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Monsoonal thunderstorms observed in Bangladesh & India July 1985 (NASA Photo-Gallery:
Photo No.: STS51F-31-0069 ) taken from above the eastern Himalaya Mountains

looking southeast across the floodplain of the Brahmaputra River and
the cloud-covered Khasi Hills into the Bay of Bengal. A well-
developed cluster of mature monsoonal thunderstorms over

the Khasi Hills (centre of photograph) can be seen. A
variety of meteorological phenomena, strong re-

lated to turbulent processes in the moist-
convective atmosphere are visible, such

as overshooting thunderstorm tops,
towers, squall lines, and areas

of probable high-speed
downdrafts or mi-

crobursts.
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Einleitung und Zielsetzung

Die numerische Simulation der komplexen Dynamik von nichtlinear gekoppelten physikalischen
und chemischen Prozessen in der Erdatmosphäre stellt eine enorme Herausforderung für dyna-
mische Atmosphärenmodelle dar. In gegenwärtig eingesetzten meso– und globalskaligen Atmo-
sphärenmodellen werden turbulente Austauschprozesse in der atmosphärischen Grenzschicht als
subskalige Prozesse behandelt, die unter Verwendung geeigneter Schließungsansätze parametri-
siert werden müssen. Diese Prozesse besitzen jedoch eine zentrale Bedeutung für den vertika-
len Materie–, Impuls–, und Wärmetransport in der Atmosphäre. Durch die Beeinflussung von
Wasserdampf- und Aerosolverteilung [7] sind turbulente Austauschprozesse in der Lage, die
raumzeitliche Entwicklung von Wolken zu modulieren, was zu erheblichen Veränderungen der
Strahlungsbilanz der Erde führen kann.

Gegenwärtig in Atmosphärenmodellen verwendete Ansätze zur Parametrisierung des Ein-
flusses subskaliger Turbulenz auf prognostizierte hydro– und thermodynamische Felder basieren
vornehmlich auf einer lokalen Schließung [18]. Bei solchen Schließungsverfahren spielt die Spe-
zifizierung der turbulenten Mischungslänge in Abhängigkeit vom Stabilitätszustand der Atmo-
sphäre eine entscheidende Rolle. Lokale Schließungen nutzen häufig diagnostische Gleichungen
der turbulenten Mischungslänge für neutrale Schichtung [2] in Verbindung mit dimensionslo-
sen Stabilitätsfunktionen [19]. Diese Beschreibung turbulenter Mischungsprozesse zeigt jedoch
Defizite sowohl im oberen Bereich der konvektiven Grenzschicht als auch innerhalb der Entrain-
mentzone, da dort starke vertikale Gradienten der Strömungsvariablen auftreten [1].
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In früheren Arbeiten [23, 4] wurde deshalb die Bestimmung charakteristischer Turbulenz-
längenskalen aus spektralen Eigenschaften der turbulenten kinetischen Energie vorgenommen
[11]. Dies wird allgemein als ein möglicher Ansatz für eine verbesserte Beschreibung turbulen-
ter Austauschprozesse betrachtet. Eine Anwendung empirischer Turbulenzlängenskalen in loka-
len Schließungsverfahren erfordert jedoch die Bestimmung der charakteristischen Turbulenzlän-
genskalen für ein breites Spektrum von atmosphärischen Stabilitätszuständen.

Charakteristische Turbulenzlängenskalen, die aus Messungen in der Atmosphäre [3, 15, 5]
oder Laborexperimenten [13] bestimmt wurden, sind in der Regel nur für einen eingeschränkten
Parameterraum repräsentativ. Aufgrund der Nichtlinearität turbulenter Prozesse ist eine Extra-
polation von Messergebnissen auf andere Stabilitätszustände nur sehr eingeschränkt möglich. In
den letzten Jahren wurden daher charakteristische Turbulenzlängenskalen aus hochaufgelösten
Grobstruktursimulationen bestimmt [14, 22].

In der hier vorgestellten Arbeit wurden charakteristische Turbulenzlängenskalen anhand von
Grobstruktursimulationen für ein weites Spektrum von Stabilitätsbedingungen bestimmt. Hierbei
wurden hochaufgelöste dreidimensionale Simulationen sowohl der trockenen als auch der feuch-
ten, bewölkten Grenzschicht durchgeführt. In substanzieller Erweiterung bisheriger Arbeiten auf
diesem Gebiet [6, 14, 22] wurden die abgeleiteten Turbulenzlängenskalen mittels nichtlinearer
Datenmodellierung approximiert und die erhaltenen Ergebnisse in die Turbulenzparametrisie-
rung eines mesoskaligen Atmosphärenmodells integriert.

Methoden

Der verwendete methodische Ansatz umfasst im wesentlichen drei Aspekte:

1. • Grobstruktursimulationen konvektiver atmosphärischer Grenzschichten unter Verwen-
dung unterschiedlicher Anfangs– und Randwerte. Spektrale Analyse der Simulations-
daten und Bestimmung charakteristischer Turbulenzlängenskalen von Vertikalgeschwin-
digkeit, Temperatur und Feuchte.

• Bestimmung charakteristischer Turbulenzlängenskalen von Vertikalgeschwindigkeit,
Temperatur und Feuchte aus der spektralen Analyse der Simulationsdaten.

• Verifizierung der Ergebnisse durch Vergleich mit weiteren numerischen Simulatio-
nen, mit Turbulenzmessungen in der atmosphärischen Grenzschicht und mit Labor-
experimenten [8].

2. • Statistische Analyse der abgeleiteten Turbulenzlängenskalen.

• Validierung existierender Ansätze und Entwicklung einer Mischungslängenparame-
trisierung durch nichtlineare Approximation der charakteristischen Turbulenzlängen-
skalen auf der Basis leicht verwendbarer analytischer Funktionen.

• Bestimmung der freien Funktionsparameter in Abhängigkeit vom Stabilitätszustand
der Grenzschicht und Untersuchung der statistischen Signifikanz der neuen Parame-
trisierung.

• Verifizierung der entwickelten Mischungslängenparametrisierung in einer lokalen Schlie-
ßung anhand von Grobstruktursimulationen [10].

ii



3. • Mesoskalige Sensitivitätsstudie zur Untersuchung des Einflusses der turbulenten Mi-
schungslänge auf die Prognose hydro- und thermodynamischer Strömungsfelder in
einem regionalen Vorhersagemodell (Lokalmodell des Deutschen Wetterdienstes).

• Implementierung der durch Grobstruktursimulationen revidierten Turbulenzschlie-
ßung in das Lokalmodell.

• Vergleich mit der originalen Schließung anhand eines mesoskaligen Simulationssze-
narios durch statistische Analyse der Modellfelder.

• Verifizierung der Simulationsergebnisse [9] durch Satellitendaten unter Verwendung
eines “Model-to-Satellite” – Verfahrens sowie durch Analysedaten aus der 4dVar –
Datenassimilation des Lokalmodells.

Ergebnisse

1. Die Grobstruktursimulationen konvektiver atmosphärischer Grenzschichten ergaben Labi-
litätszustände in einem weiten Parameterbereich (−zi/L = 2 – 48). Die Vertikalstruktur der
berechneten Felder stimmt mit atmosphärischen Messungen überein und entspricht theo-
retischen Erwartungen. Sie ist durch eine Mischungsschicht mit nach oben anschließender
Entrainmentzone charakterisiert. Spezifische Eigenschaften der simulierten Grenzschich-
ten wurden anhand der ersten und zweiten statistischen Momente atmosphärischer Strö-
mungsvariablen diskutiert. Insbesondere konnte durch die Untersuchung der Vertikalgra-
dienten von horizontaler Windgeschwindigkeit, Temperatur und Feuchte das Auftreten von
Entrainmentprozessen im oberen Bereich der Grenzschicht nachgewiesen werden. Ein Zu-
sammenhang zwischen Entrainmentstärke und atmosphärischem Stabilitätszustand wurde
aus den Ergebnissen der Grobstruktursimulationen ermittelt.

Die Spektraleigenschaften turbulenter Fluktuationen der Strömungsvariablen, das raum-
zeitliche Verhalten kohärenter Strukturen sowie charakteristische Turbulenzlängenskalen
wurden abgeleitet. Die Untersuchung kohärenter turbulenter Strukturen von Vertikalge-
schwindigkeit, Temperatur und Feuchte erfolgte mit Hilfe zweidimensionaler Autokova-
rianzen dieser Variablen in verschiedenen Ebenen der Grenzschicht. Mit diesem Verfah-
ren wurden horizontale Rollenstrukturen in der konvektiven Grenzschicht nachgewiesen.
Die Wellenlänge dieser Strukturen betrug in der Grenzschichtmitte etwa das Doppelte der
Grenzschichthöhe und stimmt damit größenordnungsmäßig mit Flugzeugmessungen [16],
Laborexperimenten [13] und anderen numerischen Simulationen [17] überein.

Auf der Grundlage horizontal gemittelter eindimensionaler Spektren und Autokorrelatio-
nen turbulenter Fluktuationen von Vertikalgeschwindigkeit, Temperatur und Feuchte wur-
den charakteristische Turbulenzlängenskalen berechnet. Als charakteristische Turbulenz-
längenskalen für skalige Turbulenz wurden dabei die Wellenlänge des spektralen Peaks im
turbulenten Energiespektrum als auch die integrale Autokorrelationslänge verwendet [11].
Berechnete Vertikalprofile dieser Turbulenzlängenskalen zeigten eine Abhängigkeit vom
Stabilitätszustand der simulierten Grenzschicht. Ein empirisch aus Messdaten abgeleiteter
Zusammenhang zwischen der Peakwellenlänge und der Autokorrelationslänge der Ver-
tikalgeschwindigkeit konnte anhand der Grobstruktursimulationen bestätigt werden. Die
Simulationsergebnisse zeigen einen ähnlichen Zusammenhang auch für Temperatur und
Feuchte, was bislang aber noch nicht experimentell bestätigt wurde.
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Die Verifizierung der charakteristischen Turbulenzlängenskalen ergab eine gute Überein-
stimmung der Ergebnisse mit Resultaten aus numerischen Simulationen [14, 6] und at-
mosphärischen Messungen [5]. Der Vergleich der Ergebnisse mit Laborexperimenten [13]
zeigte jedoch Abweichungen. Eine Unterschätzung der Stärke von Entrainmentprozessen
in den Laborexperimenten [12] konnte als eine mögliche Ursache für die beobachteten
Abweichungen identifiziert werden. Für eine abschließende Beurteilung der in Laborexpe-
rimenten gemessenen Turbulenzlängenskalen sind weitere Grobstruktursimulationen er-
forderlich.

2. Im Rahmen der statistischen Analyse wurde eine aus atmospärischen Messungen abgelei-
tete Approximation der Wellenlänge des spektralen Maximums der Vertikalgeschwindig-
keit mit Hilfe der Grobstruktursimulationen in einem erweiterten Stabilitätsbereich vali-
diert. Eine neu entwickelte Approximation bildete die Basis für eine verbesserte Parame-
trisierung integraler Autokorrelationslängen in Abhängigkeit vom Stabilitätszustand der
Atmosphäre. Diese Approximation verwendet analytische Funktionen mit freien Parame-
tern und berücksichtigt spezifische Eigenschaften der Autokorrelationslängen in konvekti-
ven Grenzschichten.

Durch nichtlineare Datenmodellierung wurden die freien Parameter in Abhängigkeit vom
Stabilitätszustand der simulierten Grenzschicht ermittelt. Die durchgeführte statistische
Analyse belegte die statistische Signifikanz des verwendeten Parametrisierungsansatzes.
Dieses Ergebnis legt die Verwendung der parametrisierten integralen Autokorrelationslän-
ge als turbulente Mischungslänge in einer lokaler Schließung nahe.

Die Verifizierung dieser Mischungslängenparametrisierung wurde auf der Grundlage von
Grobstruktursimulationen für das lokale Schließungsmodell nach Mellor-Yamada (Level
2.5 [19]) durchgeführt [10]. Insbesondere in der oberen Grenzschicht sowie in der En-
trainmentschicht konnte durch diesen Ansatz eine gegenüber dem diagnostischen Ansatz
[2, 19] verbesserte Übereinstimmung der ersten und zweiten statistischen Momente sub-
skaliger Turbulenz erzielt werden.

3. Die mesoskalige Sensitivitätsstudie zum Einfluss der turbulenten Mischungslänge auf prog-
nostizierte hydro– und thermodynamische Felder wurde mit dem nichthydrostatischen me-
soskaligen Lokal-Modell (LM) des Deutschen Wetterdienstes durchgeführt. Die Turbu-
lenzschließung des LM basiert auf dem Mellor-Yamada-Modell Level 2.5 [21] und ver-
wendet in der originalen Formulierung den diagnostischen Ansatz für die turbulente Mi-
schungslänge in Verbindung mit dimensionslosen Stabilitätsfunktionen.

Das verwendete Szenario basiert auf Rand- und Anfangsdaten, die 24 Stunden der Intensiv-
messphase (18.06.1998) des LITFASS-98 Feldexperimentes repräsentieren. Anhand eines
Modell-Modell-Vergleichs konnte der Einfluss der turbulenten Mischungslänge auf das
raumzeitliche Verhalten parametrisierter subskaliger turbulenter Flüsse identifiziert wer-
den. Diese zeigten besonders in der Entrainmentzone der voll entwickelten konvektiven
Grenzschicht eine hohe Sensitivität gegenüber der turbulenten Mischungslänge.

Eine quantitative statistische Analyse der Simulationsergebnisse wurde für prognostizier-
te dreidimensionale Felder von Bewölkungsgrad, Wolkenwassergehalt und Wasserdampf
sowie zweidimensionale Niederschlagsfelder durchgeführt. Eine hohe Sensitivität des Be-
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wölkungsgrades und des Wolkenwassergehaltes gegenüber der turbulenten Mischungslän-
ge konnte im oberen Bereich der Grenzschicht während des Zeitraums stärkster Konvek-
tion nachgewiesen werden. Darüber hinaus ergab sich für den gleichen Zeitraum eine star-
ke Beeinflussung konvektiv induzierter Niederschlagsereignisse [9].

Die Verifizierung der Simulationsergebnisse erfolgte durch die Auswertung von Satelliten–
und Analysedaten aus der 4D-Datenassimilation. Die Satellitendaten umfassten gemesse-
ne Strahlungstemperaturen im infraroten Spektralbereich. Diese wurden mit synthetischen
Satellitenbildern verglichen, die aus prognostizierten Modellvariablen des LM mit Hilfe
eines Strahlungstransfermodells [20] berechnet wurden. Für die Verifizierung der Simu-
lationen auf Basis der Datenasssimilation standen nur Analysedaten bodennaher Felder
sowie Daten des Bedeckungsgrades mit tiefen, mittelhohen und hohen Wolken zur Verfü-
gung.

Ein Vergleich der Simulationsergebnisse anhand berechneter synthetischer Strahlungstem-
peraturen sowie Modellvariablen in der bodennahen Grenzschicht mit Satelliten- und Ana-
lysedaten zeigte erwartungsgemäß nur eine geringe Sensitivität gegenüber der turbulen-
ten Mischungslänge. Die Verifizierung der prognostizierten Wolkenbedeckungsgrade wies
jedoch für das betrachtete Simulationsszenario eine Verbesserung der Prognose des Be-
deckungsgrades für tiefe Wolken nach. Bei Verwendung der revidierten turbulenten Mi-
schungslänge ergab sich gegenüber dem originalen Ansatz eine Verbesserung um bis zu
∼ 11 % [9].

Ausblick

Eine statistisch abgesicherte Validierung der turbulenten Mischungslänge in meso- und global-
skaligen Atmosphärenmodellen kann nur auf der Basis einer Vielzahl von Modellsimulationen,
d.h. routinemäßig, erfolgen. Eine umfassende Verifizierung prognostizierter hydro- und thermo-
dynamischer Felder erfordert zeitlich und räumlich hochauflösende Messdaten, insbesondere des
Flüssigwassergehaltes, des Wasserdampfes sowie mikrophysikalischer Wolkenparameter.

Die erzielten positiven Ergebnisse bei der Integration charakteristischer Turbulenzlängen-
skalen in die Turbulenzschließung des LM legen eine Verwendung dieses Ansatzes in der ope-
rationellen Wettervorhersage nahe. Es ist daher beabsichtigt, den neuen Mischungslängenansatz
einer umfangreichen Verifikation im Rahmen routinemäßiger Wettervorhersage zu unterziehen.
Diese erfolgt in enger Kooperation mit der Abteilung Forschung und Entwicklung des Deutschen
Wetterdienstes.

Die Untersuchungsergebnisse dieser Arbeit sind für ein breites Spektrum von dynamischen
Atmosphärenmodellen anwendbar. Sie bilden die Grundlage einer verbesserten Berücksichti-
gung subskaliger turbulenter Austauschprozesse in diesen Modellen und tragen damit zu einer
weiteren Erhöhung von Signifikanz und Zuverlässigkeit numerischer Modellsimulationen der
Erdatmosphäre bei.
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CHAPTER 1

Introduction

Long term political and economical decisions are increasingly based on results of numerical
model simulations. Therefore, an estimation of the reliability and significance of models is of
great importance. One of the present-day major challenges for the scientific community poses
the numerical simulation of the earth atmosphere due to the large complexity of atmospheric
processes associated with non-linearity as well as large spatial and temporal variability. However,
uncertainties in knowledge about atmospheric processes account for some gaps in our present day
knowledge concerning the effects of global change. These effects are related to changes in the
frequency and characteristics of extreme weather events, possible impacts on natural and social
systems, and their implications for disaster prevention (WGBU, 1996).

