 ; M2 =
F L2 F Fp = 2.
P (kl * kz) P kiky ot (28)

where Fp is the measured compressing force, p; and k; the friction and spring constants, 7;
the relaxation times, o the surface tension and ug a factor depending on the geometry [108].
The solution of this model approach is given by

Fp(t) = (04 kie /™ + kye /™). (2.9)

To obtain the relaxation times a fit of the measured force according Eq. (2.9) is done.

2.3.2 Simulations

In all simulations a pellet of 2000 cells is used. The pellet is compressed symmetrically
by two plates until the plates reach a defined stop positions at a distance H. During the
simulation the forces on the plates, the Ry, R3 and the force Fp are recorded. The force
Fp is measured as the sum of cell-plane interaction forces calculated according Eq. (1.7).
R, is measured as maximum extensions in the zy-plane of all cells, R3 for the cells in plane
contact. Rs is calculated from the cell positions by geometrical considerations. The surface
tension o is finally computed using Eq. (2.7).

Reference simulation A first simulation was performed using the parameter set given in
table Table 2.2. After compression the aggregate is almost cylindrical (see Fig. 2.12), which
makes calculation of Ry and therefore o less reliable. The relaxation of the force Fp(t) shows
the same qualitative behavior as in the experiments. The double exponential Eq. (2.9) fits
the data very well with a correlation coefficient of R = 0.9954 as shown in Fig. 2.12. The
resulting relaxation times turned out to be 7, &~ 13min and 75 &~ 72min, and therefore
very large in comparison to the experimentally determined values for embryonic cells, which
are in the range of seconds: 71 = 1.9...2.7s and 75 = 20...45s [108]. The fitting result
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showed a strong interdependence of the fitting parameters and a dominant contribution of
one exponential suggesting that one time scale might be dispensable. Interestingly, a fit of a
single exponential decay resulted in a good correlation coefficient R = 0.975 and a relaxation
time 7 = 36 min between the former two, but showed a qualitatively different behavior as
seen in Fig. 2.12. Thus, the second time scale is definitely necessary for describing the
measured phenomena.

Sensitivity analysis To explore the parameter space systematically for a faster relaxation
process, a sensitivity analysis was performed. Different parameters were found to influence
the main quantities of interest: the force on the compressing plates Fp, the surface tension
o and the relaxation times ;5. Increasing cell-cell adhesion € resulted in higher forces Fp
(Fig. 2.13). Extending the range of cellular interaction improved rounding of the aggregates
and resulted in higher surface tension. Decreasing medium viscosity reduced relaxation
times, similar to reduction of cell-cell friction. Plane velocity turned out to be a critical pa-
rameter, because interaction restricted to next neighbors in conjunction with a slow growing

Table 2.2: Parameter of the reference simulation.
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repulsion force F' df’j/ % and high friction leads to slow relaxation and therefore to huge
deformations and, finally, cell-cell penetrations.

Importantly, the equilibrium force and shape depend on plane velocity. After realizing
such differences to the behavior of liquids, it is not surprising that other analogies to liquids
failed. In this line the surface tensions turns out not to be an intrinsic property in the model
and to change with the final distance between the compressing plates H. In no simulation
of the sensitivity analysis the calculated relaxation times got smaller than ~ 1min. The
aggregate expanded always in the layer in contact to the moving compression plate. The
rounding up after compression was not reproduced, neither directly after compression nor
after force relaxation.

2.4 Discussion: Limitations of Spherical Models and Pos-
sible Applications

In Chapter 1 a cell model has been introduced based on very fundamental properties of
cells. Motivated by the observation of the spherical shape, which cells adopt in suspension,
they are modeled as adhesive and elastic spherical agents that follow a Langevin equation
of motion. Adhesion and interaction are included by a modified Hertz model. The cell cycle
is modeled as a process divided in two phases of growth and division.

In Sec. 2.1 simulations have been analyzed regarding the characteristics of simulated cell
motion of single cells and in cell populations. For cell motion two approaches were used,
Langevin forces or filopodia, and both resulted in Brownian behavior. The equivalence of
both approaches motivates the use of Langevin in the rest of the thesis.

In cell populations two scenarios have been derived for the Langevin approach depending
on the interpretation of the stochastic force: average cell motility increases or decreases
with cell density. Both of them may be used in adequate context, for example mesenchymal
condensation, where cells migrate faster in the condensation centers, or confluent cultures,
where cells slow down. Since most cells are expected to slow down in denser colonies, in the
following Eq. (2.4) will be used. Differences in the interpretation of the stochastic force can
be motivated by the observation,that the Langevin-approach for cells bases on a heuristic
analogy to Brownian particles. However, different from Brownian particles the stochastic
term is - for active cell migration - not a consequence of collisions with other small particles
(fluid particles in the case of Brownian particles) so the fluctuation-dissipation theorem
that links the autocorrelation amplitude of the fluctuations with the dissipation cannot be
expected to hold for cells. Indeed, the analogy drawn by Beysens et al. [106] is purely formal
but does not base on fundamental principles. While in fluids the proportionality constant
between fluctuation and the inverse of dissipation is the temperature that can be measured,
the temperature-equivalent in cells is a quantity that can be controlled by the cell itself and
hence is a parameter, that depends on the cell type and its regulatory state. This justifies
different choices for the amplitude of the Langevin force, that mimics the active random cell
movement (the cell micro-motility).

Considering cell sorting and compression of cellular aggregates, it is clear that within
the model the driving forces are energy minimization and fluctuations. Using the model
presented in Chapter 1 for cell sorting revealed the complementarity of exploring the con-
figuration space by fluctuations and instability of the aggregate. For small fluctuations,
sorting was slow and did not complete for small aggregates, because the spherical cells stay
in local minima. Increasing the fluctuations, i.e. random forces without directional bias or
additional restrictions, to enable cells to leave such local minima results in cells detaching
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from the cellular aggregate. This happens, because leaving a local minimum is always based
on escape from the Hertz potential of the neighboring cells. For sorting this has to occur
inside a dense aggregate and elastic interaction with the neighbors in the direction of motion
requires an active force much stronger than necessary for breaking a cell-cell contact on the
surface. On the surface this force disconnects the cell from the colony. This effect could
be controlled by adding the constraint, that forces are always orientated toward other cells
which is not considered in this thesis.

Allowing the cell to expand its information horizon by introducing an interaction poten-
tial similar to Palsson [75] immediately speeds up the sorting for small cell numbers. But
the sorting does not complete at higher cell number which are still below cell numbers of
~ 30.000 in real pellets, which are typically 200pum in diameter. In the model by Palsson
cells are represented as deformable ellipsoids with an interaction radius up to beyond two
cell diameters for sorting and a random force [75]. This long radius enables sorting of ag-
gregates up to 1350 cells, which still depends on the random force. It therefore must be
assumed, that cell sorting using the model of Palsson fails at higher cell numbers, too. A
rigorous analysis of the correlation of interaction range and aggregate size would quantify
the expected limitations.

The ‘Cellular Potts model’ by Graner and Glazier [110] could successfully mimic the
cellular rearrangement during sorting in aggregates up to 2 x 10% cells [111]. Each cell
is represented as an individual state, and the modifications include a target volume and
surface energy for each cell. Cells move in this model in an ameboid fashion through the
aggregate and complete sorting in finite time. However, this model has a number of other
short-comings: the time scales can only hardly be matched with true time-scales; one reason
for this is that it uses the Metropolis algorithm which needs the definition of an effective
temperature. This temperature parameter has to be chosen small enough so that single cells
do not decompose into individual fragments, and large enough so that no frozen aggregates
emerge. Interestingly, Jiang et al. [112] also state a possible cooperation of the differential
adhesion hypothesis and chemotaxis in the formation of fruiting bodies of Dictyostelium.
This confirms the conjecture that the DAH alone may not explain biological reorganization
processes like sorting of large cell numbers, but that these processes require information
exchange over longer distances than covered by the interaction potential. The importance
of adhesion molecules shown by Foty et al. [37] for sorting may originate from the tri-
functionality of cadherins [89], but seems likely not to be the only key mechanism for cell
sorting. First attempts have shown, that chemical signaling and directed motion which is
driven by larger forces to squeeze the cells along its way into favorable conformations enable
the model of this thesis to complete sorting, but it has not been studied thoroughly.

Simulations of the compression of spherical aggregates reproduced qualitatively the re-
laxation of the compression force observed in the experiments. A double exponential decay
gave a good fit and indicated two separate time scales for relaxation. However, neither the
relaxation times nor the equilibrium shape in the biological experiments could be repro-
duced. Because the equilibrium configurations showed in general clear differences to the
biological ones, derivation of the surface tension according to Eq. (2.7) did not yield the
same surface tensions as found by Forgacs et al. [108]. This model considers the cells as
a homogeneous material described by the generalized Kelvin model discussed above. It is
not guaranteed that the relaxation behavior is not simply captured by a fit to its solution
involving many parameter as are the results of the simulations (R = 0.9954).

For relaxation of the aggregate after compression two phases were clearly distinguished:
viscoelastic response of single cells and rearrangement of cells. Compressed for only a short
time the cells flatten inside the pellet, as was shown by micrographs, and show an sort
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of elastic response after release within minutes [108]. An approach to model both, the
equilibrium shape and the elastic response, could be modeled by introducing fixed cell-cell
junctions and conservation of the cell volume into the model, which was out of the scope of
this thesis.

After a longer time of compression, the cells start to rearrange and to adopt a regular
shape again and the rounding after release takes hours to days like rounding after centrifu-
gation (e.g. [113]). To describe this second relaxation regime the fixed junction would be
release at a certain rate, to allow the cells to rearrange. However, for the rounding accounts
the same discussion as for sorting. Thus, the model presented in Chapter 1 is limited in the
sense that the model does not account neither for the conservation of the cell volume nor
for the reorganization processes of the cytoskeleton and the adhesion complexes.

The approximation of adhesion energy and friction proportional to the contact area is
useful only for slow detachment and rearrangement. The same accounts for the elastic
approximation of the cytoskeleton by the Hertz potential which does not capture greater
viscoelastic deformations, but yields good results for moderate ones. A non-spherical model
for deformation, a viscoelastic interaction potential and slowly relaxing bonds could improve
the agreement of the modeling results and the findings by Forgacs et al. [108]. The rounding
up after compression would need the same directed motion as mentioned above that could
be introduced by chemical signaling.

However, it has been shown, that growth processes in two and three dimensions, which do
not involve reorganization could be well explained by this type of model (e.g. [8,9,88]). An
advantage of the spatial individual cell-based model is, as mentioned in the introduction,
the easy integration of individual spatial information. Examples are the availability of
nutrients [9] and information on cell-contacts [38,114]. Finally, the general advantage of
individual cell-based models is their ability to comprise any individual cellular information,
e.g. stemness or differentiation [115]. These restrictions and advantages are the basis for
choosing the applications presented in the following chapters.



3

Modeling Oxygen-Dependent
Expansion and Differentiation of
Mesenchymal Stem Cells

3.1 Introduction

After the discussion of the limitations of the individual-based model at the end of the
previous chapter, here it will be applied to oxygen-dependent phenomena of colony growth
and subsequent differentiation of mesenchymal stem cells (MSC). In contrast to the last
chapter, where the cells were modeled as physical agents in space using constant parameters
without individuality (except deviations in adhesion for sorting), here each agent will be
equipped with a cell parameter summarizing the cellular differentiation state, which depends
on the environment.

The experimental results presented here have been produced by Matthias Zscharnack,
Center for Biotechnology and Biomedicine, University of Leipzig. Materials and methods of
the experimental procedures are given in the Appendix. Experimental results and theoreti-
cal modeling are closely related and will be presented in parallel. The computer simulations
closely follow the experimental protocols, such that the simulations may be viewed as ‘ex-
periments in silico’ (on the computer) and their results can directly be compared to those
found in the experiments. The predictions derived from the simulations predict optimal
conditions for chondrogenic differentiation currently used for optimization of a bioreactor.
Thus, the results represent one iteration of hypothesis-driven research as motivated in the
introduction.

Noise in cell regulation. Many molecules involved in regulatory processes exist at very
low intracellular concentrations, which results in large spatial variations and random molec-
ular processes [116,117]. Because the cells need to control the effect of this noise on intracel-
lular processes like transcription, they employ stabilizing principles like genetic redundancy

39
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and feedback [117]. On the other hand noise also offers the advantage of variability even
in monoclonal populations and allows for rapid adaptation [118]. Although there is a high
variability on cell level, on the level of the whole population a stable average is created based
on a stable population profile or structure [119]. For hematopoietic progenitor cells the sta-
bility of this population structure regarding the expression of the stem cell marker Sca-1
has been shown experimentally. After separating subpopulations defined by a low, medium
or high expression level of Sca-1, the expression profiles in the subpopulations regenerated
the original profile of the original population within a couple of days [120]. In the complex
organization of metazoan development and homeostasis such processes control and activate
differentiation [121]. Embryonic stem cells, for example, have been shown to control the
noise at genes promoting differentiation to keep their pluripotency [122].

Mesenchymal stem cells (MSCs) are multi-potent progenitor cells capable of differen-
tiating into bone-marrow stromal cells, osteoblasts, chondrocytes, myocytes, and adipocytes.
In some tissue types, such as bone-marrow stroma, fat, skeletal muscle, and synovium, MSCs
persist in adult life without loosing their capacity to proliferate and differentiate [123]. Under
appropriate conditions they can multiply and transform into specialized cell types. These
processes were found to be at least partially reversible, demonstrating a limited but sig-
nificant plasticity of MSCs [124]. During the last years, the application of MSCs in tissue
engineering became a major subject of regenerative medicine; in particular concerning car-
tilage and bone regeneration [125]. Maintenance of MSCs as well as their differentiation
relies on specific environmental cues like growth factor supply and matrix elasticity [48,126].
Interestingly, there is growing evidence that stem cells are adapted to limiting metabolic
conditions [127]. In agreement with this observation, low oxygen supply has been suggested
to preserve early progenitor states in vitro [128]. Accordingly, MSC-derived cell populations
show higher proliferation activity when cultivated under low oxygen tension (2-5% pO,)
compared to high oxygen tension (20-21% pO,) (human MSCs [128], mouse MSCs [129],
rat MSCs [130]). Additionally, cell populations expanded at low oxygen tension show a
faster and more directed differentiation into osteoblasts, adipocytes (human MSCs [131],
rat MSCs [130]) as well as chondrocytes (human MSCs [132,133]). However, studies on the
direct impact of the oxygen tension on differentiation in 2D and 3D cultivations resulted
in controversial findings. Malladi et al. [134] found for adipose-derived mouse MSCs that
osteogenesis in monolayers and chondrogenesis in pellet culture is significantly impaired at
2% pO, compared to 21% pO,. According to results by D’Ippolito et al. [128] this applies
also for osteogenesis of human bone marrow-derived MSCs at 3% pO,. In contrast, Lennon
et al. [130] found no significant differences in osteogenesis between rat bone-marrow derived
MSCs cultivated at 5% and 20% pO,, respectively. Moreover, human adipose-derived MSCs
in alginate bead culture showed an increased production of chondrogenic matrix molecules
at 5% pO, compared to 20% pO, [135].

State of the art. A large number of theoretical approaches to tissue engineering aim at
quantitatively describing culture conditions as the oxygen distribution, and their impact on
processes like matrix formation ([136] and references therein). While many innovative tissue
engineering strategies rely on stem cell expansion and differentiation, theoretical models of
these systems are rather rare [137,138]. In order to provide reliable predictions about the
dynamics of such systems theoretical approaches are required that account for both: i) the
composition and structure of the individual cell environment and ii) particular stem cell
properties like lineage plasticity and it seems, that currently such models are not available.
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Modeling approach. Motivated by the recent findings on the importance of noise in
cellular processes as genetic regulation and differentiation a noise-based model for the pop-
ulation dynamics of promyelocytic progenitor cells was presented [139]. Here this model of
noise-driven differentiation is integrated into the spatial model, where it accounts also for
the local environment of individual cells. Following the stem cell concepts of Loeffler and
Roeder [140,141] it is a pedigree-free approach. Within the model two properties, the prolif-
eration rate and the amplitudes of cellular state fluctuations, determine the organization of
a stationary population structure with respect to cell differentiation. While the proliferation
is assumed to be differentiation state-specific, the cellular state fluctuations are assumed to
be sensitive to the oxygen environment. The model further assumes that cell adaptation
to un-physiological high oxygen tension results in decreased cellular state fluctuations in
differentiated states and thus, accumulation of cells in these states. In contrast, low oxygen
tension conserves stem cell and progenitor states. The experimentally observed impact of
low oxygen expansion on subsequent differentiation in pellet culture is simulated as a re-
sult of less pre-differentiation and higher lineage plasticity of progenitor and stem cells in
MSC-derived cell populations.

3.2 Modeling MSC Differentiation, Lineage Specification
and Growth

3.2.1 Differentiation

Cell differentiation is defined as the loss of stem cell properties. It can be accompanied by
but is not identical to lineage commitment (see below). Cell differentiation is quantified by
a continuous state variable « that can adopt values between zero (full stem cell competency)
and one (completely differentiated cell). Each value of o may represent a set of regulatory
network activation patterns. From the molecular point of view, o may depend on the
abundance and sub-cellular localization of proteins and RNAs, as well as other types of
signaling and metabolic molecules [142].

Each cell’s a-value is assumed to fluctuate randomly with a state-dependent noise am-
plitude o(«). From its current differentiation state o it adopts a new state o' with a
randomization rate R. The probability of a transition a — o’ is given by a Gaussian of
width o(«), which is restricted to [0, 1] and normalized:

plallo) sexp (428 (31)

where the width of the Gaussian o(«) represents the amplitude of the fluctuations and is
state-dependent (Fig. 3.1a). Cell differentiation is assumed to be reversible incorporating
recent stem cell concepts [141] and to occur independently of cell proliferation as found in
progenitor systems [143]. But the state dependence of fluctuation strength causes a drift
such that cells tend to accumulate in low noise states. Hence, a differentiation inducing
environment reduces noise in high-a states causing an accumulation of differentiated cells.
The explicit dependence of the noise amplitude on the environment is given in Sec. 3.3.

3.2.2 Lineage commitment

MSCs are capable of differentiation into several lineages. At each differentiation state dif-
ferent lineages can be distinguished by their characteristic regulatory network activation



42 CHAPTER 3. MODELING EXPANSION AND DIFFERENTIATION

04
[

(] i -
coe Bc differentiation TN m
2 =

0.2

noise

0.0

commitment

i (b3)
1 = |||l
Bnc de-differentiation

|
b e c

conditional
probability p(at|a) amplitude o(o)

1Y

Figure 3.1: Differentiation Dynamics and Lineage Commitment a) Modeling fluctuations
of the differentiation state . Upper panel: A decrease of the noise amplitude o () of the Gaussian
conditional probability function p(a’|a) with a results in an accumulation of cells at higher values
of a. Lower panel: Gaussian distributions p(a/|a) for o = 0.4 and o = 0.6. Their width o(«)
parameterizes the strength of « fluctuations. b) Modeling lineage specification. Different states of
lineage activity 0 and 8"° may be characterized by different activation patterns of the regulatory
network (small boxes). A transition between the states is assumed to be impossible for a > a.
(dotted line) but may occur subsequent to de-differentiation. b) Cell-cell interaction. The induction
of a chondrogenic phenotype of cell (a) requires a sufficient differentiation of the cell itself and that
a defined number of neighbor cells are within the same lineage, here (b1), (b2), and (b3).

patterns. Thus, the characterization of a cellular state requires introduction of a second
state variable [, which specifies the lineage. Whether a cell expresses markers of a spe-
cific lineage, e.g. the SOX-9 transcription factor for the chondrogenic lineage [144], depends
on the value of 3. According to the experimental observation that an entire spectrum of
regulatory states may contribute to a defined lineage [120], a continuous state variable was
chosen. The (-value is assumed to fluctuate as long as a cell is not fully committed. Lineage
commitment is modeled as a cellular response to changing environmental conditions leading
to a restriction of the accessible values of 5. This can be understood as a consequence of
large-scale transcriptional silencing of the genome of these cells [145]. Here a chondrogenic
differentiation assay as applied in our study is modeled as a restriction of § in a way that
only a spectrum of states Schondro remains accessible, which is specific to the chondrogenic
lineage. The dynamics of the chondrogenic lineage commitment is characterized by the
transition rates W ("¢ — (¢, «) from non-chondrogenic states "¢ into chondrogenic states
(¢ € Schondro- These transitions are assumed to be irreversible under the conditions of the
assay. Sufficiently differentiated cells are no longer plastic and cannot switch lineage. Thus,
the transition rates W (8"™"¢ — (¢, «) are larger than zero for un-differentiated cells only. For
simplicity they were set to be equal Wy for o < a, and zero otherwise (Fig. 3.1b).

