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Introduction

Since the beginnings of statistics in the times of Sir Ronald Fischer, the problem of
zero probabilities is a basic one. In this thesis we will focus on a specific instance of this
problem. Consider the simplex of probability vectors on the set {1, . . . ,m}. A statistical
model M is a “sufficiently nice” subset of the (m− 1)-dimensional probability simplex
inside Rm. It is very natural to ask the following question about the model:

Support Set Problem. Describe the set of possible supports of M
{S ⊆ {1, . . . ,m} : ∃ p ∈M with supp(p) = S} .

A priori, it is not at all clear how a solution to such a problem could look like. It
might come in form of an oracle, which decides for a given set S, or as a quick algorithm
that generates the list of sets. Both can be out of reach, but unresolvable questions
can still serve as a motivation to move forward. This thesis summarizes and unifies
the author’s work on questions related to boundaries of statistical models [Kah10b;
KWA09; RKA09] and algorithmic questions for binomial ideals [Kah10a]. The support
set problem motivated many investigations that the author has undertaken during the
research for this thesis. These investigations naturally also lead to other questions, but
the support set problem is the leitmotif.

The use of geometry has lead to significant insights in many areas of mathematics,
and there are two natural geometric ways to look at statistical models. One originates
in differential geometry and studies local properties such as curvature [MR93; Ama00].
The other one is from the view point of algebraic geometry [DSS09; PRW01; PS05],
whose techniques take a more global stance. In this thesis we are not so much concerned
with differential geometry, but with implicit equations, placing it in the second field,
called algebraic statistics.

It is in the nature of mathematics in general, and combinatorics in particular,
that one strives to identify patterns. Nowadays, in principle, every iPod can perform
algebraic geometry computations that needed a cluster computer 20 years ago. A typical
work flow, employed by the author when studying a class of combinatorial objects, is to
compute as many examples as possible with the help of pencil and computer, and then
contemplate over the results until the general picture becomes visible. A prominent
example are Markov bases. Computations carried out by the program 4ti2 [4ti207] lead
to discovery of structure, and indeed, new theorems [LO06; Mal06; DS03; TA02]. It is
therefore also in the scope of this work to show how computers help to find structures
and present results of “experimental mathematics”.

This thesis is divided into three chapters. The first deals with the boundaries
of exponential families, also known as loglinear models. It lays the foundations of a
combinatorial theory of exponential families that, although known to experts, was
never fully documented in the literature. With the use of oriented matroid theory we
develop implicit representations of exponential families, completely parallel to what is
done in algebraic statistics, but without any assumptions on the sufficient statistics.
Key results are the implicit representation of exponential families in Theorem 1.3.6
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2 INTRODUCTION

and a precise formulation of the correspondence between an exponential family and its
associated polytope in Theorem 1.2.14.

In Chapter 2 hierarchical models are treated. The central concept is that of
elementary circuits. Their lower support bound immediately gives a bound on Markov
moves in Theorem 2.3.5 and the neighborliness of marginal polytopes in Theorem 2.5.2.
Another result is Theorem 2.3.3, where we show simplicial complexes that give totally
unimodular matrices and whose circuits are elementary. After that we discuss binary
marginal polytopes, which are special in many ways. Among the results here is a
classification of full-dimensional linear code polytopes in terms of their subgroups via
the considerations leading to Theorem 2.4.12.

The last chapter is devoted to algorithms and software. We present Binomials,
a software package with specialized algorithms for binomial ideals, including binomial
primary decomposition. We discuss large primary decompositions that have been
computed with the software. A central result and the conclusion of this thesis is
Theorem 3.3.3, which gives a counterexample to conjectures of [ESU10].

To keep the treatment concise we will assume familiarity with basic notions from
statistics and commutative algebra. Texts on statistics that have a geometric view
are for instance [BN78] and [CS04]. A very pedagogical introduction to commutative
algebra is [CLO96]; more advanced topics are covered extensively in [Eis95]. We will
strive for brevity, not repeating material covered elsewhere if not absolutely necessary.
Sections 1.3.1, 1.4.1, and 3.1.1 contain introductory material on realizable oriented
matroids, toric varieties, and primary decomposition. After the bibliography an index
is provided to ease the look-up of definitions. It also contains mathematical symbols.



CHAPTER 1

Discrete Exponential Families

1.1. Basic Notions

In this section we will be mostly concerned with definitions of basic objects. Let
[m] := {1, . . . ,m} be a nonempty finite set. Denote by Rm the vector space of real
valued functions on [m]. We equivalently call f ∈ Rm a function or a vector and denote
values, or components by f(i), or fi, respectively. Consider the closed set

(1.1) Pm :=

{
p ∈ Rm : p(i) ≥ 0 ∀i ∈ [m],

m∑
i=1

p(i) = 1

}

of probability measures on [m]. It has the geometrical structure of a (m−1)-dimensional
simplex whose extreme points are the unit vectors of Rm. We often speak of the simplex
of probability distributions. Every probability measure on a finite set is given by a
function on the set itself instead of its power set. We speak of a probability distribution,
or just a distribution. The overline already indicates that we use the notation M for
the closure of M ⊆ Rm in the standard topology.

For every f ∈ Rm we denote

(1.2) supp(f) := {i ∈ [m] : f(i) 6= 0} ,

its support and furthermore define

(1.3) Pm :=
{
p ∈ Pm : supp(p) = [m]

}
,

the open simplex of distributions with full support. Throughout the text we use the
convention 0 log 0 = 0, and log refers to the natural logarithm.

In this thesis we deal with random variables and variables in polynomial rings.
We stick to the convention that no random variable is called simply a “variable”, but
always be preceded by the word “random”.

It is very useful to have a geometric view on questions from information and
probability theory. One step towards this is to introduce a notion of distance as follows:

Definition 1.1.1. Given p, q ∈ Pm we call

(1.4) D(p ‖ q) =

{∑
i∈[m] p(i) log p(i)

q(i) if supp(q) ⊇ supp(p)

∞ otherwise,

the Kullback Leibler distance of the distributions p and q. It is also called relative
entropy or information divergence.

This concept was introduced in [KL51] by Kullback and Leibler. They also
considered a symmetric version D(p ‖ q) +D(q ‖ p), which they called the divergence.
Although not a metric, D(p ‖ q) is nonnegative and zero if and only if p = q.
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4 1. DISCRETE EXPONENTIAL FAMILIES

1.2. Exponential Families

One widely used class of statistical models is that of exponential families.

Definition 1.2.1. Let L ⊆ Rm be a linear subspace of Rm. We call the set

(1.5) EL =

{
p ∈ Pm : p(i) =

eH(i)∑
j∈[m] eH(j)

, H ∈ L

}
the exponential family of the subspace L or the loglinear model of the subspace.

Due to the normalization, we can always assume that L contains the subspace
spanned by the constant function Rm 3 1 : i 7→ 1, since including this subspace does
not change the set EL. Two functions H in (1.5) that differ by a constant lead to the
same p. This also explains the loss of dimension in

Example 1.2.2. The open (m − 1)-dimensional probability simplex Pm is the
exponential family of the whole, m-dimensional space Rm.

Often the subspace in Definition 1.2.1 comes to us in a parametrized way. We are
given a matrix A = (aij)i,j ∈ Rd×m whose rows form a basis of L. Otherwise we may
choose a basis, and in the following any exponential family is given by a matrix A,
such that we have a parameterization of L:

(1.6) LA :=
{
c ·A : c ∈ Rd

}
.

The corresponding exponential family is denoted EA. The equivalent classical definition
of an exponential family reads as

(1.7) EA :=

{
p ∈ Pm : p(j) =

1
Zc

exp

(
d∑
i=1

ciaij

)
, c ∈ Rd

}
,

where

(1.8) Zc :=
m∑
j=1

exp

(
d∑
i=1

ciaij

)
.

Note that EA is unchanged under row operations on the matrix A and additionally,
because of the normalization, when adding a row (1, . . . , 1). We therefore assume that
A has a row consisting of all entries 1. The linear map A : Rm → Rd is called the
sufficient statistics of EA for reasons that will become clear in Section 1.2.2.

Example 1.2.3. Let m = 4, the probability simplex Pm is three-dimensional. We
define an exponential family by the sufficient statistics

(1.9) A :=

1 1 −1 −1
1 −1 1 −1
1 1 1 1

 .

The columns a1, . . . , a4 are indexed by [m], the rows by the three parameters. The family
is overparameterized. It is two-dimensional; the kernel of A is one-dimensional and
spanned by the vector (1,−1,−1, 1)T . Describing the boundary points in parametrized
form is not straightforward. Consider for instance the probability measure p1,2 :=
(1/2, 1/2, 0, 0)T . We claim that p1,2 ∈ EA. To see this define a sequence of parameter
vectors ct := (t, 0,−t). Then ctA = (0, 0,−2t,−2t) and pt(j) = 1

Zc
exp(ctAj) ∈ EA. It

follows that as t→∞ we have pt → p1,2 as desired. In this construction it is crucial
to find a vector c that has the property that cAj = 0 on the desired support and all
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signs of cAj on the remaining columns agree. Note that the convex hull of the columns
of A is a square lying in the plane defined by x3 = 1. We found a vector c that does
the job, only since the set {1, 2} defines an edge of the square. This construction is
not possible for the set {1, 4}, which defines a diagonal in the square. This connection
between polyhedral geometry and support sets is at the heart of our analysis and will
be an essential ingredient in the following.

1

2

3

Figure 1. Degenerate exponential families

The following example illustrates other effects related to the relative positions of
the columns of A.

Example 1.2.4 (Families not containing all Dirac measures). Consider the (2× 3)-
matrix

(1.10) A1 =
(

1 2 3
1 1 1

)
.

The exponential model EA1 is one-dimensional and schematically depicted as the
“curved” family in Figure 1. It does not contain all Dirac measures. More drastically,
consider the family defined by

(1.11) A2 =
(

1 1 2
1 1 1

)
.

This family is also one-dimensional, but its closure contains only one Dirac measure,
as depicted by the “straight” family in Figure 1. The sufficient statistics A2 can not
distinguish between the first and the second elementary event. Note that EA2 is a
convex exponential family, a rare case characterized in [MA03]. Constructions starting
from a point configuration, like the ones we just considered, are often useful. For
instance, in Example 5.7 of [Mat07] properties of the family can be read of from the
picture. Note also how the geometry of EA changes noncontinuously when perturbing
the second column of A2 by ε, which gives essentially another instance of the first
example. Complementing these cases, in Example 1.3.17 we show an exponential family
of dimension two, which contains all the Dirac measures.

Remark 1.2.5 (Exponential families with base measures). The classical definition
of an exponential family also allows the choice of a base measure q. Assuming a matrix
A as above it is defined by

(1.12) EA,q :=

{
p ∈ Pm : p(j) =

q(j)
Zc,q

exp

(
d∑
i=1

ciaij

)
, c ∈ Rd

}
,
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with

(1.13) Zc,q :=
m∑
j=1

q(j) exp

(
d∑
i=1

ciaij

)
.

Evidently, if supp(q) = [m], then the support set problems solution is not effected by q,
namely in any sequence of distributions, p(i) goes to zero if and only if exp

(∑d
i=1 ciaij

)
goes to zero. Note also, that every element of EA,q can play the role of the base measure.
See [CS04] for more details.

In contrast, if the support of q is not full, the family is restricted to a face of
the probability simplex. Then one could argue that the choice of the set [m] is not
appropriate. The theory of experimental designs provides a possible approach to treat
such models. This however always means a remodeling in terms of design matrices,
briefly discussed in Section 1.4.3. For this thesis we will always assume an exponential
family to be defined with full support as in (1.7).

1.2.1. Linear Families. Dual to the image of A, the kernel, its translations, and
their intersections with the probability simplex, are also of importance. The linear
space kerA can be “attached” to any probability measure, resulting in a linear family:

Definition 1.2.6. The set

(1.14) LA,p := (p+ kerA) ∩ Pm :=
{
q ∈ Pm : Ap = Aq

}
,

of probability vectors whose image under A equals Ap, is called a linear family .

As an intersection of an affine linear space with a polytope, LA,p is itself a polytope.
It is presented to us in its H-representation, that is by inequalities. Naturally, it is an
interesting, but nontrivial, question to determine the vertices of this polytope. We will
next examine the relation between EA and LA,p.

1.2.2. Sufficient Statistics and Birch’s Theorem. Loosely speaking, a suffi-
cient statistics is a map of the data in some experiment to Rd, such that the estimation
of a distribution in the model can be carried out equally well, using either the data
or the value of the sufficient statistics. More formally, let X be a random variable
distributed according to a fixed and unknown p ∈ P(X ), from which we obtain r

samples u = (u(1), . . . , u(r)), and U a random variable that consists of r independent
identical copies of X. Then a map T is called a sufficient statistics for a model E , if as
long as the unknown distribution p of X is contained in E , the conditional probability
P(U = u|T (U) = T (u)) is independent of P . This fact is commonly expressed as
“Given the sufficient statistics, the conditional probability of observing the data is
independent of the parameters”. It implies that the value of the sufficient statistics
carries all information that can be used in inference.

For the exponential models EA, defined in the last section, it will instantly turn
out that the matrix A itself computes a sufficient statistics. The following theorem is
classical.

Theorem 1.2.7 (Birch’s Theorem). Let A ∈ Rd×m and p ∈ Pm a probability vector.
Then there is a unique point in the intersection of the associated linear and exponential
family:

(1.15) {p∗} := LA,p ∩ EA.
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The distribution p∗ is called the maximum likelihood estimate (MLE) of p in the model
EA. Equivalently p∗ is the unique solution to the likelihood equations:

(1.16) Ap∗ = Ap, p∗ ∈ EA.

A very nice geometric proof of this fact can be found in the considerations leading
to Theorem 3.3 of [CS04]. More generally, the Pythagorean identity is shown. With the
notation from above, for any q ∈ EA one has the following identity of Kullback-Leibler
distances:

(1.17) D(p ‖ q) = D(p ‖ p∗) +D(p∗ ‖ q).
This equation can also be used to reformulate the problem of computing the solution,
i.e. finding maximum likelihood estimates, as a minimization of D(p ‖ q). This is
carried out either in the first argument over the polytope LA,p, or in the second
argument over the models closure EA.

Remark 1.2.8 (Finding the solution of (1.16)). Owing to the constraint p∗ ∈ EA,
it is not generally possible to solve the likelihood equations (1.16) in closed form. In
Section 1.3 it will be shown that the requirement p∗ ∈ EA is equivalent to certain
equations connected to the oriented matroid of the matrix A. Under additional
conditions on A, the requirement is equivalent to polynomial equations, and the full set
of likelihood equations is actually a polynomial system. Geometrically, Birch’s Theorem
then states that, inside the probability simplex, a linear space and a toric variety
intersect in a unique nonnegative real point. The solution can be found numerically,
using a simple algorithm called iterative proportional fitting (IPF), described for
instance in [Stu02]. An open source implementation is the software cipi [SK08].

A point p∗ ∈ EA is called the maximum likelihood estimate (MLE) of p ∈ Pm if it is
the solution to the problem (1.15). In statistics literature only a point in the interior of
EA is called an MLE. If the solution lies on the boundary, the MLE is said to not exist.
This notion originates in the fact that exponential families are mostly considered as
parameterized models and the classical parameterizations, generated by parameterizing
the linear space in (1.5), do not extend to the boundary. It is clearly visible how useful
a unified treatment of boundary and interior points is. However, already defining the
closure of general exponential families for continuous random variables is a highly
nontrivial problem [CM04; CM05]. In our discrete case the notions considered in these
papers all coincide with the usual closure taken in Rd; the problems lie more in finding
explicit descriptions of elements in the boundary. In the next section we will show the
fundamental role of the matrix A in such problems.

1.2.3. Polytopes of Exponential Families. Given an exponential family EA,
it has been visible in the examples that the convex hull of the columns of A plays
a certain role, which we discuss now. We denote the columns of A as {a1, . . . , am}.
Note that these vectors are the values that the sufficient statistics takes on the Dirac
measures, the extreme points of the probability simplex. We consider the polytope
of possible values that Ap can take for p ∈ EA. As a map on the probability simplex,
A is not injective. However, the preimages of points p are just the linear families LA,p,
which intersect with EA in a unique point. Thus, each point in the simplex has a
corresponding point in EA with the same value under A, and we have a linear foliation
of the simplex as

(1.18) Pm =
⋃̇
p∈EA

LA,p.
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Since every probability vector is a convex combination of Dirac measures and A is
linear, the image of the exponential family EA under A is a polytope, given by the
convex hull of the columns of A. Up to now, as we only assumed a row of ones,
essentially any polytope can occur. Nevertheless we assign a name:

Definition 1.2.9. The convex hull of the columns of A

(1.19) cs(EA) := conv {aj , j = 1, . . . ,m}
is called the convex support of the exponential family.

Remark 1.2.10. A common definition reads as follows: Let µ be a Borel measure
on Rd. The convex support is the intersection of all closed convex sets C, with full
measure, µ(C) = µ(Rd). In this sense each p ∈ EA induces a (finitely supported)
measure on Rd via µ(C) := p

(
A−1(C)

)
, where we have slightly abused notation by

denoting A−1(C) the preimage of C under A. Then the convex hull of the columns of
A is the convex support of every element p ∈ EA.

The convex support plays a central role in the first part of this thesis. It encodes
the solution of the support set problem in its face lattice. The remaining parts of
this chapter are to clarify the connection between cs(EA) and EA. The following three
theorems justify cs(EA) to be called the combinatorial, or convex, version of EA. We
start by considering only the topological properties of cs(EA) and EA.

Theorem 1.2.11. The closure EA of a discrete exponential family EA is homeo-
morphic to its convex support cs(EA).

Proof. The proof is given by explicitly studying the maps between these two
objects. The only difficulty is to prove Birch’s Theorem 1.2.7. The sufficient statistics
restricted to the probability simplex

(1.20) A : Pm → Rd,

is continuous being the restriction of a linear map. The opposite map is a bit harder
to understand. For each µ ∈ cs(EA) we define φ(µ) to be the unique point p ∈ EA with
Ap = µ, which exists by Birch’s Theorem 1.2.7. This is clearly a bijection. Now, since
A is a continuous map from a compact set to a compact set, it is a closed map, and
the inverse is also continuous. �

Remark 1.2.12. Variants of the theorem are known for very long time. In the
interior of the polytope and the family, the statement is a statement about the
existence and uniqueness of maximum likelihood estimates, a weaker variant of Birch’s
Theorem. The critical part here is the extension to the boundary and the preservation
of combinatorial structure (Theorems 1.2.13 and 1.2.14). Authors often speak of the
homeomorphism of an exponential family and the associated polytope, but this is
not enough; a homeomorphism onto a polytope is not better than a homeomorphism
onto a ball of correct dimension. It is not straightforward to state the theorem as
a homomorphism of two objects. We first state this fact as it is in Theorem 1.2.14
and then use more fancy names in Theorem 1.2.18, where we introduce the notion of
regular cell complexes. If the exponential family is a toric variety, a case that will be
discussed below, the homeomorphism has been called the moment map by authors
from algebraic geometry.

Theorem 1.2.13. The homeomorphism in Theorem 1.2.11 respects the boundary
in the following way: A set F ⊆ [m] is the support of an element p ∈ EA, if and only if,
it is the preimage (under the map induced by A) of a set of vertices of a face of cs(EA).
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This theorem can be deduced from general statements about closures of exponential
families [CM05; CM03]. Our case of discrete random variables is already contained
in Chapter 9 of [BN78]. Some more discussion and pointers to the literature can be
found in [KA06]. For this work we do not need the full generality and explicitly prove
a slightly weaker version, which excludes the effects discussed in Example 1.2.4.

Theorem 1.2.14. Assume that the columns of A are the vertices of their convex hull.
If p ∈ EA with F = supp(p), then conv {ai : i ∈ F} is a face of cs(EA), containing Ap.
Conversely if µ ∈ cs(EA) lies in the relative interior of a face defined by F ⊆ [m], then
the unique preimage p̂ satisfies supp(p̂) = F .

Our proof of Theorem 1.2.14 will use the implicit representation of exponential
families, to be introduced in the next section. Its main part consists of Theorem 1.3.1
and Lemma 1.3.4, but we already give the theorem here to sum up the considerations
about the sufficient statistics. The statement will not be used in the considerations of
Section 1.3 and the proof is given right before Proposition 1.3.5 on page 13.

Example 1.2.15. In Example 1.2.4, the convex hull of the columns of A2 is a
line segment. The preimage of its “left vertex” is the set {1, 2}, which supports a
probability measure in EA2 . However, Theorem 1.2.14 fails: conv {a1} = {a1} is a face
of the convex support while it does not give the support of a probability measure in
EA2 .

We continue with a reformulation of the homeomorphism with preservation of
boundary structure in a more abstract fashion, using regular cell complexes.

Definition 1.2.16. A regular cell complex ∆ is a collection of closed topological
balls σ in a Hausdorff space such that, denoting ‖∆‖ :=

⋃
σ∈∆ σ, we have

(1) The interiors σ◦ partition ∆, i.e. every x ∈ ‖∆‖ lies in exactly one σ◦.
(2) The boundary ∂σ is a union of members of ∆ for any σ ∈ ∆.

The elements σ ∈ ∆ are called closed cells, their interiors σ◦ open cells, and ‖∆‖ is
called the underlying space of the cell complex. If some topological space T satisfies
T ∼= ‖∆‖, then ∆ is said to provide a regular cell decomposition of T . The face poset
of ∆ is the set of closed cells ordered by inclusion. Two regular cell complexes ∆,Γ
are called isomorphic if there exists a homeomorphism φ : ‖∆‖ → ‖Γ‖ such that the
restriction φσ, of φ to any cell σ ∈ ∆, is a homeomorphism of σ and a cell of Γ.

With this definition any polytope is a regular cell complex. Its face poset is just
the lattice of faces in the sense of polyhedral geometry. In particular the probability
simplex is a cell complex and induces a cell decomposition of EA:

Proposition 1.2.17. The closed exponential family EA admits a cell decomposition
where the open cells are the intersections

(1.21)
{
EA ∩ F ◦ : F ⊆ Pm a face

}
.

Proof. The elements p in nonempty intersections EA ∩F ◦ consist exactly of those
distributions with supp(p) = F . Thus they partition EA according to the possible
support sets. The boundary of a cell σ consists of those distributions in EA whose
support is contained in the support of elements in σ, and these all occur among the
intersections in (1.21). �

Finally, this allows a reformulation of Theorem 1.2.14 as:

Theorem 1.2.18. The map A : EA → cs(EA) is an isomorphism of regular cell
complexes.
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1.3. Implicit Representations of Exponential Families

Let us summarize our current knowledge about the boundary of discrete exponential
families. The exponential family is mapped to a convex polytope by the restriction
of a linear map. This map is in fact a bijection on the model EA by Theorem 1.2.11.
The boundary and thereby the possible support sets are characterized by the face
lattice of the convex support, as stated in Theorem 1.2.14. To prove it, we will
introduce a very useful tool, namely implicit representations of exponential families.
Using parameterizations to describe the boundary of a statistical model is troublesome.
A much more powerful and successful technique is to use implicitization, which means
to describe the exponential family as the solutions to a set of equations. When it
comes to proofs in the derivation of such a representation one naturally encounters the
structure of the oriented matroid of the columns of the sufficient statistics A. After
having discussed the implicit representations, we will give a short introduction into
this theory and show how it relates to what we have presented here.

Apart from describing exponential families implicitly, our goal in this section, is to
find a concise characterization of the support sets in general exponential families with
the help of oriented matroids. Although slightly hidden, the connection to oriented
matroid theory is natural. The presentation here is largely inspired by Markov bases,
which provide an implicit description of exponential families for discrete random
variables with integer valued sufficient statistics A. When one leaves the special case
of commutative algebra and toric ideals, what remains is oriented matroid theory. The
Implicitization Theorem 1.3.1 parallels the celebrated representation of toric statistical
models. Here, we study the–not necessarily polynomial–equations that define the
closure of the exponential family and relate them to the oriented matroid of the
sufficient statistics of the model. In the toric case, our observations reduce to the fact
that the nonnegative real part of a toric variety is described by a circuit ideal. We
emphasize how the proof of this fact uses arguments from oriented matroid theory.
While encountering only realizable oriented matroids, we give pointers to generalizations.
Textbook references on the subject are [BVS+93] and a chapter in [Zie94].

The first theorem shows how to obtain an implicit description of EA from the
kernel of A. Note, how this gives a nice “duality” as the parametrization itself is
derived from the image of A. For any given vector n ∈ Rm, we denote n+ and
n− its positive, respectively negative, part with components n+(x) := max(0, n(x))
and n−(x) := max(0,−n(x)), which gives n = n+ − n−. To make the following
equations concise, we introduce monomial notation, where for any n ∈ Nm we denote
pn :=

∏m
i=1 p(i)

n(i).

Theorem 1.3.1. A distribution p is an element of the closure EA if and only if it
satisfies all the equations

(1.22) pn
+

= pn
−
, for all n ∈ kerA.

Remark 1.3.2. This theorem is a direct generalization of Theorem 3.2 in [GMS06].
There only the polynomial equations among (1.22) are studied under the additional
assumption that A has only integer entries. However, the proof of the theorem
generalizes without any major problem. Actually, the proof of our theorem needs one
step less, since we don’t need to show the reduction to the polynomial equations. The
different flavor of the results will be made more precise in Section 1.4. It is easily seen
that an analogous statement holds for an arbitrary base measure with full support.
In [RKA09] the general statement is given. Our proof closely follows [GMS06], however,
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we explicitly point out how matroid-type arguments are used, the first example being
Lemma 1.3.4.

Before giving the proof of Theorem 1.3.1 we first state a couple of auxiliary results
that are of independent interest. The matrix A and derived objects are fixed for the
rest of the considerations. A face of a polytope P is the intersection of the polytope
with an affine hyperplane H, such that all x ∈ P with x /∈ H lie on one side of the
hyperplane. Faces of maximal dimension are called facets. It is a fundamental result
that every polytope can equivalently be described as a compact set defined by finitely
many inequalities (i.e. facets), see [Zie94].