Among the processes of high climate sensitivity, clouds are considered as one of the impor-
tant factors regulating the current climate system and future climate change (Ramanathanet al.,
1989; Harrisonet al., 1990; Alekseevet al., 1996). Due to their widespread and persistent occur-
rence, clouds are of fundamental importance to the global energy budget. Despite of the crucial
role of clouds in the radiation balance of the atmosphere and earth’s surface they are treated very
crudely in most regional integrated models (RIM). However, RIMs are considered as a possi-
ble approach for climate impact research at regional scale (IPCC, 2002; WGBU, 1995). The
meteorological part of RIMs is often based on mesoscale numerical weather prediction (NWP)
models. Within the framework of RIMs, NWP models are used to investigate changes of the local
and regional climate resulting from the interaction of large-scale circulation patterns, circulation
systems induced by geographical and topographic factors, and smaller processes at the earth’s
surface, which are subject to anthropogenic influences (WGBU, 1996; Renner, 2002).

Turbulent processes taking place in the planetary boundary layer (PBL) strongly affect the
global distribution of clouds by controlling the evaporation and redistribution of water vapour
into the atmosphere (Garrat, 1993). In convective boundary layers (CBL), turbulent transports
of momentum, heat, moisture, and other chemical species are associated with buoyant thermals.
These turbulent structures influence mainly the development of low clouds. However, even low
clouds are considered to have a large climate sensitivity (Gibson and Wielicki, 2002).

Due to their complexity, associated with large spatial and temporal variability, turbulent trans-
ports are not resolved in NWP models. Therefore, NWP models at regional and global scale
have to use turbulence parameterisations to describe the impact of the non-resolved subgrid-
scale (SGS) turbulent transports on the evolution of the dynamic and thermodynamic state of
the atmosphere (Ayotte et al., 1996) as well as on reactions of chemical species (Hellmuth and
Helmert, 2002). Thus, development and improvement of parameterisation schemes for subgrid-
scale turbulent transports is of primary importance and subject of comprehensive integrated stud-
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ies (Müller et al., 1995) including measurements as well as numerical simulations (see, e.g.,
Herzoget al. (2002a)).

Depending on scale and atmospheric stability a large number of parameterisation schemes
different in degree of sophistication have been developed in the past decades (Stull, 1997). To
keep the computational costs at an acceptable level, most turbulence parameterisation schemes
in NWP models use the local closure approximation with varying orders of closure (Mellor and
Yamada, 1974; Wyngaard and Coté, 1974; Andréet al., 1978). However, local closure schemes
show some deficiencies in simulations of buoyancy-driven convective boundary layers (Dear-
dorff, 1972; Ebertet al., 1989; Holtslag and Moeng, 1991; Chroboket al., 1992). Here, the pri-
mary part of turbulent transports is associated with coherent and organised structures (turbulent
eddies) containing most of the turbulent energy. Therefore, several approaches have been devel-
oped to circumvent this problem. They are often based on counter-gradient closures (Deardorff,
1972; Mailhot and Benoit, 1982; Troen and Mahrt, 1986; Holtslag and Moeng, 1991; Cuijpers
and Holtslag, 1998) or non-local closures (Stull, 1984; Wyngaard and Brost, 1984; Berkowicz,
1984; Fiedler and Moeng, 1985). However, these schemes are numerically expensive. This limits
their application in NWP models with regional and global scale of interest. Therefore, the param-
eterisation of turbulent transports in present-days and also near-future NWP models is carried on
with local closure approximation.

One of the most popular local closure schemes used in NWP models (Ayotte et al., 1996) is
the Mellor-Yamada scheme (Mellor and Yamada, 1974; Chenget al., 2002). This scheme uses
the down-gradient approach to parameterise subgrid-scale turbulent fluxes of momentum, heat
and humidity based on the approximation of the eddy diffusivity coefficients for momentum and
scalars. However, this approximation requires a formulation of the turbulent mixing length to
relate the eddy diffusivity coefficient to the turbulent kinetic energy (TKE) of the flow (Durand
et al., 2000). The master length scale approach (Mellor and Yamada, 1974; Chenget al., 2002) is
used in the Mellor-Yamada scheme as formulation for the turbulent mixing length. This approach
is based on a characteristic length scalel , representative of the neutral stability state (Blackadar,
1962). All other characteristic model length scales are then assumed to be proportional tol .

Atmospheric measurements (Gossard, 1960; Busch and Larsen, 1972) and theoretical consid-
erations (Dubrulle and Niino, 1992) indicated a pronounced dependence of characteristic length
scales on atmospheric stability. Thus, to take into account deviations of atmospheric stability
from the neutral state, formulations of turbulent mixing length based on the master length scale
require additional dimensionless stability functions (Mellor and Yamada, 1974, 1982; Yamada,
1983; Andréet al., 1978; Arritt , 1987; Duynkerke and Driedonks, 1987). However, these stabil-
ity functions take not into account effects of varying vertical stratification throughout the whole
depth of the PBL due to their dependence on local Richardson numbers (Bélairet al., 1999). This
is primarily a problem within the entrainment zone at the upper CBL, where strong changes in
vertical stratification occur. However, these uncertainties of turbulent mixing lengths are critical
for the simulation of cloud development, since a correct parameterisation of turbulent mixing is
essential for obtaining proper entrainment fluxes at the CBL top (Abdalla and McFarlane, 1997;
Cuijpers and Holtslag, 1998). Thus, uncertainties in turbulent mixing lengths can result in sys-
tematic shortcomings in numerical simulations of convective boundary layer processes (Bélair
et al., 1999). Therefore, the determination of stability dependent characteristic length scales even
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for the CBL is of great importance and a challenging problem in turbulence parameterisations.
Characteristic turbulence length scales are related to the energy spectrum of turbulent fluc-

tuations (Kaiser and Fedorovich, 1998). Therefore, they show an inherent dependence on at-
mospheric stability. Accordingly, attempts have been made to use these scales in formulations
of turbulent mixing length (Sun and Chang, 1986; Degraziaet al., 1997). However, this ap-
proach requires a database of characteristic turbulence length scales, representing a wide range
of atmospheric stability states.

Atmospheric measurements (Kaimalet al., 1972, 1976; Caughey and Palmer, 1979; Lenschow
and Stankov, 1986; Durandet al., 2000) and laboratory experiments (Willis and Deardorff, 1974;
Kaiser and Fedorovich, 1998; Ahlers, 2001; Grossmann and Lohse, 2001) have provided valu-
able contributions in examinations of turbulent processes in CBLs. However, characteristic tur-
bulence length scales, derived from measurements are often based on turbulence data, obtained
only in a small parameter space of CBL stability states.

Therefore, large-eddy simulation (LES) of CBLs has been increasingly used in the last years
to augment the database of turbulence data (Ayotte et al., 1996). Based on the pioneering work
of Deardorff(1970b) LES resolves explicitly the turbulent eddies and parameterise only the less
energy-containing and more isotropic small-scale motions in a subgrid-scale model. Thus, LES
covers a wide range of CBL stability states and provides three-dimensional fields of wind veloc-
ity, temperature, and moisture in high resolution. Furthermore, since only a small portion of the
turbulence has to be considered by the subgrid-scale model, LES results are much less sensitive
to turbulence parameterisation assumptions. Thus, development and evaluation of parameteri-
sation schemes for climate- and weather prediction models is increasingly based on large-eddy
simulation (Siebesma and Cuijpers, 1995; Ayotte et al., 1996; Brown and Grant, 1997; Kershaw
and Gregory, 1997; Nakanishi, 2001).

Although the use of subgrid-scale models for motions below the filter width of LES could
lead to some uncertainties in small-scale mixing (Moenget al., 1996), the simulation results in
bulk of the CBL were shown to be insensitive to the treatment of SGS motions and numerical
methods (Nieuwstadtet al., 1993; Andrénet al., 1994)

First meteorological applications of LES concerned the convective boundary layer (Dear-
dorff, 1973, 1974; Moeng and Wyngaard, 1986; Schumannet al., 1987; Mason, 1989; Schmidt
and Schumann, 1989) providing significant contributions in understanding of turbulent trans-
ports of momentum, heat and moisture by coherent buoyant thermals. However, LES is not
restricted to pure convective boundary layers. Several large-eddy simulations of the shear-driven
boundary layer (Moeng and Sullivan, 1994; Lin et al., 1996; Khanna and Brasseur, 1998; Lohou
et al., 2000) found an elongation of turbulent eddies in mean wind direction that could explain
observed roll structures in real shear-driven PBLs. Furthermore, based on LES of clear CBLs,
various studies provided valuable insights into the behaviour of characteristic turbulence length
scales (Mason, 1989; Khanna and Brasseur, 1998; Nakanishi, 2001).

This thesis focuses on the determination of characteristic turbulence length scales from a
comprehensive database of artificial three-dimensional CBLs. Based on a LES model (Chlond,
1992, 1999) that considers the water cycle including cloud formation, the aim is to extent pre-
vious LES studies by taking into account moisture-containing CBLs. Thus, the LES database
includes clear and moisture-containing CBLs of varying atmospheric stability, driven by buoy-
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ancy and shear. The high resolution of the simulated CBLs allows to derive the characteristic
turbulence length scales over a wide range of stability states. The aim is to use these length
scales to develop an adequate stability dependent turbulent mixing length formulation.

The implications of this new mixing length formulation on evolution of the dynamic and
thermodynamic state of the atmosphere at regional scale will be investigated. Thus, based on the
non-hydrostatic limited area model (“Lokal-Modell”- LM), the simulation of 24 hrs of the most
intensive measurement campaign during the LITFASS-98 field experiment (Beyrich, 2001) will
be performed. For a comprehensive verification of the simulation results, satellite based observa-
tions and a model analysis data resulting from 4D assimilation (Schraff and Hess, 2002; Wergen,
2002) will be used. Accordingly, the interactions between turbulent processes, influenced by
the formulation of the turbulent mixing length and processes occurring at regional scale will be
examined.

To address the above-mentioned issues, the thesis has been divided into the following chap-
ters: The methods commonly used to consider turbulent processes in atmospheric models of
different scale of interest are illustrated in Chapter2. Furthermore, this Chapter focuses on main
properties of the Mellor-Yamada model and formulations of turbulent mixing commonly used in
NWP models. Further characteristic scales of turbulent processes are derived by examination of
the spectrum of the turbulent kinetic energy. In Chapter3, the generation of the LES database
of artificial CBLs, the determination of turbulent mixing length scales, and the verification of
the results will be presented. The verification is based on numerical simulations, atmospheric
measurements and laboratory experiments. Furthermore, this Chapter contains the development
and verification of a new turbulent mixing length formulation based on LES database results.
In Chapter4, the implications of this turbulent mixing length on results of a model simulation
at regional scale is examined. This simulation is based on the LM and considers 24 hrs of the
LITFASS measurement campaign. Conclusions and further directions of this thesis are given in
Chapter5.



CHAPTER 2

Treatment of turbulent processes in
atmospheric models

The fundamental principles, which constitute the base of atmospheric models considered here
are balance equations for momentum, heat, moisture, and mass. These principles lead to a set
of governing equations for the flow variables wind velocity, active scalars1, and passive scalars2

in terms of coupled partial differential equations in several dimensions. This set of governing
equations has to be solved simultaneously in discrete form by the numerical model (Holton,
1972; Stull, 1997; Beniston, 1998).

To perform representative atmospheric simulations, numerical models based on these gov-
erning equations should address as many as possible of physical factors linked to the dynamic
and thermodynamic characteristics of the atmosphere. However, as shown in Fig.2.1 atmo-
spheric processes cover a wide range of spatial and temporal scales. Therefore, these processes
are characterised by very large Reynolds numbers Re in the order of Re∼ 1014. Although the
fundamental equations are the same for all models and independent of scale, the scale of interest
strongly determines the type of model simplifications and required physical parameterisation of
non-resolved processes. As a result, illustrated in Fig.2.1, there is no single model that takes
into account all these scales explicitly, but a spectrum of atmospheric models with different scale
of interest.

The wide spectrum of models is related to the wide range of scales of atmospheric processes
reaching from Kolmogorov length scaleη (Kolmogorov, 1941), which is in the order of 10−3 m,
to scales of the specific model-domain sizeLD (Reynolds, 1990), which is in the order of 105-
108 m for general circulation models (GCM).

It is shown in Fig.2.1that models, which resolve all scales by the direct numerical simulation
(DNS), are restricted to microscale. Here, the scale of interest is in the order of 101 m. However,
resolving turbulent eddies in the CBL with characteristic length scales up to 103 m and Reynolds
numbers of Re= 1010 based on DNS would requireND ∼ 107 gridpoints in one direction (ND ∼
η/LD∼Re−3/4). However, these requirements exceeds the computational power of present-days
and also near future supercomputers.

The high computational costs of DNS have motivated a number of different approaches to
simulate atmospheric flows with high Reynolds numbers using a given number of modes in

1Active scalars (e.g., temperature, moisture) have impact on the air density and influence therefore the dynamics
of the flow

2Passive scalars (e.g., aerosols) are transfered with the flow, but have no impact on the dynamics of the flow
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FIGURE 2.1: Characteristic spatial and temporal scales of atmospheric processes and corresponding at-
mospheric models with varying scale of interest (afterGalperin and Orszag(1993) and
Stevens and Lenschow(2001)). The acronyms, used in the figure are DNS (direct numer-
ical simulation), LES (large-eddy simulation), MM (mesoscale model) and GCM (general
circulation model).

wavenumber space. They are based on incompletely resolving either the low-wavenumber or the
high-wavenumber modes (Pope, 2000). One of the most popular approaches for simulations of
boundary layer processes with horizontal scales up to about 104 m is large-eddy simulation.

In contrast to DNS, where the majority of modes is used to resolve the isotropic, less energy-
containing turbulent eddies in the high-wavenumber dissipative range, LES derives benefit from
the power law behaviour of the energy spectrum of turbulent motions. It explicitly resolves
turbulent eddies in the low-wavenumber range. In the dissipative range, LES reduces the resolu-
tion requirements by subgrid-scale modelling of the residual unresolved structures (Galperin and
Orszag, 1993; Métais and Ferziger, 1997; Pope, 2000). Thus, LES acts as low-pass filter for the
set of governing equations.
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The complexity of parameterisations of non-resolved processes increases as the scale of inter-
est of the atmospheric model increases (Fig.2.1). As a result, models at regional and global scale
have to parameterise an increased number of atmospheric processes compared to LES. Therefore,
the scale separation approach of flow variables is used in these models to simulate atmospheric
flows at regional and global scale. The scale separation approach is based on the assumption
that the average of any flow variable at large scale of interest varies much more slowly in time
and space than its deviation from average. Thus, the scale separation for velocity components
ui = (u,v,w) and scalarsφ yields

ui = ui +u′i , (2.1)

φ = φ +φ
′, (2.2)

where the wind velocity componentsui and the scalar variablesφ are related to model scale of
interest, whereasu′i andφ ′ are related to the subgrid-scale fluctuations.

Application of scale separation and averaging leads to the so-called Reynolds-averaged gov-
erning equations. They contain additional terms related to covariances of the subgrid-scale fluc-
tuations of flow variablesui andφ . Their characteristics and predictability is subject to “tur-
bulence theory” (Batchelor, 1953; Panchev, 1971; Monin and Yaglom, 1975; Lesieur, 1990;
McComb, 1990; Frisch, 1995; Pope, 2000).

The non-resolved subgrid-scale terms ofui can be interpreted as turbulence induced stresses.
They are described in terms of the residual stress tensorτi j given as

τi j = uiu j −ui u j , (2.3)

where the half trace ofτi j is related to the residual kinetic energy of the non-resolved part of the
flow.

e=
1
2

τii . (2.4)

The decomposition (Eq. (2.1)) allows to write the residual stress tensor as superposition of
three different stress tensors (Leonard, 1974)

τi j = Li j +Ci j +Ri j , (2.5)

whereLi j = ui u j−ui u j are Leonard stresses,Ci j = ui u
′
j +u′i u j are cross stresses, andRi j = u′i u

′
j

are Reynolds stresses.
The assumption ofui = ui in models at regional and global scale leads to vanishing Leonard

and cross stresses. In this case, the residual stress tensor is determined by the Reynolds stress
tensorRi j . However,ui = ui is not generally valid in LES resulting in non-vanishing Leonard
and cross stresses. However,Li j andCi j are considered as small compared toRi j (Chlond,
1999).

Thus, the Reynolds stress tensor is the most important stress tensor in atmospheric models
to describe the influence of non-resolved atmospheric processes on the dynamic and thermody-
namic state of the atmosphere. In mathematical sense,Ri j corresponds to a symmetric positive

semi-definite tensor. Its diagonal componentsu′2i are called normal stresses, whereas its off-
diagonal componentsu′iu

′
j are called shear stresses.
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2.1 Turbulence parameterisation approaches

The development of approximations for the components of the Reynolds stress tensor leads to
the turbulence closure problem (Keller and Friedman, 1924). It arises, if prognostic or diagnostic
equations for statistical moments of Reynolds stress tensor components are considered. These
equations always include statistical moments of higher order. Thus, for a finite set of equations,
the statistical description of the Reynolds stress tensor is not closed.

To get a tractable statistical description of the Reynolds stress tensor components, only a
finite number of equations is used, whereas the remaining unknown higher order moments are
approximated by known statistical moments of lower order . This approach is often applied in
atmospheric models. It is called turbulence closure approximation (Stull, 1997) and named by
the highest order of prognostic equations for the statistical moments that are retained.

Two major turbulence closure approximations have appeared in the literature. These are lo-
cal closure (Sec.2.1.1) and non-local closure (Sec.2.1.2). The decision for one type of closure
approximation and the level of sophistication depends on model scale of interest, available com-
putational power and complexity of processes under consideration (Holt and Raman, 1988; Stull,
1997).

2.1.1 Local closure approximation

In local closure approximation the components ofRi j related to turbulent fluxes of momentum,
heat and humidity at a certain location in the atmosphere are determined from averaged flow
variables and their gradients at that location. Thus, local closure of a turbulent fluxu′kχ ′ of any
flow variableχ is based on the small eddy approach that is

u′kχ ′ =−Kχ

∂ χ

∂xk
, (2.6)

where∂ χ/∂xk is the local gradient ofχ andKχ is the eddy diffusivity coefficient of the flow
variableχ. In close analogy to molecular viscosity,Kχ describes transport related to turbulent
diffusion. This analogy requires positive values for the eddy diffusivity coefficient leading to a
down-gradient turbulent transport. Consequently, local closure approximation schemes based on
the small eddy approach are often called down-gradient schemes.