3.2.3 Induction of a functional phenotype

In the model differentiation and lineage commitment are necessary but not sufficient to
induce a lineage-specific functional phenotype within a cell. Experimental observations sug-
gest that cell-cell interactions via N-cadherins are essential for the induction of a functional
chondrogenic phenotype in MSC-spheroids [34]. Hence, within the model the induction of
the chondrogenic phenotype is assumed to require: first, a chondrogenic specification of the
cell (8 € {Schondro}), second, a sufficient differentiation (o > ay), and third, a minimum
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number N, of neighbor cells in the same lineage (Fig. 3.1c). This phenotype induction is
reversible due to the general reversibility of differentiation in the model.

3.2.4 Cell proliferation

Here cell proliferation is assumed to depend on the differentiation state « of a cell. Prolifer-
ation is restricted to progenitor cells of intermediate differentiation states o with 0 < a5 <
op < ag < 1. For these states an identical average growth time 7 is assumed. Stem cells
(a < ay) and differentiated cells (a > «ag4) do not proliferate. During the growth process cells
may frequently switch between proliferative and non-proliferative states. This will result in
an effective cell growth time larger than 7.

Further, proliferation is limited by contact inhibition (see Sec. 1.5). It was demonstrated
that the growth behavior of simulated cell population on long timescales is neither affected
by the details of the assumptions on the precise shape of the interaction forces between cells
nor by the details of the cell cycle model [88]. So, the obtained results should be robust
against changes of these model details.

3.2.5 Oxygen distribution

The reaction-diffusion equation Eq. (1.24) is used to calculate the oxygen concentration
c¢(r,t) within the pellet. It is assumed to be constant and equal in all lattice sites outside
the pellet. The parameters are chosen according to Malda et al. [146] and Zhao et al. [147]
(see Table A.1). In order to keep the simulations feasible pellets of 20.000 cells were used in
the simulations of the chondrogenic assays.

3.3 Results

3.3.1 Low oxygen tension increases proliferation and colony form-
ing potential of MSCs.

Experiments: The growth dynamics of ovine MSCs was analyzed applying different ex-
pansion assays. Fig. 3.2a shows a typical result of a CFU-F assay performed with mononu-
clear cells from bone-marrow isolates. After 14 days cells expanded at low oxygen tension
showed a twofold higher CFU-F potential compared to those expanded at high oxygen ten-
sion. Moreover, they formed larger and more extended colonies indicating a shorter doubling
time of these cells on average. This observation was confirmed selecting individual cells from
analogue cultures and analyzing the size distribution of small colonies growing from them.
Cells at low oxygen tension formed significantly larger colonies compared to cells at atmo-
spheric conditions. The colony size distributions after 5 days are summarized in Fig. 3.2b
and ¢ for 5% pO, and 20% pO,, respectively.

Simulations: Motivated by the observed CFU-F dependency on the oxygen tension an
oxygen level specific control of the differentiation state fluctuations was concluded. Hence,
the noise-amplitude o is modeled as a function of differentiation state o and the oxygen
tension pOsy:

x'n/
xn + kn’

(e, p0sy) = 0o(1 — af (pOy/p0O3**) and f(x) = (3.2)
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Figure 3.2: Growth dynamics of
MSC populations at different oxy-
gen tensions. a) CFU-F assay for
mononuclear cells from bone marrow
isolates at 5% pO, (left) and 20%
08 pO,(right). Growth time: 14 days. b,c)
06 Monoclonal expansion assay: size dis-
tribution of colonies grown from sin-
gle cells at 5% and 20% pO,, re-
spectively. Experimental results (black
0 40 8 120 160 200 0 40 80 120 160 200 columns) are compared with simulated
colony size [cells] colony size [cells] results (white columns). Growth time:
b 5 days. For model parameters see
0.03 Table A.1. d,e) Simulated equilib-
rium distribution of the differentiation
states at 5% and 20% pO,, respectively.
The shaded regions indicate prolifera-
tive states (0.15 < o < 0.85).
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with o denoting the stem cell state fluctuation strength and f(x) being a Hill function
approaching 0 and 1 at low and high pO,, respectively. pO5'®* refers to atmospheric oxygen
tension. Simulated MSC colony growth thus depends on the randomization rate R, the stem
cell state fluctuation strength o, and the parameters of the Hill function (n and k) and those
specifying the proliferation rate (r and ag with oy = 1 — «y). Extensive simulations were
performed to explore the sensitivity of the simulation results with respect to the model
parameters. The average size of the MSC clones was found to depend sensitively on the
proliferation rate r and the proliferative range (ag, as).

The influence of all other parameters depends on the oxygen tension pO,. In the gen-
eral case where the growth rate varies throughout the population an accumulation of fast
proliferating cells occurs in the population. This effect is more pronounced in a low oxygen
environment where cells enter proliferative states more frequently. This applies already for
the initial expansion of the mononuclear cells isolated from the bone marrow. Thus, in
order to obtain a quantitative agreement with experimental data it was necessary to assume
that cells prepared at 5% pO, have a slightly higher proliferation rate on average compared
to those prepared at 20% pO,. An appropriate fit of the experimental data was achieved
applying the parameter sets given in Table A.1 (see Fig. 3.2b,c). The simulation results
refer to highly motile cells like MSCs. Less motile cells would form more dense colonies
and contact inhibition of growth would strongly reduce their proliferation activity. Due to
the observation that the colonies were rather sparse after 5 days of growth the simulation
parameter were chosen to avoid contact inhibition of growth at both 5% and 20% pO,.

The simulated MSC population structures at equilibrium are given in Fig. 3.2d,e. Note
the different shape of the relative frequency distribution at 5% and 20% pO,, respectively.
While at 5% pO, a significant fraction of about 9% of non-proliferative stem cells (defined
by: a < as = 0.15) is conserved, at 20% pO,, this fraction amounts to 3% only. On the other
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Figure 3.3: Experimental results on chondrogenic differentiation of MSCs at 20% pO,.
a) Collagen II expression in pellet of cells expanded at 5% (upper row) and 20% (lower row) pO.,.
Collagen IT (green), DAPI (blue). Interestingly, the differentiation starts in a defined layer beneath
the surface. b) This behavior is confirmed by a second collagen II staining. ¢) Glycosaminoglycan
concentration of chondrogenic differentiated pellets. sGAG levels were normalized to DNA content.
After 14 days sGAG levels of cultures expanded at 5% pO, cells were significantly higher compared
to cultures expanded at 20% pO,. * p < 0.05; (Student’s paired t-test); n = 4.

hand the model predicts a fraction of about 14% unspecific differentiated, non-proliferative
cells (defined by o > a4 = 0.85) at 5% pO, compared to 26% at 20% pO,. Identifying
these cells as potentially pre-mature senescent cells the obtained fractions are larger than
those identified experimentally by senescence-associated (§-galactosidase staining in mono-
layer cultures [148]. However, the ratio found between low and high oxygen tension culture
is comparable. In contrast to the simulated colony sizes the results for the population struc-
tures showed to be robust against moderate changes of the proliferation rate (see Fig. 3.9).

3.3.2 Expansion at low oxygen tension increases the chondrogenic
differentiation potential of MSCs

Experiments: Chondrogenic differentiation of ovine MSCs was demonstrated by gene
expression analysis (aggrecan, collagen type II, X) and immunohistochemistry (SOX-9, ag-
grecan, collagen type II). As an example, Fig. 3.3a,b show results on the collagen type II
expression during chondrogenic differentiation at 20% pO,. The expression of this essential
marker of chondrogenic differentiation is strongly increased in pellets of cells expanded at 5%
pO, compared to pellets of cells which were expanded at 20% pO,. Sulfated glycosaminogly-
cans (sGAGs) represent a further prominent marker of chondrogenesis. In order to quantify
the accumulation of chondrogenic extra-cellular matrix in pellet cultures, sSGAG concentra-
tions were determined by a DMMB assay and normalized them to the DNA content. After
14 days the pellets of cells expanded at 5% pO, had a 1.4-fold higher sGAG concentration
(9.8 £ 2.0 ug/ug; p<0.05) when compared to pellets of cells expanded at 20% pO, (6.9 +
1.9 pg/ug DNA, Fig. 3.3c).



46 CHAPTER 3. MODELING EXPANSION AND DIFFERENTIATION

Figure 3.4: Properties of the
chondrogenic pellet culture.
a) KI67 staining in a spheroid
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Simulations: It was hypothesized that the observed differences in the synthesis of chon-
drogenic proteins are due to the different structure of the MSC populations after expansion
at 5% and 20% pO, (Fig. 3.2d,e). In order to support this hypothesis the differentiation
process within MSC spheroids was simulated using the resulting population structures of
the expansion assays as initial conditions. However, simulations of a spheroid system re-
quire some additional assumptions about the system under consideration, in particular, with
regard to the regulation of cell proliferation and the oxygen supply. Experimentally prolifer-
ation was found to stop throughout the pellets within a few days. After 7 days proliferation
activity was localized at the periphery only (Fig. 3.4a). Analyzing the DNA content of the
pellets an effective cell loss was observed (Fig. 3.44b). However, from day 7 onwards the
number of cells stayed nearly constant. Accordingly, all simulations of the differentiation
assay were performed without cell proliferation.

In monolayer culture oxygen can be considered to be abundant. In spheroids oxygen
diffuses into the spheroid from its border hence an oxygen gradient is established with
decreasing oxygen concentration towards the interior of the spheroid. Consequently, cells in
the interior of the spheroid may suffer from a lack of oxygen [9]. For the oxygen consumption
rates (Coz for Eq. (1.24)) of MSCs and chondrocytes a broad range between 1 and 100
fmol /hour per cell was reported [146,147,149]. In the simulations the oxygen consumption
was assumed to be equal in MSCs and chondrocytes. Consequently, the oxygen gradient
within the spheroids does not change during the simulated differentiation process. Thus,
the oxygen consumption rate only defines how steep this stable gradient is. In a first order
approximation the simulated differentiation processes of the cells depend only on the local
available oxygen concentration. Thus, the oxygen consumption rate Cps can be used to scale
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Figure 3.5: Simulated chondrogenic differentiation of MSCs in pellet culture at 20%
pO,. a) Spheroids of cells expanded at 5% pO, (upper row) and at 20% pO, (lower row). Functional
differentiated chondrocytes are shown in green other cells in blue. b) Fraction of chondrocytes vs.
radial distance from the spheroid cent-re at days 2 (green), 7 (blue) and 14 (magenta). At day 14
the total number of chondrocytes in pellets of cells expanded at 5% pO, is about 1.5 times larger
then in pellets of cells expanded at 20% pO,.

the width of the observed differentiation pattern in order to match with experimental values.
Simulated equilibrium oxygen distributions are shown in Fig. 3.4c,d. In simulation series
the dynamics of chondrogenic differentiation of MSCs was analyzed. Thereby, a vanishing
chondrogenic lineage activity . in the initial populations was assumed. A threshold value
of a. = 0.5 for lineage commitment was assumed motivated by the assumption only stem
cells and early progenitor cells maintain lineage plasticity.

Assuming sufficiently large lineage transition rates Wy compared to the basal randomiza-
tion rate R (see Table A.1) differentiation dynamics was found in qualitative agreement with
the experimental results. This is demonstrated in Fig. 3.5 showing the spatio-temporal oc-
currence of functional differentiated chondrocytes. Stable chondrocyte clusters appear first
in a layer beneath the spheroid surface. Accordingly, related chondrogenic matrix synthesis,
e.g. of collagen type II, can be assumed to start at the same position in nice agreement with
the experimental results. This can be understood as follows. In the central region of the
spheroids the differentiation state of the cells fluctuates due to the high noise-amplitudes
associated with low oxygen supply (see Eq. (3.2)). Accordingly, cells in this region, although
primed for the chondrogenic lineage (Fig. 3.6a,c), do not reach a stable functional differen-
tiated state o > «y. Stable differentiated cells can be frequently found at the periphery of
the spheroids where the oxygen concentration is high and the fluctuations low (Fig. 3.6a,b).
However, cells at the periphery that were initially in an unspecific differentiated state, stay in
this state due to the small probability at high oxygen tension of starting de-differentiation
until reaching o < a. required for switching into the chondrogenic lineage. As a result,
these cells do rarely reach a chondrogenic differentiated state. Moreover, they prevent chon-
drogenic differentiation of neighboring cells by limiting the number of their chondrogenic
specified neighbors. Optimal conditions for chondrogenesis are therefore realized within an
intermediate layer, where on one hand the probability for lineage commitment and differen-
tiation on the other hand is sufficiently high. Within this layer an oxygen tension of about
10-11% pO, was found. This optimal oxygen concentration is quite robust against variation
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in the lineage transition rate W, and the oxygen consumption rate Cos (Fig. 3.11).
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Figure 3.6: Lineage specification of MSCs in pellet culture at 20% pO,. a) Simulated
distribution after 0 and 14 days for cells expanded at 5% and 20% pO,. Cells committed to the
chondrogenic lineage are shown in magenta. Color saturation encodes the differentiation level.
Chondrogenic commitment is seen throughout the spheroid except of some cells at the periphery.
b) Averaged differentiation vs. radial distance from the spheroid center at day 0 (red), 2 (green), 7
(blue) and 14 (magenta). c¢) Expression of the chondrogenic transcription factor SOX-9 (red) after
14 days demonstrates the predicted chondrogenic commitment throughout the spheroid. A typical
pellet of cells expanded at 20% pO, is shown (blue: DAPI staining).

According to the described scenario, the observed differences in the differentiation dy-
namics between populations expanded at 5% and 20% pO, can be mainly attributed to the
different number of pre-differentiated cells in these populations. The higher the number of
these cells within populations expanded under atmospheric conditions and their maintenance
in unspecific differentiation states (Fig. 3.6a) is, thus, suggested to account for the impaired
chondrogenesis of these populations. The proposed scenario is not observed assuming a con-
siderable higher threshold value of lineage specification of e.g. a.=0.85 (Fig. 3.10). In this
case only the pre-mature senescent cells cannot switch into the chondrogenic lineage. This
limitation is too weak to account for the observed significant differences in the differentiation
dynamics. Thus, the results suggest that plasticity of MSCs and their progeny with respect
to lineage commitment is restricted to stem cells and early progenitors.

3.3.3 Short term exposure of MSCs to low oxygen tension mimics
continuous expansion at these conditions

In further simulations the consequences of short term exposure of MSCs to low oxygen were
analyzed. For that purpose the dynamics of the de- differentiation process were simulated
that occurs in a high oxygen expansion culture (20% pO,) decreasing the oxygen tension
to 5% pO,. The results predict that the cellular adaptation to the changed environment is
already finished after about 24 hours. After this time an equilibrium population structure is
reached. Thus, the model predicts that even a short term exposure of MSCs to low oxygen
tension should result in an improved chondrogenic potential of these populations. This is in
agreement with recent findings by Martin-Rendon et al. [132].
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3.3.4 Low oxygen tension impairs MSC differentiation

According to the obtained results, low oxygen tension conserves progenitor states. Hence,
the lack of oxygen is expected to impair the differentiation process throughout the pellet,
and to inhibit the induction of a stable chondrogenic phenotype in all cells. Simulations
of chondrogenic differentiation at 2% pOydemonstrate inefficient differentiation of the cells.
Initially all cells switch into the chondrogenic lineage. This results in a fast saturation
period, but due only about 10% of all cells exhibit a functional phenotype (Fig. 3.8). Due to
strong fluctuations, in the model no cell stably enters the functional phenotype. This result
is in agreement with experimental findings by Malladi et al. [134].

3.4 Model Parameters and Robustness

In a first step the model parameters of the monolayer expansion system were adjusted in
order to fit the experimental results of the clonal expansion assays at 5% and 20% pOs,.
For expansion at 20% pO, the best fit was achieved assuming a cell population with a
proliferation rate of r = 1.55/day for each cell. For simulating expansion at 5% pO, a
good fit was obtained assuming a proliferation rate of r = 1.55/day for one half and of
r = 2.1/day for the other half of the cells. Since the proliferative activity must be expected
to vary throughout the colony, the proliferation rate used in the simulations represents an
average. Due to the proliferation enhancing conditions of low oxygen concentrations, this
effect is more significant at low oxygen concentrations and is reflected in the assumption of
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Figure 3.9: Dependence of the distribution of differentiation states on the proliferation
rate. Simulation results for expansion at 5% pO, (left) and 20% pO,(right) are shown. The results
for the maximum proliferation rate of 2.1/day (solid lines) used in the simulations are compared
with those for the minimum rate of 1.55/day (dashed lines).

a distributed proliferation rate above. Such a moderate increase in the average proliferation
rate has little effect on the distributions of the differentiation states as shown in Fig. 3.9.

In a second step the parameter set of the monolayer expansion simulations were used and
the additional parameters of the spheroid system adjusted enabling the model to reproduce
the experimental data. A fit was obtained assuming a lineage specification threshold o, =
0.5. A threshold «a, = 0.85 does not result in a significant difference in the amount of cells
differentiated into the functional phenotype between populations expanded at 5% and 20%
pO,. On the other hand . = 0.15 gives a differentiation process which is much too slow
(Fig. 3.10).

Interestingly, the prediction of optimal oxygen tension for chondrogenic differentiation
neither depends on explicit choice of the lineage transition rate Wy nor on oxygen consump-
tion rate Coq of cells. In all simulations, we found the fraction of cells entering the functional
phenotype to peak at about 10-11% pO, (Fig. 3.11).

3.5 Discussion

In this chapter a phenomenological individual-based model of MSC differentiation and lin-
eage commitment was introduced and merged with the general model from Chapter 1. On
the basis of individual-based modeling with a spatial representation of the cells a panel of
experimental results can be explained consistently providing an explanation

1. why low oxygen improves the expansion of MSCs and

2. why MSC populations expanded under low oxygen show an improved potential in
subsequent chondrogenic assays.

The key assumptions of the model are that the oxygen environment changes the population
structure of expanding MSCs with respect to differentiation and that sufficiently differen-
tiated cells are stable committed. The approach presented here is based on a pedigree
free concept of stem cell differentiation [141]. Stem cell and progenitor differentiation are
driven by stochastic fluctuations and independently for each agent. Thus, these processes are
reversible in general. Recently, this concept of noise driven dynamics was applied to differen-
tiation of promyolytic progenitors and it was demonstrated that it represents an alternative
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Figure 3.10: Dependence of the terminal differentiation on the lineage specification
threshold: For a. = 0.85 (left) no significant difference between the fractions of terminal differen-
tiated cells emerges. Assuming a. = 0.15 (right) does not results in a significant amount of terminal
differentiated cells within 14 days. Simulations for cells expanded at 20% pO, (open circles) and
5% pO, (filled triangles) are compared. Interestingly, the prediction of the optimal oxygen tension
for chondrogenic differentiation does neither depend on the explicit choice of the lineage transition
rate Wy nor on the oxygen consumption rate Co2 of the cells. In all simulations the fraction of the
cells entering the functional phenotype peaks at about 10-11% pO, (Fig. 3.11).

to common molecular network approaches describing cellular adaptation processes [139].
According to the first key assumption high oxygen tension reduces the stochastic state fluc-
tuations (noise) of differentiated states, thereby partly inducing differentiation of the cells.
Such a differentiation would also result assuming that high oxygen tension increases the
fluctuation of stem cells states. In this case cells stressed by an un-physiological high oxy-
gen tension would increase their potential for phenotypic transitions compared to noise that
decreases with increasing oxygen. Here the latter was assumed, such that they become more
fixed in their differentiation states.