In particular we are interested in the face structure of cs(EA), as this gives us the
set of possible supports of the model EA. Our assumption that A has a row (1, . . . , 1)
in this setting means that all vertices of cs(EA) lie in the affine hyperplane xd = 1.
Thus, for any face, we can replace the affine hyperplane H by an equivalent central
hyperplane, passing through the origin. This motivates the following

Definition 1.3.3. Let {ai : i ∈ [m]} be the vertex set of a polytope, lying in a
hyperplane that does not contain zero. A set F ⊆ [m] is called facial if there exists a
vector c ∈ Rd such that

(1.23) cTai = 0 ∀i ∈ F, cTaj ≥ 1 ∀j /∈ F.

Lemma 1.3.4. Fix a matrix A = (ai)i∈[m] ∈ Rd×m and a nonempty subset F ⊆ [m].
Then we have:

• If F is facial then no nonzero nonnegative linear combination of the ai, i /∈ F ,
can be written as linear combination of the ai, i ∈ F .
• F is facial if and only if for any u ∈ kerA:

(1.24) supp(u+) ⊆ F ⇔ supp(u−) ⊆ F.
• If p is a solution to (1.22), then supp(p) is facial.

The proofs here use standard arguments from oriented matroid theory and polytope
theory. The last part is following the argumentation in the appendix of [GMS06]. We
reproduce it to show some oriented matroid theory in everyday use.

Proof. For the first statement, assume to the contrary that we can find α(i) ≥ 0
and β(i) not all zero such that u =

∑
i/∈F α(i)ai =

∑
i∈F β(i)ai, and let c be normal to

the facial hyperplane as in (1.23). We have

(1.25) 0 ≤
∑
i/∈F

αi ≤
∑
i/∈F

αic
Tai = cT

(∑
i/∈F

αiai

)
= cT

(∑
i∈F

βiai

)
= 0,

whence αi = 0 for all i /∈ F . Still under the assumption that F is facial and additionally
u = u+ − u− ∈ kerA, we see that supp(u+) ⊆ F ⇔ supp(u−) ⊆ F .

For the opposite direction we use Farkas’ Lemma (see for example [Zie94]): Let
B ∈ Rl×d, and z ∈ Rl. Either there exists a point in the polyhedron {x : Bx ≤ z}, or
there exists a nonnegative vector y ∈ Rl

≥ with yTB = 0 and yT z < 0, but not both.
Assume that F ( [m] is nonempty and satisfies (1.24) for all u ∈ kerA. Let B be the
(|F |+m)× d matrix with rows

{
aTi : i ∈ F

}
,
{
−aTi : i ∈ F

}
,
{
−aTi , i /∈ F

}
, and z be

the vector which has entries zero in the first 2 |F | components and entries −1 in the last
m− |F |. Then a solution to Bx ≤ z provides a facial vector. Thus it remains to show
that each nonnegative y = (y(1), y(2), y(3))T , decomposed according to the rows of B,
with yTB = 0 satisfies yT z ≥ 0. Without loss of generality, assume that the columns
of A are ordered such that the columns with indices i ∈ F come first. Then y(3) must
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be zero as otherwise (y(2) − y(1), y(3))T ∈ kerA would violate (1.24) by nonnegativity
of y. In this case yT z = 0 holds trivially.

The last statement uses a simple argument about the supports of exponents versus
the supports of distributions, which we use from time to time. Assume that p satisfies
(1.22) and let u = u+ − u− ∈ kerA. We show that

(1.26) supp(u+) ⊆ supp(p)⇔ supp(u−) ⊆ supp(p).

Assume that i ∈ supp(u+) with i /∈ supp(p). Then one, and thus both sides of (1.22)
equal zero. Evidently there exist j ∈ supp(u−) with j /∈ supp(p). The same argument
applies for the other direction and the second statement shows that supp(p) is facial. �

Now we are ready for the proof of Theorem 1.3.1.

Proof of Theorem 1.3.1. Denote ZA ⊆ Pm the set of solutions of (1.22). We
first show that EA satisfies the equations defining ZA. Let p ∈ EA, using the parame-
terization we can write p(i) = eθ

T ai , for some vector of parameters θ ∈ Rd and ai the
i-column of A. We find

pu =
∏
i∈[m]

p(i)u(i) =
∏
i∈[m]

(
eθ

T ai

)u(i)

=
∏
i∈[m]

eθ(i)(Au)(i) =
∏
i∈[m]

eθ(i)(Av)(i) = pv,
(1.27)

for each u, v ∈ N[m] with Au = Av. Thus EA ⊆ ZA, and also EA ⊆ ZA = ZA.
Next, let p ∈ ZA \ EA. We show that p is the limit of distributions in EA by

constructing a sequence pµ in EA that converges to p as µ → −∞. Consider the
following system of equations in variables b = (b1, . . . , bd):

(1.28) bTai = log p(i) for all i ∈ supp(p).

We claim that this linear system has a solution. Denote AF ∈ Rd×|F | the matrix that
has the columns {ai : i ∈ F}. Then if (1.28) has no solution, the right hand side is not
in the row space of AF and there exists a vector q ∈ kerAF with

∑
j∈F q(j) log p(j) 6= 0.

We extend q to the kernel of A by defining

(1.29) u(i) :=

{
q(i) if i ∈ F,
0 otherwise,

and write u = u+ − u−. It follows that u ∈ kerA since Au = AF q, on the other hand
we have

(1.30)
∑
j∈F

u+(j) log p(j) 6=
∑
j∈F

u−(j) log p(j),

and

(1.31)
∏
j∈[m]

p(j)u
+(j) 6=

∏
j∈[m]

p(j)u
−(j),

but equality holds since p ∈ ZA. From this contradiction we deduce that (1.28) has a
solution. Now, fix a vector c ∈ Rd with property (1.23) and for any µ ∈ R define

(1.32) pµ :=
(

eµc
T a1+bT a1 , . . . , eµc

T am+bT am

)
∈ EA.

By (1.23) it is clear that limµ→−∞ pµ = p. This proves the theorem. �
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The construction of the sequence in the proof was already used in Example 1.2.3.
With Theorem 1.3.1 we are able to settle Theorem 1.2.14:

Proof of Theorem 1.2.14. For the first statement, let p ∈ EA with supp(p) = F
be given. It satisfies the equations (1.22) and thus F is facial. Note also that p
can be written uniquely in terms of Dirac measures p =

∑
i∈F p(i)δi. Thus Ap ∈

conv {ai : i ∈ F}.
For the second statement let µ =

∑
i∈F λiai and denote by p̂ be the unique MLE

of µ in EA. From

(1.33) Ap̂ =
∑
i∈F

p̂(i)ai +
∑
j /∈F

p̂(j)aj = µ =
∑
i∈F

λiai,

we see

(1.34)
∑
j /∈F

p̂(j)aj =
∑
i∈F

λiai −
∑
i∈F

p̂(i)ai,

and the first statement of Lemma 1.3.4 shows that p̂(j) = 0, j /∈ F and supp(p̂) ⊆ F .
Now, if supp(p̂) = G ( F , then G is also facial and contains µ = Ap̂. This contradicts
the fact that µ lies in the relative interior of the face defined by F . It follows that
supp(p̂) = F . �

In [GMS06] a stronger version of the last statement of Lemma 1.3.4 is given. This
now follows from Theorem 1.2.14.

Proposition 1.3.5. The following are equivalent for any set F ⊆ [m]:
(1) F is facial.
(2) The uniform distribution 1

|F |1F of F lies in EA.
(3) There is a vector with support F in EA.

Proof. When F is facial, any element u ∈ kerA satisfies (1.24). This guarantees
that the uniform distribution satisfies the equations (1.22) and thus is contained in EA.
Therefore (1) ⇒ (2). The implication (2) ⇒ (3) is clear and (3) ⇒ (1) follows from
Lemma 1.3.4. �

According to Theorem 1.3.1 the set EA is characterized by infinitely many equations.
We now reduce them to finitely many. If these equations were actually polynomial,
they would define an ideal and the Hilbert Basis Theorem would ensure that finitely
many equations suffice. As we do not consider this assumption here we take a different
route by studying the combinatorial essence of the matrix A, its oriented matroid. For
this, we need the following notion from matroid theory: A circuit vector of a matrix
A is a nonzero vector n ∈ Rm corresponding to a linear dependency

∑
i n(i)ai with

inclusion minimal support, i.e. if n′ ∈ Rm satisfies supp(n′) ⊆ supp(n), then n′ = λn
for some λ ∈ R. Equivalently, n is an element of kerA with inclusion minimal support.

A circuit is the support set of a circuit vector. The minimality condition implies
that the circuit determines its corresponding circuit vectors up to a multiple. A set C
is called circuit basis if it contains precisely one circuit vector for every circuit. It is
easy to see that a circuit basis of kerA spans kerA. However, in general the circuit
vectors are not linearly independent.

If we replace n by a nonzero multiple, then each equation of (1.22) is replaced by
one that is equivalent over the nonnegative real numbers. Therefore all systems of
equations corresponding to any circuit basis C are equivalent.
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Theorem 1.3.6. Let EA be an exponential family. Then EA equals the set of all
probability distributions that satisfy

(1.35) pc
+

= pc
−

for all c ∈ C,

where C is a circuit basis of A.

The proof is based on the following two lemmas, which are basic facts in oriented
matroid theory:

Lemma 1.3.7. For every vector n ∈ kerA there exists a sign-consistent circuit
vector c ∈ kerA, i.e. if c(i) 6= 0 then sgn c(i) = sgnn(i) for all i ∈ [m].

Proof. Let c be a vector with inclusion-minimal support that is sign-consistent
with n and satisfies supp(c) ⊆ supp(n). If c is not a circuit, then there exists a circuit
c′ with supp(c′) ⊆ supp(c). Using a suitable linear combination c+ αc′, α ∈ R, we can
obtain a contradiction to the minimality of c. �

Lemma 1.3.8. Every vector n ∈ kerA is a finite sign-consistent sum of circuit
vectors n =

∑r
i=1 ci, i.e. if ci(j) 6= 0 then sgn ci(j) = sgnn(j) for all j ∈ [m].

Proof. Use induction on the size of supp(n). In the induction step, use a sign-
consistent circuit, as in the last lemma, to reduce the support. �

Proof of Theorem 1.3.6. By Theorem 1.3.1 it suffices to show: If p ∈ Rm

satisfies (1.35), then it also satisfies pn
+

= pn
−

for all n ∈ kerA. Write n =
∑r

i=1 ci as
a sign-consistent sum of circuits ci, as in the last lemma. Without loss of generality we
assume ci ∈ C for all i. Then n+ =

∑r
i=1 c

+
i and n− =

∑r
i=1 c

−
i . Hence p satisfies

(1.36) pn
+ − pn− = p

Pr
i=2 c

+
i

(
pc

+
1 − pc

−
1

)
+
(
p

Pr
i=2 c

+
i − p

Pr
i=2 c

−
i

)
pc
−
1 ,

where the first summand is zero by assumption. Now, the theorem follows by a finite
induction on the number of circuits in the decomposition of n. �

The key in the proof of the theorem is that over the nonnegative real numbers
we can take roots on both sides of an equation. This is the fundamental difference
between algebraic geometry, and our statistical considerations.

Remark 1.3.9 (Implicit characterization of the open family EA). It is easy to
see that for the open family EA the equations corresponding to a basis of the kernel
of A suffice in the following sense: Let Z1 be the solutions to the equations (1.35)
and Z2 be the solutions to pb

+ − pb− , where the exponents b run through a basis of
kerA. Then we have equality of their intersections with the open probability simplex:
Z1 ∩ Pm = Z2 ∩ Pm. Namely, if p is strictly positive, we can take the component-wise
logarithm log(p) and (1.22) holds if and only if

(1.37)
∑
i∈[m]

n+(i) log p(i)−
∑
i∈[m]

n−(i) log p(i) = 0, for all n ∈ kerA.

This already holds if
∑

i b(i) log p(i) = 0 for all vectors b in a basis of kerA.

Example 1.3.10. This example was provided by Johannes Rauh and demonstrates
the necessity of a circuit basis in the statement of Theorem 1.3.6. Let 1 6= α > 0 and
consider

(1.38) A =
(

1 1 1 1
−α 1 0 0

)
,



1.3. IMPLICIT REPRESENTATIONS OF EXPONENTIAL FAMILIES 15

The kernel is then spanned by

(1.39) v1 = (1, α,−1,−α)T and v2 = (1, α,−α,−1)T .

These two generators correspond to the two relations

(1.40) p(1)p(2)α = p(3)p(4)α, and p(1)p(2)α = p(3)αp(4).

It follows immediately that

(1.41) p(3)p(4)α = p(3)αp(4).

If p(3)p(4) is not zero, then we conclude p(3) = p(4). However, on the boundary this
does not follow from equations (1.40): Possible solutions to these equations are given
by

(1.42) pa = (0, a, 0, 1− a) for 0 ≤ a < 1.

However, pa does not lie in the closure of the exponential family EA, since all members
of EA satisfy p(3) = p(4). A circuit basis of A is given by the following vectors:

(0, 0, 1,−1)T p(3) = p(4),(1.43a)

(1, α, 0,−1− α)T p(1)p(2)α = p(4)1+α,(1.43b)

(1, α,−1− α, 0)T p(1)p(2)α = p(3)1+α.(1.43c)

Remark 1.3.11. Using arguments from matroid theory the number of circuits can
be shown to be less or equal than

(
m
r+2

)
, where r is the dimension of the exponential

family EA, see [DSL04]. This gives an upper bound on the number of implicit equations
necessary to describe EA. Note that

(
m
r+2

)
is usually much larger than the codimension

m− r − 1 of EA in the probability simplex. In contrast to this, if we only want to find
an implicit description of all probability distributions of EA, which have full support,
then m− r − 1 equations are enough: We can test p ∈ EA by checking whether log(p)
lies in the column span of A as in Remark 1.3.9.

It turns out that even in the boundary the number of equations can be reduced
further. In general we do not need all circuits for the implicit description of EA.
For instance, in Example 1.3.10, the equations (1.43b) and (1.43c) are equivalent
given (1.43a), i.e. we only need two of the three circuits to describe EA. Unfortunately
it is complicated to find a minimal subset of circuits that characterizes the closure of
the exponential family. In the algebraic case discussed in Section 1.4 this question
is equivalent to determining a minimal generating set of the circuit ideal among the
circuits.

We give a simple algorithm that computes a circuit basis of A:

Algorithm 1.3.12 ([Stu02], Chapter 8). Let r denote the rank of A. Without
loss of generality we assume that A is an r ×m matrix, i.e. redundant rows have been
removed. For any (r+ 1)-subset τ = {τ1, . . . , τr+1} ⊆ [m] of columns of A compute the
vector:

(1.44) cτ :=
r+1∑
i=1

(−1)i det(Aτ\{τi})eτi ,

where eτi is the canonical unit vector and Aσ = (Ai)i∈σ is the submatrix of columns
with indices in σ ⊆ [m]. Any nonzero cτ is a circuit vector of A and any circuit vector
of A is proportional to a vector cτ .
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Proof. We first prove that Acτ = Aτ cτ = 0, i.e. cτ is orthogonal to any row of Aτ .
Consider A′, the (r + 1)× (r + 1) matrix which is received by doubling a row under
consideration in Aτ . Naturally det(A′) = 0 and Laplace expansion of A′ in the added
row gives that Aτ cτ = 0. Minimality of the support of cτ is built into the formula
(1.44). Namely each Aτ either has a unique circuit, in which case cτ is proportional
to all circuit vectors that it supports, or rkAτ < r and cτ is zero. It remains to see
that every circuit vector of A occurs among the cτ . No circuit vector can have support
larger than r + 1 and all the r + 1 subsets are considered in the algorithm. For each
circuit σ, Aσ can be extended to an r× (r+ 1) matrix of rank r with columns τ . Then
cτ recovers the circuit σ. �

Next we have another look at the relation of the implicit description and the
possible support sets. Not only do the equations in Theorem 1.3.6 allow us to test a
given p, together with Proposition 1.3.5 we can also test a possible support by testing
the uniform distribution supported on it. Using the oriented matroid, that is the
circuits together with an orientation we can further simplify this characterization. Let
S ⊆ X be any set of configurations. Is there a probability distribution p ∈ EA satisfying
supp(p) = S? Answering this question is characterizing the set

(1.45) S(A) := {supp(p) : p ∈ EA} ⊆ 2[m],

and thus answering the support set problem from the introduction. The previous
considerations give the following characterization: A nonempty set S ⊆ [m] is the
support set of some distribution p ∈ EA if and only if the following holds for all circuit
vectors n ∈ kerA:

• supp(n+) ⊆ S if and only if supp(n−) ⊆ S.
Obviously, this condition does not depend on the circuits themselves, but on the
supports of their positive and negative part. This is the combinatorial essence of an
oriented matroid. In order to formalize this, consider the map

(1.46) sgn: n 7→ (supp(n+), supp(n−)),

which associates to each vector a pair of disjoint subsets of [m]. Such a pair of disjoint
subsets shall be called a signed subset of [m] in the following. Alternatively, signed
subsets (B+, B−) can also be represented as sign vectors X ∈ {−1, 0,+1}[m], where

(1.47) X(i) =


+1, if i ∈ B+,

−1, if i ∈ B−,
0, otherwise.

In this representation, sgn corresponds to the usual sign mapping extended to vec-
tors. As a slight abuse of notation, we do not make a difference between these two
representations in the following.

The signed subset sgn(c) corresponding to a circuit vector c ∈ kerA shall be called
an oriented circuit. The set of all oriented circuits is denoted by

(1.48) C(A) := ± sgn(C) = {sgn(c) : c ∈ C or c ∈ −C},

where C is a circuit basis of A. We immediately have the following

Theorem 1.3.13. Let S be a nonempty subset of [m]. Then S ∈ S if and only if
the following holds for all signed circuits (B+, B−) ∈ C(A):

(1.49) B+ ⊆ S ⇔ B− ⊆ S.
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Corollary. If two matrices A1, A2 satisfy C(A1) = C(A2) then the possible
support sets of the corresponding exponential families EA1 and EA2 coincide.

According to Remark 1.3.11, Theorem 1.3.13 gives us up to
(
m
r+2

)
conditions on

the support. Usually, some of these conditions are redundant, but it is not easy to see
a priori, which conditions are essential. Of course, a necessary condition for a subset S
of X to be a support set of a distribution contained in EA is condition (1.49) restricted
to pairs from a subset H ⊆ C(A). For example, one can take H = sgn(B), where B is
a finite subset of kerA, such as a basis.

Example 1.3.14. Let us continue Example 1.3.10. From the circuits we deduce
the following implications:

p(3) 6= 0 ⇐⇒ p(4) 6= 0,(1.50a)

p(1) 6= 0 and p(2) 6= 0 ⇐⇒ p(4) 6= 0,(1.50b)

p(1) 6= 0 and p(2) 6= 0 ⇐⇒ p(3) 6= 0.(1.50c)

Again, as above, the last two implications are equivalent given the first. From this
it follows that the possible support sets in this example are {1}, {2} and {1, 2, 3, 4}.
From the spanning set (1.39) we only obtain the implication

(1.51) p(1) 6= 0 and p(2) 6= 0 ⇐⇒ p(3) 6= 0 and p(4) 6= 0.

We conclude this section with an example where a complete characterization of the
face lattice of the convex support, and thus of the possible supports, is easily achievable.
The convex support will be the well known cyclic polytope. Define the moment curve
in Rd by

(1.52) x : R→ Rd, t 7→ x (t) :=
(
t, t2, · · · , td

)T
.

The d-dimensional cyclic polytope with n vertices is

(1.53) C(d, n) := conv {x (t1), . . . ,x (tn)} ,
the convex hull of n > d distinct points (t1 < t2 < . . . < tn) on the moment curve. The
face lattice of a cyclic polytope can be described using Gale’s evenness condition:

Theorem 1.3.15. A d-subset F of the vertices of C(d, n) forms a facet if and only
if for any i, j /∈ F with i < j, the number of k ∈ F with i < k < j is even.

A nice proof using the Vandermonde determinant is found in [Zie94]. The cyclic
polytope is of high importance because of its extremal properties. It is simplicial, all
its proper faces are simplices, and neighborly, i.e. the convex hull of any bd2c vertices is
a face of C(n, d), but even better, one has

Theorem 1.3.16 (Upper Bound Theorem). If P is a d-dimensional polytope with
n = f0 vertices, then for every k it has at most as many k-dimensional faces as the
cyclic polytope C(d, n):

(1.54) fk(P ) ≤ fk(C(d, n)), k = 0, . . . , d.

If equality holds for some k with bd2c ≤ k ≤ d then P is neighborly.

Theorem 1.3.16 was conjectured by Motzkin in 1957 and its proof has a long and
complicated history. The final result for polytopes is due to McMullen [McM70]. Later,
in 1975, Richard Stanley showed that the upper bound theorem also holds for the f -
vectors of triangulations of the sphere. This result was derived by constructing a certain
ring for each simplicial complex, such that the upper bound holds whenever this ring,
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now called the Stanley-Reisner ring, has the Cohen-Macaulay property. These results
mark the beginning of the field of combinatorial commutative algebra [Sta96; MS05].

The Upper Bound Theorem shows that the exponential families “modeled after
cyclic polytopes”, have the largest number of support sets among all exponential
families with the same dimension and the same number of vertices.

Finally, we consider a cyclic polytope of dimension two that answers the question
for the exponential family of smallest dimension and containing all the vertices of the
probability simplex. The following construction using the moment curve appeared for
instance in [MA03].

Example 1.3.17. Consider the matrix A, whose columns are the points on the
two-dimensional moment curve, augmented with row (1, . . . , 1):

(1.55) A :=

1 1 1 . . . 1
1 2 3 . . . m
1 4 9 . . . m2

 .

This matrix defines a two-dimensional exponential family. To approximate an ar-
bitrary extreme point δj of the probability simplex, consider the parameter vector
θ = (j2,−2j, 1)T , giving rise to probability measures pβ,θ = 1

Z exp(−βθTA). Since
θTAi = (i − j)2, we get that limβ→∞ pβ,θ = δj . By definition, cs(EA) is the cyclic
polytope C(2,m) and its face lattice can be derived from Gale’s evenness condition.

Summarizing we see that cyclic polytopes, owing to their extremal properties,
have something to offer not only for convex geometry, but also for statistics. These
examples conclude our discussion of the implicit representation of general exponential
families. The relation to oriented matroid theory here might be only visible to the
experienced eye. We will sketch the theory in the following section and also refer the
reader [BVS+93] for the full theory.

1.3.1. Realizable Oriented Matroids. A realizable oriented matroid is the
combinatorial data of a vector configuration. As exponential families are defined by
point configurations, we consider only realizable oriented matroids. The content of this
section are basics of oriented matroid theory, which also appeared in [RKA09]. The
proofs are omitted or only sketched. Statements that are necessary for our application
will be proved directly in the remaining parts.

Let E be a finite set and C a nonempty collection of signed subsets of E. For
every signed set X = (X+, X−) of E we let X := X+ ∪X− denote the support of X.
Furthermore, the opposite signed set is −X = (X−, X+). Then the pair (E, C) is called
an oriented matroid if the following conditions are satisfied:

(C1) C = −C, (symmetry)
(C2) for all X,Y ∈ C, if X ⊆ Y , then X = Y or X = −Y , (incomparability)
(C3) for all X,Y ∈ C, X 6= −Y , and e ∈ X+ ∩ Y − there is a Z ∈ C such that

Z+ ⊆ (X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y −) \ {e}. (weak elimination)
In this case each element of C is called a signed circuit .

Note that to every oriented matroid (E, C) we have an associated unoriented
matroid (E,C), called the underlying matroid, where

(1.56) C = {X+ ∪X− = supp(X) : X ∈ C}

is the set of circuits of (E,C). In this way oriented matroids can be considered as
ordinary matroids endowed with an additional structure, namely a circuit orientation,
which assigns two opposite signed circuits ±X ∈ C to every circuit X ∈ C.
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The most important example of an oriented matroid is that of a matrix A ⊆ Rd×m.
In this case let E = [m], and

(1.57) C =
{

(supp(n+), supp(n−) : n ∈ kerA has inclusion minimal support
}
.

This example is so important that oriented matroids that arise in this way are given a
name: An oriented matroid is called realizable if it is induced by some matrix A. Note
that this definition, like the definition of an exponential family in (1.7) depends only
on the rowspace of A. In this context, which is dominant in the following, we also call
the vectors n ∈ kerA circuit vectors, or, slightly abusing notation, simply circuits if
their support is minimal among the supports of elements in kerA.

The only axiom that is not trivially fulfilled for this example is (C3). However,
if we drop the minimality condition and let V = {(supp(n+), supp(n−) : n ∈ kerA},
then it is easily seen that V satisfies (C3). Thus (E, C) satisfies (C3) by the following
proposition:

Proposition 1.3.18. Let V be a nonempty collection of signed subsets of E satis-
fying (C1) and (C3). Write Min(V) for the minimal elements of V (with respect to
inclusion of supports).

(1) For any X ∈ V there is Y ∈ Min(V) such that Y + ⊆ X+ and Y − ⊆ X−.
(2) Min(V) is the set of circuits of an oriented matroid.

Proof. [BVS+93], Proposition 3.2.4. �

This illustrates how (C2) corresponds to the minimality condition. It is possible
to define oriented matroids without this minimality condition using the following
construction:

For two signed subsets X,Y of E define the composition X ◦ Y of X and Y as

(1.58) (X ◦ Y )+ := X+ ∪ (Y + \X−), (X ◦ Y )− := X− ∪ (Y − \X+).

Note that this operation is associative but not commutative in general. A composition
X ◦ Y is conformal if X and Y are sign-consistent, i.e. X+ ∩ Y − = ∅ = X− ∩ Y +,
and X ◦ Y = Y ◦X.

An o.m. vector of an oriented matroid is any composition of an arbitrary number of
circuits. In [BVS+93], o.m. vectors are simply called vectors. The name “o.m. vector”
has been proposed by F. Matúš to avoid confusion. The set of o.m. vectors shall be
denoted by V . If the oriented matroid comes from a matrix A, then V equals the set V
from above.

The above proposition implies that an oriented matroid can be defined as a pair
(E,V), where V is a collection of signed subsets satisfying (C1), (C3) and

(V0) ∅ ∈ V,
(V2) for all X,Y ∈ V we have X ◦ Y ∈ V,
Note that in the realizable case linear combinations of vectors correspond to

composition of their sign vectors in the following sense:

(1.59) sgn(n+ εn′) = sgn(n) ◦ sgn(n′), for ε > 0 small enough.