In dependence on the model scale of interest (see Fig.2.1), local closure approximations used
in atmospheric models take into account statistical moments of turbulent variables up to the

• order 1 considering prognostic equations for means (e.g.,O’Brien (1970); Pielke and
Mahrer(1975), andLouis (1979)),

• order2 considering prognostic equations for means and variances (e.g.,Mellor and Ya-
mada(1974) andAbdalla and McFarlane(1997)),

• order3 considering prognostic equations for means, variances, and third-order moments
(e.g.,Andréet al. (1978); Moeng and Randall(1984), andZilitinkevich et al. (1999)).
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Due to improvements of turbulence measurements (Druilhet and Durand, 1997) as well as
of computational capabilities (Bonnert, 2003), in last years the development of local closure
schemes primarily has focused on higher-order (order 2-3) schemes. However, the numerical
requirements of these schemes are still too expensive for application of these schemes in atmo-
spheric models with regional and global scale of interest.

Independent on their order, local closure schemes have been successfully applied in mod-
elling of the evolution of daytime and nocturnal boundary layers (Bélair et al., 1999). How-
ever, their local structure lead to difficulties in simulating convective boundary layers (Deardorff,
1972; Ebertet al., 1989; Holtslag and Moeng, 1991; Chroboket al., 1992). These problems are
related to a vanishing of the mean gradients of flow variables in well mixed CBLs (Holtslag and
Moeng, 1991). According to Eq. (2.6) this would lead to a vanishing turbulent flux, which is in
contrast to observations. Consequently, turbulent transports in CBLs are dominated by turbulent
eddies that are not captured in local closure approximations.

2.1.2 Non-local closure approximation

Non-local closure approximations were developed for two decades to take into account the tur-
bulent mixing due to turbulent eddies. They are based on the assumption that the components of
Ri j at a certain location in the atmosphere are determined by flow variables at scale of interest
from many locations within the CBL.

Some of the approximations that have been appeared in literature are:

• Turbulent transilient theory (Stull, 1984, 1993; Stull and Driedonks, 1987)

• Top-down bottom-up diffusion (e.g.,Wyngaard and Brost(1984))

• Spectral diffusivity theory (Berkowicz, 1984)

• Integral turbulence closure (Fiedler and Moeng, 1985).

However, non-local closure approximations show an increased complexity compared to local
closure approximations. Therefore, the inclusion of non-local closure approximation into atmo-
spheric models leads to a considerable increase in computing time (Bélair et al., 1999). This
limits the application of non-local schemes in atmospheric models with regional and global scale
of interest.

2.1.3 Counter-gradient approximation

The counter-gradient approximation, originated withDeardorff(1972) is considered as a trade-
off between computational costs and simulation accuracy for convective boundary layers. This
approach includes non-local effects in a simpler manner. It uses counter-gradient non-local terms
in Eq. (2.6) only for vertical turbulent fluxes of scalarsw′φ ′ (e.g., turbulent sensible heat flux
w′θ ′, turbulent flux of total water contentw′q′) (Mailhot and Benoit, 1982; Therry and Lacarrére,
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1983; Troen and Mahrt, 1986; Holtslag and Moeng, 1991; Cuijpers and Holtslag, 1998). This
yields

w′φ ′ =−K
φ

(
∂φ

∂z
− γ

φ

)
, (2.7)

whereγ
φ

is an “equilibrium scalar gradient”, incorporated as “counter-gradient”.
Compared to the down-gradient approach, the counter-gradient approximation leads to im-

proved parameterisations of CBL properties (Holtslag and Boville, 1993; Holtslaget al., 1995;
Lüpkes and Schlünzen, 1996) sinceγ

φ
leads to non-vanishing turbulent fluxes in well mixed

conditions (∂φ/∂z→ 0). However, the required parameterisation ofγ
φ
, often based on approxi-

mations of second order moments increase the computational costs.

2.2 Local closure approximation after Mellor-Yamada

The great importance of computational costs for models with regional and global scale of inter-
est (e.g., mesoscale models and general circulation models), especially for operational weather
forecast applications, limits the use of complex non-local closure and counter-gradient approxi-
mations in these model applications. Consequently, many models with regional and global scale
of interest currently use local closure approximation of order 1 afterLouis(1979) or of order 11/2
afterMellor and Yamada(1974, 1982) (Ayotteet al., 1996).

Primarily the local closure approximation of order 11/2 after Mellor and Yamada(1974,
1982), thereafter referred as MY-model, has become increasingly popular during the last 10
years (Janjíc, 2001; Chenget al., 2002). In replacing prognostic velocity variance equations by
a prognostic equation for TKE, it simplifies the local closure approximation of order 2. As a re-
sult, this approach associates the accuracy of higher-order closures with efficient computational
algorithms of lower-order closures (Janjíc, 2001). In the model suite ofMellor and Yamada
(1982) including four models of different degree of sophistication this local closure of order 11/2
was incorporated as Level 2.5 (MY25). The parameterisation of eddy diffusivity coefficients in
MY25 use a master length scalel to relate the eddy diffusivity to the TKE. However, the master
length scale approach is considered to be one of the major weaknesses of the MY-model (Mellor
and Yamada, 1982; Chenget al., 2002). Although efforts have been made to evaluatel by a
prognostic equation (Mellor and Yamada, 1982), it is very time consuming and uncertain due to
the required specification of empirical turbulence parameters. Thus, it is one aim of this work to
examine the impact of a new formulation forl on results of the MY-model.

The eddy diffusivity coefficients are given in MY25 as

KM = SM l E, (2.8)

K
φ

= S
φ

l E, (2.9)

whereKM is the eddy diffusivity coefficients for momentum,K
φ

is the eddy diffusivity coeffi-

cients for scalars3, l is the master length scale, andSM, S
φ

are dimensionless stability functions

3Potential temperatureθ is used as scalar variable in dry atmosphere, virtual potential temperatureθv is used as



2.2. Local closure approximation after Mellor-Yamada 15

for momentum and scalars, respectively. Here,

1
2

E2 =
1
2

u2
i (2.10)

is the model TKE.
Based on a set of constants

(A1,B1,A2,B2,C1) = (0.92,16.6,0.74,10.1,0.08), (2.11)

derived from several atmospheric measurements byMellor and Yamada(1982), SM andS
φ

can
be determined in terms of diagnostic equations as

SM =
A2F2−R1F4

F2F3−F1F4
, (2.12)

S
φ

=
R1F3−A2F1

F2F3−F1F4
(2.13)

using the parametersF1, F2, F3, F4, R1 (Nakanishi, 2001), given as

F1 = 1+6A2
1GM−9A1A2G

φ
, (2.14)

F2 = −3A1(4A1 +3A2)Gφ
, (2.15)

F3 = 6A1A2GM, (2.16)

F4 = 1− (12A1A2 +3A2B2)Gφ
, (2.17)

R1 = A1(1−3C1). (2.18)

SinceGM andG
φ

are defined as

GM =
l2

E

{(
∂u
∂z

)2

+
(

∂v
∂z

)2
}

(2.19)

G
φ

= − l2

E
g

θ

∂θ

∂z
, (2.20)

the dimensionless stability functionsSM andS
φ

are functions of the local gradient Richardson
number, given as

Ri =
g

θ

∂θ

∂z(
∂u
∂z

)2
+
(

∂v
∂z

)2 =−
G

φ

GM
. (2.21)

The “ordering of terms”-approach (Mellor and Yamada, 1974) accompanied by the boundary
layer approximation, yields a prognostic equation of the residual kinetic energy, which is given
as

∂

∂ t
E2

2
+uk

∂

∂xk

(
E2

2

)
− ∂

∂z

{
SE l E

∂

∂dz

(
E2

2

)}
= Ps+Pb− εm, (2.22)

scalar variable in moisture-containing atmosphere, liquid water potential temperatureθl and total water contentq
are used as conserved scalar variables in moisture-containing atmosphere, when phase changes occur.
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whereSE is a stability function,Ps is the shear production of TKE,Pb is the buoyant production
of TKE, andεm is the model dissipation rate, given as

Ps = −w′u′
∂u
∂z
−w′v′

∂v
∂z

, (2.23)

Pb =
g

θ
w′θ ′, and (2.24)

εm =
E3

Λ1
, (2.25)

whereu,v,w are zonal, meridional, and vertical velocity components,g is the earth acceleration,
andΛ1 is a characteristic length scale of the MY-model.

According to the down-gradient approach used in MY25, the turbulent fluxes of momentum
and scalars are parameterised as

u′w′ = −SM l E
∂u
∂z

=−KM
∂u
∂z

, (2.26)

v′w′ = −SM l E
∂v
∂z

=−KM
∂v
∂z

, (2.27)

w′φ ′ = −Sφ l E
∂φ

∂z
=−Kφ

∂φ

∂z
. (2.28)

Since MY25 is a local closure scheme of order 11/2, diagnostic equations are used to deter-
mine the variances of the wind velocity components and of scalars. They are given as

u′2 =
E2

3
+

l1
E

(
−4u′w′

∂u
∂z

+2v′w′
∂v
∂z
−2Pb

)
, (2.29)

v′2 =
E2

3
+

l1
E

(
2u′w′

∂u
∂z
−4v′w′

∂v
∂z
−2Pb

)
, (2.30)

w′2 =
E2

3
+

l1
E

(
2u′w′

∂u
∂z

+2v′w′
∂v
∂z

+4Pb

)
, (2.31)

φ ′2 = −Λ2

q
w′φ ′

∂φ

∂z
. (2.32)

Obviously, the approximation of the turbulent fluxes and variances in MY25 (Eqs. (2.26)-
(2.32)) is influenced by various characteristic model length scalesl , l1, andΛ2. Thus, a turbulent
mixing length formulation is required to provide approximations for these length scales.

2.3 Turbulent mixing length formulations

The turbulent mixing length formulation of the MY-model used the master length scale approach
(Mellor and Yamada, 1974, 1982). Based on the length scalel , used in Eqs. (2.8)-(2.9), all
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characteristic model length scales(l1,Λ1, l2,Λ2) are assumed to be everywhere proportional tol
as

(l1,Λ1, l2,Λ2) = (A1,B1,A2,B2) l , (2.33)

where the constants(A1,B1,A2,B2) refer to Eq. (2.11).
A length scale, proposed byBlackadar(1962) for neutral stability is often used as master

length scale (Mellor and Yamada, 1974, 1982). In this formulationl is defined as

l =
(

1
κz

+
1
l0

)−1

, (2.34)

whereκ is the von-Karman constant. The asymptotic length scale forz→ ∞ is given by l0.
Various approximations exist forl0 (Blackadar, 1962; Mellor and Yamada, 1974; Arritt , 1987;
Holtslag and Boville, 1993; Doms and Schättler, 1999). Most of them assumel0 in the order of
300-500 m.

However, the turbulent mixing length formulation based on the master length scale requires
additional assumptions for deviations from neutral stability state, provided by the dimensionless
stability functionsSM, S

φ
. Although attempts have been made to consider deviations from neutral

stability state within the diagnostic length scale equation (Arritt , 1987) by

l = S1/2
M

(
1

κz
+

1
l0

)−1

, (2.35)

similar to Eq. (2.34), this formulation requires also the approximation of an additional stability
functionSM. Furthermore, using this length scale equation in Eqs. (2.8)-(2.9) leads to a double-
counting of stability.

A further formulation of mixing lengths based on several characteristic length scalesL1, L2
is the stability-dependent dual-choice length scale approach (Andréet al., 1978; Duynkerke and
Driedonks, 1987) given as

l = min(L1,L2), (2.36)

where

L1 =
(

ΦM

κz
+

1
l0

)−1

, and (2.37)

L2 = 0.36e1/2
(

g

θ

∂θ

∂z

)−1/2

, for
∂θ

∂z
≥ 0. (2.38)

However, similar to the previous formulation of turbulent mixing length, the dual-choice length
scale approach depends on an additional stability functionΦM. Since dimensionless stability
functionsSM, S

φ
, andΦM are based on local Richardson numbers (Eq. (2.21), they cannot ac-

count for the effect of varying vertical stratification throughout the whole depth of the PBL
(Bélair et al., 1999). This is primarily a problem within the entrainment zone at the upper CBL,
where strong changes in vertical stratification occur.

An alternative dual-choice length scale approach (Bougeault and Lacarrére, 1989; Bélair
et al., 1999) is based on potential upward and downward displacements of upward and downward
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moving parcels. Here, the stability state is taken into account by the displacements (lup andldown).
These displacements can achieved by parcels with kinetic energy equal to the mean TKE at the
level, where they started before they are stopped by buoyancy effects (Bélairet al., 1999). In this
formulation,lup andldown are given as

e(z) =

z+lup∫
z

g
θv,s

{
θ(z′)−θ(z)

}
dz′ (2.39)

e(z) =
z∫

z−ldown

g
θv,s

{
θ(z)−θ(z′)

}
dz′, and ldown < z, (2.40)

wherez is the height of the initial level,e(z) is the local TKE, andθv,s is the virtual poten-
tial temperature of near surface air. The turbulent mixing length scale`k, related to the most
energy-containing turbulent structures and dissipation length scale`ε , responsible for dissipative
structures are determined fromlup andldown as

`k = min(lup, ldown), (2.41)

and
`ε = (lup · ldown)

1/2. (2.42)

However, the required averaging oflup andldown is considered as an difficult aspect of this method
(Bélairet al., 1999).

2.4 Characteristic turbulence length scales

An alternative approach, used in this work is based on the examination of characteristic turbu-
lence length scales. These length scales are related to the scale-dependent distribution of tur-
bulent kinetic energy of turbulent eddies. Turbulent motions in terms of turbulent eddies refer
to vortexes, where an eddy is considered as localised within a region of size` (Pope, 2000). In
general, the region occupied by a large eddy can also contain smaller eddies.

According toRichardson(1922) turbulent flows with large Reynolds numbers contain eddies
of different sizes. The eddies representative of the largest size range`0 are characterised by the
turbulence length scale, which is comparable to the length scaleL of the flow. In this range they
are anisotropic and affected by the boundary conditions of the flow (Pope, 2000). This size range
is called energy-containing range, because it contains the bulk of the turbulent energy due to
buoyancy and shear (Kaimal and Finnigan, 1994).

The instability of the large eddies leads to a transfer of their energy to eddies of smaller length
scale` < `0. This process is repeated to smaller and smaller scales in the inertial subrange.
During this conversion process, TKE is neither produced nor dissipated but handed down to
smaller scales, whereas all information about the geometry of the large eddies is lost. Thus,
the statistics of the small-scale motions, which contain less TKE is universal for every high-
Reynolds number turbulent flows (First Similarity-Hypothesis ofKolmogorov (1941)) and is
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uniquely determined by dissipationε but independent of fluid viscosityν (Second Similarity-
Hypothesis ofKolmogorov(1941)).

This is an important finding for the parameterisation of sub-filter scale processes in LES
models, where the universal properties of the less energy-containing eddies allows the applica-
tion of simple turbulence closure approximations. The characteristic turbulence length scale,
representative of eddies in the inertial subrange is the dissipation length scale`ε (Durandet al.,
2000).

If the eddies are small enough that eddy Reynolds number Re(`) = 1, their kinetic energy
dissipates in internal energy (heat) due to molecular viscosity. At this point, the eddies enter
the dissipation range. The characteristic turbulence length scale of the dissipation range is the

Kolmogorov length scaleη depending on dissipationε and viscosityν by η =
(
ν3/ε

)1/4
.

Information about the spatial structure of the turbulent field, required to derive characteristic
length scales is provided by several statistical parameters.

The covariance between two flow variablesχi andχ j is given as

Rχi χ j
(r) =

∞∫
−∞

χi(x)χ j(x+ r)dx, (2.43)

wherex is the position vector andr is the displacement vector. The auto-covariance yields, ifχi
andχ j are identical (i = j)

Rχi χi
(r) =

∞∫
−∞

χi(x)χi(x+ r)dx. (2.44)

The spatial structure in wavenumber space of a flow variableχi is given by the Fourier transform

Φχi
(k) =

1
(2π)3

∞∫
−∞

e−ik·r
χi(r)dr , (2.45)

whereΦχi
(k) is the spectrum ofχi andk is the wavenumber vector.

Based on the Correlation Theorem and the Wiener-Khinchin Theorem (Presset al., 1996),
the Fourier transform can be used to determineRχi χ j

(r) andRχi χi
(r) by

Rχi χ j
(r) =

∞∫
−∞

e−ik·r
{

Φχi
(k)Φ∗χ j

(k)
}

dk, (2.46)

Rχi χi
(r) =

∞∫
−∞

e−ik·r
{∣∣∣Φχi

(k)
∣∣∣2}dk, (2.47)

whereΦ∗χ j
(k) is the complex conjugate ofΦχ j

(k).
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Using Eq. (2.46) with χi = ui , χ j = u j , andr = 0 yields the velocity covariancesu′iu
′
j of the

Reynolds stress tensorRi j by

Ruiu j
(0) = u′iu

′
j =

∞∫
−∞

Φui
(k)Φ∗u j

(k)dk, (2.48)

whereΦui
(k)Φ∗u j

(k) represents the contribution of velocity modes with wavenumberk to the

covarianceu′iu
′
j and, therefore, the contribution to the Reynolds-stress density in wavenumber

space.
Integration of the half of the trace ofΦχi

(k)Φ∗χ j
(k) yields the energy spectrumEχ of the flow

variableχ

Eχ(k) =
∞∫
−∞

1
2

{
Φχi

(k)Φ∗χi
(k)
}

δ (|k|−k)dk, (2.49)

that is the turbulent energy of the eddies depending on their wavenumber. Integration ofEχ(k)
over allk = |k| yields an expression for the turbulent energy of the flow, given as

eχ =
1
2

χiχi =
1
2

Rχi χi
(0) =

∞∫
0

Eχ(k)dk. (2.50)

Similar, an expression can be obtained for the dissipation by

εχ =
∞∫

0

2νk2Eχ(k)dk. (2.51)

From the Second Similarity-Hypothesis of Kolmogorov follows that, in the inertial range the
energy spectrum is an universal function ofε and can expressed as

Eχ(k) = Cχε
−1/3

εχk−5/3, (2.52)

whereCχ is the Kolmogorov constant of flow variableχ. For the spectrum of velocity compo-
nentsχ = ui , the Kolmogorov constant depends on direction and it isεui

= ε. For the energy
spectrum of scalars (temperature, moisture),Cχ corresponds to the Corrsin constant (Kaimal and
Finnigan, 1994).