A different way explaining the impact of the oxygen environment on MSC expansion
could be to assume that low oxygen tension strongly increases the proliferation rate of the
cells. Accordingly, low oxygen tension would increase the portion of progenitors within the
populations as in the simulations presented here. However, proliferation is stopped in MSC
pellet culture. As a consequence, differentiation would occur independently of the oxygen
tension. This is in contrast to I) the experimental observation that cells in the low oxygen
region of the pellet center do not differentiate and II) more general results on impaired
chondrogenesis at low oxygen tension by Malladi et al. [134].

While the first effect could be explained also by low growth factor or glucose concentra-
tions and related signaling in these regions, the second strongly suggests that a proliferation
effect alone cannot explain the impact of oxygen tension on MSC expansion. However, there
exists an effect of low oxygen culture on the proliferation rates in that at low oxygen an
accelerated selection of fast proliferating cells occurs. Accordingly, further computer simu-
lations were performed to study the effect of a moderately increased average proliferation
rate at low oxygen compared to high oxygen tension simulating colony growth. These model
details were found to affect the population structure in these assays only marginally. Thus,
the observed effects of oxygen tension during expansion on subsequent chondrogenic dif-
ferentiation are not caused by this selection process. However, long term cell culture may
potentiate this effect. Consequently, the ongoing selection of high proliferative cells may be-
come substantial also for the differentiation properties of the populations. According to the
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Figure 3.11: Dependence of the terminal differentiation on the lineage transition rate
and oxygen consumption rate. The fraction of terminal differentiated cells is shown as function
of the oxygen tension for varying lineage transition and oxygen consumption rates. Height and
position of the peaks indicating the optimal oxygen tension for chondrogenic differentiation change
only slightly. Left: expansion at 5% pO,, right: 20% pO,. Upper line: The lineage transition
rate is varied by an order of magnitude (0.05/s: circles/dashed, 0.01/s: squares/solid, 0.005/s:
triangles/dotted). Lower line: Oxygen consumption rates of 65 (open squares), 50 (filled triangles)
and 30 fmol/h per cell (open circles) are compared. For 30 fmol/h per cell a minimum oxygen
tension of 6% pO, was observed in the center of the spheroid.

second key assumption sufficiently differentiated cells stay in their lineage state and are not
sensitive to the external stimuli of a differentiation assay. Consequently, a high amount of
unspecific pre-differentiated cells impairs the differentiation potential of a MSC population.
The model predicts that the accumulation of pre-differentiated cells during MSC expansion
can be avoided either by providing stem cell niche-like conditions or by strongly activating
proliferation. A complementary strategy would be to induce a chondrogenic priming already
in the expansion culture, e.g. by over-expression of SOX-9 [150]. Recent results by Martin-
Rendon et al. [132] on SOX-9 gene expression indicate chondrogenic priming as a result of
low oxygen supply. Clearly, assuming such priming would profoundly increase the effects of
low oxygen expansion of MSCs on their subsequent differentiation in this model. Here was
demonstrated that low oxygen culture improves their chondrogenic potential independent
of such preceding priming. The results predict an optimal oxygen tension for chondrogenic
differentiation of about 10-11% pO,, which is in the upper range measured at the surface of
articular cartilage [151] and below the optimal pressure of about 15% pO,found for cartilage
formation of rabbit periosteal cells [152]. Advanced chondrogenic assays should ensure high
oxygen perfusion to guaranty this oxygen concentration throughout the probe. Presumably
these results can be generalized for osteochondral differentiation of MSCs of different origin
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and from different species. Oxygen tensions of 2-3% pO, used by Malladi et al. [134] and
D’Ippolito et al. [128] are too small and lead to impaired MSC differentiation. A value of
about 5% pO, may either be comparable [130] or, as found for alginate bead culture [135],
even better than 20% pO,. Expansion at oxygen tensions below 1% pO, have been shown
to induce adipocyte-like phenotypes in human MSCs [153] and to impair their subsequent
osteogenesis [154]. Such behavior cannot be described by the current mathematical model.
Here the site of matrix deposition was identified with the position where functional dif-
ferentiated cells appear and compare the amount of synthesized matrix proteins with the
number of these cells. Other models describe processes like that of matrix deposition in
more detail [155]. In particular simulations of long term matrix deposition (>14 days) have
to account for local accumulation and degradation effects. Such modeling requires detailed
knowledge about matrix protein diffusion and degradation as well as cellular production
rates. The present study aimed at a better understanding of the basic principles of in
vitro MSC expansion, differentiation and lineage specification as a pre-requisite of reliable
quantitative models of these processes.
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Individual Fates of Mesenchymal
Stem Cells in vitro

4.1 Introduction

In Chapter 3 an extension to the IBM has been introduced in order to capture MSC expan-
sion, lineage commitment and differentiation. Based on an IBM realization of the concept of
noise-driven stem cell and progenitor differentiation this model links cell plasticity to fluctu-
ations in the differentiation state of each individual cell. Driven by the fluctuations the cells
can always gain and loose stem cell properties. A panel of experimental results regarding the
oxygen dependence of growth and differentiation of MSC has been consistently explained by
this multi-scale computer model. Based on these validated parameters in this chapter the
IBM approach further unfolds it’s advantages and the fates of single cells are analyzed. In
contrast to the master equation, which is used as a confirmation of the calculated transition
times between differentiation states, the IBM approach not only yields predictions on the
plasticity of single cells in terms of the transition times, but also on composition of the
stem cell pool and impact of biophysical parameters on differentiation structure via contact
inhibition. The computation of the master equation was contributed by Martin Hoffmann.

Generation and maintenance of replenishing tissues relies on appropriately regulated
balance between self-renewal and differentiation within a relatively small population of stem
and progenitor cells. The structure of these populations is strongly influenced by envi-
ronmental factors such as specific cell-cell interactions, growth factor and oxygen supply,
as well as the geometry and mechanical properties of the local environment. Accordingly,
changes in the environment lead to changes in cellular activity at the level of signaling,
metabolism and gene expression over periods of hours or days [156,157]. Recent evidence
from both experimental and modeling initiatives indicates a high degree of heterogeneity
and dynamic transition within stem and progenitor populations [115,120, 158]. There is
an ongoing debate on the fundamental dynamics underlying this kind of heterogeneity. A
thorough understanding of stem and progenitor cell dynamics constitutes a prerequisite for
the quantitative modeling of stem cell organization and computational tissue applications
and is expected to make an important contribution to the development of novel therapeutic
strategies for treating degenerative disease, injury and neoplasia.

95
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Figure 4.1: Noise profiles and typical genealogies of expanding clones. a) Shown are
the two noise profiles for 20% and 5% pO, as used in the simulations. b-d) Genealogies for clones
descending from cells starting at differentiated states a > 0.85. b) At 20% pO,clones enter prolif-
erative states only on rare occasions, but if so, they are able to give rise to an ample progeny. c) At
20% pO,most of these cells do not enter the proliferative states and stay quiescent. d) In contrast
cells at 5% pO, enter proliferative states much more frequently and thus, clones grow much faster.

4.2 Simulation Strategy

Individual cell-based model The main advantage of individual cell-based simulations
is, that they provide data on the level of individual cell and therefore on functionally relevant
outliers. In order to unravel the contributions of single cells to the differentiation structure
of the population, mean passage times into differentiated and stem cell states are calculated
under different conditions. They can be seen as indicators of single cell plasticity and
allow conclusions on population plasticity. Regeneration of the differentiation structure
of populations from defined sub-populations is simulated and analyzed considering single
clones. The question how cell interactions can affect differentiation is addressed by varying
biophysical simulation parameter. Importantly, all parameter used are validated and the
computer simulations correspond "one to one" to MSC protocols in vitro and, thus, can in
principle directly be tested.

Master equation approach In addition to the stochastic individual cell-based approach
a deterministic population dynamics model is used as previously described [139]. Here, the
deterministic model is applied for studying the population average of dynamic properties of
individual cells, therefore cell proliferation in not included. The model is then equivalent to
a master equation for a Markov process [98] describing the dynamics of the average number
of cells N(«) in state «:

1 ON(alt L

E% = /0 p(a|@)N(a,t)da — N(a,t) (4.1)
with the same randomization rate R and transition probability given in Eq. (3.1) as in the
IBM. Transition times 7(«) from an initial o into the regimes of stem cells (o < «;) or
differentiated cells (« > ay) were computed using an absorbing boundary approach [159].
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Figure 4.2: Individual cell dynamics. Mean transition times calculated by the IBM and the
master equation approach (ME) to reach a) differentiated states and b) stem cell states at 5% (red)
and at 20% pO, (blue). The transition time to stem cell states at 20% pO, was not calculated
using the ME because the cumulative fraction of cells that have reached stem cell states converged
too slowly (see c). Symbols: IBM results, Lines: Master equation. c¢) Fraction of cells that reach
stem cell states at 20% pO, as a function of initial « and simulation time (ME).

4.3 Results

4.3.1 Monitoring individual cell fates

Using the IBM approach the fates of individual cells in growing populations can be moni-
tored. Cell trajectories regarding differentiation dynamics under different culture conditions
were generated and compared for low (5%) and high (20%) oxygen concentrations. Fig. 4.1
shows the noise profiles for these concentrations and results for selected clones. In order
to quantify the degree of plasticity that is inherent in MSCs the average time required to
adopt specific cellular phenotypes was calculated. The average transition times of a cell to
reach stem cell states (0.0 < a < 0.15) and differentiated states (0.85 < a < 1.0) were cal-
culated as follows: In the IBM 100.000 cells with « values equally distributed in the interval
[0, 1] were subjected to stochastic state fluctuations. Throughout the simulations cells that
reached the specified sub-population were counted and histograms about their initial state
were derived. From these histograms were calculated i) average transition times (Fig. 4.2a,
b) and ii) the fractions of cells that successfully transferred within a defined time.

The results demonstrate that at low oxygen a frequent exchange between the sub-
populations occurs at a time scale of 2 days. At high oxygen the average transfer time
for stem cells into the pool of differentiated cells increases to about 4 days. Transfer times
for differentiated cells into the stem cell pool at high oxygen are much larger (>100 days),
indicating quasi deterministic cell differentiation behavior. Applying the master equation
approach confirmed the results obtained by the IBM. In Fig. 4.2¢ the fraction of cells having
entered the stem cell pool at 20% pO, is shown as a function of initial value and simulation
time. Only in this particular case the fraction of absorbed cells grows too slowly to calcu-
late the average transition times. In the three other cases they were computed with high
precision (less than 10712 of all cells remain to be absorbed).

In vitro validation of the above results would require single cell tracking of MSCs and
techniques to identify the differentiation state of the tracked cells. Currently, considerable
effort is taken in order to establish tracking techniques for stem cell systems [160, 161].
Unfortunately, MSCs are particularly hard to track, because they tend to aggregate; a
phenomenon known as mesenchymal condensation [100,162]. Thus, in the following results
on MSC plasticity are presented seen on the population level which can be validated in
simpler experimental setups.
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Figure 4.3: Simulated regeneration of the population structure. Shown are results for
a representative regeneration simulation (a) at 20% pO, and (b) at 5% pO,. For each oxygen
concentration the regeneration form stem cells (left) is compared to regeneration from differentiated
cells (right). The insert shows the regenerated population structure after 8d.

4.3.2 Regeneration of the population structure

Chang et al. [120,158] studied how fast the distribution of differentiation marker expres-
sion within a cell population regenerates from sub-populations with defined expression level.
They performed the following experiment: a population of precursor cells was generated
under standard conditions and characterizes by the expression level of a particular differen-
tiation marker. Sub-populations of cells with defined expression levels of the differentiation
marker were separated. These sub-populations were cultivated under standard conditions
and regeneration of the distribution of expression levels in the population was monitored
over time by FACS.

Population regeneration was simulated as follows: Starting from a population that was
equilibrated at low density, i.e. which shows no signs of contact inhibition of growth, selected
200 stem cells and 200 differentiated cells were selected and their development followed over
8 days in secondary cultures. Again the MSC behavior was compared at low and high oxygen
tension. Fig. 4.3 shows the results for a selected realization.

At low oxygen the population structure is roughly regenerated by stem cells and by
differentiated cells within about 1 day. At high oxygen the population is regenerated in
about 2 days by stem cells, but it takes about 8 days if starting with differentiated cells.
However, this is still a surprisingly short time taking into account the large transition times
for differentiated cells into the stem cell pool. This phenomenon can be understood by
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Figure 4.4: Clonal development during the regeneration. Shown are the size distributions
of 200 clones grown from stem cells (a,b) and differentiated cells (c,d) after 5 days of secondary
cultivation. Upper row: 20% pO2. Lower row: 5% pO2.

analyzing the clone size distribution of the clones evolving from the 200 initial cells. This
distribution is shown in Fig. 4.4. Except for regeneration from differentiated cells at high
oxygen the distribution peak is located at about 50-100 cells per clone, demonstrating that
most of the clones started to grow. In the remaining case where differentiated cells were
cultured at high oxygen, most of the cells remain quiescent throughout the observation time
(137 out of 200 in Fig. 4.4c and only a few cells started to proliferate and formed large
clones. This means the regeneration is driven by the progeny of these few cells only.

4.3.3 Linking biomechanics and differentiation

At the center of expanding MSC clones proliferation becomes contact inhibited. The quies-
cent region grows with colony size until all cells will stop proliferation, when an expanding
in vitro culture becomes confluent. Such changes in proliferation activity impact the pop-
ulation structure of MSC colonies. Fig. 4.5 compares the a-distributions of different MSC
populations at high oxygen (20% pO,). Shown are the a-distributions in a low density
population without any sign of contact inhibition, in growing clones with weak and strong
contact inhibition induced by variation of the cell-substrate friction constants and in a con-
fluent and thus quiescent population. The fraction of differentiated, non- proliferative cells
(a0 > ag) increases from about 25% in the low density population to about 90% in the
confluent population. A comparable induction of spontaneous differentiation in MSC can
be observed in vitro (per. communication, A. Stolzing). These simulation results implicate
that if regeneration refers to the growth of a few large clones, as in the case of differentiated
cells at high oxygen, the effect of contact inhibition becomes more relevant for population
regeneration. The a-distribution in large clones significantly differs from that of a low den-
sity culture. Moreover, due to the increased number of differentiated cells, these populations
show a lower CFU capacity (compare [97]).
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4.3.4 Modeling the organization of the stem cell pool

Additional information on MSC plasticity in vitro can be obtained by performing the re-
generation experiments described above in parallel for all sub-populations. Splitting the
mother population into a number of sub-populations according to the expression of a dif-
ferentiation marker, applying the ‘regeneration protocol’ suggested above to each of these
sub-populations and quantifying the number of stem cells in each sub-population after a fixed
regeneration time would allow to quantify the fraction of stem cells in a MSC population
descending from a particular sub-population.

In additional simulations this concept was followed. However, instead of splitting the
mother population into sub-populations, each individual cell of the mother population was
separated and expansion of the clones generated by the individual cells was followed. For
different time points we quantified the clonal composition of the common stem cell pool
(0 < a < as = 0.15) of all clones in terms of the initial values of the cells that induced the
clones. Fig. 4.6 shows this clonal composition of the stem cell pool after 5 days of clonal
expansion. At low oxygen (5% pO2) the fraction of stem cells that originate from stem
cells is about 11%. At high oxygen (20% pO,) this fraction decreases to only 5%. In both
cases most of the cells in the stem cell pool originate from progenitor cells. At low oxygen
tension all progenitors equally contribute to this pool, while at high oxygen tension most
cells originate from progenitors with a high o value between 0.7 and 0.8.

4.4 Discussion

Recent experimental findings indicate that cells can regain stem cell properties under defined
environmental conditions. These results challenge the commonly agreed stem cell paradigm.
This paradigm treats ‘stemness’ as a fixed property essentially intrinsic to stem cells and
assumes a deterministic and irreversible differentiation scenario for each cell [163]. As an
alternative a novel concept of functional stem cells has been developed that assigns the in-
teraction between cells and their growth environment a greater emphasis [141, 164]. This
concept does not exclude certain preferred trends in the differentiation sequence, but en-
ables reversible developments for individual cells. Here the first quantitative predictions on
the environmental dependent plasticity of MSCs in vitro are provided applying this novel
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Figure 4.6: Simulated clonal competition in the stem cell pool. The histograms show
the composition of the stem cell pool (0 < a < 0.15) regarding the « origin of each cells clone for
populations expanded at a) 20% and b) 5% pO, for 5 days.

concept. The predictions cover: i) the average transition times of individual cells into stem
cell and differentiated states, ii) the time scales of the regeneration of the distribution of
differentiation marker expression in a MSC population from sub-populations of stem and
unspecific differentiated cells, and iii) the origin of the cells forming the in vitro stem cell
pool of MSC. Moreover, they state that all these properties depend on the environment.
The results also provide estimates of the time scales of MSC adaptation to changed environ-
mental conditions. Thereby, the results are in good agreement with experimental findings
demonstrating that changes in the oxygen environment force an adaptation of MSC behavior
within 24 hours only [132].

In all simulations an oxygen dependence of the state fluctuations was considered. In
contrast, biophysical features, as cell-cell and cell-substrate interactions, were assumed to
affect the regenerative potential of the MSC by interfering with their proliferation con-
trol mechanisms only. A direct feedback of these interactions on the noise amplitudes was
not considered. However, recent results demonstrate that lineage specification and pro-
liferation of MSC populations can be triggered by substrate elasticity [48] and substrate
micro-structure [33]. Thus, a suggestion is to perform the proposed experiments on MSC
plasticity on substrates that vary with respect to their elasticity and micro-structure. These
experiments would provide information on whether mechano-signaling can affect the kinetics
of state transitions in MSCs and thus, can be used to time regeneration processes in vitro.
The results on the composition of the stem cells pool suggest that most of the stem cells
in MSC populations expanding in wvitro originate from progenitor cells. Thus, their mother
cells underwent differentiation and de-differentiation processes and were proliferative active.
Recent experimental results suggest that these cellular activities result in changes in the cel-
lular phenotype called stem cell aging [165]. A model that attempts to consistently describe
these phenomena, is proposed in the following chapter. Most of the results could be validated
by in wvitro experiments on the population level. A number of suggestions were given in the
course of this chapter. However, more detailed studies would require tracking of individual
cell fates in a single expanding MSC population. Such experiments would provide additional
information on cell-cell communication in the expanding population, which was suggested
to impact MSC expansion [166]. As already mentioned above, the tracking of MSC involves
particular problems. Long term monitoring of MSC fates will require therefore sophisticated
marker systems for both the clonal origin and the differentiation state of the cells. A num-
ber of stem cell and differentiation markers of MSC have been suggested. Good candidates
are early transcription factors [144,167]. Long-term fluctuations in differentiation marker
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expression in single cells would directly proof the concept of noise-driven stem cell organi-
zation. For the generality of this concept, we expect such fluctuations to underlie somatic
stem cell organization independent of tissue and species.

By the novel results presented in this chapter the general suitability of the IBM ap-
proach for studying the organization of stem cell populations is demonstrated. Stem cell
maintenance, expansion and environmental adaptation may in particular rely on single cell
plasticity and therefore understanding single cell behavior is pre-requisite to unveil the gen-
eral principles of the organization of stem cell populations. For adressing such questions,
IBM provides the natural concept by representing the population as the union of individual
cells.