Now Lemmas 1.3.7 and 1.3.8 correspond to the following two lemmas

Lemma 1.3.7’. For every o.m. vector Y there exists a sign-consistent signed circuit
X such that X ⊆ Y .

Lemma 1.3.8’. Any o.m. vector is a conformal composition of circuits.
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To every matrix A we associate its convex support. Many properties of this polytope
can be translated into the language of oriented matroids. This yields constructions
which also make sense if the oriented matroid is not realizable. In order to make this
more precise, we need the notion of the dual oriented matroid, to be discussed only in
the realizable case here.

Assume that the matrix A has the constant vector (1, . . . , 1) in its rowspace. Then
all the column vectors ax lie in a hyperplane l1 = 1, for some dual vector l1 ∈ (Rd)∗. In
the general case, this can always be achieved by adding another dimension. Technically
we require that the face lattice of the polytope spanned by the columns of A is
combinatorially equivalent to the face lattice of the cone over the columns. See also
the remarks before Definition 1.3.3.

For every dual vector l ∈ (Rd)∗ let N+
l := {i ∈ [m] : l(ai) > 0} and N−l := {i ∈

[m] : l(ai) < 0}. This way we can associate a signed subset sgn∗(l) := (N+
l , N

−
l ) with l.

The signed subset sgn∗(l) is called a covector. Let L be the set of all covectors. If
the signed subset (N+

l , N
−
l ) has minimal support (i.e. “many” vectors ai lie on the

hyperplane l = 0), then l is called a cocircuit vector, and sgn∗(l) is called a signed
cocircuit. The collection of all signed cocircuits shall be denoted by C∗.

Lemma 1.3.19. Let (E, C) be an oriented matroid induced by a matrix A. Then
(E, C∗) is an oriented matroid, called the dual oriented matroid.

Proof. See Section 3.4 of [BVS+93]. �

Note that the faces of the polytope correspond to hyperplanes such that all vertices
lie on one side of this hyperplane, compare Definition 1.3.3. Thus the faces of the
polytope are in a one-to-one relation with the positive covectors, i.e. the covectors
X = (X+, X−) such that X− = ∅. The face lattice of the polytope can be reconstructed
by partially ordering the positive covectors by inclusion of their supports; however, the
relation needs to be inverted: Covectors with small support correspond to faces that
contain many vertices. The empty face corresponds to the covector T := ([m], ∅) and
can be given by the dual vector l1, defining the hyperplane containing all ax.

The facts just discussed apply to all abstract oriented matroids such that T =
([m], ∅) is a covector. Such an oriented matroid is usually called acyclic. Thus a face of
an acyclic oriented matroid is any positive covector. A vertex is a maximal positive
covector X in L \ {T}, i.e. if X ⊆ Y for some positive covector Y ∈ L \ {X}, then
Y = T .

In this setting we have the following result, which corresponds to the second
statement of Lemma 1.3.4:

Proposition 1.3.20 (Las Vergnas). Let (E, C) be an acyclic oriented matroid. For
any subset F ⊆ E the following are equivalent:

• F is a face of the oriented matroid.
• For every signed circuit X ∈ C, if X+ ⊆ F then X− ⊆ F .

Proof. The proof of Proposition 9.1.2 in [BVS+93] applies. Note that the state-
ment of Proposition 9.1.2 includes an additional assumption which is never used in the
proof. �

By means of the moment map, this proposition can be used to derive Theorem 1.3.13:
Every face of the convex support corresponds to a possible support set of an exponential
family, and the proposition links this to the signed circuits of the corresponding oriented
matroid. Finally, the corollary to Theorem 1.3.13 can be rewritten as
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Corollary. The possible support sets of two exponential families coincide if they
have the same oriented matroids.

Unfortunately, this correspondence is not one-to-one: Different oriented matroids
can yield the same face lattice, i.e. combinatorially equivalent polytopes. A simple
example is given by a regular and a nonregular octahedron as described in [Zie94]. The
special case in which this does not happen has a name: an oriented matroid is called
rigid if its positive covectors (i.e. its face lattice) determine all covectors (i.e. the whole
oriented matroid). Still, the corollary implies that the instruments of the theory of
oriented matroids suffice to describe the support sets of an exponential family.

Remark 1.3.21 (Duality). There are two main reasons why the theory of oriented
matroids (as well as the theory of ordinary matroids) is considered important. First,
it yields an abstract framework which allows to describe a multitude of different
combinatorial questions in a unified manner. This, of course, does not in itself lead to
any new theorem. The second reason is that the theory provides the important tool of
matroid duality. It turns out that the dual of a realizable matroid is again realizable:
If A is a matrix representing an oriented matroid (E, C), then any matrix A∗ such
that the rows of A∗ span the orthogonal complement of the row span of A represents
the oriented matroid (E, C∗). To motivate the importance of this construction we
sketch its implications for the case that the oriented matroid comes from a polytope.
In this case the duality is known under the name Gale transform [Zie94, Chapter
6]. A d-dimensional polytope with N vertices can be represented by N vectors in
Rd+1 lying in a hyperplane. These vectors form a (d + 1) × N -matrix A. Now we
find an (N − d − 1) ×N -matrix A∗ as above, so the dual matroid is represented by
a configuration of N vectors in RN−d−1. This means that this construction allows
us to obtain a low-dimensional image of a high-dimensional polytope, as long as the
number of vertices is not much larger than the dimension. This method has been
used for example in [Stu88] in order to construct polytopes with quite unintuitive
properties, leading to the rejection of some conjectures. Furthermore, oriented matroid
duality makes it possible to classify polytopes with “few vertices” by classifying vector
configurations.

The notion of dimension generalizes to arbitrary oriented matroids (and ordinary
matroids). In the general setting one usually talks about the rank of a matroid, which
is defined as the maximal cardinality of a subset E ⊆ F such that E contains no
support of a signed circuit. In this sense duality exchanges examples of high rank and
low rank, where “high” and “low” is relative to |E|.

Remark 1.3.22 (Exponential Families from Vector Configurations). Having pre-
sented the general theory of vector configurations it is natural to view exponential
families in this setting. Consider the oriented matroid associated to the vector con-
figuration {v1, . . . , vm} ⊆ Rd+1 by letting A ∈ R(d+1)×m have columns vi, i ∈ [m], and
defining C(A) as in (1.57). An exponential family EA, associated to the vector configu-
ration, is instantly defined. It is contained in the probability simplex Pm. This view
on exponential families will hopefully lead to a better understanding of the underlying
combinatorics. A discrete exponential family (with uniform distribution as its base
measure) is characterized by a point configuration. Its combinatorics depends only on
the information in the point configuration: its oriented matroid. This is the spirit in
which [RKA09] was written.
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1.4. Integer Valued Sufficient Statistics and Toric Varieties

In this section we will connect the general theory, as developed above, to the case
that is considered in algebraic statistics. There the matrix A is assumed to take only
rational values, and since the constant vector is assumed to lie in the row space, we
can restrict to the case where it has only nonnegative integer entries. This very mild
assumption allows us to enter the world of toric geometry. A classical text on the
subject is [Ful93] and a more modern reference will be the upcoming book [CLS09].
Proofs of the statements will be omitted.

1.4.1. Toric Ideals and Varieties. The basic idea of toric geometry is that a
certain geometric object, e.g. a manifold or variety, is modeled as a fiber bundle in
which the fibers are multi-dimensional tori. Here we focus on toric varieties whose
base spaces are convex polytopes and whose tori are products of the algebraic torus
k
∗ := k \ {0}, where k is a field. For statistics we are interested in the real nonnegative

part of a toric variety, which is essentially only the polytope called the convex support
above. A reference is [Stu96].

In the following let k be a field of characteristic zero. Typical examples are
the rational numbers Q or the complex numbers C. Consider the polynomial ring
k[x ] := k[x1, . . . , xm] in variables x1, . . . , xm. Fix an integer valued matrix A ∈ Zd×m
which has the constant vector (1, 1, . . . , 1) in its rowspace. For general affine toric
varieties, this assumption could be dropped. Here we are only interested in the case
of projective toric varieties that arise from matrices whose columns lie in a common
hyperplane. Again, denote {ai : i ∈ [m]} the columns of A. Consider additionally the
Laurent polynomial ring in d invertible variables: k[t±1] := k[t1, . . . , td, t−1

1 , . . . , t−1
d ].

The matrix A defines a homomorphism of k-algebras:

(1.60) φA : k[x ]→ k[t±1], xi 7→ tai :=
d∏
j=1

t
aji

j .

Definition 1.4.1. The ideal IA := kerφA is called the toric ideal of the matrix A.
Its variety V (IA) is called a toric variety .

With this definition IA is a homogeneous prime ideal, hence the projective variety
V (IA) is irreducible. It equals the Zariski closure of

{
(ta1 , . . . , tam) : t ∈ (k∗)d

}
⊆ k

m.
Written this way, we see the monomial parameterization, which marks the connection
point to the theory of exponential families. Consider the exponential family as defined
in (1.7). For a fixed p, corresponding to a parameter vector c ∈ Rd, an elementary
probability takes the form

(1.61) p(j) =
1
Zc

exp

(
d∑
i=1

ciaij

)
=

d∏
i=1

t
aij

i ,

where ti = exp(ci) and the normalization is “hidden” in the parameter for the constant
row. A countably infinite generating set of the toric ideal IA is given by

(1.62) IA = 〈xu − xv : u, v ∈ Nm, Au = Av〉 ,

where the notation 〈.〉 indicates the ideal generated by the given equations. The
ideal IA should be compared to the equations in the statement of Theorem 1.3.1. In
fact, in [GMS06] it is shown that the uncountably many nonpolynomial equations in
Theorem 1.3.1 can be reduced to the countably many in (1.62), provided that A takes
only nonnegative integer values. The proof of equivalence of (1.62) and the definition is
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simple and can be found in Lemma 4.1 of [Stu96]. This book also contains a collection
of results about generating sets and Gröbner bases of toric ideals.

Next we want to see the torus acting on the toric variety. Let k = C, the matrix A
induces an action of the algebraic torus (C∗)d on Cm by considering the ai for weights:

(1.63) ψ : (C∗)d × Cm → Cm, (t, c) 7→ (c1t
a1 , . . . , cmt

am).

Since the ai are considered to lie in an affine hyperplane this gives an induced action
of (C∗)d on projective (m− 1)-space Pm−1. The projective toric variety defined above
is the closure of the orbit of the point (1, 1, . . . , 1). This can be taken as a definition
too, then one has to prove that the vanishing ideal of this orbit is IA. The torus
action should be compared to a natural affine action on the probability simplex [MR93].
Let R1 denote the set of constant functions in Rm. Because of the normalization of
probability vectors, Rm/R1 bijectively parametrizes Pm. It acts on Pm via

(1.64) Ψ : Pm × Rm/1R→ Pm, (p, f + R1) 7→ pef∑m
i=1 p(i)ef(i)

,

which is clearly well defined. With this definition, Pm becomes an affine space, so we
could define exponential families simply as its affine subspaces. If L ⊆ Rm is a linear
subspace containing R1 then (1.5) takes the form

(1.65) EL = {Ψ(1, f + R) : f ∈ L} ,
which parallels the definition of a toric variety given below (1.63).

A final remark on the general theory is necessary. Care has to be taken when
comparing these definitions with the classical ones in algebraic geometry, e.g. in [Ful93].
Those read as: A toric variety is a normal variety X that contains an algebraic torus
T ∼= (k∗)d as a dense open subset, together with an action T ×X → X that extends the
natural action of T on itself. In this definition normality is required, while the above
definition allows toric varieties that are not normal. Chapter 13 of [Stu96] explains the
differences and shows how to get the vector configuration of an embedded normal toric
variety.

1.4.2. Integer Valued Sufficient Statistics. If A has only integer entries
then every circuit vector is proportional to one with integer components (see Al-
gorithm 1.3.12). In this case the corresponding equations (1.22) are polynomial, and
the theorem implies that EA is the nonnegative real part of a projective variety, i.e. the
solution set of homogeneous polynomials. It was already noted early that statistical
models may possess polynomial functions vanishing on them. These are sometimes
called invariants of the model. An easy example is the set of distributions of two
independent binary random variables:

(1.66) {P (i, j) = P1(i)P2(j) : P1, P2 are univariate distributions} .
Naturally the polynomial equation P (0, 0)P (1, 1) = P (1, 0)P (0, 1) holds. It is a
polynomial function vanishing on the model, an invariant. In this simple case, the
single equation characterizes all independent distributions: Every equation vanishing on
the model is a multiple of this equation; we have found the complete set of invariants.
A far reaching generalization of the idea to specify certain dependencies between
discrete random variables is that of a hierarchical model, to which we devote Chapter 2.
There we try to find complete sets of invariants, called Markov bases.

Returning to our general discussion, if we want to use the tools of commutative
algebra and algebraic geometry, then it turns out that circuits are not the right object
to consider. This is due to the fact that the geometric object, the exponential family
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that we have described using the circuits is not closed in the Zariski topology. If we
additionally consider all complex solutions of equations corresponding to circuits we
get a set which in general strictly contains the Zariski closure of the real solutions.
One basic source of disagreement is that proportional circuits only yield equivalent
equations if we consider them over the nonnegative reals, but we may obtain a different
solution set if we allow negative real solutions or complex solutions. If kerA is an
integer lattice, then there are countably infinitely many equations characterizing the
Zariski closure of EA. They define the ideal

(1.67) IA := 〈pu − pv : u, v ∈ Nm, Au = Av〉 ⊆ Q[p1, . . . , pm],

which is the same as (1.62). Here Q[p1, . . . , pm] is the ring of polynomials in elementary
probabilities and with rational coefficients. As noted above, this ideal is prime and
its variety has a monomial parameterization. According to Hilbert’s Basis Theorem
there are finitely many equations that suffice to generate this ideal. The exponent
vectors of these finitely many generators are called a Markov basis and have interesting
applications in statistics [DS98; DSS09]. By the discussion above the set of circuits
need not include a Markov basis.

Finding a Markov basis is in general a nontrivial task. In small examples it can be
carried out with a computer algebra system, using the basic fact that the toric ideal
(1.67) equals the saturation of the lattice basis ideal of kerA [HM09]. In contrast, it is
easy to compute the circuits of a matrix using Algorithm 1.3.12.

A minimal Markov basis is usually much smaller than a circuit basis, and thus it
is easier to handle. A specialized open source software for these tasks is 4ti2 [4ti207],
which can compute circuits as well as Markov bases and was used intensively by the
author.

Example 1.4.2. Consider the matrix

(1.68) A =
(

1 1 1 1
0 1 2 3

)
.

An easy calculation with Algorithm 1.3.12 shows that the circuits of A are

(1.69)
(0, 1,−2, 1), (1,−2, 1, 0)

(1, 0,−3, 2), (2,−3, 0, 1).

A computation with 4ti2 shows that (1,−1,−1, 1) is an element of the minimal Markov
basis, however, with its support of four elements it is not a circuit.

One can also look at the ideal generated by all polynomial equations induced by
integer valued circuit vectors. This ideal is called the circuit ideal. By what was said
above this ideal is in general smaller than the associated toric ideal, which contains
the polynomial equations induced by all integer valued kernel vectors. Circuit ideals,
i.e. binomial ideals whose generators’ exponent vectors are the circuits of an integer
matrix have been studied already in [ES96], whose results play a key role in Chapter 3.
Further results illuminating the nice relations of circuit ideals and polyhedral geometry
can be found in [BJT07].

Summarizing, in the algebraic setting, Theorem 1.3.1 remains valid if we replace
“closure” by “Zariski closure” and kerA by the integer kernel kerZA. This fact was first
noted in [DS98] and is one of the cornerstones of algebraic statistics.

1.4.3. Experimental Designs. In this section we briefly mention how the suffi-
cient statistics matrices A are discussed within the framework of experimental design.
A reference, and actually the first book on algebraic statistics, is [PRW01]. Assume
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we are given a fixed set of points X ⊆ Rd, the design points. These points correspond
to values of parameters of some experimental setup where actual measurements can
be made. Let |X | = m, we wish to describe the space of real valued functions on X .
Commutative algebra offers the tools for this. Let S = R[x1, . . . , xd] be a polynomial
ring in d indeterminates and consider I = I(X ), the ideal of the zero-dimensional
variety X . This ideal can be computed by taking the intersection of m zero-dimensional
ideals. The computer algebra system CoCoA[CoC] has an optimized function for this
task. The quotient ring S/I is the real vector space of functions on X . A basis consists
of the set of standard monomials, which are defined as all monomials not contained
in the initial ideal with respect to some term order. Now specifying a model can be
done by selecting a finite subset {t1, . . . , tr} of this basis and considering the matrix A
with columns indexed by X and rows indexed by [r] and entries A(x, i) = ti(x). In this
context the matrix A is called a design matrix . As an example consider X = {±1}3.
Its defining ideal is 〈x2 − 1, y2 − 1, z2 − 1〉 ⊆ R[x, y, z] and the given generators form
a Gröbner basis. The standard monomials are 1, x, y, z, xy, xz, yz, xyz. The design
matrix is the Hadamard matrix

(1.70) A =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1


.

This design is called the full-factorial design with 3 factors and is only a very simple
example. The theory of experimental designs can be understood in terms of commuta-
tive algebra, leading to new insights which are also subsumed under the name algebraic
statistics [PRW01].





CHAPTER 2

Boundaries of Hierarchical Models

In this chapter we will specialize to a very important class of exponential families:
hierarchical loglinear models. By imposing additional structure on the ground set
we define an exponential family E∆,d to each choice of a simplicial complex ∆, and
a vector of integers d . Many important examples of discrete statistical models are
hierarchical models; it is of great importance to derive properties of their boundaries.
Hierarchical models are described by 0/1-matrices and thus we are in the setting of
toric algebra. This observation is fundamental in algebraic statistics and has lead to
many interesting theoretical insights and applications.

Let A ∈ Zd×m be a matrix with integer entries and denote kerZA its integer kernel,
a submodule of Zm. In statistics, more specifically for the computation of p-values in
the analysis of contingency tables, one is interested in sampling from the set of integer
valued tables with given fixed margins. An efficient procedure for this allows one to
perform Fischer’s exact test. One of the first applications of algebra in statistics is
to construct connected Markov chains on the set of tables with fixed margins [DS98].
The set of elementary moves in such a Markov chain is called a Markov basis. Now,
algebra comes into play through the observation that a finite set M ⊆ kerZA forms a
Markov basis if and only if its associated binomials generate the toric ideal from (1.67)

(2.1) IA =
〈
pm

+ − pm− : m ∈M
〉
.

For the above reasons, elements of kerA are called moves, and elements in a Markov
basis are called Markov moves. We define the degree of a move as the sum of its
positive components, which equals the sum of the negative components as (1, . . . , 1) is
in the row space of A. The degree of the binomial pm

+ − pm− then equals the degree
of m.

In the first section we give the basic definitions and review some material from
algebraic statistics. In Section 2.2 we show a construction of circuits of hierarchical
models that give new insight into symmetry and support properties. These elementary
circuits drive much of the following development. A relation to notions of independence
is discussed and a lower bound on the supports of Markov moves is derived. Section
2.3 gathers material on Markov bases and also includes an introduction to MBDB, the
Markov Bases Database. Section 2.4 is devoted to binary hierarchical models and their
connection to coding theory. Finally the Chapter is concluded with the implications
for the support set problem in Section 2.5.

2.1. Hierarchical Models

We are in the setting of Chapter 1, but in the following we consider a ground set X
of compositional structure, i.e. X =

∏n
i=1Xi, for some finite sets Xi, i = 1, . . . , n. We

motivate this with our main example: modeling dependencies in contingency tables.
Consider a collection of n random variables taking values in nonempty, finite sets
Xi, i = 1, . . . , n. The identities of the elements of Xi play no further role. Therefore,
defining di := |Xi|, the information about these sets is completely specified by the

27
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sequence d := (d1, . . . , dn) of cardinalities. In the notation of Chapter 1 we have
m :=

∏n
i=1 di. The vector space of real valued functions is denoted RX and is, after

choosing any order, isomorphic to Rm. The open simplex of strictly positive probability
distributions is denoted P(X ), its closure P(X ). This is the set of joint distributions
of the n random variables.

When using matrices to describe linear maps we assume the standard basis given
by the functions

(2.2) e(x)(y) :=

{
1 if y = x,
0 otherwise,

x ∈ X .

This allows us to consider for instance a matrix A ∈ Rd×m as a linear map RX → Rd.
We denote N := {1, . . . , n}, and its power set as 2N := {B : B ⊆ N}. For a subset
B ⊆ N of the random variables, we denote its set of values as XB :=

∏
i∈B Xi. We

have the natural projections

(2.3)
XB : X → XB
(xi)i∈N 7→ (xi)i∈B =: xB.

It is convenient to slightly abuse notation and denote xB the projection of x to B,
which depends on x, and by the same symbol an arbitrary element xB ∈ XB. We
frequently use cylinder sets, specified by a set B ⊆ N , and yB ∈ XB, containing all
elements that have yB as their projection to B:

(2.4) {XB = yB} := {x ∈ X : XB(x) = yB} .

In statistics, a nonnegative integer valued vector u ∈ NX0 is called a contingency table.
It can be thought of as a summary of a discrete sample from X , where we record how
often each x ∈ X occurred. We can further summarize such data by just looking at a
subset B ⊆ N . To this end we define the marginal table uB ∈ NXB

0 as the vector with
components

(2.5) uB(xB) :=
∑

y:XB(y)=xB

u(y), xB ∈ XB.

We now define a hierarchical model by specifying interaction structures between
the nodes i ∈ N . A convenient way to do so is by giving an abstract simplicial
complex ∆ on N [HS02; DS03]. A simplicial complex is closed under taking subsets,
i.e. A ∈ ∆, B ⊆ A ⇒ B ∈ ∆. The elements of ∆ elements are called faces and the
facets F are defined as the inclusion maximal faces. By definition, ∆ is completely
determined by the list of facets. We use this fact and denote simplicial complexes using
the bracket notation [Chr97], in which the facets are listed in brackets. For instance
∆ = [12][13][23] is the bracket notation for

(2.6) ∆ = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}} .

The facets determine the marginal map:

(2.7)
A∆ : RX →

⊕
F∈F

RXF ,

u 7→ (uF )F∈F .

It is a linear map computing all marginal tables corresponding to facets. With respect
to the canonical basis, the matrix representing this map, also denoted A∆, is the k×|X |
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matrix

(2.8) A∆ := (A(B,yB),x)(B,yB),x where A(B,yB),x :=

{
1 if XB(x) = yB,

0 otherwise.

The rows of this matrix are indexed by pairs (B, yB), where B ∈ F is a facet of ∆ and
yB ∈ XB is a configuration on B. Then k is defined as the number of such pairs. If
relevant, we indicate the dependency on the vector d of cardinalities in X by writing
A∆,d or simply Ad . Note that rows (B, yB) corresponding to faces of ∆ are linearly
dependent on the columns corresponding to facets. In particular the row (1, . . . , 1),
corresponding to the empty set, is contained in the row space of A∆. The columns of
A∆ are denoted A∆,x or Ax respectively. Now we are ready for the central definition:

Definition 2.1.1. The open hierarchical model for the simplicial complex ∆ and
cardinalities d is the exponential family of A∆,d :

(2.9) E∆,d := EA∆.d
=
{
p ∈ P(X ) : p(x) = Z−1

c exp (〈c, A∆,x〉) : c ∈ Rk
}
,

where the partition function Zc is

(2.10) Zc :=
∑
x∈X

exp (〈c, A∆,x〉).

A hierarchical model is the closure of an open hierarchical model, denoted E∆,d .
Whenever there is no ambiguity, we omit indices and use the symbols E , E∆, Ed , E∆, . . .
The convex support cs(E∆,d ) of a hierarchical model is called its marginal polytope.

Remark 2.1.2. One can also define a hierarchical model through a factorization
property

(2.11) E∆,d =

{
p ∈ P(X ) : p(x) =

∏
F∈∆

φF (xF )

}
,

where the φF are functions depending on their arguments only through the set F ⊆ N .
More formally φF (xF , xN\F ) = φF (xF , x′N\F ) for all xF ∈ XF and xN\F , x′N\F ∈ XN\F .
This definition is often used in the theory of graphical models [Lau96]. See also
Example 2.1.5.

Example 2.1.3 (Two independent binary random variables). In the case of two
binary random variables, we have X = {(00), (01), (10), (11)}. Let ∆ = [1][2], then the
matrix A∆ is given by

(2.12) A∆ =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 .

The rows are ordered as ({1} , 0), ({1} , 1), ({2} , 0), ({2} , 1). If ∆ was the whole power
set, A∆ would be the (4 × 4)-identity matrix. The marginal polytopes are easily
identified as a 2-dimensional square and a 3-dimensional simplex, respectively.

Example 2.1.4. Independence models generalize Example 2.1.3 in a natural way.
Let ∆1 be the 0-dimensional simplicial complex consisting only of the vertices:

(2.13) ∆1 := {i : i ∈ N}
The exponential family E∆1 is called the independence model on n random variables.
A Markov basis of the independence model is easy to derive. In Section 2.2 we will see
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that it consists entirely of elementary circuits of degree 2. The marginal polytope of
the independence model is a product

∏
i∈N ∆(di−1) of simplices of dimensions di − 1.

Example 2.1.5 (Simplicial complexes from graphs). There are natural ways to
construct a simplicial complex from a graph G. A graph model of G is the exponential
family of the 1-dimensional simplicial complex consisting of the vertices and edges
of G. In this slightly unfortunate nomenclature, a graphical model of a graph G is the
exponential family for the clique complex of G. Markov bases and marginal polytopes of
these models have received widespread attention in algebraic statistics and topological
combinatorics [HS02; DS03; WJ03; GMS06; Eng08].

Example 2.1.6 (k-interaction models). The independence model allows no inter-
action between the units. A generalization of this idea is to allow only interaction
between k units. In our framework this can be simply achieved by defining

(2.14) ∆k := {B ⊆ N : |B| ≤ k} ,
the k-uniform simplicial complex . The hierarchical model E∆k

is called the k-interaction
model. Obviously this definition includes the independence model via ∆1. These models
are central in information geometry [AKN92; Ama01]. Already ∆2 is interesting as
its closure contains all maximizers of the multi-information function [AK06; MA03].
Algebraically these models are also interesting, ∆2 gives the graph model of the
complete graph, a model whose Markov basis remains unknown as soon as n > 5. Also
their marginal polytopes, at least in the binary case, can be recognized to be known
complicated objects. We discuss them shortly in Section 2.4.1. Exploiting symmetry
to understand k-interaction models is surely an interesting endeavor.