Based on Eq. (2.52) various characteristic turbulence length scales can be derived (Kaimal
and Finnigan, 1994; Durandet al., 2000). Since they are strong associated with the local TKE
of the flow, their use in parameterisations of eddy diffusivity (Eqs. (2.8)-(2.9)) could improve
the consideration of vertical stratification in local closure schemes, compared to the stability
functions approach.
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2.4.1 Peak wavelength of the wavenumber weighted energy spectrum

Using measurements during the Minnesota and Ashchurch experiments,Caughey and Palmer
(1979) proposed an approximation for the peak wavelength(λm)w of the vertical velocity energy
spectrum in terms of CBL depthzi , which can be used as turbulent mixing length in eddy dif-
fusivity parameterisations (Sun and Chang, 1986; Degraziaet al., 1997). The approximation is
given as

(λm)w =

{
c0z for −LMO ≤ z≤ 0.1zi

c1zi(1−e−c2z/zi −c3ec4z/zi) for 0.1zi ≤ z≤ zi ,
(2.53)

where(c0,c1,c2,c3,c4)= (5.9,1.8,4.0,0.0003,8.0) are constants andLMO is the Monin-Obukhov
length scale.

Generally, the peak wavelength(λm)χ of a turbulent flow variableχ can be derived from the
peak wavenumber(km)χ of the wavenumber weighted energy spectrumkEχ(k) by

(λm)χ = 2π/(km)χ . (2.54)

However, this approach is often restricted to the vertical velocityw, since onlyw systematically
shows a well-defined peak in the energy spectrum (Kaimal et al., 1976; Højstrup, 1982; Durand
et al., 2000). Therefore, as far as known, there is no approximation for the peak wavelength of
temperature or moisture spectrum in terms of CBL depth. This might be due to the complicated
superposition of surface-generated and entrainment-induced eddies (Kaimal and Finnigan, 1994)
and to the impact of the diurnal cycle on scalar spectra (Durandet al., 2000).

2.4.2 Integral length scale

A further characteristic turbulence length scale, related to the turbulent mixing of a quantityχ

is given by the integral length scaleΛχ . This length scale is related to the low-frequency part of
the energy spectrum (Kaimal and Finnigan, 1994) by

Λχ =
πEχ(0)

χ ′2
, (2.55)

whereχ ′2 is the variance ofχ. SinceEχ(0) is difficult to determine (Kaimal and Finnigan, 1994),
the definition ofΛχ as

Λχ =
1

Rχi χi
(0)

∞∫
0

Rχi χi
(r)dr (2.56)

is used in measurements (Lenschow and Stankov, 1986; Durandet al., 2000) and numerical
simulations (e.g.,Khanna and Brasseur(1998)).

Furthermore,Λχ is the key quantity to determine the error varianceσ2
χ between estimated

average and the ensemble average of the measured or simulated turbulence statistics (Lumley
and Panofsky, 1964; Lenschow and Stankov, 1986; Lenschowet al., 1994; Schröteret al., 2000).
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To obtain reliable statistics, measurements and numerical simulations of turbulent flow variables,
the averaging lengthl

σ2
χ

have to fulfil the condition

l
σ2

χ

=
2χ ′2Λχ

χ
2
(

σχ

χ

)2 , (2.57)

whereσχ/χ is the relative error ofχ.
However, largel

σ2
χ

required for higher-order statistical moments (variance, skewness, kur-

tosis) leads in some cases to observed differences between measurements and LES (Lenschow
et al., 1994; Bösenberg, 1998; Wulfmeyer, 1999; Lenschowet al., 2000). Thus, the design of
large-eddy simulations need careful consideration of possibilities to decreaseσ2

χ (Chlond, 1999).
In this work, time-averaging of turbulent flow variables as well as averaging over horizontal
model levels were used.

An approximation for integral length scale of vertical velocity was suggested byLenschow
and Stankov(1986) based on different aircraft measurement campaigns in continental and marine
CBLs. They found best agreement with their measurements for

Λw/zi = C(z/zi)
1/2, where C = (0.24±0.04). (2.58)

This approximation ofΛw will be compared against LES results in Sec.3.3.

2.4.3 Dissipation length scale

Local closure schemes based on a prognostic equation of TKE (e.g., MY25 in Sec.2.2) require
a characteristic model length scale for parameterisation of eddy dissipation (e.g.Λ1 in MY25
or `ε in the dual-choice length scale formulation ofBougeault and Lacarrére(1989)). Various
definitions have been proposed in literature (see, e.g.,Durandet al. (2000) for an overview) to
approximate the dissipation length scale in terms of the energy spectrum (Eq. (2.52). Since all
these definitions are based on approximations of the inertial subrange, they are proportional to
each other (Durandet al., 2000). One of the simplest definition of the dissipation length scale
`εχ

for a flow variableχ is based on dimensional arguments and given as

`εχ
=

(
χ ′2

A2
χ

)3/2

, (2.59)

with

A2
χ =

3
2

Γ
(

1
3

)
Cχε

−1/3, (2.60)

whereΓ denotes the Gamma function andCχ is the Kolmogorov constant (Eq. (2.52)
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2.4.4 Relations between characteristic turbulence length scales

Although all characteristic turbulence length scales are defined in terms of energy spectrum,
there is no a priori relation between these three scales (Durandet al., 2000). However, based on
a relationship for the peak wavenumbers(km)w of vertical velocity spectrum proposed byKaimal
et al. (1972) as

kEw(k)

w′2
=

B
{

k
(km)w

}
1+B

{
k

(km)w

}5/3
, (2.61)

relations between peak wavelength(λm)w, integral length scaleΛw, and dissipation length scale
`ε can be derived (Durandet al., 2000). Using the constantB, determined from measurements to
B = 0.164 (Durandet al., 2000) the ratio between these characteristic turbulence length scales is
given as

(λm)w

Λw
= 4

(
2
3

)3/5

B−2/5≈ 6.4 (2.62)

Λw

`ε

=
πB
2

{
3Γ
(1

3

)
2

}3/2

≈ 2.1 (2.63)

(λm)w

`ε

= 2π

(
3
2

)9/10

B3/5
{

Γ
(

1
3

)}3/2

≈ 13.3. (2.64)

Assuming an analytical relationship (Eq. (2.62)) the constant relations between(λm)w, Λw,
and`ε suggest their use in turbulent mixing length formulations, where the various characteristic
model length scales are assumed to be proportional to each other (e.g., Mellor-Yamada model).
Thus, characteristic turbulence length scales could be applied in local closure schemes as a re-
placement for the master length scale approach. Due to the inherent stability dependence of the
characteristic turbulence length scales (Gossard, 1960; Busch and Larsen, 1972; Dubrulle and
Niino, 1992), in this approach, dimensionless stability functions are no longer required.





CHAPTER 3

Large-eddy simulation of convective
boundary layers

3.1 Modelling system and setup

3.1.1 The MPI 3D large-eddy simulation model

The MPI 3D large-eddy simulation model (hereafter referred as LES model), developed by
Chlond (1992) was used to generate a database containing artificial CBLs of varying stabil-
ity state. This LES model considers the water cycle including cloud formation and takes into
account effects of radiation and SGS condensation/evaporation. LES studies using this model
provided valuable contributions in investigations of cloud development during arctic cold air
outbreaks (Chlond, 1992; Müller and Chlond, 1996), of developing stratocumulus topped PBLs
(Moenget al., 1996), and of shallow cumulus convection (Brownet al., 2002).

Since a comprehensive description of the LES model is provided inChlond (1992, 1999)
only a brief summary of the main model properties will be given here. The model solves the set
of filtered Boussinesq-approximated prognostic equations for wind velocity componentsu,v,w
and active scalars (liquid water potential temperatureθl and total water contentq). The use of the
liquid water potential temperature rather than the potential temperature as prognostic variables
avoids the explicit consideration of condensation and evaporation processes in the governing
equations (Chlond, 1999, pg. 17).

A second-order accurate central differences scheme for the momentum (Williams, 1969;
Piacsek and Williams, 1970) and a modified Bott-scheme for scalars (Bott, 1989a,b; Chlond,
1994) were used for the discretisation of model variables, distributed on an Arakawa-C/Lorenz
grid. Furthermore, the Adams-Bashforth scheme and an Euler time differencing were applied
for time integration of prognostic variables. To ensure incompressibility, the pressure was de-
termined diagnostically using the solution of a Poisson-equation. This approach is based on the
Fast-Fourier-transformation method in horizontal direction and a finite-differencing method in
vertical direction (Chlond and Wolkau, 2000).

The effects of the unresolved sub-filter structures were modelled based on a local closure
approximation of order 11/2 after Deardorff(1980) andSykeset al. (1988). The subgrid-scale
model solved a prognostic equation for SGS residual kinetic energye and considered thermal
stratification. Although the Deardorff 11/2-order scheme was designed for SGS turbulence, its
basic equations are very similar to those of the Level 2.5 Mellor-Yamada local closure approx-
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imation scheme. The main difference is related to the definition of the turbulent mixing length
formulation(Xue et al., 1996). Whereas the mixing length in the Deardorff scheme is closely
related to the model grid spacing, those in the MY-model is supposed to reflect the intrinsic
characteristic model length scales, irrespective of the grid spacing.

To simulate cloud formation, the liquid water content was diagnostically determined using
an approach developed bySommeria and Deardorff(1977) including a subgrid-scale condensa-
tion scheme. This approach allowed for the dependence of partial cloud cover on SGS variances
and covariances of temperature and moisture field (Chlond, 1992; Moenget al., 1996). Absorp-
tion and emission of infrared radiation by cloud droplets were taken into account, whereas net
shortwave solar radiative heating and the influence of gaseous absorbers were neglected.

3.1.2 Initial and boundary conditions

The simulations were performed on a model domain of sizeLx×Ly×Lz with Lx = Ly = 6.4 km
andLz = 4.4 km using an uniform grid spacing of∆x = ∆y = 2.5·∆z= 100 m. The domain size
corresponded to a multiple of four to six the boundary layer height in the horizontal, and three
to four in the vertical direction. This condition ensured that all convective thermals occurring in
the simulated CBLs were captured.

Periodic boundaries were used in both horizontal directions. The domain was assumed to be
horizontally homogeneous. The upper boundary condition led to vanishing vertical velocityw at
domain top and fixed the gradients ofq andθl at their initial values. Associated with applying of
a Rayleigh friction term this condition avoided the transmission of gravity waves, which can be
generated in stable layers (Chlond, 1992).

The influence of mesoscale meteorological processes was neglected except for a horizontally
homogeneous subsidence applied at domain top. At lower boundary, a horizontal homogeneous
sensible surface heat flux fixed at a constant value was specified for all simulations to drive the
CBL. In consistency with a roughness length ofz0 = 0.035 m, a Bowen ratioβ of sensible to
latent surface heat flux withβ = 0.5 was assumed to determine the latent surface heat flux for
simulations of moisture-containing boundary layers.

A Coriolis parameter off = 8.5·10−5 s−1 and an initial pressure ofp0 = 970 hPa were used.
Further details on initial parameters of the LES database are given in Table3.1.

The simulations were initialised by one-dimensional profiles of geostrophic wind, liquid wa-
ter potential temperature, and total water content. Whereas the shape of initial profiles ofug,vg

andq was the same for all simulations, two different types of initial temperature profiles repre-
senting different boundary layer states were applied. RunsA, B, G, H, K, andN were initialised
by a temperature profile of a well mixed atmosphere. They used an uniform initial temperature
profile of θ l = 300 K below the initial boundary layer heightzi,0 = 1000 m and a constant lapse

rate ofΓ
θl

= 5.0 ·10−3 K m−1 above. To prevent a rapid growth of the simulated PBL, a strong

temperature jump of∆θl = 8 K was applied atzi,0 corresponding to a rigid lid condition often
used in LES (Moenget al., 1996; Sullivanet al., 1998; Khanna and Brasseur, 1998). The second
type of initial temperature profile, used for runs with vanishing temperature jump atzi,0, was

related to a stably stratified atmosphere with a lapse rate ofΓ
θl

= 5.0 ·10−3 K m−1 below zi,0
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TABLE 3.1: Initial parameters of the large-eddy simulations, where(w′θ ′)s is the sensible surface heat
flux, (w′q′)s is the latent surface heat flux,ug andvg are geostrophic wind components,zi0

is

the initial boundary layer height,∆θ l is the temperature jump atz= zi0
, q< is the total water

content forz< zi0
andq> is the total water content forz> zi0

.

Case (w′θ ′)s (w′q′)s ug vg zi0
∆θ l q< q>

(K m s−1) (m s−1g kg−1) (m s−1) (m s−1) (m) (K) (g kg−1) (g kg−1)

A 0.05 0.04 20 0 1000 8 24 3
B 0.05 0.04 10 0 1000 8 24 3
C 0.2 0.16 20 0 1500 0 12 3
D 0.2 0 15 0 1500 0 0 0
E 0.2 0.16 15 0 1500 0 12 3
F 0.2 0.16 15 0 1500 0 15 3
G 0.1 0.08 10 0 1000 8 24 3
H 0.15 0.12 10 0 1000 8 24 3
I 0.2 0 10 0 1500 0 0 0
J 0.2 0.16 10 0 1500 0 6 3
K 0.2 0.16 10 0 1000 8 24 3
L 0.2 0.16 10 0 1500 0 12 3
M 0.2 0.16 10 0 1500 0 18 3
N 0.2 0.16 10 0 1000 8 24 3

and a capping inversion withΓ
θl

= 8.0·10−3 K m−1 above.

Convective boundary layers of different moisture content (including clear CBLs of casesD
andI) were simulated using different values of the latent surface heat flux. Furthermore, various
initial profiles of the total water content, which differed in magnitude ofqbelowzi,0 were applied.
Abovezi,0, except for casesD andI the initial total water content was set to a constant value of

q = 3 g kg−1.
An uniform initial horizontal wind profile with varying magnitude of zonal componentu and

vanishing meridional componentv was used to impose shear in the simulated CBLs. The impact
of a non-uniform initial wind profile on the turbulence structure was investigated in caseN, where
a constant wind ofu = 5 m s−1 belowzi,0 andug = 10 m s−1 above was used.

The large-scale subsidence applied at domain top was set towLS =−5.0 ·10−2 m s−1 with a
linear decrease to the surface. LES intercomparison studies have been shown that complete re-
moval of large-scale subsidence has only a minor impact on simulation results (Brown et al.,
2002) Therefore, a test case (caseA) with vanishingwLS was performed. The initial sub-
grid TKE, required by the prognostic equation for subgrid-scale TKE was set to 0.15· (1.0−
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FIGURE 3.1: Time evolution of vertically integrated total (resolved+subgrid) TKE (caseK).

z/150) kg m−1s−2 for z< 150 m, and to zero forz≥ 150 m. Since at initial time no resolved-
scale turbulence existed, small random temperature perturbations of 0.1 K were imposed at each
grid point in the lowest model level decreasing linearly to zero atz= 200m.

Using a time step of∆t = 2 s, the computation of each database run covering 10 hrs inte-
gration time required about 40 hrs computation time on 2 GHz Intelr-XeonTM workstations or
IBMr Power4TM systems.

The example integration sequence of LES as shown in Fig.3.1used the vertically integrated
TKE to illustrate the different simulation stages. During the first 2 hrs, the simulation was in a
spin-up period, where the integrated TKE showed a pronounced peak. After 2 hrs integration
time, the integrated TKE increased linearly indicating that turbulence reached a quasi-steady
state. The initialisation of the LES dynamics was finished at latest after 4 hrs integration time.
The following range of fully developed turbulence was used to derive time-averaged turbulent
mixing length scales of the LES flow variables. An averaging interval of 2 hrs was considered to
be sufficient to obtain a reliable statistics of peak wavelength and integral length scale, derived
from LES. The CBL scaling parameter, means, variances, and fluxes were determined from a
half hour average of the LES flow variables at final simulation state after 9 hrs integration time.
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3.2 Properties of the large-eddy simulation database

Based on various CBL scaling variables (Deardorff, 1970a), the properties of the simulated CBLs
were examined. The friction velocityu∗ was used to describe shear induced turbulence in the
simulated CBLs. Based on the Monin-Obukhov similarity theory approach,u∗ was iteratively
calculated in the LES model. Thus, the difference of mean horizontal wind velocity between the
surface value and its value at the first computational grid point above the surface was taken into
account (Chlond, 1992).

The Monin-Obukhov length scaleLMO was used as a measure for the thermal stratification
of the lower boundary layer. This length scale is defined as

LMO =− θ v

κg
u3
∗

(w′θ ′v)s

, (3.1)

whereθ v is the virtual potential temperature and(w′θ ′v)s is the surface buoyancy flux. Thus,LMO
is strongly influenced by the friction velocityu∗.