5

Differentiation, Aging and
Senescence

5.1 Introduction

In this chapter an additional property of individual cells is introduced in order to model
clonal heterogeneity of MSCs. Based on the hypothesis, that ‘age’ is responsible for this
heterogeneity, the differentiation dynamics is assumed to depend on the cell’s history. This
assumption introduces another property of biological systems, that qualifies individual or
agent-based modeling for studying them. The cells are assigned a memory for their history.
Moreover, the age in terms of divisions depends via contact inhibition on the spatial variation
of pressure and closely links biomechanics and regulation in a different way, than proposed
in the last chapter. The experimental results were contributed by Matthias Zscharnack,
Center for Biotechnology and Biomedicine, University of Leipzig and Alexandra Stolzing,
Fraunhofer Institute for Cell Therapy and Immunology, Leipzig.

The organization of tissue stem cells is still a matter of debate. The ‘pedigree con-
cept’ of stem cell organization treats ‘stemness’ as a fixed property essentially intrinsic to
stem cells. It is based on observation of hierarchical arrangements of regenerating tissues.
However, experimental findings dealing with tissue plasticity phenomena have indicated that
cell- environment interactions can actually influence stem cell organization in a variety of
ways leading to the development of novel stem cell concepts [141]. These concepts assign
the interaction between cells and their growth environment a greater emphasis. However,
they do not exclude certain preferred trends in the differentiation sequence, but they enable
reversible developments for individual cells, allowing the system to flexibly react to changing
demands. According to these concepts a fundamental property of stem cell populations is
their dynamic functional heterogeneity. In the models by Roeder and co-workers [115, 140]
individual cells gain and loose stem cell properties depending on whether they are in quies-
cent or proliferative states, respectively.

Therapeutic applications of autologous MSC require an excessive in vitro expansion
of the isolated cells [168,169]. For this purpose various culture protocols have been suggested
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in order to isolate stem cells with high regenerative potential [170-172]. However, it has been
demonstrated that such massive MSC replication is unavoidably associated with continuous
changes of the cell’s functional competence. During expansion the MSC show a decreasing
proliferation potential [171,173]. Moreover, the efficiency of differentiating into local tissue
after transplantation was found to severely decrease during expansion [174]. In summary
these phenomena have been described as ‘in vitro aging’ of MSC [165].

The underlying cell intrinsic processes as well as the induced heterogeneity were not
considered in our previous approaches to MSC culture. Senescence has been implicated as
a major cause of this decline in MSC function [175]. The accumulation of this phenotype,
as in replicative senescence, has been demonstrated to be a continuous process in MSC
[176]. Interestingly, expansion at low oxygen pressure and low glucose culture decreases the
number of accumulating senescent cells compared to high oxygen pressure and high glucose
culture, respectively [148,165]. Recent experiments demonstrated that artificial in vitro
aging and in vivo aging of MSC induce related changes on the cellular as well as on the
molecular scale [177,178]. Under homeostatic conditions, there are limited demands on the
self-renewing stem cells in vivo and so these cells divide infrequently, sparing them the perils
of DNA-replication and mitosis. However, under regenerative stress the metabolic activity
of in vivo stem cells increases and becomes comparable to that of their in vitro counterpart.
In both cases the stem cells are exposed to higher levels of DNA-damage-inducing metabolic
side products such as reactive oxygen species (ROS) [179]. It has been suggested that the
damages produced thereby induce not only aging of the stem cells but of the whole organism.
In fact, excess replicative demands alone can induce progeroid phenotypes [180]. However,
whether replication itself or actually the subsequent induction of damages impairs stem cell
function remains to be determined.

In the following experimental results on the clonal heterogeneity of MSC populations
from different species are presented, demonstrating persistent individual heterogeneity on
long time scales. This heterogeneity is related to a functional decline in individual MSC
during in wvitro expansion by an additional term in the noise driven differentiation of the
hybrid model used in Chapter 3 and 4. ‘MSC aging’ is modeled by de-stabilizing stem cell
states in course of each cell division. It is demonstrated that the model is capable of both
explaining the clonal heterogeneity regarding MSC expansion in vitro and the experimentally
observed differences in the chondrogenic potential of the individual clones. Moreover, the
model predicts in vitro and in vivo aging to base on the same principles.

Regarding in vitro aging our computer simulations are again closely following standard
culture protocols to enable hypothesis-driven research. In this way, the finally provided
hypotheses are experimentally testable and can be expected to give further insight into in
vitro and in vivo stem cell heterogeneity and aging.

5.2 Experimental Results

5.2.1 Clonal heterogeneity of MSC in wvitro.

The growth of rat, ovine and human bone-marrow derived MSC was investigated. First,
single-cell derived clones of passage one (P1) were generated by the limited dilution method.
In order to support efficient colony forming hypoxic conditions were used [148]. After 5 days
of growth at 5% pO, the number of cells of the individual clones were counted. As shown
in Fig. 5.1a, a broad distribution of the individual clone sizes was found for all three species
investigated, indicating heterogeneity in the initial exponential expansion of the clones. In-
terestingly, selected clones continued growing at different rates also in the next passages
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Figure 5.1: Properties of single cell-derived MSC clones. a) Distribution of the size of
individual clones of human, ovine and rat MSC after 5 days in P1. b) Growth behavior of 4 selected
ovine MSC clones 4 in P3 (initially 10* cells). ¢, d) Spontaneous pre-differentiation of a fast (F4)
and a slow (B6) proliferating clone in monolayer culture as demonstrated by aggrecan staining
(Cytospins). Only the slow proliferating clone shows a clear positive staining (dark brown). e f)
TGF-3 induced chondrogenesis in pellet culture. Aggrecan staining (green) following 14 days of
culture is prominent only in the pellet derived from cells of the fast proliferating clone. DAPI: blue.

(P2, P3) under standard culture conditions (20% pO,). Thus, the clonal heterogeneity
is inherited over many generations independent of environmental oxygen. This is demon-
strated in Fig. 5.1b showing the growth behavior of 4 ovine clones selected out of 36 in
P3. Subsequent to expansion the rate of both spontaneous pre-differentiation in monolayer
culture and TGF-f induced chondrogenic differentiation in pellets was analyzed using estab-
lished markers including SOX-9, aggrecan, and collagen II. Slow proliferating clones showed
a clear tendency for spontaneous pre-differentiation, while fast proliferating clones did not
(Fig. 5.1c,d). In contrast only fast proliferating clones did undergo effective chondrogenesis
in pellet culture (Fig. 5.1e,f). These properties appeared to change continuously with the
proliferation capacity in agreement with Wagner et al. [176]. No evidence for a critical,
switch-like behavior in the ovine MSC was found. Rat and human MSC showed comparable
behavior demonstrating that persistent functional heterogeneity is a general feature of MSC
clones. Assuming that the observed heterogeneity has a functional component, one would
expect that each of the individual clones provides specific growth signals and consequently
affects the growth behavior of the population containing all clones (MIX). Thus, additional
measurements on ovine MSC were performed analyzing whether the common mother popu-
lation of selected clones shows significant growth benefits compared to the individual clones.



66 DIFFERENTIATION, AGING AND SENESCENCE

- O 70.000 -

,
%‘ 60.000 -
'E 50.000 -
/TN g 40.000
2 o
2 20.000 -
= 10000

(&} Y N e N B N :
@ D8 Cl10 H2 F8 H2 A5 A9 Mix E3

pellet culture

Figure 5.2: MSC clones grow independently. a) Schema of the experiment. b) Number of
cells grown from 750 cells after 6 days of culture. The results for 8 out of 36 clones are compared
with the result for the mixed population (MIX). Clone E3 grows faster than the mixed population.
c-¢). Comparison of the chondrogenic potential of the slowest clone D8, with those of the MIX and
E3 by histological staining for aggrecan. After 14 days of culture only the MIX and E3 show a
positive staining, which is more pronounced in E3.

As demonstrated in Fig. 5.2 neither a growth benefit nor an improved chondrogenic poten-
tial of the mixed population and therefore no evidence for a functional heterogeneity being
conserved in vitro was found.

5.2.2 Spatial heterogeneity of MSC populations.

In subsequent studies, the spatial organization of MSC populations in vitro was analyzed.
Fig. 5.3a-f shows results obtained for human MSC of P0O. These cells formed large colonies at
both 5% and 11% pO, (Fig. 5.3a,b). Following 14 days of culture the colonies were stained
for aggrecan. A clear staining was only observed at the periphery of the colonies at 11%
pO,. Although more dense, the center of these colonies showed no staining. At 5% pO,
clear staining was observed neither at the periphery nor at the center of the colonies. This
demonstrates an increasing tendency for spontaneous pre-differentiation with oxygen tension
in expansion cultures in agreement with former results on ovine MSC (see Chapter 3, [148]).
Ovine and rat MSC did not show clear aggrecan staining at PO.

5.3 Modeling Stem Cell Organization and Aging in vitro.

In order to explain the phenomena of persistent clonal and of spatial heterogeneity in MSC
populations the noise-driven approach to stem cell dynamics introduced in Chapter 3 is mod-
ified. The model explained the observed dependencies of MSC growth and differentiation
on the oxygen environment most satisfactory. However, it did not consider an intrinsic and
persistent type of heterogeneity or individuality. Thus, any initial difference between two
single cell derived clones in Chapter 3 is based on random initial fluctuations and vanishes if
they grow to larger cell numbers. Therefore, the experimentally observed persistent hetero-
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Figure 5.3: Spatial heterogeneity of human MSC colonies. Shown are P0 colonies at 5%
(upper row) and 11% pO, (lower row). a),b) CFU-F assay. c)-f) Spontaneous pre-differentiation is
demonstrated by aggrecan staining (green). c¢),d) After 14 days of culture staining was negligible
at the center in both oxygen environments. e),f) At the periphery staining was weak for 5% and
substantial for 11% pO,. DAPI: blue.

geneity of clones comprising more than 10* cells (compare Fig. 5.1b) cannot be described by
the model. Thus, the noise driven concept of the model is kept and the dependence of the
fluctuation strength o(«) is impacted by the environment; oxygen still sets the mean noise
amplitude. But it is extended by the assumption that stem cell states become de-stabilized
with ‘age’ resulting in an increased tendency for spontaneous pre-differentiation. This sce-
nario is modeled assuming that the noise amplitude o(«) of a cell depends on the generation
number m (Fig. 5.4a). For daughter cells j and k of cell ¢ holds: m; = ms = m; + 1. The
resulting time dependent noise amplitude o(«, m) of a cell of age m and differentiation «
contributing to a MSC population in vitro is given by:

ola,m) =09 [l —af(E)]+mrp[l—2a] > 0. (5.1)

The first term on the right hand side defines the extrinsic, environmental determined noise
amplitude as in Chapter 3. Here, oy denotes the noise amplitude for initial stem cells, and
f(E) is a function determining the change of this amplitude with differentiation in depen-
dence of the environment. In Chapter 3 f(E) was given as the Hill function h(pO,/pO5~,
here it is changed to:

F(B) = 2(1 - o1/av), (5:2)

where og is the mean noise amplitude in a defined environment E. The second term on
the right hand side in Eq. (5.1) defines the effects of aging. Thereby, rp is the rate of de-
stabilisation of stem cell states per cell division. The ‘age’ of a cell is given by o(a = 0). If the
noise amplitude of a cell becomes zero at « = 1 it is assumed to become time independent.
This occurs if the generation number of a cell reaches:

mprs =m(oc(a=1)=0)= (20 —00)/TD (5.3)
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Figure 5.4: Model of population heterogeneity. a) Stem cell aging and proliferation. The
noise amplitude of stem cell states o(« = 0) increases with each cell division. In grey: proliferative
active states ap with as < a < aq. b) Distribution of cells of generation m and differentiation state
a. Shown is an example of an in vitro population at 11% pO,. The frequency of pre-differentiated
cells increases with age.

For the chosen parameter sets this generation number ranges between 20 and 70. At mpgs
the cells show a strong tendency to pre-differentiate and to stay quiescent. Thus, one can
relate mprg to replicative senescence. mpg depends on the environment and in particular on
the oxygen tension. For human and rat MSC isolated using plastic adherence 20 divisions
are required to reach that limit at 20% pO,. At 5% pO, this number increases to 48. These
results roughly agree with experimental findings, which strongly depend on the donor (20%
pO,, [176], 20% and 3% pO,, [181]). Ovine MSC were found to be even more sensitive
to oxygen [148]. The heterogeneity of a population can be monitored by the probability
distribution to find a cell of age o(a = 0) and in state & = 1 (Fig. 5.4b). Within an
expanding population the probability to find spontaneous differentiated, quiescent cells (a >
ag) increases due to the increasing number of division per cell on average. This effect is
independent of the environment. Importantly, we assumed a proliferation stop in dense
culture [182]. Thus, quiescent cells in dense regions of the population do not ‘age’. Table A.3
summarizes the parameters of the aging model used in our simulations.

5.4 Simulation Results

5.4.1 Spatial age-structure of MSC colonies in wvitro.

In a first step the age-structure of colonies growing from a single stem cell (o9 = 0.100)
was simulated. A radial age- profile formed across such colonies with the youngest cells
being located at the center of the population (Fig. 5.5a). This profile originates from stalled
proliferation at high cell density and, thus, represents a general feature of the biophysical
model from Chapter 1. The differentiation profile in the growing colonies depends on the
specific time scales of proliferation, differentiation and aging. Fig. 5.5b,c show examples
of such profiles. Here, the parameter set was adjusted to obtain a profile similar to that
of human MSC seen in Fig. 5.3c-f. At 11% pO, aged cells at the periphery are most
differentiated and minimal differentiation occurs near the center of the colony. Decreasing
the oxygen tension to 5% pO, increases the amplitudes of the cellular state fluctuations.
In this case cells do not reach stable differentiated states and their average differentiation
decreases in the whole colony. These results demonstrate that the presented model is capable
of describing spatial heterogeneity of clonal MSC populations.
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Figure 5.5: Simulated age-structure of MSC. a) Spatial age-structure. The Color code
indicates aging in terms of o(« = 0) ranging from 0.120 to 0.155 corresponding to 8. .. 22 in vitro cell
divisions. b,c) Radial profile of the average differentiation at b) 11% and c) 5% pO,. The strongest
spontaneous pre-differentiation is found at the periphery. d) The population heterogeneity with
respect to age is encoded in the variance of the noise amplitudes of all contributing cells (upper and
lower set correspond to 5% and 11% pO,). Red: noise profiles of the mother cells.

5.4.2 Functional heterogeneity of MSC n wvitro.

Based on the results on the age structure we simulated functional heterogeneity of MSC
clones in a second step. For that purpose we selected 30 cells of defined age o(a = 0) =
0.1, 0.125, 0.15. They were taken from colonies of average age o(a = 0) = 0.1, 0.125, 0.15,
respectively, which are expected to occur in PO due to in vivo heterogeneity. Colony growth
of the selected cells was simulated over 7 days at 20% pQO,. Fig. 5.6 shows the results of
simulation using the ovine MSC parameter set. The simulated growth curves (Fig. 5.6a)
reproduce the behavior found in vitro (Fig. 5.1b). Younger clones grow faster than older
clones. In agreement with the experimental results slow growing clones in the simulation
showed a strong tendency for pre-differentiation, while fast growing clones did not (Fig. 5.6b).
These cells of the simulated expansion were used for induced chondrogenic differentiation
in pellet culture applying the model of functional differentiation introduced in Chapter 3.
The number of chondrogen differentiated cells was found to be highest in pellets that of cells
of intermediate proliferating clones (Fig. 5.6¢). Considering that cells in P2 and P3 have
undergone about 20- 30 cell divisions and accordingly no cells of age o(a = 0) < 0.125 can
exist, the results qualitatively reproduce the experimental findings on reduced chondrogenic
potential in slow proliferating MSC (Fig. 5.1e,f). Thus, functional heterogeneity of MSC
clones is covered by the presented aging concept. Note that age differences that typically
develop in a single colony in P0 (10 divisions) are sufficient in order to explain the observed
heterogeneity. However, this does not exclude the presence of in vivo heterogeneity.

5.4.3 Aging of MSC n vivo.

Finally, model is used to predict dynamics of in vivo aging. The bone marrow constitutes
a MSC niche that conserves stem cell states [183]. Accordingly, the mean noise amplitude
in the niche was assumed to be a strongly stem cell conserving environment (g = 0.15,
Fig. 5.7a). Cell division in the niche increases the stem cell noise amplitudes and thus,
changes the population structure. Thereby, the proliferation activity increases as long as
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Figure 5.6: Simulated properties of single cell-derived MSC clones. a) Growth behavior of
single cell derived clones initiated with cells of age o (o = 0) = 0.1 (young, red), 0.125 (intermediate,
green), 0.15 (old, blue). b) Histograms of the differentiation parameter « in the populations resulting
from the growth process. Cells are considered to be spontaneous differentiated with a > aq = 0.85.
Colors are the same as for growth curves. ¢) Simulated induced chondrogenesis in pellet culture.
Pellets are generated from the populations above. Green cells are functionally differentiated and
their total fraction is given by the numbers. After 14 days of culture the youngest (left) and
oldest pellet (right) contain less functional differentiated cells (number on top) than the pellet of
intermediate age.

the age o(a = 0) is smaller than o = 0.15. Contact inhibition was neglected in the niche.
The simulations started with a small number (4 cells) of initial stem cells of age o¢ (in vivo)
and generated an aging niche population. After this population reached a sufficient age
o(a = 0) = 0.07 four equidistant time points defined four age groups. The obtained differ-
entiation structures were used to simulate the CFU-F capacity of MSC ‘isolated’ at these
time points. Thereby, plating a cell was simulated by changing its mean noise amplitude o
at conserved stem cell noise amplitude o(a = 0) to its value at high oxygen conditions (20%
pO,, Fig. 5.7a). In order to calculate the CFU-F capacity of the age groups 100 cells for
each group were plated and 5 day of colony growth was simulated. Afterwards the number
of colonies that expanded to more than 20 cells were counted. As shown in Fig. 5.7b the
simulated CFU-F capacity was found to decrease with age.

Experimental validation: CFU-F assays of aged rat MSC. In vivo aging of MSC
was demonstrated using MSCs of 3, 7, 12 and 56 weeks old rats (Fig. 5.7c). MSC isolated
from 3 weeks old rats showed a significant higher CFU-F capacity than MSC of all the other
groups (p < 0.05). Moreover, MSC isolated from 12 weeks old rats showed a significant
higher CFU-F capacity than MSC from 56 weeks old rat (p < 0.05). Together these results
demonstrated a continuously decreasing CFU-F capacity of rat MSC with age, in qualitative
agreement with the simulation results. This tendency represents a qualitative result. Quan-
titative predictions of the clone size distribution in a CFU-F assay would require detailed
knowledge about the in vivo age distribution of MSC. Experimental results by D’Ippolito et
al. [170] and Wagner et al. [176] suggest that in vivo MSC can differ by more than 20 cell
doublings.
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Figure 5.7: Simulating and monitoring in vivo aging. a) Noise amplitude profiles in
the stem cell niche at different times. Due to the aging concept these profiles change over time.
Accordingly, the noise amplitude profiles of the populations plated in vitro differ. b) Simulated CFU
units. A continuous decrease of the CFU potential was observed. ¢) Experimental result regarding
the CFU-F capacity of MSC of 3, 7, 12 and 56 weeks old rats.