A considerable part of the structure theory of hierarchical models was developed in
the works of Sullivant et al. [HS02; DS03]. A natural idea is to decompose simplicial
complexes into their elementary parts, and study those separately. A simplicial
complex ∆ is called reducible if there exist two complexes ∆1, ∆2 and a set S ∈ ∆
such that

(1) ∆ = ∆1 ∪∆2.
(2) ∆1 ∩∆2 = 2S .
(3) 2S 6= ∆i for i = 1, 2.

The complex ∆ is called decomposable if it is reducible with ∆i being either decom-
posable themselves, or simplices. Thus among the graph models exactly the trees
are reducible, while a triangle, the simplicial complex [12][23][31], is not reducible.
Decomposable models are the “easy” ones among all hierarchical models. Their Markov
bases can be explicitly described and consist of simple quadratic moves.

2.1.1. Parametrization of Hierarchical Models. In Section 2.1 we have de-
fined hierarchical models parametrically. Each point in an open hierarchical model is
given by a vector of parameters c ∈ Rd. A characteristic feature of a parametrization
like (2.9) is that each p ∈ EA is defined by the “energy” H(x) = 〈c, Ax〉 of x. Because
of the normalization Zc, which cancels any constant term (as a function of x) that one
might add to H, we are lead to the consideration of the rowspan of A∆, modulo the
constant functions.

Definition 2.1.7. Let 1 be the constant function x 7→ 1 on X . The linear space

(2.15) T∆ := rowspanA∆/ (R1)

is called the interaction space or tangent space of the hierarchical model associated
with ∆.
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The elements of the interaction space T∆ are in bijection with points in the open
hierarchical model E∆. We define the exponential and logarithm:

(2.16)

exp : T∆ → E∆

(H(x))x∈X + R1 7→

(
expH(x)∑

y∈X exp(H(x))

)
x∈X

,

(2.17)
log : E∆ → T∆

(p(x))x∈X 7→ (log p(x))x∈X + R1.

It is clear that these maps are well-defined, surjective, and inverse to each other. We
can change the parametrization by choosing different generating sets of the rowspan
of A: To this end, let B := {bi : i = 1, . . . , d} be any finite generating system of
T∆. Each choice gives a different parameterization of the hierarchical model. The
parametrization is called identifiable if B is a basis. In this case the parameters can
be uniquely reconstructed from H. Naturally each choice of a basis gives an (affinely)
equivalent description of the marginal polytope; the convex hull of the columns of the
matrix that has B as its rows. Some choices will be discussed now.

Marginals: We have used this representation in the definition of a hierarchical
model. It is a natural choice, coming from the analysis of contingency tables. The
model is not identifiable and the number of parameters is typically too large. The
representation of A as a 0/1-matrix however has numerous advantages, the most
prominent being the applicability of toric algebra.

Statistical Physics - Potentials: In statistical mechanics one considers poten-
tials [Win03; Geo88]. A potential is a collection of functions UB, B ⊆ N , where UB
depends on its argument x only through XB(x), and U∅ = 0, such that the energy can
be written as a linear combination hereof. Often one has a distinguished state o called
the vacuum. A potential is called normalized if UB(x) = 0 as soon as xi = oi for some
i ∈ B. Given a strictly positive distribution, a corresponding normalized potential
exists and is unique. For example in the binary setting, choosing (0, 0, . . . , 0) as the
vacuum state, the normalized potential is given by the functions UB = cB

∏
i∈B xi,

where cB ∈ R. Then B =
{∏

i∈B xi : B ∈ ∆
}

is a basis of the interaction space. Note
that B = ∅ gives the constant function x 7→ 1. Expanding a function H ∈ RX in terms
of this basis was called the χ-expansion in the works of Caianiello [Cai75; Cai86].

An orthogonal basis of characters: In the binary case, where d = (2, 2, . . . , 2),
and thus X ∼= {0, 1}N , a natural basis for RX is given by the characters of X . Here,
we assume coordinate-wise addition modulo 2 as the group operation. For every set
B ∈ ∆ define the function eB : X → {−1, 1} by

(2.18) eB(x) := (−1)E(B,x)

where E(B, x) := |{i ∈ B : xi = 1}|. It can be seen that, if ∆ is a simplicial complex,
{eB : B ∈ ∆} is an orthogonal basis of the rowspan of A∆. If we treat X as the additive
group (Z/2Z)n then the characters of this group form an orthonormal basis (with
respect to the product induced by the Haar measure of CX . In our case the Haar
measure is proportional to the standard product of CX . The characters are exactly
given by the vectors eB, B ⊆ N . They are real valued functions, and thus a basis
of RX [Pon66; KA06].
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Various people, starting with Caianiello [Cai75] have called this the η-expansion.
Note that if one considers random variables taking values in {±1}, this basis equals
the monomial basis

{∏
i∈B xi : B ⊆ [N ]

}
considered above.

A basis of parity functions Finally, we introduce yet another basis of the
rowspace of A, which is derived from the basis of characters. To each ∅ 6= B ⊆ [N ], we
define a vector in RX

(2.19) fB(x) :=

{
1 if |supp(x) ∩B| is odd
0 otherwise.

Denote again 1 : X → R, the constant function x 7→ 1. Since eB(x) = 1 − 2fB(x)
for any B 6= ∅ we have that {fB : ∅ 6= B ∈ ∆} ∪ {1} is a basis of the rowspan of A∆.
One interesting fact about this representation is that it gives full-dimensional 0/1-
polytopes, the vertices of which form an additive group and thereby a linear code (see
Proposition 2.4.7). For all other choices of B discussed in this section, this is not the
case. In Section 2.4.2 we will study the consequences of this observation.

The monomial parameterization The aforementioned parameterizations reach
only points interior to the probability simplex, giving distributions with full support.
Limit distributions have to be described by appropriate compactification of Rd, the
space of parameters. This introduces various technical difficulties which seem avoidable
by the following formal trick. We first rewrite Definition 2.9 in a multiplicative way:

(2.20) E∆ =
{
p ∈ P(X ) : p(x) = θax , θ ∈ Rd

>0

}
.

where we used monomial notation θax :=
∏k
i=1 θ

ax(i)
i . The advantage of this parameter-

ization is, that we can simply replace the space of parameters by Rd
≥0, allowing zero, to

include parts of the boundary of the model. However, it can be seen that the extended
model is not necessarily the closure of the hierarchical model, and even worse, depends
on the explicit choice of the matrix A. Nevertheless, a monomial parameterization of a
geometric object is a very useful tool. It enables to compute implicit representations
as discussed in Section 1.4.

2.2. Elementary Circuits of Hierarchical Models

In this section we study the kernels of matrices A∆,d more closely. We give a class
of inclusion minimal integer kernel elements, i.e. circuits, and study how these relate
to Markov bases of hierarchical models. We have seen in Example 1.4.2 that the set
of circuits need not include a Markov basis. However, it turns out that it is not so
easy to find an example of a hierarchical model whose Markov basis does not consist
entirely of circuits. In [AT03], S. Aoki and A. Takemura give a model and a Markov
basis element which is not a circuit. Interestingly, the full Markov basis of this model
is not known.

The elementary circuits generalize vectors that have been discussed in [Kah10b]
and the adjacent minors of [HS02]. For the following let again ∆ ⊆ 2N be a simplicial
complex. The state space is the product X =

∏
i∈N Xi. We frequently need to

distinguish the binary case X = {0, 1}N . Many arguments can be reduced to this case
and it is also our main example.

Definition 2.2.1. Let (G, yN\G, y
+
G, y

−
G) be a 4-tuple consisting of a set G ⊆ N , a

configuration on the complement N \G: yN\G ∈ XN\G, and two configurations y+
G, y

−
G ∈
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XG on G, such that y+
i 6= y−i for all i ∈ G. The elementary circuit corresponding to

this data is the vector with components

(2.21) c
yN\G,y

+
G,y
−
G

G (x) :=

{
(−1)|{i∈G:y−i =xi}| if xN\G = yN\G and xi ∈

{
y+
i , y

−
i

}
,

0 otherwise.

Remark 2.2.2. The set of elementary circuits contains many proportional vectors
as stated in the following proposition. Whenever possible we strive to simplify the
notation and use cG, meaning an arbitrary choice of yN\G and y+

G, y
−
G, i.e. an arbitrary

elementary circuit for the nonface G.

Proposition 2.2.3. (i) Flipping a position of y+ and y− changes the sign. For-
mally, if for some i ∈ G, z+

i = y−i while z+
j = y+

j for j 6= i, and vice versa

z−i = y+
i while z−j = y−j for j 6= i, then we have c

yN\G,z
+,z−

G = −cyN\G,y
+,y−

G .
(ii) For each nonface G /∈ ∆, the elementary circuits are kernel elements cG ∈ kerA∆.

(iii) The degree of cG equals 2|G|−1.

Proof. (i) This property follows directly from the definition since the flip does
not change the support of the corresponding circuits.
(ii) To show that A∆cG = 0 we check the product on an arbitrary row of A∆, given
by a set B ∈ ∆ and a configuration yB. The scalar product of this row and cG is∑

x∈{XB=yB} cG(x). Now select j ∈ G \B and group terms according to the value of
xj :

∑
x∈{XB=yB}

cG(x) =
∑

x∈{XB=yB}
∩{Xj=y+

j }

(−1)|{i∈G:y−i =xi}| +
∑

x∈{XB=yB}
∩{Xj=y−j }

(−1)|{i∈G:y−i =xi}|
(2.22)

=
∑

x∈{XB=yB}
∩{Xj=y+

j }

(−1)|{i∈G\{j}:y
−
i =xi}| −

∑
x∈{XB=yB}
∩{Xj=y−j }

(−1)|{i∈G\{j}:y
−
i =xi}|.(2.23)

This quantity equals zero since there is a natural bijection between the terms in the
two sums and the signs disagree.
(iii) This follows directly from the definition. �

The binomials corresponding to elementary circuits of degree two look like indepen-
dence statements. The higher ones are mimicking this with “checkerboard” patterns
whose degrees are also powers of two. Below, in Section 2.2.4, we clarify the relation
between elementary circuits and independence statements. Variants of such vectors are
encountered occasionally in applications. In [O’S09] elementary circuits of degree 2n−1,
corresponding to G = N are called checkerboard vectors. The “basis of vertex de-
pendencies” in [HS02] is simply a basis of kerA∆, consisting entirely of elementary
circuits. The authors define a set β(S) of “adjacent minors” supported on sets S ⊆ N .
Elements of β(S) are elementary circuits supported on G = S in our terminology.
Their Theorem 2.6 extracts a basis of kerA from the set of elementary circuits. The
same moves are also considered in Section 5 of [HS04]. In the following we aim at a
theorem which justifies the name “elementary circuits”.

Theorem 2.2.4. For fixed simplicial complex ∆ and cardinality vector d , let G be

inclusion-minimal among the nonfaces of ∆. Then the elementary circuits c
yN\G,y

+
G,y
−
G

G

are circuits of A∆,d for any yN\G ∈ XN\G, y±G ∈ XG.
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The proof of this theorem needs some additional machinery to enter the scene.
It proceeds by reduction to the binary case d = (2, 2, . . . , 2), the idea being that a
counterexample in the nonbinary case provides one in the binary case too. We first
look at the binary case explicitly and then discuss a construction called collapsing.

2.2.1. Binary Elementary Circuits. In the following we denote X := {0, 1}N .
Put ∆c := 2N \∆ the set of nonfaces of ∆. For elements G ∈ ∆c we define the upper
intervals

(2.24) [G,N ] := {B ⊆ N : B ⊇ G} ⊆ ∆c

For each B ⊆ N we have the vector eB ∈ RX , defined in Section 2.1.1. As discussed
there, it is not difficult to see that {eB : B ⊆ N} is an orthogonal basis of RX such
that {eB : B ∈ ∆c} is a basis of kerZA∆. In the binary case, up to a sign, there is
only one elementary circuit for each choice of (G, yN\G) : c

yN\G
G . In the following

denote 0 := (0, . . . , 0).

Lemma 2.2.5. Let G ∈ ∆c, for g := |G| it holds

(2.25) c0G(x) = 2g−n
∑

B∈[G,N ]

eB(x) =

{
eG(xG) if xN\G = 0 ,

0 otherwise.

Furthermore, for any C ⊆ N , and xC ∈ XC , we have the identity

(2.26) 2|C|−n
∑

x∈{XC=yC}

eB(x) =

{
eB(yC) if B ⊆ C,
0 otherwise.

Proof. For the second case in (2.25) assume we have i ∈ N \G such that xi = 1.
Since half of the sets in [G,N ] contain i, while the other half does not contain i, it
follows that the sum equals zero if such an i exists. The first case is now clear: all
the summands are equal to eG, and there are exactly 2n−g terms. The identity (2.26)
follows by the same argument. �

By choosing appropriate signs in the sum (2.25), one can achieve any of the
binary elementary circuits, supported on cylinder sets

{
XN\G = xN\G

}
instead of{

XN\G = 0
}

. More concretely, we have

(2.27)

c
yN\G
G (x) := 2g−n

∑
B∈[B,N ]

(−1)E(B,yN\G)eB(x),

=

{
eG(xG) if xN\G = yN\G
0 otherwise.

In Proposition 2.2.7, it follows that choosing G minimal in ∆c, the value 2n − 2|G|,
as in Lemma 2.2.5, is the maximal number of zero components that can be achieved
by nontrivial linear combinations of the vectors eB, B ∈ ∆c, and thus by any vector
in kerA. Moving towards a proof of Theorem 2.2.4 in the binary case, we deduce a
technical, but elementary statement about large subsets of X .

Lemma 2.2.6. Let g ∈ {1, . . . , n} be fixed. For Y ⊆ X with |Y| > 2n − 2g the
following statement holds:

• For each B ⊆ N with |B| ≥ g, Y contains one of the cylinder sets {XB = xB}.
More formally: ∃xB ∈ XB such that {XB = xB} ⊆ Y.
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Proof. The statement follows from a simple cardinality argument. Assume the
contrary, let B be given, and ∀xB ∈ XB, ∃x ∈ X \ Y such that xB = XB(x). These x
are all distinct, since they differ on B. We find |Y| ≤ 2n − 2g. �

Proposition 2.2.7. Let g denote the minimal cardinality among the sets in ∆c.
Then any nonzero linear combination of the vectors eB, B ∈ ∆c has at least 2g−1

positive and 2g−1 negative components.

Proof. Assume we have a linear combination

(2.28) m =
∑
B∈∆c

zBeB ∈ kerA∆

which has less then 2g−1 positive components. It has at least 2n− 2g−1 + 1 nonpositive
components. Let Y≤ ⊆ X denote the corresponding indices. Let G ∈ ∆c have
cardinality g and choose i ∈ G arbitrary. By Lemma 2.2.6 we find a cylinder set{
XG\{i} = yG\{i}

}
that is contained in Y≤. We have

(2.29) m(x) =
∑
B∈∆c

zBeB(x) ≤ 0 x ∈ Y≤.

Summing up these equations over the cylinder set
{
XG\{i} = yG\{i}

}
yields

(2.30)
∑

x∈{XG\{i}=yG\{i}}

∑
B∈∆c

zBeB(x) ≤ 0.

Note that this summation is in fact the computation of the marginal mG\{i} evaluated
at the value yG\{i}. Since m ∈ kerA∆, and G \ {i} ∈ ∆, equality must hold in (2.30).
We find that every term in the sum was already zero:

(2.31)
∑
B∈∆c

zBeB(x) = 0 x ∈
{
XG\{i} = yG\{i}

}
.

We inductively show that m = 0. Contained in
{
XG\{i} = yG\{i}

}
we have a smaller

set {XG = yG}. Summing up the respective components of m for this set, and using
Lemma 2.2.5, we find

(2.32)
0 =

∑
x∈{XG=yG}

∑
B∈∆c

zBeB(x)

= zG2n−geG(xG).

It follows that zG = 0. Applying the same argument, we can show that all coefficients
zH vanish for |H| = g. Inductively, we continue with sets of cardinality g + 1. Finally,
this argument yields that all coefficients vanish and m is zero. The whole procedure
applies, mutatis mutandis, for the negative components as well. �

Now we prove that elementary circuits are circuits in the sense of matroid theory.

Proof of Theorem 2.2.4 in the binary case. Let G be an inclusion minimal
nonface. Fix a vector c := c

yN\G
G and consider the submatrix Ã whose columns are

exactly those columns of A∆ that correspond to the support of c. The statement is
that this matrix has a single circuit consisting of all its columns. For each i ∈ G, by
minimality of G, each G \ {i} is contained in a facet of ∆. We can assume that Ã has
all rows computing marginals corresponding to G \ {i} for i ∈ G, as these rows are
linear combinations of the rows for the facet containing the respective set. It follows
that Ã has a submatrix which is the marginal matrix of the hierarchical model for
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the simplicial complex 2G \ {G}. By Proposition 2.2.7 this model’s circuits have full
support. �

We next explain the collapsing construction, which is essential for reducing argu-
ments to the binary case.

2.2.2. Collapsing. The idea of the following construction is to identify levels of
each Xi until it is binary. Let X =

∏n
i=1Xi denote the nonbinary state space and

additionally Y := {0, 1}n.

Definition 2.2.8. Let φi : Xi → {0, 1} , i ∈ N , be surjective maps. For each
B ⊆ N , the composed maps

(2.33)
φB : XB → YB,

xB 7→ (φi(xi))i∈B.

are called collapsing maps. We have an induced map on real valued functions:

(2.34)

φ : RX → RY ,

(u(x))x∈X 7→

 ∑
w∈φ−1

N (z)

u(w)


z∈Y

.

By considering these maps for each facet of ∆ we have an induced map on margins too:

(2.35)
Φ :

⊕
F∈∆

RXF →
⊕
F∈∆

RYF ,

(uF )F∈∆ 7→ (φ(uF ))F∈∆.

The key property of a collapsing is that it commutes with marginalization:

Lemma 2.2.9. For fixed simplicial complex ∆ denote Ad the marginal matrix for
levels d and A2 the binary one. The following diagram commutes:

(2.36)

RX
Ad //

φ

��

⊕
F∈F RXF

Φ
��

RY A2

// ⊕
F∈F RYF

Proof. Let u ∈ RX . We claim that for an arbitrary component of a vector in⊕
F∈F RYF , defined by B ⊆ N, zB ∈ YB, it holds:

(2.37)

Φ(Ad(u))(B, zB) =
∑

xB∈φ−1
B (zB)

∑
w∈{XB=xB}

u(w),

=
∑

y∈{XB=zB}

∑
w∈φ−1(y)

u(w)

= A2(φ(u))(B, zB).

Note that for the cylinder set on the left hand side, {XB = xB} ⊆ X , while on the
right hand side {XB = zB} ⊆ Y. Since on each side every w appears at most once, it
suffices to show the equality of sets

(2.38)
⋃

xB∈φ−1
B (zB)

{XB = xB} =
⋃

y∈{XB=zB}

{
φ−1(y)

}
.
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“⊆”: Let w from the left hand side be given. One has XB(w) = xB for some xB
with φB(xB) = zB. Therefore φ(w) = y with XB(y) = zB and w is contained
in the right hand side.

“⊇”: Let w ∈ φ−1(y), y ∈ {XB = zB} from the right hand side be given. We
have XB(w) ∈ φ−1

B (zB), so w is contained in the left hand side.
�

Next, for completeness, we have a quick look at the inverse operation of embedding
binary tables into higher dimensional tables. Naturally one can choose “simple” inverses
of collapsings. For some B ⊆ N , let φB be a collapsing. We can choose an injection
λB : {0, 1} → XB such that φB ◦ λB = id{0,1}B . We get a map λ : RY → RX by setting

(2.39) λ(u)(x) =

{
u(y) if y ∈ imλN ,

0 otherwise,

which again induces a map Λ on marginals. Consider for an example the embedding of
a 2× 2 table into a 3× 3 table.

(2.40) λ

(
1 2
3 4

)
=

1 2 0
3 4 0
0 0 0

 .

It is clear that one can compute the margins on the 2 × 2 table and fill them with
zero’s or compute the margins of the 3× 3 table. This is the content of the following

Lemma 2.2.10. We have ΛA2 = Adλ, and the following diagram commutes:

(2.41)

RX
Ad // ⊕

F∈F RXF

RY

λ

OO

A2

// ⊕
F∈F RYF

Λ

OO

Proof. By permutation of labels in the Xi, we can assume that λ satisfies λ(0) = 0
and λ(1) = 1. Again, let B ∈ ∆ and xB ∈ XB be fixed.

(2.42)

Ad (λ(u))(xB) =
∑

x∈{XB=xB}

λ(u)(xB)

=

{∑
x∈{XB=xB} u(xB), if xB ∈ {0, 1},

0, otherwise

= Λ(A2(u))(xB).

�

2.2.3. The Nonbinary Case.

Proposition 2.2.11. Given a nonzero c ∈ kerA∆,d with |supp(c)| = s, there exists
a nonzero c′ ∈ kerA∆,2 with supp(c′) ≤ s. In particular Proposition 2.2.7 holds also
in the nonbinary case.

Proof. The statement follows by application of a proper collapsing. There exists
a collapsing φ such that c′ := φ(c) is not zero. The support of c′ has smaller cardinality.
Now, if there was a violation of Proposition 2.2.7, this construction would give a
counterexample in the binary case. �



38 2. BOUNDARIES OF HIERARCHICAL MODELS

Proof of Theorem 2.2.4. We reduce the statement to the binary case. By
definition, for each elementary circuit c of the model associated to (∆,d) there exists
a collapsing φ, such that φ(c) is an elementary circuit of the binary model associated
to ∆. If c̃ ∈ kerA∆,d had supp(c̃) ( supp(c), then φ(c̃) ∈ kerA∆,2 would satisfy
supp(φ(c̃)) ( supp(φ(c)), which is impossible by the binary version of the theorem. �

Elementary circuits corresponding to sets of cardinality two correspond to indepen-
dence statements. In the next section we will further look into this correspondence. It
is shown that the ideal of the pairwise Markov condition is generated by elementary
circuits of degree two. Then we will see that a quadratic generator in a hierarchical
model always originates from an independence statement, but not necessarily a pairwise
one. In a certain sense, the higher elementary circuits are generalized independence
statements.

2.2.4. Independence Statements and Quadratic Generators. We begin by
recalling graphical models and their relation to hierarchical models. The standard
reference on the subject is [Lau96]. The new book [DSS09] exposes the algebraic
viewpoint.

Definition 2.2.12. Let G be an undirected graph. The graphical model of G is
the hierarchical model of the clique complex of G, that is the simplicial complex whose
faces are the complete subgraphs of G.

Apart from the graphical model, a graph also induces conditional independence
models. We need some further definitions for this.

Definition 2.2.13. A conditional independence XA ⊥⊥ XB |XC is said to hold for
a distribution p if its A ∪B ∪ C marginal pABC satisfies

(2.43) pABCxAxBxC
pABCyAyBxC

= pABCxAyBxC
pABCxAyBxC

,

for all xA, yA ∈ XA, xB, yB ∈ XB and xC ∈ XC . If A ∪ B ∪ C = N we say that the
statement is saturated. In this case the defining equations are binomial.

For a fixed statement defined by A,B,C it can be seen that the ideal defined
through the equations (2.43) is a prime ideal. The proof follows directly from general
facts on determinantal ideals [BV88]. In general, questions about saturated conditional
independence statements are leading to interesting topics in determinantal rings, the
reason being that (2.43) describes rank conditions on submatrices of the probability
tensor (px)x∈X .

Now, by imposing conditional independence statements we can also specify a
statistical model called a conditional independence model. Given a graph G, the pairwise
Markov condition states that Xi ⊥⊥ Xj

∣∣X[n]\{i,j} for each nonedge {i, j} /∈ E(G), while
the global Markov condition states that XA ⊥⊥ XB |XC whenever C separates A and
B in G. The pairwise (global) Markov ideal Ipair (Iglobal) is the ideal generated by the
binomial equations of all statements defined by the graph. It is a sum of prime ideals,
its variety, called the pairwise (global) conditional independence model, is typically
not irreducible and thus primary decompositions of these ideals are very interesting
for understanding conditional independence in general. The algebraic interpretation
of the Hammerslay-Clifford-Theorem shows that the graphical hierarchical model
defined above is the variety of the saturated ideal

(
Iglobal :

(∏
x∈X px

)∞), which equals(
Ipair :

(∏
x∈X px

)∞). The remaining primary components of Ipair and Iglobal all contain
monomials and their varieties consist of distributions with limited support. When we
restrict ourselves to distributions with full support, the Hammersley-Clifford-Theorem
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relates the different Markov conditions and the property of lying in the image of the
parameterizations of the graphical model that we discussed in Section 2.1.1. It states
that a strictly positive distribution lies in the image of the parameterization of the
hierarchical (graphical) model of G, if and only if it satisfies the pairwise Markov
condition.

Coming back to the elementary circuits we can now observe that each elementary
circuit belongs to a pairwise independence statement:

Proposition 2.2.14. For configurations x1, . . . , x4, a quadratic equation

(2.44) px1px2 − px3px4 ,

corresponds to a pairwise independence statement Xi ⊥⊥ Xj

∣∣X[n]\{i,j} iff it is one of
the elementary circuits c{i,j}. The pairwise Markov ideal is generated by elementary
circuits.

Proof. If i and j are singletons, the statement Xi ⊥⊥ Xj

∣∣XN\{i,j} exactly gives
the equations that have all the elementary circuits c{i,j} as their exponent vectors. �

Example 2.2.15 (Example 2.1.3 continued). The independence model E1, the
graphical model of the empty graph on n vertices, is generated by elementary circuits.
These however are not algebraically independent. Let n = 3, a quick computation with
4ti2 reveals a Markov basis, consisting of the 9 vectors

(2.45)

m1 = (0, 0, 0, 0, 1,−1,−1, 1), m2 = (0, 0, 1,−1, 0, 0,−1, 1),

m3 = (0, 1,−1, 0, 0,−1, 1, 0), m4 = (0, 1, 0,−1,−1, 0, 1, 0),

m5 = (0, 1, 0,−1, 0,−1, 0, 1), m6 = (1,−1,−1, 1, 0, 0, 0, 0),

m7 = (1,−1, 0, 0,−1, 1, 0, 0), m8 = (1,−1, 0, 0, 0, 0,−1, 1),

m9 = (1, 0,−1, 0,−1, 0, 1, 0).

