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Abstract

Many complexity measures are defined as the size of a minimal representation
in a specific model class. One such complexity measure, which is important be-
cause it is widely applied, is statistical complexity. It is defined for discrete-time,
stationary stochastic processes within a theory called computational mechanics.
Here, a mathematically rigorous, more general version of this theory is presented,
and abstract properties of statistical complexity as a function on the space of pro-
cesses are investigated. In particular, weak-∗ lower semi-continuity and concavity
are shown, and it is argued that these properties should be shared by all sensible
complexity measures. Furthermore, a formula for the ergodic decomposition is
obtained.

The same results are also proven for two other complexity measures that are
defined by different model classes, namely process dimension and generative com-
plexity. These two quantities, and also the information theoretic complexity mea-
sure called excess entropy, are related to statistical complexity, and this relation
is discussed here.

It is also shown that computational mechanics can be reformulated in terms of
Frank Knight’s prediction process, which is of both conceptual and technical in-
terest. In particular, it allows for a unified treatment of different processes and
facilitates topological considerations. Continuity of the Markov transition kernel
of a discrete version of the prediction process is obtained as a new result.
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Chapter 1

Introduction

An important task of complex systems sciences is to define complexity. Measures that quantify
complexity are of both theoretical ([OBAJ08]) and practical interest. In applications, they
are widely used to identify “interesting” parts of simulations and real-world data ([JWSK07]).
There exist various measures of different kinds of complexity for different kinds of objects.

The main idea behind many complexity measures, such as statistical complexity dis-
cussed below, is the same that gave rise to the famous Kolmogorov complexity. Namely, the
complexity is the “size” of some minimal “representation” of the object of interest. Different
complexity measures are based on different precise definitions of these terms. For Kolmogorov
complexity, for instance, representations are Turing machine programs computing individual
binary strings, and the size is their length. For statistical complexity, on the contrary, the
objects of interest are distributions of stochastic processes instead of individual strings, and
the representations are particular kinds of prediction models. Their size is measured by the
Shannon entropy of the internal states of the model.

In this thesis, the objects we are interested in are discrete-time, stationary stochastic
processes with values in a state space ∆. In some parts, we have to restrict ∆ to be countable
(with discrete topology), but in most parts, we allow it to be a much more general space,
namely a Souslin space. We aim to improve our understanding of some complexity measures
and the classes of models used for their definitions. Our particular focus is on statistical
complexity and the theory of prediction models called computational mechanics it is based
on. Here, computational mechanics is a theory introduced by Jim Crutchfield and co-workers
([CY89, SC01, AC05]) that is unrelated to computer simulations of mechanical systems. It is
applied to a variety of real-world data, e.g. in [CFW03]. In the present work, however, we are
not considering applications, but are rather interested in a general, mathematically rigorous
formulation of the theory.

Computational mechanics considers the following situation. Given a stationary stochastic
process with time set Z, the semi-infinite “past” (or “history”) of the process (at all times
up to and including zero) has been observed. Now the “future” (all positive times) has to be
predicted as accurately as possible. The central objects of the theory are the causal states.
They are defined as the elements of the minimal partition of the past that is sufficient for
predicting the future of the process. An important, closely related concept is the so-called
ε-machine, which is a particular hidden Markov model (HMM) on the causal states that
encodes the mechanisms of prediction. Here, we show that causal states and ε-machine can
be represented on the prediction space P(∆N) of probability measures on the “future” ∆N,
making their close relation to a discrete-time version of Frank Knight’s prediction process
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2 CHAPTER 1. INTRODUCTION

([Kni92]) obvious. This representation underlines their importance, but it is also technically
convenient and allows for a unified description of the ε-machines of different processes.

Statistical complexity is the entropy of the causal states or, equivalently, the internal state
entropy of the ε-machine. While the causal states are the minimal sufficient partition of the
past, it is an important fact that the ε-machine is not the minimal HMM of a given process.
Namely, there can be HMMs with fewer internal states and lower internal state entropy. We
take this observation as starting point to find on one hand a sub-class of HMMs in which the
ε-machine is minimal, which turns out to be the case for partially deterministic HMMs (also
known as deterministic stochastic automata). On the other hand, we provide a predictive
interpretation of the potentially smaller HMMs.

Besides statistical complexity, we also discuss related quantities and their relation to
statistical complexity, namely excess entropy, generative complexity, and process dimension.
Excess entropy is a well-established, information theoretic complexity measure that can either
be interpreted as the asymptotic amount of entropy exceeding the part determined by the
entropy rate, or as the mutual information between the past and the future of the process.
Generative complexity is a complexity measure based on minimal HMMs. Namely, it is the
minimal internal state entropy of an HMM generating the given process. It was introduced
recently by the author together with Nihat Ay in [LA09a]. Process dimension is a charac-
teristic of the process ([Jae00]) that arises in the study of algebraic models called observable
operator models (OOMs). OOMs are generalisations of HMMs, where the stochastic process
of internal states is replaced by a linear evolution on an internal vector space. Process di-
mension is called minimum effective degree of freedom in [IAK92], but, to the best of our
knowledge, it has not previously been interpreted as a complexity measure.

In ergodic theory, Kolmogorov-Sinai entropy is studied as a function of the (invariant)
measure, and the questions of continuity properties, affinity, and behaviour under ergodic
decomposition arise naturally (e.g. [Kel98]). We believe that these questions are worthwhile
considering also for complexity measures. A formula for the ergodic decomposition of ex-
cess entropy was obtained in [D�b06]. Our results presented here include the corresponding
formula for statistical complexity and generative complexity. This formula directly implies
concavity. The most important results in this direction are that all four quantities under
consideration, excess entropy, statistical complexity, generative complexity and process di-
mension, are lower semi-continuous. Here, we equip the space of stochastic processes with the
usual weak-∗ topology (often called weak topology) and note that it is the most natural topol-
ogy in our situation. Semi-continuity is a much stronger property in this topology than in the
finer variational or information topology. While semi-continuity of excess entropy is more or
less obvious, our proof in the case of statistical complexity uses results about partially deter-
ministic HMMs and the prediction process obtained in earlier chapters. Our semi-continuity
results for statistical complexity and process dimension cover only the case of a countable
state space, but the corresponding result about generative complexity is more general. We
consider lower semi-continuity to be an essential property for complexity measures, because
it means that a process cannot be complex if it can be approximated by non-complex ones.

1.1 Structure and main results

Many of the important results presented in this thesis have been published recently by the
author in [Löh09b], the author together with his advisor Nihat Ay in [LA09b, LA09a], or are
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submitted for publication in [Löh09a].

Chapter 2 contains a review of some generative models of stochastic processes, namely
HMMs and OOMs. These model classes are important for the definition of complexity mea-
sures and for a better understanding of predictive models. We introduce some notation and
our technical framework. In particular, there are several slightly different but essentially
equivalent definitions of HMMs in the literature and, after highlighting the differences, we
define the version of HMMs that is used for the rest of the thesis. More specifically, our type
of HMM is called transition-emitting Souslin HMM. In Sections 2.1.6 and 2.1.7, we consider
the process of expectations of the internal state given the observed past, in particular in the
special case of partially deterministic HMMs. The sub-class of partially deterministic HMMs
is known better in the context of finite state stochastic automata. We extend the definition to
Souslin spaces and obtain a new result in the countable case (Theorem 2.27, Corollary 2.29).
Namely, the uncertainty of the internal state given the past output remains constant over
time, and all internal states that are compatible with the observed past output induce the
same expectation on the future output. This result has also been presented in [Löh09b].

Chapter 3 contains our discussion of predictive models. First, we review some informa-
tion theoretic quantities that are necessary for the following sections, among them the excess
entropy. In Section 3.2, we introduce and generalise the theory called computational mechan-
ics, which is in particular used to define statistical complexity. This theory was until now only
formulated for those processes with values in a countable space ∆ that have countably many
so-called causal states. The focus was primarily on applications and justifications from a phys-
ical point of view, rather than on a rigorous mathematical foundation. Therefore, the precise
meaning of statements claiming minimality of the ε-machine remained unclear and lead to
the misperception of the ε-machine as minimal generative HMM, although counterexamples
have been known for a long time. Here, our contribution is the following. First, we extend
the theory to arbitrary processes with values in a Souslin space and the considered model
class from deterministic memory maps to stochastic memory functions, i.e. to Markov kernels
(Propositions 3.10, 3.20 and 3.25). Second, we make the relation to generative HMMs more
explicit (Propositions 3.12 and 3.14). Third, we compare the traditional approach of consid-
ering measurable partitions of the past with considering sub-σ-algebras, which might seem
more appropriate from a measure theoretic perspective. The result is that both approaches
are equivalent, provided we make a restriction to countably generated σ-algebras, which di-
rectly corresponds to the Souslin property of the space of memory states (Proposition 3.16
and the surrounding discussion). Fourth, we briefly show how to modify the definition of
causal states using random times in order to deal with finite but varying observation lengths
(Section 3.2.5). Most of these results, with the exception of Propositions 3.14 and 3.16, have
been presented in the appendix of [LA09b].

In Section 3.3, we present a new predictive interpretation of HMMs, which was introduced
in [LA09b]. We use these concepts and the results about partially deterministic HMMs de-
veloped in Chapter 2 to prove a minimality property of the ε-machine. Namely, it is the
minimal partially deterministic HMM (Theorem 3.41, Corollary 3.42). The idea that partial
determinism plays a crucial role is not new, but we do not know of any former mathematical
proof that it ensures minimality of the ε-machine. This result is submitted for publication in
[Löh09a]. Following [LA09a], we also suggest to consider, in analogy to statistical complex-
ity, the minimal internal state entropy of a generative HMM as complexity measure called
generative complexity (Section 3.3.2).
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In Section 3.4, we show that the concepts of computational mechanics are closely related
to a discrete-time version of Knight’s prediction process and that there are representations
of causal states and ε-machine on prediction space P(∆N). This viewpoint was introduced
in [Löh09b]. We call the prediction space versions of causal states and ε-machine effect space
and prediction HMM respectively and show in Proposition 3.52 that the prediction space
versions are indeed isomorphic to the classical ones. The terminology does not follow the one
used in [Löh09b], because the representations on prediction space do not admit the intuition
of “causal” anymore, and thus new names seem appropriate. We call the prediction space
version of the distribution of the causal states effect distribution and prove the following
remarkable property (Proposition 3.53). There may be many measures on prediction space
that are invariant w.r.t. the prediction dynamic and represent a given process in the sense of
integral representation theory. But all of them have infinite entropy, except, possibly, the effect
distribution. The formulations on prediction space have several advantages from a theoretical
point of view, such as providing a natural topology and describing different processes on a
common space. They are also very convenient for comparison with the canonical OOM and
the excess entropy. In this regard, we obtain a close relationship between the effect space and
the canonical OOM that is not at all obvious when one thinks of causal states as equivalence
classes of past trajectories. Namely, the weak-∗ closure of the linear hull of the effect space
coincides with the canonical OOM vector space (Theorem 3.56). In Section 3.4.4, we express
the excess entropy as function of the effect distribution. The results of Section 3.4, with the
exception of the unpublished Theorem 3.56 and the discussion in Section 3.4.4, are published
in [Löh09b].

Chapter 4 contains results about the complexity measures excess entropy, statistical
complexity, and generative complexity considered as functions on the space of stochastic
processes. All three of them are lower semi-continuous in the weak-∗ topology, concave,
and satisfy the following ergodic decomposition formula. The complexity of a process is
the average complexity of its ergodic components plus the entropy of the mixture. We call
complexity measures with this ergodic decomposition behaviour entropy-based and show in
Proposition 4.6 that all of them are concave, non-continuous and generically infinite. That
excess entropy has the above mentioned properties was already known and is considered briefly
for completeness. The lower semi-continuity and ergodic decomposition results for statistical
complexity (Theorems 4.10 and 4.12) are published in [Löh09b]. Our semi-continuity result
covers only the case of a countable state space ∆. The corresponding results for generative
complexity (Theorems 4.13 and 4.15) are submitted for publication in [Löh09a] under the
assumption of finite ∆. In this thesis, we treat the more general case of a Souslin space ∆.

In Section 4.5, we suggest to consider process dimension as a complexity measure. In the
case of countable ∆, we show that it is lower semi-continuous (Theorem 4.16) and, although
it is not entropy-based, satisfies a simple ergodic decomposition formula (Theorem 4.17). The
dimension of a process only depends on the ergodic components and not on their weights.
More precisely, it is the sum of the dimensions of the ergodic components. These properties
of process dimension are not yet published.

The appendix provides proofs of some technical results that are needed in the main
part and (presumably) well-known but not so easy to locate explicitly in the literature. We
also recall some properties of Souslin spaces and the extension results of Kolmogorov and
Ionescu-Tulcea in the appendix.
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1.2 Notation

In this section, we introduce some notation that is used throughout the thesis.

Measures and topology: In this thesis, (∆,D) and (Γ,G) are always measurable spaces
and usually assumed to be separable, metrisable topological spaces. In this case, we implicitly
assume that D = B(∆) and G = B(Γ) are the respective Borel σ-algebras. With P(∆),
we denote the space of probability measures on (∆,D) and equip P(∆) with the σ-algebra
σ
(
µ 7→ µ(D), D ∈ D

)
, generated by the evaluations in measurable sets. Here, σ denotes

the generated σ-algebra. If ∆ is a topological space, we always impose the weak-∗ topology
(often simply called weak topology) on P(∆). Note that if ∆ is separable and metrisable, the

Borel σ-algebra B
(
P(∆)

)
coincides with the σ-algebra of evaluations. We use the arrow

∗
⇀

to denote weak-∗ convergence. If ∆ is countable, we implicitly assume discrete topology and
for d ∈ ∆, µ ∈ P(∆) we sometimes write µ(d) instead of µ

(
{ d }

)
.

Integrals: If f : Γ → R is integrable and µ ∈ P(Γ) we use the notation

∫
f dµ =

∫

x∈Γ
f(x) dµ.

Note that in our notation
∫

f dµ(x) never means that x is the integration variable, but that
the measure µ(x) ∈ P(Γ) depends on x. If K is a measure-valued measurable function, i.e.
K : Γ → P(∆), then

ν =

∫
K dµ means ν(D) =

∫

g∈Γ
K(g)(D) dµ ∀D ∈ D.

Note that due to the dominated convergence theorem, ν is a well-defined probability measure
ν ∈ P(∆). The integral can be seen as Gel’fand integral, that is we have

∫
f d
(∫

K dµ
)

=

∫ ∫
f dK dµ

for bounded measurable f . Recall that if Γ and ∆ are separable, metrisable spaces and K is
continuous, then the function µ 7→

∫
K dµ is continuous as well.

Markov kernels: We consider a Markov kernel (transition probability) K from Γ to ∆ to
be a measurable function K : Γ → P(∆). This definition is obviously equivalent to the perhaps
more common definition as function Γ × D → R. We use the notation K(g; D) := K(g)(D)
for the probability of D ∈ D w.r.t. the measure K(g), where g ∈ Γ. If µ ∈ P(Γ), we define
the product µ ⊗ K ∈ P(Γ × ∆) by

µ ⊗ K(G × D) :=

∫

G

K( · ; D) dµ ∀G ∈ G, D ∈ D.

The product between kernels K1 : Γ → P(∆1) and K2 : ∆1 → P(∆2) is defined as the kernel
K1 ⊗ K2 : Γ → P(∆1 × ∆2) with

(K1 ⊗ K2)(g; D1 × D2) :=
(
K1(g) ⊗ K2

)
(D1 × D2) =

∫

D1

K2( · ; D2) dK1(g)

for g ∈ Γ, D1 ∈ D1 and D2 ∈ D2.
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Conditional probability kernels: If not explicitly stated otherwise, random variables
are defined on a common probability space (Ω,A,P) and ω is always an element of Ω. The
distribution of a random variable X is denoted byPX := P ◦ X−1.

Let X be a Γ-valued and Y a ∆-valued random variable. We usually impose restrictions on ∆
that guarantee the existence of regular versions of conditional probability of Y . In such a case,
we implicitly assume that a regular version is chosen and denote the conditional probability
kernel from Ω to ∆ by P(Y | X). Thus, K = P(Y | X) means K(ω; A) = P({Y ∈ A }

∣∣
X
)
(ω). Similarly, the corresponding kernel from Γ to ∆ is denoted by P(Y | X = · ).

Stochastic processes: We consider ∆-valued stochastic processes in discrete time,
XZ := (Xk)k∈Z or XN := (Xk)k∈N. Sometimes, we also call the distribution P = PXZ ∈
P(∆Z) of XZ stochastic process. If XZ is stationary, P is in the subset Ps(∆

Z) ⊆ P(∆Z)
of shift-invariant probability measures. Let X ′

k : ∆Z → ∆, k ∈ Z, be the canonical pro-
jections. Then X ′Z is a process on (∆Z,B(∆Z), P ) with the same distribution as XZ. For
simplicity of notation, we denote the canonical projections on ∆N with the same symbols, X ′

k,
as the projections on ∆Z. The distribution of the restriction to positive times is denoted by
PN := PX′N = PXN . We use interval notation also for discrete intervals, e.g. [1, n] = { 1, . . . , n }
and for D1, . . . ,Dn ⊆ ∆ we define D[1,n] := D1 × · · · × Dn. We denote the corresponding
cylinder set by

[D1 × · · · × Dn] := {X ′
[1,n] ∈ D[1,n] } = {X ′

k ∈ Dk, k = 1, . . . , n }

or, in the case of countable ∆ and d1, . . . , dn ∈ ∆, by

[d1, . . . , dn] :=
[
{ d1 } × · · · × { dn }

]
.

Given a process XZ, we interpret XN as future and X−N0 as past of the process. We often
need the conditional probability kernel of the future given the past. Sometimes, we abbreviatePX−N0

XN = P(XN | X−N0) and P−N0N = P (X ′N | X ′
−N0

).



Chapter 2

Generative models

In this chapter, we consider the task of generating a discrete-time stochastic process. More
precisely, we compare different models that are able and commonly used to represent stochas-
tic processes. Given such a model, it is possible to simulate the process by producing sample
trajectories efficiently. We consider two different model classes. The first one consists of
different flavours of hidden Markov models (HMMs) and introduces a hidden Markovian dy-
namics of unobservable internal states. All components, including the constructed internal
one, have a probabilistic interpretation as stochastic processes. The second class of more
algebraic representations, called observable operator models (OOMs), is closely related to
HMMs. It admits potentially more concise representations but the internal evolution is no
longer described by a stochastic process.

2.1 Hidden Markov models

There is an extensive literature about Markov processes and the Markov property allows
to solve a lot of problems that are intractable for general processes. But of course, not all
processes of interest are Markovian. The idea of hidden Markov models (HMMs) is to model
more general processes as “observable” parts of larger Markovian systems with an internal
and an observable component. The internal component is often assumed to be finite, but
we will not generally make this restriction. In the literature, many definitions of HMMs are
in use and they differ in several details. In Section 2.1.2, we compare the main differences.
From Section 2.1.4 on, we consider only one type of HMM, namely transition-emitting HMMs,
although this is not the most common type. It is, however, the most convenient one for our
purposes and the one used in computational mechanics.

In many applications of HMMs, the internal states have a concrete physical or conceptual
meaning. Even more, they often are the objects of interest that are to be inferred. Thus,
the internal states cannot be chosen freely but are an essential part of the modelling. This
is commonly the case for HMMs in computational biology ([Kos01, HSF97]). The HMM is
used to compute, for each observed sequence, an estimate of the sequence of internal states.
This calculation is known as smoothing and can be solved by the famous forward-backward
algorithm. A related task is parameter estimation. Usually, only the architecture of an HMM
is fixed by the design process and the actual values for the (or some) probabilities have to
be learnt from training data. This can be achieved by the EM algorithm. For an extensive
treatment of these and other algorithms, see [CMR05].

7
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Here, we take a different point of view and are more interested in HMMs as generative
models. We consider the internal component to be hypothetical. For us, its main purpose is
to allow for a compact description of the observable process and an efficient computation of
its finite-dimensional marginal probabilities. This interpretation is sometimes used for HMMs
in speech recognition ([Jel99]).

2.1.1 Markov processes

We assume the reader to be familiar with the concept of Markov processes and the main
purpose of this section is to fix notation. Let (∆,D), for the moment, be an arbitrary mea-
surable space. A ∆-valued stochastic process (Xn)n∈N, denoted for brevity by XN, satisfies
the Markov property ifP({Xk+1 ∈ D }

∣∣ X[1,k]

)
= P({Xk+1 ∈ D }

∣∣ Xk

)
a.s. ∀k ∈ N, D ∈ D,

where [1, k] = 1, . . . , k denotes the discrete interval and XI = (Xn)n∈I for every index set
I. The standard way to specify a process with the Markov property is in terms of an initial
distribution µ ∈ P(∆) and Markov kernels (transition probabilities) Tk from ∆ to ∆. µ
determines the distribution of X1, and Tk specifies the conditional distributions of Xk+1

given Xk. The initial distribution µ together with the Markov kernels Tk define, according
to the Ionescu-Tulcea extension theorem (e.g. [Nev65, Prop. V.1.1]), a unique probability
measure P ∈ P(∆N), satisfying

P[1,n] := P ◦ X ′
[1,n]

−1
= µ ⊗

n⊗

k=1

Tk, (2.1)

where ∆N is equipped with the product σ-algebra. Note that we cannot use the Kolmogorov
extension theorem instead of Ionescu-Tulcea’s, unless we impose restrictions on ∆. See Ap-
pendix A.2 for a short discussion of the extension theorems. Any process with distribution P
as defined by (2.1) satisfies the Markov property andP({Xk+1 ∈ D }

∣∣ Xk

)
(ω) = Tk

(
Xk(ω); D

)
a.s. ∀D ∈ D.

Even more, the right-hand side is a regular version of conditional probability and thus we
may assume that both sides agree:P(Xk+1 | Xk) = Tk ◦ Xk.

In full generality of ∆, not every process with the Markov property arises from kernels
Tk and initial distribution µ as above. The reason is that regular versions of conditional
probability need not exist. In nearly all parts of this thesis, however, we impose restrictions
on the measurable spaces that ensure the existence of regular versions. In this case, all
distributions of processes with the Markov property satisfy (2.1) with

Tk := P(Xk+1 | Xk) and µ := PX1 = P ◦ X−1
1 .

Since we are interested in generative models, we take the existence of the Markov kernels Tk

as part of our definition of Markov process (Tk is interpreted as generative mechanism). We
restrict ourselves to (time) homogeneous Markov processes, i.e. the case where Tk = T for all
k, and the term Markov process shall always mean homogeneous Markov process.
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Definition 2.1. A Markov model of P ∈ P(∆N) is a pair (T, µ), where T is a Markov
kernel from ∆ to ∆ and µ ∈ P(∆) is the initial distribution such that (2.1) is satisfied for
Tk = T . The measure P , as well as any process XN with distribution P , is called generated by
(T, µ). A process XN is called (homogeneous) Markov process if there is a Markov model
generating it.

2.1.2 Different types of HMMs

The oldest type of HMM (the term “HMM” was introduced much later) is also the most
restrictive one. It is called function of a Markov chain (sometimes functional of a Markov
chain). The intuition is that we cannot observe the Markov process directly but only a
function (coarse graining) of it. A ∆-valued process XN is a function of a Markov chain if
there is a Markov process WN with values in some measurable space (Γ,G), and a measurable
function f : Γ → ∆ such that Xk = f(Wk). Of course, if we do not impose restrictions on Γ,
every process XN is a function of a Markov chain (a possible representation is the shift, see
Example 2.7). Usually, in the literature, Γ is assumed to be finite and in this case, not all
processes are functions of finite Markov chains. We do, however, not always restrict to the
finite case. The Markov process WN, also called internal process, is specified by a Markov
model (T, µ), i.e. by initial distribution and transition kernel.

Definition 2.2. A functional HMM with internal space Γ and output space ∆ is a triple
(T, µ, f), where µ ∈ P(Γ) and both T : Γ → P(Γ) and f : Γ → ∆ are measurable. The process
WN generated by the Markov model (T, µ) is called internal process and the process XN
defined by Xk := f(Wk) is called function of a Markov chain or output process of the
functional HMM.

A natural generalisation of functions of Markov chains is to consider stochastic instead
of deterministic functions. This corresponds to a noisy observation channel ([BP66]). The
resulting model is the most common type of HMM. More specifically, we call this type state-
emitting HMM, because we interpret the observed symbols from ∆ as emitted by a machine
that is described by the HMM. And the probability distribution for the emitted symbol only
depends on the current internal state (as opposed to the whole transition from one internal
state to the next one, which we consider below). In terms of graphical models,1 the dependence
structure is visualised as

W1
//

��

W2
//

��

W3
//

��

· · · // Wn
//

��

· · ·

X1 X2 X3 · · · Xn · · ·

Definition 2.3. (T, µ,K) is called state-emitting HMM if T : Γ → P(Γ), K : Γ → P(∆)
are measurable and µ ∈ P(Γ).

For our purposes, a less restrictive version of HMM is more convenient. Given a state-
emitting HMM (T ′, µ,K), we can combine the kernels T ′ and K into one joint kernel T from
Γ to Γ×∆, namely T := T ′ ⊗K. Now it seems natural to consider arbitrary, not necessarily
factorising such kernels, describing the joint production of the output symbol and the next

1We do not require knowledge of graphical models, but use it only for visualisations that should be intuitive
enough. See, [Lau96] for a treatment of graphical models.
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internal state. Because new internal state and output symbol are jointly determined, the
distribution of the output symbol depends on the whole transition instead of just one of the
internal states. Therefore, in contrast to state-emitting HMMs, we call such HMMs transition-
emitting. They are, for instance, used in [Jel99]. Transition-emitting HMMs are also known
under the name of stochastic output automata (see [Buk95]), a name most directly linked to
the intuition of a “machine” that has internal (unobservable) states Γ and, at each time step,
emits a symbol from the space ∆ while updating its internal state.

In the definitions of partially deterministic HMMs in Section 2.1.7, it is notationally more
convenient to change the order of output symbol and new internal state. Thus we interpret T
as kernel from Γ to ∆×Γ. The pair (T, µ) generates an internal process WN0 (N0 := N∪{ 0 })
on Γ and a (coupled) output process XN on ∆, such that W0 is µ-distributed and the joint
process is Markovian withP({Xk+1 ∈ G, Wk+1 ∈ D, }

∣∣ Wk,Xk

)
= T (Wk; D × G), ∀D ∈ D, G ∈ G,

where we can assume, as in Section 2.1.1, that the equality always (not only a.s.) holds and
write P(Xk+1,Wk+1 | Wk,Xk) = T ◦ Wk.

The dependence structure can be visualised as

W0
//

!!C
CC

CC
CC

C
W1

//

!!C
CC

CC
CC

C
W2

//

!!CC
CC

CC
CC

W3
//

!!C
CC

CC
CC

CC
· · ·

X1 X2 X3 · · ·

Remark. In our definition of transition-emitting HMMs, the internal process starts one time
step earlier than the output process. Thus, if we want to interpret a state-emitting HMM
(T ′, µ′,K) of a non-stationary process as transition-emitting HMM by defining T = T ′ ⊗ K,
there is a minor issue concerning the first output symbol. (T, µ′) generates the shifted process,
where the first symbol is dropped and there may not exist a µ ∈ P(Γ) such that the one-step
iterate

∫
T dµ has the correct marginals. This problem can be solved by adding an additional

start state to Γ.