5.5 Discussion

In a combined experimental and theoretical study it was demonstrated that clonal hetero-
geneity of MSC can be explained by a stem cell aging concept that associates aging with
(de)stabilizing regulatory states. Extending the model introduced in Chapter 3 it was as-
sumed that each cell division induces changes of the environment-dependent noise profile of
a cell. Due to these changes unspecific pre-differentiated cells become more frequent over
time. This is in agreement with experimental observations on stem cell aging [176,184]. The
simulations suggest that also the differences in the chondrogenic potential of MSC clones are
a consequence of such aging dynamics. The presented aging concept is general in the sense
that in vitro and in vivo aging are assumed to base on the same principles independent of
species. This is supported by recent experimental findings that in vivo aging and replicative
senescence in vitro have related effects on stem cells [178].

In the model the cellular environment still determines the mean noise amplitude. Thus,
the environment can either conserve or destabilize stem cell and progenitor states. Affecting
the distribution of the differentiation states it impacts the proliferation activity of the cells
and, thus, also aging. Actually, it may also affect aging directly by controlling the aging rate
rp. Here a constant aging rate independent of the environment and species was assumed.
One crucial component of the environment is oxygen. In terms of the model low oxygen
tension corresponds to a high mean noise amplitude. Increasing oxygen tension decreases
this amplitude and thus, can act as differentiation signal. Accordingly, aged MSC are much
more prone to pre-differentiation at high oxygen tension in agreement with experimental
findings in the Chapter 3. It can be expected that effects of high glucose levels on MSC
senescence [165] can be explained in a comparable way. MSC organization is also affected
by cellular growth factors [185]. In fast and slow growing clones the segregation of such
factors may differ. This study presented experimental evidence that clonal heterogeneity
of a MSC population in vitro is not associated with a significant benefit regarding growth
and chondrogenic differentiation. There is increasing evidence that stem cells adapt to
changing environment utilizing various epigenetic mechanisms including chromatin remod-
eling [31,186,187]. In particular, DNA-replication represents a window of opportunity for
changes in epigenetic states [36]. Histone modifications have been associated with MSC self-
renewal [188]. Changes in such modifications have been observed in aging MSC [189]. Such
changes may reflect the adaptive process of MSC to regenerative demands. Accordingly it
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was hypothesized that each division event forces MSC to actively destabilize stem cell states.
The original stem cell potential is lost in adaptation to proliferative conditions. Metabolic
activity, in particular during DNA replication, causes DNA damages, e.g. by ROS and other
free radicals. It is known, that DNA-damages and concomitant repair processes can induce
genome-wide epigenetic changes [190]. Thus, adaptation to regenerative demands and accu-
mulation of damages appear to be closely linked. Consistently, ROS and other free radical
emissions by cells and tissue were demonstrated to be indicators of aging in vivo and in
vitro [191]. Moreover, ROS was shown to be involved in signaling and stimulating differen-
tiation processes in MSC [192,193]. In agreement with these findings anti-oxidative defense
enzymes delay MSC aging. A prolonged lifespan and an enhanced growth rate were observed
in human MSC cultures supplemented with antioxidants [194]. It can be expected that un-
derstanding the molecular mechanisms linking stress response and epigenetic changes will
pave the way to anti-aging and rejuvenation strategies utilizing epigenetic reprogramming
of adult stem cells [31]. The results presented in this study give a panel of experimentally
testable predictions regarding MSC organization in vitro and in vivo. Regarding in vitro
culture, the model predicts that spontaneous pre-differentiation of aged MSC in vitro will
occur faster with each generation. However, a defined number of initial cell divisions is
required to enable efficient functional differentiation. In the model this number depends
on the mean noise amplitude which is determined by the cellular environment. Thus, the
model predicts that for each isolation protocol and each culture condition an optimal size
of an MSC population exists to which it should be expanded before using it in differentia-
tion assays. The results by Sekiya et al. [195] on chondrogenic differentiation support this
prediction. Regarding in vivo aging, the model predicts that the population structure in
the niche environment changes. In particular, the number of cells sorted by so-called stem
cell markers will decrease while cells sorted by markers for progenitors will increase. It was
demonstrated that the number of functional stem cells in the rat bone marrow decreases
with age. These findings agree with results on human MSC by D’Ippolito et al. [170]. Addi-
tional to changes of the population structure the model predicts an increased turnover in the
aged bone marrow. Whether this will result in an increased release of MSC and what the
consequences of such a release for the whole body would be remains speculative. The results
emphasize that in order to understand MSC organization in vivo it will be of exceptional
interest to study changes of the MSC turnover in the bone marrow with age and in disease.
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Intracellular Processes:

Wnt Signaling and Glutamine
Synthetase Gen Expression in
Hepatocytes

6.1 Introduction

In the last chapters a phenomenological model for differentiation, growth processes and
aging of mesenchymal stem cells was introduced. The degree of cellular differentiation was
summarized by only one cellular state variable «, while another one, 3, specified the lineage.
From a microscopic point of view each combination («, 3) may subsume a set of expression
patterns. The large number of functional and regulatory molecules contributing to the cel-
lular state of differentiation and thus the unfeasability motivated such a phenomenological
model. On the other hand, development and function of a complex organism require precise
control of all molecules contributing to cellular regulation in time and space. Fundamental
are cellular communication and therefore the methods of transmitting information. Among
these methods are diffusing chemical signals like morphogens and contact-dependent sig-
naling via cell-cell contacts. For example, the wingless-family genes are widespread among
species and the function of their protein is crucial in development and homeostasis of many
tissues [61,196-202]. Among the three wnt pathways the canonical wnt/(-catenin pathway
represents the most studied one, and it is directly involved in the zonation of lobuli in the
liver and in particular in regulation of Glutamine Synthetase (GS) activity [203]. In this
chapter regulation of GS activity based on wnt signaling serves as an example for modeling
cellular regulation on a molecular level.

73
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Figure 6.1: APC and GS activity after tamoxifen induced APC knockout After APC
knockout the pericentral phenotype spreads over the whole lobule. After complete loss of APC GS
activity can be observed in close proximity to the portal triad.

6.2 Background and Experiments

Glutamine Synthetase is found in the liver, one of the key organs in higher metazoan,
and is involved as one key enzyme in nitrogen metabolism. Within the liver it is exclusively
expressed in the pericentral hepatocytes complementary to the region of ureogenesis. This
geometry is essential for liver function, because it enables GS to guarantee homeostasis of
blood levels of ammonium ions and glutamine [203]. Recent results on liver zonation have
shown that the wnt-pathway is the key to understanding the zonation. These results assigned
adenomatous polyposis coli (APC), a component of the S-catenin-degradation complex, the
role of “zonation keeper” [204,205]. In these experiments, APC knockout is followed by
establishment of a pericentral phenotype in the whole lobule. GS expression starts spreading
after day 3 from the proximal pericentral hepatocytes and covers the whole lobule after day
5 (Fig. 6.1, [204]). Similar results are observed after an induced overall expression of (-
catenin. Finally, overall expression of Dkk leads to almost complete loss of the pericentral
phenotype and generation of the periportal one in the whole lobule. Together these results
strongly indicate the role of the canonical wnt-pathway for regulation of GS. Although little
is known about how APC is regulated, it is questionable to consider APC alone as the
zonation keeper, because complete knock-out of APC is equivalent to knock-out the whole
destruction complex.

After identification of the signaling pathway, a regeneration experiment gives some hint
on the mechanisms of signaling. CCl, intoxication affects mainly the pericentral region of
the liver [206]. Four days after CCly intoxication the pericentral hepatocytes die and, thus,
GS activity is lost. After another 4 days GS activity is regenerated in the lobule (Fig. 6.2).
Regeneration of GS activity starts after the first contact of hepatocytes to the endothelial
cells of the vein is formed, although not necessarily in the hepatocytes establishing this
contact. This may be a sign of contact-dependent signaling and would be in accordance
with wnt-signaling (see below). In the course of regeneration an overshoot of GS activity is
observed but returns soon to the original level [207].

In-vitro GS expression can be induced de novo in GS-negative periportal hepatocytes
by co-culture with RL-ET 14 cell, a hepatic epithelial cell line. In direct contact and close
vicinity with RL-ET 14 cells GS-negative hepatocytes start GS expression [208]. In one
set-up contact was inhibited using a plastic ring, and only after removal of the ring GS
expression was induced in a layer of approx. 15 cells. From day 4 to day 5 after removal
GS activity was still increasing in the cultures. In presence of Dkk no de novo expression
was observed, thus confirming the key role of wnt in this process [209]. Indication of a
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Figure 6.2: GS regeneration after CCl; intoxication. At day 0 the original expression
pattern is seen and CCly is injected for the first time. After day 4 and three CCly injections GS
activity is fully destroyed. At day 6 GS activity is slightly regenerated and after day 8 regeneration
has completed.

contribution of diffusive wnt was shown by treatment of hepatocyte with preconditioned
medium from RL-ET 14 cells, which resulted in increased GS expression, although the level
did not reach the ones found in co-cultures [208].

Wnt-pathway Wnt genes encode a class of roughly 20 small proteins, which are involved
in virtually every aspect of embryonic development [196,197]. The central component of the
wnt-pathway is (-catenin representing the trigger of transcription. A schematic sketch of
the canonical pathway is shown in Fig. 6.4.

In absence of wnt §-catenin is phosphorylated by the destruction complex, precisely, by
Casein Kinase 1 (Ckl) and Glycogen Syntase Kinase 3 (Gsk3). Both kinases compose the
degradation complex together with the scaffold protein Axin and adenomatous polyposis coli
(APC). Phosphorylated [-catenin is ubiquitinated and finally degraded by the proteasome
[196,197]. This results in a high turnover of f-catenin and a average half-life time of only
30 min [199].

If wnt signaling is present, the surface receptors Frizzled (Fz) and its co-receptor LDL
related protein 5 or 6 (Lrp5/6) mediate it to the cytoplasm. The wnt-induced Fz-Lrp5/6
complex formation promotes recruitment of Axin and Gsk3 from the cytosol and initial
phosphorylation of Lrp5/6 by Gsk3. Phosphorylated Lrp5/6 provides a docking site for ad-
ditional Axin-Gsk3 complexes, which enables further phosphorylation [210]. Recruitment of
these essential parts of the degradation complex inhibits S-catenin-degradation and stabilizes

Figure 6.3: GS de novo expression in rat
hepatocytes in co-culture with RL-ET 14
cells. Hepatocytes (H) are found in inside of the
ring co-culture with RL-ET 14 cells (E). Three
days after removing the plastic separation ring GS
is detected in a small layer of hepatocytes near the
interface with RL-ET 14 cells.
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cytosolic B-catenin level [199]. Nuclear 8-catenin-buffers ensure a switch-like behavior of the
T cell factor (TCF): at low [-catenin-concentrations TCF/Groucho acts as a silencer, but
above a certain threshold S-catenin/TCF if formed and changes TCF into a transcription
factor [199]. Stabilized cytosolic B-catenin provides sufficient nuclear (-catenin to initiate
transcription of wnt/(-catenin targets. One of the many targets of S-catenin/TCF is the
wnt-antagonist Dickkopf-1 (Dkk). Dkk introduces a negative feedback into the wnt-pathway
by docking to the same surface receptors as wnt [211]. After release of Dkk into the extra-
cellular medium it binds to Lrp5/6 and inhibits the recruitment of Gsk3 [212].

Transport of signaling molecules: It has been shown, that wnt function and trans-
port depend on lipid modifications at two sites [213]. This results in a strong affinity to lipids,
in particular to the cell membrane. However, wnt is found to some unquantified extent in
the supernatant [209]. For diffusion in aqueous media like the supernatant attachment to
other molecules like heparan sulfate proteoglycans (HSPGs) or integration into vesicles is
necessary [214]. For free diffusion in the medium this results in a much smaller diffusion
coefficient due to the size of the transporter complex. But transport mechanisms of wnt are
still subject of heavy debate. Evidence for other mechanisms of transport like membrane
bound transport or transcytosis, i.e. repeated rounds of internalization and externalization,
has been reported [215]. It may be viewed as a support for the hypothesis of transcytosis,
that wnt was found to be associated with argosomes and their speed of transport to be
consistent with the speed of motor proteins and the rate of wingless spreading [215].

The wnt-antagonist Dkk is soluble and can diffuse more rapidly than wnt [216]. Neverthe-
less, because all receptors are internalized and externalized, Dkk may spread by transcytosis,
too.

6.3 PDE System for Activator and Inhibitor

Recently Sick et al. [61] have studied the wnt pathway as a possible control mechanism in
the distribution of rat hair follicle. They applied modified Gierer-Meinhardt equations for
wnt as the activator and Dkk as the inhibitor. Here the following very similar system is
used, which differs from the system of equations used by Sick et al. [61] by the advection
term that mimics for the in vivo case the blood flow transported from the periportal field
to the central vein in the liver by the additional advection term vV [wnt/dkKk]:
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& [;tht] = DyntA [wnt] + vyt V [wnt] + pyne F([wnt] , [dkk]) — fynt [wnt]
. [g?k] = DawcA [dkk] + vawV [dkk] 4 paacF([wnt] , [dkk]) — prawic [dkk] (6.1)
F([wnt], [dkk]) = [omt]

(K + [dkk])(1 + & [wnt]?)

[wnt] and [dkk] are the time and space-dependent concentrations, Dyye and Dy the diffu-
sion coefficients, pwnt and pqkx the production constants of wnt and dkk, respectively. The
Hill function F' guarantees production saturation for both species and v; is the velocity of
advection of species ¢ = wnt, dkk. Both species are assumed to diffuse, but the formation of
the observed pattern required a much faster diffusing inhibitor Dgyy > Dy in agreement
with slow diffusion caused by palmitoylation of the wnt molecule. The coupling of both
equations is found in the production term where both concentrations enter into the Hill
function.

Here this model system of activator-inhibitor-interplay was used as a first approach to
modeling GS expression in the liver. Motivated by the circular arrangement of the co-culture
experiment and the geometry of a liver lobule, a 1D system was chosen for simplicity. RL-ET
14 cells and endothelial cells of the central vein were assumed to supply a constant activator
signal representing wnt. This source of wnt was set at x = 0. A solution for the parameter
set given by Sick et al. [61] was calculated using Mathematica. The model parameters are all
dimensionless, but related to experimentally measured quantities by length and time scales.
All parameters are given explicitly in Table 6.1.

Initial conditions assume vanishing concentrations except for the constant wnt-signal
at z = 0. Neumann boundary condition incorporate vanishing spatial derivatives at the
boundaries and thus reflect a closed domain. Three scenarios are tested:

1. For in witro culture the advection term vanishes, v; = 0 for wnt and Dkk. Dkk
is transported by diffusion, while the mechanism for wnt is unspecified (diffusion of
transporter complexes, transcytosis, membrane bound).

2. In the liver there is a constant flow of blood causing an advection term with v; > 0 for
Dkk and wnt, if both are transported in the extracellular medium by diffusion.

3. If wnt is not found freely in the medium and does not diffuse, but is transported by
transcytosis or membrane bound, advection affects only Dkk transport: vqgk > O.

The results of the system for the parameter values in Table 6.1 are shown in Fig. 6.5. The
concentrations approach an equilibrium. Assuming an activator threshold of 0.1 for the GS
production and setting the length scale to 2-3 cell diameter, the PDE approach yields for
the case without advection (v = 0) a layer of 10-12 cells. If advection affects both species,
this layer reduces to 2-3 cells and the number of activated cell producing both molecules
strongly reduced leading to a much smaller total Dkk content. If only Dkk is affected by

Dynt Ddkk  pwnt Pdkk  Hwnt  Mdkk K kW
0.005 0.2 0.005 0.02 0.0056 0.015 0.1 o0.01 1

Table 6.1: Dimensionless parameter for the first test of the simple activator-inhibitor-system for
the zonation of the liver as given in [61].
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Figure 6.5: Solutions of the simple 1D activator-inhibitor PDE approach (Left: wnt, Right: dkk).
A constant wnt signal is found at z = 0. The z-axis represents the portal-central axis and activator
threshold for GS is assumed to be 0.1. Assuming transport conditions according to the scenarios
1-3 a layer of 1.~15(top), 2. ~3 (middle), and 3. (unchanged to 1) ~15 GS-positive cells is found.

diffusion, the layer is unchanged compared to the case without advection, because even a
small concentration of the inhibitor Dkk (=0.1) reduces the production term by 90%, even
at maximal activator concentration. This setting of parameters results in a fast approached
equilibrium with only a small production term for both molecules close to the source of the
activator, which is responsible for the equilibrium.

Discussion of PDE approach: As a first interpretation, the results of this simple ap-
proach would suggest diffusion based wnt transport, because the difference in the extent of
GS-activated layer between static situation and the one affecting both species by advection
is of the same order as between in-vivo and co-culture.

But despite a simple explanation of control of GS expression, some effects of possible
impact are neglected:
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Activation as assumed in the PDE system includes positive autoregulation of wnt. Al-
though several feedback loops for autoregulation of the wnt-pathway exist like the regulation
of Frizzled, Lrp5/6, HSPG, Axin2, TCF/Lef and Dkk (e.g. [196]), a direct transcriptional
autofeedback loop of wnt has only been reported for a pluripotent mouse embryonal car-
cinoma stem cell line (P19CL6) by Deb et al. [217]. Considering the complexity of wnt-
regulation including e.g. cross-talk with other pathways like MAPK /Erk [218,219] etc., the
generalization from a cancer cell line to all mammalian cell, in particular hepatocytes, is
highly speculative.

Delay in release of a target caused by transcription, translation and externalization is
completely neglected as production of both, activator wnt and inhibitor Dkk, starts imme-
diately. According to Gonzélez-Sancho et al. [211] S-catenin is found in HeLa cells after
approx. 4h and Dkk-1 RNA after approx. 12h of wnt treatment. HeLa cells are a cell
line, which proliferates abnormally rapidly and impact of immortalization on the cellular
regulation in general and (§-catenin in particular cannot be excluded, which does not allow
generalization.

Geometry in a co-culture and in the liver includes a different radial dilution of diffusing
substances. This effect would at least introduce a factor of order 1/x which is neglected,
too.

Conclusion: The 1D activator-inhibitor PDE approach extremely simplifies the system.

However, it provides a possible explanation for the different ranges of GS expression in a liver
lobule and in vitro culture. It suggests, that either wnt transport is affected by portal-central
flux to similar extent as Dkk or a wnt antagonist is found in the periportal compartment
like reported for hras/serum [218].
The shortcomings of the simple 1D PDE approach are circumvented by integrating a model
for the wnt pathway into the individual cell-based model. A detailed model for transport
mechanism similar to Bollenbach et al. [220] will be included as well as a model of the wnt
pathway in the cell. Application of the model does not include cellular motion, but an
integration into the full 3D model of a liver lobule by Stefan Hoehme [221] is projected.

6.4 Individual Cell-Based Model for wnt Signaling

Reduction to Key Species and Processes

In order to keep the simulation strategy for the observed GS expression in vitro as clear and
simple as possible, reduction to key components is essential. Starting with the wnt-signal
and following the pathway downstream, as depicted in Fig. 6.4, one arrives at the following
conclusions for the agents of the pathway:

Wt is the morphogen suggested to introduce GS expression.

Receptors transmit the exterior wnt signal to the interior of the cell. Because surface
expression of both receptors is necessary for activation of the pathway and wnt and
Dkk compete for the activating receptor [196], it is not distinguished between both
types of receptors. Dsh is only forwarding the signal downstream, and is therefore not
included into the model.

Destruction complex initiates -catenin degradation by marking it for ubiquitination.
It is inhibited by wnt-bound receptors. Because the regulation of its constituents is
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Figure 6.6: Geometries used in the Simulations. a) Concentric co-culture as used in [208]
and b) simple geometry mimicking a liver lobule after CCly intoxication, composed of a small
circular area of wnt-positive cells in the center (endothelial cells of the central vein) surrounded by
GS-negative hepatocytes. c¢) Co-culture experiments of a random mixture of RL-ET 14 cells and
hepatocytes.

largely unknown it enters via a Michaelis-Menten approach of competitive enzyme
inhibition.