This Markov basis is not unique. The number of Markov moves is typically far smaller
than the number of circuits. For the model at hand there are 20 circuits, 12 of them
are elementary. The move

(2.46) c = (0, 0, 1,−1,−1, 1, 0, 0),

is a circuit that does not appear in the Markov basis. Its binomial is algebraically
dependent as

(2.47) pc
+ − pc− = (pm

+
4 − pm

−
4 )− (pm

+
3 − pm

−
3 ).

We now have a look at quadratic generators in hierarchical models in general. The
converse of Proposition 2.2.14 is that every quadratic generator is coming from a global
independence statement. The idea for this proof is essentially contained in [DS03] and
the author was pointed at this fact by Seth Sullivant. The following statement was
conjectured by Ignacio Ojeda in a talk he gave in Torino in May 2009.

Theorem 2.2.16. Let G be a graph and Iglobal the ideal generated by the global
Markov property. Let Itoric =

(
Iglobal : (

∏
x∈X px)∞

)
be the corresponding toric ideal.

Then Iglobal is generated by the quadrics in the toric ideal.

Proof. Because of the containment Iglobal ⊆ Itoric it suffices to show that each
quadratic generator of Itoric is contained in Iglobal. This can be done by showing that
each quadratic generator corresponds to an actual global independence statement. For
convenience we introduce tableau notation [HS02] for monomials. In this notation, the
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monomial pu is represented by listing each x ∈ X , u(x) times. For example p000p110p
2
111

is written as the tableau

(2.48)


000
110
111
111

 .
In this notation a quadratic generator is written as

(2.49)
[
i1, . . . , in
i′1, . . . , i

′
n

]
−
[
j1, . . . , jn
j′1, . . . , j

′
n

]
.

Since any graphical model preserves the column marginals in these moves we have
{ik, i′k} = {jk, j′k} for any index k = 1, . . . , n. A homogeneous quadratic binomial has
at most 2 variables in its positive and negative support, respectively, and we can assume
that the configurations x ∈ X supporting this binomial are binary. If not, a relabeling
inside the Xi provides such a move. Among the occurring indices we potentially find
tuples (i, i′) = (j, j′) = (0, 0) or (i, i′) = (j, j′) = (1, 1). Without loss of generality we
can assume to find these in the beginning and the end, and write

(2.50)
[
0, . . . , 0, il, . . . , im, 1, . . . , 1
0, . . . , 0, i′l, . . . , i

′
m, 1, . . . , 1

]
−
[
0, . . . , 0, jl, . . . , jm, 1, . . . , 1
0, . . . , 0, j′l, . . . , j

′
m, 1, . . . , 1

]
.

In the remaining tuples (ik, i′k), (jk, j′k), by permuting 0 and 1, we can achieve (ik, i′k) =
(0, 1) and thus assume that the move is

(2.51)
[
0, . . . , 0, 0, . . . , 0, 0 . . . , 0, 1, . . . , 1
0, . . . , 0, 1, . . . , 1, 1 . . . , 1, 1, . . . , 1

]
−
[
0, . . . , 0, 0, . . . , 0, 1, . . . , 1, 1, . . . , 1
0, . . . , 0, 1, . . . , 1, 0, . . . , 0, 1, . . . , 1

]
.

Now, among the middle indices call the conserved pairs A ⊆ N , the flipped ones
B ⊆ N , and the rest C ⊆ N , then we deduce that in this graphical model there is
no edge between A and B since pair margins are not conserved. But in terms of
conditional independence this just means that A ⊥⊥ B |C . The move is one of the
generators coming from this statement and thus contained in Iglobal. �

Note that the proof works for any hierarchical model. It shows that a quadratic
generator always corresponds to an independence statement holding in the model. This
should be compared to the statement of Theorem 2.3.5: A hierarchical model for a
simplicial complex containing all two element sets has no quadratic generators, as it has
no valid independence statements. In the case of binary graph models, a generalization
of this is the characterization of fixed-degree moves using elementary graphs in [DS03].

2.3. Markov Bases

As discussed in Chapter 1, if the kernel of A is generated by integer vectors, we
are in the toric case and can apply commutative algebra. Hierarchical models fall into
this class; A∆ is a 0/1-matrix. The toric ideal is

(2.52) I∆ := IA∆
= 〈pu − pv : A∆u = A∆v, u, v ∈ Nd〉.

The nonnegative real part of the variety of I∆ is the closure of the hierarchical model:
V≥0(I∆) = E∆. In this language, a Markov basis is a finite set of vectors M ⊆ Zd, such
that

(2.53) I∆ = 〈pm+ − pm− : m ∈M〉.
Markov bases of hierarchical models are rich in structure. The new text book [DSS09]
discusses them along with other “bases” of integer lattices. We try to avoid repeating
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too much of the theory here, but restrict ourselves to new results related to elementary
circuits. To this end, in Section 2.3.1, we discuss the class of models whose Markov
bases consist precisely of elementary circuits. We show that in this case the matrix
A is already totally unimodular. This result generalizes a theorem in [Kah10b] and
appears here for the first time. In Section 2.3.2 we show corollaries of our discussion
on the boundedness of support size.

During the work on this thesis the author had to juggle a lot of computational
results. To facilitate this experimental research and make it available for the public,
an Internet database was set up by Johannes Rauh and the author. In Section 2.3.3
we describe MBDB, the Markov Bases Database.

2.3.1. Total Unimodularity of Complement Complexes. Elementary cir-
cuits generalize independence statements. Parallel to the independence model, it is
natural to ask for a class of models, characterized by these moves. We describe this
class, and show that their marginal matrices are totally unimodular. This implies that
the elementary circuits form a Markov basis, and even better, also coincide with each
Gröbner and the so called Graver basis.

A Gröbner basis of a lattice can simply be defined as the set of exponent vectors of
a Gröbner basis of the corresponding toric ideal. A Graver basis G of a lattice L is the
unique minimal subset of L such that every v ∈ L has a sign consistent representation

(2.54) v =
∑
g∈G

λgg, λg ∈ N, where |vi| =
∑
g∈G

λg |gi| .

The book [DSS09] contains many details and also the lattice interpretation of a Gröbner
basis.

Definition 2.3.1. A matrix A ∈ Zm×n is called totally unimodular if each of its
subdeterminants, and thus also each entry, is zero or ±1.

It is often nontrivial to prove total unimodularity. Here we rely on the following
lemma, variants of which are probably very well known in combinatorial optimization
literature.

Lemma 2.3.2. Let A be a 0/1-matrix such that:
• Each row of A has at most two nonzero entries.
• The set {a1, . . . , am} of columns of A has a bipartition into sets M,N such

that no two ones of a given row are contained in one of the sets M,N .
In this case A is totally unimodular.

Proof. Without loss of generality we can assume that A is a square matrix. The
proof is by induction on the dimension of the matrix and the 1× 1 or 2× 2 matrices
are easily checked. Assume the statement holds for dimension (n − 1) and consider
any n× n matrix A, satisfying the assumptions. If A has a zero row, the statement
follows, and if A has a row with exactly one entry 1, we can expand on that column
and use the induction hypothesis. Now, if every row of A has exactly two entries 1,
then the columns ai of A satisfy

(2.55)
∑
i∈M

ai =
∑
j∈N

aj ,

follows and thus det(A) = 0. �

Let G ⊆ N . We denote

(2.56) ∆/G := {B ⊆ N : B 6⊇ G} ,
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the simplicial complex of all sets not containing G. We have seen that the toric ideal
for this complex is generated in degree at least 2|G|−1. We now show that if ∆ has the
structure (2.56), and some restriction on d are fulfilled, the toric ideal is generated
in degree exactly 2|G|−1, namely by the elementary circuits. The following result is a
generalization of a theorem appearing in [Kah10b].

Theorem 2.3.3. Let G ⊆ N and di = 2 for i ∈ G. The marginal matrix A∆/G,d is
totally unimodular. The set of elementary circuits

(2.57) M :=
{
c
yN\G
G : yN\G ∈ XN\G

}
.

is the complete set of circuits and thus also forms a Markov, Gröbner, and Graver
basis of kerA∆/G

.

Remark 2.3.4. The investigation of the complexity of Markov bases of the no-
three-way interaction model shows that varying the cardinalities di, i ∈ G makes the
statement fail. Markov bases of these models are “arbitrarily complicated” [LO06].

Proof. We show that under the assumptions we have made, A is totally unimod-
ular. The columns of A are indexed by X while each row is indexed by a facet N \ {i},
for some i ∈ G, and a configuration xN\{i}. Each row has entries 0 everywhere except
in the columns (xN\{i}, 0), (xN\{i}, 1), which uses the hypothesis di = 2 for i ∈ G.

We bipartition the columns according to the parity (mod 2 sum of the entries) of xG.
According to Lemma 2.3.2 it remains to show that for each row the two nonvanishing
entries lie in columns with different parity on G, but this is true since the two columns
correspond to configurations that differ only in one entry xi for i ∈ G, and thus their
parity is different. This shows that A is totally unimodular and the set of circuits
and the different bases coincide. We finish the proof by showing that the elementary
circuits are actually all circuits in this case. We first compute the rank of A from the
formula

rkA =
∑
F∈∆

∏
i∈F

(di − 1)(2.58)

= |X | −
∑
F /∈∆

∏
i∈F

(di − 1),(2.59)

which is a crucial ingredient for computing dimensions of discrete exponential fami-
lies [Kah06; HS02]. In (2.59) we can change the summation because di = 2, for i ∈ G
and find ∑

F⊇G

∏
i∈F

(di − 1) =
∑

F⊆N\G

∏
i∈F

(di − 1)(2.60)

=

{
1, if G = N,∣∣XN\G∣∣ , otherwise,

(2.61)

where the second equation follows from the rank formula again. Note that
∣∣XN\G∣∣

is the number of elementary circuits of A and their supports are disjoint. Any basis
of the column matroid of A has to avoid

∣∣XN\G∣∣ columns, one from each circuit, as
otherwise it would need to contain a circuit.

We claim that any maximal choice of columns not containing an elementary circuit
gives a basis. Certainly one of them gives a basis B = {b1, . . . , bn}. If bi is an arbitrary
element of this basis, it is contained in exactly one elementary circuit c as these are
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disjoint. On the other hand c contains exactly one element b′, say, not contained in B.
We claim that

(2.62) B′ =
{
b1, . . . , bi−1, b

′, bi+1, . . . , bn
}

is again a basis. Indeed, if it was dependent, it would contain a circuit c′, which must
contain b′, as otherwise B was not a basis. Now from the two circuits c and c′ we can
eliminate b′ to find a third circuit consisting only of elements in B, a contradiction.
This argument shows that any collection of rkA vectors avoiding all elementary circuits
is independent and thus a basis. It also follows that the elementary circuits are the
complete set of circuits of A, since if there was a bigger circuit not containing any of
them, it would be contained in a basis. �

2.3.2. A Lower Degree Bound on Markov Moves. As a concluding obser-
vation on elementary circuits and lower degree bounds, we study the implications of
Proposition 2.2.7 on Markov moves. Immediately we have the following

Theorem 2.3.5. Let ∆ be a simplicial complex on N and I∆ the corresponding
toric ideal. Let g be the minimal cardinality of a nonface of ∆. Each generator of I∆

has degree at least 2g−1. Moreover, the positive and negative supports of each generator
both have cardinality bigger or equal to 2g−1. The degree bound is realized only by
square-free binomials.

This theorem gives a lower bound on the–smallest–degree among the generators.
Lower bounds on the largest degree have been considered for a measure of complexity of
the model for instance in [GMS06]. There it is shown that one finds a simplicial complex
on 2n units, such that there exists a generator of degree 2n. Furthermore, in [DS03]
the authors study an algorithm that, for graph models, computes all generators of a
given degree. Finally, in [LO06] the case of 2-margins of (r, s, 3)-tables is studied. It is
shown that, as r and s grow, the supports and degrees of maximal generators cannot
be bounded. This has interesting implications for data disclosure.

A typical example of hierarchical models are graph models where dim ∆ ≤ 1.
If the graph ∆ is not the complete graph, then the bound reduces to the trivial
bound degm ≥ 2. On the other hand, for the complete graph, there are no quadratic
generators. This proves the interesting fact that on the hierarchical model E2 no global
conditional independence statement is satisfied (see also Section 2.2.4).

2.3.3. The Markov Bases Database. In this final section on Markov bases
we describe the Markov bases database (MBDB), available for public access on the
web [RK]. It is a searchable collection of inputs and outputs of the program 4ti2. We
explain the data structure and present examples of its usage. To begin with, each entry
of the database lives inside its own directory, which has a semi-cryptic name such as
“G114g bin”. These names are not very relevant and should just give distinguishable
filenames. A verbal description of the model can be found inside the directory. The
content of such a directory might look like the following list of files.

degreestats description G114g_bin.dot G114g_bin.mar

G114g_bin.mat G114g_bin.mod G114g_bin.png properties

They contain the following information
degreestats: A list of degrees, and the number of generators in this degree, in

a minimal Markov Basis.
description: A verbal description of the model. This file reveals to us that

here we find
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The binary graphical model of G114.

G114g bin.dot: A dot file describing the graph of this graphical model in the
dot language [Tea].

G114g bin.{mar,mat,mod}: The 4ti2 files containing the Markov basis, the
marginal matrix and a 4ti2 readable description of the simplicial complex.

G114g bin.png: An image of the model. G114 looks like this

The numbers on the vertices give the cardinalities of state space of the random
variable at this site. As the description indicates, this model is binary.

properties: A list of properties that this model possesses or does not posses
(with a leading “!”)

Depending on the type of model and computations that were carried out, additional
files, such as a .gro file containing a Gröbner basis, may be present.

To illustrate a use case of the database approach, we treat the following question
using MBDB. It was posed as one of the exercises in Bernd Sturmfels’ algebraic
statistics course in Fall 2008 at Berkeley.

Question 2.3.6. Is there a hierarchical model that has a generator of odd degree?
If yes, is there a binary model?

The web interface offers some basic search possibilities, and the authors are always
happy to hear about suggestions for new features. Other searches can be implemented
after downloading a full dump of all data. Fortunately some statistics over degrees
for each model is already available. A very simple call to the program grep solves our
problem:

grep "^[3579] " */ degreestats

BM5r3 -5_bin/degreestats :9 32

G174_bin/degreestats :3 64

G174g_bin/degreestats :3 64

G174g_bin/degreestats :5 384

G189_bin/degreestats :5 768

G190_bin/degreestats :5 128

G196_bin/degreestats :5 512

G197_bin/degreestats :5 1920

G198_bin/degreestats :5 512

G199_bin/degreestats :5 1024

no3way -03 -04 -04/ degreestats :9 576

no3way -03 -04 -05/ degreestats :9 2880

no3way -04 -04 -04/ degreestats :9 6912

The first line is the call. It asks grep to search for lines beginning with one of the
numbers 3, 5, 7, or 9, followed by a space, in the files called degreestats in each
subdirectory. Thus, this command has to be executed in the main data directory. Note
that we only search for generators of the given degrees, but not of degree 11 and higher.
The appropriate modification of the regular expression is not difficult. The output
shows models that have generators of odd degree:

BM5r3 -5_bin G174_bin G174g_bin G189_bin G190_bin
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G196_bin G197_bin G198_bin G199_bin no3way -03-04-04

no3way -03 -04 -05 no3way -04-04-04

Some of them are binary. We have thus answered our question affirmatively.

2.4. Binary Marginal Polytopes

In the following we study special classes of marginal polytopes of hierarchical models.
We have seen that knowledge about the face lattice of these polytopes is equivalent to
knowledge on the support set problem. For instance Theorem 2.3.5 directly translates
into a neighborliness property of marginal polytopes, given in Theorem 2.5.2. The
starting point for observations in a different direction is the representation of binary
marginal polytopes as 0/1-polytopes that was already outlined in Section 2.1.1. This
allows to observe connections between marginal polytopes of graph models and CUT-
polytopes. We establish the connection to polytopes that are convex hulls of linear
codes. In Section 2.4.3 we classify all such polytopes and give an iterative algorithm
which constructs them. This material was published in [KWA09].

2.4.1. Marginal, CUT, and correlation polytopes. Binary marginal poly-
topes are 0/1-polytopes, via the basis of parity function defined in Section 2.1.1. For
any subset B ⊆ N , consider the vector fB ∈ RX with components

(2.63) fB(x) :=

{
1 if |supp(x) ∩B| is odd,
0 otherwise.

Consider the matrix whose rows are vectors fB, B ∈ D, for some collection D ⊆ 2N .
We assign names to the columns of this matrix by defining

(2.64) fDx (B) := fB(x).

Then fx is a vector with |D| components. When the dependency on x is important
we denote it as a function of x, writing fD(x). If ∆ is a simplicial complex, then the
convex support of cs(E∆) can be represented as conv {fB : B ∈ ∆}. The definition of
this polytope is interesting also in the general case of an arbitrary collection of vectors.

Definition 2.4.1. Let D ⊆ 2N be a collection of sets. We define

(2.65) FD := conv
{
fD(x) : x ∈ X

}
.

These polytopes include binary marginal polytopes in the special case where D
is a simplicial complex. We will now define the CUT-polytope of a graph, and show
that if D = {B ⊆ N, |B| ≤ 2} then FD is a CUT-polytope. Let G = (V,E) be a graph.
A cut [A] = (G1, G2) is a bipartition of the vertex set of G, modulo the equivalence
(G1, G2) ∼ (G2, G1), induced by taking complements. It follows that there are 2|V |−1

cuts. A cut vector for the cut [A] is the 0/1-vector with components labeled by edges
e = (e1, e2) ∈ E(G):

(2.66) χ[A](e) :=

{
1 if [A] cuts e,
0 otherwise.

Definition 2.4.2. The CUT-polytope of a graph G is the convex hull of the cut
vectors:

(2.67) CUT(G) := conv
{
χ[A] : [A] a cut in G

}
.
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CUT-polytopes are central objects in combinatorial optimization, naturally arising
in transportation problems. A book-length treatment of the subject is [DL97]. When
the graph G is the complete graph Kn, the cut vectors have a very regular structure,
resembling that of the vectors fD(x). Namely, to each graph G we can associate the
simplicial complex ∆G = V (G)∪E(G)∪{∅}. We referred to this construction as graph
model in Remark 2.1.5. From G construct the coned graph Ĝ with an additional vertex:

(2.68) V (Ĝ) := V (G) ∪ {∗} ,
connected to all original vertices:

(2.69) E(Ĝ) := E(G) ∪ {(v, ∗) : v ∈ V (G)} .
Then, denoting the CUT-polytope of Ĝ as CUT(Ĝ) one has

(2.70) FDG
= CUT(Ĝ).

Using the representation in terms of the vectors fDG
(x), x ∈ X , a proof of this

equivalence becomes a renaming of coordinates. A cut in the coned graph is simply a
subset of vertices of the original graph. In binary coding this translates to the binary
string x. The coordinates of the ambient space are labeled by edges of the coned graph
for CUT(Ĝ) and by subsets B with |B| ≤ 2 for the marginal polytope. The bijection
is the map that sends the edge to its set of vertices, intersected with {1, . . . , n}. The
following example should illustrate this.

Example 2.4.3. Consider the case n = 2 and let D = {{1} , {2} , {1, 2}}. The
marginal polytope, represented with the vectors fD of this model is the 3-simplex with
coordinates

(2.71)

f(00) = (0, 0, 0),

f(10) = (1, 0, 1),

f(01) = (0, 1, 1),

f(11) = (1, 1, 0).

The coned graph is a triangle, the full graph of 3 nodes. We order the coordinates as
{1, 2} , {1, 3} , {2, 3}. The distinct cuts can be labeled by ∅, {1} , {2} , {1, 2}, resulting
in cut vectors

(2.72)

χ(∅) = (0, 0, 0),

χ({1}) = (1, 1, 0),

χ({2}) = (1, 0, 1),

χ({1, 2}) = (0, 1, 1).

Remark 2.4.4 (Complexity). The realization of CUT-polytopes as marginal poly-
topes highlights the high complexity of this class of polytopes. In [DL97] it is shown
that the problem of deciding whether a given point µ is an element of the CUT-polytope
is NP-complete, as is enumerating the facets. Therefore one can not hope to find
simple answers to decidability questions on the marginal polytope in general. If one
restricts to subclasses, improvements are possible and the cited book (to a large extent)
contains results in this direction.

Remark 2.4.5. The equivalence of marginal polytopes of graphical models, and
CUT-polytopes of the corresponding coned graphs, is known to some extend in the
literature on Markov random fields. For instance in [SJ08], constraints on the marginal
polytope are found by iteratively projecting it to the CUT-polytope. This can be used
to show upper bounds on the log-partition function. In [WJ03] the marginal polytope
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is discussed in connection to inference algorithms. Maximum-a-posteriori estimation
can be seen as a linear program over the marginal polytope.

Concluding our section on different representations of marginal polytopes, based
on the basis of products

∏
i∈B xi that was discussed in Section 2.1.1, we can find

another class of known polytopes. Again, let D be any collection of sets. Let B ⊆ N
be arbitrary, we define the inclusion vector of B with respect to D as

(2.73) cD(B) := (cD(B))D∈D where cD(B) :=

{
1 if D ⊆ B,
0 otherwise.

The inclusion polytope is defined as the convex hull of all possible inclusion vectors.

(2.74) CD := conv {cD(B) : B ⊆ N} .

The correlation polytope COR(N) of [DL97] is found included in this definition if
we set D = {B ⊆ N : |B| ≤ 2}. There exists an affine equivalence between COR(N)
and CUT(KN+1) called the covariance mapping. It can be seen that this mapping
generalizes to a mapping between binary marginal polytopes and the corresponding
inclusion polytopes. In this sense, the parity representations FD of binary marginal
polytopes form a generalization of CUT-polytopes to arbitrary simplicial complexes.

2.4.2. Binary Marginal Polytopes and Linear Codes. The starting point
for this section is the simple observation that the vertices of binary marginal polytopes
form a linear code when represented as in the previous section. To this end we make
an additional assumption on the sets D. From now on, D shall always contain all
atoms {i} ∈ D. Firstly we recall few definitions from coding theory. For a detailed
introduction see for instance [van99]. The material presented here is joint work with
Walter Wenzel and Nihat Ay and appeared in [KWA09].

Consider the finite field F2 = ({0, 1} ,⊕,�) with addition and multiplication mod 2.
In coding theory, one studies particularly vector spaces over this field.

Definition 2.4.6. A binary [r, s]-linear code is a linear subspace L of Fr2 such that
dimL = s. Two codes are called equivalent if one can be transformed into the other
by applying a permutation on the positions in the codewords, and for each position a
permutation of the symbols. A generator matrix G for L is a (s× r)-matrix that has
as its rows a basis of L. Given L, one can find an equivalent code such that it has a
generator matrix in standard form, i.e. G = (Es, H), where Es is the (s× s)-identity
matrix.

The following proposition states that the vertices of FD form a linear code for any
D ⊆ 2N . A special case of this connection has been mentioned in Example 2 of [WJ03].
In the following, whenever an ordering of D is required we silently assume that the
atoms {i} ∈ D come first. This assumption gives generator matrices in standard form.

Proposition 2.4.7. Let {0, 1}D be considered as a vector space over the finite field
F2. Then the vertices fD(x) form a linear subspace. If we consider X = FN2 as a vector
space over F2, then the mapping x 7→ fD(x) is an injective homomorphism of vector
spaces. Its image forms a [|D| , n]-linear code, and a generator matrix in standard form
has as its rows the vectors fDei

for i = 1, . . . , N , where ei is the i-th unit vector in FN2 .

Proof. The parity function is additive mod 2. Since scalar multiplication is trivial,
we only need to show

(2.75) fD(x⊕ y) = fD(x)⊕ fD(y) for x, y ∈ X .
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Let B ∈ D, it suffices to show the identity for a single fB. To do so, introduce

(2.76)

M := {i ∈ B : (xi = 1 ∧ yi = 0) ∨ (xi = 0 ∧ yi = 1)} ,
Mx := {i ∈ B : xi = 1} ,
My := {i ∈ B : yi = 1} .

Then fB(x ⊕ y) = |M |, fB(x) = |Mx|, and fB(y) = |My|. We find that M is the
symmetric difference of Mx and My:

(2.77) M = Mx 4My.

Since |Mx 4My| = |Mx|+ |My| − 2 |Mx ∩My|, we have that in F2

(2.78) |M | = |Mx| ⊕ |My| ,

and therefore (2.75) holds. To see that fD is injective, assume that fD(x) = fD(y).
Since D contains all atoms {i} ⊆ N , we get for every i ∈ N : f{i}(x) = f{i}(y). This
implies xi = yi, and hence, x = y. Since X considered as an F2 vector space has
dimension n, also fD(X ) has dimension n and therefore forms an [D, n]-linear code. �

Every binary hierarchical model gives a linear code. In the following, we elaborate
on a kind of reversal of Proposition 2.4.7. The points forming a linear code, when
embedded into some Euclidean space, give an exponential family as in Chapter 1; they
are a point configuration. When does there exist a hierarchical model defining the
polytope at hand? This is the case “as soon as the number of parameters is right”:
Let 2n ≥ s ≥ n. Assume we are given an [s, n]-linear code. Without loss of generality,
we assume that it has a generator matrix in standard form. We construct a collection
D from the columns of the generator matrix. Since D is a set, while the columns are
a list, repetitions of columns are lost. The codewords are given by the vertices of
FD. Let En ∈ Fn×n2 denote the identity matrix in dimension n. Assume the generator
matrix G = (En, H) ∈ Fn×s2 has no two identical columns, implying s ≤ 2n. Denote by
{ei : i = 1, . . . , n} the canonical basis of Fn2 . Using the columns of H, we define sets

(2.79) Bj := {i ∈ [n] : Hij = 1} , j = 1, . . . , s− n
and then,

(2.80) D := {{1} , . . . {n} , B1, . . . , Bs−n} .
Note that the elements of D are numbered in a natural way such that we can use D as
an index set for the columns of G = (Gi,B)i=1,...,n, B={1},...,{n},B1,...,Bs−n

.
To see that

{
fD(ei) : i = 1, . . . , n

}
is the set of rows of the generator matrix we

evaluate

(2.81) fB(ei) = δ{i∈B} = Gi,B,

which holds by definition of the Bj . Summarizing, every binary linear code (in standard
form) corresponds to a collection D ⊆ 2N . However, two codes that differ only in
repetitions of columns in the generator matrix are mapped to the same collection. Then,
if D is a simplicial complex, the linear code is the linear code of a binary hierarchical
model.