If we define T ′(d, g) := T (g), the joint distribution of WN0 and XN generated by a
transition-emitting HMM is given by µ ⊗

⊗
k∈N T ′. More explicitly, we obtain for finite-

dimensional setsP({W[0,n] ∈ G[0,n], X[1,n] ∈ D[1,n] }
)

=

∫

g0∈G0

∫

(d1,g1)∈D1×G1

· · ·

∫

(dn,gn)∈Dn×Gn

1 dT (gn−1) · · · dT (g0) dµ.

Definition 2.4. A transition-emitting HMM is a pair (T, µ) with µ ∈ P(Γ) and measur-
able T : Γ → P(Γ × ∆). µ is called initial distribution, and T is called generator. We
say that (T, µ) is an HMM of P ∈ P(∆N) if P = PXN and that (T, µ) generates the output
process XN or its distribution P .

The even more general notion of partially observed Markov process2 allows the next inter-
nal state and output symbol to depend on the last output symbol as well as the internal state.

2The term “partially observed Markov process” sometimes also refers to transition- or state-emitting HMMs.
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Thus it is just a (homogeneous) Markov process on a product space, where only one compo-
nent (∆) is considered to be observable, whereas the other component (Γ) consists of hidden
states. Note that here both marginal processes need not be Markovian. The dependence
structure can be visualised as

W1
//

!!C
CC

CC
CC

C
W2

//

!!C
CC

CC
CC

C
W3

//

!!CC
CC

CC
CC

W4
//

!!C
CC

CC
CC

CC
· · ·

X1
//

=={{{{{{{{
X2

//

=={{{{{{{{
X3

//

=={{{{{{{{
X4

//

=={{{{{{{{{
· · ·

Definition 2.5. A partially observed Markov model is a Markov model (T, µ) on a
product space Γ × ∆, where only the ∆-component is considered observable.

It is a trivial but important observation that the four discussed flavours of HMMs, partially
observed Markov models, transition-emitting HMMs (stochastic automata), state-emitting
HMMs, and functional HMMs (functions of Markov chains) are essentially equivalent in the
following sense. To every partially observed Markov process (the most general notion), one can
canonically associate a functional HMM (the most restrictive notion) such that the cardinality
of the internal state space increases only by the constant factor of the cardinality of the output
space. In fact, the new set of internal states is the product space Γ′ = Γ×∆. In particular, if
∆ is finite, the classes of processes generated by finite functional HMMs, finite state-emitting
HMMs, finite transition-emitting HMMs and finite partially observed Markov models coincide.

Proposition 2.6. Let (T, µ) be a partially observed Markov model with space Γ of internal
states and output space ∆. Then there is a functional HMM with internal state space Γ′ :=
Γ × ∆ that generates the same output process.

Proof. Let f : Γ′ → ∆ be the canonical projection. Then (T, µ, f) is obviously a functional
HMM of the same process.

Transition-emitting HMMs are best suited for the following discussion, in particular the
partial determinism property discussed in Section 2.1.7 is most natural for this class of HMMs.
Furthermore, transition-emitting HMMs are more closely related to the algebraic models
discussed in Section 2.2 below than the other types of HMMs are. Due to the essential
equivalence of the different types, we feel free to restrict ourselves to transition-emitting
HMMs and, from now on, all considered HMMs are transition-emitting. For every stochastic
process XN, there exists an HMM that generates it. The most basic one is the (one-sided)
shift.

Example 2.7 (shift). Let P ∈ P(∆N) be the distribution of XN. Define Γ := ∆N and let σ
denote the left-shift on ∆N. Then there is an HMM of XN with internal space Γ, such that
the internal state coincides with the output trajectory. If the HMM is in the internal state
g = (g1, g2, . . .) ∈ Γ, the output symbol is g1 and the next internal state is σ(g) = (g2, g3, . . .).
More precisely, let T σ : Γ → P(∆ × Γ) with

T σ(g) := δX′
1(g) ⊗ δσ(g) = δ(g1,σ(g)),

where δx is the Dirac measure in x, i.e. δx = 1A(x) is one if and only if x ∈ A and zero
otherwise. We call the transition-emitting HMM (T σ, P ) one-sided shift HMM of P . It is
obvious that it indeed generates P . ♦
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2.1.3 Countable HMMs

In this section, we briefly look at the simplified, important special case where both the
internal space Γ and the output space ∆ are countable. In this case, probability measures
can be regarded as vectors and transition probabilities as matrices. In this section, we use
the most frequently used convention, which is to write measures as row vectors and multiply
them to transition matrices from the left.

Definition 2.8. An HMM is called countable HMM if the internal space Γ and the output
space ∆ are countable. It is called finite if both spaces are finite.

Let (T, µ) be a countable, transition-emitting HMM. For w = (w0, . . . , wn) ∈ Γn+1 and
x = (x1, . . . , xn) ∈ ∆n, the joint probability that internal and output process start with the
values w and x respectively is given byP({W[0,n] = w, X[1,n] = x }

)
= µ(w0)

n∏

k=1

T (wk−1; xk, wk),

and the formula for the distribution P of the observable process is

P
(
[x1, . . . , xn]

)
=

∑

g0,...,gn∈Γ

µ(g0)

n∏

k=1

T (gk−1; xk, gk).

Let l and m denote the number of elements of ∆ and Γ respectively. Even if l,m < ∞, the
number of terms in the above sum increases exponentially with n. Therefore, to actually com-
pute the probability of an output sequence x, a different method is required. In order to use
the properties of matrix multiplication, we split the m× l ·m matrix

(
T (g; d, ĝ)

)
g∈Γ,(d,ĝ)∈∆×Γ

describing T into l different m × m matrices Td, one for each output symbol d ∈ ∆ (m and l
may be infinite). We define

Td :=
(
Td(g, ĝ)

)
g,ĝ∈Γ with Td(g, ĝ) := T (g; d, ĝ).

Td is a sub-stochastic matrix and Td(g, ĝ) = P({Xk = d, Wk = ĝ }
∣∣ Wk−1 = g

)
. Multiplica-

tion with the initial distribution µ (interpreted as row-vector) yields

µ · Td = P({X1 = d }
)
·P(W1 | X1 = d). (2.2)

Note that here we interpret the probability measure P(W1 | X1 = d) on Γ again as m-
dimensional row vector. It should be plausible, and we prove it in Lemma 2.13 below in a more
general context, that

(
T,P(W1 | X1 = d)

)
is an HMM of the conditional process P(X[2,∞[ |

X1 = d). Consequently, applying (2.2) several times, we obtain for x = (x1, . . . , xn) ∈ ∆n

µTx1 · · · Txn = P({X1 = x1 }
)
· · ·P({Xn = xn }

∣∣ X[1,n−1] = x[1,n−1]

)
·P(Wn | X[1,n] = x)

= P({X[1,n] = x }
)
· P(Wn | X[1,n] = x).

With 1 denoting the m-dimensional column vector with all entries one, this yields

P
(
[x1, . . . , xn]

)
= µTx1 · · ·Txn1

and the number of steps necessary to compute the probability of the output grows only linear
in n. The family (Td)d∈∆ of matrices obviously determines the matrix T uniquely. On the
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other hand, a family (Td) of sub-stochastic matrices comes from an HMM if and only if their
sum

∑
d∈∆ Td is a stochastic matrix. Below, in Section 2.2.1, we see that the reformulation of

the HMM in terms of Td instead of T corresponds to an interpretation as observable operator
model.

If ∆ is countable, every ∆-valued process XN is generated by a countable HMM. This is
true, because the time set is only semi-infinite and thus a countable Γ can store the complete
history of output symbols in the internal state (see the following example). This situation
changes when we construct HMMs of processes XZ in doubly infinite time. Then, an uncount-
able internal space may be necessary, even if the output space is countable (see Section 2.1.5).

Example 2.9. Let ∆ be countable and XN an arbitrary ∆-valued process with distribution
P ∈ P(∆N). We construct a countable transition-emitting HMM (T, µ) as follows. Let
Γ := ∆∗ :=

⊎
n∈N0

∆n =
⊎

n∈N∆n ⊎ { e }, where ⊎ denotes the disjoint union and e is the
“empty word” (the single element in ∆0). The internal state of the HMM stores the past of
the process, and the following output symbol is determined by the corresponding conditional
probability. To achieve this, the initial distribution is µ := δe, the Dirac measure in the empty
word. The generator T : Γ → P(∆ × Γ) is for g = (g1, . . . , gn) ∈ ∆n ⊆ Γ, d ∈ ∆ and ĝ ∈ Γ
defined by

T (g; d, ĝ) := P
(
{Xn+1 = d }

∣∣ X[1,n] = g
)
· δgd(ĝ),

where gd := (g1, . . . , gn, d) ∈ ∆n+1 ⊆ Γ. It is easy to see that (T, µ) is indeed an HMM of XN.
Note that even if XN is stationary, the internal process of the above HMM is non-stationary
and transient. ♦

2.1.4 Souslin HMMs

We do not always want to restrict to countable HMMs, even in the parts of the thesis, where
∆ is assumed to be countable. The reason is that spaces like ∆Z or P(∆N) are naturally
occurring as internal spaces of HMMs and not all processes in doubly infinite time admit
countable HMMs. Furthermore, many of the concepts we introduce do not require countability
of ∆ and Γ. We need, however, some technical restrictions on the measurable spaces in order
to guarantee the existence of regular versions of conditional probability. In addition, countably
generated σ-algebras are necessary to interchange “a.s.” and quantifications over measurable
sets. A standard assumption in probability theory guaranteeing these properties is that the
occurring spaces are Polish3. While this assumption would be satisfactory for ∆, we need a
slightly less restrictive one for Γ due to the following reasons. First, if X and Y are Polish
spaces and f : X → Y is measurable, the image f(X) of f needs neither be a Polish space nor a
measurable subset of Y (thus it is also not Borel isomorphic to a Polish space in general). But
the space of so-called causal states, discussed in Section 3.2.3, is isomorphic to a measurable
image and we do not know if it is Polish in general. Second, the more general class of Souslin
spaces arises naturally when we consider countably generated sub-σ-algebras in Section 3.2.2.

Definition 2.10. A metrisable topological space Γ is called Souslin space if it is the con-
tinuous image of a Polish space, i.e. there is a Polish space X and a continuous surjective
function f : X → Γ. A measurable space is called Souslin measurable space if it is, as a
measurable space, isomorphic to a Souslin space. An HMM is called Souslin HMM if both
the internal space Γ and the output space ∆ are Souslin spaces.

3A Polish space is a separable, completely metrisable topological space.
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Remark. a) Most authors do not require Souslin spaces to be metrisable, but only Hausdorff.
We use Bourbaki’s definition from [Bou89].

b) Every Souslin space ∆ is separable and P(∆Z) is also a Souslin space.

c) Souslin measurable spaces are also called analytic spaces. For their definition, it is
irrelevant if Souslin spaces are assumed to be metrisable or not. Every non-metrisable
Souslin space is Borel isomorphic to a metrisable Souslin space.

d) If we prove a measurable space Γ to be Souslin measurable, we may use it as internal space
of a Souslin HMM, implicitly assuming that a compatible Souslin topology is chosen.

For a summary of the (for our purposes) most important properties of Souslin spaces,
we refer to Appendix A.1. In particular, the Borel σ-algebra is countably generated, all
probability measures are Radon measures and regular versions of conditional probability
exist. Further, if a subset of a metrisable space is the measurable image of a Souslin space,
it is Souslin as well. For convenience, in the sequel, the term HMM shall always imply that
the spaces are Souslin and the HMM is transition-emitting.

Definition 2.11. We use the term HMM as synonym for transition-emitting Souslin HMM
(see Definitions 2.4 and 2.10).

Given a Souslin space Γ of internal states and a Markov kernel T from Γ to ∆×Γ, which
output distribution of HMMs (T, µ) can be achieved by choosing different initial distributions
µ ∈ P(Γ)? In particular, we can start the HMM in an internal state g ∈ Γ. Denote the
corresponding output process of the HMM (T, δg) by OT (g) ∈ P(∆N). Because OT is mea-
surable, it is a Markov kernel from the internal space Γ to the space ∆N of future trajectories.
The output distribution Oµ

T ∈ P(∆N) of the HMM (T, µ) for a general initial distribution
µ ∈ P(Γ) is given by

Oµ
T =

∫
OT dµ.

Because Oµ
T is linear in µ, the set of achievable output distributions is convex and the extreme

points are included in (but not necessarily equal to) the image Im(OT ) =
{

OT (g)
∣∣ g ∈ Γ

}

of OT . These considerations also appear in [AC05].

In order to analyse HMMs, we need some further notation. In the rest of this section,
we restrict ourselves to countable output spaces ∆ (with discrete topology), but allow the
internal space Γ to be an arbitrary Souslin space.

Definition 2.12. Let ∆ be countable and (T, µ) an HMM. Let g ∈ Γ, d ∈ ∆, and ν ∈ P(Γ).

a) The output kernel K : Γ → P(∆) is defined by K(g) := Kg := T (g; · × Γ) ∈ P(∆). We

also use the notations K̂d(g) := Kg(d) and Kν :=
∫

K dν.

b) The internal operators Ld : P(Γ) → P(Γ) are defined as follows. Ld(ν) = ν if Kν(d) = 0
and

Ld(ν)(G) :=

∫
T ( · ; { d } × G) dν

Kν(d)
otherwise.

Remark. a) Kg is the distribution of the next output symbol given that the internal state
is g, i.e. Kg = P(X1 | W0 = g) a.s. Further, Kµ is the distribution of X1.
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b) The internal operator Ld describes the update of knowledge of the internal state when the
symbol d ∈ ∆ is observed. In the case of countable Γ and using the definition of Td from
Section 2.1.3, Ld(ν)Kν(d) = νTd. For Dirac measures, we obtain

Ld(δg) = P(W1 | W0 = g, X1 = d) a.s.

Note that Ld is not induced by a kernel in the following sense. There is no kernel ld : Γ →
P(Γ) such that Ld(ν) =

∫
ld dν. To see this, note that Ld(ν) 6=

∫
Ld ◦ ι dν for ι(g) = δg,

because Ld(ν) is normalised outside the integral as opposed to an individual normalisation
of the Ld(δg) inside the integral on the right-hand side. Thus, Ld is not even linear.

It follows from the definition of (XN,WN0) by a Markov kernel that the conditional prob-
ability given an internal state W0 = g is obtained by starting the HMM in g. In other words,
it is generated by the HMM (T, δg). Similarly, the conditional probability given an observed
symbol X1 = d is obtained by starting the HMM in the updated initial distribution Ld(µ).
We formulate these observations in the following lemma.

Lemma 2.13. Let ∆ be countable, (T, µ) an HMM with internal and output processes WN0,
XN. Then (T, δW0(ω)) is a.s. an HMM of P(XN | W0)(ω), and

(
T,LX1(ω)(µ)

)
is a.s. an

HMM of P(X[2,∞[ | X1)(ω).

Proof. We first prove that (T, δW0) is an HMM of P(XN | W0). For g ∈ Γ, recall that
OT (g) ∈ P(∆N) is the distribution of the output process of (T, δg). Because OT is measurable,
OT ◦ W0 is σ(W0)-measurable. From the definition of (WN0 ,XN), it follows for measurable
G ⊆ Γ, A ⊆ ∆N thatP({W0 ∈ G } ∩ {XN ∈ A }

)
=

∫

G

OT ( · ; A) dµ =

∫

W−1
0 (G)

OT

(
W0( · ); A

)
dP,

where the second equality holds because W0 is distributed according to µ. Thus OT ◦ W0 is
the claimed conditional probability. To see that

(
T,LX1(µ)

)
is an HMM of P(X[2,∞[ | X1),

let d ∈ ∆ and observe
∫

OT ( · ; A) dLd(µ) =
1

Kµ(d)

∫ ∫

{d}×Γ
OT ( · ; A) dT dµ =

P({X1 = d, X[2,∞[ ∈ A }
)P({X1 = d }

) .

2.1.5 Doubly infinite time and size of HMMs

So far we were concerned with HMMs for processes XN in semi infinite time. The main focus of
this work, however, is on stationary processes with time set Z. Every stationary process with
time set N can be uniquely extended to a stationary process in doubly infinite time. Thus,
an HMM (T, µ) of the future part XN of a stationary process XZ identifies the distribution
of the whole process. Nevertheless, we are not satisfied with this model of XN as model of
XZ for the following reason. The internal process WN0 is not necessarily stationary and, in
general, there exists no extension to a process WZ, such that T is the conditional probability
of Xk,Wk given Wk−1. Therefore, (T, µ) is not a valid possibility for the generation of the
doubly infinite process XZ. To the contrary, we require that the internal process of a model
of XZ has to be stationary. This requirement is equivalent to µ being T -invariant in the sense
that

µ(G) =

∫
T ( · ; ∆ × G) dµ ∀G ∈ Γ. (2.3)
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On the other hand, given an HMM (T, µ), T -invariance of µ ensures that both XN and WN0

are stationary and we extend them to processes WZ, XZ in doubly infinite time. Most of the
rest of this thesis is concerned with stationary processes and invariant representations.

Definition 2.14. An HMM (T, µ) is called invariant, if µ is T -invariant (i.e. (2.3) is satis-
fied).

If an HMM is invariant, one may ask whether the generated processes WZ and XZ are
ergodic. Because WZ is a Markov process, ergodicity of WZ can be verified easily, at least if
Γ is countable (see [KSK76]). The situation for XZ is more complicated. A simple sufficient
criterion is given by the fact that ergodicity of WZ implies ergodicity of XZ (but not vice
versa). This criterion is enough for our purposes and we prove it in the following. A complete
characterisation of HMMs with ergodic output processes was obtained by Schönhuth in [SJ09].

Proposition 2.15. Let (T, µ) be an invariant HMM with ergodic internal process WZ. Then
the output process XZ is ergodic as well.

Proof. Let A ∈ B(∆Z) be shift-invariant. Due to stationarity of P = PXZ , A is measurable
w.r.t. the P -completion of the tail σ-algebra on ∆Z (e.g. [D�b09, Lem. 3]). For x ∈ ΓZ,
the conditional process P ′

x := P(XZ | WZ = x) is independently distributed. Thus, we
can apply the Kolmogorov 0-1-law to obtain that P ′

x(A) ∈ { 0, 1 } for almost all x. Let
B :=

{
x ∈ ΓZ ∣∣ P ′

x(A) = 1
}

. Then B is shift-invariant (modulo PWZ), because joint
stationarity and shift-invariance of A lead to

P ′
σ(x)(A) = P({XZ ∈ A }

∣∣ WZ = σ(x)
)

= P({XZ ∈ σ−1(A) }
∣∣ WZ = x

)
= P ′

x(A).

Consequently, we obtainP({XZ ∈ A }
)

=

∫
P
(
{XZ ∈ A }

∣∣WZ) dP = P({WZ ∈ B }
)

∈ { 0, 1 }.

If ∆ is countable and XZ is a ∆-valued, stationary process, then there exists a countable
HMM generating the future part, XN, of the process. This is not the case for the whole
process. There may not exist any invariant, countable HMM of XZ.

Example 2.16. Let XZ be any stationary process with distribution P ∈ Ps(∆
Z) and un-

countably many ergodic components (we define ergodic components in Section 4.1.2). For
instance, let ∆ = { 0, 1 } and P =

∫ 1
0 Pp dp, where Pp ∈ Ps(∆

Z) is the Bernoulli process with
parameter p (i.e. Pp is i.i.d. with Pp

(
[1]
)

= p) and the integration is w.r.t. Lebesgue measure.
Then there is no invariant, countable HMM of XZ, because the output process of such an
HMM (T, µ) has only countably many ergodic components. Indeed, if Γ is countable, it fol-
lows from the theory of countable Markov chains (e.g. [KSK76]) that the stationary internal
process WZ has a countable number of ergodic components W kZ, and there are disjoint sets
Γk ⊆ Γ such that W k

n assumes for any n ∈ N only values in Γk. Because ergodicity of the
internal process of an HMM implies ergodicity of the output process, the output of (T, µ)
can have at most as many ergodic components as WZ does. In particular, the number of
components is countable. ♦

There is a natural notion of isomorphism of invariant HMMs.
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Definition 2.17. An invariant HMM (T, µ) with space Γ of internal states is called isomor-
phic to an invariant HMM (T ′, µ′) with space Γ′ of internal states if they share a common
output space ∆ and there is a measurable function ι : Γ → Γ′ that is µ-a.s. injective (i.e.
injective on a set of µ-measure one) and satisfies

µ′ = µ ◦ ι−1 and T ′(ι( · ); D × G′) = T
(
· ; D × ι−1(G′)

)
µ-a.s.

for all D ∈ D and G′ ∈ G′. ι is called isomorphism.

Remark. a) µ′ = µ ◦ ι−1 implies that ι is essentially surjective in the sense that its image
has full measure4 w.r.t. µ′. Thus an isomorphism is essentially bijective.

b) Obviously, isomorphic HMMs generate the same output process.

The following proposition justifies the name isomorphism for the function ι of Defini-
tion 2.17. For every isomorphism, there is an inverse isomorphism.

Proposition 2.18. Let (T, µ) and (T ′, µ′) be isomorphic invariant HMMs and ι : Γ → Γ′ an
isomorphism. Then there exists an inverse isomorphism ι′ : Γ′ → Γ with

ι ◦ ι′ = idΓ′ µ′-a.s. and ι′ ◦ ι = idΓ µ-a.s.

Proof. Let ι be injective on Λ ∈ G with µ(Λ) = 1 and define Λ′ = ι(Λ). Then the restriction
ι↾Λ of ι to Λ is a Borel isomorphism between the Souslin spaces Λ and Λ′ ([Coh80, Prop. 8.6.2]).
Let j = ι↾−1

Λ . Because Λ′ is a Souslin set, it is universally measurable and there is a Borel
map ι′ : Γ′ → Γ that coincides with j on a measurable set A′ ∈ G′ with A′ ⊆ Λ′ and µ′(A′) = 1
([Bog07, Cor. 6.5.6]). On A′, ι′ is injective and ι ◦ ι′ = idΓ′ . Let A = ι−1(A′) ∩ Λ. Because
µ′ = µ◦ι−1, we have µ(A) = 1 and obtain ι′◦ι = idΓ on A. We show that ι′ is an isomorphism:

1. µ′ ◦ ι′−1 = µ ◦ id−1
Γ = µ holds because ι′ ◦ ι = idΓ a.s.

2. Let D ∈ D and G ∈ G. Because µ is T -invariant, T ( · ; ∆ × G) = T
(
· ; ∆ × (ι′ ◦ ι)−1(G)

)

holds µ-a.s. Therefore, using that ι is an isomorphism, we obtain µ′-a.s.

T (ι′( · ); D × G) = T ′
(
ι ◦ ι′( · ); D × ι′

−1
(G)
)

= T ′
(
· ; D × ι′

−1
(G)
)
.

The question about a minimal HMM of a given process XZ suggests itself. In order to
make this more precise, we have to define the “size” of an HMM. Because we consider XZ,
and thus ∆, to be fixed, we use the “size” of the internal component. One possibility to
define it is the cardinality |Γ| of its set of internal states. In the case of invariant HMMs of
stationary processes, there is a second possibility which we consider more appropriate for the
definition of complexity measures. It is the entropy H(µ) = HP(W0) of the invariant initial
distribution. Note that these two possible definitions of size lead to a different ordering of
HMMs. We demonstrate in the following example that a very natural looking HMM with the
minimal number of internal states can have higher internal entropy than an HMM with more
internal states.

4The image need not be Borel measurable. It is, however, a Souslin set and thus universally measurable.
In particular, it is µ′-measurable.
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0 1

1
2 (1 − ε)

1
2 (1 − ε)

1
2 (1 + ε) 1

2 (1 + ε)

Figure 2.1: “Nearly i.i.d.” Markov process used in Example 2.19

Remark (visualisation of generators). We visualise the generator T of a finite HMM as
transition graph in the following way. The nodes of the directed graph correspond to the
internal states of the HMM and are drawn as circles labeled with the internal state. From
node g to node ĝ, there may be up to |∆| edges, labeled by output symbol d and transition
probability p = T (g; d, ĝ). Edges are present if and only if p > 0. Similarly, we draw transition
kernels of Markov processes. Here, the nodes are the states of the process and we draw them
as square boxes. There are no output symbols in the edge labels and there is at most one
edge from one state to another.
Note that these kinds of visualisation are different from the visualisations of dependence
structures as graphical models, which we already used. There, the nodes correspond to
random variables instead of states. To distinguish these visualisations, we do not draw circles
around nodes in graphical models.

Example 2.19. Let ∆ := { 0, 1 } and, for ε ∈ [0, 1], consider the stationary Markov process
XεZ defined byP({Xε

0 = d }
)

:= 1
2 and P({Xε

n+1 = d̂ }
∣∣ Xε

n = d
)

:=

{
1
2(1 + ε) if d = d̂,
1
2(1 − ε) if d 6= d̂.

The transition kernel is visualised in Figure 2.1. XεZ is a disturbed i.i.d. process with distur-
bance of magnitude ε. For ε = 0, it is i.i.d., and for ε = 1 it is constantly 0 or 1, each with
equal probability. It is obvious that there is a stationary HMM of XεZ with two internal states
and Wk = Xk, because XεZ is already Markovian. The internal state entropy of this HMM is
log(2).

No HMM can do with less than two internal states, but we can construct an HMM with
lower internal state entropy on three states for sufficiently small ε. The idea is to have one
state corresponding to the i.i.d. process and getting most of the invariant measure if ε is small.
The other two states correspond to the disturbances towards constantly 0 and 1 respectively.
More precisely, let Γ := { 0, 1, 2 } and consider the stationary HMM (T ε, µε) given by

T ε(g) :=

{
εδ(g,g) + (1 − ε)δ(g,2) if g ∈ { 0, 1 },
1
2

(
εδ(0,0) + εδ(1,1) + (1 − ε)δ(0,2) + (1 − ε)δ(1,2)

)
if g = 2

(see Figure 2.2) together with the invariant initial distribution µε = ε
2δ0 + ε

2δ1 +(1−ε)δ2. We
verify that this HMM generates XεZ, using the terminology of Section 2.1.3. For every vector
ν, νT ε

0 is a multiple of (ε, 0, 1 − ε) and νT ε
1 is a multiple of (0, ε, 1 − ε). Thus the output

process is Markovian and the conditional probability of the next output, given that the last
output was 0, is εδ0 + (1 − ε)(1

2δ0 + 1
2δ1) = P(Xε

1 | Xε
0 = 0). Because the same holds for the

output 1 and the marginals coincide, (T ε, µε) is an invariant HMM of XεZ with internal state
entropy given by

H(µε) = −(1 − ε) log(1 − ε) − ε log( ε
2 )

ε→0
−→ 0.

Thus it is smaller than log(2) for sufficiently small ε. ♦
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0 2 1

0|1 − ε

0| ε2 1| ε2

1|1 − ε

0|ε 1|ε

0|1−ε
2

1|1−ε
2

Figure 2.2: HMM used in Example 2.19. The circled nodes are internal states. The edges are transi-
tions, labeled with output symbol d and transition probability p in the form “d|p”. The HMM generates
the Markov process shown in Figure 2.1, but with lower internal state entropy.

2.1.6 Internal expectation process

In this section, we consider only countable ∆. We claimed that the internal operator Ld

describes the update of knowledge of the internal state. Now, we look at the process of
“knowledge of the internal state,” more precisely at the process YZ of conditional probabilities
of the internal state given the past of the output process. We justify our interpretation of Ld

in Lemma 2.21 and show that the internal expectation process YZ is a Markov process. These
results are in particular needed in the following section to clarify the structure of partially
deterministic HMMs.

Definition 2.20 (YZ and HZ). Given an invariant HMM, let YZ be the P(Γ)-valued process
of expectations over internal states given by Yk := P(Wk | X]−∞,k]). Let HZ be the process
of entropies of the random measures Yk, i.e. Hk(ω) := H

(
Yk(ω)

)
. We call an HMM state

observable if Hk = 0 a.s. for all k.