(-catenin concentration is controlled by the activity of the degradation complex. Above
a threshold it initiates transcription of the wnt/S-catenin targets.

Dkk is a S-catenin/TCF target and a wnt antagonist. By competing for the same receptors
it introduces a negative feedback into the network studied here.

GS a (-catenin/TCF target and the species studied in the co-culture experiments.

Note, that for a better overview the parameters are summarized in A.4.4.

Simulation Scenarios

The simulation focuses on spreading and processing of the wnt-signal. At this stags it does
not include growth and motion as presented in the previous chapters. Thus cell positions
were kept fixed throughout the simulation and initialized in various geometries, two of

them modeling co-culture experiments and another one as a simple model of a liver lobule
(Fig. 6.6):

1. Modeling co-culture geometry 1: In one co-culture experiment, a plastic ring initially
separating RL-ET 14 cells and hepatocytes is removed and contact between the two
cell types is established. This situation of RL-ET 14 cells enveloping GS-negative
hepatocytes is used as initial configuration.

2. Modeling the hexagonal liver lobule after CCl, intoxication: a small circular area of
wnt-positive endothelial cells mimicking the central vein is surrounded by GS negative
hepatocytes.

3. Modeling co-culture geometry 2: random positions of RL-ET 14 cells in various den-
sities.
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Figure 6.7: Lattice of the
intercellular spaces and
morphogen related pro-
cesses. The dense sphere
packing in two dimensions re-
sults in a honeycomb lattice
of contacts. Both species, wnt
and DKk, are restricted to the
lattice and the medium. In
general all processes happen
with different rates for wnt
and Dkk. They are released
into the contacts with k*™.
Both molecules hop from con-
tact to contact with kP°P. In
a contact they bind to free
receptors on the surfaces of
both cells and dissociate with
k°® and k°F, respectively. If
not bound both molecules are
degraded with k9°8,

Geometry

The geometry of the model, i.e. cells, contacts and inter-cellular spaces, is defined by the
included processes. Transcription/translation and [(-catenin regulation happen in the in-
terior of cells and are therefore spatially separated and associated with each cells interior.
Receptor dynamics and membrane associated transport takes place in the vicinity of the
membrane. A discretization of the membrane is given by the cell-cell and cell-medium con-
tact areas. Contacts between two cells ¢ and j can be assigned unique labels (i, j) similar to
Bollenbach et al. [220]. In a dense sphere packing of a monolayer this results in a honeycomb
lattice, where every cell inside the colony has six contacts to other cells (see Fig. 6.7). In a
2D culture each cell has access to the medium. This is accounted by an additional seventh
contact to the medium. In the medium, which is discretized by a rectangular lattice, a frac-
tion of signaling molecules can freely diffuse, and enter the matching cell-cell contacts from
the medium and vice versa. The rectangular medium lattice in which diffusion is modeled
is chosen so that an equal number of contacts is found in each medium lattice site if each
contact is mapped to the lattices site its center is located in. Hence the ratio of the lattice
constants is v/3/2. If a cell-cell contact is empty due to boundary effects it is regarded as
an extra contact to the medium and identified with the corresponding medium lattice site,
too.

wnt turnover

In summary, the wnt dynamics included by the proposed model consists of production and
release, membrane bound transport and free diffusion, receptor binding and unbinding and,
finally, the degradation of unbound molecules (see Fig. 6.7). In the following these processes
are explained in detail.
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Production of wnt happens without positive auto-feedback only in RL-ET 14 cells or the
endothelial cells of the central vein, since a direct transcriptional autofeedback loop for wnt
has only been reported for a carcinoma stem cell line [217]. Restriction of wnt-production
to these cells is also motivated by the observation that GS-positive cells do not induce
GS expression in other hepatocytes. The production rate ki’ is assumed to be constant
and equal for all wnt-positive cells. wnt is released into extracellular space, this means
transported equally to all contacts of the respective wnt-producing cell. Each cell i has
seven contacts (six to its neighbor cells, one to the medium that covers the cell population)
and therefore releases on average

d 1o
% [Wnt]syn = ?kwsivynt (62)

into each of the surrounding contact spaces (i, j) to other cells or the medium.

Transport of wnt: Similar to the model presented by Bollenbach et al. [220] each cell-cell
contact between two cells in the interior of the culture has boundaries with contact areas
to the substrate, other cell-cell contacts and the medium. From a cell-cell contact the wnt
molecules can therefore transfer into the medium and neighboring contact spaces, but not
into the solid substrate. Transfer into another cell-cell contact occurs with hopping rate
k‘l,]v?ft’ and equally into all neighboring contacts. Thus, the molecules are assumed to move
independently. The same accounts for molecules entering cell-cell contacts from the medium
with a rate k'™ or leaving the intercellular space into the medium with £°"*. Depending on
the number of molecules, these processes happen stochastically with equal rates for small
molecule numbers or deterministically as the average for large numbers. The contribution
to the change of [wnt] ({i,7)) in contact (i, j) by transport is therefore on average given by:

%[Wnﬂmp(@ﬁ) =kam D [wnt] (k1) — 4 kgt [wnt] ({7, 5)

nn(i,j)
+ ki [wntlyy — kS [wnt] (G, 1)), (6.3)

where the exchange with other cell-cell contacts and the medium are given in the first and
second line, respectively. The sum runs over all cell-cell contacts (k,[) connected to contact
(i, ) by a common edge and [wnt],., the concentration in the medium lattice site the contact
is situated in. Note, that this model of membrane bound diffusion of free wnt molecules is in
principle applicable for modeling other transport mechanisms: Allowing the ligand-receptor
complexes to translocate to neighboring contacts mimics 2D diffusion within the membrane,
and transcytosis can be modeled making any contact accessible for the complexes, but no
major differences are expected according to the results of Bollenbach et al. [220].
The contribution of hopping to a concentration change in a lattice site of the medium,
that is in contact to the 2D culture, is calculated analogous.
d .
pn [wnt],,,, = kot Z [wnt] ({2, 5)) — ne kye [Wnt] ), (1), (6.4)
(i,5)€l
where the sum runs over the cell-cell contacts (i, 7) within the considered medium lattice site
l and n. is their number, for this particular choice of lattice holds n. = 3/4. The first and
the second term represent the molecules leaving and entering cell-cell contacts, respectively.
Normal Diffusion of wnt is restricted to the medium. Within the medium concentrations
are calculated solving the diffusion equation

O [wnt], (r,t) = DyneA [wnt]y, (r, ), (6.5)



6.4. INDIVIDUAL CELL-BASED MODEL FOR WNT SIGNALING 83

with the diffusion coefficient of wnt Dy, and it’s concentration [wnt] (r,¢). The diffusion
equation is solved on a rectangular lattice chosen as reasoned above. Due to the mentioned
lipidmodification of wnt a small diffusion coefficient is assumed.

Binding/unbinding to receptors is a dynamic process transmitting the wnt signal into
the cell and propagating it downstream [196]. A free wnt molecule in the intercellular is
assumed to bind to a free accessible receptor with a rate k2%, . Accessible receptors are those
located on one of the surfaces confining the contact associated with the molecule’s position.
Wnt molecules bound in a contact in a wnt-receptor complex can dissociate with k% and
a wnt molecule is released into the intercellular space of the contact leaving a free receptor.

k.()ll

wnt

[wnt] + [R] [wnt-R] . (6.6)

ko
For the reaction rate a simple mass action law with constant rates is assumed, so that the
resulting difference of free wnt-molecules, free receptors and wnt-receptor complexes is:

d
7 lwnt], = k3 [wnt] [R] + kG5, [wnt-R] (6.7)
where the subscript r denotes the contribution of the binding-unbinding process to the total
change of wnt in the considered contact. The ratio of k%, and k°%  defines the ratio of
bound/free receptors in equilibrium and in absence of wnt.

Degradation of wnt is assumed to affect only free wnt molecules. These molecules are
degraded at a constant rate kfvflgt so that the number of degraded molecules in each contact

and medium lattice site is given by:

= — k38 [wnt] . (6.8)

N [Wnt]deg - wnt

dt

Summing up the contributions Summing up all contributions of the processes de-
scribed above one arrives at the full equation for the wnt content in a contact.
1

- ksyn

N [Wl'lt] = 7 wnt

dt

+ kgl > wnt] ((k, 1)) — 4 kgok [wnt],, + Kif [wnt],, — kS5 [wnt] ((i, 5))
nn(i,j)
ome [wnt] [R] + kom; [wnt-R] (6.9)

_ kdeg

'wnt [Wnt] N

Dkk turnover

Dkk is the antagonist of wnt by competing for the same receptors. The same processes
of production, transport, un/binding and degradation control Dkk-concentrations, but two
main differences exist:

e Dkk is not palmitoylated
e Dkk is a target of the wnt/S-catenin pathway.
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The first difference results in different transport parameters Dgy and kﬁﬁi’ in the analog
equations to Egs. (6.5) and (6.3). The second difference manifests in Dkk transcription
depending on the cytosolic 5-catenin concentration and implications.

Dkk is only produced if the [-catenin concentration in a hepatocyte exceeds a certain
threshold [3-catenin ], #-catenin enters into the nucleus and 3-catenin/TCF promotes tran-
scription of Dkk. Transcription, translation, intracellular transport and externalization are
subsumed in a delay of Dkk production by the parameter Atqxk. Dkk is released with a pro-
duction rate k:(sﬁ(’f{ into extracellular space only Atqk after reaching the g-catenin-threshold
of transcription [3-catenin ].. Analogous, Dkk production is terminated only after Atqyy, if
the cellular 8-catenin-concentration has dropped below [3-catenin |,.

Because the wnt sources, RL-ET 14 and hypothetically endothelial cells of the central
vein, stably express wnt in the model, they are also assumed to be unaffected by the wnt
signal and excluded from the Dkk-producing cells. For stability reasons, start and stop
of transcription is assumed to be separated by a threshold of §-c. + 5%. Otherwise the
fluctuations in the model would result in a permanently fluctuating rather than a stable GS
activity.

Receptor competition

Both ligands bind to and unbind from the receptors by the simple reaction 6.6. In analogy
to Eq. (6.7) the number of receptor molecules in each state is given by:

d
o Bl = —kgne [wnt] [R] — kg [dick] [R] + ko [wnt-R] + kg [dkk-R]
%[R—wnt] = ko8, [wnt] [R] — k2T, [wnt-R] (6.10)
d on (o]
7 Rrdkk] = ki [dik] [R] — ki [dik-R]
Rlio: = [R]+ [R-wnt] + [R-dkK]

k°f/k°n are individual for each ligand and their ratios define the concentration for half-
receptor-occupancy at vanishing concentration of the other ligand.

B-catenin turnover

In contrast to the other system components (-catenin does not leave the cells’ interior. (-
catenin is assumed to be produced in the cells at a constant rate & in all hepatocytes.
Degradation on the other hand is an enzyme reaction dependent on the amount of wnt-
bound receptors [196]. For a constant destruction complex level in the cytosol it follows a
Michaelis-Menten kinetics with [-catenin as the substrate S and the destruction complex
as the the enzyme FE:

k1 ko d Vinaz [ﬁ—catenin ]
E+S——=ES—>E+P d 2 [B-catenin ] = — . (6.11
+ - —F + an o [B-catenin | [-catenin | + Ko (6.11)

where K, = (k_1+k2)/k1 is the Michaelis-Menten constant and V4, = k2 [E], the maximal
reaction rate. The latter depends on the amount of available enzyme [E],. As reasoned above
the amount of available enzyme depends on the number of wnt-bound receptors, which are
recruiting the scaffold protein Axin and the kinase Gsk3. Hence one can apply Michaelis-
Menten for competitive inhibition of enzymes.
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k,
E + S % ES — E + P . . . .
N § Figure 6.8: Competitive enzyme inhibi-

tion. Another binding partner competes with
the substrate of the enzyme reaction for the en-

k-%ks zyme and binds it reversible. Inhibitor-enzyme
complexes are inactive and do not degrade the in-
EI hibitor.

Competitive enzyme inhibition. is given if an inhibitor prevents the reaction by
binding to the enzyme and blocking the active site, without undergoing a reaction. Obviously
the recruitment of Axin and Gsk3 to the receptor-dimer acts in a similar way. It is not exactly
the enzyme reaction with competitive inhibition as shown on the right, because of the many
components of the destruction complex and restriction of this particular inhibitor to the 2D
domain of the cell membrane. But it holds true, that the wnt-bound receptors act as an
inhibitor competing for essential components of the degradation complex. This motivates
applying the Michaelis-Menten analogue of competitive enzyme inhibition as derived under
the steady-state assumption [222]:

Vinaa [S-catenin ] k_s
A 9 kinh =
[B-catenin | + K, (1 + [wnt-R] /kinn) ks

4 [B-catenin | = —

o (6.12)

where the amount of wnt-bound receptors [wnt-R] replaces the inhibitor concentration
[Il, and enters directly into the differential equation for the (-catenin concentration. The
reaction is determined by three further model parameter. V.., = [E], k2 is the maximum
[-catenin degradation rate, K,, = k_1 + ko/k1 the Michaelis constant for the [-catenin-
degradation representing the substrate concentration for half maximum rate and no inhibitor
and, finally, the strength of inhibition given by the dissociation constant of the inhibitor k;,,-

GS

[-catenin-dependent transcription starts only if [3-catenin | > [G-catenin |_, but analogous
to Dkk GS production is delayed by Atgs. After the delay GS is assumed to be produced

at a constant rate kgig and to accumulate only in the cytosol. Degradation of GS by the

proteasome happens at a constant rate ké%g and is assumed to follow the law of mass action.

Simulation Parameters

To best knowledge, no quantitative data on the detailed molecular concentrations of the
species and related time constants is available in sufficient detail. Regarding time scales
the only cornerstones are given by measurements of J-catenin-activity in HeLa cells after
wnt3a treatment, where 3-catenin is observed after 4h of treatment and has almost vanished
after another 4h [211]. Qualitative measurements of GS activity in hepatocytes have been
reported, in which GS is observed after 2-3 days in APC knockout mice (e.g. [204]), and after
CCly intoxication experiment in rats [209]. Considering the lack of quantitative knowledge
on the parameters and their general scalability, the results from those non-human systems
are used for first parameter estimates. The set of parameters presented summarizing in
Table A.5 has been chosen to best knowledge on the basis of analogies after a thorough
discussion with the experimental collaborators [209].

Because the wnt-pathway is expected to be very sensitive, the inhibitor dissociation
constant k., in Eq. (6.12) that quantifies the inhibitory effect of wnt-bound receptors on
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the destruction complex was set such that already a few receptor-bound wnt molecules have
a notable effect. For the parameter set found in A.4.4 Eq. (6.12) gives a minimum number
of 57 wnt-receptor complexes that is necessary for stabilizing (-catenin-concentration above
the transcription threshold (-c.. Otherwise the cytosolic concentration of S-catenin is below
this threshold and (-catenin is not able to initiate transcription.

Although in biological systems the receptor density is regulated, for simplicity N, is
assumed to be constant and equal for each cell. For their stochastic initialization the number
in individual contacts may vary slightly. In the line of a very sensitive wnt-pathway, also a
much bigger total receptor number of N, = 700 was chosen such that the equilibrium of free
to occupied receptors in Eq. (6.10) favors wnt binding in vicinity of the switch.

6.5 Results

6.5.1 Simulated concentric co-culture
Wnt-producing RL-ET 14 cells envelop hepatocytes.

Reference simulation In the co-culture experiment using a concentric geometry the final
GS expression pattern was used for fitting the parameter. A stable layer of =~ 5 — 6 GS ex-
pressing cells was achieved using the simulation parameter given in Table A.5 (see Fig. 6.10
a). The underlying dynamics is documented by the time series of all concentrations for
every cell (see Fig. 6.9 for selected cells). Wnt spreads from the RL-ET 14 cells into the
interior resulting in an equilibrated radial gradient as indicated by the dark red curve. With
increasing wnt in the extra-cellular environment, the number of wnt-receptor complexes in-
creases (yellow) and inhibits degradation of S-catenin (green). This results in an increasing
[-catenin concentration in all cells. In the nine cells closest to the RL-ET 14 /hepatocyte
interface the internal $-catenin-concentration rises to values above the transcription thresh-
old (-c indicated by the black line at 100 molecules. After the delay Atqx, Dkk (shown
in blue) is released into the extracellular space and after Atgs GS (black) appears in the
cell. With the increasing number of Dkk molecules competing for the receptors the number
of wnt-receptor complexes reaches a maximum and decreases to its equilibrium occupation,
while the number of Dkk-receptor complexes saturates. This effect causes also a decrease of
the [-catenin-content and ceasing expression of the two targets in three of the nine cells in
Fig. 6.9. The total GS activity in the colony can be quantified by counting the cells with
a GS concentration above a certain threshold. Fig. 6.11 shows the time course with the
GS activity overshoot predicted by the reference simulation (red). Interestingly, such an
overshoot has precisely been observed in hepatocytes after a CCly intoxication [209].

Parameter variations: Oscillations & Co. In order to permit experimental verification
of the model the possible GS-pattern in vitro were predicted for several parameter variations
including the initial arrangement of the cell types. Because the wnt-gradient in the colony
is only determined by production and transportation, an increase of the size of the wnt-
positive layer or wnt-production leads to a greater amount of wnt in the system and, thus,
in a larger number of GS-positive hepatocytes and an extension of the layer (see Fig. 6.11,
green). Increasing transport smoothes the wnt gradient in the colony and also extends the
region of transcription if sufficient wnt is available.

The size of the layer can also be influenced by changing parameters of g-catenin-dynamics
like the (un)binding rates of the ligands, shifting the equilibrium distributions of the two
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Figure 6.9: Details of the underlying dynamics of all pathway components for individ-
ual cells on a radial path. Each plot shows the pathway components for individual hepatocytes
(center distance Dcenter given above the plot) with the colors encoding the following: dark red:
extracellular wnt, yellow: wnt-receptor complexes, green: [(-catenin , dark blue: extracellular Dkk,
light blue: Dkk-receptor complexes, black: GS, black line indicates [-catenin-threshold. After
spreading of wnt (-catenin concentrations rise, and Atqkx after the (-catenin-threshold is reached
Dkk is released in the extracellular space followed by a decreasing number of 3-catenin/receptor
complexes. After equilibration GS expression is stable in a six cells thick layer, but four cells closer
to the interior show only a short period of GS expression.

receptor complexes, the parameters of enzyme inhibition V4., K, and k;j,p, or the tran-
scription threshold (-c.. For example, increasing the transcription threshold §-c. from 100
to 150 reduces the final layer of GS-positive cells by ~ 40% (see Fig. 6.10 b). A decrease in
the receptor unbinding rate for wnt k%% results in a higher fraction of wnt molecules bound
to receptors without changing the concentration of unbound wnt, and therefore higher sen-
sitivity of the (-catenin regulation to wnt. Reducing k% by 50% results in a layer of
GS-positive cells of double extent (see Fig. 6.10 ¢). An increase of the number of wnt-
producing cells in the outer rim causes an increase of the final number of GS positive cells
as could be expected (Fig. 6.11).