2.4.3. Classification of full-dimensional code polytopes. As we have seen,
the polytopes FD are full-dimensional polytopes such that the vertices form a linear
code. In the following, we classify all polytopes with this property. For a convex
polytope P , let V (P ) denote the vertex set of P . For n ∈ N we denote Cn := [0, 1]n,
unit cube and Wn := {0, 1}n = V (Cn). its vertices. Hence (Wn,⊕) is an Abelian group
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that is canonically isomorphic to (Fn2 ,⊕). We consider Wn as a subset of Rn and write
“⊕” whenever we mean addition modulo 2, while “+” means ordinary addition in Rn.

In the following, we develop an algorithm that determines inductively all polytopes
P ⊆ Rn with V (P ) ⊆Wn satisfying the following conditions:

(I) (V (P ),⊕) is a subgroup of (Wn,⊕).
(II) P has dimension n.

The number of vertices of such a polytope is a power of two. Of course, Cn satisfies (I)
and (II), but there are no further such polytopes when n = 1 and n = 2. For n = 3,
the 3-dimensional regular simplex S with

(2.82) V (S) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
satisfies (I) and (II), too. More generally, by [Wen06, Theorem 2.2], we have

Proposition 2.4.8. For n ≥ 3, the following statements are equivalent:
(1) (Wn,⊕) contains some subgroup U such that conv(U) is a regular simplex of

dimension n.
(2) n+ 1 is some power of 2.

In the case n = 3, the 3-cube, as well as the regular simplex mentioned above, are
the only polytopes satisfying conditions (I) and (II). Note that also

(2.83) {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)}
determines a subgroup of (W3,⊕); however, its convex hull has dimension two. For
fixed n ≥ 2, define the bijections π0 : Rn × {0} → Rn and π1 : Rn × {1} → Rn by

(2.84)
π0(x1, . . . , xn, 0) := (x1, . . . , xn),

π1(x1, . . . , xn, 1) := (x1, . . . , xn).

For 1 ≤ i ≤ n put

(2.85)
Hi := {(x1, . . . , xn) ∈ Rn : xi = 0} ,

H ′i :=
{

(x1, . . . , xn) ∈ Rn : xi =
1
2

}
.

Moreover, let z :=
(

1
2 , . . . ,

1
2

)
denote the center of Cn. To determine recursively all

0/1-polytopes P ⊆ Rn that fulfill (I) and (II), we prove

Proposition 2.4.9. Suppose that n ≥ 2 and that P ⊆ Rn is a 0/1-polytope
satisfying (I) and (II). Assume that (U,⊕) is a subgroup of (V,⊕) := (V (P ),⊕) with
|V : U | = 2. Then the following statements are equivalent:

(i) The polytope Q ⊆ Rn+1, given by

(2.86) Q = conv(π−1
0 (U) ∪ π−1

1 (V \ U)),

has dimension n+ 1.
(ii) There does not exist an index i with 1 ≤ i ≤ n such that U ⊆ Hi. In other

words, none of the affine hyperplanes H ′i separates conv(U) and conv(V \ U).
(iii) One has z ∈ conv(U) ∩ conv(V \ U).
(iv) One has conv(U) ∩ conv(V \ U) 6= ∅.

Proof. (i) ⇒ (ii): Suppose that U ⊆ Hi holds for some i with 1 ≤ i ≤ n. Put

(2.87) H̃ :=
{

(x1, . . . , xn, xn+1) ∈ Rn+1 : xn+1 = xi
}
.

Since P = conv(V ) has dimension n and since |V : U | = 2, we must have xi = 1
whenever (x1, . . . , xn) ∈ V \ U . This means that V (Q), and hence also Q, is contained
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in the n-dimensional hyperplane H̃, in contradiction to (i).
(ii) ⇒ (iii): For 1 ≤ i ≤ n, let αi : Fn2 → F2 denote the linear map given by
αi(x1 . . . , xn) := xi. By assumption, αi�U is surjective for 1 ≤ i ≤ n. Hence we have

(2.88) |{u ∈ U : αi(u) = 0}| = |{u ∈ U : αi(u) = 1}| for 1 ≤ i ≤ n.
This means that

(2.89) z =
1
|U |

∑
u∈U

u ∈ conv(U).

Now fix v1 ∈ V \ U , since V \ U = {v1 ⊕ u : u ∈ U}, we get also

(2.90) |{v ∈ V \ U : αi(v) = 0}| = |{v ∈ V \ U : αi(v) = 1}| for 1 ≤ i ≤ n,
and hence

(2.91) z =
1

|V \ U |
∑

v∈V \U

v ∈ conv(V \ U).

(iii) ⇒ (iv) is trivial.
(iv) ⇒ (i): Consider the projection π : Rn+1 → Rn given by

(2.92) π(x1, . . . , xn, xn+1) = (x1, . . . , xn).

Suppose that the assertion is wrong; hence Q is contained in some n-dimensional
homogeneous hyperplane G ⊆ Rn+1. Since

(2.93) π(V (Q)) = U ∪̇(V \ U) = V,

the polytope Q has the same dimension as P = conv(V ), that is n. Thus, the
restriction π�G is a linear isomorphism from G onto Rn, and there exists some R-linear
map α : Rn → G satisfying

(2.94) (α ◦ π)(w) = w for all w ∈ G.
By definition of V (Q), this means:

(2.95)
α(U) = π−1

0 (U),

α(V \ U) = π−1
1 (V \ U).

Hence, α(conv(U)) = conv(α(U)) and α(conv(V \ U)) = conv(α(V \ U)) are linearly
separated by the affine hyperplane

(2.96) K :=
{

(x1, . . . , xn, xn+1) ∈ Rn+1 : xn+1 =
1
2

}
.

By (iv) this is impossible. �

Example 2.4.10. We investigate the statement of Proposition 2.4.9 for polytopes
corresponding to an arbitrary collection D. Consider the matrix that has as its rows
the vectors fD(x), where D = 2[N ] \ {∅}. The rows are labeled by the binary strings of
length N , that is by X , while the columns are indexed by the nonempty subsets of [N ].
Therefore the rows of this matrix are the coordinates of the vertices of a simplex:

x {1} · · · {N} {1, 2} · · · {1, 2, 3} · · · [N ]
(00 . . . 0) 0 · · · 0 0 · · · 0 · · · 0
(00 . . . 1) 0 · · · 1 f{1,2}(x) · · · f{1,2,3}(x) · · · f[N ](x)

...
... · · ·

...
... · · ·

... · · ·
...

(11 . . . 1) 1 · · · 1 f{1,2}(x) · · · f{1,2,3}(x) · · · f[N ](x)
We note the following facts:
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• The columns of this matrix are indexed by the 2N − 1 nonzero, binary strings
of length N .
• There are 2N − 1 subgroups U of index 2 of the N -cube, which correspond to

the columns of the matrix. To define them let a column with label B, say,
be fixed and put U := {x ∈ X : fB(x) = 0}. The maps fB : X → {0, 1} are
exactly the 2N − 1 surjective homomorphisms having the nontrivial subgroups
as their kernels.
• The vertices of every polytope FD are given by the rows of this matrix after

deleting columns that correspond to sets not in D.
• In particular, by restriction to the first N columns, we get the vertices of the
N -cube, corresponding to the binary independence model.

Now, assume that P is the N -cube. We choose a column of the matrix, corresponding to
a subgroup of index 2. There are two possibilities. If we choose a column corresponding
to an atom, then (ii) is wrong, the dimension does not grow when adding this column
to the coordinates (as we have doubled a coordinate). If, on the other hand, we choose
a column corresponding to a set B with cardinality two or more, then we are in the
situation of Proposition 2.4.9, since (ii) holds. The lift (2.86) is full-dimensional, and
its vertices are given by the submatrix with columns {1} , . . . , {N} , B. Continuing
from here, choosing another subgroup, the dimension grows if and only if it does not
correspond to one of the sets {1} , . . . , {N} , B. Iteratively, the choices narrow down,
and finally, when all columns have been chosen, the polytope Q is a simplex.

We formalize this procedure now. For fixed polytope P as in Proposition 2.4.9, put

(2.97) Ui := V (P ) ∩Hi for 1 ≤ i ≤ n.
Conditions (I) and (II) imply that |V (P ) : Ui| = 2, whenever 1 ≤ i ≤ n. Based on
the equivalence of (i) and (ii) in Proposition 2.4.9, we are now able to prove that the
following algorithm yields recursively all 0/1-polytopes satisfying (I) and (II).

Algorithm 2.4.11.
Initialization for n = 1:

• P1 := {[0, 1]}.
Step n→ n+ 1: Based on Pn construct a new set Pn+1 consisting of all polytopes Q
such that there exists P ∈ Pn with

• Q = P × [0, 1] or
• Q ⊆ Rn+1 with

(2.98) V (Q) = π−1
0 (U) ∪ π−1

1 (V (P ) \ U),

where U runs through all subgroups of (V (P ),⊕) with |V (P ) : U | = 2 and
U 6= Ui for 1 ≤ i ≤ n.

In the case Q = P × [0, 1], the number of vertices is doubled, while in the other
cases the number of vertices of Q equals the number of vertices of P . The two possible
operations commute in the following sense. Starting from some cube Wn, lifting it to
Wn+1 and then choosing a subgroup U to apply the lift (2.98) gives the same polytope
as choosing the subgroup π(U) from Wn and then taking the prism over the lifted
polytope, where π : Rn+1 → Rn is the canonical projection. Therefore, all polytopes
that are constructed by the algorithm can be thought of as lifted cubes Wn. The
classification is complete with:

Theorem 2.4.12. For all n ∈ N, the set Pn in Algorithm 2.4.11 consists of all
n-dimensional 0/1-polytopes that satisfy conditions (I) and (II).
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Proof. First we show that all polytopes Q ∈ Pn+1 satisfy conditions (I) and (II),
with n replaced by n + 1. This is clear in the case of the prism Q = P × [0, 1]. If
Q satisfies (2.98), then clearly (V (Q),⊕) is a subgroup of (Wn+1,⊕), because U is a
subgroup of (V (P ),⊕) with |V (P ) : U | = 2. Moreover, (ii) ⇒ (i) in Proposition 2.4.9
implies that Q has dimension n+ 1, because U 6= Ui for 1 ≤ i ≤ n. Hence, Q satisfies
conditions (I) and (II).

Vice versa, assume that Q ⊆ Rn+1 fulfills (I) and (II). Consider again the projection
π : Rn+1 → Rn onto the first n coordinates, and put P := π(Q). Since Q has
dimension n + 1, P has dimension n. If π�V (Q) is not injective, then Q is the prism
P × [0, 1], because (V (Q),⊕) is a subgroup of (Wn+1,⊕). If π�V (Q) is injective, put

(2.99) U := {(x1, . . . , xn) ∈ V (P )|(x1, . . . , xn, 0) ∈ Q} .
Then (U,⊕) is a subgroup of (V (P ),⊕) with |V (P ) : U | = 2, because Q has dimen-
sion n + 1. Moreover, equation (2.98) holds for U as just defined. Finally, Proposi-
tion 2.4.9, (i) ⇒ (ii) shows that U 6= Ui for 1 ≤ i ≤ n. Hence, our algorithm includes
the determination of Q. �

As a first application of Theorem 2.4.12 we can count the number of n-dimensional
polytopes that satisfy conditions (I) and (II). Let cn := |Pn|. For 1 ≤ k ≤ n,
let cn(k) denote the number of all 0/1-polytopes P ⊆ Rn with |V (P )| = 2k that
satisfy (I) and (II). Then one has

(2.100) cn =
n∑
k=1

cn(k).

We have cn(k) = 0 for 2k ≤ n, because a polytope with at most n vertices cannot
have dimension n. Clearly cn(n) = 1 for all n ∈ N. As mentioned already in Example
2.4.10, a 0/1-polytope that satisfies (I), (II), and |V (P )| = 2k, has among its vertices
exactly 2k − 1 subgroups of index 2. Hence by ignoring the groups Ui = V (P ) ∩Hi for
1 ≤ i ≤ n, we get

Corollary. For k ≤ n < 2k one has

(2.101) cn+1(k) = cn(k − 1) + cn(k)(2k − n− 1).

The first few values for cn(k) are given in the Table 1. It is easy to compute this

n \ k 1 2 3 4 5 6 7 8 cn

1 1 1
2 0 1 1
3 0 1 1 2
4 0 0 5 1 6
5 0 0 15 16 1 32
6 0 0 30 175 42 1 248
7 0 0 30 1605 1225 99 1 2960
8 0 0 0 12870 31005 6769 219 1 50864

Table 1. The number of n-dimensional 0/1-polytopes with 2k vertices
that form a group.

number also for larger values of n. For instance

(2.102)
c28 = 718897730072178204358180468879825453986397667929112558174208,

c100 ≈ 2.77 · 10644.
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Using the Corollary we can show that among the full-dimensional 0/1-polytopes with
2k vertices the convex hulls of linear codes are exceptional. For 1 ≤ k ≤ n, let dn(k)
denote the number of all 0/1-polytopes with 2k vertices satisfying only condition (II).
Hence dn, the number of all 0/1-polytopes of dimension n trivially satisfies

(2.103) dn ≥
n∑
k=1

dn(k).

Moreover, we get

Proposition 2.4.13. (i) For 4 ≤ n < 2k < 2n, one has

(2.104) dn(k) ≥ 2k(2n − 2k)cn(k) > n2n−1cn(k).

(ii) We have

(2.105) lim
n→∞

cn
dn

= 0.

Proof. (i): Suppose that U is a proper subgroup of (Wn,⊕) with dim(conv(U)) =
n and |U | = 2k. If U ′ is another subgroup of (Wn,⊕) with |U ′| = |U |, then we have

(2.106)
∣∣U ∩ U ′∣∣ ≤ 2k−1 < 2n−1,

and hence,

(2.107)
∣∣U \ U ′∣∣ ≥ 2k−1 >

n

2
≥ 2.

This means

(2.108)
∣∣U \ U ′∣∣ ≥ 3.

There are 2k(2n − 2k) subsets V of Wn with |V | = 2k and |V \ U | = |U \ V | = 1;
namely, these are all sets of the form

(2.109) V = (U \ {u0}) ∪ {v0} with u0 ∈ U, v0 ∈Wn \ U.
For V as in (2.109), we get dim(conv(V )) = n, because otherwise, U \ {u0} would be
contained in a unique hyperplane H with v0 ∈ H, a contradiction to v0 /∈ U . Together
with (2.108), we obtain the first inequality in (2.104). The second one is trivial in view
of 2k ≤ 2n−1.
(ii): By (2.100), (2.103), and (2.104) we get for n ≥ 4:

(2.110)

cn
dn
≤ 2

cn − 1
dn − 1

≤ 2

(
n−1∑
k=1

cn(k)

)(
n−1∑
k=1

dn(k)

)−1

≤ 2(n2n−1)−1 =
22−n

n
.

This proves the second statement. �

2.5. Support Sets and Neighborliness

In this final section on marginal polytopes we will deduce another corollary of
Theorem 2.3.5, this time as a statement about marginal polytopes and support sets of
hierarchical models. Before that we show an explicit example where knowledge about
the marginal polytope allows determination of the complete face lattice, and thus all
support sets of the corresponding hierarchical model.
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Example 2.5.1 (Supports in the binary no-n-way interaction model). We consider
the binary hierarchical model whose simplicial complex is the boundary of an n-simplex.
If n = 3, this model is called the no-3-way interaction model and its Markov bases
have been recognized to be arbitrarily complicated [LO06], so we cannot hope to find
an easy description of the oriented circuits. However, if we restrict ourselves to binary
random variables x = (xi)ni=1 ∈ X := {0, 1}n, the structure is very simple. In this case
the exponential family is of dimension 2n − 2, i.e. of codimension 1 in the simplex, so
kerA is one-dimensional. It is spanned by the “parity function”:

(2.111) e[n](x) :=

{
−1 if

∑n
i=1 xi is odd,

1 otherwise.

This vector is also the (up to sign) unique elementary circuit of kerA. Using The-
orem 1.3.13 we can describe the face lattice of the marginal polytope (i.e. convex
support) P (n−1): A set Y ( {0, 1}n is a support set if and only if it does not contain
all configurations with even parity, or all configurations with odd parity. Recall that a
polytope is called k-neighborly if the convex hull of any k or less vertices is a face of
the polytope. It can be seen that no d-polytope apart from the simplex is more than
bd2c-neighborly. Therefore a polytope, achieving this bound is simply called a neighborly
polytope. It follows that P (n−1) is neighborly, since no set of cardinality less than 2n−1

can contain all configurations with even or odd parity. We can easily count the support
sets by counting the nonfaces of the corresponding marginal polytope, i.e. all sets Y
that contain either the configurations with even parity, or the configurations with odd
parity. Let sk be the number of support sets of cardinality of k, i.e. the number of
faces with k vertices. It is given by:

(2.112) sk =
(

2n

k

)
− 2
(

2n−1

k − 2n−1

)
,

where we adopt the convention that
(
m
l

)
= 0 if l < 0. Since this polytope has only one

affine dependency (2.111), which includes all the vertices, we see that it is simplicial,
i.e. all its faces are simplices. It follows that fk, the components of the f -vector, are
given by fk = sk−1. Neighborliness of marginal polytopes is discussed in Section 2.5.1
and is the topic of [Kah10b].

Altogether we have determined the face lattice of the polytope, which means that
we know the “combinatorial type” of the polytope. It turns out that the face lattice
of P (n−1) is isomorphic to the face lattice of the (2n − 2)-dimensional cyclic polytope
with 2n vertices.

2.5.1. Neighborliness of Marginal Polytopes. The following is a main result
of this thesis.

Theorem 2.5.2. Let g be the minimal cardinality among the nonfaces of ∆.
Geometric Formulation: The marginal polytope is 2g−1 − 1 neighborly.
Probabilistic Formulation: Every distribution p with |supp(p)| < 2g−1 is

contained in E∆.

Proof. The probabilistic formulation is easy to see. Just observe that by Theo-
rem 2.3.5 each monomial appearing in the set of generators

{
pm

+ − pm− : m ∈M
}

has cardinality of its support bounded from below by 2g−1. Therefore a p with
|supp(p)| < 2g−1 must fulfill the defining equations trivially. The geometric formula-
tion is immediate by Theorem 1.2.14. �
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Remark 2.5.3 (The bound is sharp). On first sight one would maybe expect a better
neighborliness property in the nonbinary cases, for instance if every random variable is
ternary. However, one can see that the bound is sharp. Already for the “no-three-way-
interaction” model with ternary random variables, given by N = {1, 2, 3} ,Xi = {0, 1, 2}
for i = 1, 2, 3 and ∆ = {B ⊆ {1, 2, 3} : |B| ≤ 2}, one has square-free generators of
degree 4. They can be computed with 4ti2 [4ti207] or looked up in the MBDB, as
described in Section 2.3.3. Then a p that is nonzero exactly on the positive support is
a counterexample for any improvement of Theorem 2.5.2.

Remark 2.5.4 (Maximizing multi-information). The multi-information is an
entropic quantity that generalizes mutual information to more than two random
variables. Denoting H(p) := −

∑
x∈X p(x) log p(x) the entropy of p, and Hi(p) :=

−
∑

x∈Xi
p{i}(x) log p{i}(x) the marginal entropy for i ∈ N , it is defined as

(2.113) M(p) :=
∑
i∈N

Hi(p)−H(p).

It can be seen that this function is exactly the Kullback-Leibler divergence D(p ‖
E1) := minq∈E1 D(p ‖ q) of p from the family E1. An interesting problem, considered
in [Ay02; AK06], is to maximize the multi-information, or more generally, the divergence
from a given exponential family. In [AK06] all global maximizers in the binary case
are classified giving their support sets, and the question to construct a low-dimensional
family containing all maximizers is raised. It holds that any global maximizer is
supported on two elements only. For a general exponential family E , in Proposition 3.2
of [Ay02] it is shown that any p∗ whose maximum likelihood estimate lies in the open
family E and which locally maximizes D(p ‖ E) satisfies

(2.114) |supp(p∗)| ≤ dim(E) + 1.

In [Mat07] it was shown that the first condition, that p∗ has a maximum likelihood
estimate with full support, is not needed. Now, let ∆k := {B ⊆ N : |B| ≤ k} denote
the uniform simplicial complex of order k, then we can deduce a minimal k∗, such
that E∆k

contains all local maximizers. Construction of such low-dimensional families
can be interesting in the modeling of cognitive systems using information theory. By
Theorem 2.5.2 we find

Corollary. Any local maximizer of M is contained in the closure of the uniform
hierarchical model of order k∗ ≥ log2(dim(E) + 2).

Note that for the multi-information in the binary case we have dim(E1) = n. The
problem of understanding local and global maximizers of information divergence is not
solved, but recently there has been significant progress, see [Mat07; Rau09].





CHAPTER 3

Primary Decomposition of Binomial Ideals

3.1. Solutions of Polynomial Equations

Hierarchical models are defined by binomial prime ideals. A consequence of this is
that they admit nice parameterizations and can be seen as manifolds with boundary.
Not every statistical model has this property. Here we discuss algebraic techniques to
treat the support set problem for models that are initially defined by binomial equations,
such as (saturated) conditional independence (CI) models. A typical phenomenon for
such models is that dimension varies locally. The technique of primary decomposition
allows to write a reducible variety as the union of irreducible ones. It does even more
than this geometric operation. It decomposes the defining ideal in terms of primary
ideals and thereby, geometrically, decomposes the scheme of I into its parts. For
statistical interpretations the additional information that a scheme carries, compared
to a variety, is usually not used. It is therefore natural to expect that ideals in algebraic
statistics are radical ideals or can be replaced by their radicals. A recent conjecture
in [ESU10] goes in this direction. There certain stochastic processes are defined through
binomial ideals and it is conjectured that these ideals are radical. This would imply
a minimality of description as no additional algebraic information is contained. The
conjecture turns out to be false as we will see in Section 3.3.

The main content of this chapter is a description of the Macaulay 2 [GS; EGSS01]
package Binomials, which is the first implementation of specialized algorithms for
binomial ideals. This package achieves significant speed-ups over general purpose
implementations. As a warm-up the reader is invited to review some basics of solving
systems of polynomial equations in the following section.

3.1.1. Some Commutative Algebra. Linear Algebra gives a complete answer
to the problem of solving systems of linear equations and describing the geometry of
the set of solutions. Primary decomposition strives to achieve the same for polynomial
equations of arbitrary degree. Varieties, the sets of solutions of polynomial systems,
have a very sophisticated structure. The most prominent features, distinguishing
them from smooth manifolds, are the possible presence of singularities and that the
dimension is not a global invariant anymore, it is a local property. This is one of the
reasons why it is not generally possible to parametrize the solutions of a polynomial
system continuously.

We establish primary decomposition as an approximation to solving systems of
polynomial equations. Consider a polynomial ring in n indeterminates: S := k[x] :=
k[x1, . . . , xn], where k is a field. An ideal I ⊆ S is an additive subgroup of S that
is closed under multiplication with ring elements IS ⊆ I. Hilbert’s Basis Theorem
guarantees that every ideal in S is finitely generated, meaning that their exist finitely
many polynomials f1, . . . , fs, such that

(3.1) I = 〈f1, . . . , fs〉 :=

{
s∑
i=1

gifi, g1, . . . , gs ∈ S

}
.
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The polynomials fi need not be unique and not even their number is constant over
different generating systems. In a certain sense nice systems of generators are offered
by Gröbner bases [CLO96]. The variety of I, denoted V (I), is the set of common zeros
of I.

(3.2) V (I) := {x ∈ kn : f(x) = 0,∀f ∈ I} .
Conversely, given a set V ⊆ k

n, we define

(3.3) I(V ) := {f ∈ S : f(x) = 0,∀x ∈ V }
the ideal of V . It is easy to see that I(V ) is in fact an ideal. A variety in k

n is called
irreducible if it is not the union of two proper subvarieties.

Example 3.1.1. Consider, for fixed p, q ∈ C, the principal ideal

(3.4) I = 〈x2 + px+ q〉 ⊆ C[x].

Its variety consists of the two points V (I) =
{
−p

2 ±
√

p2

4 − q
}

. As each point is the

solution of a linear equation this variety is reducible. It is instantly visible that the
definitions of variety and reducibility depend on the field.

It is often convenient to describe varieties using the ring of polynomial functions
defined on them, the coordinate ring . It is given by the quotient (of Abelian groups)
S/I. Properties of ideals often give dual properties of the coordinate ring and vice
versa. S/I has the structure of an S-algebra, in particular it is an S-module [Hun74].
The geometry of the variety can be studied in terms of properties of S/I. A zerodivisor
in any commutative ring R is an element r ∈ R such that there exists a nonzero s ∈ R
with rs = 0. For radical ideals, zerodivisors in S/I indicate that V (I) is not irreducible.
This means that we find two nonzero polynomial functions such that their product is
zero. This can happen if the variety consists of two “parts” and each polynomial is
nonzero only on one of the parts. In the case of a general ideal, its variety is irreducible
if each zerodivisor f is nilpotent, that is, a power of f vanishes. It is visible here that
ideals encode more information than just the variety. The geometric object described
by an ideal in a commutative ring (with unity) is that of a scheme [EH01].