Remark. a) Yk describes the current knowledge of the internal state, given the past. Hk is
the entropy of the value of Yk and measures “how uncertain” the knowledge of the internal
state is. It is important to bear in mind that this is different from the entropy HP(Yk) of
the random variable Yk.

b) An HMM is state observable if and only if there is a measurable function h : ∆−N0 → Γ
such that W0 = h ◦ X−N0 a.s. This means that the current internal state can always be
inferred by an observer.

The following lemma justifies the idea of the internal operator Ld modelling the update
of knowledge of the internal state. Furthermore, it enables us to condition on Y0 instead of
X−N0 . The conditional probability of the internal state given the past, Y0, contains as much
information about X1 (and in fact XN, but we do not need that here) as the past X−N0 does.

Lemma 2.21. Let (T, µ) be an invariant HMM, ∆ countable and d ∈ ∆. Then

a) Y1(ω) = LX1(ω)

(
Y0(ω)

)
a.s.

b) P({X1 = d }
∣∣ Y0

)
(ω) = P({X1 = d }

∣∣ X−N0

)
(ω) = KY0(ω)(d) a.s.

Proof. Conditional independence of (X1,W1) and X−N0 given W0 implies that a.s. P(X1, W1 |
W0) = P(X1, W1 | W0, X−N0) and thus

∫
T dY0 =

∫ P(X1, W1 | W0) dP( · | X−N0) = P(X1, W1 | X−N0). (2.4)
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a) Let d = X1(ω) and for G ∈ G set FG := {X1 = d, W1 ∈ G }. We obtain a.s.

Ld(Y0)(G)
(2.4)
=

P(FG | X−N0)P(FΓ | X−N0)

(d = X1(ω))
= P({W1 ∈ G }

∣∣ X−N0 , X1

)
= Y1( · )(G).

b) The second equality follows directly from (2.4). The first follows because, due to the
second equality, P({X1 = d }

∣∣ X−N0

)
is σ(Y0)-measurable modulo P.

Using the previous lemma, we can prove that YZ is Markovian and compute its transition
kernel. We already know that Ld(ν) is the updated expectation of the internal state when it
previously was ν and d is observed. Thus, it is not surprising that the conditional probability
of Yk given Yk−1 = ν is a convex combination of Dirac measures in Ld(ν) for different d (note
that Yk is a measure-valued random variable, thus its conditional probability distribution is
indeed a measure on measures). The mixture is given by the output kernel K, more precisely
by Kν .

Proposition 2.22. Let ∆ be countable. For an invariant HMM, YZ and HZ are stationary.
YZ is a Markov process with transition kernelP(Yk+1 | Yk = ν) =

∑

d∈∆

Kν(d) · δLd(ν) ∈ P
(
P(Γ)

)
∀ν ∈ P(Γ).

Proof. Stationarity is obvious. For ν0, . . . , νk ∈ P(Γ) and ν := νk we obtainP(Yk+1 | Y[0,k] = ν[0,k])
(Lem. 2.21a)

= P(LXk+1( · )(ν)
∣∣ Y[0,k] = ν[0,k]

)

=
∑

d∈∆

P({Xk+1 = d }
∣∣ Y[0,k] = ν[0,k]

)
· δLd(ν).

σ(Y[0,k]) is nested between σ(Yk) and σ(X]−∞,k]), i.e. σ(Yk) ⊆ σ(Y[0,k]) ⊆ σ(X]−∞,k]). There-
fore, Lemma 2.21 b. implies that we have P({Xk+1 = d }

∣∣ Y[0,k] = ν[0,k]

)
= Kνk

= Kν and
hence the claim follows.

2.1.7 Partial determinism

If the generator T of an HMM is deterministic, i.e. if the internal state determines the next
state and output (and thus the whole future) uniquely, the HMM is called (completely) de-
terministic. In a deterministic HMM, all randomness is due to the initial distribution. An
example is the shift HMM of Example 2.7. Determinism is a very strong property, and a
weaker partial determinism property is useful. In a partially deterministic HMM, the output
symbol is determined randomly, but the new internal state is a function f(g, d) of the last
internal state g and the new output symbol d. In the visualisation of T as transition graph,
this means that for every internal state g and output symbol d, there is at most one edge
labeled with d and leaving the node g. An example of such an HMM is Example 2.9, where
the internal state coincides with the past output and f(g, d) = gd.

If the internal space Γ and the output space ∆ are finite, partially deterministic HMMs
are stochastic versions of deterministic finite state automata (DFAs), an important concept
of theoretical computer science (see [HU79, Chap. 2]). The function f directly corresponds to
the transition function of the DFA, but the start state is replaced by the initial distribution
and the HMM assigns probabilities to the outputs via the output kernel K. A difference
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in interpretation is that the symbols from ∆ are considered input of the DFA and output of
HMMs. To emphasise their close connection to DFAs, partially deterministic HMMs are often
called deterministic stochastic automata, although they are not completely deterministic.

Definition 2.23. An invariant HMM (T, µ) is called partially deterministic if there is a
measurable function f : Γ × ∆ → Γ, called transition function, such that for µ-almost all
g ∈ Γ, we have T (g) = Kg ⊗ δf(g, · ), i.e.

T (g; D × G) = Kg

(
D ∩ f−1

g (G)
)

∀D ∈ D, G ∈ G,

where fg(d) := f(g, d). We also use the notation f̂d(g) := fg(d).

The isomorphisms between partially deterministic HMMs are precisely the essentially
bijective maps that “preserve” output kernel and transition function.

Lemma 2.24. Let (T, µ) and (T ′, µ′) be invariant, partially deterministic HMMs with output
kernels K,K ′, transition functions f, f ′ and spaces Γ, Γ′ of internal states. Let ι : Γ → Γ′ be
a µ-a.s. injective map with µ′ = µ ◦ ι−1. Then ι is an isomorphism if and only if

K ′
ι(g) = Kg and f ′

ι(g)(d) = ι ◦ fg(d) µ ⊗ K-a.s.

Proof. “if”: Obvious from the definitions.

“only if”: Let ι be an isomorphism. With D = ∆, we obtain K ′
ι(g) = Kg a.s. For all g where

this holds and all G′ ∈ G′, we have

Kg

(
D ∩ f ′ −1

ι(g) (G′)
)

= T ′
(
ι(g); D × G′

)
= T

(
g; D × ι−1(G′)

)
= Kg

(
D ∩ ι−1 ◦ f−1

g (G′)
)

for all D ∈ D, which implies

1G′ ◦ f ′
ι(g) = 1G′ ◦ (ι ◦ fg) Kg-a.s. ∀G′ ∈ G′.

The equality holds for µ-almost all g. Because G′ is countably generated, this implies f ′
ι(g) =

ι ◦ fg Kg-a.s. for µ-almost all g ∈ Γ.

If ∆ is countable, we obtain for partially deterministic HMMs that

Ld(ν)(G) =
1

Kν(d)

∫

f̂−1
d

(G)
K̂d dν and Ld(δg) = δfg(d). (2.5)

The second equation implies Wk = fWk−1
(Xk) a.s., justifying the name transition function for

f . We obtain this result also for more general spaces. Recall that Kg(D) = P({X1 ∈ D }
∣∣

W0 = g
)

for g ∈ Γ and D ∈ D.

Proposition 2.25. An invariant HMM (T, µ) is partially deterministic with transition func-
tion f if and only if W1 = f(W0,X1) a.s.

Proof. W1 = f(W0,X1) a.s. is equivalent to δf(W0,X1) being a version of the conditional
probability P(W1 | W0,X1) (see Appendix A.3). We show that this is the case if and only
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if the HMM is partially deterministic with transition function f . δf(W0,X1) is σ(W0,X1)-

measurable. Let A ∈ σ(W0), G ∈ G, and B = X−1
1 (D) ∈ σ(X1) with D ∈ D. Using

δf(W0,X1) = P(f(W0,X1)
∣∣W0,X1

)
, we obtain

∫

A∩B

δf(W0,X1)(G) dP =

∫

A

P(B ∩ { f(W0,X1) ∈ G }
∣∣ W0,X1

)
dP

(A ∈ σ(W0))
=

∫

A

P({X1 ∈ D, f(W0,X1) ∈ G
} ∣∣ W0

)
dP

=

∫

A

KW0

(
D ∩ f−1

W0
(G)
)

dP
Partial determinism means that KW0

(
D ∩ f−1

W0
(G)
)

= P({X1 ∈ D, W1 ∈ G }
∣∣ W0

)
a.s.,

or equivalently that the integrals of these two functions over all σ(W0)-measurable sets A
coincide. Therefore, it is equivalent to

∫

A

KW0

(
D ∩ f−1

W0
(G)
)

dP = P(A ∩ {X1 ∈ D, W1 ∈ G }
)

∀A ∈ σ(W0), D ∈ D, G ∈ G

and hence to δf(W0,X1) = P(W1 | W0,X1) a.s.

Corollary 2.26. Every invariant, state observable HMM is partially deterministic.

Proof. Let the HMM be state observable, i.e. P(W0 | X−N0) = δW0 a.s. Then

δW1 = P(W1 | X−N0,X1) = P(W1

∣∣ P(W0 | X−N0),X−N0 ,X1

)
= P(W1 | W0,X1)

a.s. Thus W1 is a function of W0, X1 and the HMM is partially deterministic.

The converse of this corollary is obviously not true. It may well happen that the internal
state of a partially deterministic HMM cannot be derived from the output at any point in time.
Assuming countable ∆, we see in the following proposition that the uncertainty Hk = H(Yk)
of the internal state given the past output stays constant over time. This property is crucial
for understanding partially deterministic HMMs. Furthermore, in the case of finite entropy
H(µ), the next output symbol is independent of the internal state if the past output is known.
The proof is along the following lines. If we know the internal state at one point in time,
we can maintain this knowledge due to partial determinism. More generally, the uncertainty
Hk of the internal state cannot increase on average and thus HZ is a supermartingale. But
because it is also stationary, the trajectories have to be constant. If two possible internal states
led to different probabilities for the next output symbol, we could increase our knowledge of
the internal state by observing the next output. But because of partial determinism, this
would also decrease the uncertainty of the following internal state, in contradiction to the
constant trajectories of HZ.

Theorem 2.27. Let ∆ be countable and (T, µ) a partially deterministic, invariant HMM with
H(µ) < ∞. Then HZ has a.s. constant trajectories, i.e. Hk = H0 a.s., and the restriction
K↾supp(Y0) of the output kernel K to the support supp(Y0) ⊆ Γ of the random measure Y0 is
a.s. a constant kernel, i.e.

Kg = Kĝ ∀g, ĝ ∈ supp
(
Y0(ω)

)
a.s. (2.6)
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Proof. We show that HZ is a supermartingale to use the following well-known property.

Lemma. Every stationary supermartingale has a.s. constant trajectories.

Because H(µ) < ∞, we may assume w.l.o.g. that Γ is countable. Note that ϕ(x) = −x log(x)
satisfies ϕ(

∑
xi) ≤

∑
ϕ(xi). We obtain

H
(
Ld(ν)

) (2.5)
=

∑

ĝ∈Γ

ϕ




∑

g∈f̂−1
d

(ĝ)

ν(g)
Kg(d)

Kν(d)


 ≤

∑

g∈f̂−1
d

(Γ)=Γ

ϕ

(
ν(g)

Kg(d)

Kν(d)

)
.

We use the filtration Fk := σ(Y]−∞,k]). Markovianity of YZ yields E(Hk+1 | Fk) = E(Hk+1 |
Yk).

E
(
Hk+1

∣∣ Yk = ν
) (Prop. 2.22)

=
∑

d∈∆

Kν(d) · H
(
Ld(ν)

)
≤ −

∑

d,g

ν(g)Kg(d) · log

(
ν(g)

Kg(d)

Kν(d)

)

= HP(Wk | Xk+1, Yk = ν) ≤ HP(Wk | Yk = ν) = H(ν), (2.7)

where the second equality holds because P({Wk = g, Xk+1 = d }
∣∣ Yk = ν

)
= ν(g)Kg(d)

and P({Xk+1 = d }
∣∣ Yk = ν

)
= Kν(d). Thus HZ is a supermartingale w.r.t. (Fk)k∈Z and

has a.s. constant trajectories. In particular, inequality (2.7) is actually an equality. Because
H(µ) < ∞ and µ =

∫
Yk dP, the entropy of Yk(ω) is a.s. finite. Thus, HP(Wk | Xk+1, Yk =

ν) = HP(Wk | Yk = ν) implies that Wk and Xk+1 are independent given Yk = ν, i.e. K↾supp(ν)

is constant.

Note that the finite-entropy assumption is indeed necessary for the second statement of
Theorem 2.27. The shift HMM defined in Example 2.7, for example, is a deterministic HMM
that does not (in general) satisfy (2.6).

Example 2.28. Let (T σ, PN) be the (one-sided) shift HMM of the stationary process XZ.
The HMM is invariant and deterministic, thus in particular partially deterministic. Let
g = (gk)k∈N ∈ Γ and note that Kg = δg1 . Thus, Kg = Kĝ implies g1 = ĝ1. Furthermore,
Y0 = P(W0 | X−N0) = P(XN | X−N0) because W0 = XN a.s. If (2.6) holds, this means that
X1 is a.s. determined by X−N0 , which is generically not true. ♦

Theorem 2.27 tells us that the next output symbol of a partially deterministic HMM is
conditionally independent of the internal state, given the past output. But even more is true:
The whole future output is conditionally independent of the internal state. Thus, if we know
the past, the internal state provides no additional information useful for predicting the future
output.

Corollary 2.29. Let ∆ be countable and (T, µ) a partially deterministic, invariant HMM
with H(µ) < ∞. ThenP(XN | W0 = g) = P(XN | W0 = ĝ) ∀g, ĝ ∈ supp(Y0) a.s.

Proof. According to Theorem 2.27, P(X1 | W0 = ·) = K is constant on supp(Y0). To
obtain the statement for X[1,n], we consider the n-tuple HMM defined as follows: Its output

space is ∆n, its internal space is Γ and output- and internal processes X̂Z and ŴZ are
given by X̂k = X[(k−1)n+1,kn] and Ŵk = Wnk. This is achieved by the HMM (T̂ , µ) with
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T̂ : Γ → P(∆n × Γ), T̂ (g) = P(X[1,n],Wn | W0 = g). The HMM is obviously partially
deterministic with state update function fdn

◦ · · · ◦ fd1 and invariant. Thus Theorem 2.27

implies that P(X[1,n] | W0 = ·) = P(X̂1 | Ŵ0 = ·) is constant on supp(Ŷ0). Because we can

couple the processes such that Ŷ0 = Y0, the claim follows.

2.2 Algebraic representations

There are also more algebraic models of stochastic processes, which dismiss the conception
of the internal dynamics being described by a stochastic process. Instead, some vector space
replaces the internal states and the “dynamics” is described by linear maps (instead of Markov
kernels). These models are proper generalisations of HMMs. They were introduced and
termed stochastic S-modules by Alex Heller in the very concise paper [Hel65]. Later, in
[Jae00], Herbert Jaeger made the construction more explicit and transparent for readers not
familiar with module theory. He introduced the name observable operator model (OOM ),
provided ways of interpreting them and extended the theory by learning algorithms. Ergodic
theory for OOMs was developed in [FS07, SJ09]. In [LSS01], the same model class was
also obtained starting from a somewhat different intuition (internal states are constructed as
predictions for certain tests) as linear non-controlled predictive state representations (PSRs).5

The equivalence of linear non-controlled PSRs and OOMs is shown in [SJR04]. Another name
for the same class of models, generalised HMMs (GHMMs), is used in [Upp89].

Not only do OOMs provide more compact representations of some stochastic processes
than HMMs do, but they also turn out to be a useful tool for studying HMMs (see Sec-
tion 2.2.3).

2.2.1 Observable operator models

In this section, let ∆ be countable. OOMs exist also for processes with values in arbitrary
spaces (see [Jae99] and Section 2.2.4), but nearly all of the literature assumes that the output
space ∆ is finite.

We saw in Section 2.1.3 that countable HMMs can be reformulated in terms of a vector
corresponding to the initial distribution and a family (Td)d∈∆ of sub-stochastic matrices. This
idea is generalised in OOM theory, where the matrices are replaced by linear maps on some
vector space. This means that the positivity constraint is relaxed. Of course, the probabilities
associated to the output process have to be positive, which is required explicitly in the OOM
definition. In practice, this condition (3. in the following definition) is a problem for learning
algorithms, because it cannot be checked in general. In [Wie08], it is proven that the condition
is undecidable in the sense of computation theory, i.e. there cannot exist a general algorithm
for deciding if a given structure is a valid OOM.

Definition 2.30. An observable operator model (OOM) with countable output space ∆
is a quadruple

(
V, (Td)d∈∆, v, l

)
, where V is a real vector space, Td : V → V are linear maps,

v ∈ V , and l is a linear form on V, such that for n ∈ N and d1, . . . , dn ∈ ∆,

1. l(v) = 1, 2. l ◦
∑

d∈∆

Td = l, 3. Pd1,...,dn
:= l ◦ Tdn

◦ · · · ◦ Td1(v) ≥ 0.

5PSRs exist also for controlled systems, thus including actions of the observer. In principle, they can be
non-linear, but most of the theory considers the linear case.
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v is called initial vector, the Td are called observable operators and l is called evaluation
form. The process P ∈ P(∆N), defined by P

(
[d1, . . . , dn]

)
:= Pd1,...,dn

, is called generated
by the OOM and the dimension dim(V ) of V is called dimension of the OOM.

Remark. a) Jaeger fixes a basis of V instead of an evaluation form and defines l to be
the sum of coefficients in the basis expansion. This corresponds to the vector 1 used in
Section 2.1.3.

b) It is straightforward to verify (see [Jae00]) that the P generated by an OOM is really a
well-defined probability measure on ∆N.

OOMs are generalisations of HMMs in the sense that for any HMM, there is a naturally
associated OOM generating the same process. Given an HMM (T, µ), we introduced in
Definition 2.12 the internal operator Ld which describes the update of the knowledge about
the internal state when the symbol d is observed. The normalisation of Ld was necessary to
map probability measures onto probability measures but makes it non-linear. If we leave out
this normalisation, we obtain a linear operator Td(ν) = Kν(d)Ld(ν) from the space M(Γ) of
signed measures of bounded variation to itself. The operators Td incorporate also information
about the a priori probability of having observed d and yield an OOM generating the same
process.

Definition 2.31. Let (T, µ) be a countable HMM and V := M(Γ) the set of signed measures
of bounded variation on Γ. For d ∈ ∆, we define the linear maps Td : V → V by

Td(ν)(G) :=

∫
T
(
· ; { d } × G

)
dν ∀ν ∈ V = M(Γ), G ∈ G.

Then
(
V, (Td)d∈∆, µ, l

)
with l(ν) := ν(Γ) is called the associated OOM of (T, µ).

Remark. Let (T, µ) be a countable HMM with assocaited OOM
(
M(Γ), (Td), µ, l

)
.

a) We have Td(ν) = Kν(d)Ld(ν). In particular, Kν(d) = 0 implies Td(ν) = 0.

b) If the HMM is finite, the number |Γ| of internal states coincides with the dimension of the
associated OOM. The internal states correspond to the basis { δg | g ∈ Γ } of the associated
OOM vector space M(Γ).

c) It is shown in [Hel65] and [Jae00] that finite-dimensional OOMs can exist for some pro-
cesses that do not allow for an HMM with finitely many internal states.

Lemma 2.32. The OOM associated to an HMM is a valid OOM and generates the same
process as the HMM.

Proof. This is a special case of Lemma 2.39 below.

2.2.2 Canonical OOM

It is in general a difficult task to construct an HMM with the minimal number of internal
states. Existence of an HMM with finitely many internal states and the necessary number of
states depend on an intricate geometrical condition specified by Heller in [Hel65]. Moreover,
the HMM with the minimal number of internal states is not unique. The situation for OOMs
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is much more pleasant. There is a unique (up to isomorphism) OOM with minimal dimension,
and it is obtained by a canonical construction on the space V := M(∆N) of signed measures
with bounded variation on ∆N. Note that M(∆N) = span

(
P(∆N)

)
, where span denotes the

linear hull. The canonical observable operators τd : M(∆N) → M(∆N) are defined by

τd(z) = z
(
[d] ∩ σ−1( · )

)
,

where σ is the left-shift on ∆N. Further define l∆ : M(∆N) → R by l∆(z) = z(∆N), i.e. the
evaluation form l∆ associates to a measure its total mass. For convenience, we define

τd1···dn
:= τdn

◦ · · · ◦ τd1 .

Definition 2.33. Let ∆ be countable and for P ∈ P(∆N) let

QP :=
{

τd1···dn
(P )

∣∣ n ∈ N0, d1, . . . , dn ∈ ∆
}

and VP := span(QP ).

For d ∈ ∆, denote the function VP → VP , z 7→ τd(z) with a slight abuse of notation again by
τd. Then

(
VP , (τd)d∈∆, P, l∆

)
is called canonical OOM of P . If P ∈ Ps(∆

Z), the canonical
OOM of P is the canonical OOM of PN, i.e. (VP , (τd), PN, l∆) with VP := VPN .

Lemma 2.34. Let ∆ be countable and P ∈ P(∆N). The corresponding canonical OOM is a
valid OOM and generates P .

Proof. This is a special case of Lemma 2.41 below.

Remark. a) It is straightforward to verify that the canonical OOM has the minimal dimen-
sion amongst all OOMs generating P (see [Jae00]). In particular, the dimension of VP is
not bigger (but may be essentially smaller) than the minimal number of internal states
required for any HMM generating P .

b) If A is a finite-dimensional cylinder set, the same holds for [d] ∩ σ−1(A). Therefore, τd is
weak-∗ continuous and, consequently, τd maps the weak-∗-closure VP

w∗ of VP to itself.
Thus

(
VP

w∗, (τd)d∈∆, P, l∆
)

is an OOM of P . The space VP
w∗ turns out to be important

when we compare the canonical OOM to the causal states in Section 3.4.3.

The dimension of the canonical OOM is an important characteristic of the process. It
is called process dimension in [Jae00] and minimum effective degree of freedom in [IAK92].
Note that we consider it an N ∪ {∞}-valued quantity, i.e. it may be infinite, but we do not
distinguish between different levels of infinity.

Definition 2.35. The process dimension dim(P ) of P ∈ P(∆N) is the dimension of its
canonical OOM,

dim(P ) := dim(VP ) ∈ N ∪ {∞}.

A process is called finite-dimensional (in [Hel65] the term finitary is used) if its process
dimension is finite. The canonical OOM is closely related to the shift HMM introduced in
Example 2.7.

Example 2.36. The (one-sided) shift HMM (T σ, P ) of P ∈ P(∆N) is a deterministic HMM
with set Γ := ∆N of internal states. It is in general by no means a minimal HMM, and it is not
possible to restrict T σ to a smaller subset of Γ such that it still generates P . If we interpret
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the shift HMM as OOM, the internal vector space is V = M(∆N), the associated operators
T σ

d are equal to the canonical ones, i.e. T σ
d = τd, the initial vector is the initial distribution

of the shift HMM, i.e. v = P and the evaluation form is z 7→ z(∆N). Now it is obvious
that we can reduce every OOM to a “cyclic” version by restricting V to span

{
T σ

d1...dn
(v)

∣∣
n ∈ N0, d1, . . . , dn ∈ ∆

}
. This reduced shift OOM is just the canonical OOM. Thus its

dimension is minimal, but it can in general not be interpreted as an HMM. ♦

2.2.3 Identifiability problem and existence of finite HMMs

In 1957, the so-called identifiability problem was posed by Blackwell and Koopmans ([BK57]).
Can we obtain a necessary and sufficient criterion for two different, invariant functional HMMs
to generate the same process XZ? This problem gave rise to a sequence of papers obtaining
various partial solutions (e.g. [Gil59, Dha63a, Dha63b, Dha65, FR68]). A related problem
considered in many of these papers is to find conditions for the existence of finite functional
HMMs of a given process P ∈ P(∆N). This second problem was solved by Heller in [Hel65]
with the help of stochastic modules which are equivalent to OOMs. Heller’s non-constructive,
geometrical condition is the following. There exists a finite HMM of P if and only if there
exists a polyhedral convex cone K (i.e. the convex hull of finitely many rays) in the canonical
OOM vector space VP with P ∈ K ⊆ M+(∆N) ∩ VP and τd(K) ⊆ K for all d ∈ ∆.

The identifiability problem turns out to be easier to solve more generally for OOMs instead
of HMMs. Although [Hel65] provided the necessary tools, it was not until 1992 that the
identifiability problem was explicitly solved by Ito et al. in [IAK92]. The algorithm given
in [IAK92] to check whether two given OOMs generate the same output process requires a
computing time that is exponential in dimension of the OOM. In particular, if HMMs are
given, the time is exponential in the number of internal states. A more efficient, polynomial
time algorithm is given by Schönhuth in [Sch08].

2.2.4 OOMs of Souslin space valued processes

In this section, we extend the definitions of OOMs, associated OOMs and canonical OOMs
to the case of processes with values in an arbitrary Souslin space ∆. If ∆ is uncountable, we
have to index the observable operators with measurable subsets D ∈ D instead of elements
d ∈ ∆. In the countable case, the operator TD is given by

∑
d∈D Td and in general we need a

σ-additivity condition. In the vector space V , (countably) infinite sums are not defined, and
therefore we cannot require τS

k Dk
=
∑

k τDk
for disjoint Dk. It is, however, enough to assume

the corresponding equality after applying the evaluation form l. We require that ∆ is a Souslin
space (instead of an arbitrary measurable space) in order to be able to use the Kolmogorov
extension theorem. Thus, specifying the finite-dimensional marginals (consistently) is enough
to obtain a well-defined process P ∈ P(∆N).

Definition 2.37. An OOM with Souslin output space ∆ is a quadruple
(
V, (TD)D∈D, v, l

)
,

where V is a real vector space, TD : V → V are linear maps, v ∈ V , and l is a linear form on
V , such that for n ∈ N and D1,D2 ∈ D,

1. l(v) = 1, 2. l ◦ T∆ = l, 3. PD1,...,Dn := l ◦ TDn ◦ · · · ◦ TD1(v) ≥ 0,

4. l ◦ TS

k∈NDk
(w) =

∑

k∈N l ◦ TDk
(w) ∀w ∈ V, disjoint Dk ∈ D.
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The process P ∈ P(∆N), defined by P
(
[D1 × · · · ×Dn]

)
:= PD1,...,Dn , is called generated by

the OOM and the OOM is called OOM of P .

Definition 2.38. Let (T, µ) be an HMM and V := M(Γ) the set of signed measures of
bounded variation on Γ. For D ∈ D we define the linear maps TD : V → V by

TD(ν)(G) :=

∫
T
(
· ; D × G

)
dν ∀ν ∈ V = M(Γ), G ∈ G.

Then
(
V, (TD)D∈D, µ, l

)
with l(ν) := ν(Γ) is called the associated OOM of (T, µ).

Remark. With this notation, we can express invariance of an HMM (T, µ) simply as µ =
T∆(µ).

Lemma 2.39. Let (T, µ) be an HMM of P ∈ P(∆N). Then the associated OOM is an OOM
generating P .

Proof. The OOM properties are obvious. To see that the associated OOM generates the same
process, recall that OT (g) denotes the output process of the HMM (T, δg). For D1, . . . ,Dn ∈ D
we obtain via induction over n that

P
(
[D1 × · · · × Dn]

)
=

∫

g0∈Γ

∫

D1×Γ
OT ( · ; D2 × · · · × Dn) dT (g0) dµ

=

∫
OT ( · ; D2 × · · · × Dn) dTD1(µ)

(induction)
= l ◦ TDn ◦ · · · ◦ TD2

(
TD1(µ)

)
,

which implies the claimed identity of processes.