To describe convection induced turbulence in the simulated CBLs, the convective velocity
scalew∗ was used. The convective velocity scale is related to the magnitude of vertical velocity
fluctuations in convective thermals and defined as

w∗ =
{

g

θ v
zi(w′θ ′v)s

}1/3

, (3.2)

where the CBL depthzi is a non-steady state scaling parameter for turbulent processes in con-
vective situations (Stull, 1997). The normalised height in the CBL is defined as

z∗ =
z
zi

. (3.3)

Here, zi is the height of the buoyancy flux minimum (Sullivan et al., 1998; Helmert, 1999).
However, some other approaches to determinezi exist in the literature (Sullivan et al., 1998;
Hellmuth, 2000).

The mixed layer convective temperature scaleθ∗, defined as

θ∗ =
(w′θ ′v)s

w∗
(3.4)

and the mixed layer convective humidity scaleq∗, defined as

q∗ =
(w′q′)s

w∗
(3.5)

were used as further scaling parameter to describe the properties of the simulated CBLs.
To determine the stability state of simulated CBLs, the ratio of shear to convective induced

turbulence, expressed byu∗/w∗ (Stull, 1997) was used. This ratio yields in terms ofzi andLMO

u∗
w∗

=−
(

κLMO

zi

)1/3

. (3.6)
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TABLE 3.2: LES boundary layer properties, where−zi/LMO is the stability parameter,u∗ is the surface
friction velocity,w∗ is the convective velocity scale,θ∗ is the mixed layer convective temper-
ature scale,q∗ is the mixed layer convective humidity scale,t∗ = zi/w∗ is the convective time
scale,zi is the boundary layer depth,LMO is the Monin-Obukhov length scale and(w′θ ′v)s is
the surface heat flux. The coloured lines denote a closer examined subset of representative
simulations.

Case −zi/LMO u∗ w∗ θ∗ q∗ t∗ zi −LMO (w′θ ′v)s
(m s−1) (m s−1) (K) (g kg−1) (s) (m) (m) (K m s−1)

A 2.12 0.82 1.43 0.040 0.028 1114 1593.30 751.00 0.058
B 5.91 0.50 1.23 0.047 0.032 834 1026.00 173.60 0.058
C 7.09 0.86 2.73 0.084 0.059 586 1600.00 225.80 0.231
D 9.16 0.73 2.06 0.097 0.000 680 1400.00 152.80 0.200
E 10.94 0.75 2.25 0.102 0.071 704 1586.70 145.00 0.231
F 11.41 0.74 2.27 0.102 0.071 714 1620.00 142.00 0.231
G 11.78 0.53 1.65 0.070 0.048 756 1246.70 105.80 0.115
H 17.29 0.56 1.98 0.087 0.061 721 1426.70 82.50 0.173
I 18.69 0.57 2.07 0.097 0.000 676 1400.00 74.90 0.200
J 23.22 0.57 2.21 0.104 0.072 682 1506.70 64.90 0.231
K 23.65 0.58 2.25 0.102 0.071 705 1586.70 67.10 0.231
L 24.89 0.57 2.24 0.103 0.071 702 1573.30 63.20 0.231
M 25.29 0.58 2.30 0.100 0.070 733 1686.70 66.70 0.231
N 48.25 0.46 2.26 0.102 0.071 711 1606.70 33.30 0.231

As seen from Tab.3.2, the LES derived scaling parameters covered a wide range of different
stability states. They reached from−zi/LMO = 2 - 48 and reflect real CBL conditions. Simula-
tions with−zi/LMO < 10 correspond to CBLs with small buoyancy and strong shear. The impact
of shear production in simulations of strong buoyant flows with−zi/LMO > 10 can be neglected
(Holtslag and Nieuwstadt, 1986). Comparing the CBL scaling parameter of caseD with E andI
with J showed the impact of latent heat flux and total water content on properties of a moisture-
containing CBLs (Tab.3.2). Whereas moisture had only minor effect onu∗, it led to an increase
of w∗ (∼+10 %),θ∗ (∼+7 %), andzi (∼+10 %), but to a decrease of−LMO (∼−10 %). Ac-
cordingly, the moisture impact led to increased instability of casesE andJ−zi/LMO (∼+20 %),
compared to the corresponding clear-air casesD andI.
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3.2.1 Flow statistics

The LES flow statistics includes statistical moments of the LES flow variables, obtained after
9 hrs integration time. Although their statistical moments approximate the ensemble averages
only for homogeneous and steady-state flows, it was shown byChlond(1999) that spatial and
time averaging of LES flow variables can improve statistical significance of LES results. How-
ever, the characteristic time scale of the process under consideration has to be smaller than the
time interval of time averaging. The typical convective time scalet∗ of LES, shown in Tab.3.2,
was in the order of 10-20 min. Therefore, time averaging over 900 time steps (30 min) and spatial
averaging over the horizontal domain were used to determine the statistical moments of the LES
flow variables.

Since the number of simulations exceeds what could presented here, only results from a
representative subset of simulations will be shown. This subset of LES was denoted by different
colours in Tab.3.2. These colours were hereafter used to identify the subset simulations in
figures. The subset of LES includes the following simulations:

• CaseB: Moisture-containing CBL of weak instability with weak surface heat flux and mod-
erate geostrophic wind using an initial well mixed temperature profile. This case represents
a CBL with moderate friction velocity, small convective velocity scale, small mixed layer
convective temperature and moisture scale, and large negative Monin-Obukhov length
scale.

• CaseG: Moisture-containing CBL of intermediate instability with intermediate surface
heat flux and moderate geostrophic wind using an initial well mixed temperature profile.
This case represents a CBL with moderate friction velocity, intermediate convective veloc-
ity scale, intermediate mixed layer convective temperature, and moisture scale as well as
intermediate negative Monin-Obukhov length scale.

• CaseJ: Moisture-containing CBL of large instability with low total water content (Tab.3.1)
but strong surface heat flux and moderate geostrophic wind using an initial stable stratified
temperature profile. This case represents a CBL with moderate friction velocity, large
convective velocity scale, large mixed layer convective temperature, and moisture scale as
well as small negative Monin-Obukhov length scale.

• CaseK: Same initial and boundary conditions as caseJ, except for a larger magnitude
of the total water content in the CBL (Tab.3.1) and an initial well mixed temperature
profile. Compared to caseJ, this resulted in an increase ofu∗, w∗,−LMO (∼+2 %), andzi
(∼+5 %), but in a decrease ofθ∗ andq∗ (∼−2 %).
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Mean values

Spatial and time averaged mean values of subset LES flow variables are shown in Fig.3.2. They
are denoted by brackets (e.g.,〈χ〉), to distinguish these variables from filtered LES flow variables
(e.g.,χ). The mean values of〈u〉,〈v〉, 〈θ〉, 〈q〉 and〈ql 〉 give insights into the structure of the
simulated CBLs at initial and final state.

Due to the same initial wind profile, the shape of the final mean wind profile (Fig.3.2(a))
agreed well among the subset of database simulations. The magnitude of horizontal wind com-
ponents grew from surface toz∼ 100 m and remained constant in the well mixed layer with
only small differences between the various simulations. However,〈u〉 showed an increase at
CBL top, where an decrease occurred for〈v〉. Abovezi , the wind became geostrophic. Due to
the different CBL depths, the corresponding wind jump to geostrophic wind conditions occurred
for the various subset simulations at different altitudes. This wind jump can be associated with
divergence of lateral momentum transport, related to subgrid-scale eddies and convective rolls
(Chlond, 1999).

The final mean potential temperature profiles (Fig.3.2(b)) clearly showed a near surface
super-adiabatic layer, topped by a well mixed layer. Near CBL top, an entrainment zone has
been developed, indicated by a sharpening of the inversion strength. This sharpening was related
to an entrainment of warm dry air from the free troposphere into the CBL as observed in LES
studies (Sullivanet al., 1998; Schmidt and Schumann, 1989) as well as in laboratory experiments
of Pereraet al. (1994). Despite of their different initial profiles, the LES casesJ andK showed
only small differences in the well mixed layer. However, the stronger temperature lapse rate
of the initial stable stratified caseJ remained to final state and led to a somewhat smaller CBL
depth compared to caseK. Although casesB andG used the same initial well mixed temperature
profile, the lower CBL depth and mean bulk temperature of caseB was due to the lower surface
heat flux applied in this case. Compared to caseG, (w′θ ′v)s of caseB was a half.

The final mean profiles of total water content (TWC) (Fig.3.2(c)) showed a small decrease of
〈q〉 from surface to the CBL top. This effect was related to evaporation of water vapour from the
ground and entrainment of dry air from the free troposphere. Above the CBL top, the total water
content showed a pronounced decrease to〈q〉= 3 g kg−1. Although subset simulationsB, G and
K used the same initial total water content, their final TWC within the mixed layer decreased due
to entrainment processes. Compared to casesG andK, the smaller surface heat flux ofB led to
higher final total water content within the mixed layer. However, in caseJ the final well mixed
layer total water content was increased, compared to its initial value.

Compared toK, the smaller TWC of caseJ led to a smaller liquid water content (LWC) as
shown in Fig.3.2(d). However, the dependence of〈ql 〉 on surface heat flux showed no consistent
behaviour. A large TWC in the bulk of the CBL associated with low surface heat flux (caseB)
led to a LWC in the same order of magnitude as a high surface heat flux, associated with smaller
total water content within the CBL (caseK).
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FIGURE 3.2: Vertical profiles of mean LES flow variables of the subset simulation casesB, G, J, andK,
where (a) shows the horizontal wind components〈u〉,〈v〉, (b) shows the potential tempera-
ture 〈θ〉, (c) shows the total water content〈q〉 and (d) shows the liquid water content〈ql 〉.
The black solid lines indicate the initial soundings.
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Variances

Final vertical profiles of normalised total and subgrid-scale variances of subset LES flow vari-
ables as shown in Fig.3.3, illustrate that except for the near surface range, the non-resolved
subgrid-scale parts of the flow are much smaller than the resolved parts. This indicates a high va-
lidity of LES results in bulk of the CBL. Variances of the velocity components, (Fig.3.3(a,b,c))
illustrate the variation of the turbulent kinetic energy in the vertical and horizontal components
of the flow.

The profiles of〈u′2〉 and 〈v′2〉 generally agreed in shape indicating a maximum near the
surface due to wind shear. They decreased to a constant value in the well mixed layer and
showed a maximum within the entrainment zone just below CBL top. This maximum was due
to a transfer of vertical motion of the thermals into horizontal motions (Sullivan et al., 1998).
Observed differences of the variance maxima within the entrainment zone for different subset
simulations were related to differences in the inversion strength.

The vertical velocity variances (Fig.3.3(c)) of subset simulations showed a pronounced peak

in the well mixed layer, where convection induced mixing was strongest. There,〈w′2〉 contributed
the main part to the TKE. However, in subset casesJ andK this peak occurred in a lower CBL
range compared to simulationsG andB.

The resolved potential temperature variance, shown in Fig.3.3(d) decreased from the surface
value, remained constant in the well mixed layer, and showed a sharp maximum within the
entrainment zone. The magnitude of this peak can be related to the sharpening of the inversion
strength (Sullivan et al., 1998). Subset simulations with low surface heat flux (casesB andG)
showed a larger peak magnitude of the potential temperature variance than simulations with large
surface heat flux (casesJ andK). However, a low total water content led to a decrease of the peak

magnitude of〈θ ′2〉.

Turbulent fluxes

Similar to the variances, the turbulent fluxes of momentum, heat and total water content, shown
in Fig. 3.4 indicated a significance of the non-resolved turbulent fluxes only near the surface.
However, their impact vanishes in bulk of the CBL.

The zonal momentum flux (Fig.3.4(a)) showed a linear increase from negative values at
the surface to zero above the CBL top. Since all subset simulations used the same uniform
initial wind profile, smaller negative values of the zonal momentum flux of casesB andG were
mainly related to a CBL forcing with lower surface heat flux. However, the agreement of zonal
momentum flux for casesJ andK indicated a rather small impact of differences in total water
content on〈u′w′〉.

Due to the initial wind profile usingv = 0 the initial meridional momentum flux vanished.
Thus, the non-vanishing final meridional momentum flux〈v′w′〉 (Fig. 3.4(b)) was a result of the
Coriolis force. At final simulation state,〈v′w′〉 increased from negative values at the surface to
positive values in the upper CBL, but showed a decrease to zero above. Simulations with low
surface heat flux agreed in their〈v′w′〉, whereas casesJ andK agreed only in〈v′w′〉 at surface
and CBL top, but showed different values in bulk of the CBL.
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FIGURE 3.3: Vertical profiles of averaged normalised LES variances of the subset simulation cases, where
(a) shows the variance of zonal wind velocity〈u′2〉/w2

∗, (b) shows the variance of meridional

wind velocity 〈v′2〉/w2
∗, (c) shows the variance of vertical wind velocity〈w′2〉/w2

∗, and (d)

shows the resolved part of potential temperature variance〈θ ′2〉/θ 2
∗ . Thick coloured solid

lines denote total variances (resolved+subgrid) and thin coloured solid lines denote subgrid
scale variances.
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The liquid water potential temperature heat flux showed positive values at surface (Fig.3.4(c)).
Above,〈w′θ ′l 〉 decreased linearly with height reflecting a quasi steady-state behaviour of the tur-
bulence in the well-mixed layer. The minimum of〈w′θ ′l 〉 was assumed just below CBL top for
all subset simulations.

Based on the sensible heat flux〈w′θ ′〉 and the liquid water flux〈w′q′l 〉 the liquid water poten-
tial temperature heat flux〈w′θ ′l 〉 is given as

〈w′θ ′l 〉= 〈w′θ ′〉−
1

πE

Lv

cp
〈w′q′l 〉, where πE = (T/θ)Rd/cp (3.7)

denotes the Exner function. In this formulation, the minimum of〈w′θ ′l 〉 is related to the point
where net condensation changes sign indicating that evaporation becomes larger than condensa-
tion (Siebesmaet al., 2002). Abovezi , 〈w′θ ′l 〉 increased to small negative values. Differences in
〈w′θ ′l 〉 among the various subset simulations were related to different surface values of〈w′θ ′l 〉,
the slope of the linear decrease, and the minimum value of the〈w′θ ′l 〉.

Due to evaporation of moisture from surface into the CBL, the total water flux (Fig.3.4(d))
showed positive surface values. SimulationsB, G and K showed a linear increase of〈w′q′〉
indicating entrainment induced net drying of the CBL. However, the linear decrease of〈w′q′〉 of
caseJ indicated a net moistening of the CBL, compared to the initial state (see Fig.3.2(c)).

3.2.2 Examination of coherent structures

An example of the three-dimensional turbulence patterns of a strong buoyancy-driven CBL is
given in Fig.3.5showing the time-averaged turbulence structure of subset simulationK at final
simulation state.

Iso-surfaces of positive vertical velocity (w= 0.9 m s−1) were used to highlight the buoyancy-
induced convective thermals of the CBL. Driven by the strong positive surface heat flux, these
structures originated as small structures near the ground. With increasing height, they grew in
diameter to the mid-CBL, whereas a decrease of the thermal diameter was observed near the
CBL top (Khanna and Brasseur, 1998; Helmert, 1999).

The upward moving thermals (updraughts) corresponding to regions of positive vertical ve-
locity are associated with compensating regions of negative vertical velocity (downdraughts).
These coherent structures dominated the vertical fluxes of momentum, heat and moisture in the
simulated CBLs (Lohouet al., 2000). Updraughts and downdraughts were indicated in the hori-
zontal cross section of Fig.3.5by coherent green and blue areas, respectively. An examination of
the spatial variability of updraughts and downdraughts is given in Fig.3.6(a,d,g). The organisa-
tion of the coherent structures in cellular patterns persisting throughout the CBL is clearly visible
(Khanna and Brasseur, 1998). Magnitude and horizontal scale of updraughts and downdraughts
showed a maximum atz∗ = 0.5, but significant smaller values at CBL top. Furthermore, fluctua-
tions of virtual potential temperature and total water content (Fig.3.6(b, e, h) and (c, f, i)) were
examined. Similar to vertical velocity fluctuations, they showed coherent structures, organised in
cellular patterns. The magnitude and horizontal scale of these patterns remained nearly constant
atz∗ = 0.25 andz∗ = 0.5.
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FIGURE 3.4: Vertical profiles of averaged turbulent fluxes of the subset simulation cases, where (a) shows
the zonal momentum flux〈u′w′〉, (b) shows the meridional momentum flux〈v′w′〉, (c) shows
the liquid water potential temperature heat flux〈w′θ ′l 〉 and (d) shows the total water flux
〈w′q′〉. Thick coloured solid lines denote total turbulent fluxes (resolved+subgrid) and thin
coloured solid lines denote subgrid scale turbulent fluxes.
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FIGURE 3.5: LES domain of caseK, where red-shaded iso-surfaces of vertical velocity (w = 0.9 m s−1)
are used to indicate buoyant thermals. The horizontal cross-section atz = 0.5 km shows
the horizontal distribution of vertical velocity fluctuations (right legend). The vector field at
z= 0.5 km indicate the horizontal wind. The blue solid line atz= 1.6 km denotes the CBL
top.

However, in contrast to updraughts and downdraughts an increase of temperature and mois-
ture fluctuations were observed at CBL top. Based on normalised 2D auto-covariances

R̃χχ = Rχi χi
(rx, ry)/Rχi χi

(0,0) using χ = (w′,θ ′v,q
′) (3.8)

updraughts and downdraughts as well as coherent structures of temperature and TWC at the CBL
levels of Fig.3.6were examined.

A pronounced maximum at zero displacement (rx = ry = 0), followed by a sharp decrease



3.2. Properties of the large-eddy simulation database 39

FIGURE 3.6: Horizontal cross sections of fluctuations of LES flow variables (caseK) for (a,d,g) vertical
velocity w, (b, e, h) virtual potential temperatureθv, and (c, f, i) total water contentq at
various CBL levels: topz∗ = 0.25, centrez∗ = 0.5, and bottomz∗ = 1.0.

to zero for|rx| = |ry| > 0 was observed for all coherent structures and CBL levels (Fig.3.7).
Periodic structures of̃Rχχ indicated the occurrence of role structures within the CBL, as observed
in LES studies (Lohouet al., 2000), aircraft measurements (Lohouet al., 1998), and laboratory
experiments (Kaiser, 1996). Based on the examination of the distance between two maxima of
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FIGURE 3.7: Two-dimensional normalised auto-covariances based on turbulent fluctuations of LES flow
variables, shown in Fig.3.6.