The algebraic way to remove zerodivisors in S/I is to enlarge I and thereby “putting
the zerodivisors to zero”. The geometric intuition here is to remove a part of the variety
where the zerodivisor takes nonzero values and thus approximate irreducible parts
of V (I). For an ideal I ⊆ S, and f ∈ S/I, we define the ideal (I : f) := {g ∈ S : fg ∈ I}.
Again, we have to take care of the case that I is not radical. In this case f might
still be a zerodivisor. We define (I : f∞) := {g ∈ S : fng ∈ I, n ∈ N}. This definition
makes sense since S is Noetherian and the chain of ideals

(3.5) I ⊆ (I : f) ⊆ ((I : f) : f) ⊆ (((I : f) : f) : f) ⊆ . . .
becomes stationary at some point. It is visible that f is a nonzerodivisor if and only
if (I : f) = I. Let us define ideals with certain restrictions on zerodivisors in the
respective coordinate rings. An ideal I is maximal if S/I is a field. An ideal P is prime
if S/P has no zerodivisors: (P : f) = P for all f ∈ S/P . It is called primary if in S/P
every zerodivisor is nilpotent. In Definition 3.2.2 we will define cellular ideals, which
also fit into this hierarchy.

The varieties of prime and primary ideals are irreducible. We say that a prime P
is associated to I if there exists f ∈ S such that (I : f) = P . The intuition here is
that the irreducible variety of P forms part of the variety of I. It can be seen that
each ideal has a finite nonempty set of associated primes, denoted Ass(S/I). The
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associated primes can be contained in each other and thus form a poset. The minimal
elements are called minimal primes, the remaining elements are called embedded as
their varieties are contained in the varieties of the minimal primes. The radical of I
is the intersection of its minimal primes Rad(I) :=

⋂
{P : P minimal over I}. The

radical of a primary ideal Q is a prime ideal P = Rad(Q) with the same variety. The
prime contains only the geometric information about the variety, forgetting about
the scheme of Q. A foundational theorem states that, over algebraically closed fields
radical ideals and varieties are in 1:1 correspondence:

Theorem 3.1.2 (Hilbert’s Nullstellensatz). In polynomial rings over algebraically
closed fields, for any ideal I:

(3.6) I(V (I)) = Rad(I)

The main result for analyzing solutions of polynomial systems is:

Theorem 3.1.3. Every ideal I ⊆ S is the intersection of finitely many primary
ideals,

(3.7) I = Q1 ∩Q2 ∩ . . . ∩Qr,
where the primes Pi = Rad(Qi) are distinct, unique, and associated to I. The primary
ideals corresponding to minimal primes are unique.

Example 3.1.4. We consider polynomial systems given through conditional inde-
pendence statements. Recall Definition 2.2.13 where we defined equations given by
CI-statements. A CI-ideal is an ideal defined through equations of the form (2.43).
Let C = {Ai ⊥⊥ Bi |Ci : i ∈ [r]} be a collection of CI-statements, each defining a prime
ideal IAi⊥⊥Bi |Ci

in the polynomial ring k[px : x ∈ X ]. The CI-ideal associated with the
collection is the sum of these ideals

(3.8) IC := IA1⊥⊥B1 |C1
+ · · ·+ IAr⊥⊥Br |Cr

.

A longer discussion on the subject can be found in [DSS09; Stu02].
Consider three binary random variables X1, X2, X3. The polynomial ring is given

by k[p111, p112, p121, p122, p211, p212, p221, p222]. The conditional independence ideal of
the statement X1 ⊥⊥ X2 |X3 is the binomial ideal

(3.9) IX0⊥⊥X1 |X2
= 〈p111p221 − p121p211, p112p222 − p122p212〉 .

In contrast to that, the independence X1 ⊥⊥ X2 is given by the principal ideal

(3.10) IX0⊥⊥X1 = 〈(p111 + p112)(p221 + p222)− (p211 + p212)(p121 + p122)〉 .
A typical task, solvable by primary decomposition, is to describe, interpret, and
parametrize the sets of solutions of these equations. Thus CI-ideals are a natural place
to apply primary decomposition, and first results, supported by computations with
Binomials, have already emerged [HHH+10; Fin09].

3.1.2. Support Sets and Primary Decomposition. Let I be a binomial ideal,
for instance the CI-ideal in (3.9). The varieties of binomial ideals have special features,
each of them posses a prime component given by the toric ideal (I : (

∏n
i=1 xi)

∞).
This is the only component whose variety can contain strictly positive probability
distributions. For studying its support sets, the theory of Chapter 1 applies. Any other
primary component contains monomials pm, and thus its variety is a strict subset of
the union of the coordinate planes in Cn. Probability distributions in these components
must have zeros. After having restricted to a subset of variables of the polynomial
ring, the situation is essentially the same as for the toric component. This is one of
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the main results of [ES96], each associated prime of a binomial ideal, after a change of
coordinates, is a toric ideal. For this reason we are facing two layers of the support set
problem when dealing with statistical models defined through not necessarily prime
binomial ideals. Apart from studying the geometry of the individual components, the
problem considered in Chapters 1 and 2, one has to decompose the variety into its
components first. The second problem is discussed now.

3.2. Specialized Algorithms for Binomial Ideals

3.2.1. Binomial Ideals. In the following we present Binomials, a software pack-
age which provides specialized algorithms for binomial ideals, allowing for a significant
speed-up of common computations like primary decomposition. Central parts of the
implemented algorithms go back to Eisenbud and Sturmfels’ paper [ES96], which
develops the theory of binomial ideals in depth. Surprisingly their algorithms had never
been implemented, but the software described here filled the gap. To demonstrate the
power of our approach we show how Binomials was used to compute primary decom-
positions of commuting birth and death ideals of [ESU10], yielding a counterexample
for a conjecture therein. The material here is also the content of [Kah10a].

A monomial ideal is an ideal generated by monomials, a binomial ideal is one whose
generators can be chosen as binomials. A pure difference binomial ideal is an ideal
whose generators are differences of monic monomials. For monomial ideals, central
concepts like Gröbner bases or primary decompositions can be defined directly on the
exponent vectors of the monomials generating the ideal. In this sense the whole theory
is very combinatorial. For binomial ideals the situation is more complicated, but it
can be turned combinatorial too. Note that any ideal can be written generated by
“trinomials” if one allows additional variables.

Binomial ideals occur in many applications. We have seen toric ideals, which are
binomial prime ideals. They are exactly the defining ideals of toric varieties, given
through their classical definition in [Ful93]. In the previous chapters we have seen
the central role that they play in the description of exponential families. Finitely
generated, affine, commutative semigroup rings are quotients of polynomial rings by
pure difference binomial ideals [MS05, Chapter 7], and in Section 3.3 we will define
commuting birth and death processes, which present an application of binomial ideals
in probability theory.

Consider the polynomial ring S = k[x1, . . . , xn] over a field k of characteristic
zero. In the following, choices for k are the rationals Q, their cyclotomic extensions
Q(ξl), or the complex numbers C. Primary decompositions of binomial ideals are not
necessarily binomial as is easily seen on the ideal 〈x3 − 1〉, which over Q decomposes
as 〈x − 1〉 ∩ 〈x2 + x + 1〉. However, if k is algebraically closed, binomial primary
decompositions exist. The notions here are a bit involved. When speaking of primary
decompositions, in the following we always mean primary decomposition into binomial
ideals, and we have to extend the coefficient field where needed. For our implementa-
tion of primary decomposition we have restricted to pure difference binomial ideals,
where cyclotomic extensions of Q suffice. In many applications it suffices to study
this case. Examples include the semi-graphoid ideal [HMS+08], conditional indepen-
dence ideals [DSS09; Fin09; HHH+10] and defining ideals of commutative semigroup
rings [Gil84]. Throughout we use notation that tries to coincide with that in [ES96].

If one wants to avoid extending the coefficient field, or even stay in the class of pure
difference binomial ideals, coarser decompositions are interesting. We discuss cellular
decompositions in Section 3.2.2 and give a fast algorithm for computing the minimal
primes of a binomial ideal in Section 3.2.4. In Section 3.2.3 we give an algorithm for
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finding the solutions of zero-dimensional pure difference binomial ideals and apply it to
saturation of partial characters. This yields the primary decomposition in Section 3.2.5.
Finally in Section 3.3 we study primary decompositions of commuting birth and death
ideals and give a counterexample to Conjectures 5.3 and 5.9 in [ESU10].

In keeping with the introductory nature of this work, each section contains examples
of how to do the discussed computations with the help of Binomials. These examples are
thought of as a motivation and do not cover all of the functionality that is implemented.
They are produced with version 0.5.4 of Binomials. The reader is encouraged to
download the package, use it, and report experiences to the author. An online help is
integrated. The first example shows how to get started.

Example 3.2.1 (Downloading and using Binomials). Binomials and an auxiliary
package for cyclotomic fields, called Cyclotomic, are separately available under the URL:

(3.11) http://personal-homepages.mis.mpg.de/kahle/bpd/

It is recommended to install the latest version of Macaulay 2 before using Binomials.
To get started, run Macaulay 2, then load the package with
i1 : load "Binomials.m2"

--loading configuration for package "Binomials" from file [...]

--loading configuration for package "FourTiTwo" from file [...]

For Binomials to be loaded, the additional packages FourTiTwo and Cyclotomic are
needed. The first is included in Macaulay 2 as of version 1.2, while the latter can
be obtained together with Binomials. The Macaulay 2 system reports that it loaded
additional configuration files. To make the documentation available the package should
be installed. This can be done via
i2 : installPackage (" Binomials", RemakeAllDocumentation=>true)

After running this, help can be accessed via
i3 : help "Binomials"

which shows an overview of the functionality of Binomials.

3.2.2. Cell Decompositions of Binomial Varieties. Our analysis of a bino-
mial variety starts with the decomposition of kn into the 2n algebraic tori, interior to the
coordinate planes. Each of the coordinate planes is defined by a subset E ⊆ {1, . . . , n}
of the indeterminate’s indices. We denote the algebraic torus corresponding to E by

(3.12) (k∗)E := {(x1, . . . , xn) ∈ kn : xi 6= 0, i ∈ E and xj = 0, ∀j /∈ E} .
Geometrically, for an ideal I ⊆ k[x1, . . . , xn], we study cellular decompositions. Their
components are the intersections of primary components which have generic points in
a given cell (k∗)E . The central definition is

Definition 3.2.2. A proper binomial ideal I in a polynomial ring R, is called
cellular, if each variable of R is either a nonzerodivisor or nilpotent modulo I.

Primary ideals and lattice ideals are cellular. The following explicit representation
of cellular ideals is only a reformulation of the definition but useful in many ways.

Lemma 3.2.3. An ideal I ( R is cellular if and only if there exists a set E ⊆
{1, . . . , n} of variable indices of R such that

(1) I =
(
I : (

∏
i∈E xi)

∞),
(2) For every i /∈ E, there exists a nonnegative integer di such that the ideal〈

xdi
i : i /∈ E

〉
is contained in I.

http://personal-homepages.mis.mpg.de/kahle/bpd/
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We call the set E the cell indices and the variables {xi : i ∈ E}, which are exactly the
nonzerodivisors modulo I, the cell variables. We denote by M(E) the ideal generated
by the noncell variables, i.e. the variables {xi : i /∈ E}. For any vector d = (di)i/∈E of
natural numbers we denote M(E)d :=

〈
xdi
i : i /∈ E

〉
. With this notation, another useful

representation of cellular ideals is given by the following Lemma. In [ES96] the ideal
on the right hand side of (3.13) is denoted I

(d)
E .

Lemma 3.2.4. An ideal I is cellular if and only if there exist a set E ⊆ {1, . . . , n}
and an exponent vector d, such that

(3.13) I =

((
I +M(E)d

)
:

(∏
i∈E

xi

)∞)
.

Radicals of cellular binomial ideals have a nice combinatorial structure, defined
by the set E , and a partial character, which we introduce next. For this let ∅ 6= E ⊆
{1, . . . , n} be any nonempty subset of the indices of variables and define the shorthand
k[E ] := k[xi : i ∈ E ].

Definition 3.2.5. A partial character is a pair (L, σ), consisting of an integer
lattice L ⊆ ZE and a map σ : L → k

∗, that is a homomorphism from the additive
group L to the multiplicative group k

∗. For each integer lattice L ⊆ ZE , we define its
saturation

(3.14) Sat(L) :=
{
m ∈ ZE : dm ∈ L for some d ∈ Z

}
.

A lattice L ⊆ ZE is called saturated if it satisfies Sat(L) = L. A partial character (L, σ)
is called saturated if L = Sat(L), and it is called a saturation of a partial character
(L′, σ′), provided that L = Sat(L′) and σ′(l) = σ(l), ∀l ∈ L′.

Often it is convenient to denote by L an integer matrix having the lattice L as its
right image L :=

{
Lm : m ∈ ZE

}
. Thus, the columns of L span the lattice, and we

abuse notation speaking of the partial character (L, σ) in this case. To each partial
character (L, σ) we associate a lattice ideal :

(3.15) I+(σ) :=
〈
xm

+ − σ(m)xm
−

: m ∈ L
〉
⊆ k[E ].

It can be seen that a lattice ideal is prime if and only if its partial character is saturated,
more generally, all associated primes of a lattice ideal arise from saturations of its partial
character. A nice characterization is, that a proper binomial ideal I ⊆ k[x1, . . . , xn] is
a lattice ideal if and only if I = (I : (

∏n
i=1 xi)

∞). This fact can be used to compute a
minimal generating set of a lattice ideal when only the partial character is given [HM09].

Now, cellular binomial ideals are a generalization of both lattice ideals and primary
ideals. Radical cellular binomial ideals I ⊆ k[x1, . . . , xn] are of the form I = M(E) +
I+(σ) for some partial character (L, σ) on ZE . Now, assuming that k is algebraically
closed, the associated primes of M(E) + I+(σ) are given by

(3.16) Pτ = M(E) + I+(τ),

where τ runs through all saturations of σ. If k is not algebraically closed, it may contain
only some, or even no saturations of (L, σ). In Section 3.2.4 we give an algorithm
that computes the minimal primes of a binomial ideal by directly computing a cellular
decomposition of the radical of I into radical cellular ideals.

If the monomials in a cellular ideal I are of higher order, then we only have
that I ∩ k[E ] is a lattice ideal. However, the associated primes might have partial
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characters supported on different lattices. The key theorem for computing associated
primes of cellular binomial ideals is

Theorem 3.2.6 ([ES96], Theorem 8.1). Let I ⊆ k[x1, . . . , xn] be a cellular binomial
ideal on the cell variables E. Let P = M(E) + I+(σ) be an associated prime of I, then
there exists a monomial xm in the variables not in E and a partial character τ on ZE
whose saturation is σ, such that

(3.17) (I : xm) ∩ k[E ] = I+(τ).

Note that the associated primes of a cellular binomial ideal are cellular binomial
ideals for the same cell variables. To compute them, one only has to consider the
quotients of I modulo the standard monomials in the variables outside E . We want to
point out that it is crucial to have a fast algorithm producing a cellular decomposition
of a given binomial ideal. This is a necessary computation for finding the associated
primes and also the primary components.

We now review an algorithm from [OP00] that is implemented in Binomials. It is
based on the following approximation scheme for ideals in any Noetherian ring:

Lemma 3.2.7 ([ES96], Proposition 7.2). Let I be an ideal in a Noetherian ring S
and g ∈ S such that (I : g) = (I : g∞). Then

(1) I = (I : g) ∩ (I + 〈g〉).
(2) Ass(S/(I : g)) ∩Ass(S/(I + 〈g〉)) = ∅.
(3) A minimal primary decomposition of I consists of the primary components of

(I : g) and those primary components of I + 〈g〉 that correspond to associated
primes of I.

Given any noncellular binomial ideal I, we can find a variable xi that is a zerodivisor
but not nilpotent modulo I. A power s > 0 of that variable satisfies the conditions on
g in Lemma 3.2.7 and we can write

(3.18) I = (I : xsi ) ∩ (I + 〈xsi 〉),

where the ideals on the right hand side are both binomial and properly containing I.
This can be turned into a very simple algorithm for cellular decomposition, which was
formulated in [OP00]. The authors also provided an implementation in Macaulay 2,
parts of which are still used in the Binomials package.

Algorithm 3.2.8 (Cellular Decomposition). Input: I, a binomial ideal.
Output: A cellular decomposition of I.

(1) If I is cellular, return I.
(2) Choose a variable that is a zerodivisor but not nilpotent modulo I.
(3) Determine the power s such that (I : xsi ) = (I : x∞i ).
(4) Iterate with (I : xsi ) and I + 〈xsi 〉.

Step 1 is carried out as follows. First determine the nilpotent variables by checking
for which xi one has (I : x∞i ) = k[x1, . . . , xn]. Denoting the remaining variables’ indices
as E , I is cellular iff

(
I : (

∏
i∈E xi)

∞) = I. Termination of Algorithm 3.2.8 is ensured
since k[x1, . . . , xn] is Noetherian and the two ideals (I : xsi ) and I + 〈xsi 〉 properly
contain I. Correctness follows from Lemma 3.2.7. Note that cellular components of
pure difference binomial ideals are pure difference binomial ideals.

Example 3.2.9 (Cellular Decomposition). We study an ideal from [ES96]. Let
S = Q[x1, . . . , x5] and I = 〈x1x

2
4 − x2x

2
5, x

3
1x

3
3 − x2

4x
4
2, x2x

8
4 − x3

3x
6
5〉.
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i1 : S = QQ[x1 ,x2 ,x3 ,x4 ,x5];

i2 : I = ideal(x1*x4^2-x2*x5^2, x1^3*x3^3-x4^2*x2^4, x2*x4^8-x3^3*x5^6);

i3 : toString BCD I

o3 = {ideal(x1*x4^2-x2*x5^2,

x1^3*x3^3-x2^4*x4^2,

x2^3*x4^4-x1^2*x3^3*x5^2,

x2^2*x4^6-x1*x3^3*x5^4,

x2*x4^8-x3^3*x5^6),

ideal(x1^2,x1*x4^2-x2*x5^2,

x2^5,x5^6,x2^4*x4^2,x4^8)}

i4 : ap = binomialAssociatedPrimes I; toString ap

o4 = {ideal(x1*x4^2-x2*x5^2,

x1^3*x3^3-x2^4*x4^2,

x2^3*x4^4-x1^2*x3^3*x5^2,

x2^2*x4^6-x1*x3^3*x5^4,

x2*x4^8-x3^3*x5^6),

ideal(x2,x5,x4,x1)}

i5 : intersect (ap#0,ap#1) == I

o5 = false

i6 : binomialRadical I == intersect (ap#0,ap#1)

o6 = true

i7 : isCellular (ap#0, returnCellVars=>true)

o7 = {x1 , x2 , x3 , x4 , x5}

i8 : isCellular (ap#1, returnCellVars=>true)

o8 = {x3}

In this listing we have suppressed some output. First we compute a cellular decomposi-
tion with BCD. It has two components. The first ideal is the toric ideal (I : (

∏n
i=1 xi)

∞),
which is prime. It is a general feature of the implementation of Binomials that, when
the input has no monomial generators, the first ideal of the output of cellular and
primary decompositions, as well as minimal and associated primes, is always the toric
ideal. We also compute the associated primes. The second one is embedded, so the
toric ideal is the only minimal prime. We confirm that I is not radical because of the
monomial powers in the second component. Note also that the binomial generator in
the second cellular component reduces to zero as soon as one takes the radicals of the
monomials. Finally we confirm that the associated primes are cellular and show the set
of variables with respect to which they are cellular, using isCellular with the option
returnCellVars. The cell variables could have been computed directly together with
the cellular decomposition by running the long version binomialCellularDecomposition,
again with the option returnCellVars set to true.

Theorem 3.2.6 shows that saturation of partial characters is a crucial ingredient for
computing the associated primes of a binomial ideal. We therefore study the properties
of saturations of partial characters in the special case of pure difference binomial ideals.
In the current implementation of Binomials, any operation that needs extension of the
coefficient field of the polynomial ring is only implemented for pure difference binomial
ideals. It will be shown that in this case cyclotomic field extensions suffice.

3.2.3. Solving Pure Difference Binomial Ideals. In this section we give a
fast algorithm for solving pure difference binomial ideals of dimension zero. It is
not surprising that such a procedure utilizes only the exponents of the generators.
We denote by ξl the primitive l-th root of unity exp

{
2πi
l

}
∈ C. The field extension
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of Q that is obtained by adjoining such a root of unity is called a cyclotomic field
and denoted by Q(ξl). It can be obtained constructively by taking the quotient of
a univariate polynomial ring modulo the principal ideal generated by the minimal
polynomial of ξl, the cyclotomic polynomial [Hun74, Chapter V].

Proposition 3.2.10. Given a zero-dimensional pure difference binomial ideal I,
there exists a primitive root of unity ξl such that all complex solutions of I are contained
in the cyclotomic field Q(ξl).

The proof is given after the following Lemma, which is also of interest for the
implementation.

Lemma 3.2.11. The complex solutions of the univariate equation

(3.19) xn = ξkm,

are given by the following roots of unity

(3.20) x0 = ξkmn, x1 = ξm+k
mn , . . . xn−1 = ξ(n−1)m+k

mn .

Proof. The x0, . . . , xn−1 are n distinct roots of (3.19), which is of degree n. �

Proof of Proposition 3.2.10. The standard method of reducing a multivariate
problem to a univariate problem applies. The general framework is described for
instance in Chapter 3 of [CLO96]. Choose an elimination term order, such as lexico-
graphic order, and compute a Gröbner basis of I. This Gröbner basis consists of pure
difference binomials since all S-polynomials are pure difference binomials. Furthermore,
at least one of the binomials of this Gröbner basis is univariate as I is zero-dimensional
and we have chosen an elimination order. The solutions of this univariate equation exist
in a cyclotomic field by Lemma 3.2.11. We continue to extend the partial solution that
we have found, substituting the variable for its value in the remaining elements of the
Gröbner basis. We obtain a univariate equation in another variable. The final solution
exists in the cyclotomic field containing all the roots of unity that are encountered in
the course of the algorithm. �

Of course, the procedure that was just described is also valid for other fields k. In
the general case, field extensions have to be carried out by computing the minimal
polynomial of the element to be adjoined and one has to do computations over the
algebraic numbers. This however can become infeasible in practice since both the
computations become lengthy and it becomes more and more tedious to produce output
in a human-readable form.

We are now ready to formulate the algorithm for computing the variety of a zero-
dimensional pure difference binomial ideal. The first thing that needs to be accounted
for is the possibility of 0 as a solution, potentially with multiplicities. We take care of
this by means of cellular decomposition. Each cellular binomial ideal I can be written
as I =

(
(I +M(E)d) :

(∏
i∈E xi

)∞), and I ∩ k[E ] is a lattice ideal. The solutions of
I take the value zero at the variables outside E and each solution has a multiplicity
of
∏
i/∈E di.

Algorithm 3.2.12 (Solving pure difference binomial ideals).
Input: A zero-dimensional pure difference binomial ideal I.

Outputs: The root of unity that needs to be adjoined to Q and the list of the solutions
of I.

(1) Compute a cellular decomposition of I.
(2) For each cellular component:
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(a) Set the noncell variables to zero, and determine the product D =
∏
i/∈E di

of the powers of the noncell variables.
(b) Compute a lexicographic Gröbner basis and solve the lattice ideal of the

cellular component, adjoining roots of unity where necessary.
(c) Save each solution D times.

(3) Compute the least common multiple m of the powers of the adjoined roots of
unity and construct the cyclotomic field Q(ξm).

(4) Output the list of collected solutions as elements of Q(ξm).

This algorithm is the main ingredient for saturating partial characters, which we
treat after an example.

Example 3.2.13 (Solving Pure Difference Binomial Ideals). We solve a simple
pure difference binomial ideal to introduce the syntax.
i1 : S = QQ[x,y,z];

i2 : I = ideal (x^2-y,y^3-z,x*y-z);

i3 : binomialSolve I

BinomialSolve created a cyclotomic field of order 3.

o3 = {{1, 1, 1}, {- ww_3 - 1, ww_3 , 1}, {ww_3 , - ww_3 - 1, 1},

{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

i4 : degree I

o4 = 6

In the implementation, generic names consisting of ww, and the order, are assigned
to roots of unity. Note that the square of the third root of unity ww_3 is represented
as -ww_3-1 by means of its minimal polynomial over Q. A cellular decomposition
reveals that this ideal has two components, one of which is of degree 3 with associated
prime 〈x, y, z〉. The function binomialSolve outputs the solutions with the correct
multiplicities.

Saturations of partial characters exist only over algebraically closed fields. This is
evident for instance from the partial character ((2), 2 7→ −1), consisting of the rank 1
lattice spanned by the integer 2, and the character that maps 2 to −1 ∈ C. The
saturations are pairs (Z, τ), that satisfy τ(2) = τ(1)2 = −1. This example is merely
a combinatorial version of factorizing the polynomial x2 + 1, which is the same as
performing the primary decomposition of its principal ideal. The following algorithm
to saturate a partial character is the general version of the example’s principle.

Algorithm 3.2.14 (Saturation of a partial character).
Input: A partial character (L, σ), where L is a matrix whose columns are minimal

generators of a lattice in Zd.
Output: All distinct saturations (Sat(L), τi), i = 1, . . . , n.

(1) Compute the saturation L′ := Sat(L), for instance by computing the minimal
syzygies of the syzygies among the generators of L.

(2) Express the generators of L in terms of the generators of L′, by solving the
matrix system

(3.21) L = L′K,

for the square matrix K = (kij)i,j=1,...,r, where r := rk(L) = rk(L′) denotes
the rank of the lattices.
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(3) Write lj, l′j, and kj for the columns of L, L′, and K, respectively. Introduce
new variables τi := τ(l′i), i = 1, . . . , r, for the values that τ takes on the
columns of L′. Using again monomial notation τm :=

∏r
i=1 τ

mi
i , compute the

following zero-dimensional lattice ideal in Q[τ1, . . . , τr]

(3.22) J :=

(〈
τk

+
j − σ(lj)τk

−
j : j = 1, . . . , r

〉
:
( r∏
i=1

τi

)∞)
,

for the given values σ(lj).
(4) Solve J (over a suitable extension of Q) and output L′ together with the list

of solutions of J .

Proof of correctness. Computing the saturation of a lattice should be viewed
as an integer valued analogue of taking the orthogonal complement twice. The coefficient
matrix K that solves the system (3.21) exists and is unique over Z as L is a sublattice
of L′ and we assumed that the columns of L′ are a minimal set of generators of the
corresponding lattice. The ranks of L and L′ coincide by definition. The ideal J is
constructed as follows: For each generator l of L we get a relation l = L′ · k, to which
we apply the homomorphism τ , remembering that τ and σ are required to coincide on
the generators of L. The entries of K are integers, thus we get the Laurent binomial
ideal

(3.23)

〈
σ(lj)−

r∏
i=1

τ
kij

i : j = 1, . . . , r

〉
,

whose intersection with Q[τ1, . . . , τr] is exactly J . That J is zero-dimensional follows
since the quotient L′/L is a finite group. For details see Corollary 2.2 in [ES96]. �

We note without proof that the number of distinct saturations equals the order
of the finite group Sat(L)/L. Finally, for computing primary decompositions of pure
difference binomial ideals we only need to solve such ideals during the saturation.