The construction of the canonical OOM can also be extended to the case of Souslin spaces
in the obvious way. In analogy to Definition 2.33, we define

Definition 2.40. Let ∆ be a Souslin space and for D ∈ D define

τD : M(∆N) → M(∆N), z 7→ τD(z) := z
(
[D] ∩ σ−1( · )

)

and l∆(z) := z(∆N). For P ∈ P(∆N) let

QP :=
{

τDn ◦ · · · ◦ τD1(P )
∣∣ n ∈ N0, D1, . . . ,Dn ∈ D

}
and VP := span(QP ).

Denote the function VP → VP , z 7→ τD(z) with a slight abuse of notation again by τD. Then(
VP , (τD)D∈D, P, l∆

)
is called canonical OOM of P .

Lemma 2.41. Let ∆ be countable and P ∈ P(∆N). The corresponding canonical OOM is
an OOM of P .

Proof. Obviously, τD(VP ) ⊆ VP and therefore the canonical OOM is well-defined. We see
that it generates P as follows.

l∆ ◦ τDn ◦ · · · ◦ τD1(P ) = τDn

(
τDn−1 ◦ · · · ◦ τD1(P )

)
(∆N) = τDn−1 ◦ · · · ◦ τD1(P )(Dn)

= · · · = P
(
D1 ∩ σ−1(D2) ∩ · · · ∩ σ−n+1(Dn)

)

= P
(
[D1 × · · · × Dn]

)

The OOM properties are now obvious.



Chapter 3

Predictive models

So far we considered the task of generating a process or representing its distribution by
different kinds of models. With a generative model, we describe the statistics of a process
and are able to simulate it. In this chapter, we shift the focus to the related but not identical
task of predicting a stationary stochastic process XZ. We interpret X−N0 as the observed
past, and XN as the future, which we want to predict. In this chapter, XZ is always assumed
to be stationary and ∆ is assumed to be a Souslin space.

3.1 Some information theory

For the subsequent discussion, we need some information theoretic quantities. In most of the
literature about information theory (e.g. in the standard reference [CT91]), the underlying
spaces are assumed to be either discrete or Rn. For our purposes, considering general mea-
surable spaces is advantageous, and an excellent treatment of this more general case is given
in [Kak99].

3.1.1 Entropy and mutual information

The most basic quantity is (Shannon) entropy, H(µ), of a probability measure µ on a mea-
surable space Γ. It describes how “random” or “diverse” the measure is. It can also be used
as measure of the “size” of a probability space, mainly justified by its role in coding theory.
This interpretation is important when entropy is used for the definition of various complexity
measures. If Γ is finite, the entropy is defined by

H(µ) :=
∑

g∈Γ

ϕ
(
µ(g)

)
, where ϕ(x) := −x log(x).

It satisfies 0 ≤ H(µ) ≤ log
(
|Γ|
)
. If Γ is not finite, H(µ) is the supremum of the entropy of

finite partitions.

Definition 3.1. Let Γ be a measurable space and µ ∈ P(Γ). The entropy H(µ) ∈ R+ =R+ ∪ {∞} of µ is defined by

H(µ) := sup
{ n∑

i=1

ϕ
(
µ(Gi)

) ∣∣ n ∈ N, Gi disjoint, measurable
}
.

29
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If X is a random variable, its entropy HP(X) is defined as the entropy of its distribution,

HP(X) := H(PX).

Notation. It is common practice to write H(X) for HP(X), assuming that it is clear from the
context if the argument is a random variable or a measure. We do not follow this convention,
because below we investigate measure valued random variables. By distinguishing between
H and HP, we avoid any confusion.

Assume Γ is a separable, metrisable space, and µ ∈ P(Γ) has finite entropy. Then µ must
be supported by a countable set A. In this case,

H(µ) =
∑

a∈A

ϕ
(
µ({ a })

)
.

Consequently, the entropy HP(XZ) of a stochastic process is usually infinite, even for finite
∆. But if XZ is stationary, it has a well-defined entropy rate.

Definition 3.2. Let XZ be a stationary process with distribution P ∈ Ps(∆
Z). Then the

entropy rate is defined by

hP(XZ) := h(P ) := lim
n→∞

1
n
HP (X ′

[1,n]).

We occasionally need the conditional entropy of a random variable Y given knowledge of
another random variable X. In the case of finite range spaces, it is defined as HP(Y | X) :=
HP(X,Y )−HP(X). Information theory also provides a quantity measuring the total amount
of information contained in X about the random variable Y . It is called mutual information
and, if both range spaces are finite, it is defined as the reduction of the entropy of Y achieved
by the knowledge of X, i.e. I(X : Y ) := HP(Y ) − HP(Y | X). In the more general case
of uncountable range spaces, conditional entropy and mutual information are, like entropy,
defined as a supremum over finite approximations in the obvious way. Also random variables
with infinite entropy have a well-defined mutual information that may (or may not) be finite.
Mutual information can also be expressed in terms of the Kullback-Leibler divergence.

Definition 3.3. Let µ, ν ∈ P(Γ) for a measurable space Γ. Then the Kullback-Leibler
divergence is defined by

DKL(µ ‖ ν) :=





∫
log

(
dµ

dν

)
dµ if µ ≪ ν,

∞ otherwise,

where dµ
dν

is the Radon-Nikodym derivative of µ w.r.t. ν and µ ≪ ν means that µ is absolutely
continuous w.r.t. ν, i.e. that the Radon-Nikodym derivative exists.

Kullback-Leibler divergence is commonly interpreted as a distance measure, although it
is neither symmetric nor satisfies the triangle inequality. The mutual information between
random variables X and Y can be expressed as the “distance” from the joint distributionPX,Y to the product distribution of the marginals,

I(X : Y ) = DKL(PX,Y ‖ PX ⊗ PY ),

in other words the “distance” to being independent. We summarise a few well-known prop-
erties of the mutual information. Let X, Y and Z be random variables.
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a) 0 ≤ I(X : Y ) = I(Y : X) ≤ H(X)

b) I(X : Y ) = 0 if and only if X and Y are independent.

c) If X is conditionally independent of Y given Z, then I(X : Y ) ≤ I(Z : Y ).

d) Let Xn, Yn be random variables with σ(Xn) ⊆ σ(Xn+1), σ(Yn) ⊆ σ(Yn+1). Further assume
σ(X) = σ(Xn, n ∈ N) and σ(Y ) = σ(Yn, n ∈ N). Then

I(X : Y ) = sup
n∈N I(Xn : Yn) = lim

n→∞
I(Xn : Yn).

3.1.2 Excess entropy

An important question related to prediction is the following. How much information about
the future is contained in the past? The answer is given by the mutual information between
X−N0 and XN. This quantity arises in a number of different contexts, for instance it is used
in the discussion of sufficient memories below. It is also a well-accepted complexity measure
on its own, studied by Grassberger under the name of effective measure complexity ([Gra86])
and by Bialek et al. under the name of predictive information ([BNT01]). It is called excess
entropy by Crutchfield and Feldman ([CF03]1), because of the following well-known identity.

Proposition 3.4. Let XZ be a stationary process with distribution P ∈ Ps(∆
Z) and finite

marginal entropy HP(X1) < ∞. Then

I(X−N0 : XN) = lim
n→∞

HP(X[1,n]) − n · h(P ).

Proof. Let Hn := HP(X[1,n]) and note that I(X−N0 : XN) = supn,m∈N I(X[−m,0] : X[1,n]).
Due to stationarity of XZ,

I(X−N0 : XN) = sup
n,m∈NHn − HP(X[1,n] | X[−m,0]) = sup

n
Hn − n · inf

m
HP(X1 | X[−m,0])

= sup
n

Hn − nh(P ) = lim
n→∞

Hn − nh(P ),

where we used the well-known identity h(P ) = HP(X1 | X−N0).

The above representation of predictive information supports its interpretation as complex-
ity measure. It quantifies the amount of apparent randomness in the positive time part XN
of the process that can be “explained” by the past X−N0 . Thus it is a measure of structure
of the process. We use the name excess entropy, because this term is used in computational
mechanics and also by D�bowski for his ergodic decomposition result (see Chapter 4).

Definition 3.5. Let XZ be a stationary process with distribution P ∈ Ps(∆
Z). We call

E(XZ) := E(P ) := IP(X−N0 : XN) excess entropy of XZ or of P .

It is not difficult to prove but an important fact that the excess entropy of a stationary
process is bounded by the internal state entropy of any generative HMM.

Proposition 3.6. Let (T, µ) be an invariant HMM of XZ. Then E(XZ) ≤ H(µ).

Proof. Let WZ be the internal process. Conditional independence of XN and X−N0 given W0

yields
E(XZ) = I(X−N0 : XN) ≤ I(W0 : XN) ≤ HP(W0) = H(µ).

1The name excess entropy was already used for a related but different quantity in [CP83]
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3.2 Computational mechanics

One approach to predictive models of stochastic processes is a theory called computational
mechanics. It is based on the fundamental concept of sufficient statistics.

3.2.1 Memories and sufficiency

Not all information of the past X−N0 is necessary for predicting the future XN. Therefore,
one tries to compress the relevant information in a memory variable M via a memory kernel
(transition probability) γ. The memory variable assumes values in a measurable space Γ of
memory states. This is illustrated as

X−N0
//

γ
''PPPPPPPPPPPPP
XN
M

Of course, the memory variable M has to be conditionally independent of the future XN given
the past X−N0 , and the conditional distribution is given byP(M | XZ) = γ ◦ X−N0 . (3.1)

For technical reasons, we assume that Γ is a Souslin space. Sometimes, we call both the
memory variable M and the memory kernel γ simply memory. No confusion arises, as one
determines the other.

Definition 3.7. A memory kernel is a Markov kernel γ : ∆−N0 → P(Γ) from the past to
a Souslin space Γ of memory states. The associated random variable M defined by (3.1) is
called memory variable.

In general, γ reduces the information about the future. Particularly important are mem-
ories that avoid this potential reduction and capture all information about the future that is
available in the past. In the case of finite excess entropy, we can formalise this requirement
in terms of mutual information (Proposition 3.10 below), but more generally this means that
the future is conditionally independent of the past given the memory variable. Using the
language of statistics, we call such memories sufficient for the future.

Definition 3.8. a) Let X,Y,Z be random variables. X is conditionally independent of
Y given Z, written as X ⊥⊥ Y | Z, ifP({X ∈ A, Y ∈ B }

∣∣ Z
)

= P({X ∈ A }
∣∣ Z
)
·P({Y ∈ B }

∣∣ Z
)

a.s.

for all measurable sets A and B in the range space of X and Y respectively.

b) A memory kernel γ and its associated memory variable M are called sufficient if

X−N0 ⊥⊥ XN | M.

The following characterisation of conditional independence is well-known.
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Lemma 3.9. For random variables X,Y,Z with values in Souslin spaces the following holds.

X ⊥⊥ Y | Z ⇔ P(Y | X,Z) = P(Y | Z) a.s.

If Z ⊥⊥ Y | X, then I(Z : Y ) ≤ I(X : Y ), and if additionally I(X : Y ) < ∞, then

X ⊥⊥ Y | Z ⇔ I(Z : Y ) = I(X : Y ).

Let M be a memory variable. We note that M ⊥⊥ XN | X−N0 holds by definition of
memory, and therefore I(M : XN) ≤ I(X−N0 : XN) = E(XZ). Recall that we can interpretP(XN | X−N0) as measurable function from Ω to P(∆N) and abbreviatePX−N0

XN := P(XN | X−N0) : Ω → P(∆N).

In the following, we use this notation in particular when we want to emphasise this inter-

pretation as measurable function. Then it is clear what the generated σ-algebra σ(PX−N0
XN )

means and obviously σ
(PX−N0

XN )
= σ

(P({XN ∈ A }
∣∣ X−N0

)
, A ∈ B(∆N)

)
. We now see that

a memory is sufficient if and only if the σ-algebra generated by M , σ(M), is a refinement of

σ(PX−N0
XN ).

Proposition 3.10. Let XZ be a stationary process and M a memory variable. Then the
following properties are equivalent.

1. M is sufficient. 2. P(XN | X−N0) = P(XN | M) a.s.

3. σ(M) ⊇ σ
(PX−N0

XN )
modulo P.

If the excess entropy is finite, E(XZ) < ∞, then the following property is also equivalent

4. I(M : XN) = E(XZ).

Proof. “1. ⇔ 2.”: We apply Lemma 3.9 twice. Sufficiency is equivalent to P(XN | M) =P(XN | X−N0,M). Due to M ⊥⊥ XN | X−N0, we have for every memory (sufficient or not)
that P(XN | X−N0 ,M) = P(XN | X−N0).

“2. ⇔ 3.”: Let P(XN | X−N0) = P(XN | M) a.s. Then σ(M) ⊇ σ
(P(XN | M)

)
= σ(PX−N0

XN )

modulo P. Conversely, if σ(PX−N0
XN ) ⊆ σ(M) modulo P, thenP(XN | M) = P(XN | M, PX−N0

XN ) = P(XN | M,X−N0) a.s.

The last equality follows from Lemma A.4 (with X = Z = XN, Y = X−N0). Finally, we haveP(XN | M,X−N0) = P(XN | X−N0).

“1. ⇔ 4.”: From the second statement of Lemma 3.9, we see that sufficiency of the memory
is equivalent to I(M : XN) = E(XZ), provided that E(XZ) < ∞.

In the following, we frequently use the first equivalence of Proposition 3.10 without further
notice. One might take it as alternative definition of sufficient memory.

Remark. The sufficiency property is called prescient in [SC01]. It is the central requirement
in computational mechanics and sufficient memories are the candidates for predictive models
proposed by computational mechanics.
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A memory kernel γ does not only induce a memory variable M0 := M at time zero, but a
whole stationary memory process MZ produced by application of γ in each time step. The
conditional distribution of MZ is the product distribution given byP(MZ | XZ)(ω) =

⊗

k∈Zγ
(
X]−∞,k](ω)

)
.

Note that the memory process MZ of a sufficient memory is not necessarily Markovian, as we
see in the following simple example.

Example 3.11. Let ∆ = { 0, 1 } and P the ∆-valued i.i.d. process with uniformly distributed
marginals. Then every memory kernel is sufficient. Let γ : ∆−N0 → P

(
{ 0, 1 }

)
, x 7→ δh(x)

with h(x) = x0 · x−42, where x = (xk)k∈−N0 ∈ ∆−N0. That is, M0 = 1 if and only if
X−42 = X0 = 1. Then Mk is obviously independent of Mk−1, but it does depend on Mk−42,
because P({Mk = 1 }

∣∣Mk−42 = 1
)

= 1
2 > P({Mk = 1 }

)
. ♦

Sufficient memories contain all information about the future that is available in the past.
How do we actually extract this information and justify the term “model” for sufficient mem-
ories? In the following proposition, we see that sufficient memories induce generative HMMs.
In general, the process of internal states of the associated HMM cannot have the same distri-
bution as the memory process MZ, because the latter need not be Markovian. The (first order)
Markov approximation of the joint process (MZ,XZ), however, yields the desired HMM.

Proposition 3.12 (sufficient memories induce generative HMMs). Let XZ be a sta-
tionary process and γ a sufficient memory kernel with space Γ of memory states. Let MZ be
the corresponding memory process and define T γ : Γ → P(∆ × Γ) by

T γ(g) := P(X1, M1 | M0 = g).

Then for x ∈ ∆−N0, an HMM of the conditional process P(XN | X−N0 = x) ∈ P(∆N) is a.s.
given by

(
T γ , γ(x)

)
. An invariant HMM of XZ is given by (T γ , µγ) with µγ := P ◦ M−1

0 .

Proof. 1. We abbreviate T := T γ . Note that µγ is T -invariant, because MZ is stationary and
T∆(µγ) =

∫
g∈Γ T (g; ∆× · ) dµγ is the distribution of M1. Because µγ =

∫
γ ◦X−N0 dP, the

second claim follows from the first. Hence it is sufficient to prove O
γ(x)
T = P(XN | X−N0 =

x) a.s. Recall that Oµ
T denotes the output process of the HMM (T, µ), and OT (g) = O

δg

T .

2. We claim OT (g) = P(XN | M0 = g) for PM0-a.a. g ∈ Γ. It is enough to prove it for cylinder
sets A := [D1 × · · · × Dn], and we do this by induction over n. Let σ be the left-shift on
∆N and set B := [D2 × · · · × Dn]. Then A = [D1] ∩ σ−1(B). The induction hypothesis,
together with stationarity and sufficiency of the memory, yields a.s.

OT (M1(ω); B) = P({XN ∈ B }
∣∣ M0 = M1(ω)

)
= P({X[2,∞[ ∈ B }

∣∣ M1

)
(ω)

= P({X[2,∞[ ∈ B }
∣∣ X]−∞,1]

)
(ω). (3.2)

Now, using T ◦ M0 = P(X1,M1 | M0), we obtain a.s.

OT (M0; A) =

∫

(d,m)∈D1×Γ
OT (m; B) dP(X1,M1 | M0)

(3.2)
=

∫
1{X1∈D1}P({X[2,∞[ ∈ B }

∣∣ X]−∞,1]

)
dP( · | M0)

=

∫ P({XN ∈ A }
∣∣ X−N0 ,X1

)
dP( · | M0) = P({XN ∈ A }

∣∣M0

)
,
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where the last equality is due to M0 ⊥⊥ XN | X−N0 ,X1. This finishes the induction.

3. Let M = M0. Using sufficiency of M and step 2., we obtain a.s.

O
γ(X−N0

)

T =

∫
OT ◦ M dP( · | X−N0)

(step 2.)
=

∫ P(XN | M) dP( · | X−N0)

=

∫ P(XN | X−N0) dP( · | X−N0) = P(XN | X−N0).

Definition 3.13. Let XZ be a stationary process and γ a sufficient memory kernel. Then
we call the HMM (T γ , µγ) of XZ constructed in Proposition 3.12 the HMM induced by γ.

3.2.2 Deterministic memories, partitions and σ-algebras

An important special case of memory kernels are deterministic maps. Because Γ is embedded
in P(Γ) via Dirac measures, a measurable function h : ∆−N0 → Γ induces a memory kernel
γh(x) := δh(x), where δg is the Dirac measure in g. We call a memory deterministic if the
memory kernel is induced by a function h in this way. Restricting to deterministic memories
is the usual approach in computational mechanics, although an extension to stochastic maps
has been considered by Still et al. ([SCE07]). For a deterministic memory γh, we may assume
that M = h ◦ X−N0 and it is sufficient if and only if h is measurable w.r.t. the σ-algebra
generated by the kernel P(XN | X−N0 = · ), up to a set of measure zero (Proposition 3.10).

One might be tempted to think that the HMM induced by a sufficient deterministic
memory is always state observable (i.e. W0 is determined by X−N0), because the memory
state is a function of the past. This is, however, not always true. In the following proposition,
we provide equivalent conditions to state observability of the induced HMM. In particular, it
is equivalent to partial determinism, which is a strictly weaker property for general HMMs
(see Section 2.1.7). If x = (xk)k∈−N0 ∈ ∆−N0 is the past trajectory and d ∈ ∆, we denote
by xd ∈ ∆−N0 the resulting past when d is observed, i.e. xd = (yk)k∈−N0 with y0 = d and
yk = xk+1 for k ∈ −N.

Proposition 3.14. Let h : ∆−N0 → Γ be measurable and such that the deterministic memory
γ = γh is sufficient. Let MZ = (h◦X]−∞,k])k∈Z be the process of memory states, and (T γ , µγ)
the induced HMM with Γ-valued internal process WZ. The following properties are equivalent.

1. (T γ , µγ) is state observable.

2. (T γ , µγ) is partially deterministic.

3. M1 = f(M0,X1) a.s. for some measurable f : Γ × ∆ → Γ.

4. f
(
h(x), d

)
:= h(xd) is a.s. (w.r.t. PX]−∞,1]

) well-defined for x ∈ ∆−N0, d ∈ ∆.

5. (WZ,XZ) has the same joint distribution as (MZ,XZ).

The functions f in 4. and 3. a.s. coincide with the transition function of the induced HMM.

Proof. “1. ⇒ 2.”: Corollary 2.26

“2. ⇔ 3.”: By definition of the induced HMM, the triples (M0,X1,M1) and (W0,X1,W1)
have the same joint distribution. Partial determinism is equivalent to W1 = f(W0,X1) a.s.,
where f is the transition function (Proposition 2.25).
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1 01|12

0|12

1|16

0|121|13

Figure 3.1: Not partially deterministic HMM induced by a sufficient deterministic memory (Exam-
ple 3.15).

“3. ⇔ 4.”: Obvious from M1(ω) = h(xd), M0(ω) = h(x) if X−N0(ω) = x, X1(ω) = d.

“3. ⇒ 5.”: Due to 3., M1 is σ(M0,X1)-measurable modulo P. Sufficiency implies that
X−N0 ⊥⊥ M0,X1 | M0. Thus also X−N0 ⊥⊥ M1 | M0, and we obtainP(X1,M1 | M0) = P(X1,M1 | M0,X−N0) = P(X1,M1 | M−N0,X−N0).

This means that the joint process (MZ,XZ) satisfies the correct Markov property and the
Markov approximation (WZ,XZ) has the same distribution.

“5. ⇒ 1.”: Using 5., M0 = h(X−N0) implies W0 = h(X−N0), i.e. state observability.

Example 3.15. Let P be the uniform i.i.d. process with values in ∆ = { 0, 1 }, and γ(x) =
γh(x) with h(x) = x−42 · x0, just as in Example 3.11. We have seen there that the memory
process is not Markovian, and thus Proposition 3.14 implies that the induced HMM cannot
be partially deterministic. The induced HMM is shown in Figure 3.1. Note, however, that
Markovianity of the memory process is not sufficient for the equivalent properties of Propo-
sition 3.14. Consider the i.i.d. process on ∆ = { 0, 1, 2 } with uniform marginals and the
deterministic memory γh defined by

h : ∆−N0 → {m1,m2,m3 }, h(x) :=





m1 if x0 ∈ { 0, 1 },

m2 if x0 = 2 and x−1 = 1,

m3 if x0 = 2 and x−1 ∈ { 0, 2 }.

It is easy to verify that the memory process is Markovian, because the memory state identifies
the last observation unless it is m1, and in that case past memory states do not provide
additional information. On the other hand, the induced HMM is not partially deterministic
because if the internal state is m1 and the emitted symbol is 2, the next internal state can
either be m2 or m3. ♦

Instead of specifying a deterministic memory by a measurable function h : ∆−N0 → Γ, we
can define it by a sub-σ-algebra R of the Borel σ-algebra on ∆−N0. Then the space ΓR of
memory states is the set of atoms of R, equipped with the final σ-algebra of the canonical
projection. More explicitly, the atom [x]R of R containing x ∈ ∆−N0 is the intersection of all
R-measurable sets containing x, i.e.

[x]R :=
⋂

{R ∈ R | x ∈ R }, x ∈ ∆−N0.

Note that the atoms of R are R-measurable if R is countably generated, but otherwise
this need not be the case. In fact, they can even be non-measurable w.r.t. B(∆−N0). The
measurable space (ΓR,GR) of memory states is defined as the quotient space ∆−N0/R, i.e.

ΓR :=
{

[x]R
∣∣ x ∈ ∆−N0

}
and GR :=

{
G ⊆ ΓR

∣∣ ⋃G ∈ R
}
.
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Because G is a set of atoms,
⋃

G is the union
⋃

[x]R∈G [x]R of these atoms and at the same

time the pre-image [ · ]R
−1(G) of G under the canonical projection x 7→ [x]R. The canonical

projection also defines the memory kernel by γR(x) := δ[x]R . In other words, the memory
variable defined by R is equal to the atom of R containing the past. We still have to take
care that the space ΓR is a Souslin measurable space.

Proposition 3.16. Let R be a sub-σ-algebra of B(∆−N0). Then ΓR is a Souslin measurable
space if and only if R is countably generated.

Proof. Obviously, R is countably generated if and only if GR is countably generated (the
canonical projection [ · ]R induces an isomorphism of set algebras). If ΓR is a Souslin measur-
able space, it has a countably generated σ-algebra. Conversely, assume that GR is countably
generated. Then the atoms of R are R-measurable and thus the singletons in ΓR are mea-
surable. Furthermore, the canonical projection [ · ]R is a surjective measurable map from the
Souslin space ∆−N0 onto ΓR. But if a measurable space with measurable singletons and
countably generated σ-algebra is the image of a Souslin space under a measurable map, then
it is a Souslin measurable space ([Coh80, Prop. 8.6.5]).

If R = σ(h) for a measurable function h : ∆−N0 → Γ, then the quotient space ΓR =
∆−N0/R is as a measurable space isomorphic to the image Im(h) ⊆ Γ of h. The canonical
isomorphism ι satisfies h = ι◦[ · ]R, and thus considering the memory kernel γh induced by h is
equivalent to considering the memory kernel γR induced by R. Also note that R is countably
generated because Γ is a Souslin space. On the other hand, every R ⊆ B(∆−N0) is generated
by a measurable function, namely R = σ

(
[ · ]R

)
. Thus analysing deterministic memories

amounts to the same thing as analysing countably generated sub-σ-algebras of ∆−N0.
The set of atoms of a sub-σ-algebra R ⊆ B(∆−N0) is a partition of ∆−N0. If R is countably

generated, the partition is measurable in the sense that the partition elements are measurable
subsets of ∆−N0. In [SC01], measurable partitions were used instead of σ-algebras. Mainly
countable partitions, i.e. partitions into countably many sets, were considered, and in this
case the partition uniquely determines the corresponding σ-algebra. More generally, however,
there may be many σ-algebras with the same set of atoms. Luckily, it turns out that at most
one of them is countably generated. Indeed, according to the Blackwell theorem ([Coh80,
Thm. 8.6.7]), every countably generated sub-σ-algebra R of the Souslin space ∆−N0 consists
of all Borel measurable unions of its atoms, i.e.

R =
{

A ⊆ ∆−N0

∣∣∣ A ∈ B(∆−N0), A =
⋃

x∈A

[x]R

}
. (3.3)

In particular, the σ-algebra is uniquely determined by the partition given by its atoms, to-
gether with the fact that it is countably generated. Therefore, we can specify a deterministic
memory by defining a (not necessarily countable) measurable partition of ∆−N0. But we still
have to make sure that the σ-algebra defined by (3.3) (with [x]R replaced by the partition
element containing x) is countably generated.

Remark. Every measurable partition of ∆−N0 defines a sub-σ-algebra R of B(∆−N0) by
(3.3). This σ-algebra is not the one generated by the partition elements. It is the largest
(rather than the smallest) sub-σ-algebra with the given atoms. Note that R is not countably
generated in general. Even for ∆ = { 0, 1 }, there is a measurable partition of ∆−N0 that is not
the set of atoms of any countably generated sub-σ-algebra of B(∆−N0) (see Appendix A.4).
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3.2.3 Minimal sufficient memory: Causal states

It is natural to ask how big a sufficient memory has to be and how to obtain a minimal
one. There are mainly two possibilities to measure the size of a memory: cardinality |Γ|
of the set of memory states and Shannon entropy HP(M) of the memory variable. But
unlike in the situation of generative HMMs, both notions of size yield the same notion of
minimality and the minimal sufficient memory is essentially unique. Furthermore, it turns
out to be deterministic with partition given by the following equivalence relation. Two past
trajectories, x, x̂ ∈ ∆−N0, are identified if they induce the same conditional probability on
the future, i.e.

x ∼ x̂ :⇔ P(XN | X−N0 = x) = P(XN | X−N0 = x̂). (3.4)

The corresponding equivalence classes are called causal states ([CY89, SC01]).