R̃χχ , the wavelengthLs of these role structures atz∗ = 0.5 was determined. A wavelength of
Ls = 2 km was determined for vertical velocity, whereas virtual potential temperature showed
Ls = 2.6 km. These values agreed in order of magnitude with findings fromKaiser (1996);
Lohouet al. (1998), andLohouet al. (2000).

3.2.3 Examination of characteristic turbulence length scales

One-dimensional energy spectraEχ(k) and auto-covariancesRχi χi
(r) = Rχ(r) were used to de-

termine the characteristic turbulence length scales, representative of the simulated CBLs. Since
LES explicitly resolves the turbulent structures of the energy-containing range (see Sec.2.4), the
peak wavelength(λm)χ and the integral length scaleΛχ were considered in this work.
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The Fourier transform approach was used to determineEχ(k) andRχ(r) from turbulent fluc-
tuations of the LES flow variables. Thus, a Fast-Fourier transform (FFT) algorithm afterPress
et al. (1996) was applied on Bartlett filtered one-dimensional samples ofχ = (w′,θ ′v,q

′). The
fluctuations of the flow variables at two-dimensional horizontal LES model levels were sampled
in x- andy-pathways. Thus,Ny = Ly/∆y samples inx-direction andNx = Lx/∆x samples iny-
direction ofχ = (w′,θ ′v,q

′) were taken into account by the FFT. Based on this method, 1D energy
spectraEy j

χ
, representative ofx-direction andEx j

χ
for y-direction, respectively were determined.

Furthermore, 1D auto-covariancesRy j
χ

of x-direction andRx j
χ

of y-direction were derived from

Ey j
χ

andEx j
χ

using the discrete correlation theorem (Presset al., 1996).
Averaged energy spectra and auto-covariances for the different sampling pathways were de-

termined as

〈Eχ〉x =
1
Ny

Ny−1

∑
j=0

Ey j
χ

, 〈Eχ〉y =
1
Nx

Nx−1

∑
j=0

Ex j
χ

, (3.9)

〈Rχ〉x =
1
Ny

Ny−1

∑
j=0

Ry j
χ
, 〈Rχ〉y =

1
Nx

Nx−1

∑
j=0

Rx j
χ
. (3.10)

Mean 1D energy spectra and auto-covariances, representative of the corresponding horizontal
LES model level are given as

〈Eχ〉=
1
2

(
〈Eχ〉x + 〈Eχ〉y

)
, (3.11)

〈Rχ〉=
1
2

(
〈Rχ〉x + 〈Rχ〉y

)
. (3.12)

Energy spectra

The wavenumber weighted mean 1D energy spectrak〈Eχ(k)〉 of the various LES flow variables
χ (Fig. 3.8) showed a pronounced peak at low wavenumbers, related to the energy-containing
range. A power-law behaviour (Kolmogorov, 1941) of k〈Eχ(k)〉 was observed toward higher
wavenumbers. In agreement with various LES studies (Mason, 1989; Mason and Brown, 1999)
the energy spectrum of vertical velocity fluctuations indicatedk〈Ew(k)〉 ∼ k−2/3 in a small iner-
tial subrange. Due to the impact of the LES subgrid-scale model, ak−2 power law occurred at
high wavenumbers.

Similar to vertical velocity, the spectra of temperature and moisture fluctuations indicated a
small inertial subrange showingk〈E

θv
(k)〉 ∼ k−2/3 andk〈Eq(k)〉 ∼ k−2/3 (Corrsin, 1951; Kaimal

and Finnigan, 1994). However, they showed ak−4 power law in the high-wavenumber range
(Moeng and Wyngaard, 1988; Mason, 1989; Muschinski, 1996).

As seen from Fig.3.8, the magnitude of the spectral peakk〈Eχ((km)χ)〉 showed a depen-
dence on LES model level. For vertical velocity, a strong decrease ofk〈Ew((km)w)〉 at CBL
top was observed, compared tok〈Ew((km)w)〉 in lower and mid-CBL. However, for temperature
and moisture,k〈E

θv
((km)

θv
)〉 andk〈Eq((km)q)〉 at CBL top were one order of magnitude larger,

compared to their value atz∗ = 0.25 andz∗ = 0.5.
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FIGURE 3.8: Wavenumber weighted averaged normalised 1D energy spectrak〈Ew(k)〉/w2
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∗ in various LES model levels for (a-c) casesB, (d-f) G, (g-i) J, and (j-l)K,
where black solid lines denote theoretically expectedk−2/3, k−2, andk−4 decreases and
coloured solid lines indicate Bezier approximation.
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An examination of the spectral peak wavenumber(km)χ at various LES model levels showed
for vertical velocity an increase of(km)w to higher wavenumbers at CBL top, compared to(km)w

at lower and mid-CBL. This behaviour indicated a decrease of size for the most-energy contain-
ing coherent structures of vertical velocity at CBL top. For virtual potential temperature and
TWC, the spectral peak wavenumber(km)

θv
and(km)q remained nearly constant at the various

LES model levels.
Furthermore, the dependence of the spectral peak wavenumber(km)χ on stability state of the

simulated CBL was examined. Largest differences were observed for vertical velocity indicating
primarily at CBL top a decrease of(km)w to lower wavenumbers with increasing instability from
caseB to K. For virtual potential temperature and TWC, a somewhat smaller decrease of(km)

θv
and(km)q with increasing instability of the simulated CBL was observed.

Peak wavelengths

The flatness of the energy spectra, due to low number of data points around the spectral peak,
led to difficulties in determining the peak wavenumber(km)χ in bulk of the CBL (Kaiser and
Fedorovich, 1998). Thus, Bezier approximations ofk〈Eχ(k)〉x andk〈Eχ(k)〉y based on natural
cubic splines (Williams and Kelly, 1995) were used to determine maxima of the energy spectra.
The peak wavenumbers〈(km)χ〉x and〈(km)χ〉y for thex- andy-direction resulted from

〈(km)χ〉x = max
[
k〈EB

χ (k)〉x
]

and 〈(km)χ〉y = max
[
k〈EB

χ (k)〉y
]
, (3.13)

wherek〈EB
χ (k)〉x andk〈EB

χ (k)〉y are Bezier approximated energy spectra.
The averaged peak wavelengths〈(λm)χ〉x and 〈(λm)χ〉y related tox- andy-pathways were

determined from〈(km)χ〉x and〈(km)χ〉y using Eq. (2.54).
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Their standard deviation is given as

σ
x
(λm)χ

=

[
1
tav

tmax

∑
tmin

{
(λm)x

χ −〈(λm)χ〉x
}2
]1/2

, (3.14)

σ
y
(λm)χ

=

[
1
tav

tmax

∑
tmin

{
(λm)y

χ −〈(λm)χ〉y
}2
]1/2

, (3.15)

where the averaging time intervaltav was 2 hrs (see Fig.3.1) starting fromtmin = 7 hrs totmax =
9 hrs integration time.

As illustrated in Fig.3.9, the ratio of〈(λm)χ〉x and〈(λm)χ〉y was approximately unity in the
bulk of the CBL, except for the near surface range. Using the averaged sampling peak wave-
lengths, the mean peak wavelengths of the LES flow variables are given as

〈(λm)χ〉=
1
2

(
〈(λm)χ〉x + 〈(λm)χ〉y

)
, (3.16)

and their standard deviation is

σ(λm)χ
=

[
1
tav

tmax

∑
tmin

{
(λm)χ −〈(λm)χ〉

}2

]1/2

. (3.17)

The vertical profiles of〈(λm)w〉, 〈(λm)
θv
〉, and〈(λm)q〉 (Fig. 3.10) showed a linearly increase

from surface toz∗ ∼ 0.1. Above this level,〈(λm)w〉 showed a maximum in the mid-CBL indicat-
ing that the mean diameter of the most energy-containing updraughts and downdraughts assumes
a value close to the CBL depth (Helmert and Hellmuth, 2000).

Since the CBLs were capped by an inversion, vertical fluctuations were prevented at CBL
top. This led to the observed decrease of〈(λm)w〉 at CBL top (see Fig.3.8). Due to the observed
large fluctuations of temperature and moisture, even at CBL top (see Sec.3.2.2), 〈(λm)

θv
〉 and

〈(λm)q〉 indicated no decrease in the upper CBL, but remained nearly constant fromz∗ ∼ 0.1-1.
As seen from Fig.3.10 the peak wavelengths〈(λm)w〉, 〈(λm)

θv
〉, and 〈(λm)q〉 indicated a

dependence on stability state of the considered CBL. Largest values of peak wavelengths were
observed for cases with small values of−zi/LMO (e.g., caseB). However, an increase of CBL
instability led to a decrease of〈(λm)w〉, 〈(λm)

θv
〉, and〈(λm)q〉.

Auto-covariances

The normalised mean 1D auto-covariances (auto-correlations)〈R̃χ〉, determined from fluctua-
tions of LES flow variablesχ = (w′,θ ′v,q

′) (Fig. 3.11) showed with increasing displacementr an
exponential like decrease to small values. This behaviour agreed with findings from the 2D auto-
covariances of LES flow variables (see Sec.3.2.2, Fig. 3.7). Non-vanishing auto-correlations of
〈R̃χ〉 ≥ 0.3 were related to the occurrence of organised coherent structures within the CBL.
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FIGURE 3.11: Averaged normalised 1D auto-covariances〈Rw(r)〉/〈Rw(0)〉, 〈R
θv

(r)〉/〈R
θv

(0)〉,
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An examination of the decrease of〈R̃χ〉 for the various LES flow variables indicated a fast re-
duction of correlation between vertical velocity fluctuations, compared to temperature and mois-
ture fluctuations. Furthermore, depending on stability state〈R̃w〉 showed a faster decrease in
lower and upper CBL than in the mid-CBL (Mason, 1989).

Compared to〈R̃w〉, the decrease of〈R̃
θv
〉 and 〈R̃q〉 was weaker indicating a correlation of

temperature and moisture fluctuations over larger horizontal distances. This emphasised the re-
sults of Sec.3.2.2showing larger coherent structures of temperature and moisture in comparison
to vertical velocity updraughts and downdraughts.

Integral length scales

Based on auto-covariances〈Rχ(rx)〉x and〈Rχ(ry)〉y of thex- andy pathways, the integral length
scales〈Λχ〉x and〈Λχ〉y, representative ofx- andy pathways are defined as

〈Λχ〉x =
1

〈Rχ(0)〉x

∞∫
0

〈Rχ(rx)〉xdrx and 〈Λχ〉y =
1

〈Rχ(0)〉y

∞∫
0

〈Rχ(ry)〉ydry, (3.18)

whererx andry are displacements inx- andy direction, respectively. The computation of〈Λχ〉x
and〈Λχ〉y was based on an approximation of〈Rχ〉x and〈Rχ〉y by third-order polynomials (Simp-
son’s rule), required for a numerical integration scheme (Presset al., 1996). Due to the conver-
gence behaviour of the integral (Durandet al., 2000), the first zero crossing of〈Rχ〉x and〈Rχ〉y
was used as upper integration limit (Lenschow and Stankov, 1986; Schröteret al., 2000; Durand
et al., 2000). The standard deviation of〈Λχ〉x and〈Λχ〉y is given as

σ
x
Λχ

=

[
1
tav

tmax

∑
tmin

{
Λx

χ −〈Λχ〉x
}2
]1/2

, (3.19)

σ
y
Λχ

=

[
1
tav

tmax

∑
tmin

{
Λy

χ −〈Λχ〉y
}2
]1/2

, (3.20)

where similar to the peak wavelengths, the averaging time intervaltav was 2 hrs starting from
tmin = 7 hrs totmax = 9 hrs integration time.

The integral length scales〈Λχ〉x and〈Λχ〉y related to different sampling pathways (Fig.3.13)
were of the same order of magnitude for vertical velocity and temperature. However, for total
water content,〈Λq〉x showed larger values, compared to〈Λq〉y. Furthermore, Fig.3.13(a) in-
dicated for〈Λw〉x/〈Λw〉y a sensitivity on atmospheric stability. The larger difference between
〈Λw〉x and〈Λw〉y for cases with higher stability (e.g., caseB) was related to larger shear (Khanna
and Brasseur, 1998)).

Based on〈Λχ〉x and〈Λχ〉y, the mean integral length scale for the LES flow variables is given
as

〈Λχ〉=
1
2

(
〈Λχ〉x + 〈Λχ〉y

)
. (3.21)
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FIGURE 3.13: Ratio of integral length scales related to different sampling pathways〈Λχ〉x/〈Λχ〉y for (a)
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The standard deviation of〈Λχ〉 is defined as

σΛχ
=

[
1
tav

tmax

∑
tmin

{
Λχ −〈Λχ〉

}2

]1/2

. (3.22)

The vertical profiles of〈Λw〉, 〈Λθv
〉 and 〈Λq〉 (Fig. 3.12) showed a similar shape and be-

haviour as the corresponding peak wavelengths (Fig.3.10). The magnitude of the most important
vertical velocity integral length scale〈Λw〉 was approximately 1/3 of〈(λm)w〉 (Helmert and Hell-
muth, 2000). Thus, the mean horizontal diameter of the most energy-containing updraughts and
downdraughts, indicated by〈(λm)w〉 was in the order of the CBL depth. However, the horizontal
coherence length of vertical velocity fluctuations was much smaller than the CBL depth.

Relations between characteristic turbulence length scales

The similarity between vertical profiles of peak wavelengths and integral length scales gave ev-
idence for a relationship between both characteristic turbulence length scales, as assumed in
Sec.2.4. The ratio of〈(λm)χ〉 to 〈Λχ〉 (Fig. 3.14) remained nearly constant in bulk of the
CBL. The ratio of characteristic turbulence length scales of vertical velocity indicated a de-
crease from surface toz∗ ∼ 0.1. Above,〈(λm)w〉/〈Λw〉 showed values of about 5. Very unstable
cases indicated somewhat larger values of〈(λm)w〉/〈Λw〉. This behaviour was also observed for
〈(λm)

θv
〉/〈Λ

θv
〉 showing values from about 3 to 5 depending on stability state. A dependence on

atmospheric stability was not observed for〈(λm)q〉/〈Λq〉 showing values of about 4.
The resulting relations between characteristic turbulence length scales of the energy-containing

range agreed well with theoretical considerations suggesting〈(λm)χ〉/〈Λχ〉 = 6.4 (Kaimal and
Finnigan, 1994) as well as atmospheric measurements (Lenschow and Stankov, 1986; Durand
et al., 2000) showing values from〈(λm)χ〉/〈Λχ〉 ∼ 3-9.
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3.3 Verification of large-eddy simulation results

LES derived integral length scales and peak wavelengths were compared with results from nu-
merical simulations of clear-convective boundary layers with shear, performed byKhanna and
Brasseur(1998) based on the LES model ofMoeng(1984) as well as with LES results from
Graf and Schumann(1991) based on the LES model ofSchmidt and Schumann(1989). Further-
more, comparisons of〈Λw〉 and〈(λm)w〉 with results from atmospheric measurements of marine
and continental CBLs (Lenschow and Stankov, 1986; Lambert and Durand, 1999; Durandet al.,
2000; Caughey and Palmer, 1979) as well as from laboratory experiments of horizontally evolv-
ing CBLs with shear (Kaiser, 1996; Kaiser and Fedorovich, 1998) were performed.

3.3.1 Verification against numerical simulations

The comparison of the LES derived turbulent mixing length scales with results from numerical
simulations, reported in the literature is based on five cases of the verification database (see
Tab.3.3). Results ofKhanna and Brasseur(1998), obtained for clear-air CBL with−zi/LMO ∼ 8
were compared with simulation cases I to III, comparable in domain size, surface heat heat flux,
and geostrophic wind. Furthermore, a comparison with results of caseD, similar in atmospheric
stability state, but different in initial and boundary conditions was performed.

The simulation caseB was used for comparison with results fromGraf and Schumann(1991).
Furthermore, the sensitivity of〈Λw〉 against changes in horizontal grid resolution using case III
as well as against changes in inversion strength abovezi using case II was examined.

Compared to results fromKhanna and Brasseur(1998), the CBL scaling parameter of cases I
to III and caseD showed a good agreement foru∗,w∗,θ∗. However,zi andLMO of caseD showed
somewhat larger values (Tab.3.3) due to a different initial temperature profile (see Tab.3.1).
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TABLE 3.3: Boundary layer properties based on LES data ofGraf and Schumann(1991) (GS91),Khanna
and Brasseur(1998) (KB98), and LES cases I to III,D andB using varying domain size
Lx,Ly,Lz, grid resolutions∆x,∆y,∆z, and potential temperature lapse rate in the entrainment
zone range above CBL topΓ>

θ
= ∆θ/∆z.

Parameter GS91 KB98 I II III D B

−zi/LMO 7.91 8.91 8.20 9.13 9.16
Lx (km) 10 5 5 5 5 6.4 6.4
Ly (km) 10 5 5 5 5 6.4 6.4
Lz (km) 2.5 2 2 2 2 4.4 4.4
∆x (m) 100 39 78 78 156 100 100
∆y (m) 100 39 78 78 156 100 100
∆z (m) 100 16 18 18 18 40 40

(w′θ ′)s (K m s−1) 0.08 0.24 0.24 0.24 0.24 0.2 0.05
ug (m s−1) 2.8 15 15 15 15 15 10
vg (m s−1) -0.5 0 0 0 0 0 0
u∗ (m s−1) 0.74 0.71 0.71 0.70 0.73
w∗ (m s−1) 1.28 2.0 2.0 1.94 2.0 2.1 1.23
θ∗ (K) 0.06 0.12 0.12 0.12 0.12 0.10 0.047
t∗ (s) 700 510 535 508 530 680 834
zi (m) 900 1020 1070 985 1060 1400 1026
−LMO (m) 129 120 120 116 153

Γ>
θ

(K m−1) 0.0234 0.0300 0.0231 0.0168

Compared to cases I, III, and caseD, the larger inversion strength of case II led to an increased
lapse rate ofθ in the entrainment zone range. LES of larger domain size resolves also mesoscale
fluctuations affecting entrainment processes and reducingΓ>

θ
(Jonkeret al., 1997, 1999). Thus,

the smallerΓ>
θ

of cases III andD, compared to case I was related to lower spatial resolution and
larger domain size, respectively (Stevenset al., 2002). Compared toGraf and Schumann(1991)
the determined CBL scaling parameter of caseB indicated a good agreement.