Proposition 3.2.15. The saturation of a partial character that occurs during
primary decomposition of a pure difference binomial ideal involves only solving pure
difference binomial ideals.

Proof. Any cellular component of a pure difference binomial ideal is pure difference
again. So we can assume that I is cellular. Now, each partial character consists of a
lattice and the constant map l 7→ 1. Therefore the ideal J in Algorithm 3.2.14 is a
pure difference binomial ideal. �

3.2.4. Minimal Primes of Binomial Ideals. In this section we will describe a
new algorithm for computing the minimal primes of a binomial ideal. It is based on a
variant of cellular decomposition, given in Algorithm 3.2.8. As we have seen previously
the associated primes and thereby the minimal primes of a binomial ideal come in
groups belonging to the cellular components of I. Our approach is to directly compute
a cellular decomposition of the radical of I.

Algorithm 3.2.16 (Minimal primes of a binomial ideal).
Input: A binomial ideal I ⊆ k[x1, . . . , xn].
Output: The binomial minimal primes of I.

(1) Determine whether I is cellular.
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(a) If yes, compute the radical (I ∩ k[E ]) +M(E) = M(E) + I+(σ) and its
partial character (L, σ). Compute the saturations (τi)li=1 of σ and save
the ideals

(3.24) P (τi) = M(E) + I+(τi).

(b) If not, determine a variable xi that is a zerodivisor, but not nilpotent
modulo I, and iterate with the ideals I + 〈xi〉 and (I : x∞i ).

(2) From all primes collected, remove redundant ones to find a minimal prime
decomposition of Rad(I).

Proof of termination and correctness. Termination of this algorithm fol-
lows as the ambient ring is Noetherian and I + 〈xi〉 and (I : x∞i ) strictly contain I.
The radical of I is the intersection of the ideals IE in (4.2) of [ES96]. We encounter
a decomposition of Rad(I) into such ideals in the course of the algorithm, as the
iteration is ultimately producing cellular components of the radical of I. Thus, like in
their Algorithm 9.2, correctness has been proved in Section 4 of [ES96]. For cellular
ideals the minimal primes have the form (3.24), and the collection of all minimal
primes of all cellular ideals contains the minimal primes of the original ideal by their
Proposition 7.2. �

Remark 3.2.17. This algorithm differs from the cellular decomposition algorithm
only in the recursion step, where we continue with I + 〈xi〉 instead of I + 〈xsi 〉. In this
way we do not achieve a decomposition of I, but only of the radical of I. Fortunately,
this algorithm can be significantly faster than cellular decomposition since adding
variables, instead of higher powers of variables, allows the Gröbner basis engine to do
more simplifications during the computation.

Example 3.2.18 (Binomial Minimal Primes). We continue where we left off in
Example 3.2.9.
i16 : toString binomialMinimalPrimes I

o16 = {ideal(x1*x4^2-x2*x5^2,

x1^3*x3^3-x2^4*x4^2,

x2^3*x4^4-x1^2*x3^3*x5^2,

x2^2*x4^6-x1*x3^3*x5^4,

x2*x4^8-x3^3*x5^6)}

The result consists only of the toric ideal, confirming that the monomial prime is
embedded. Although not visible from the output, the second associated prime was not
computed on the way to this result, in particular the minimal primes are not extracted
from a list of associated primes.

3.2.5. Primary Decomposition. The original primary decomposition algorithm
in [ES96] was refined in [OP00]. The computation starts with a cellular decomposition,
a first approximation of primary decomposition. In Eisenbud and Sturmfels’ original
paper, and also in [Alt00], there are cases identified in which a cellular decomposition is
primary. If this is not the case, for each cellular component the associated primes need
to be determined. Then finding the primary component can be achieved as follows.
From an associated prime P of a cellular binomial ideal I, extract the “binomial part”
P (b) = P ∩ k[E ]. Then I + P (b) has P as its unique minimal prime. Computing the
primary component over P is carried out by means of a localization operation called Hull,
removing the embedded primary components of I + P (b). The refinement of [OP00] is
to show that I+P (b) suffices in this procedure, while Eisenbud and Sturmfels originally
suggested to add a sufficiently high monomial power. A combinatorial description of
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the resulting primary components is given in [DMM10], however, it seems difficult to
use these results for computation.

A few remarks on primary decompositions in [ES96] and [OP00] are necessary.
Corollary 6.5 of [ES96] shows that Hull(I) is a binomial ideal if I is a cellular binomial
ideal. This Corollary is used in the proof of Theorem 7.1’ to deduce that Hull(Ri) is
binomial, where Ri is the sum of a monomial ideal and I + P (b) from above. However,
it is not checked whether Ri is in fact cellular, as required by the Corollary. Example
3.2.19 shows a noncellular Ri that arises in the decomposition of the ideal of adjacent
(2× 2)-minors of a generic (5× 5)-matrix. The computations necessary to check the
example can be carried out easily with Binomials.

Example 3.2.19. In the ring Q[a, b, . . . , o] consider the ideal

I =
(
ln− ko, lm− jo, km− jn, l2, kl, jl, k2, jk, ik − hl,
fk − cl, j2, ij − gl, hj − gk, fj − al, cj − ak, fh− ci,
fg − ai, cg − ah, f2, cf, af, ce− bf, ae− df, c2, ac, ab− cd, a2

)
.

This ideal is cellular with respect to E = {b, d, e, g, h, i,m, n, o} and has four associated
primes, which are pure difference. The binomial part of the unique minimal associated
prime is

P (b) = (in− ho, im− go, hm− gn).
Then I + P (b) has two cellular components whose sets of cell variables are E and
{b, d, e,m, n, o}, respectively.

Using Theorem 7.1’, in Algorithm 9.7 of [ES96] it is asked to compute Hull(Ri),
using Algorithm 9.6. This however, requires a cellular ideal as its input. The algorithm
can be corrected easily since the operation Hull is called only for ideals whose radical
is prime. The associated primes of such an ideal have the radical as their unique
minimal element, and as Hull removes embedded primary components, instead of
Hull(Ri) we can compute Hull(Qi) of any other ideal Qi that has the same minimal
prime. In particular we can choose Qi =

(
Ri : (

∏
i∈E xi)

∞), the “cellularization” of Ri.
Summarizing, in Algorithm 9.7, Step 3.3 should be replaced by

3.3’ Compute Hull
(
Ri :

(∏
i∈E xi

)∞) using Algorithm 9.6.
Unfortunately, also in Theorem 3.2 of [OP00], Corollary 6.5 of [ES96] is used to

deduce that Hull(I + (P ∩ k[E ])) is binomial and primary. Again, this is wrong as
I + (P ∩k[E ]) is not cellular. The result can be saved by first cellularizing as explained
above. The implementation in Binomials incorporates these modifications and is
demonstrated next.

Example 3.2.20 (Binomial Primary Decomposition). We compute the primary
decomposition of I =

〈
x2 − y, y2 − z, z2 − x

〉
∈ Q[x, y, z].

i1 : S = QQ[x,y,z]

i2 : I = ideal(x^2-y,y^2-z^2,z^2-x)

i3 : dim I

o3 = 0

i4 : degree I

o4 = 8

i5 : bpd = BPD I

Running cellular decomposition:

cellular components found: 1
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cellular components found: 2

Decomposing cellular component: 1 of 2

BinomialSolve created a cyclotomic field of order 6.

done

Decomposing cellular component: 2 of 2

done

Removing redundant components (fast)

o6 = {ideal(z+ww_6 -1,y-ww_6+1,x+ww_6),

ideal(z+ww_6 ,y+ww_6 ,x-ww_6+1), ideal(z+1,y-1,x-1),

ideal(z-1,y-1,x-1), ideal(z-ww_6 ,y+ww_6 ,x-ww_6+1),

ideal(z-ww_6+1,y-ww_6+1,x+ww_6), ideal(y,x,z^2)}

i7 : intersect bpd == sub (I, ring bpd #0)

o7 = true

The function BPD is only a convenient shorthand for binomialPrimaryDecomposition,
which can also be used in the long form and offers some options. The primary
decomposition of I into binomial ideals exists in Q(ξ6)[x, y, z], so BPD created this
cyclotomic field, calling the primitive sixth root of unity ww_6. Observe that the ideal
has a double zero at the origin. In i7 we intersect the result to confirm that the
decomposition is correct. The result of the intersection is defined over the extended
polynomial ring Q(ξ6)[x, y, z], and can be compared to I only after mapping it to that
ring.

This concludes our overview of the functionality of Binomials and we move on to
the discussion of some large primary decompositions.

3.3. A nonradical Commuting Birth and Death Ideal

In this section we study the commutative algebra of discrete time commuting
birth and death ideals. One-dimensional birth and death processes are among the
simplest Markov chains that are considered in modeling random processes [LR99].
In the discrete time case, many of their properties can be derived from the explicit
spectral theory of transition matrices. The paper [ESU10] gives motivation to consider
generalized processes that correspond to Markov chains on multi-dimensional lattices,
and as most of the one-dimensional theory does not apply there, the authors strive
to identify subclasses with nice properties. The work suggests commuting birth and
death processes which are defined by transition matrices having the property that
transitions in the different dimensions commute. After reformulation, these conditions
can be seen to result in binomial conditions on the entries of the transition matrices,
that is, a binomial ideal. The toric component of this binomial ideal nicely relates to
an underlying matroid as discussed in the paper. Determining primary decompositions
of commuting birth and death ideals poses interesting challenges in combinatorial
commutative algebra.

Computational results given in this section tend to be very large. We have therefore
stored them on a web page, which also contains additional scripts to reproduce the
results:

(3.25) http://personal-homepages.mis.mpg.de/kahle/cbd/

We now define the binomial ideals under consideration. The ambient polynomial
ring has indeterminates corresponding to the edges of a regular grid. For fixed integers

http://personal-homepages.mis.mpg.de/kahle/cbd/
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n1, . . . , nm, let

(3.26) E :=
m∏
i=1

{0, . . . , ni − 1} ,

be the usual m-dimensional bounded regular grid with edges between vertices that
differ by ±1 in exactly one coordinate. Here it is sufficient to consider only the
cases m = 2, 3. For each edge in the grid we define two indeterminates, one for each
direction. In the two-dimensional case the authors used the notation k[R,L,D,U ] to
denote a polynomial ring in the indeterminates

(3.27)
{Rij : 0 ≤ i < n1, 0 ≤ j ≤ n2} ∪ {Lij : 0 < i ≤ n1, 0 ≤ j ≤ n2}∪
{Dij : 0 ≤ i ≤ n1, 0 < j ≤ n2} ∪ {Uij : 0 ≤ i ≤ n1, 0 ≤ j < n2} ,

where Rij is supposed to represent a right move starting at position ij and so on. In the
case m = 3 one can, in a natural way, extend the set of indeterminates by introducing
letters F and B and three indices for each indeterminate. The set of commuting birth
and death processes is defined by the binomial equations (3.1) of [ESU10]. These
equations arise in quadruples, coming from squares in the graph E, by which we
mean induced subgraphs G of E that are isomorphic to the usual square. Denoting
its vertices by {(u, v), (u+ ei, v), (u, v + ej), (u+ ei, v + ej)}, the corresponding ideal
encodes that the two paths joining opposite vertices are equivalent:
(3.28)

IG :=
〈
U(u,v)R(u,v+ej) −R(u,v)U(u+ei,v), D(u,v+ej)R(u,v) −R(u,v+ej)D(u+ei,v+ej) ,

L(u+ei,v+ej)D(u,v+ej) −D(u+ei,v+ej)L(u+ei,v), L(u+ei,v)U(u,v) − U(u+ei,v)L(u+ei,v+ej)

〉
.

The commuting birth and death ideal is the sum of all IG, where G runs through the
induced squares of E.

(3.29) IE :=
∑

G square in E

IG.

In the case m = 2, 3 these ideals have been denoted I(n1,n2), and I(n1,n2,n3) in [ESU10].

Example 3.3.1. The graph E for m = 2 and n1 = n2 = 1 is just a square and
I(1,1) is generated by the four binomials

(3.30)
I(1,1) = 〈U00R01 −R00U10, R01D11 −D01R00,

D11L10 − L11D01, L10U00 − U10L11〉.
If m = 3 and n1 = n2 = n3 = 1, E is the 3-cube and the squares arise from facets.
Thus, I(1,1,1) is generated by 24 pure difference binomials, 4 for each facet.

On the web page (3.25) one can download Python scripts that generate Macaulay 2
code for the rings and ideals in the cases m = 2, 3. The following shows an example
how to use the script Imn.py on the command line to generate I(2,2):

> ./Imn.py 2 2

-- Macaulay 2 Code for the Commuting Birth and Death Ideal:

-- m = 2, n = 2

S = QQ[R00 ,U00 ,R01 ,D01 ,U01 ,R02 ,D02 ,R10 ,L10 ,U10 ,R11 ,L11 ,D11 ,U11 ,

R12 ,L12 ,D12 ,L20 ,U20 ,L21 ,D21 ,U21 ,L22 ,D22];

I = ideal

(U00*R01 -R00*U10 ,R01*D11 -D01*R00 ,D11*L10 -L11*D01 ,L10*U00 -U10*L11 ,

U01*R02 -R01*U11 ,R02*D12 -D02*R01 ,D12*L11 -L12*D02 ,L11*U01 -U11*L12 ,
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U10*R11 -R10*U20 ,R11*D21 -D11*R10 ,D21*L20 -L21*D11 ,L20*U10 -U20*L21 ,

U11*R12 -R11*U21 ,R12*D22 -D12*R11 ,D22*L21 -L22*D12 ,L21*U11 -U21*L22);

In [ESU10] the authors discuss the primary decompositions of I(2,2), I(1,1,1), and
smaller examples. They state that these computations could not be carried out with
the standard implementations, but were derived in an interactive session. The current
implementation of Binomials computed the 199 prime components of I(2,2) in 100
seconds and took 123 seconds to decompose I(1,1,1) on the author’s 1,6 GHz laptop.
As mentioned before, computing the minimal primes directly is even faster and can be
completed in half of the time.

Based on their results, Evans, Sturmfels, and Uhler conjectured

Conjecture 3.3.2. For any grid E, the ideal IE is radical, its prime decomposition
consists of pure toric ideals and is independent of the coefficient field.

Here a pure toric ideal is an ideal generated by indeterminates and pure difference
binomials. In [ESU10] the authors prove that every associated prime of I(1,n) is a pure
toric ideal.

Theorem 3.3.3. The ideal I(2,3) is the intersection of 2638 primary binomial ideals
whose properties are given in Table 1. Among these are 10 components that are not
prime, and thus I(2,3) is not radical. The 10 associated primes of these components
are all embedded and of codimension 20. The radical Rad(I(2,3)) is the intersection of
2628 minimal primes and given by the following ideal:

(3.31)

I(2,3) + 〈D01R03R10L12U21L22D23 − U01R03L10R13D21L23D23,

U00R02R12L13L20D22U22 −R00D02R13L13U20U22L23,

R00U01R03L10R13U20L23D23 − U01R
2
03R13L13U20L23D23,

R00D02L10R13L13D21U22L23 −D02R03R13L
2
13D21U22L23,

U00R02R03R12L13L20D22D23 −R00D02R03R13L13U20L23D23,

U00R03R10L12L20U21L22D23 − U00R03L12R13U21L22L23D23,

R00D03L11R13U20L21D22L23 − U00R03L12R13L20L22D22D23,

R01U02L10R11R13D21U21L23 −D01R02R10R12L13U21U22L23,

D01R02R10R12L13L20D22U22 −D01R02R12R13L13D22U22L23,

D01R03R10L12L13U21L22U22 − U01R03L10R13L13D21U22L23〉.

One should note the two squares of variables in the third and fourth gener-
ator of Rad(I(2,3)). To produce these results one can use the functions BPD and
binomialMinimalPrimes. The author’s computer determined the minimal primes in
approximately 4 hours. Taking the intersection of these primes took another hour on a
2,8 GHz AMD Opteron. Care has to be taken when computing intersections of many
primes. In Macaulay 2 versions 1.2 and below, using the command intersect directly
on a large list of primes will not terminate. If one does the intersection manually with
a loop, intersecting only two ideals at a time, everything is fine. Computing the cellular
and primary decomposition was more delicate. It took several days and used about 5
GB of RAM. In fact, the original computation of the cellular decomposition was done
with a slightly different algorithm which only works if the toric component is isolated.
We first computed the toric component T independently with the tool 4ti2 and then
removed it by computing the saturation (I(2,3) : T∞). The cellular decomposition of
this ideal was easier to compute. Surprisingly this is not always the case. For some
ideals I, with toric component T , the saturation (I : T∞) is just too complicated to be
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codimension 16 17 17 18 18 19 19 20 20 21 21 22 22
# of components 1 14 2 107 91 356 612 527 550 212 120 38 8
gen. max degree 1 1 4 1 6 1 5 1 4 1 2 1 3
degree 1 1 64 1 4012 1 144 1 36 1 12 1 3
monomial y y n y n y n y n y n y n

Table 1. Statistics on the primary components of I(2,3) sorted by
codimension. Monomial components have been separated from binomial
ones as indicated in the row “monomial”. The row “gen. max degree”
gives the maximal degree of a generator in this codimension while
“degree” refers to the maximal degree among components. The toric
component is generated in degree 6, of codimension 18 and degree 4012.

n 1 2 3 4 5 6
# of components 3 11 40 139 466 1528

Table 2. Prime decompositions of I(1,n)

computed with Macaulay 2. In some cases, simply doing the cellular decomposition
with Algorithm 3.2.8 is faster.

To complete this computational study, we have also investigated the ideals I(1,n)

for n ≤ 6. It was not possible to find a counterexample there.

Theorem 3.3.4. The ideals I(1,n), n = 1, . . . , 6 are radical. The respective numbers
of prime components are given in Table 2.

Concluding this section we find that the conjecture turned out to be false in full
generality. It might however hold for the ideals I(1,n), and the associated primes could
still be pure toric ideals for all IE .
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Discrete Exponential Families and Hierarchical Models

The support set problem for discrete exponential families is to characterize the
face lattice of the convex support. We have exposed the combinatorial nature of this
problem by tracing it back to an underlying realizable oriented matroid. In this way
an exponential family is just another representation of this oriented matroid, making
its relation to the convex support completely natural. We have shown that the implicit
representation of a statistical model follows from the oriented matroid. This fact
holds also in the general case of an arbitrary sufficient statistics, while a Markov basis
description is only available in special cases. It is often underestimated in algebraic
statistics, that to describe a toric variety a Markov basis is necessary. However, the
circuits suffice to describe a statistical model, the nonnegative real part of the variety.
The view from oriented matroids provides different perspectives of exponential families
and will hopefully contribute to further understanding of structural zeros. Its main use
might be the availability of a broad variety of examples constructed in combinatorial
theory.

For hierarchical models, elementary circuits have been constructed. We have
seen which of them originate in conditional independence statements and constructed
hierarchical models whose Markov bases consist of elementary circuits. The derivation
of bounds on supports of Markov moves immediately gives the neighborliness property
of the marginal polytope. We have investigated the structure of binary marginal
polytopes and exposed their connection to the theory of linear codes. This work
could be continued by investigating the face lattices of marginal polytopes. For the
neighborliness we identified equations that are necessarily fulfilled by distributions
with small support. Coming from the other side, one could try to generate sets of
vertices that do not form faces by looking at violations of equations that hold on the
model. Even if the complete set of circuits is unknown, elementary circuits and their
linear combinations are a source of such equations. Then the symmetry has to be
incorporated. For instance in the binary k-interaction models one has the semidirect
product Sn n Zn2 acting on the marginal polytope, where Sn permutes the random
variables while each copy of Z2 exchanges the roles of the states 0 and 1 in a given
random variable. As some marginal polytopes are CUT-polytopes, it seems plausible
that the methods described in [DL97] could be generalized to marginal polytopes.

Binomial Ideals

We have discussed decompositions of binomial ideals and shown an implementation
of specialized algorithms for this purpose. Many operations on binomial ideals have been
translated to operations on exponent vectors, or on the associated partial characters.
By “making them combinatorial” significant speed-ups can be achieved. We have
disproved a recent conjecture of [ESU10] by computing one of the largest primary
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decompositions ever. In future research it seems feasible to solve the case for the
ideals I(1,n) by proving the conjecture there.

A natural continuation of the theoretical part of this work is to investigate de-
compositions that are finer than cellular decompositions, but not as fine as primary
decompositions. For applications it is often useful to have a finest decomposition into
pure difference binomial ideals, which is in particular independent of the coefficient
field. Consider for instance the pure difference binomial ideal I =

〈
x17 − 1

〉
⊆ C[x].

Since C is algebraically closed, I admits a primary decomposition into binomial ideals,
equivalent to factoring x17 − 1. In an application however, we might wish to avoid
further decomposition. In a way, the remaining computation is trivial and would only
clutter the output. The special combinatorial structure of (pure difference) binomial
ideals indicates a way how to achieve coarser decompositions. The associated primes
of a cellular binomial ideal can be grouped according to integer lattices supporting
them (see Theorem 3.2.6). In this grouping all the 17 associated primes of I are
supported on the same lattice. Informally, different associated primes supported on
the same integer lattice indicate that the primary decomposition requires factorizing
univariate polynomials, a step that we want to avoid. This connection also shows how
to solve the problem. A mesoprimary ideal should be an ideal whose associated primes
are supported on a single lattice. Then the mesoprimary components of an ideal are
binomial by Theorem 6.4 of [ES96]. Results in this direction will eventually allow a
clean separation of the combinatorial decomposition, which is related to decompositions
of congruences on semigroup rings, and the field dependence arising from saturation of
partial characters. This is the subject of the author’s ongoing research.

Computation

In applications, and also for generating intuition, explicit computation is extremely
useful. The field of computational algebra sees constant exchange with applications,
commutative algebra, and also algebraic geometry. The implementation of specialized
algorithms for monomial and binomial ideals, exploiting their combinatorial structure,
lead to significant speed-ups and enables to tackle problems that are infeasible with
general purpose implementations.

For the package Binomials, one next step is to complete the implementation of
binomial primary decomposition over finite fields. Also for pure difference ideals
in characteristic zero there is room for improvement. A very frequent computation
in binomial primary decomposition is saturation with respect to monomials. Any
implementation will immediately gain speed if the following problem was solved

Problem 3.3.5. Develop a specialized algorithm to compute, for any (cellular)
binomial ideal I, the “partially saturated” ideal

(3.32) I :

(∏
i∈E

xi

)∞
.

The software 4ti2 implements the project-and-lift algorithm, a fast algorithm for
computing the saturation

(3.33) I :

(
n∏
i=1

xi

)∞
.

It seems natural to extended the program to solve the above problem. The implemen-
tation of algorithms for binomial ideals presented here will greatly benefit from this
feature and Binomials is prepared to incorporate it upon availability.
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regular, 9
cell decomposition

regular, 9
cell variable, 62
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checkerboard vector, 33
χ-expansion, 31
CI, see conditional independence
circuit, 18, 19

basis, 13
elementary, 33
ideal, 24
signed, 18
vector, 13, 19
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Zariski, 22, 24

collapsing, 36
conditional independence
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model, 38, 57
statement, 38
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over a graph, 46

contingency table, 28
conv, 8
convex support, 8
coordinate ring, 58
correlation polytope, 47
covariance mapping, 47
CUT-polytope, 45
cut in a graph, 45
cut vector, 45

cyclic polytope, 54
cylinder set, 28

d , 27
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of a move, 27
design matrix, 25
design point, 25
di, 27

EA, 4
equivalent

linear codes, 47
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experimental design, 24
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face
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simplicial complex, 28

facial set, 11

generator matrix, 47
graphical model, 30, 38
graph model, 30
Graver Basis, 41

hierarchical model, 29
open, 29

ideal
cellular, 61
circuit, 24
conditional independence, 59
lattice, 62
maximal, 58
primary, 58
prime, 58
pure difference, 60

identifiable parameterization, 31
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polytope, 47
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independence model, 29, 39, 51
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independence statement, 33, 39
information divergence, 3
interaction space, 30
invariant

in statistics, 23
IPF, see iterative proportional fitting
iterative proportional fitting, 7

k-interaction model, 30
Kullback-Leibler distance, 3

linear code, 47
linear family, 6
loglinear model, 4

[m], 3
marginal

map, 28
matrix, 28
polytope, 29

Markov basis, 23, 27
Markov condition

global, 38
pairwise, 38

Markov move, 27
maximum likelihood estimate, 7
M(E), 62
M(E)d, 62
MLE, see maximum likelihood estimate
model

conditional independence, 38
graph, 30
graphical, 30, 38
hierarchical, 29
independence, 29, 39, 51, 57
k-interaction, 30
loglinear, 4
statistical, 1

moment map, 8
monomial notation, 10, 32
move, 27
multi-information, 55

N , 28
nilpotent, 58

o.m. vector, 19

partial character, 62
partition function, 29
polytope

correlation, 47
CUT, 45
cyclic, 54
inclusion, 47
marginal, 29

prime
associated, 58
embedded, 59
minimal, 59

pure difference binomial ideal, 60

Pm, 3
Pythagorean identity, 7

Q, 22

realizable oriented matroid, 19
recursion, see recursion
relative entropy, 3
RX , 28

S = k[x], 57
saturation

lattice, 62
partial character, 62

scheme, 58
signed set, 16
simplex

of probability distributions, 3
simplicial complex

bracket notation, 28
decomposable, 30
reducible, 30
uniform, 30

standard form
generator matrix, 47

sufficient statistics, 6
support (supp), 3
support set problem, 1, 16

tangent space, 30
toric ideal, 10, 22, 24, 60

pure, 72
toric variety, 10, 22, 60
totally unimodular matrix, 41

variable
polynomial ring, 22
random, 3

variable vs. random variable, 3
variety, 57, 58

irreducible, 58

X , 27
Xi, 27

Zariski closure, see closure
zerodivisor, 58
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