Definition 3.17. Let XZ be a stationary stochastic process. The equivalence classes C(x) :=
{ x̂ ∈ X−N0 | x̂ ∼ x } of the relation defined in (3.4) are called causal states of XZ. The set

ΓC := Im(C) =
{

C(x)
∣∣ x ∈ ∆−N0

}

of causal states is equipped with the σ-algebra GC :=
{

A ⊆ ΓC

∣∣ ⋃A ∈ B(∆−N0)
}

.

Remark. It is important to note that the causal states depend on the version of conditional
probability. As always, we assume that a regular version is chosen. We say that the number of
causal states is countable (respectively finite) if there exists a version of conditional probability
such that there are only countably (resp. finitely) many equivalence classes. In this case, we
assume that the version is chosen such that ΓC is countable (resp. finite). Note that every
other version yields countably many causal states with non-zero probability and the total
mass of the remaining ones is zero.

In the following lemma, we show that the causal states induce a deterministic memory in
the sense of Section 3.2.2. It is obvious that they partition the space ∆−N0, but we have to
prove that this partition is measurable, and that the corresponding σ-algebra RC ⊆ B(∆−N0)
defined by (3.3) is countably generated. We denote the induced memory kernel x 7→ δC(x) by
γC and the corresponding memory variable by MC = C ◦ X−N0 .

Lemma 3.18. The causal states are measurable sets and the atoms of a unique countably
generated sub-σ-algebra of B(∆−N0). In particular, ΓC is a Souslin measurable space. Fur-
thermore, the induced deterministic memory is sufficient.

Proof. f := P(XN | X−N0 = · ) is a measurable map from ∆−N0 into P(∆N). Because
the singletons in P(∆N) are measurable, C(x) = f−1

(
f(x)

)
is a measurable set for every

x ∈ ∆−N0, and ΓC is the set of atoms of σ(f). Because the σ-algebra of P(∆N) is countably
generated, σ(f) is countably generated as well and according to Blackwell’s theorem (see
Section 3.2.2), there can be no other countably generated σ-algebra with the same set of
atoms. ΓC is a Souslin measurable space according to Proposition 3.16. Proposition 3.10
yields sufficiency of the induced memory, because σ(MC) = σ(C ◦ X−N0) = σ(f ◦ X−N0) =

σ(PX−N0
XN ).

Definition 3.19. We call the countably generated σ-algebra with set ΓC of atoms causal
state σ-algebra and denote it by RC. The induced deterministic memory with memory
kernel γC and memory variable MC is called causal state memory.
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One of the basic facts of computational mechanics is that the causal state memory is the
unique minimal sufficient deterministic memory ([SC01]). This property can easily be ex-
tended to our more general measure-theoretic setting and non-deterministic sufficient mem-
ories. If two histories x, y ∈ ∆−N0 are in different causal states, every sufficient memory γ
assigns orthogonal probability measures to them, i.e. γ(x) ⊥ γ(y).2 Thus the causal state can
a.s. be recovered from the value of the memory variable.

Proposition 3.20. Let γ be a memory kernel with set Γ of memory states. γ is sufficient if
and only if there exist disjoint measurable subsets Λc ⊆ Γ, c ∈ ΓC, such that

γ(x; ΛC(x)) = 1 a.s.

Proof. Let M be the memory variable induced by γ.

“if”: Let f(g) = c if g ∈ Λc. Then MC = C ◦ X−N0 = f ◦ M a.s. and sufficiency of MC yields
sufficiency of M .

“only if”: Define

ΛC(x) :=
{

g ∈ Γ
∣∣ P(XN | M = g) = P(XN | X−N0 = x)

}
.

By definition of the causal states, the sets Λc, c ∈ ΓC, are well defined and disjoint. They are
obviously measurable and we obtain a.s.

γ(x; ΛC(x)) = P
(
{M ∈ ΛC(x) }

∣∣ X−N0 = x
)

= P
({P(XN | M) = P(XN | X−N0)

} ∣∣∣ X−N0 = x
)

= 1.

The last equality holds due to sufficiency of M .

Corollary 3.21. The causal state memory is the minimal sufficient memory in the sense
that for every sufficient memory with memory variable M and set Γ of memory states both

|Γ| ≥ |ΓC| and HP(M) ≥ HP(MC).

Corollary 3.22. A deterministic memory γR, specified by a countably generated σ-algebra
R ⊆ B(∆−N0), is sufficient if and only if R ⊇ RC modulo PX−N0

.

Due to the minimality of the causal states, their entropy is an important complexity
measure called statistical complexity. We analyse its properties in more detail in Section 4.3.

Definition 3.23. Let XZ be a stationary process with distribution P ∈ Ps(∆
Z). The entropy

of the causal states,
CC(P ) := CC(XZ) := HP(MC),

is called statistical complexity of XZ or of P .

Remark. Because MC is a sufficient memory, I(MC : XN) = E(XZ). In particular, the
statistical complexity is lower bounded by the excess entropy. That is,

CC(XZ) ≥ E(XZ).

In the following section, we see that the difference CC(XZ) − E(XZ), which is defined for
E(XZ) < ∞, can be arbitrarily large.

2µ ⊥ ν means that there is a measurable set A with µ(A) = 1 and ν(A) = 0
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3.2.4 The ε-machine and its non-minimality

Besides the causal states, the second central concept of computational mechanics is the so-
called ε-machine. It is the generative HMM induced by the sufficient memory γC of causal
states and encodes the mechanisms of prediction.

Definition 3.24. The HMM (T γC , µγC
) induced by the causal state memory is called ε-

machine.

The following nice properties of the ε-machines and the causal states were obtained in
[SC01] for countable state spaces ∆ and countably many causal states. Now we can generalise
them to Souslin spaces ∆ and possibly uncountably many causal states.

Proposition 3.25. The ε-machine is partially deterministic and state observable. Its internal
process has the same distribution as the process (MC)Z of causal states. In particular, the
process of causal states is Markovian.

Proof. We have to show that the equivalent properties of Proposition 3.14 are satisfied. To
obtain that (MC)1 is a function of (MC)0 and X1, it is sufficient to show that P(X[2,∞[ |
X−N0 ,X1) is a function of P(XN | X−N0) and X1. This follows from the fact that withPX−N0 := P( · | X−N0) the equality P( · | X−N0 ,X1)(ω) =

(PX−N0 (ω)
)
( · | X1)(ω) is a.s.

satisfied (see Appendix A.3). In other words, we obtain the conditional probability given
X−N0 and X1 by first conditioning on X−N0 and then conditioning the resulting probability
measure on X1.

The causal states provide the minimal sufficient memory and induce the ε-machine. But
is the latter also the minimal generative HMM? In general, the answer is “no”. The ε-
machine may be arbitrarily much bigger than the minimal HMM. It can be infinite or even
uncountable, while there is a generative HMM with only two internal states. This was already
mentioned (although not rigorously proven) by Crutchfield in [Cru94], but not everyone who
applies computational mechanics seems to be aware of the fact. In the following, we give two
examples of this phenomenon. In the first one, the set of causal states is uncountable. In the
second one, we demonstrate that restricting to processes with countably many causal states
and finite statistical complexity does not solve the problem.

Example 3.26 (uncountable ε-machine). The following HMM (T, µ) with ∆ := Γ :=
{ 0, 1 } turns out to have uncountably many causal states and thus an uncountable ε-machine.
Let µ be the uniform distribution on Γ. With a parameter 0 < p < 1

4 , we define the generator
T : Γ → P(∆ × Γ) by

T (g; d, ĝ) :=





1 − 2p if ĝ = d = g,

p if d 6= g,

0 otherwise.

See Figure 3.2 for an illustration of the transition graph. It is easy to check that µ is T -
invariant. Recall that the internal operator Ld : P(Γ) → P(Γ) (Definition 2.12) describes the
update of the knowledge about the internal state when the output symbol d ∈ ∆ is observed.
We parametrise P(Γ) by the unit interval with ι(y) := yδ1 + (1 − y)δ0, y ∈ [0, 1], and obtain
two “update functions” fd : [0, 1] → [0, 1] by

fd(y) := ι−1 ◦ Ld ◦ ι(y) = Ld

(
yδ1 + (1 − y)δ0

)
(1), d ∈ ∆, y ∈ [0, 1].
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0 1

1|p

0|p

0|1 − 2p 1|1 − 2p1|p 0|p

Figure 3.2: HMM with uncountably many causal states used in Example 3.26.

Then, by Lemma 2.13, we obtain for n ∈ N and x = (x1, . . . , xn) ∈ ∆nP({W0 = 1 }
∣∣ X[−n+1,0] = x

)
= fxn ◦ · · · ◦ fx1

(
µ(1)

)
= fxn ◦ · · · ◦ fx1(1

2).

Because P(XN | X−N0) = limn→∞P(XN | X[−n+1,0]) a.s. and different internal states lead to

different expectations of XN, we obtain on a set A ⊆ ∆−N0 of measure one that

C(x) = C(x̂) ⇔ lim
n→∞

fxn ◦ · · · ◦ fx1(1
2) = lim

n→∞
fx̂n

◦ · · · ◦ fx̂1(1
2)

The definitions of fd and T yield

f0(y) =
yp

1 − 2p + y(4p − 1)
and f1(y) =

p + y(1 − 3p)

2p + y(1 − 4p)

and we observe that both f0 and f1 are strictly increasing. Further, f0

(
[0, 1]

)
= [0, 1

2 ] and
f1

(
[0, 1]

)
= [12 , 1]. Thus, A ∩ C(x) can contain at most two histories (if y ∈ C(x) ∩ A and

y 6= x, then there is an n ∈ N such that xk = yk for k > −n and xk = y−n = 1−x−n = 1−yk

for all k < −n). In particular, the number of causal states is uncountable for every version
of conditional probability. Also note that the statistical complexity CC(XZ) is infinite, while
the excess entropy E(XZ) is bounded by H(µ) = log(2). ♦

In the second example, we use the following two simple technical lemmata.

Lemma 3.27. Let Γ be a Souslin space and µ ∈ P(Γ). Then

H(µ) ≥ − log
(
sup
g∈Γ

µ({ g })
)

Lemma 3.28. Let f : R→ R be strictly decreasing and x ∈ R with x < f2(x) < f(x). Then
the points fk(x), k ∈ N0, are distinct.

Proof. By induction we obtain that f2n(x) is strictly increasing in n, f2n+1(x) is strictly
decreasing and f2n(x) < f2k+1(x) for all n, k ∈ N0. In particular, the fk(x) are distinct.

Example 3.29. In this example, we show that HMMs with arbitrarily small internal state
entropy can generate processes with arbitrarily high statistical complexity, even if the latter
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0 1

1|12

1|ε

0|12 1|1 − ε

Figure 3.3: HMM of Example 3.29

one is assumed to be finite. Consider the following HMM (Tε, µε) with parameter 0 < ε < 1
and Γ := ∆ := { 0, 1 }.

Tε(0) := 1
2 (δ(0,0) + δ(1,1)), Tε(1) := (1 − ε)δ(1,1) + εδ(1,0),

as is illustrated in Figure 3.3. The stationary probability µε is given by µε(0) = 2ε
1+2ε

. We

denote the output process by XεZ and see from µε(0)
ε→0
−→ 0 that the internal state entropy,

the excess entropy and the entropy rate all tend to zero,

E(XεZ) ≤ H(µε)
ε→0
−→ 0 and h(XεZ) ≤ HP(Xε

1)
ε→0
−→ 0.

Now we determine the causal states of XεZ. It is evident that output symbols preceding the
last occurrence of 0 do not influence the prediction (because the internal state is known to
be 0 at that time). Thus causal states are unions of sets [01k] := {x ∈ ∆−N0 | x−k = 0, xl =
1 for l = −k + 1, . . . , 0 } with k ∈ N0. We now claim that no further identification is possible,
i.e. the causal states are precisely the sets [01k]. To see this, consider the update function
fε = fε,1 corresponding to L1 like in Example 3.26. Then

fε(x) =
x(1 − 2ε) + 1

x + 1

and we obtain P({W ε
1 = 1 }

∣∣ Xε
−N0

∈ [01k]
)

= fk
ε (0).

Observe that the function fε is strictly decreasing and 0 < f2
ε (0) = fε(1) = 1− ε < 1 = fε(0),

hence the fk
ε (0) are distinct. Therefore, the causal states are precisely the sets [01k] and

CC(XεZ) ≥ − log
(

sup
k∈N0

P({Xε
−N0

∈ [01k] }
) )

= − log
(P({Xε

0 = 0 }
))

= − log
(

1
2µε(0)

)
.

Consequently, CC(XεZ)
ε→0
−→ ∞ because µε(0) tends to zero. ♦

In Section 3.3.3 below, we see that the ε-machine actually has some minimality properties.
Namely, it is minimal in the sub-class of partially deterministic HMMs.

3.2.5 Finite-history computational mechanics

Usually, computational mechanics considers (in theory) past trajectories of infinite length.
We consider this viewpoint appropriate for theoretical investigations and the definition of
complexity measures. Therefore, the previous and subsequent parts deal only with the infinite-
history case. In this section, however, we briefly consider the case of finite, varying observation
lengths. This case has also been considered in [FC98a]. We ask the following questions. How
can we define sufficient memories and causal states when the observations have arbitrary
but only finite length? Is the entropy of a finite-history version of the causal states a good
approximation of statistical complexity?
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A finite-history memory kernel γ assigns to every history x ∈ ∆n of arbitrary but
finite length n a probability distribution on the Souslin space Γ of memory states.3 More
precisely,

γ : ∆∗ → P(Γ), where ∆∗ :=
⋃

n∈N0

∆n.

Note that ∆∗ contains the “empty history,” which corresponds to not having observed any-
thing. Because the length of the observed history may vary, a finite-history memory does
not only induce a single memory variable at time zero but rather for any history length n a
different memory variable Mn with conditional distributionP(Mn | X[−n+1,0]) = γ ◦ X[−n+1,0].

We now want to define sufficiency for finite-history memories. Simply assuming the condi-
tional independence property for every length n separately, i.e.

XN ⊥⊥ X[−n+1,0] | Mn ∀n ∈ N, (3.5)

is a weak requirement and does not provide the correct definition of sufficiency in the context
of finite but varying observation lengths. If a memory kernel satisfies (3.5), the information
about the future need not be contained in the memory state alone but may require knowledge
of the particular observation length n. The same memory state g can have a completely dif-
ferent implication on the future if it results from different history lengths (see Example 3.31).
Therefore, we have to assume that the memory keeps all information about the future with-
out the additional knowledge of n. To this end, imagine that n is determined randomly by
an N-valued random variable τ that is assumed to be independent of all other variables.
We call such a variable τ random time. Combining the family of memory variables Mn,
n ∈ N, with a random time τ we get a new variable M τ with M τ (ω) := M τ(ω)(ω). Similarly,
a past of random length τ is given by the ∆∗-valued random variable X[−τ+1,0] defined by
X[−τ+1,0](ω) = X[−τ(ω)+1,0](ω). We require that, for all random times τ , the corresponding
M τ contains maximal information about the future, even if the value of τ is not known.

Definition 3.30. We call a finite-history memory sufficient if it satisfies

XN ⊥⊥ X[−τ+1,0] | M τ ∀ random times τ .

Note that a sufficient memory satisfies (3.5), because the random time can be constant.
We illustrate the difference between (3.5) and sufficiency by the following example.

Example 3.31 (why random times?). Let XZ be a non-i.i.d. Markov process on ∆ :=
{ 0, 1 }. Define

Mn := X0 and M̂n :=

{
X0 if n odd,

1 − X0 if n even.

Then both M = (Mn)n∈N0 and M̂ = (M̂n)n∈N0 are obviously induced by finite-history

memories and satisfy (3.5). M is also sufficient but M̂ is not, because the information

M̂ τ = g is useless if we do not know whether τ is odd or even. ♦

3For simplicity of notation we write x ∈ ∆n instead of x ∈ ∆[−n+1,0]. The symbol x is reserved for histories
in this section.
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In the following lemma, we provide a characterisation of sufficiency. Instead of using
random times, our equivalent condition explicitly requires that the conditional probabilities
of the future given a particular memory state are the same for different history lengths. More
precisely, P(XN | Mn = g) = P(XN | M t = g) =: Ψ(g) for appropriately chosen versions of
conditional probability and all n, t ∈ N, g ∈ Γ.

Proposition 3.32. A finite-history memory is sufficient if and only if there is a kernel Ψ
from Γ to ∆N with P(XN | X[−n+1,0]) = Ψ ◦ Mn ∀n ∈ N a.s.

In this case, Ψ ◦ Mn = P(XN | Mn) a.s. for all n.

Proof. We use that sufficiency is equivalent to P(XN | X[−τ+1,0]) = P(XN | M τ ) a.s. for
all random times τ . Note that τ is a function of X[−τ+1,0], because τ = n if and only if
X[−τ+1,0] ∈ ∆n.

“if”: Fix a random time τ . Using the assumption and that τ is independent of XZ, we obtainP(XN | X[−τ+1,0]) = P(XN | X[−τ+1,0], τ) =
∑

n∈N 1{τ=n}P(XN | X[−n+1,0])

=
∑

n∈N 1{τ=n}Ψ ◦ Mn = Ψ ◦ M τ .

Now we prove that Ψ ◦ M τ is a version of the conditional probability P(XN | M τ ). Indeed,
the σ(M τ )-measurability is obvious and for G ∈ G we obtain

∫

{Mτ∈G}
Ψ ◦ M τ dP =

∑

n∈N∫{τ=n, Mn∈G}
Ψ ◦ Mn dP

=
∑

n∈N∫{τ=n, Mn∈G}
P(XN | X[−n+1,0]) dP

using τ,Mn ⊥⊥ XN | X[−n+1,0] we continue

=
∑

n∈NP({XN ∈ · } ∩ { τ = n, Mn ∈ G }
)

= P({XN ∈ · } ∩ {M τ ∈ G }
)
.

“only if”: Assume that the memory is sufficient. Choose a random time τ with P({ τ = n }
)

>
0 for all n ∈ N. Define Ψ := P(XN | M τ = · ). Due to sufficiency and P(XN | X[−τ+1,0]) =P(XN | X[−τ+1,0], τ), we also obtain P(XN | M τ ) = P(XN | M τ , τ) a.s. Thus, for all n ∈ N
and PMn-almost all g ∈ Γ,P(XN | Mn = g) = P(XN | M τ = g, τ = n) = P(XN | M τ = g).

Sufficiency implies in particular that P(XN | Mn) = P(XN | X[−n+1,0]). ThusP(XN | X[−n+1,0]) = P(XN | Mn) = Ψ ◦ Mn a.s.
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The finite-history causal states are defined analogously to the infinite-history case as a
partition of ∆∗. The identified pasts may have different lengths.

Definition 3.33. For x ∈ ∆∗, let l(x) = n if x ∈ ∆n. Define the equivalence relation ∼ on
∆∗ by

x ∼ x̂ ⇔ P(XN | X[−l(x)+1,0] = x) = P (XN | X[−l(x̂)+1,0] = x̂).

Then the equivalence classes of ∼ are the finite-history causal states. The corresponding
finite-history memory variables are denoted by Mn

C
.

Let ∆ be countable. Then, in contrast to the infinite-history case, the set of finite-history
causal states is always countable. But, as we see in the following example, it is not true that
the finite-history causal states are always “less” than the causal states. Furthermore, the
“length n statistical complexity” HP(Mn

C
) is not always a good approximation of CC(XZ).

In a sense, the transition from finite to infinite history lengths is discontinuous at infinity.

Example 3.34. Let ∆ := { 0, 1 } and for p ∈ [0, 1] let Pp ∈ Ps(∆
Z) be the i.i.d. process

with Pp

(
[1]
)

= p. Define P := 1
2Pp + 1

2Pq with 0 < p < q < 1. Then there are two
causal states corresponding to the two ergodic components, and the statistical complexity is
CC(P ) = log(2). Finite histories of the same length, however, are only identified if they have
the same number of ones. Therefore, the number of finite-history causal states is infinite. It
is straight-forward to see that also HP(Mn

C
) tends to infinity, roughly like log(n). ♦

3.3 The generative nature of prediction

3.3.1 Predictive interpretation of HMMs

We have seen that there can be a huge discrepancy between the minimal sufficient memory
and the minimal generative HMM. The requirement of sufficiency is based on a certain under-
standing of “prediction”. Here, we propose an alternative, weaker notion of prediction that
allows for a predictive interpretation of all HMMs.

For this interpretation, we model prediction by two steps. First, the past X−N0 is pro-
cessed by a memory kernel γ, like in Section 3.2.1 but without the sufficiency assumption.
Then the actual prediction is done by generating a predicted future FN. To this end, we
assume a generator T : Γ → P(∆ × Γ), which uses the space Γ of memory states as internal
state space. It is initialized by the random memory state M0 produced by γ. Thus the
(non-invariant) HMM

(
T, γ(X−N0)

)
with random initial distribution γ ◦ X−N0(ω) generates

the prediction FN. The situation is illustrated as

X−N0
//

γ
%%LLLLLLLLLL

XN
M0 = W0

OT // FN
where OT is the kernel from Γ to ∆N associating to an initial state g the output distribution of
the HMM (T, δg) (see Section 2.1.4). Of course, the generated future FN and the corresponding
process WN0 of internal states is conditionally independent of the real future XN given the
past X−N0 . Thus, we cannot expect the prediction FN and the future XN to coincide. But we
require that the distributions, conditioned on the known past X−N0, are identical. This is the
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best one can possibly do and means that actual and predicted future cannot be distinguished
statistically, based on the observed past.

Definition 3.35. The pair (γ, T ) is called predictive model of XZ if Γ is a Souslin space,
γ : ∆−N0 → P(Γ) and T : Γ → P(∆ × Γ) are measurable, and the process FN generated by
the HMM

(
T, γ(X−N0)

)
satisfiesP(FN | X−N0) = P(XN | X−N0) a.s.

A memory kernel γ (resp. generator T ) is called predictive if there exists a generator T
(resp. memory γ) such that (γ, T ) is a predictive model.

We already know from Proposition 3.12 that sufficient memory kernels induce generative
HMMs. In our new terminology, Proposition 3.12 states that every sufficient memory is
predictive. As we see in the following, the converse is not true. In fact, predictive memories
can be much smaller than any sufficient memory. The following proposition states that the
generator of any invariant HMM is predictive, and we know from Section 3.2.4 that generative
HMMs can (for some processes) do with fewer internal states and less internal state entropy
than sufficient memories.

Proposition 3.36 (generative HMMs are predictive). Let (T, µ) be an invariant HMM
of XZ. Then T is predictive, i.e. there is a memory kernel γT , such that (γT , T ) is a predictive
model of XZ. More specifically, we can choose

γT (x) := P(W0 | X−N0 = x), x ∈ ∆−N0.

Proof. We denote the internal processes of the HMM (T, µ) by WZ and obtainP(FN | X−N0) =

∫
OT dγT (X−N0) =

∫ P(XN | W0 = · ) dP(W0 | X−N0)

= P(XN | X−N0) a.s.

Thus (γT , T ) is a predictive model.

Definition 3.37. Let (T, µ) be an invariant HMM. Then the memory γT constructed in
Proposition 3.36 is called canonical memory kernel of (T, µ).

Remark. The canonical memory kernel γT is nearly the same as the marginal Y0 of the
internal expectation process defined in Section 2.1.6. More precisely, Y0 = γT ◦ X−N0 .

The ε-machine (T γC , µγC
) is the HMM induced by the causal state memory γC. The canon-

ical memory γT γC of the ε-machine recovers the causal state memory, i.e. γT γC = γC. This
follows from the fact that the internal process of the ε-machine has the same distribution
as the causal state process (Proposition 3.25). We emphasise that for a general sufficient
memory kernel, the canonical memory of the induced HMM need not coincide with original
memory. Assume, for instance, that the initial memory is deterministic but does not satisfy
the equivalent conditions of Proposition 3.14 (see Example 3.15 for an example of such mem-
ories). Then the induced HMM is not state observable, in other words its canonical memory
kernel is not deterministic. In particular, it is different from the original deterministic one.

While a given predictive memory kernel γ need neither be sufficient nor deterministic, it
is closely related to a deterministic sufficient memory kernel γ′ in the following way. Consider
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the set Γ′ := { γ(x) | x ∈ ∆−N0 } ⊆ P(Γ) of so-called information states and define the Γ′-
valued deterministic memory kernel γ′(x) := δγ(x). The associated memory variable satisfies
M ′ = P(W0 | X−N0) a.s., where W0 = M0 is the memory variable of γ. Then, using that FN
is conditionally independent of X−N0 given W0, we obtainP(XN | X−N0) = P(FN | X−N0)

(Lem. A.4)
= P(FN ∣∣ P(W0 | X−N0)

)
= P(XN | M ′).

In the last equality, we could replace FN by XN because σ(M ′) ⊆ σ(X−N0). Thus, γ′ is
sufficient, and in particular the cardinality of Γ′ is lower bounded by the number of causal
states. Note that Γ′ may have much more elements than Γ.

Remark. We have to point out that the above notion of predictive models does not capture
all aspects of prediction.

a) A predictive memory may not allow for an iterative update of the memory state after
observing additional output symbols.

b) Given a sufficient memory, the complete conditional future distribution corresponding to
a past x is encoded in a single memory state m ∈ Γ. This is no longer the case for
predictive memories. Assume that we want to use a predictive model for sampling the
future distribution given the past x. We choose a memory state m according to γ(x) and
initialize T with m for generating a prediction. We repeat this procedure and obtain the
correct future distribution P(FN | X−N0 = x) = P(XN | X−N0 = x). But if we “forget”
the past x and, instead of sampling new memory states, initialize T always with the same
m, the resulting distribution can be different. Thus, we have to memorize the distribution
(the information state) γ(x).

3.3.2 Generative complexity

Statistical complexity is a widely used complexity measure, and it is the entropy of the
minimal sufficient memory. At the same time, it is also the internal state entropy of the
ε-machine. Because the ε-machine is not the minimal generative HMM, and there is some
predictive interpretation of these HMMs, we suggest to study the minimal internal entropy
of a generative HMM, analogously to statistical complexity, as a complexity measure.

Definition 3.38. The generative complexity of a stationary stochastic process XZ with
distribution P ∈ Ps(∆

Z) is

CHMM(XZ) := CHMM(P ) := inf
{

H(µ)
∣∣ (T, µ) is an invariant HMM of P

}
.

In contrast to the causal states, we do not have a constructive method to obtain the
minimal generative HMM. Therefore, the generative complexity is difficult to compute. We
know from Proposition 3.6 that it is lower bounded by excess entropy. Because the ε-machine
is a generative HMM, it is upper bounded by statistical complexity, i.e.

E(XZ) ≤ CHMM(XZ) ≤ CC(XZ).

Both inequalities can be strict. We saw in Examples 3.26 and 3.29 that CHMM(XZ) < CC(XZ)
is possible. We now show that the strict inequality CHMM(XZ) < CC(XZ) also implies that
the other inequality, E(XZ) < CHMM(XZ), is strict. For let E(XZ) = CHMM(XZ) < ∞
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and (T, µ) an HMM of XZ with H(µ) = CHMM(XZ). That such an HMM exists is shown in
Section 4.4 below. We have to prove CC(XZ) = CHMM(XZ). Let M be the memory variable of
the canonical memory γT . H(µ) = E(XZ) in particular implies I(W0 : XN) = I(X−N0 : XN),
which means that W0 is conditionally independent of XN given X−N0 . Therefore, (W0,XZ)
has the same distribution as (M,XZ) and thus I(M : XN) = I(X−N0 : XN). This means that
the canonical memory is sufficient and CHMM(XZ) = HP(M) ≥ CC(XZ) by Corollary 3.21.