As illustrated in Fig.3.15, 〈Λw〉 of cases I to III, and caseD showed a similar behaviour
as 〈Λw〉 of Khanna and Brasseur(1998). They agreed in their linear increase of〈Λw〉 below
z∗ = 0.1, showed their maximum in mid-CBL and a similar decrease abovez∗ = 0.7. The very
strong capping inversion in the LES ofKhanna and Brasseur(1998) accounted for the differences
of 〈Λw〉 to the LES cases in the upper CBL. The lower horizontal grid resolution of case III,
compared to case I resulted in somewhat larger〈Λw〉 (Fig. 3.15(c)). Small differences inΓ

θ
had

only minor impact on〈Λw〉.
The peak wavelength determined byGraf and Schumann(1991) at various CBL heights was
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FIGURE 3.15: Integral length scales based on LES data ofKhanna and Brasseur(1998) (KB98) and LES
cases (a) I, (b) II, (c) III, and (d) caseD.

in good agreement with〈(λm)w〉 of caseB (Fig. 3.16) assuming a maximum in the mid-CBL
and decreasing abovez∗ = 0.7. Differences of〈(λm)w〉 between caseB andGraf and Schumann
(1991) occurring in the lower and upper CBL were related to different atmospheric stability states
of the simulated CBLs.

3.3.2 Verification against atmospheric measurements

LES derived peak wavelengths and integral length scales of case IV were compared with aircraft
measurements in marine CBLs (MCBL), obtained during the SEMAPHORE campaign (Lambert
and Durand, 1999; Lambertet al., 1999; Durandet al., 2000). Mean flow variables and CBL
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FIGURE 3.16: Peak wavelength based on LES ofGraf and Schumann(1991) (GS91) and LES caseB.

scaling parameter, derived from case IV after 9 hrs integration time (Tab.3.4) agreed well with
measurement data of two representative days (05.11.1993 (OBS I) and the 06.11.1993 (OBS
II)) of the SEMAPHORE campaign (Lambert and Durand, 1999). The marine boundary layer
of these observation days was related to a strato-cumulus topped CBL. Since buoyancy in the
MCBL was primarily driven by a strong latent heat flux, only weak entrainment was observed
(Lambert and Durand, 1999).

The measurements of OBS I and OBS II were carried out from 15:54 to 18:26 UTC and
from 16:12 to 18:13 UTC, respectively (Lambert and Durand, 1999). The measurement data
of OBS II (Tab.3.4) were used to initialise the LES case IV. The measurement site was in a
subregion of the open ocean with homogeneous conditions over a horizontal distance of some
hundred kilometres. Thus, the chosen boundary conditions of MCBLs were in good agreement
with periodic boundary conditions and horizontal homogeneity, assumed in LES.

The structure of the observed MCBL was well captured by the simulation (Fig.3.17). In
agreement with the observation, case IV clearly showed a mixed layer withzi ∼ 1000 m, an
entrainment layer with∆zi ∼ 300 m as well as a cloud layer. The measured and simulated final
mean potential temperature profiles (Fig.3.17(a)) were in good agreement within the mixed layer,
where the difference between observation and simulation was in the order of 2 K (Fig.3.17(a)).
However, the temperature jump at the inversionzT ∼ 1800 m was somewhat overpredicted by
the LES compared to the measurements. The overall agreement between LES and measurements
of total water content (Fig.3.17(b)) was very good (difference∆q∼ 1 g kg−1 within the mixed
layer). The final mean LES profile ofq showed, compared to the initial profile a mixed layer
drying. The measured sharp decrease ofq abovezi was well reproduced by the simulation.
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TABLE 3.4: Marine boundary layer properties based on observations during the SEMAPHORE campaign
(Lambert and Durand, 1999; Lambertet al., 1999; Durandet al., 2000) and LES case IV,
whereU is the wind speed,α is the wind direction,p is the pressure, andzT is the height of
the inversion above cloud top.

Parameter OBS I OBS II IV

U (m s−1) 7.75 8 7.23
α (◦) 28 38 33
θ (K) 288.36 288.56 286.52
q (g kg−1) 6.1 6.73 5.40
p (hPa) 1028 1027 1027

(w′θ ′)s (K m s−1) 0.012 0.017 0.017
(w′q′)s (m s−1 g kg−1) 0.057 0.038 0.038

zi (m) 861 965 980
zT (m) 1766 1633 1760
u∗ (m s−1) 0.26 0.30 0.28
−LMO (m) 58 77 67.7

w∗ (m s−1) 0.87 0.92 0.92
θ∗ (K) 0.014 0.019 0.026
q∗ (g kg−1) 0.066 0.042 0.041
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FIGURE 3.17: Mean flow variables of SEMAPHORE and LES case IV, where (a) shows the potential
temperature〈θ〉, (b) shows the total water content (TWC)〈q〉, and (c) shows the liquid
water content (LWC)〈ql 〉. Initial soundings of LES are denoted by black solid lines.
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FIGURE 3.18: Comparison of (a) peak wavelength and (b) integral length scale based on observations
(OBS) during SEMAPHORE (Durandet al., 2000), integral length scale approximation
afterLenschow and Stankov(1986) (LS86), and LES case IV.

The liquid water content, derived from measurements showed somewhat larger values below
z∼ 1400 m than the results from case IV (Fig.3.17(c)). However, the agreement between mea-
sured and simulated cloud base (z∼ 1400 m), cloud top (z∼ 1800 m), andql within the cloud
layer was very good.

Averaged measured peak wavelengths and integral length scales of vertical velocity from the
SEMAPHORE campaign (Durandet al., 2000) were in acceptable agreement with〈(λm)w〉 and
in good agreement with〈Λw〉 of case IV (Fig.3.18). Due to weak entrainment processes in the
MCBL, 〈(λm)w〉 and〈Λw〉 indicated only a weak decrease to the CBL top.

Whereas the LES derived〈(λm)w〉 showed a maximum of standard deviation in the mid-
MCBL, the standard deviations of the measured〈(λm)w〉 as well as of measured and LES de-
rived 〈Λw〉 were in similar order of magnitude. The measurements indicated an increased scatter
in the upper MCBL, since turbulence originated at MCBL top is much more inhomogeneous
(Lambert and Durand, 1999). This behaviour was also observed for the approximation of〈Λw〉
(Eq. (2.58)), which is based on aircraft measurements in marine and continental CBLs (Lenschow
and Stankov, 1986). Abovez∗ = 0.6, this approximation of〈Λw〉 (Lenschow and Stankov, 1986)
indicated a good agreement with results from case IV and measurements ofDurandet al.(2000).

The peak wavelengths of vertical velocity (Caughey and Palmer, 1979), measured in conti-
nental CBL showed a much more pronounced maximum at mid-CBL than in the marine CBL.
However, the largest scatter of measurement data occurred also in the mid-CBL( Fig.3.19). A
good agreement of the measured peak wavelength with〈(λm)w〉, derived from LES caseB was
observed. The measurement data indicated only just below CBL top somewhat smaller values
for 〈(λm)w〉, compared to caseB and LES data ofGraf and Schumann(1991). This difference
was related to a very strong capping inversion (Kaiser and Fedorovich, 1998).
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FIGURE 3.19: Peak wavelengths based on measurements ofCaughey and Palmer(1979) and LES caseB.
The black solid line is a fit approximation of the measurement data (Caughey and Palmer,
1979).

TABLE 3.5: Boundary layer properties based on wind tunnel measurements (Kaiser, 1996; Kaiser and
Fedorovich, 1998) for sectionsx3 to x5 of varying distancex from the intake of the wind
tunnel and LES casesB, C, andD.

Parameter x3 B x4 C x5 D

−zi/LMO 5.0 5.9 7.3 7.1 9.3 9.2
x (m) 3.98 5.63 7.28

(w′θ ′)s (K m s−1) 0.63 0.05 0.8 0.2 0.88 0.2
zi (m) 0.300 1026.0 0.350 1600.0 0.400 1400.0
u∗ (m s−1) 0.0701 0.50 0.0703 0.86 0.0693 0.73
w∗ (m s−1) 0.163 1.23 0.185 2.73 0.198 2.06
θ∗ (K) 3.86 0.047 4.32 0.084 4.45 0.097
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FIGURE 3.20: Peak wavelengths based on wind tunnel measurements (KF) (Kaiser, 1996; Kaiser and
Fedorovich, 1998) in sectionsx3 to x5 and LES casesB, C, andD.

3.3.3 Verification against laboratory experiments

Vertical velocity peak wavelength, derived from LES casesB, C, andD (Tab.3.5) were compared
with wind tunnel measurements of〈(λm)w〉 in horizontally evolving CBLs (Kaiser, 1996; Kaiser
and Fedorovich, 1998). In these laboratory experiments, CBLs of similar stability state were
examined.

As seen from Fig.3.20, in dependence on stability state of the simulated CBLs,〈(λm)w〉
derived from LES showed different values. The measured peak wavelength showed a dependence
on the measurement distancex. Since the wind tunnel measurements are related to horizontal
evolving CBLs, different measurement distances from the intake of the wind tunnel are related
to different stability states.

Near the surface, the simulations agreed with the measurements. However, at mid-CBL the
measurements indicated larger〈(λm)w〉 compared to the LES. These differences were more pro-
nounced with increasing distancex from the intake of the wind tunnel, related to developing role
structures within the wind tunnel CBL (Kaiser, 1996). These role structures with wavelengths
of ∼ 2 km were also observed in LES (see Sec.3.2.2). However, in contrast to the wind tun-
nel measurements, role structures within the simulated CBLs were not associated with the most
energy-containing motions. In the upper CBL,〈(λm)w〉 derived from LES casesB andD were in
good agreement with the wind tunnel measurements atx3 andx5, respectively. However, large
deviations in the upper CBL were found between〈(λm)w〉 derived from LES caseC and wind
tunnel measurements atx4. These differences were related to differences in entrainment strength
between caseC and the wind tunnel CBL, due the strong bottom-up forcing in the wind tunnel
(Kaiser and Fedorovich, 1998).
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3.4 Turbulent mixing length formulation based on character-
istic turbulence length scales

3.4.1 Approximation of peak wavelength and integral length scale

Based on the LES database, approximations of peak wavelength and integral length scale were
developed and tested using a statistical analysis.

According toCaughey and Palmer(1979) (see Eq. (2.53) and Fig.3.19), the LES derived
peak wavelength〈(λm)w〉 was approximated as

〈(λm)w〉=

{
a0z∗, for z∗ < z∗0
a1zi(1−e−a2z∗−a3ea4z∗), for z∗0 ≤ z∗ ≤ 1,

(3.23)

wherez∗ = z/zi is the normalised altitude,z∗0 ∼ 0.1, andai = (a0,a1,a2,a3,a4) are stability
dependent parameters.

Existing integral length scale approximations (Lenschow and Stankov, 1986) were used to
develop a new approximation of〈Λw〉 (Helmert and Hellmuth, 2003) takeing into account the
decrease of〈Λw〉 in the upper CBL. In this new formulation,〈Λw〉 is given as

〈Λw〉=

{
a0z∗, for z∗ < z∗0
a1(z∗)

1/2(1−a2z∗)(1+a3z∗)2, for z∗0 ≤ z∗ ≤ 1
(3.24)

using stability dependent parametersai = (a0,a1,a2,a3).
The peak wavelength and integral length scale of scalarsφ usingφ = (θv,q) were approxi-

mated as

〈(λm)
φ
〉=

{
a0z∗, for z∗ < z∗0
a1, for z∗0 ≤ z∗ ≤ 1

(3.25)

〈Λ
φ
〉=

{
a0z∗, for z∗ < z∗0
a1, for z∗0 ≤ z∗ ≤ 1,

(3.26)

wherea0 anda1 are stability dependent parameters.
The parametersai in the approximations of〈(λm)w〉 and〈Λw〉 (Eqs. (3.23)-(3.26)) were de-

rived from the the LES database using non-linear least square fitting (Marquardt, 1963). This
method use an adjusting of the parametersai , i = 0, ...M−1 (Williams and Kelly, 1995) to min-
imise the parameterχ2

r , given as

χ
2
r =

1
nD

N

∑
i=1

`ki
− `k(z∗i ;a0...aM−1)

σ`ki

2

, (3.27)

wherenD = N−Na is is the number of degrees of freedom,`k = (〈(λm)w〉,〈Λw〉) is the charac-
teristic turbulence length scale under consideration,N is the number of data points,Na = M−1
is the number of parametersai , andσ`k

is the standard deviation of`k.
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The probability distribution for different values ofχ2
r at its minimum is given by the chi-

square distribution fornD degrees of freedom (Presset al., 1996). The probabilityQ that the
chi-square exceeds a particular valueχ2

r is given as

Q(c,x) =
1

Γ(c)

∞∫
x

e−ttc−1dt, (3.28)

wherex = 0.5χ2
r andΓ(c) is the gamma function ofc = 0.5nD. In this work, the probability

Q(c,x) was used as a quantitative measure of the goodness-of-fit (Presset al., 1996).

The look-up tables of parametersai , i = 0, ...,Na, for peak wavelengths and integral length
scales of the LES flow variables are given in TabA.1-A.6. The different values ofai for the var-
ious simulations reflected the inherent dependence of characteristic turbulence length scales on
atmospheric stability. Although a fit parameterQ∼ 1 was found for the bulk of the simulations,
in some casesQ is remarkable low. Whereas a large standard deviation of〈(λm)χ〉 and〈Λχ〉 is
responsible for the large values ofQ, the low values ofQ could be due to a non-normal distribu-
tion of the standard deviationσ`k

(Presset al., 1996). However, compared to the approximation

of 〈(λm)w〉, the approximation of〈Λw〉 showed larger values forQ indicating a higher statistical
significance of Eq. (3.24).

The general behaviour of the LES derived〈(λm)χ〉 and〈Λχ〉 was well captured by the ap-
proximations (Eqs. (3.23)-(3.26)) (see Fig.B.1 and Fig.B.2 in the appendix). Whereas the
assumption of constant〈(λm)

φ
〉 and〈Λ

φ
〉 seemed not in all cases to be the best approximation,

the new approximation for〈Λw〉 (Eq. (3.24)) yielded a very good agreement with the LES results,
compared to previous approximations (Lenschow and Stankov, 1986) (Fig. 3.18).

3.4.2 Verification of the new turbulent mixing length formulation

To improve the approximation of the turbulent mixing length primarily at CBL top, which is
essential for obtaining proper entrainment fluxes (Abdalla and McFarlane, 1997; Cuijpers and
Holtslag, 1998) a new formulation for the turbulent mixing length in unstable conditions was de-
veloped (Helmert and Hellmuth, 2002). In this formulation, the turbulent mixing length was re-
lated to the LES derived approximation of vertical velocity integral length scale〈Λw〉 (Eq. (3.24))
as a characteristic turbulence length scale of the energy-containing range. Here, the dependence
on atmospheric stability was provided by the look-up table of parametersai (Tab.A.2), derived
from the non-linear least square fitting (Sec.3.4.1).

After implementation of this approach in a present model, the application of this model as an
replacement for the master length scale (Blackadar, 1962) in the Mellor-Yamada scheme Level
2.5 (see Sec.2.2) was examined. The consequences of this modification of the turbulent mixing
length formulation for the parameterisation of turbulent diffusion are illustrated by a comparison,
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given as

Mellor-Yamada ←→ Present Model

KM = SM l E, K
φ

= S
φ

l E ←→ KM = K
φ

= `k E,

SM l , S
φ

l ←→ `k

(
−zi/LMO

)
= 0.1· 〈Λw〉,

l =
(

1
κz

+
1
l0

)−1

←→ 〈Λw〉 : Eq. (3.24)

The resulting implications on parameterisation of eddy diffusivity, turbulent fluxes, and vari-
ances in MY25 (see Sec.2.2) were examined. Thus, LES derived turbulent fluxes and variances
of the simulated CBLs of various stability state (casesB, G, J, andK) were used as reference
data in a verification of the present model against results of MY25 with master length scale. To
focus on the impact of the turbulent mixing length, both models used the same LES derived tur-
bulent kinetic energy and mean vertical profiles of horizontal wind components and liquid water
potential temperature.

These mean vertical profiles were used to determine the stability functionsSM, S
φ

of momen-
tum and scalars, respectively (Eqs. (2.12)-(2.20)), required in the master length scale approach of
MY25 (Fig. 3.21). The observed decrease ofSM andS

φ
from surface to the CBL top (Nakanishi,

2001) indicated a varying vertical stratification throughout the CBL. As seen from Fig.3.21, both
stability functions vanished in the entrainment zone range (0.8≤ z∗ ≤ 1.2). However, this leads
to vanishing eddy diffusivities (Eqs. (2.8)-(2.9)) in this range. Thus, the observed behaviour of
SM andS

φ
emphasised the deficiencies of the master length scale approach in the entrainment
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FIGURE 3.22: Vertical profiles of turbulent mixing length based on MY25 (a) for momentum and (b)
for scalars, where the black solid line denotes the master length scale approximation of
Blackadar(1962), (c) turbulent mixing length derived from the present model, (d) eddy
diffusivity coefficients based on MY25 for momentum and (e) for scalars, (f) eddy diffu-
sivity coefficient based on the present model of turbulent mixing length.

zone of CBLs. Furthermore, a pronounced dependence ofSM andS
φ

on the different stability
state of the LES was only visible in the lower CBL.