Oscillations occur if g-catenin and Dkk dynamics, production, degradation are fast. If
local Dkk levels rise fast enough, Dkk replaces wnt at a sufficient number of receptors to
cause the [-catenin level to drop below the transcription threshold again. The oscillatory
effect of fast increasing levels of Dkk in the cells environment is diminished by an increase of
Dkk diffusion. After termination of transcription Dkk is degraded fast, slowly moving wnt
is still present to bind to the receptors and [-catenin levels increase again. Snap shots of
such a scenario is shown in Fig. 6.10 for slow (d) and faster (e) Dkk diffusion. For faster
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Figure 6.10: Resulting GS pattern of simulations in concentric geometry. Simulation
results for various parameter sets is concentric cultures. Grey cells are RL-ET 14 cells, colored
cell have different GS activities, ranging form red: no activity to blue: full activity. a) Reference
Simulation of a stable GS layer using the parameter given in Table A.5. b-d) are snapshots showing
GS pattern of various simulations of the sensitivity analysis. b) The most direct parameter affecting
expression of the target genes is the [S-catenin-threshold. Raising it results in a smaller stable GS-
positive layer. ¢) The equilibrium concentration of receptor-bound wnt is affected by binding and
unbinding rates of both ligands. A smaller unbinding rate for wnt for example results in a broader
stable GS-positive layer. d) Acceleration of the Dkk dynamics leaving wnt-related parameter fixed
results in oscillations as indicated by the wave of GS expression. €) The range of oscillations depends
on the diffusion coefficient. For a faster diffusion of the antagonist Dkk (greater Dqxi) the range of
oscillations decreases. f) Inversion of the geometry results in a much thinner GS layer.

diffusion the GS wave is less pronounced. In contrast to (d) it vanishes completely before
reaching the center of the colony.

The period of the oscillation changes with the delay of Dkk production Atgyy. Decreasing
the delay shortens the time until wnt is replaced at the receptors and therefore the reduces
the total time until wnt is bound to the receptors again. A similar effect is found for a faster
production or degradation rate of Dkk. The strength of the effect depends on the ratio of
the considered process, delay or production, to the total oscillation period. Locally for each
cell it can be understood as a damped oscillation with the transport acting dissipative.

Modeling a liver lobule: hepatocytes envelop wnt-producing cells.

A simple way of mimicking the geometry of the liver lobule, where a small number of GS-
positive cells close to the central vein is enclosed by numerous GS-negative cells of the
periportal space, is to simply reverse the geometry and to place the wnt-source in the center
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of the colony as shown in Fig. 6.6. Using the same parameter set that led to a stable GS
activity within a layer a couple of cells thick in this case results in a much steeper §-catenin
gradient and in a much smaller GS-positive layer of only 2-3 cells. For the dilution of the
signal with radius r, the gradient of wnt and Dkk concentrations is much steeper in case
of a wnt source at the center as in the liver lobule. Thus the pattern in the liver and in a
concentric co-culture might be explained simply by the reverse geometries without necessity
of complicated considerations of flow in the lobule. For the small number of wnt-positive
cells no overshoot of GS activity is seen (Fig. 6.12, red curve), but increasing the number
of wnt-positive cells and the amount of wnt produced in the center results in an extended
GS-positive layer, therefore higher Dkk-levels, replacement of wnt at the receptors and the
overshoot in GS activity seen in Fig. 6.12, green curve. For modeling the overshoot the
effect of a higher total Dkk production and therefore a decreased fraction of wnt-binding
receptors can also be achieved by increasing the receptor binding rate of Dkk kgj;, as shown
in Fig. 6.12, blue curve. This suggests a higher receptor affinity of Dkk in comparison to
the one of wnt.

6.5.2 Simulations of a random co-culture

Another geometry apart from the concentric pattern was applied in the co-culture experi-
ments. Small islands of hepatocytes at random positions are surrounded by RL-ET 14 cells.
Here the cell type of each individual cell was picked at random with probabilities leading to
a various fractions of RL-ET 14 cells. Fractions of 2% 10%, 25%, 33% and 40% of RL-ET 14
cells and the parameter set of the reference simulation were used. GS expression was seen at

200
Figure 6.12: GS activity in lobule-like ge-

ometry. In this geometry no overshoot and sub-
150 sequent equilibration is seen for simulations us-
ing the parameter set of the reference simulation

"2 100 (red). An overshoot is produced by increasing the
z wnt signal from the endothelial vein by increasing
%MNMMM the number of wnt-positive cells. This results in

50 A $ a thicker GS-positive (and Dkk expressing) layer

and an overshoot (green). The same effect can be

0 achieved at the receptor level by increasing Dkk

0 24 48 72 9 120 144 168 192 receptor affinity, which as a consequence reduces
t/h the final GS activity (blue).
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Figure 6.13: Resulting pattern of random order simulations. GS expression strongly
depends on the density of RL-ET 14 cells as seen for fractions of a) 2%, b) 10%, c) 25%, d) 33%
and e) 40% RL-ET 14 cells. Grey cells are RL-ET 14 cells, colored cell have different GS activities,
ranging form red: no activity to blue: full activity. a, b) GS-positive cells occur only near local
aggregations of RL-ET 14 cells. Confluent GS expression is found above a fraction of 40% RL-ET
14 cells. f) wnt-bound receptors for a). GS-positive cells are located within the areas of higher
receptor occupation (red and blue encode low and high receptor occupation, respectively). Note
the stochasticity e.g. in the conformation indicated by the arrow.

all densities in some cells (see Fig. 6.13). At a small densities GS expression does not develop
in the neighborhood of single RL-ET 14 cells, but requires local aggregation of a number of
wnt-producing cells. They do not need to be in direct contact, but in sufficient proximity to
enhance each others signals. For a colony containing only 2% of RL-ET 14 cells, the number
of GS-positive cells is smaller than the number of RL-ET 14 cells. With increasing density
of RL-ET 14 cells GS expression becomes more frequent. But GS expression is incomplete
over a wide range of RL-ET 14 densities. No total coverage of GS activity is found below a
fraction of RL-ET 14 cells of 40%.

6.6 Discussion

GS expression is observed as a stable property of hepatocytes. In a culture containing
mixture of GS-positive and GS-negative hepatocytes only a small modulation of individual
GS expression, but no de novo expression or complete cessation has been observed [208].
GS-positive hepatocytes persist, but do not induce GS-expression in neighboring hepato-
cytes [223]. In contrast, overall expression of the wnt-antagonist Dkk in transgenic rats
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is sufficient to cause a periportal phenotype in the whole lobule [204,205]. Supported by
experimental findings of constitutive G-catenin expression or APC knock-out strongly these
results strongly suggest the canonical wnt-pathway for GS regulation. The source of the
wnt signal at the central vein in contrast to the portal triad could be a functional impor-
tant remainder of liver development where wnt plays a major role in zebra fish, frog and
chicken [224-226].

After introducing a multi-scale model for transport, receptor and transcription dynamics,
a parameter set has been identified that qualitatively reproduces the experimental results
of the concentric co-culture experiment briefly summarized in the first section of this chap-
ter. Variations in the parameters have been tested for their effects on the observed spatio-
temporal pattern. In contrast to the experiments the model does not include GS expression
in absence of a [-catenin-stabilizing environment like a continuous wnt-signal as found in
co-culture of GS-positive and GS-negative hepatocytes. The dependence of GS activity on
the [-catenin-balance therefore suggests some kind of stabilizing positive feedback.

Interestingly, the model explains exactly the overshoot observed after CCly intoxication
by this lack of stabilization. It predicts a delayed production of the wnt-antagonist Dkk,
replacement of wnt by Dkk at the receptors and loss of GS activity in cells with values of
[B-catenin-concentrations only little above the transcription threshold.

The overshoot can be turned into oscillations of S-catenin and its targets by a variation
of the parameters defining the Dkk dynamics. Another type of oscillations provide a clock in
the paraxial presomitic mesoderm for segmentation and involve the wnt-pathway. Strikingly,
expression of (-catenin-targets and inhibitors of the wnt-pathway exhibits such oscillations,
while no evidence for an oscillating [-catenin-level was found [227]. In contrast, S-catenin-
concentrations established a clear anterior-posterior gradient [228]. This means that another
quantity encoding the regulatory cues for the expression machinery must exist apart from
the total -catenin-concentration. According to the oscillations of (-catenin-targets it must
be closely related to the wnt-pathway, like concentrations of nuclear (-catenin-buffers or
activity of anchor molecules, that regulate nuclear S-catenin-concentration [229]. The precise
regulation of [-catenin is also essential in the liver development of Xenopus [225] and in
somitogenesis, which gives rise to liver development [228,230]. The presence of such a
mechanism in liver development is closely related to liver patterning and development of the
local order, which may be related to the observed overshoot.

A simple inversion of the concentric geometry by placing the wnt-positive cells inside a
small circular region in the center reproduced the pattern of GS expression found in the liver
lobule, and provides a hypothesis which is easily testable. Applying the reference parameter
set the overshoot after CCly intoxication was not reproduced for this geometry. Adjusting
slightly the Dkk receptor affinity was able to introduce such an overshoot. This suggests a
greater receptor affinity for Dkk than for wnt.

The interaction with other pathways was not necessary to explain the mechanism for
restricting GS expression in the liver. The hras/erk pathway as a complement for wnt/j3-
catenin -signaling [218] may contribute information rather for the periportal zone of ureoge-
nesis than the pericentral space. Even dependence of the regulation of APC, the ‘zonation
keeper’ [204], and Axin on the wnt signal that is released at the central vein, and internal
feedbacks cannot be ruled out completely. Regulation of these members of the destruction
complex can be expected to reveal important information not only on regulation of GS,
but also on many other processes involving the wnt-pathway. For example, regulation of
Axin degradation by APC has been shown to play an important role for amplifying the wnt
signal [202].

Inspired by the co-culture experiments of random pattern a series of simulations ini-
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tialized with random positions of the hypothesized wnt-sources has been performed. The
results suggest, that for GS activity higher wnt concentrations are necessary, than a single
cell can supply. Summing up the wnt-signal of many cells by local aggregation was necessary
for establishing (-catenin concentrations above the transcription threshold. Interestingly, a
complete coverage of GS activity was only found for fractions above 40% RL-ET 14 cells.
Therefore, the suggestion is made to test the dependence of GS activity on the density of
RL-ET 14 cells.

In biological systems all receptors are dynamic. They are regulated, internalized and
externalized, which might be another mechanism for transport. However, Bollenbach et
al. [220] did not observe any qualitative difference to passive transport. Regulation of the
receptor densities represent another important aspect in unveiling the control mechanisms
of cellular pathways.

The construct of a honeycomb lattice is a completely regular structure. However, many
hepatocytes adopt a hexagonal shape, and even trigonal honeycomb patterns with little de-
viations are observed in cell cultures. Stochastic treatment of the transport processes and
receptor dynamics was used compensate the regularity to some extent. Nevertheless, a more
realistic representation of cells, for example, by Voronoi constructs similar to Schaller et
al. [70], would be an advance, but also require a much more complex treatment of surface
discretization and related stochastic processes. Integration of this model into a fully dynam-
ical system including cellular motion and proliferation is aimed as a next step in the context
of modeling liver regeneration [221].

In summary, the experimentally observed patterns were reproduced with this simple
representation. Variations of parameters and geometry suggested a number of easily testable
hypothesis. Certainly, the co-culture experiments should be repeated scaled down and in an
inverse geometry to include a more lobule-like geometry and to test, whether this geometry
is one key to the zonation problem.
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Conclusion

In the course of this thesis the potential of individual cell-based models based on a sim-
ple spatial representation of biological cells has been developed by extending the simple
and mainly biophysical IBM introduced in Chapter 1 by differentiation and intracellular
regulation, which are fundamental quantities that distinguish biological cells from physical
particles. Following the IBM approach all individual cells are represented as physical parti-
cles of spherical shape. Cell-cell and cell-matrix interaction are modeled by a modified Hertz
potential for adhesive, elastic spheres, which is based on the assumption of a homogeneous,
linear material. Based on these simplifications and in contrast to other more realistic and
complex approaches this interaction potential enables simple and fast calculation of inter-
action forces and contact areas of the cells. Cell motion is modeled by a Langevin equation
using a conceptual analogy between cellular and Brownian motion.

The examination of the simple basic IBM in Chapter 2 regarding applications that are
consistent with the simplifications included motion in cell populations, cell sorting and com-
pression of multi-cellular aggregates. Simulated cell motion in cell populations that uses
Langevin forces generally deviates from Brownian motion, because the random movement
of Brownian particles is controlled by the physical temperature which links fluctuations and
dissipation both mediated by collision with small fluid particles on short time scales. Differ-
ent from this, cells performe an active random movement able to control the autocorrelation
amplitude of their random motion by cell-internal mechanisms. For example, the strict ap-
plication of Langevin equations of motion as for interacting Brownian particles suggests a
faster movement with increasing particle density. For most cell types, e.g. for epithelial cells,
this is not found. Hence to take into account that eukaryotic cells generally move slower at
high densities, the amplitude of the autocorrelation function of the random force term was
modified and used in the following of this thesis.

Cell sorting by differential adhesion was considered. It was found that cell sorting could
not be quantiatively explained by differential adhesion within the model approach since the
resulting multi-cellular configurations displayed only local sorting reflecting that the cells
got stuck in local energy minima. In order to test the possible influence of long-range forces
on sorting as done by Palsson et al. [75] the model was extended by adding a long-range
force tail which indeed led to improved sorting but no complete sorting could be achieved
for large cell population sizes beyond about 1000 cells. In order to sort completely, the cells
probably need to extend their horizon either by longrange signals, which could be provided
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by chemical signaling, or by significantly larger fluctuations in shape and space, that allow
them to explore their environment and to find the global minimum in sufficiently short time.

Modeling compression of multi-cellular aggregates has shown a good quantiative agree-
ment for the relaxation curves. However, the aggregate shapes have shown less rounding off
as, for example, in the experiments by Forgacs et al. [108]. Moreover, Forgacs et al. used
a one-dimensional viscoelastic model to fit their experimental findings and their relaxation
times predicted based on this model were about an order of magnitude below those found
with our model. A deeper understanding of the visco-elastic behavior of cell aggregates would
need more experimental and simulation work. For example, biological cells respond to stress
in a non-linear and viscoelastic way, which is not reflected by the model used thoughout
this work. The Hertz potential does neither describe viscoelastic deformation nor different
detachment dynamics caused by reorganization of adhesion complexes. The viscous effects
observed by compression of cell aggregates in this thesis result from a re-arrangements of
cells within the aggregate but not from a viscous response of the cells itself. Moreover, the
model assumes approximately spherical cell shapes, which may be significantly violated in
compression experiments in case the compression occurs rapidly. Because both processes -
viscosity effects of the individual cells and large deformations - may be crucial in a compres-
sion experiment, neglecting them led to the failure of this simple physical IBM to model the
dynamics of such compression experiments. As discussed in Chapter 2, despite some of the
experimental observations in sorting and compression could be well captured, a completely
quantitative modeling of biophysical observations in sorting and compression simultaneously
would probably need a more detailed and complex representation of processes on the sub-
cellular scale than those included in the simplyfied spherical cell model used in this work.
Rephrased this means, that a successful modeling of cell reorganization processes in general
and these experiments in particular might need need a sub-cellular resolution. However, for
growth phenomena, in which extensive cell-cell reorganisations on small timescales do not
occur, the possible shortcomings in modeling sorting and compression experiments are not
limiting. The largest part of the thesis was devoted to growth and differentiation phenom-
ena where the IBM’s have been extended to multi-scale models that include the subcellular
control.

In the following part of the thesis the IBM has been extended to characterize each cell
by another quality: cellular differentiation. Motivated by recent studies on noise in cellular
regulation a model of noise-driven cell regulation is included in each individual cell. The
resulting hybrid model has well reproduced the oxygen-dependent growth and subsequent
chondrogenic differentiation of MSC. Both, the characteristic size distribution of single cell
derived clones and the occurrence of functional chondrocytes in multi-cellular spheroid of the
expanded cells is covered by the model. Particular importance for successful modeling were
clearly given by the spatial representation of individual cells and the facilitated consideration
of the local environment of individual cells. Both, the local oxygen concentration and cell-cell
contacts in multi-cellular spheroids, are crucial for modeling differentiation and induction of
a functional phenotype in the spheroids. These results highlight the importance of using IBM
approaches that include a spatial representation for the modeling of multi-cellular biological
phenomena. In particular, the concept of unifying a spatial, physical representation and the
IBM approach of individual cellular differentiation has been proven efficient in tackling the
interplay of cell fate decisions and cell environment.

In the following study the advantages of IBM were exploited by recording each individual
cell fate in order to address the question of cell plasticity in MSC derived colonies. Based
on the validated parameter set resulting from modeling growth and differentiation, average
transition times to stem cell states and differentiated states provide first predictions of cell
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plasticity of MSC in vitro. Also predictions on the oxygen-dependent regeneration of the
differentiation structure in MSC populations have been made closely following a protocol
for a similar experiment on hematopoietic progenitor cells. Fluctuations and outlier cells
turn out to be the important aspect for understanding this biological system. Regeneration
of the differentiation structure of the whole population from the subpopulation of differen-
tiated cells at high oxygen depends on single cells that escape the quiescent differentiated
states by naturally occurring fluctuations while most of the cells stay quiescent. These out-
liers enter proliferative states and give rise to the progeny that populates less differentiated
states. This scenario represents a good example for the usefulness of IBM approaches, since
it is based on fluctuations that differential equations for a population average would not
include. Additionally, the variation of biophysical parameters links biophysical to biological
phenomena and facilitates an explanation for effects seen in confluent cell culture, which
again is based on the spatial biophysical representation. Finally, the possibility to distin-
guish between individual cells has lead to predictions on the composition of the stem cell
pool, which can be expected to be important for thorough a understanding of the underly-
ing organization principles. Following the IBM approach these in silico experiments have
generated predictions that anticipate results of currently developed single cell tracking and
formulate hypotheses to be purposefully addressed.

However, a basic property of MSC cultures, the persistent clonal heterogeneity of MSC
in vitro and the radial gradient in differentiation marker expression found in large colonies
of human MSCs, was not covered by the model. Additionally, the concept of aging as
a 'memory’ of cells was introduced and takes further advantage of the IBM concept by
introducing an inheritable individual property. Motivated by recent results on epigenetics,
it was assumed that cell divisions destabilize stem cell states, while the average noise level
is set by the environment. With this extension the experimentally observed heterogeneities,
both spatial and clonal, could be reproduced by the model. Following this concept of
aging as a destabilization of stem cell states, the results suggest, that an optimal age for
differentiation of MSCs exists. Additionally, the model yielded results of in vivo aging of
MSC that captures the results on rat MSCs qualitatively. Realization of this aging concept
is based on the inheritable property ’age‘, which represents another individual quality, that
in contrast to differentiation fluctuations can not vanish but develops growing differences
between individual cells. The success of modeling such a complex phenomenon like the
heterogeneity of clones therefore is strongly facilitated by the IBM approach and agrees
with the concept of epigenetics as an individualization of biological cells.

After the phenomenological approach to cell differentiation, a detailed molecular mech-
anism of individual cellular regulation was studied. Glutamine synthetase activity, a key
enzyme in the liver, is restricted to a precise pattern, which is crucial for liver function.
Expression of the gene for glutamine synthetase is regulated by the wnt pathway. A model
for the transport of the involved signaling molecules and for the pathway itself extended
the IBM approach towards including the molecular level by direct representation of the in-
teractions of the key molecular components. Modeling the in vitro co-culture experiments
generated some easily testable predictions on the influence of culture geometry and a possi-
ble explanation for in vivo zonation. Especially for modeling the emergence of this spatial
pattern in hepatocytes the IBM approach with its spatial representation of single cells has
turned out to be the generic approach that takes the individuality of cells into account.