3.3.3 Minimality of the ε-machine

We have seen that there are predictive models smaller than the ε-machine. We now show that
this can happen only if the memory kernel is not deterministic. More precisely, determinism
of a predictive memory implies sufficiency. This means, in particular, that the ε-machine is
minimal among the state observable HMMs of a given process, because state observability is
equivalent to determinism of the canonical memory. Below, we also obtain a stronger property
for countable ∆. Namely, the ε-machine is also minimal among the partially deterministic
HMMs, which is a larger class.

Proposition 3.39. If a memory map is deterministic and predictive, then it is sufficient.

Proof. Let (γ, T ) be a predictive model and γ deterministic, i.e. W0 = M0 = f ◦ X−N0 for
some measurable function f : ∆−N0 → Γ. Then a.s.P(XN | X−N0) = P(FN | X−N0) = P(FN | X−N0, f ◦ X−N0) = P(FN | W0).

Thus, P(XN | X−N0) is σ(W0)-measurable modulo P and P(XN | X−N0) = P(XN | W0) a.s.
Because W0 = M0, this means that the memory is sufficient.

Corollary 3.40. The causal state memory is the minimal predictive deterministic memory
and the ε-machine is the minimal state observable generative HMM.

In the case of countable ∆, we can use Proposition 3.39 together with the results of
Section 2.1.7 about partially deterministic HMMs to see that the canonical memory of a
partially deterministic HMM with finite internal state entropy is sufficient.

Theorem 3.41. Let ∆ be countable and (T, µ) a partially deterministic HMM of P with
H(µ) < ∞. Then the canonical memory kernel γ is sufficient. In particular,

H(µ) ≥ CC(P ).

Proof. Define the relation g ∼ ĝ :⇔ P(XN | W0 = g) = P(XN | W0 = ĝ) and fix one
representative of every equivalence class. Let h : Γ → Γ map g to the representative of
its equivalence class. Note that measurability of h is not an issue, because Γ is essentially
countable due to H(µ) < ∞. Then M ′ := h ◦ M is a memory with memory kernel γ′(x) =
γ(x)◦h−1, and it is predictive due to the same generator T . From Corollary 2.29, we see that
it is deterministic. Thus, it is sufficient due to Proposition 3.39. Because M ′ is a function of
M , we conclude from the data processing inequality that γ must be sufficient as well.

Together with Proposition 3.20, we directly obtain that the ε-machine is the minimal
partially deterministic HMM generating a given stationary process XZ.
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Corollary 3.42. If ∆ is countable, the ε-machine is the minimal partially deterministic
HMM of XZ.

Note that the finite-entropy assumption in Theorem 3.41 cannot be dropped. Similarly
to Example 2.28, it is straightforward to see that the canonical memory kernel of the shift
HMM is in general not sufficient.

3.4 Prediction space

In this section, we represent causal states and ε-machine on the space P(∆N) of probabil-
ity measures on the future. This representation allows us to show the close relation to the
prediction process introduced by Frank Knight in [Kni75] and compare the concepts of com-
putational mechanics, namely causal states, ε-machine and statistical complexity, to other
concepts such as the canonical OOM, process dimension and excess entropy. Properties of
the discrete prediction process developed in Section 3.4.5 are also helpful to prove lower
semi-continuity of statistical complexity later in Section 4.3.

3.4.1 Discrete-time version of Knight’s prediction process

Given a Polish space4 valued, measurable stochastic process with continuous time set R+,
Frank Knight defines the corresponding prediction process as a process of conditional proba-
bilities of the future given the past. This theory originated in [Kni75] and was developed in
[Mey76, Kni81, Kni92]. The most important properties of the prediction process are that its
paths are right continuous with left limits (cadlag), it has the strong Markov property and
determines the original process. The continuous time leads to a lot of technical difficulties.
In our simpler, discrete-time setting, these difficulties mostly disappear, and useful properties
of the prediction process, such as having cadlag paths, become meaningless. A new aspect,
however, is added by considering infinite pasts of stationary processes via the time-set Z. The
marginal distribution (unique due to stationarity) of the prediction process is an important
characteristic that turns out to have a strong relation to the causal states, and its Markov
transition kernel is related to the ε-machine transition. Let XZ be a stationary process with
distribution P ∈ Ps(∆

Z) and recall that the canonical projections from ∆Z to ∆ are denoted
by X ′

k.

Definition 3.43. The P(∆N)-valued stochastic process ZZ = ZPZ of conditional probabilities,
defined on the probability space

(
∆Z,B(∆Z), P

)
by

Zk := P (X ′
[k+1,∞[ | X ′

]−∞,k]), k ∈ Z,

is called prediction process of P or of XZ. P(∆N) is called prediction space.

Remark. Frank Knight denotes a more sophisticated construction with the name “prediction
space” ([Kni92, Sec. 2.3]). The complicated construction, however, is only necessary because
of the continuous time set. The definition in [Kni92] refers to the space of paths of the
prediction process, thus corresponding rather to P(∆N)N than to P(∆N). Nevertheless, we
feel that in our simple setting it is appropriate to call P(∆N) prediction space, because we
do not need restrictions on the set of possible paths.

4Knight actually considers Lusin spaces, which are Borel subsets of compact metrisable spaces. Every
Polish space is Lusin and every Lusin space is Borel isomorphic to a Polish space.
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It is evident that the Markov property of the prediction process in continuous time also
holds in discrete time. Nevertheless, we give a proof, because it is illustrative and much easier
in our discrete-time setting. The corresponding transition kernel works as follows. Assume
that the prediction process is in state z ∈ P(∆N). The transition kernel maps z to a measure
on measures, namely P (Z1 | Z0 = z) ∈ P

(
P(∆N)

)
. Note that z is a state of the prediction

process but at the same time a probability measure. Thus it makes sense to consider the
conditional probability given X ′

1 = d w.r.t. the measure z. It is intuitively plausible that
the next state will be one of those conditional probabilities with d distributed according to
the marginal of z. The resulting measure has to be shifted by one as time proceeds. Recall
that σ : ∆N → ∆N denotes the left shift and the symbol X ′

k is also used for the canonical
projections on ∆N instead of ∆Z. There is one technical point involved, namely let for
z ∈ P(∆N)

φz : ∆N → P(∆N), x 7→ φz(x) := z
(
σ−1( · )

∣∣ X ′
1

)
(x).

Then we have to ensure that φz(x) is jointly measurable in z and x, which amounts to choosing
versions of regular conditional probability that depend measurably on the probability measure.
In [Kni92, Thm. 1.5], it is proven that such jointly measurable versions exist in Polish spaces,
provided that the σ-algebra we are conditioning on is countably generated. We show in
Appendix A.3 that this result remains true in Souslin spaces. Because σ(X ′

1) is countably
generated, we may assume in the following that φ is jointly measurable.

Proposition 3.44. Let P ∈ Ps(∆
Z). The prediction process ZZ of P is a stationary Markov

process. The kernel S from P(∆N) to P(∆N) with S(z) = z ◦ φ−1
z , i.e.

S(z; B) := z
(
{φz ∈ B }

)
, z ∈ P(∆N), B ∈ B

(
P(∆N)

)
,

satisfies P (Zk | Zk−1) = S ◦ Zk−1 a.s. Thus, S is the transition kernel of the prediction
process.

Proof. Stationarity is obvious from stationarity of XZ. We obtain a.s.

S(Z0; B) = Z0

({
Z0(σ−1

( · ) | X ′
1) ∈ B

})
= P

({
P (X ′

[2,∞[ | X ′
]−∞,1]) ∈ B

} ∣∣∣ X ′
−N0

)

= P
(
{Z1 ∈ B }

∣∣ X ′
−N0

)
.

In particular, P
(
{Z1 ∈ B }

∣∣ X ′
−N0

)
is σ(Z0)-measurable modulo P , and together with

σ(Z0) ⊆ σ(X ′
−N0

) we obtain

P
(
{Z1 ∈ B }

∣∣ Z0

)
= P

(
{Z1 ∈ B }

∣∣ X ′
−N0

)
= S(Z0; B), (3.6)

as claimed. We still have to verify the Markov property. But because the σ-algebra induced
by Z−N0 is nested between those induced by Z0 and X ′

−N0
, i.e. σ(Z0) ⊆ σ(Z−N0) ⊆ σ(X ′

−N0
),

we obtain the Markov property from the first equality in (3.6).

Definition 3.45. We call the Markov transition S of the prediction process prediction
dynamic.

Note that although the prediction process ZZ obviously depends on P , prediction space
P(∆N) and prediction dynamic S do not. All P -dependent aspects of ZZ are encoded in its
(stationary) marginal distribution.
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3.4.2 Prediction space representation of causal states and ε-machine

Recall that the causal states are equivalence classes of histories inducing the same conditional
probability distribution on the future. Let ιP be the function associating to an equivalence
class the common distribution on the future, i.e.

ιP : ΓC → P(∆N), C(x) 7→ P (X ′N | X ′
−N0

= x). (3.7)

By definition of C, ιP is well-defined and injective. It is also measurable, because P (X ′N |
X ′

−N0
= · ) is measurable and ΓC is equipped with the final σ-algebra of C. Because both

ΓC and P(∆N) are Souslin spaces, ιP is an isomorphism of measurable spaces onto its image.
Note that even if we restrict ∆ to be a Polish space, which implies that P(∆N) is Polish,
the image of ιP does not need to be Polish or even measurable. It is, however, a Souslin
space. A causal state g = C(x) is called “causal” because it captures the part of the past that
is relevant for the future of the process. To keep this intuition, we call the measure ιP (g)
“effect” corresponding to the “cause” g.

Definition 3.46. For P ∈ Ps(∆
Z), the effect distribution µC(P ) of P is the marginal

distribution of the prediction process. Its topological support is denoted by SP and called
effect space. In formulas,

µC(P ) := P ◦ Z−1
0 ∈ P(P(∆N)

)
and SP := supp

(
µC(P )

)
⊆ P(∆N).

Obviously, the effect distribution corresponds to the distribution µγC
= PMC

of the causal
state memory and the statistical complexity can be computed as the entropy of the effect
distribution, i.e.

µC(P ) = µγC
◦ ι−1

P and CC(P ) = H
(
µC(P )

)
.

We use this interpretation for proving properties about the statistical complexity as function
on Ps(∆

Z) in Section 4.3.

Remark. The space of causal states directly corresponds to the image of ιP , but both of
these spaces depend on the chosen version of conditional probability. The effect space SP is
free of this defect and uniquely determined by P , because different versions of Z0 coincide
P -a.s. and the effect distribution is the push-forward of P under Z0. SP can be considered
a representation of the causal states in a form independent of the version of conditional
probability. It would not be easy to obtain such a representation in the original formulation
as equivalence classes on ∆−N0, because there is no canonical topology and the different
versions are not embedded in a common larger space. Note, however, that the effect space
can be uncountable for a process with countably many causal states (then Im(ιP ) is dense in
SP ).

If the effect distribution was continuous, lower semi-continuity of the statistical complexity
would follow from lower semi-continuity of the entropy. Unfortunately, this is not the case.

Example 3.47. µC is not continuous. Let P be a non-deterministic i.i.d. process. Obviously,
the effect distribution of an i.i.d. process is the Dirac measure δPN in its restriction PN =
P ◦X ′N−1 to positive time. According to [Par61], periodic measures are dense in the stationary

measures, and we find an approximating sequence Pn
∗
⇀ P of periodic measures Pn. The past

of a periodic process determines its future, thus its effect distribution is supported by the set
M = { δx | x ∈ ∆N } of Dirac measures on ∆N. Because M is closed in P(∆N) and does not
contain the topological support SP = {PN } of µC(P ), µC(Pn) cannot converge to µC(P ). ♦
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In integral representation theory, a measure ν ∈ P
(
P(∆N)

)
represents the measure z ∈

P(∆N) if

z = r(ν) :=

∫

P(∆N)
idP(∆N) dν, (3.8)

where r : P(P(∆N)) → P(∆N) is called resultant (or barycentre map) and id is the
identity map. In the case of compact ∆, this is a special case of the situation in [Cho69].
Here, we do not need compactness for existence and continuity of the resultant, because it
is given by integration over a continuous kernel from P(∆N) to ∆N. z = r(ν) means that z
is a mixture (convex combination) of other processes, and the mixture is described by ν. A
trivial representation for z is given by δz , the Dirac measure in z. The measure ν is called
S-invariant if νS = ν, where νS :=

∫
S dν. In other words, it is S-invariant if iterating with

the prediction dynamic S does not change it. We see in the following lemma that, generally,
iterating with S shifts the represented measure, i.e. νS represents z ◦ σ−1.

Lemma 3.48. r(νS) = r(ν) ◦ σ−1. In particular, S-invariant ν represent stationary
processes.

Proof. Because r(νS) =
∫ ∫

idP(∆N) dS dν, it is sufficient to consider Dirac measures δz,

z ∈ P(∆N) (the general claim follows by integration over ν). For Dirac measures we have

r(δzS) =

∫
idP(∆N) dS(z) =

∫
φz dz =

∫
z
(
σ−1( · )

∣∣ X ′
1

)
dz = z ◦ σ−1.

If ν is S-invariant, we also say that ν represents the stationary extension of r(ν) to ∆Z.
The effect distribution of P is an important S-invariant representation of P .

Lemma 3.49. Let P ∈ Ps(∆
Z). Then µC(P ) is S-invariant and represents P .

Proof. From Proposition 3.44 we know that P (Z1 | Z0) = S ◦ Z0 and ZZ is stationary. Thus

∫
S dµC(P ) =

∫
S ◦ Z0 dP =

∫
P (Z1 | Z0) dP = P ◦ Z−1

1 = µC(P ).

Furthermore, µC(P ) represents P because we have

r
(
µC(P )

)
=

∫
Z0 dP =

∫
P (X ′N | X ′

−N0
) dP = P ◦ X ′N−1

.

We already represented the causal states on prediction space and saw that they are in
close relation to the marginal distribution of the prediction process. Now we represent the
ε-machine and it is hardly surprising that it is intimately related to the prediction process.
First, we define a prediction HMM related to the prediction process and later we show in
Proposition 3.52 that it is indeed isomorphic to the ε-machine. The “internal state update”
of the transition TC of the prediction HMM follows the same rule as the prediction dynamic
S, described by the conditional probability given the last observation. The difference is that
now we include output symbols from ∆. We want to construct the HMM in such a way that
if it is started in the internal state z ∈ P(∆N), its output process is distributed according to
z (which is also a measure on the future). Thus, the distribution of the next output d has to
be equal to the marginal of z. The next internal state has to be the conditional z-probability
of the future given X ′

1 = d. Recall that φz(x) = z(σ−1( · ) | X ′
1)(x).
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Definition 3.50. We define the Markov kernel TC from P(∆N) to ∆ × P(∆N) by

TC(z; D × B) := z
(
{X ′

1 ∈ D, φz ∈ B }
)
, z ∈ P(∆N), D ∈ D, B ∈ B

(
P(∆N)

)

and call the HMM
(
TC, µC(P )

)
prediction HMM of P .

Note that TC(z; ∆ × B) = S(z; B), i.e. marginalising TC(z) to the internal component
yields the prediction dynamic. Thus, if µ = µC(P ) is the effect distribution (Definition 3.46)
of some P ∈ Ps(∆

Z), then the internal state process of the induced HMM (TC, µ) coincides
with the prediction process ZZ of P . From the following lemma we conclude that the output
process XZ is, as expected, distributed according to P . This statement will be obvious anyway
when we show below in Proposition 3.52 that the HMM is isomorphic to the ε-machine. But
even more is true. Namely, if µ ∈ P

(
P(∆N)

)
(not necessarily S-invariant) represents a process

z ∈ P(∆N) in the sense of integral representation theory as a mixture of other processes, it
also induces an HMM of z, namely (TC, µ). Recall that r is the resultant, defined in (3.8),
and associates the represented process to µ.

Proposition 3.51. Let µ ∈ P
(
P(∆N)

)
. Then (TC, µ) is a partially deterministic HMM of

r(µ). In particular, the prediction HMM
(
TC, µC(P )

)
is an invariant HMM of P ∈ Ps(∆

Z).

Proof. The output kernel (Definition 2.12) is Kz = z ◦X ′
1
−1. The transition function f given

by fz◦X ′
1 := φz is well-defined due to the σ(X ′

1)-measurability of φz. We have TC(z; D×B) =
Kz

(
D ∩ f−1

z (B)
)

by definition, thus the HMM is partially deterministic. To show that the
output process is r(µ), assume w.l.o.g. that µ is a Dirac measure (the general claim follows
by integration over µ). Thus µ = δz with z = r(µ). Let LC

d be the internal operator of TC and
recall that, according to Lemma 2.13,

(
TC, LC

d (δz)
)

is an HMM of the conditional probability
of X ′

[2,∞[ given X ′
1 = d (w.r.t. the output process of (TC, δz)). With TC

(
z; { d } × P(∆N)

)
=

z
(
{X ′

1 = d }
)

and

r
(
LC

d(δz)
) (2.5)

= r
(
δfz(d)

)
= fz(d) = z

(
σ−1( · ) | X ′

1 = d
)
,

the claim follows by induction.

The prediction HMM is a representation of the ε-machine on prediction space.

Proposition 3.52. Let XZ be a stationary process with distribution P ∈ Ps(∆
Z). Then the

prediction HMM
(
TC, µC(P )

)
is isomorphic to the ε-machine (T γC , µγC

).

Proof. We claim that ιP , defined by (3.7), is an isomorphism. Indeed, we already know that
it is injective, measurable, and µC(P ) = µγC

◦ι−1
P . According to Lemma 2.24, it is sufficient to

prove that ιP “preserves” the output kernel and the transition function. Let K and f be the
output kernel and transition function of the prediction HMM, Kε, f ε those of the ε-machine.
We obtain a.s.

KιP ◦C(x) =
(
ιP ◦ C(x)

)
◦ X ′

1
−1

= P
(
X ′

1

∣∣ C(X ′
−N0

) = C(x)
)

= Kε
C(x)

and

f
ιP (C(x))(d) = P (X ′

[2,∞[ | X ′
−N0

= x, X ′
1 = d) = P (X ′N | X ′

−N0
= xd)

= ιP
(
C(xd)

) (Prop. 3.14)
= ιP ◦ f ε

C(x)(d).
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There are several advantages of working with prediction space instead of equivalence
classes on ∆−N0. First, P(∆N) possesses a natural topology, which enabled us to define
the effect space in a way independent of the version of conditional probability. It also helps
us proving lower semi-continuity of statistical complexity in Section 4.3. Second, P(∆N)
has an algebraic structure, which allows us to clarify the relation between causal states and
the canonical OOM in Section 3.4.3 below. Third, all ∆-valued processes can be treated
in a unified way on the same space with the same transition kernel. In the ε-machine, all
components depend on the process. The underlying space of internal states depends on P ,
while the prediction HMMs are all defined on prediction space P(∆N). Even if the partitions
defined by the causal states of two processes coincide, the generator T γC is different for them.
The generator TC of the prediction HMM, on the other hand, is universal for all processes. It
is only the initial distribution of the prediction HMM that captures all P -dependent aspects.

Let ∆ be countable. Given a process P ∈ Ps(∆
Z), there are (usually) many invariant

representations on prediction space (i.e. S-invariant ν ∈ P
(
P(∆N)

)
with r(ν) = PN). We

already know from Corollary 3.42 that none of them can have lower entropy than the effect
distribution. In the next proposition, we see that even more is true. The effect distribution
of P is distinguished as the only one that can have finite entropy.

Proposition 3.53. Let ∆ be countable, ν ∈ P
(
P(∆N)

)
S-invariant, and P ∈ Ps(∆

Z) the
measure it represents. If ν 6= µC(P ), then H(ν) = ∞.

Proof. Recall that Y0 = P(W0 | X−N0) (Definition 2.20). Let H(ν) < ∞. According to
Proposition 3.51, (TC, ν) is an invariant, partially deterministic HMM of P and we can apply
Corollary 2.29. Let WZ be the Γ = P(∆N)-valued internal process of the HMM. For almost
all fixed ω, Lemma 2.13 tells us that (TC, δW0(ω)) is an HMM of P(XN | W0)(ω), but it is also
an HMM of r(δW0(ω)) = W0(ω) due to Proposition 3.51. Thus, P(XN | W0) = W0 and

z = P(XN | W0 = z)
(Cor. 2.29)

= P(XN | W0 = ẑ) = ẑ ∀z, ẑ ∈ supp
(
Y0(ω)

)
.

This means
∣∣supp(Y0)

∣∣ = 1, i.e. Y0(ω) is a Dirac measure. Thus Y0 = P(W0 | X−N0) = δW0

a.s. and

Z0 ◦ XZ = P(XN | X−N0) =

∫ P(XN | W0 = · ) dY0 = P(XN | W0) = W0 a.s.

Because W0 is ν-distributed and µC(P ) is the law of Z0, we obtain ν = µC(P ).

We conclude this section with two examples of representations on prediction space. They
are extreme cases. The first one, ν1, is maximally concentrated, namely ν1 is the Dirac
measure in (the future of) the process we want to represent. Thus it has no uncertainty
in itself, but the (unique) process in its support can be arbitrary. The second example, ν2,
is supported by maximally concentrated processes, i.e. by Dirac measures on ∆N, but the
mixture ν2 is as diverse as the original process. The HMM corresponding to ν2 is equivalent
to the one-sided shift (Example 2.7).

Example 3.54. Let P ∈ Ps(∆
Z), PN = P ◦X−1N and ν = δPN . Then ν is a representation of

PN with H(ν) = 0. This is no contradiction to Proposition 3.53 because ν is not S-invariant
(if P is not i.i.d.) ♦
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Example 3.55 (lifted shift). Let P ∈ Ps(∆
Z) and ν = PN ◦ ι−1, where ι : ∆N → P(∆N),

ι(x) = δx is the embedding as Dirac measures. ν is an S-invariant representations of P , and
(TC, ν) is isomorphic to the one-sided shift with isomorphism ι. This is no contradiction to
Proposition 3.53, because H(ν) = ∞ if P is not concentrated on countably many trajectories.
In the latter case, ν = µC(P ). ♦

3.4.3 From causal states to the canonical OOM

Provided that ∆ is countable, the representation of the causal states on prediction space
as effects also helps us to clarify their close relation to the canonical OOM (Section 2.2.2).
Recall that the canonical OOM vector space is VP = span(QP ) with QP =

{
τd1···dn

(PN)
∣∣

n ∈ N0, d1, . . . , dn ∈ ∆
}

and observable operators τd(z) = z
(
[d] ∩ σ−1( · )

)
. The connection

to the finite-history version of the causal states can be seen very easily. If we replace τd

in the definition of the canonical OOM vector space by the normalised, non-linear version
z 7→ 1

‖τd(z)‖τd(z), where ‖z‖ = z(∆N) is the variational norm, the generated vector space
obviously stays the same. Therefore,

VP = span
{

P
(
σ−n( · )

∣∣ [d1, . . . , dn]
) ∣∣∣ n ∈ N0, d1, . . . , dn ∈ ∆, P

(
[d1, . . . , dn]

)
> 0

}
.

In the case of finite process dimension, this relation continues to hold for infinite-history causal
states. More precisely, VP turns out to be the linear hull of the effect space SP . Because
the OOM vector space is defined with finite-length pasts and infinite pasts are used for the
definition of SP , we can interpret this result as follows. Unlike the set of causal states, the
canonical OOM vector space is the same if we consider finite or infinite pasts, provided it
is finite-dimensional. See Example 3.34 for an example of a finite-dimensional process with
substantially more finite-history causal states than causal states. In the infinite-dimensional
case, the situation is more subtle (see Example 3.58) and only the closures of the spaces
coincide. Recall that V w∗ denotes the closure of V w.r.t. the weak-∗ topology.

Theorem 3.56. Let ∆ be countable and P ∈ Ps(∆
Z). Then

VP
w∗

= span(SP )
w∗

.

Proof. “⊆”: Let z ∈ QP . Then z = τd1···dn
(PN) for some d1, . . . , dn ∈ ∆. Define A to be

the event that the past is d1, . . . , dn, i.e. A := σn
(
[d1, . . . , dn]

)
⊆ ∆Z. We assume P (A) > 0,

as otherwise z = 0. Further define the non-normalised measure P̂ := P (A ∩ · ) ∈ M+(∆Z)
and recall that P−N0N = P (X ′N | X ′

−N0
). Let µ = P̂ ◦

(
P−N0N )

−1 ∈ M+

(
P(∆N)

)
. Note that

the conditional probability P (X ′N | X ′
−N0

) in the definition of µ is w.r.t. to P not P̂ . Using
stationarity of P , we obtain

z = PN([d1, . . . , dn] ∩ σ−n( · )
)

=

∫
P
(
A ∩ {X ′N ∈ · }

∣∣ X ′
−N0

)
dP

=

∫

A

P (X ′N | X ′
−N0

) dP =

∫
P−N0N dP̂ =

∫
idP(∆N) dµ = ‖µ‖ · r

( µ

‖µ‖

)
,

where id is the identity, ‖µ‖ = µ
(
P(∆N)

)
is the variational norm, and r : P

(
P(∆N)

)
→

P(∆N) is the resultant, defined in (3.8). Because P̂ ≪ P , and thus µ ≪ µC(P ), the support
of µ is contained in SP . Metrisability of SP implies that we can approximate µ by measures
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on SP with finite support ([AB99, 14.10]). Together with continuity of the resultant, this
means that the barycentre lies in the closed convex hull of SP , i.e.

r
(

1
‖µ‖µ

)
∈ conv(SP )

w∗
and z ∈ span(SP )

w∗
.

“⊇”: We have to show that VP
w∗ ∩ P(∆N) has full µC(P )-measure, in other words that

P (X ′N | X ′
−N0

) ∈ VP
w∗ P -a.s. By the martingale convergence theorem we have for B ∈

B(∆N) and x = (xk)k∈Z ∈ ∆Z a.s.

P
(
{X ′N ∈ B }

∣∣ X ′
−N0

)
(x) = lim

n→∞
P
(
{X ′N ∈ B }

∣∣ X ′
[−n,0]

)
(x) = lim

n→∞

τx−n···x0(PN)(B)

P
(
[x−n, . . . , x0]

)

Because B(∆N) is countably generated and setwise (pointwise) convergence of a sequence of
probability measures implies weak-∗ convergence, we obtain P (X ′N | X ′

−N0
) ∈ R · QP

w∗ ⊆

VP
w∗ a.s.

Recall that the process dimension dim(P ) of P is the dimension of the canonical OOM
vector space VP (Definition 2.35).

Corollary 3.57. Let ∆ be countable and P ∈ Ps(∆
Z). Then the process dimension satisfies

dim(P ) = dim
(
span(SP )

)
.

Proof. Finite-dimensional spaces are closed. Thus, if dim(P ) = dim(VP ) = ∞, span(SP )
must also be infinite-dimensional. Otherwise, VP = span(SP ) and thus the dimensions coin-
cide.

Remark. Assume P ∈ Ps(∆
Z) has finite process dimension. Instead of considering the

prediction HMM
(
TC, µC(P )

)
with the whole space P(∆N) as internal states, we can obviously

restrict it to the effect space. This HMM is a representation of the ε-machine. If we consider
its associated OOM, the corresponding OOM vector space is M(SP ). Compare this to the
canonical OOM vector space VP = span(SP ). The latter can be much lower dimensional,
because it utilises the linear structure of SP . The spaces are isomorphic if and only if the
elements of SP are linearly independent (then SP is in particular finite).

The closures in Theorem 3.56 are really necessary, as we see in the next example. Although
SP is closed, span(SP ) is not (in general). Also, in general, neither does span(SP ) contain
VP nor the other way round.

Example 3.58. Let ∆ = { 0, 1 } and for p ∈ [0, 1] let Pp ∈ Ps(∆
Z) be the Bernoulli process

with parameter p, i.e. Pp is i.i.d. with Pp

(
[1]
)

= p. Consider the uncountable mixture P =∫
Pp dp, where integration is w.r.t. Lebesgue measure. Then SP =

{
Pp ◦ X ′N−1

∣∣ p ∈ [0, 1]
}

is the set of i.i.d. processes and µC(P ) is the image of Lebesgue measure under the map
p 7→ Pp ◦ X ′N−1. We make the following observations.

1. span(SP ) ∩ P(∆N) is the set of finite mixtures of i.i.d. processes, in particular span(SP )
is not closed.

2. By definition, VP has countable algebraic dimension, i.e. it is the linear hull of a countable
set. Every basis of span(SP ), on the other hand, has to be uncountable (the family
(Pp)p∈[0,1] is linearly independent). Thus, VP cannot contain span(SP ).

3. All elements of VP ∩ P(∆N) have an uncountable number of ergodic components. There-
fore, span(SP ) and VP are even disjoint (except for 0). ♦
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3.4.4 Excess entropy and effect distribution

Statistical complexity of a process P ∈ Ps(∆
Z) is the entropy of the effect distribution µC(P ).

Thus it measures “how many” (in the weighted sense of entropy) different future distributions
are possible given different past trajectories. It is insensitive to the internal structure of the
elements of P(∆N). The process dimension, on the other hand, uses the linear structure of
P(∆N). It is the dimension of the support SP of µC(P ). The number of possible future
distributions may well be infinite and still contained in a two-dimensional subspace, which
is the situation in Example 3.26. It turns out that excess entropy can also be written as a
function of µC(P ) and it depends on both the algebraic structure and the “distance structure”
given by the Kullback-Leibler divergence. Recall that excess entropy is the mutual information
between past and future. For random variables X and Y with values in countable spaces,
it is well-known and easy to prove that the mutual information can be rewritten as average
Kullback-Leibler divergence,

I(X : Y ) =
∑

x

PX(x) DKL

(P(Y | X = x)
∥∥ PY

)
.

We could not find the corresponding formula for more general spaces in the literature and
therefore give a proof. We use the well-known identity I(X : Y ) = DKL(PX,Y ‖ PX ⊗PY ).

Proposition 3.59. Let X,Y be random variables with values in a Souslin space Γ. Then

I(X : Y ) =

∫
DKL

(P(Y | X)
∥∥ PY

)
dP.

Proof. 1. Case PX,Y 6≪ PX ⊗PY : In this case, I(X : Y ) = ∞. To show that the right-hand
side is also infinite, we show that P(Y | X) 6≪ PY on a set of positive measure. Choose
a measurable set A with PX,Y (A) > 0 and PX ⊗ PY (A) = 0 and decompose it into fibres
A =

⋃
x {x } × Ax. Note that the Ax are measurable and

0 = PX ⊗ PY (A) =

∫

x∈Γ
PY (Ax) dPX

implies that PY (Ax) = 0 PX-a.s. On the other hand,

0 < PX,Y (A) =

∫

x∈Γ
P({Y ∈ Ax }

∣∣ X = x
)

dPX

implies that P({Y ∈ Ax }
∣∣ X = x

)
> 0 on a set of positive measure. For all such x,P(Y | X = x) is not absolutely continuous w.r.t. PY .

2. Case PX,Y ≪ PX ⊗ PY : Let f :=
dPX,Y

d(PX⊗PY ) be the Radon-Nikodym derivative. Then

I(X : Y ) = DKL(PX,Y ‖ PX ⊗ PY ) =

∫
log(f) dPX,Y . (3.9)

It is easy to see that
∫
y∈A

f(x, y) dPY is a regular version of the conditional probabilityP({Y ∈ A }
∣∣ X = x

)
. Thus we have P(Y | X) ≪ PY a.s. and see that

dP(Y | X = x)

dPY
(y) = f(x, y) PX ⊗ PY -a.s.,
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hence also PX,Y -a.s. We apply this identity to (3.9) and obtain

I(X : Y ) =

∫

ω∈Ω
log

(
dP(Y | X)(ω)

dPY

(
Y (ω)

))
dP

=

∫

ω∈Ω

(∫
log

(
dP(Y | X)(ω)

dPY

)
dP(Y | X)(ω)

)
dP.

The right-hand side coincides with
∫

DKL

(P(Y | X)
∥∥ PY

)
dP, as claimed.

Specialising the proposition to X = X ′
−N0

and Y = X ′N, we obtain

E(P ) =

∫
DKL

(
P (X ′N | X ′

−N0
)
∥∥ PN) dP =

∫
DKL( · ‖ PN) dµC(P ).

This means that the excess entropy is the average Kullback-Leibler divergence from the condi-
tional distribution of the future to the unconditional one. To make the dependence on µC(P )
even more explicit, we rewrite PN in terms of µC. Namely, it is the barycentre of µC(P )
(Lemma 3.49). We obtain

E(P ) =

∫
DKL

(
·
∥∥∥ r
(
µC(P )

))
dµC(P )

and see that E(P ) uses also the convex structure of P(∆N) via the resultant r.

3.4.5 Discrete prediction process

In this section, we consider the prediction process in the case where not only time but also
the state space ∆ is discrete. It turns out that in this situation the prediction dynamic is
continuous. This is an interesting result on its own, and we also need it to analyse statistical
complexity in Section 4.3. In the case of a general Souslin space ∆, even joint measurability
of φ is a non-trivial fact. For countable ∆, however, we obtain its essential continuity in an
elementary way. This is the main reason for the continuity of the prediction dynamic.

Lemma 3.60. Let ∆ be countable and z, zn ∈ P(∆N) with zn
∗
⇀ z. There is a clopen (i.e.

closed and open) set Ωz ⊆ ∆N with z(Ωz) = 1 such that φzn

∗
⇀ φz, uniformly on compact

subsets of Ωz.

Proof. Let Ax := X ′
1
−1(X ′

1(x)
)

and Ωz :=
{

x ∈ ∆N ∣∣ z(Ax) > 0
}

. Because ∆ is discrete
and countable, Ωz is clopen with z(Ωz) = 1. Uniform convergence on compacta is equivalent

to φzn(xn)
∗
⇀ φz(x) whenever xn → x in Ωz. For sufficiently large n, X ′

1(xn) = X ′
1(x) and

because σ−1 maps cylinder sets to cylinder sets, φzn(xn) = zn(Ax∩σ−1( · ))
zn(Ax)

∗
⇀ φz(x).

Theorem 3.61. Let ∆ be countable. Then the prediction dynamic S is continuous.

Proof. Let zn, z ∈ P(∆N) with zn
∗
⇀ z and Ωz as in Lemma 3.60. We have to show

∫
g dS(zn) =

∫
g ◦ φzn dzn

n→∞
−→

∫
g ◦ φz dz =

∫
g dS(z) (3.10)

for any bounded continuous g. According to Prokhorov’s theorem, the sequence (zn)n∈N is
uniformly tight and we can restrict the integrations to compact subsets. Because Ωz is clopen,
we have limn→∞ zn(Ωz) = z(Ωz) = 1 and can restrict to compact subsets of Ωz. There, the
convergence of φzn is uniform, thus (3.10) holds.



Chapter 4

Complexity measures of stochastic

processes

So far we have, given a fixed stochastic process P , compared three different complexity mea-
sures and their motivation: excess entropy, statistical complexity and generative complexity.
In this chapter, we suggest to consider process dimension (Definition 2.35) also as complexity
measure and interpret these four quantities as functions on the space of ∆-valued stationary
processes. Thereby ∆ is always assumed to be a Souslin space with at least two elements.

The following question arises naturally. Which functions F : Ps(∆
Z) → R+ = R1 ∪ {∞}

can reasonably be interpreted as complexity measures, and which can not? It would be desir-
able to have an axiomatic answer to this question, that is a characterisation of the complexity
measure functionals. Although we are, of course, far from having such a characterisation,
we argue that every complexity measure should be lower semi-continuous. While it is not
counter intuitive that it is possible to approximate a simple system by unnecessarily com-
plicated ones (and hence the complexity is not necessarily continuous), it would be strange
to consider a process complex if there is an approximating sequence with (uniformly) simple
processes. Therefore, an axiomatic characterisation of complexity measures should include
lower semi-continuity. For the axiomatisation of Shannon entropy, concavity is crucial. We
feel that concavity should also be a property of complexity measures. If we mix processes,
the resulting process should not be considered less complex than the average original process.

In this chapter, we show that excess entropy, statistical complexity and generative com-
plexity are indeed lower semi-continuous and concave. Thus, they can be interpreted as
complexity measures. To obtain lower semi-continuity of statistical complexity, we have to
assume that ∆ is countable. We also give ergodic decomposition formulas, that is we analyse
how the complexities of the ergodic components of a process have to be combined to obtain
its complexity. The definitions of all three complexity measures use Shannon entropy and this
reflects in the same ergodic decomposition behaviour. We call complexity measures with this
behaviour entropy-based and demonstrate a few of their elementary properties in Section 4.1,
before we show in the subsequent sections that the three discussed complexity measures ac-
tually are entropy-based according to our definition. In the last section of this chapter, we
suggest to investigate process dimension as candidate of a complexity measure and show that
it is also lower semi-continuous and concave for countable state spaces ∆, although it is not
entropy-based.

Before we proceed, we give a simple non-continuity example.

59
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Example 4.1 (non-continuity). Let πp ∈ Ps(∆
Z) be the Bernoulli process on ∆ = { 0, 1 }

with parameter 0 < p < 1, i.e. πp

(
[1]
)

= p. Consider the process of throwing a coin that
is either slightly biased to 0 or 1, each with probability 1

2 , i.e. Pε = 1
2π 1

2
+ε + 1

2π 1
2
−ε with

0 < ε < 1
2 . Then Pε

∗
⇀ P0 = π 1

2
for ε → 0, but all three complexity measures we considered

have a discontinuity at ε = 0: CHMM(Pε) = CC(Pε) = E(Pε) = log(2) but CHMM(P0) =
CC(P0) = E(P0) = 0. ♦

4.1 Entropy-based complexity measures

4.1.1 Entropy

First, we summarise a few helpful properties of the entropy. It is weak-∗ lower semi-continuous
and concave in a rather general setting and satisfies a nice decomposition formula for convex
combinations of mutually singular measures. These results are probably all well-known, note
however that lower semi-continuity of the entropy is most often proven w.r.t. variational
topology, which is not sufficient for our purposes. Therefore, we provide a proof of lower
semi-continuity in Appendix A.5.

Lemma 4.2. Let Γ be a separable, metrisable space. Then the entropy H : P(Γ) → R+ is
weak-∗ lower semi-continuous.

It is also important that the entropy is concave and satisfies a nice formula for convex
combinations of mutually singular measures. Mutual singularity of a sequence of measures
µk means that there is a sequence of disjoint, measurable sets Ak with µk(Ak) = 1.

Lemma 4.3. Let Γ be a separable, metrisable space and µ ∈ P(Γ) a countable convex com-
bination µ =

∑
k∈I ν(k) µk of measures µk ∈ P(Γ). Then

∑

k

ν(k) H(µk) ≤ H(µ) ≤ H(ν) +
∑

k

ν(k) H(µk).

Furthermore, the second inequality is an equality if and only if the µk are mutually singular
or H(µ) = ∞. In particular, H is concave.

We use this property of entropy several times below, in the proof of ergodic decomposition
formulas for the different complexity measures.

4.1.2 Entropy-based complexity measures

In this section, we look at a class of non-linear functionals on Ps(∆
Z) that is characterised

by its behaviour w.r.t. to ergodic decomposition. We consider the ergodic decomposition
of P ∈ Ps(∆

Z) to be given as a probability measure νP on the space of ergodic measures
Pe(∆

Z) ⊆ Ps(∆
Z).

Definition 4.4. Let P ∈ Ps(∆
Z). The ergodic decomposition νP ∈ P

(
Pe(∆

Z)
)

of P is
defined by

P = r(νP ) =

∫

Pe(∆Z)
idPe(∆Z) dνP .

If νP is supported by a countable set {P1, P2, . . . } ⊂ Pe(∆
Z), we call the Pk with νP

(
{Pk }

)
>

0 ergodic components of P . Otherwise, we say that P has uncountably many ergodic
components and call the elements of supp(νP ) ergodic components.
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It is well-known that the ergodic decomposition exists and is uniquely determined by P .
We see in the following sections that statistical complexity, generative complexity and excess
entropy all satisfy the same type of formula when we decompose the measure P into ergodic
components. Namely, the complexity of P is the average complexity of its components plus
the entropy of the mixture. We take this formula as definition for a subclass of complexity
measures.

Definition 4.5. For P ∈ Ps(∆
Z), denote the ergodic decomposition by νP ∈ P

(
Pe(∆

Z)
)
.

We call a function F : Ps(∆
Z) → R+ entropy-based if F (P ) = 0 for all i.i.d. processes P ,

and F satisfies

F (P ) = H(νP ) +

∫
F dνP ∀P ∈ Ps(∆

Z).

Remark. a) We need not worry about measurability of F in the previous definition because
H(νP ) = ∞ whenever P has uncountably many ergodic components. Thus F (P ) = ∞ if
ν is not supported by a countable set, and otherwise the integral is actually a countable
sum.

b) The assumption that F (P ) is zero for i.i.d. processes P is only needed to ensure that F
is finite for enough processes. It is a very natural requirement for complexity measures
of stochastic processes and often considered the crucial requirement ([FC98b]). It is obvi-
ously satisfied for excess entropy, statistical complexity, generative complexity and process
dimension.

All entropy-based functionals are non-continuous and using concavity of entropy, we easily
obtain that they are concave. Furthermore, entropy-based complexity measures are generi-
cally infinite in the sense that the subset F−1(∞) of processes with infinite complexity contains
a dense Gδ-set.

Proposition 4.6. Let F : Ps(∆
Z) → R+ be an entropy-based functional. Then F is concave.

Further, the restriction F ↾F−1(R) of F to the set where it is finite is non-continuous, even

in variational topology. If F is in addition lower semi-continuous, F−1(∞) is a dense Gδ-set
and F is in particular generically infinite.

Proof. Concavity: Let P1, P2 ∈ Ps(∆
Z) and P = λP1 + (1 − λ)P2 with 0 < λ < 1. If either

P1 or P2 has uncountably many ergodic components, the same is true for P and F (P ) = ∞.
Let P1 =

∑
k ν1(k)πk and P2 =

∑
k ν2(k)πk for distinct ergodic πk ∈ Pe(∆

Z) (some of the
νi(k) may be zero if components occur in only one of the ergodic decompositions). Then

F (P ) = H
(
λν1 + (1 − λ)ν2

)
+
∑

k

(
λν1(k) + (1 − λ)ν2(k)

)
· F (πk)

≥ λH(ν1) + (1 − λ)H(ν2) + λ
∑

k

ν1(k)F (πk) + (1 − λ)
∑

k

ν2(k)F (πk)

= F (P1) + F (P2).

Non-continuity: Let P, πn ∈ F−1(R) with limn→∞
1
n
F (πn) → ∞. Such πn exist, because if πn

is a mixture of i.i.d. processes, F (πn) is the entropy of the mixture. Define Pn := n−1
n

P + 1
n
πn.

Then Pn → P in variational topology, but F (Pn) ≥ 1
n
F (πn) → ∞ by concavity.

Generic infinity: Due to lower semi-continuity, the sets F−1
(
[0, n]

)
are closed and F−1(∞)

is a Gδ-set. To show that it is dense, let P ∈ Ps(∆
Z) and choose π ∈ Ps(∆

Z) with F (π) = ∞
(e.g. an uncountable mixture of i.i.d. processes). Then F−1(∞) ∋ n−1

n
P + 1

n
π → P .
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4.2 Properties of excess entropy

Lower semi-continuity of the excess entropy is more or less obvious.

Proposition 4.7 (lower semi-continuity). The excess entropy E : Ps(∆
Z) → R+ is weak-∗

lower semi-continuous.

Proof. By definition of the mutual information, E(P ) = I(X ′
−N0

: X ′N) is a supremum of
continuous functions (in P ) and thus lower semi-continuous.

It is not too difficult to prove concavity of the excess entropy directly. But it also follows
from Proposition 4.6 and the ergodic decomposition formula obtained in [D�b06, D�b09] by
 Lukasz D�bowski.

Theorem 4.8 (ergodic decomposition). The excess entropy is an entropy-based complexity
measure, i.e.

E(P ) =

∫
E dνP + H(νP ),

where νP is the ergodic decomposition of P . In particular, E is concave, non-continuous,
and generically infinite.

4.3 Properties of statistical complexity

To analyse statistical complexity CC, we use the identity CC(P ) = H
(
µC(P )

)
, where µC(P )

is the effect distribution of P (Section 3.4.2). For the proof of lower semi-continuity, we need
a compactness argument. To this end, in the case of infinite ∆, we use the next lemma which
guarantees that µC preserves relative compactness. While our lower semi-continuity result
only covers the case of countable ∆, the fact that µC preserves relative compactness holds for
all Polish spaces.

Lemma 4.9. Let ∆ be a Polish space and M ⊆ Ps(∆
Z) relatively compact. Then µC(M) :={

µC(P )
∣∣ P ∈ M

}
is relatively compact in P

(
P(∆N)

)
.

Proof. Using Prokhorov’s theorem, we have to show that µC(M) is tight, provided that M is

tight. Let ε > 0 and Kn ⊆ ∆Z compact with P (Kn) ≥ 1 − ε2−n

n
for all P ∈ M. We define

K ′
n := X ′N(Kn), K̃ :=

{
z ∈ P(∆N)

∣∣ z(K ′
n) ≥ 1 − 1

n
∀n ∈ N} and fn := P

(
{X ′N ∈ K ′

n }
∣∣

X ′
−N0

)
. For P ∈ M:

∫
fn dP ≥

∫
P (Kn | X ′

−N0
) dP = P (Kn) ≥ 1 − ε2−n

n
.

Because fn is bounded from above by 1, we have
∫

fn dP ≤ 1− 1
n
P
(
{ fn < 1 − 1

n
}
)

and obtain

P
( ⋃

n∈N { fn < 1 − 1
n
}
)

≤
∑

n∈Nn(1 −

∫
fn dP ) ≤

∑

n∈N ε 2−n = ε.

Consequently,

µC(P )(K̃) = P
(
{Z0 ∈ K̃ }

)
= P

( ⋂

n∈N { fn ≥ 1 − 1
n
}
)

≥ 1 − ε
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for all P ∈ M. We still have to show compactness of K̃. It is closed because zk
∗
⇀ z implies

z(K ′
n) ≥ lim supk zk(K ′

n) due to closedness of K ′
n. It is tight by definition because the K ′

n are
compact. Therefore, K̃ is compact.

Theorem 4.10 (lower semi-continuity). Let ∆ be countable. Then the statistical com-
plexity CC : Ps(∆

Z) → R+ is weak-∗ lower semi-continuous.

Proof. Let Pn, P ∈ Ps(∆
Z) with Pn

∗
⇀ P . According to Lemma 4.9, every subsequence of(

µC(Pn)
)
n∈N has an accumulation point (a.p.). Consequently,

lim inf
n→∞

CC(Pn) = lim inf
n→∞

H
(
µC(Pn)

) (H lsc)

≥ inf
{

H(ν)
∣∣ ν a.p. of (µC(Pn))n∈N }.

Every µC(Pn) is S-invariant. According to Theorem 3.61, S is continuous and thus every a.p.
ν of

(
µC(Pn)

)
n∈N is also S-invariant. The resultant r : P

(
P(∆N)

)
→ P(∆N) is continuous,

and thus ν represents P . Therefore, according to Proposition 3.53, H(ν) ≥ CC(P ). In total
we obtain

lim inf
n→∞

CC(Pn) ≥ CC(P ).

As we see in the next theorem, statistical complexity is, just as excess entropy, an entropy-
based complexity measure. To obtain the ergodic decomposition formula, we first show that
the effect distribution is the average of the effect distributions of the ergodic components.
For the proof of the formula for statistical complexity, it would be sufficient to consider the
case of countably many ergodic components, but the identity holds in general. Recall that
µC(P ) = P ◦ Z−1

0 , where Z0 = P (X ′N | X ′
−N0

).

Lemma 4.11. Let P ∈ Ps(∆
Z) with ergodic decomposition νP . Then

µC(P ) =

∫
µC dνP .

Proof. Define the function ξ : ∆Z → Ps(∆
Z) by

ξ(x) =





lim
n→∞

1
n

n∑

k=1

δσ−k(x) if the limit exists in the weak-∗ topology,

P otherwise.

Because Ps(∆
Z) is a separable, metrisable space, the function ξ is measurable. Together

with the fact that B(∆Z) is countably generated and setwise convergence implies weak-∗
convergence, Birkhoff’s ergodic theorem yields

ξ(x) = π π-a.s. ∀π ∈ Pe(∆
Z). (4.1)

Choose a jointly measurable version of conditional probability given X ′
−N0

(i.e. π( · | X ′
−N0

)(x)

is measurable in (π, x)), which is possible according to Lemma A.1. Define F : ∆Z → P(∆N)
by

F (x) := ξ(x)
(
X ′N | X ′

−N0

)
(x).

ξ is σ(X ′
−N0

)-measurable: Fix any d ∈ ∆ and define h(x) = y by yk = xk for k ≤ 0 and yk = d

for k > 0. Then h : ∆Z → ∆Z is σ(X ′
−N0

)-measurable and we claim ξ = ξ ◦h. Indeed, for the

Kantorovich-Rubinshtein metric dKR on Ps(∆
Z), we have dKR(δσ−k(x), δσ−k(h(x)))

k→∞
−→ 0 and

ξ(x) = ξ
(
h(x)

)
follows.
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F is a version of P (X ′N | X ′
−N0

): F is σ(X ′
−N0

)-measurable, because ξ has this measurability
and the version of conditional probability is jointly measurable. For B ∈ σ(X ′

−N0
) we obtain

∫

B

F dP =

∫

π∈Pe(∆Z)

∫

B

F dπ dνP
(4.1)
=

∫

π∈Pe(∆Z)

∫

B

π(X ′N | X ′
−N0

) dπ dνP

=

∫

π∈Pe(∆Z)
π
(
B ∩ {X ′N ∈ · }

)
dνP = P

(
B ∩ {X ′N ∈ · }

)
.

µC(P ) =
∫

µC dνP : From the above, we obtain µC(P ) = P ◦ F−1. Thus,

µC(P ) =

∫

π∈Pe(∆Z)
π ◦ F−1 dνP

(4.1)
=

∫

π∈Pe(∆Z)
π ◦
(
π(X ′N | X ′

−N0
)
)
−1 dνP =

∫
µC dνP .

Theorem 4.12 (ergodic decomposition). Statistical complexity is an entropy-based com-
plexity measure, i.e.

CC(P ) =

∫
CC dνP + H(νP ),

where νP is the ergodic decomposition of P . In particular, CC is concave, non-continuous,
and generically infinite.

Proof. First note that µC(P1) and µC(P2) are singular for distinct ergodic P1, P2 ∈ Pe(∆
Z),

because there exist disjoint A1, A2 ∈ σ(X ′N) with Pk(Ak) = 1, k = 1, 2. If νP is not supported
by a countable set, µC(P ) cannot be supported by a countable set and CC(P ) = H(νP ) = ∞.
Thus assume ν =

∑
k∈N νkδPk

for some νk ≥ 0 and distinct Pk ∈ Pe(∆
Z). Then Lemma 4.11

implies

CC(P ) = H

(
∑

k

νkµC(Pk)

)
=
∑

k

νkH
(
µC(Pk)

)
+ H(ν).

4.4 Properties of generative complexity

We obtain the corresponding results also for generative complexity which was introduced in
Section 3.3.2.

Theorem 4.13 (lower semi-continuity). The generative complexity CHMM : Ps(∆
Z) →R+ is weak-∗ lower semi-continuous.

Proof. We have to show CHMM(P ) ≤ lim infn→∞ CHMM(Pn) for any convergent sequence

Pn
∗
⇀ P in Ps(∆

Z). Assume w.l.o.g. CHMM(Pn) < h < ∞ for some h and let (Tn, µn) be an
HMM of Pn with entropy H(µn) ≤ h. Denote the set of internal states by Γn. We construct
an HMM (T, µ) of P with H(µ) ≤ lim infn→∞ H(µn). We may assume that Γn = N and
reorder the internal states such that µn(k + 1) ≤ µn(k) for all n, k ∈ N. Set Γ := N.

1. Construction of µ: Let pn := µn

(
[N,∞[

)
. Monotonicity of µn yields the entropy estimate

H(µn) ≥ pn · inf
k≥N

− log
(
µn(k)

)
= −pn · log

(
µn(N)

)
≥ −pn log

(
1 − pn

N

)
≥ pn log(N).

Consequently, pn ≤ h
log(N) , and for N → ∞, pn converges to zero uniformly in n. Thus

the sequence (µn)n∈N is uniformly tight and, by passing to a subsequence, we may assume

that it is convergent, i.e. there is a µ ∈ P(N) with µn
∗
⇀ µ.
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2. Construction of T : Fix k ∈ supp(µ). We show that the sequence
(
Tn(k)

)
n∈N is uniformly

tight. Then, by passing to a subsequence, we may assume that Tn converges pointwise on
supp(µ) to some T : N → P(∆ × N). For sufficiently large n, µn(k) ≥ 1

2µ(k) =: a. For
ε > 0, choose N s.t. pn = µn

(
[N,∞[

)
≤ 1

2εa for all n. Because µn is Tn-invariant,

Tn(k; ∆ × [N,∞[) ≤
pn

µn(k)
≤ 1

2ε.

From Pn
∗
⇀ P , we deduce that Pn ◦X ′

1
−1 is uniformly tight (we do not need completeness

of ∆Z, because Pn is a sequence of Radon measures, [Bog07, Thm. 8.6.4]). Thus, there is
a compact D ⊆ ∆ with Pn({X ′

1 ∈ D }) ≥ 1 − 1
2εa for all n. Therefore, for large n,

Tn

(
k; (∆ \ D) ×N) ≤

εa

2µn(k)
≤ 1

2ε,

and K := D × [1, N ] is the desired compactum with Tn(k; K) ≥ 1 − ε. Thus, we may

assume Tn(k)
∗
⇀ T (k) for k ∈ supp(µ).

3. µ is T -invariant: Because Γ is countable with discrete topology, weak-∗ convergence in
P(Γ) implies convergence in variational norm. Pointwise convergence of Tn on supp(µ)
and variational convergence of µn, together with Tn-invariance of µn, yield for B ⊆ Γ

µ(B) = lim
n→∞

µn(B) = lim
n→∞

∫
Tn( · ; ∆ × B) dµn =

∫
T ( · ; ∆ × B) dµ.

4. (T, µ) is an HMM of P : We have to show convergence of the output process Pn of (Tn, µn)
to that of (T, µ). Assume for the moment supp(µ) = Γ and consider the joint internal and
output processes. Because Γ is discrete and the Markov transition kernel depends only
on the Γ-component, the conditions of Theorem 5 in [Kar75] are satisfied. The theorem
states that the Markov processes converge in weak-∗ topology. This implies in particular
convergence of the output processes. We see from the proof of [Kar75, Thm. 1] that
supp(µ) 6= Γ does not lead to problems: Because µn

(
supp(µ)

)
→ 1 and the processes are

stationary, we can choose the compact set Aε (used in the cited proof) for large enough n
as subset of

(
∆ × supp(µ)

)
k.