This thesis has shown that this IBM approach which employs a simple spatial representa-
tion of cells permits a surprisingly detailed modeling of biological phenomena that involve a
spatial variation of environmental conditions. Considering the very distinct regulatory states
of different cells apart from their varying environment every single cell has to be regarded a
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decision making entity. Their interplay guarantees - for example - the orchestration observed
in metazoa. On the other hand, for understanding the biological systems, e.g. the regen-
eration experiments, an understanding and modeling of the fluctuations that are inherent
is clearly crucial. Consequently, combining the IBM approach with a spatial representation
and stochastic regulation principles has generated interesting and unexpected results. Im-
portantly, the resulting predictions can be tested in the ’wet lab‘, because all simulations
followed closely in wvitro protocols. This close interplay of hypothesis-driven research has
been proven very useful in this thesis and represents a basic demand of the interdisciplinary
research aimed at systems-level understanding of biological processes.
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Appendix

A.1 Abbrevations

2D/3D  two-/three-dimensional

DAH Differential Adhesion Hypothesis

FACS  Fluorescence Activated Cell Sorting

GS Glutamine Synthetase

IBM Individual (cell) Based Model(ing)

MSD Mean Square Displacement,

MSC Mesenchymal Stem Cells

PDE Partial Differential Equation

pO, Oxygen Tension = Oxygen Partial Pressure
ROS Reactive Oxygen Species

A.2 Details of Implementation

Time step control

Dynamic control of the time step in the simulations was required to guarantee numerical
stability. Too big displacements result in e.g. non-physical penetrations of cells and oscil-
lations. To avoid these big displacements the equation of motion (1.21) is solved again for
a smaller time step At’ = At/2, if any displacement |AZ;| in an update exceeds a certain
threshold Azay, which is chosen relative to the smallest cell radius. To facilitate as fast
simulations as possible the time step is doubled A#’ = 2At in the next time step, if in a
simulation step no displacement greater than a lower threshold Az, occurs.

Solving the sparse matrix system

Regarding the linear system Az = B to solve, the non-diagonal entries coupling the equations
are caused by cell-cell contacts (remember ~, = 7;). Since the interactions are symmetric,
this results in a symmetric matrix A, which is also strictly diagonal dominant for non-
vanishing contribution of cell-substrate or cell-medium friction. For the cell numbers of
interest, ~ 103 — 10°, and the limited number of neighbors n for each cell (in dense sphere
packing it is n = 12) the matrix is very sparse. The matrix’ properties of symmetry, strictly
diagonal dominance and very sparse occupancy enables the use of time and memory saving
algorithms. Because the non-diagonal entries represent direct cell-cell contacts, the system
is very sparse allowing the use of memory and time saving optimized libraries for sparse
matrices [231,232].
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Solving the reaction-diffusion equation

Eq. (1.24) was solved on a cubic lattice using the Forward Euler Method because of its
simplicity. The very limiting stability criterion for the time step Atqig can be compensated
by parallelization. The lattice constant was set to the maximal cell diameter.

A.3 Materials and Methods

Isolation and cultivation of MSCs from ovine bone marrow aspirates.

Bone marrow aspirates were obtained with 15-gauge Jamshidi needles from the iliac crest
of 18-24 months old Merino sheep. Heparinized aspirates (500 L.E. per ml; Ratiopharm
Ulm, Germany) were diluted 1:3 with phosphate buffered saline (PBS; Gibco, Karlsruhe,
Germany) and agglutinates were removed by filtration with a 70 pm pore filter.

The samples were carefully poured into a Leucosep®tube with a porous barrier (Greiner
Bio-one, Frickenhausen, Germany), onto a Ficoll separating solution (density 1.077 g/ml;
Biochrom, Berlin, Germany) and centrifuged 10 min at 1000 x g at 20°C. Enriched mononu-
clear cells including MSCs above the porous barrier were harvested and washed twice
with PBS by centrifugation for 5 min at 500 x g. Cells were resuspended and seeded at
2 X 104cells/cm2 in tissue culture flasks with high glucose Dulbecco’s modified Eagle’s
medium (DMEM; Gibco, Karlsruhe, Germany) supplemented with 10% FCS, 100 U/ml
penicillin, and 100 pg/ml streptomycin (both Biochrom). Cultures were maintained at
37°C in a humidified atmosphere containing 95% air and 20% Os - 5% CO4 or 5% O3 - 5%
COg balanced with Ns in a tri-gas incubator (Thermo Fisher Scientific, Dreieich, Germany).
Medium was changed twice weekly. After 14 days at near confluence of the cultures the
cells were detached by trypsin/EDTA (0.25%/ 0.05 mM; Biochrom) and used for single cell
cloning (see below) or for subcultivation. For that, cells were passaged at 5000 cells/cm?
and cultured to reach 80-90% confluence of passage two before the final trypsinization and
use for chondrogenic differentiation in pellet culture.

Spargue dawley rats of an age between 3 weeks and 12 month were purchase from the
University breeding house or Charles River. Bone marrow cells were obtained centrifugally
from tibias and femurs according to [233] and MSC isolated according to [195].

Passage (P0): Cultures were maintained at 37°C in a humidified atmosphere containing
95% C air and 20% Oy - 5% CO4 or 11% Oy - 5% CO4 or 5% O9 - 5% CO, balanced
with N22 in a tri- gas incubator (Thermo Fisher Scientific, Dreieich, Germany). Medium
was changed twice weekly. After 14-18 days the cells were trypsinized (Biochrom) and used
for single cell cloning (see below) or sub-cultivation. For that, cells were passaged at 5.000
cells/cm? and cultured to reach about 90% confluence of the respective passage.

Clonal expansion assay

Single cell clones were generated by using limited dilution method. Therefore, cells were
seeded at one cell per well in a 96 well plate at 5% and 20% pO,. Each well was checked
and all wells that contain just a single cell were marked. After 5 days, the cell numbers of
30 single cell derived clones of 5% and 20% pO, cultures were counted by microscopy.

Comparison of single cell derived clones with mixed population

Single cell clones were generated by clonal expansion assay (see above). After sub-cultivation
in 12 well plates (P2) clones were cultivated in 75 cm? flasks (P3) for following chondrogenic
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differentiation in pellet culture (see below). In parallel 8 of 36 clones from P2 were randomly
chosen and seeded as well as P2 cells of the mixed population at 1000/cm? in 48 well plates
with expansion medium. Cells were counted after six days in triplicate.

Analysis of spontaneous differentiation

The analysis of spontaneous differentiation of ovine cells was performed on cytospin samples
from P1. Per sample 2 x 10 cells were re-suspended in 100 1 DMEM and centrifuged
with a Shandon Cytospin®4 Cytocentrifuge [Thermo Fisher Scientific, Waltham, USA] on
a glass slide (1.000 rpm, 3 min). After drying for 30-60 min the samples were stained by
immunocytochemistry (see below). The analysis of spontaneous differentiation of rat and
human cells was performed in well plates using aggrecan staining. The single cell clones
were selected and further cultured in 24-well plates in normal medium. Cells were fixed
in 4% paraformaldehyde for 10 min and washed in PBS. Cells were stained with a 1:50
dilution of anti-aggrecan (Acris Antibodies, Herford, Germany) for 60 min at RT. After
washing and incubation for 45 min with a secondary antibody (for rat MSCs: Cy3, [Jackson
ImmunoResearch, 1:750]; for human MSCs: Alexa Fluor®488 goat anti-mouse [Invitrogen,
Karlsruhe, Germany, 1:1000]), the cells were washed again and analysed using a fluorescent
microscope (Olympus).

Detection by 3-amino-9-ethyl-carbazol substrate (AEC). The cryosections (8
pum) or cytospins were blocked with allogenic serum (1:10 diluted in PBS) for 30 min at
37°C followed by incubation with the primary antibody (collagen type II: mouse mono-
clonal antibody [Clone: II- 4C11; MP Biomedicals, USA], diluted 1:2000 in PBS; aggrecan:
monoclonal mouse antibody [Acris Antibodies, Herford, Germany]|, diluted 1:50 in PBS;
Sox9: rabbit polyclonal antibody [Millipore, Schwalbach, Germany], diluted 1:200 on PBS).
After washing with PBS, the secondary antibody of peroxidase-conjugated goat-anti-mouse
(or anti rabbit) IgG (Jackson ImmunoResearch, Cambridgeshire, UK; diluted 1:50 in PBS)
was added for 1h at 37°C. Immunostaining was developed by AEC substrate. Cell nuclei
were counterstained with MeyerA s hematoxylin (Lillie’s Modification; DakoCytomation,
Hamburg, Germany).

Detection by fluorescence staining. The sections were fixed in 4% formaldehyde for
20 min and in 100% ice-cold methanol for 10 min. Following, samples were washed with
PBS, blocked for 30 min with allogenic serum (1:10 diluted in PBS). Sections were incubated
with the aggrecan primary antibody (see above), diluted in PBS/0.3% Triton X, overnight at
4°C. After washing with PBS, the secondary antibodies Alexa Fluor®488 goat anti-mouse
IgG, diluted 1:1000 in 0.1 pug/ml DAPI/PBS/0.3% Triton X-Solution, were added for 1 h
at 37°C. Finally, after washing with PBS, sections were coated with 90% Glycerol in aqua
dest. for fluorescence stabilization. The fluorescence was examined by microscopy (Carl
Zeiss Axiovert 200).

CFU-F assays

Ovine/human MSC: After isolation of mononuclear fraction from bone marrow by Ficoll
density gradient centrifugation, 2 x 10* mononuclear cells/ cm® were seeded in 10cm Petri
dishes. After 14 days colonies were washed twice with PBS and fixed with methanol for 5
min. After removal and air drying (5 min) cultures were incubated for 5 min in giemsa stain
solution (1:2 in aqua dest; Sigma-Aldrich, Deisenhofen, Germany). Cultures were washed
twice with water and colonies with more than 50 cells were counted.

Rat MSC: The CFU-F assay was performed according to the technique described by
Kuznetsov et al. [234] with modifications. 2 x 10° mononuclear bone marrow cells were
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suspended in 0.5ml media and plated on 55cm? petri dishes in DMEM /low glucose medium
(10% serum). Medium was first changed after 5 days and then regularly every 3 days. After
14 days the cells were washed with PBS, fixed with ethanol, stained with methylen blue,
photographed and analysed as previously described [235].

Pellet preparation and culture

Pellets were prepared according to the protocols by Mackay et al. [236] and Yoo et al.
[237]. Briefly, a total of 0.5 x 10> MSCs were placed in a 15 ml conical polypropylene
tube, centrifuged at 500 x g for 5 min at 20°C and re-suspended in DMEM without serum
for washing. After a further centrifugation step the cells were re- suspended in serum-
free, chondrogenic medium (Chondrogenic Differentiation BulletKit®) supplemented with
10 ng/ml TGF-533 (both Lonza, Wuppertal, Germany) and cultivated for 2, 7 and 14 days.
The chondrogenic medium was changed twice a week.

Immunohistochemistry

Immunohistochemistry of cryosections (8 um) were performed according to the two step
indirect method. The sections were fixed in 4% formaldehyde for 20 min and in 100% ice-
cold methanol for 10 min. Following, samples were washed three times with PBS and than
blocked for 30min with sheep serum (1:10 diluted in PBS). Sections were incubated with
primary antibody overnight at 4°C (collagen type II: mouse monoclonal antibody [Clone:
I1-4C11; MP Biomedicals, USA], diluted 1:2000 in PBS/0.3% Triton X; SOX 9: mouse
monoclonal antibody [Millipore, Schwalbach, Germany|, diluted 1:200 in PBS/0.3% Triton
X). After washing with PBS, the secondary antibodies Alexa Fluor®488 goat anti-mouse
IgG (Invitrogen, Karlsruhe, Germany) for collagen type II and Alexa Fluor@®3555 goat anti-
rabbit IgG (Invitrogen) for SOX 9, diluted 1:1000 in 0.1 pg/ml DAPI/PBS/0.3% Triton
X-Solution) were added for 1 h at 37°C. Finally, after washing with PBS, sections were
coated with 90% Glycerol in aqua dest. for fluorescence stabilization. The fluorescence was
examined by microscopy (Carl Zeiss Axiovert 200). For staining with peroxidase-conjugated
secondary antibody after incubation with the primary collagen type II antibody (see above)
and washing with PBS a secondary antibody of peroxidase-conjugated goat-anti-mouse IgG
(Jackson ImmunoResearch, Cambridgeshire, UK; diluted 1:50 in PBS) was added for 1 h
at 37°C. Immunostaining was developed by 3-amino-9-ethyl-carbazol substrate. Cell nu-
clei were counterstained with Mayer’s hematoxylin (Lillie’s Modification; DakoCytomation,
Hamburg, Germany).

DNA quantification of pellet cultures (PicoGreen assay)

To assess proliferation of the MSCs within pellet cultures the DNA concentration was mea-
sured by Quant-iTTM PicoGreen®dsDNA Assay Kit (Molecular Probes, Eugene, USA)
according to the manufacturer’s instructions. For preparation, each pellet sample was re-
suspended in 200 ul papain digestion buffer and digested for 16 h at 60°C. After digestion,
samples were diluted in Tris Borat EDTA-buffer for DNA measurement. For quantifica-
tion, a well-defined DNA stock solution (Lambda-DNA Molecular Probes) was used. The
fluorescence of negative, cell-free controls was subtracted from the fluorescence values of
samples. Sulfated Glycosaminoglycan (sGAG) quantification Pellets were digested in 0.2
ml papain digestion buffer (5 mM L-cysteine, 5 mM EDTA, 100 mM Na2HPO4, pH 6.5)
and incubated for 16 h at 60°C in a thermomixer (Eppendorf, Hamburg, Germany) with
5 ul papain-solution (10 mg/ml; Sigma-Aldrich). Samples of 40 ul were assayed for the
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proteoglycan contents by quantifying the sulfated GAG content using 500 ul of the 1,9-
dimethyl-methylene blue dye (0.016 g/l DMMB, 5 ml/l CoH;0H, 2 g/l NaCOOH, 2 ml
HCOOH, pH 3.0) binding assay (Roche, Basel, Switzerland). Absorbance was determined
at 595 nm in a photometer and the concentration of GAG was extrapolated from a stan-
dard curve based on shark chondroitin sulfate within a range of 10-100 ug/ml. The sGAG
quantities of pellet cultures were normalized to DNA content, measured by PicoGreen assay.

Statistical analysis

Experiments were accomplished using MSCs from at least four donors. The results were
expressed as mean + standard deviation (SD). The significance of the results were analysed
by Student’s t-test, with p<0.05 considered as significant.
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A.4 Simulation Parameters

A.4.1 Parameters used in Chapter 3

APPENDIX

Model Parameter Value Sim Source
stem Randomization Rate R 2.5¢ —4s~ T 2D/3D  Fitted
cell Stem Cell Fluctuation Strength  og 0.15 2D Fitted
dynamics | Differentiation Threshold d 0.85 2D/3D  Set
(s =1—aq)
Hill Coefficient n 5 2D/3D  Set
Dissociation Constant k 0.3 2D/3D  Set
Minimal Number of Neighbours N, 6 3D Set
Transition Rate Wo 0.01 s 3D Fitted
Transition Threshold Qe 0.15,0.5,0.85 3D Set
IBM Minimal Cell Radius Ro Sum 2D/3D  Measured
Minimal Cell Volume Vo V(Ro) 2D /3D
Proliferation Rate r 1.5 — 2.1/day* 2D Fitted
Young’s Modulus E 450 Pa 2D/3D  [238]
Contact Inhibition Threshold Fe. 1x 107N 2D/3D  Fitted
Poisson’s Ratio v 0.4 2D/3D  [239]
Friction Constant Mij 3 x 10" Ns/m 2D/3D  Set
Cellular Diffusion Coefficient Dc 4% 107" cm?/s 2D/3D  [106]
Cell-Cell Anchorage €ce 6 x 107° N/m 2D/3D  [91]
Cell-Substrate Anchorage €cs 6 x 107° N/m 2D/3D  [91]
diffusion | Oxygen Diffusion Coefficient Doa 0.175 x 10" m?/s 3D [149]
Oxygen Consumption Rate Coa 30 — 65 fmol/cell/h 3D [149]

Table A.1: Parameters used in the simulations. *The fit of the CFU-F data was achieved
assuming a proliferation rate for all cells of 1.5/day for 20% pO, and a 1:1 mixture of cells

with proliferation rates of 1.5/day and 2.1/day for 5% pOs,.
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A.4.2 Parameters used in Chapter 4

Model Parameter Value Source

Intracellular Randomization Rate R 2.5 x 1077 ! Fitted

Regulation Stem Cell Fluctuation Strength oo 0.15 Fitted
Differentiation Threshold aqg (ag=1—as) 0.85 Set
Hill Coefficient n 5 Set
Dissociation Constant k 0.3 Set

Biomechanical Minimal Cell Radius Ro 5 pm Measured

Model Minimal cell Volume Vo V(Ro)
Proliferation Rate r 1.9d7! Fitted
Young’s modulus E 450 Pa [238]
Contact Inhibition Threshold Fnox 1x107?N Fitted
Poisson’s Ratio o 0.4 [239]
Friction Coefficient Vij 3 x 10" Ns/m®

1 x 10" Ns/m**  [8]

Cellular Diffusion coefficient Dcen 4x 1072 cm?/s]  [106]
Cell-Cell anchorage €cc 6 x 107° N/m [91]
Cell-Plane anchorage €cp 6 x 107° N/m [91]
Qiescent Threshold F, 6 x 107° N/m [91]

Table A.2: Simulation Parameters used in Chapter 4. * The high friction coefficient n;; was used
in ‘population regeneration’ simulations Sec. 4.3.2 in order to study the influence of biophysical

properties on stem cell plasticity.
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A.4.3 Parameters used in Chapter 5

APPENDIX

Parameter Value Model
Initial stem cell noise amplitude oo 0.100 II)ast?c adherence
0.050 mn vivo
5% 11% 20% pO,
Mean noise amplitude o 0.110 0.090 0.075 human, rat
- - 0.075 ovine
Randomisation rate R 5.0e-3/s human, rat
1.0e-3/s ovine
. . 1.47/day human, rat
Proliferation rate r 1.90/day ovine
Aging rate rp 2.5e-3/division all
Differentiation threshold ag =1 —as | 0.85 all

Table A.3: Aging related simulation parameters used in chapter 5

Model Parameter Value
minimal number of neighbors N, | 6
Chondrogenic differentiation | transition rate Wy 0.01 /s
transition threshold a. 0.5
minimal cell radius Ro Sum
minimal cell volume Vj 4/37 R}
Young modulus E 450 Pa
contact inhibition threshold F. 1x107°N
IBM Poisson ratio v 0.4
Friction constant 7;; 3 x 10" Ns/m?
cellular diffusion coefficient D¢ 4x 1072 cm? /s
cell-cell anchorage €. 6 x 107° N/m
cell-substrate anchorage €. 6x107° N/m
e oxygen diffusion coefficient Do2 0.175 x 10 Y m?s
diffusion

oxygen consumption rate Coo

30 — 65 fmol/cell/h

Table A.4: Biophysical and lineage related parameter used in Chapter 5.
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A.4.4 Parameters used in Chapter 6

General

cellnumber N 1457
Cell Radius R 5um
Simulation Space 500 x 500 x 20pm
wnt

Production Rate k. le-2s T
Degradation Rate kdes le-4s™*
Receptor Binding Rate on le-3 571
Receptor Unbinding Rate ko le-1s7!
Diffusion coefficient Dwnt le-14m?3s—1
Contact Hopping Rate fhop le-3s~*
Enter Cell Contact Rate in le-3s7!
Leave Cell Contact Rate Eout le-3s7!
B-catenin

Production Rate k3™ 5s 1
Maximal Reaction Rate Vimaz 1551
Michaelis-Menten constant K, 30
Inhibitor Dissociation Constant  k;nn 10
Transcription Threshold B-cc 100
Glutamine Synthetase

Production Rate kS le-2s !
Degradation Rate ks le-4s~*
Dkk

Production Rate k3 le-2s '
Degradation Rate kSee le-4s™!
Receptor Binding Rate kgek 3e-35 1
Receptor Unbinding Rate kST 5e-2s71
Diffusion coefficient Dkx le-12m?s™!
Contact Hopping Rate kgﬁ{f 2e-357!
Enter Cell Contact Rate ki 2e-4s71
Leave Cell Contact Rate kit 2e-4s571

Table A.5: Simulation parameters used in the reference simulation in Chapter 6 leading to a layer
of 5-6 GS positive hepatocytes in concentric co-culture.
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