5. H(µ) ≤ lim infn→∞ H(µn): This follows from lower semi-continuity of H.

With the same proof, we also obtain that a sequence of invariant HMMs (Tn, µn) with
converging internal entropy H(µn) and a common output process P ∈ Ps(∆

Z) can be used
to construct an HMM (T, µ) of P with entropy H(µ) = limn→∞ H(µn). This means that the
infimum in the definition of generative complexity is actually a minimum, and we obtain the
following corollary to the proof of Theorem 4.13.

Corollary 4.14. Let P ∈ Ps(∆
Z). Then there exists an invariant HMM (T, µ) of P with

H(µ) = CHMM(P ).

Theorem 4.15 (ergodic decomposition). The generative complexity is an entropy-based
complexity measure, i.e.

CHMM(P ) =

∫
CHMM dνP + H(νP ),

where νP is the ergodic decomposition of P . In particular, CHMM is concave, non-continuous,
and generically infinite.
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Proof. “≤”: Assume that ν := νP is supported by a countable set. If not, the right-hand
side is infinite and the inequality is trivially satisfied. Let (Tk, µk) be an HMM of the ergodic
component Pk with set Γk of internal states, k ∈ I ⊆ N. Let Γ :=

⊎
k Γk be the disjoint union.

Then we obtain an HMM (T, µ) of P with set Γ of internal states as follows. We identify Tk

with a kernel to ∆ × Γ (and support in ∆ × Γk), and µk with a measure on Γ (and support
in Γk) in the obvious way. Then we can define T (g) := Tk(g) if g ∈ Γk and µ :=

∑
k ν(k)µk.

Obviously, (T, µ) is an HMM of P with H(µ) =
∑

k H(µk) + H(ν).

“≥”: Let (T, µ) be an HMM of P with countable set Γ of internal states. If there is no such
HMM, the left-hand side is infinite and the inequality is trivially satisfied. We decompose
the joint process of internal states and output symbols into ergodic components and note
that projections of ergodic components are ergodic as well. Because the internal process
is stationary and Markov, the ergodic components correspond to a decomposition of the
internal states, Γ =

⊎
i Λi, such that the ith ergodic component visits only internal states in

Λi. Furthermore, every ergodic component of the joint process projects to one of the ergodic
components Pk of P and every Pk is reached by at least one such projection. Let I(k) be the
set of indices i, s.t. the ith component is projected to Pk. Let Γk =

⊎
i∈I(k) Λi and decompose

µ =
∑

k ν̂(k)µk with probability measures µk on Γk, more precisely supp(µk) ⊆ Γk. It is
evident that (T, µk) is an HMM of Pk, and ν̂(k) = ν(k). We obtain

H(µ) = H(ν) +
∑

k

ν(k) · H(µk) ≥ H(ν) +
∑

k

ν(k) · CHMM(Pk).

4.5 Properties of process dimension

Observable operator models are generative algebraic models, representing stochastic pro-
cesses. The natural measure of the size of an OOM is its dimension, and we already identified
the minimal dimension of an OOM, which is the dimension of the canonical OOM vector space
VP , as a characteristic of the process called process dimension (Definition 2.35). These facts
suggest to consider the process dimension as candidate of a complexity measure for stochastic
processes. Here, we give a further indication that this might be appropriate, namely we prove
weak-∗ lower semi-continuity and concavity. Let ∆ be countable and recall that the canonical
OOM vector space of P ∈ P(∆N) is

VP = span(QP ) with QP =
{

τd1···dn
(P )

∣∣ n ∈ N0, d1, . . . , dn ∈ ∆
}
,

and, for P ∈ Ps(∆
Z), QP = QPN and VP = VPN .

Theorem 4.16 (lower semi-continuity). Let ∆ be countable. Then the process dimension
dim: P(∆N) → N ∪ {∞} is weak-∗ lower semi-continuous.

Proof. Let Pn
∗
⇀ P in P(∆N) and dim(P ) ≥ m. We have to show dim(Pn) ≥ m for suffi-

ciently large n. Let VP be the vector space of the canonical OOM (Definition 2.33). Because
dim(VP ) = dim(P ) and VP = span(QP ), we can pick linearly independent v1, . . . , vm ∈ QP

and dki ∈ ∆, k ∈ { 1, . . . ,m }, i ∈ { 1, . . . , Nk } with vk = τdk1...dkNk
(P ). Define

vn
k := τdk1...dkNk

(Pn) ∈ VPn .

Then, due to continuity of τd, vn
k

∗
⇀ vk. If vn

1 , . . . , vn
m are linearly independent for all suffi-

ciently large n, the proof is finished. Suppose for a contradiction that this is not the case and
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w.l.o.g. that they are dependent for all n. Then there are λn
k ∈ [−1, 1] with maxk |λ

n
k | = 1

and
∑

k λn
kvn

k = 0 for all n. Because [−1, 1]m is compact, we may assume by passing to a

subsequence that λn
k

n→∞
−→ λk for some λk. Due to weak-∗ continuity of addition and scalar

multiplication,
∑

k λkvk = 0 and hence linear independence of the vk yields λk = 0 for all k.
This is a contradiction to maxk |λ

n
k | = 1.

Of course, the process dimension is not entropy-based. If two different processes share the
same ergodic components, they also have the same process dimension. In this sense, process
dimension is not quantitative. It contains only qualitative information and is insensitive to
the probability with which the components occur. The dimension of a process is just the
sum of the dimensions of its ergodic components. This is not too surprising, because ergodic
measures are mutually singular.

Theorem 4.17 (ergodic decomposition). Let ∆ be countable and P ∈ Ps(∆
Z) with

ergodic decomposition νP ∈ P
(
Pe(∆

Z)
)
. Then

dim(P ) =
∑

π∈supp(νP )

dim(π),

where the sum is infinite whenever supp(νP ) is an infinite set. In particular, the process
dimension is concave.

Proof. We use that the process dimension is equal to the dimension of the effect space,
dim(P ) = dim(SP ), by Corollary 3.57. Here, the dimension of a set is the dimension of the
generated vector space. Recall that SP = supp

(
µC(P )

)
and, by Lemma 4.11,

µC(P ) =

∫
µC dνP . (4.2)

1. Case of finitely many ergodic components: Let P1, . . . , Pn be the ergodic components of
P . Choose disjoint A1, . . . , An ∈ B(∆N) with Pk

(
{X ′N ∈ Ak }

)
= 1 for k = 1, . . . , n. Then

Pk

(
{X ′N ∈ Ak }

∣∣ X ′
−N0

)
= 1 Pk-a.s. Because

Mk := {π ∈ P(∆N) | π(Ak) = 1 }

is closed, this implies SPk
⊆ Mk. The family span(Mk), k = 1, . . . , n, of vector spaces is

obviously linearly independent, and thus the vector spaces Vk := span(SPk
) are linearly

independent as well. Consequently,

dim(P ) = dim(SP )
(4.2)
= dim

( n⋃

k=1

SPk

)
=
∑

k

dim(SPk
) =

∑

k

dim(Pk).

2. Case of infinitely many ergodic components: In this case, the right-hand side is infinite.
SP = supp

(∫
µC dνP

)
satisfies µC(π)(SP ) = 1 for νP -almost all π, and thus SP ⊇ Sπ for

infinitely many π. Because the vector spaces generated by the Sπ are linearly independent
(step 1.), this implies that dim(SP ) = ∞. Thus the left-hand side is infinite as well.

3. Concavity: Because P 7→ νP is linear, we obtain for 0 < λ < 1 and P = λP1 + (1 − λ)P2

that supp(νP ) = supp(νP1) ∪ supp(νP2) and thus dim(P ) ≥ max {dim(P1), dim(P2) }.
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4.6 Open problems

We have seen that in general E(P ) ≤ CHMM(P ) ≤ CC(P ). How does the process dimension
dim(P ) – or rather log

(
dim(P )

)
which is more comparable to the entropy based quantities

– fit into this line? On one hand, we see from the ergodic decomposition formulas that the
process dimension of a mixture of finitely many i.i.d. processes is the number of components,
while the statistical complexity is the entropy of the mixture. Thus, log

(
dim(P )

)
can be

greater than CC(P ). On the other hand, there are examples of processes, where the minimal
number of internal states of any HMM is substantially larger than the process dimension. It
is straightforward to check that in the corresponding example of [Jae00], also the entropy has
to be larger than the logarithm of the process dimension, i.e. log

(
dim(P )

)
can be smaller than

CHMM(P ). This means that log
(
dim(P )

)
is neither comparable to CHMM(P ) nor to CC(P )

in general. The situation might be different for excess entropy. We consider it an interesting
problem to clarify the relation between process dimension and excess entropy, in particular
to find out whether E(P ) ≤ log

(
dim(P )

)
holds in general.

From a theoretical point of view, it seems unsatisfactory that all of the investigated
complexity measures are generically infinite and thus do not distinguish between “most”
processes. A future goal would be to obtain modified versions that give meaningful results
for all (or a generic set of) processes.

Another possible line of research is to extend the definitions of the complexity measures
to non-commutative probability theory. Generalisations of OOMs and HMMs to the setting
of states on quasi-local C*-algebras already exist under the names of finitely correlated states
and C*-finitely correlated states, respectively ([FNW92]). Because the definitions of causal
states, ε-machine and statistical complexity rely heavily on conditional probabilities, it seems
to be much more difficult to obtain corresponding generalisations of these terms.



Appendix A

Technical background

A.1 Souslin spaces

We list a few important properties of Souslin spaces (Definition 2.10).

• Every Polish space is a Souslin space.

• Countable products of Souslin spaces are Souslin spaces.

• Every measurable subspace of a Souslin space is a Souslin space ([Bog07, Cor. 6.6.7]).

• If ∆ is a Souslin space, P(∆) is also a Souslin space ([Bog07, Thm. 8.9.6]).

• The image of a Souslin space under a measurable map into a separable, metrisable space
is a Souslin space ([Bog07, Thm. 6.7.3]).

• Every Souslin subset of a Hausdorff space Γ is universally measurable, i.e., for every µ ∈
P(Γ), it is measurable w.r.t. the µ-completion of G = B(Γ) ([Bog07, Thm. 7.4.1]).

• Every Souslin space is separable and the Borel σ-algebra is countably generated.

• Every Souslin space is a Radon space, i.e. every probability measure on it is Radon ([Bog07,
Thm. 7.4.3]). In particular, all conditional probabilities have regular versions ([Bog07,
Thm. 10.4.5]).

• Every measurable bijection between Souslin spaces is a Borel isomorphism, i.e. the inverse
map is measurable ([Coh80, Prop. 8.6.2]).

A.2 Extension theorems

Let (∆,D) be a measurable space. When we define the distribution P ∈ P(∆N) of a ∆-valued
stochastic process, we usually specify only the finite-dimensional distributions explicitly. Of
course, the finite-dimensional distributions P[1,n] ∈ P(∆n) have to be consistent in the sense
that

P[1,n](A) = P[1,n+1](A × ∆) ∀A ∈
n⊗

1

D.

69
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We then need an extension theorem to ensure existence and uniqueness of a measure P ∈
P(∆N) with the given finite-dimensional marginals. Because finite-dimensional cylinder sets
form an intersection stable generator of the product σ-algebra, uniqueness is always satisfied.
To prove existence, however, technical assumptions are required. Here, we recall two extension
results. The first one is the celebrated Kolmogorov extension theorem ([AB99, Thm. 14.26],
[Bog07, Thm. 7.7.1]), which uses the topological assumption that the measures P[1,n] are
Radon measures. In particular, this assumption is satisfied if ∆ is a Souslin space. The
second extension theorem is Ionescu-Tulcea’s ([Nev65, Prop. V.1.1], [Bog07, Thm. 10.7.3]),
which is free of topological assumptions. Instead, it requires the existence of Markov kernels
Tn from ∆n to ∆ such that

P[1,n+1] = P[1,n] ⊗ Tn.

This amounts to requiring the existence of regular versions of conditional probability, which
is in particular guaranteed if ∆ is a Souslin space.

A.3 Conditional probabilities

We provide some useful lemmata about conditional probabilities. They are presumably well-
known, but easier to prove than to locate in the literature. The first lemma states that in
a Souslin space Γ, it is possible to choose for any countably generated σ-algebra F regular
versions of conditional probability given F that depend measurably on the probability mea-
sure. The case of a Polish space Γ is proven in [Kni92, Thm. 1.5], using the Kuratowski
isomorphism form Γ onto [0, 1]. Our proof is similar to the proof of the case Γ = [0, 1] in
[Kni92], but avoids using the special structure of [0, 1] and cumulative distribution functions.
Note that it is essential that F is countably generated.

Lemma A.1. Let Γ be a Souslin space and F ⊆ G = B(Γ) a countably generated sub-
σ-algebra. Then there exists a regular, B

(
P(Γ)

)
⊗F-measurable conditional probability given

F , i.e. a measurable E : P(Γ) × Γ → P(Γ), such that E(µ, · )(A) is a version of µ(A | F) for
all µ ∈ P(Γ) and A ∈ B(Γ).

Proof. Let (Fn)n∈N be an increasing sequence of finite σ-algebras with σ
(⋃

Fn

)
= F . Then

we can obviously choose jointly measurable, regular versions En of conditional probability
given Fn in an elementary way. Define for µ ∈ P(Γ), x ∈ Γ

E(µ, x) :=

{
lim

n→∞
En(µ, x) if the limit exists in the weak-∗ topology on P(Γ),

µ otherwise.

The set where the limit exists is measurable, and because P(Γ) is a separable, metrisable
space, the function E is B

(
P(Γ)

)
⊗ F-measurable. Now fix µ ∈ P(Γ) and let µ( · | F) be

a regular version of conditional probability (it exists because Γ is a Souslin space). Further
let (Gk)k∈N be a countable, intersection stable generator of G. Then outside a fixed set of
µ-measure zero

µ(G | F) = lim
n→∞

En(µ, · )(G)

for all G = Gk, k ∈ N. But the set of G ∈ G for which the equality holds is a Dynkin system
(due to regularity of µ( · | F)) and thus the equation is valid for all G ∈ G. In particular, this
implies

µ( · | F)(x) = lim
n→∞

En(µ, x) = E(µ, x) µ-a.s.
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in the weak-∗ topology, and E(µ, · ) is a regular conditional probability of µ given F .

As a corollary, we obtain that first conditioning on one σ-algebra, and then, after changing
ones expectations to the result, conditioning on another σ-algebra is equivalent to conditioning
on both at the same time.

Corollary A.2 (iterated conditional probability). Let Γ be a Souslin space, µ ∈ P(Γ)
and F1,F2 ⊆ G sub-σ-algebras. Further assume that F2 is countably generated. Let µF1(x) :=
µ( · | F1)(x) be a regular conditional probability. Then

(
µF1(x)

)(
·
∣∣ F2

)
(x) = µ

(
·
∣∣ F1 ∨ F2

)
(x) µ-a.s.,

where F1 ∨ F2 := σ(F1 ∪ F2).

Proof. Measurability: Choose a jointly measurable, regular conditional probability given F2

according to Lemma A.1. Then the left-hand side is F1 ∨ F2-measurable.

Mean values: Let G ∈ G, F1 ∈ F1 and F2 ∈ F2 and denote by EµF1
(x) expectation w.r.t. the

measure µF1(x). Then
∫

x∈F1∩F2

µF1(x)
(
G
∣∣ F2

)
(x) dµ =

∫

x∈F1

EµF1
(x)
(
1F2 · µF1(x)

(
G
∣∣ F2

))
dµ

=

∫

F1

EµF1 (1F21G) dµ =

∫

F1∩F2

1G dµ.

Because G is countably generated and the conditional probabilities are regular versions, the
claim follows.

The following two lemmata show very intuitive properties of conditional probabilities.
Namely, the conditional probability of X given Y is zero-one valued if and only if X is a
function of Y . And if X depends on Y only through Z, then knowledge of the conditional
probability P(Z | Y ) is as good as knowledge of Y .

Lemma A.3. Let X,Y be random variables with values in Souslin spaces Γ and Γ′ respec-
tively. The following properties are equivalent.

1. P({X ∈ G }
∣∣ Y
)

∈ { 0, 1 } a.s. ∀G ∈ G 2. P(X | Y )(ω) = δX(ω) a.s.

3. X = f ◦ Y a.s. for a measurable map f : Γ′ → Γ

Proof. Assume w.l.o.g. that Ω is a Souslin space (e.g. Ω = Γ × Γ′). “3. ⇒ 1.” is trivial.

“1. ⇒ 2.”: Fix G ∈ G and let A :=
{P({X ∈ G }

∣∣ Y
)

= 1
}

. Note that A ∈ σ(Y ). We haveP(A) =

∫

A

1A dP =

∫

A

P({X ∈ G }
∣∣ Y
)

dP = P(A ∩ X−1(G)
)

.

Similarly, P(A) = P(X−1(G)
)

and thus 1A = 1G ◦ X a.s. Because G is countably generated,
we can choose the exception set independently of G, and 2. follows.

“2. ⇒ 3.”: Because 1G ◦X is σ(Y )-measurable modulo P and the singletons in G′ are measur-
able, there is a measurable map f : Im(Y ) → Γ such that X = f ◦ Y a.s. Because Im(Y ) is a
Souslin set, we can extend f to a universally measurable map on Γ′. Because G is countably
generated, we can modify f on a set of measure zero (w.r.t. PY ) to obtain a Borel measurable
map from Γ′ to Γ ([Bog07, Cor 6.5.6]).
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Lemma A.4. Let X,Y,Z be random variables with X ⊥⊥ Y | Z. ThenP(X ∣∣ P(Z | Y )
)

= P(X | Y ) a.s.

Proof. Let F be the σ-algebra generated by P(Z | Y ). Note that F ⊆ σ(Y ). Using alge-
braic induction, we see that EP(f | Y ) is F-measurable for every bounded, σ(Z)-measurable
function f . Due to conditional independence, we obtain a.s.P(X | Y ) = EP(P(X | Y,Z)

∣∣ Y
)

= EP(P(X | Z)
∣∣ Y
)
,

and thus P(X | Y ) is F-measurable modulo P.

A.4 Measurable partitions

We show that { 0, 1 }−N0 admits a measurable partition that is not the set of atoms of any
countably generated sub-σ-algebra of the Borel σ-algebra. More generally, this is true for
every uncountable Polish space.

Lemma A.5. Let Γ be an uncountable Polish space. Then there is a partition π =
{

[x]
∣∣ x ∈

Γ
}

of Γ into measurable sets [x] ∋ x, such that π is not the set of atoms of any countably
generated sub-σ-algebra of G.

Proof. According to the Kuratowski theorem ([DM78, Appendix-III.80]), all uncountable Pol-
ish spaces are Borel isomorphic. Thus we may assume w.l.o.g. Γ = RN. Let

[x] :=
{

x̂ ∈ Γ
∣∣ {xk | k ∈ N } = { x̂k | k ∈ N }

}
=
⋂

k∈N ⋃n∈N ξ−1
n (xk) ∩

⋂

n∈N ⋃k∈N ξ−1
n (xk),

where ξn : Γ → R is the canonical projection onto the nth component. This defines a mea-
surable partition of Γ. Let F ⊆ G be a σ-algebra with atoms [x], µ a non-atomic probability
measure on R, and P =

⊗N µ the product measure on Γ. Now P
(
[x]
)
≤ P

(⋃
k∈N ξ−1

1 (xk)
)
≤∑

k µ
(
{xk }

)
= 0, thus P is not supported by an atom of F . On the other hand, each atom

[x] is invariant under coordinate permutations and this property extends to all F ∈ F (F is
a union of atoms). Because P is i.i.d., it follows from the Hewitt-Savage 0-1-law that P ↾F is
{ 0, 1 }-valued. Every { 0, 1 }-valued measure on a countably generated σ-algebra is a Dirac
measure, hence supported by an atom. Therefore, F cannot be countably generated.

A.5 Entropy

Lemma A.6. Let Γ be a separable, metrisable space. Then the entropy H : P(Γ) → R+ is
weak-∗ lower semi-continuous.

Proof. Let µn
∗
⇀ µ be a convergent sequence in P(Γ) and G1, . . . , Gm a measurable partition

of Γ. Define ak := µ(Gk) and h :=
∑

k ϕ(ak). Measures on metrisable spaces are inner
closed-regular, i.e. we can choose closed sets Fk ⊆ Gk with µ(Fk) ≥ ak − ε. As metrisable
spaces are normal, there are disjoint open sets Uk ⊇ Fk. The Alexandrov theorem (also called
portmanteau theorem; [Bog07, Thm. 8.2.3]) implies lim infn→∞ µn(Uk) ≥ µ(Uk). Thus, there
is n(ε) ∈ N such that for n > n(ε),

ak − 2ε ≤ µn(Uk)
(
P

µn(Uk) ≤
P

ak)

≤ ak + 2εm ∀k.
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Due to uniform continuity of ϕ, we find for any ǫ̂ > 0 an ε > 0, such that for n > n(ε)

H(µn) ≥

m∑

k=1

ϕ
(
µn(Uk)

)
≥ h−m ·sup

{
|ϕ(x)−ϕ(y)|

∣∣ x, y ∈ [0, 1], |x−y| ≤ 2mε
}

≥ h− ǫ̂.

Consequently, lim infn H(µn) ≥ H(µ).

Lemma A.7. Let Γ be separable, metrisable and µ ∈ P(Γ) satisfy H(µ) < ∞. Then µ is
supported by a countable set A and

H(µ) =
∑

a∈A

ϕ
(
µ({ a })

)
.

Proof. It is sufficient to show H(µ) = ∞ for all µ that vanish on singletons. The support
of µ exists. Therefore, as µ vanishes on singletons, it has no atoms. Thus, we can partition
Γ into two measurable sets with µ-measure 1

2 each, and recursively into 2n measurable sets
with measure 2−n each. Consequently, H(µ) = ∞.
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Notation

[D1 × · · · × Dn] Cylinder set {X ′

k ∈ Dk, k = 1, . . . , n } in ∆Z or ∆N
[d1, . . . , dn] Cylinder set {X ′

k = dk, k = 1, . . . , n } in ∆Z or ∆N
X ⊥⊥ Y | Z X is conditionally independent of Y given Z (Def. 3.8)

1A Indicator function of a set A, 1A(x) = δx(A)

B(Γ) Borel σ-algebra of a topological space Γ

C(x) Causal state (Def. 3.17) of x ∈ ∆−N0

CC(P ) Statistical complexity (Def. 3.23) of P , CC(P ) = HP(MC) = H
(
µC(P )

)

CHMM(P ) Generative complexity (Def. 3.38) of P

δx Dirac measure in x, δx(A) = 1A(x)

E(XZ) = E(P ) Excess entropy (Def. 3.5) of XZ and its distribution P

E(f) = EP(f) Expectation value, EP(f) =
∫

f dP
(ΓC,GC) (Measurable) space of causal states (Def. 3.17)

γC Causal state memory kernel (Def. 3.19), γC(x) = δC(x)

H(µ), HP(X) (Shannon) entropy (Def. 3.1) of measure µ, random variable X

K, Kg, K̂d Output kernel (Def. 2.12) K : Γ → P(∆); Kg(d) = K̂d(g) = K(g; d)

Ld Internal operator (Def. 2.12) Ld : P(Γ) → P(Γ) (d ∈ ∆)

MC Causal state memory variable (Def. 3.19), MC = C ◦ X−N0

M(Γ) Space of signed measures of bounded variation on a measurable space Γ

µC(P ) Effect distribution (Def. 3.46) of P

OT (g), Oµ
T Output distribution of the HMM (T, δg), resp. (T, µ); Oµ

T =
∫

OT dµ, OT (g) = O
δg

T

P(Γ) Space of probability measures on a measurable space Γ

Ps(∆
Z), Pe(∆

Z) Space of shift-invariant respectively ergodic probability measures on ∆ZPX Distribution of a random variable X , PX = P ◦ X−1

PN Distribution of the future part of the process, PN = PX′N = P ◦ X ′N−1

r Resultant (barycentre map), r(ν) =
∫

id dν

σ Left-shift on a sequence space, usually ∆Z or ∆N; σ
(
(xk)k

)
= (xk+1)k

σ(fi, i ∈ I) σ-Algebra generated by a family (fi)i∈I of functions

S Prediction dynamic (Def. 3.45), transition kernel of the prediction process

SP Effect space (Def. 3.46), SP = supp(µC(P )); prediction space version of causal states

τd, τD Observable operators of the canonical OOM (Def. 2.33, 2.40)

(T C, µC(P )) Prediction HMM (Def. 3.50); prediction space version of ε-machine

X ′

k Canonical projection from ∆Z or ∆N to ∆

YZ Internal expectation process (Def. 2.20) of a given HMM, Y0 = P(W0 | X−N0
)

ZZ = ZPZ Prediction process (Def. 3.43) of P , Z0 = P (X ′N | X ′

−N0
)
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Index

analytic space, 14
associated OOM, 25, 28

barycentre map, see resultant
Blackwell theorem, 37

C*-finitely correlated state, 68
canonical memory kernel, 46
canonical OOM, 26, 28, 55, 66
causal state, 1, 38, 51

σ-algebra, 38
memory, 38

computational mechanics, 1, 32
conditionally independent, 32

deterministic memory, 35
DFA, 20

ε-machine, 40
ε-machine, 1, 53
effect distribution, 51, 62
effect space, 51, 67
entropy, 29, 60, 72
entropy rate, 30
entropy-based complexity measure, 61
ergodic components, 60
ergodic decomposition, 60
excess entropy, 2, 31, 62

finitary, 26
finite-history causal states, 45
finite-history memory kernel, 43
finitely correlated state, 68
function of a Markov chain, 9

Gel’fand integral, 5
generalised HMM, see GHMM
generative complexity, 2, 47, 64
generator, 10
generically infinite, 61
GHMM, 24
graphical models, 9

hidden Markov model, see HMM
HMM, 7, 14

countable, 12
functional, 9
induced by γ, 35
Souslin, 13
state-emitting, 9
transition-emitting, 10

identifiability problem, 27
information, see mutual information
information state, 47
initial distribution, 10
internal operator, 14
internal process, 9
invariant HMM, 16
Ionescu-Tulcea extension theorem, 8, 70
isomorphism, 17

Kolmogorov extension theorem, 8, 27, 70
Kullback-Leibler divergence, 30, 57
Kuratowski theorem, 72

Lusin space, 49

Markov model, 9
Markov process, 9
Markov property, 8
memory kernel, 32
memory process, 34
memory states, 32
memory variable, 32
minimum effective degree of freedom, 2, 26
mutual information, 30, 57

observable operator, 25
observable operator model, see OOM
OOM, 2, 24, 27

dimension of, 25
output kernel, 14

partially deterministic HMM, 2, 21, 35, 48, 53
partially observed Markov model, 11
partially observed Markov process, 10
Polish space, 13
prediction dynamic, 50
prediction HMM, 53
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prediction process, 49
prediction space, 1, 49
predictive memory kernel, 46
predictive model, 46
predictive state representation, see PSR
prescient, 33
process dimension, 2, 26, 56, 66
PSR, 24

Radon-Nikodym derivative, 30
random time, 43
resultant, 52, 63

S-invariant, 52
Shannon entropy, see entropy
Souslin measurable space, 13
Souslin space, 13, 69
state observable, 19, 35
statistical complexity, 1, 39, 51, 62
stochastic S-module, 24
stochastic output automaton, 10
sufficient finite-history memory, 43
sufficient memory, 32

transition function, 21

universally measurable, 17, 69
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