Consequently, the resulting turbulent mixing lengthsSM l and S
φ

l of the master length
scale approach showed a maximum in the lower and mid-CBL but decreased below CBL top
(Fig. 3.22(a, b)). However, this decrease indicated a vanishing turbulent mixing in the entrain-
ment zone, in contrast to atmospheric measurements and theoretical considerations. Compared
to the master length scale approach, the approximation of the turbulent mixing length based
on stability dependent integral length scales showed non-vanishing values throughout the whole
CBL (Fig. 3.22(c)). A maximum of the turbulent mixing length in the upper CBL was indicated
by `k of the present model. Abovezi both models were identical.
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FIGURE 3.23: Turbulent fluxes, derived from LES cases, based on Mellor-Yamada model (MY-TML),
and based on present model containing LES-derived look-up table of turbulent mixing
length (LT-TML). (a, d, g, j) zonal momentum flux〈u′w′〉, (b, e, h, k) meridional momen-
tum flux 〈v′w′〉, and (c, f, i, l) liquid water potential temperature heat flux〈w′θ ′l 〉.
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As seen from Fig.3.22, the magnitude of eddy diffusivity increased with decreasing stability
from caseB to caseK in both models. However, due to the observed deficiencies of the master
length scale approach, the eddy diffusivity coefficients of MY25 (Fig.3.22(d,e)) indicated only
in the lower and mid-CBL a strong turbulent diffusion. Above,KM andK

φ
of MY25 showed a

strong decrease to zero indicating a decrease of turbulent diffusion in the entrainment zone. The
eddy diffusivity, derived from the present model of turbulent mixing length indicated a maximum
of turbulent mixing at mid-CBL and only a small decrease just below CBL top (Fig.3.22(f)).

The parameterised turbulent fluxes and variances based on the down-gradient approach but
different models of turbulent mixing length scale (MY25, present model) were compared with
simulated turbulent fluxes and variances from the LES (Figs.3.23-3.24). Both models showed
deviations to the zonal momentum flux〈u′w′〉, derived from LES (Fig.3.23(a, d, g, j)). Although
with decreasing of stability, the MY25 showed a somewhat better agreement with LES in the
near surface range, it indicated a vanishing of〈u′w′〉 below CBL top. Here,〈u′w′〉, derived from
the present model indicated a good agreement with the LES results.

A similar behaviour was found for the meridional momentum flux〈v′w′〉 (Fig. 3.23(b, e, h,
k)). MY25 showed a good agreement with LES results in the near surface range but failed to pre-
dict the maximum of〈v′w′〉 at CBL top. The present model showed an improved approximation
of this maximum and indicated smaller deviations than MY25 to the LES results in mid-CBL.

The LES results showed negative liquid water potential temperature heat flux〈w′θ ′l 〉 above
z∗ ≥ 0.8 with a minimum at CBL top indicating strong entrainment processes (Fig.3.23(c, f, i,
l)). MY25 showed a good agreement with the LES results in the lower CBL. However, it failed
to reproduce strong negative values of〈w′θ ′l 〉 as well as the minimum of〈w′θ ′l 〉 at CBL top.
Compared to MY25, the present model allowed a better agreement of〈w′θ ′l 〉 with LES results,
even in the entrainment zone. However, the entrainment temperature flux, parameterised by the
present model showed an overestimation of the negative〈w′θ ′l 〉 at CBL top.

To examine the impact of different approximations of turbulent mixing length on the param-
eterisation of turbulent fluctuations, a verification of the parameterised variances against LES
results of various stability states was performed (Fig.3.24). For the zonal velocity variance,
only small differences of both models to the LES results were observed in bulk of the CBL
(Fig. 3.24(a, d, g, j)). However, for LES cases with strong shear (casesB andG) showing a

maximum of〈u′2〉 at CBL top, the present model indicated a somewhat better agreement with
LES results, compared to MY25.

Both models showed large deviations to the LES results of vertical velocity variance through-

out the whole CBL (Fig.3.24(b, e, h, k)). Primarily the maximum of the LES derived〈w′2〉 was
not reproduced in both models. However, the deviations between MY25 and the present mod-

els were rather low. Thus, the differences of〈w′2〉 between LES results and parameterisation
of vertical velocity variance were related to the down-gradient approach, used in both models.
As seen from (Fig.3.24( c, f, i, l)), LES derived variance of potential temperature was in good
agreement with results of both models. This result indicated a low impact of turbulent mixing
length formulation on the parameterisation of potential temperature fluctuations.
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CHAPTER 4

Examination of the mesoscale response to
turbulent mixing length formulation

Based on a mesoscale simulation of the LITFASS-98 field experiment (Beyrich, 2001), the im-
plications of the new turbulent mixing length formulation on results of atmospheric model sim-
ulations at regional scale were examined (Helmert and Hellmuth, 2002). Measurements and
mesoscale simulation data of the intensive field campaign (LITFASS), which took place on the
18.06.1998 were used to evaluate the impact of different turbulent mixing formulations in unsta-
ble atmospheric conditions. The cloud coverage at the 18.06.1998 was characterised by convec-
tive and multi-layered clouds. Furthermore, precipitation events occurred.

4.1 Modelling system and setup of LITFASS

4.1.1 The mesoscale non-hydrostatic limited area model

The mesoscale simulation was based on the non-hydrostatic limited area model of the German
Weather Service (DWD) (Doms et al., 1998; Doms and Schättler, 1999). As part of the op-
erational numerical weather prediction system of the DWD, LM is responsible for forecasts at
meso-β scale using a horizontal grid resolution of 7 km (Domset al., 2002). The further improve-
ment of LM is based on integrated approaches including measurements (e.g.,Beyrich(2001)) as
well as high-resolution numerical simulations of the “LITFASS-Lokal-Modell” (LLM) (Herzog
et al., 1998, 2002b) in a very large-eddy simulation mode.

The LM uses the compressible governing equations of atmospheric processes (Doms and
Schättler, 1999) in rotated geographical coordinates. Generalised terrain following height coor-
dinates are used in vertical direction (Fig.4.1). Since this type of vertical coordinates requires
an additional prognostic equation for the pressure replacing the continuity equation (Doms and
Schättler, 1999), attempts have been made to use z-coordinate representation (Steppeleret al.,
2002).

Non-resolved physical processes were treated by the LM using the following parameterisa-
tions (Doms and Schättler, 1999; Balzeret al., 2001; Domset al., 2002):

• TKE-based local turbulence closure approximation (Raschendorfer, 1999) of order 11/2
(Mellor and Yamada, 1974, 1982) (MY25) in terms ofθl andq (see Sec.2.2and3.4.2)

• Surface layer scheme (Raschendorfer, 1999)
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FIGURE 4.1: Generalised terrain following model layers of the Lokal-Modell (LM).

• Grid scale precipitation including parameterised cloud microphysics

• Diagnostic subgrid-scale cloud cover scheme

• Mass flux convection scheme for parameterisation of moist convection (Tiedtke, 1989)

• Radiation scheme for short- and long-wave radiation fluxes (Ritter and Geleyn, 1992)

• Vegetation model and 2-layer soil model (Jacobsen and Heise, 1982)

The model variables were staggered on an Arakawa-C/Lorenz grid to improve the accuracy
of the difference approximations (Mesinger and Arakawa, 1976). Second order horizontal and
vertical differencing was used for the spatial discretisation of the governing equations. The time
integration scheme (Klemp and Wilhelmson, 1978) used small time steps, to take into account
the propagation of sound waves.

4.1.2 Initial and boundary conditions of LITFASS

As seen from the surface weather chart of the 18.06.1998, 00:00 UTC (Fig.4.2), a low-pressure
system (Nadine) over the northern Baltic Sea and a high-pressure system (Wladimir) over south-
west Europe led to a north-westerly flow over the measurement site of LITFASS. This site
was located at the Meteorological Observatory Lindenberg (MOL) (52.167◦ N, 14.126◦ E) (see
Fig. 4.2). Due to an extended, south-eastward moving warm front from Great Britain to Nether-
lands, rain showers with rain rates of about 10 mm/24 hrs in the mid-latitude mountains of
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FIGURE 4.2: Surface weather chart (Berliner Wetterkarte) of the 18 June 1998 at 00:00 UTC. The letters
“H” and “L” are used to denote high and low pressure systems. The solid red line describes
the horizontal domain size of the LM. The location of the measurement site of LITFASS at
the Meteorological Observatory Lindenberg is denoted by MOL.

Germany were observed. Synoptic observations in Berlin-Dahlem (52.28◦ N, 13.18◦ E) obtained
near the measurement site of LITFASS (Tab.4.1) indicated high-pressure conditions, associated
with moderate wind speeds, and multi-level cloud coverage. However, the cloud coverage pre-
vented the nocturnal boundary layer from strong temperature decrease as well as reduced the
incoming solar radiation during daytime. The temperature near the surface exceeded 18◦ C in
the afternoon.

Using initial datasets provided by the DWD, two LM simulations (RUN I, RUN II) of 24 hrs
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TABLE 4.1: Observed synoptic conditions during LITFASS (18.06.1998) at measurement site Berlin-
Dahlem (52.28◦ N, 13.18◦ E), where observed parameters are pressurep, 10 minutes average
of wind speedU , temperatureT, total cloud coverage CLC, low clouds CL, medium clouds
CM, high clouds CH and height of the cloud basezB. The measured mean wind direction
was 270◦.

Time p U T CLC CL CM CH zB
(UTC) (hPa) (m/s) (K) (1/8) (m)

00:00 1022.2 4.1 284.0 0 – – – –
03:00 1022.4 3.1 282.5 1 – Ac tr – –
06:00 1023.2 2.6 284.7 5 Cu hum Ac tr Ci spi, cas, flo 1200
09:00 1023.2 4.6 289.4 6 Cu hum Ac tr Ci spi, cas, flo 1000
12:00 1022.9 3.6 289.0 6 Cb cap Ac cbgen Ci spi, cas, flo 1100
15:00 1022.4 6.7 291.2 6 Cu med, con Ac len Ci spi, cas, flo 1200
18:00 1022.6 2.1 289.7 6 Cu, Sc Ac tr Ci fib 1100
21:00 1023.7 1.0 286.6 3 Sc cugen Ac tr Ci fib 1800
24:00 1023.3 3.1 283.1 0 – – – –

of LITFASS based on LM version 2.16 with a time step of 40 s were performed. Location and
horizontal extension of the LM domain consisting of 171× 171 grid points in east-west and
north-south direction are shown by the red solid line in Fig.4.2. In vertical direction, 35 terrain
following model levels were used (Fig.4.1).

Both simulations RUN I and RUN II used the Mellor-Yamada scheme Level 2.5 (Raschen-
dorfer, 1999) (see Sec.2.2) with different formulations of the turbulent mixing length. RUN I
used the original scheme, whereas RUN II used the new formulation (see Sec.3.4.2) based on
the LES database derived look-up table of stability dependent integral length scale approximation
(Tab.A.2).

As shown by the three-dimensional views of the LITFASS LM domain of RUN I at 00:00 and
12:00 UTC (Fig.4.3), the observed synoptic conditions were well represented by the LITFASS
simulation. The north-westerly flow at 500 hPa level as well as multi-layered clouds were fairly
reproduced. Compared to 00:00 UTC, the simulation at 12:00 UTC (Fig.4.3) is characterised
by a decreased cloud cover showing a cellular structure of the clouds over the land surface. This
structure indicated convective turbulent cells, which were topped by cumulus clouds.
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FIGURE 4.3: LITFASS LM domain of RUN I, (top) at 18.06.1998 00:00 UTC and (bottom) at 18.06.1998
12:00 UTC, where the white shaded area is the cloud cover, the orange vector field is the
horizontal wind at the 500 hPa level and the green vector field is the vertical wind.
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FIGURE 4.4: Time evolution of sensible (top) and latent (bottom) heat flux of LITFASS simulations RUN
I (left) and RUN II (right) at grid point (129,109) of the LM domain.

4.2 Intercomparison of the LITFASS simulation results

The impact of different turbulent mixing lengths on the diurnal cycle of sensible and latent heat
flux was examined (Fig.4.4). The general evolution of the sensible and latent heat flux predicted
by LITFASS simulations RUN I and RUN II at the measurement site of MOL (LM grid point
129, 109) showed a similar behaviour. The largest deviations between both runs occurred around
12:00 UTC, when the sensible and latent heat flux reached their maximum. The fluxes in the
lower CBLz≤ 500 m were not strongly affected by changes in turbulent mixing length.
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FIGURE 4.5: Time evolution of (left) correlation coefficient and (right) centred pattern root-mean-square
difference determined from simulations RUN I and RUN II for (a, b) model cloudiness, (c,
d) cloud water content, and (e, f) water vapour in dependence on altitude.

However, strong deviations for sensible and latent heat flux occurred in the upper CBL be-
tween both runs, indicated by differences in magnitude and time evolution of the (Fig.4.4). They
emphasised the observed impact of turbulent mixing length formulation (see Sec.3.4.2) on the
parameterised turbulent fluxes in the upper CBL.

To examine differences in the simulation results of RUN I and RUN II by a statistical analysis,
correlation coefficient and centred pattern root-mean-square difference (e.g.,Taylor (2001)) of
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LM variables were used. The correlation coefficient of two 2D fieldsAi, j andBi, j is defined as

ρA,B =

1
NxNy

Nx

∑
i=1

Ny

∑
j=1

(
Ai, j −A

)(
Bi, j −B

)
{

1
NxNy

Nx

∑
i=1

Ny

∑
j=1

(
Ai, j −A

)2
}1/2{

1
NxNy

Nx

∑
i=1

Ny

∑
j=1

(
Bi, j −B

)2
}1/2

, (4.1)

whereNx, Ny are the number of grid points in zonal and meridional direction of the LM domain.
The mean valuesA, B are given as

A =
1

NxNy

Nx

∑
i=1

Ny

∑
j=1

Ai, j (4.2)

B =
1

NxNy

Nx

∑
i=1

Ny

∑
j=1

Bi, j . (4.3)

The centred pattern root-mean-square difference of the 2D fieldsAi, j andBi, j is defined as

δ
CP
A,B =

[
1

NxNy

Nx

∑
i=1

Ny

∑
j=1

{
(Ai, j −A)− (Bi, j −B)

}2
]1/2

. (4.4)

Based onAi, j corresponding to results of RUN I andBi, j corresponding to results of RUN
II horizontal cross sections of predicted 3D fields of LM variables were examined. These are
related to cloud coverage CLC(x,y,z), cloud-water contentqc(x,y,z), and water vapour content
qv(x,y,z).

As shown in Fig.4.5, the implications of different turbulent mixing lengths for the considered
LM variables were indicated byρI,II andδ CP

I,II . Since identical results of RUN I and RUN II would
lead toρI,II = 1 andδ CP

I,II = 0, low values ofρI,II and high values ofδ CP
I,II were related to large

deviations between both runs.
Largest deviations were observed around 12:00 UTC, when the strongest convection occurred

(Fig. 4.4). Within the entrainment zone, the correlation coefficient showed values ofρI,II =
0.8 (CLC), ρI,II = 0.6 (qc), andρI,II = 0.92 (qv). Here, the centred pattern root-mean-square
difference showed maximum values ofδ CP

I,II = 22 % (CLC),δ CP
I,II = 0.07 g kg−1 (qc), andδ CP

I,II =
0.048 g kg−1 (qv). This result indicated a higher sensitivity of CLC andqc on changes in turbulent
mixing lengths. However, a lower sensitivity was found forqv.

For neutral and stable stratification, the same formulation of turbulent mixing length is used
in RUN I as well as RUN II. Thus, deviations between both runs were rather low at night showing
ρI,II ∼ 1 andδ CP

I,II ∼ 0.
The implications of different formulations of turbulent mixing length scale on precipitation

variables, predicted by RUN I and RUN II were examined. Correlation coefficient and centred
pattern root-mean-square difference were determined from 2D fields of amount of rain (sum over
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FIGURE 4.6: Time evolution of (a) correlation coefficient of amount of rain from convective (RAIN-
CON) and from grid-scale precipitation (RAIN-GSP), and of total amount of precipitation
(TOT-PREC), (b) centred pattern root-mean-square difference of RAIN-CON, RAIN-GSP,
and TOT-PREC, (c) correlation coefficient of precipitation rates of convective rain (PRR-
CON) and of grid-scale rain (PRR-GSP), (d) centred pattern root-mean-square difference of
PRR-CON and PRR-GSP determined from simulations RUN I and RUN II.

forecast) from convective precipitation (RAIN-CON), amount of rain from gridscale (RAIN-
GSP) precipitation, and amount of rain from total precipitation (TOT-PREC). Furthermore, 2D
fields of precipitation rates of convective (PRR-CON) and grid-scale (PRR-GSP) precipitation
were taken into account.

Compared to the gridscale precipitation variables (RAIN-GSP, PRR-GSP) and total amount
of precipitation, lower values of correlation coefficient assuming a minimum around 12:00 UTC
were observed for convective precipitation variables (RAIN-CON, PRR-CON) (Fig.4.6(a, c)).
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Furthermore, a pronounced maximum of centred pattern root-mean-square difference for convec-
tive precipitation rate occured at 12:00 UTC (Fig.4.6(d)). These results emphasised a stronger
sensitivity of convective precipitation variables on changes of turbulent mixing length scale,
compared to gridscale precipitation variables. The centred pattern root-mean-square difference
of the variables related to amount of precipitation increased with time indicating an accumulation
of the deviations between both runs with increasing integration time (Fig.4.6(b)).

4.3 Verification of the LITFASS simulation results

4.3.1 Verification against satellite data

Based on the model-to-satellite approach (Morcrette, 1991), results of RUN I and RUN II were
compared with infrared (10.5µm-12.5µm) equivalent brightness temperaturesTIR and water
vapour (5.7µm-7.1 µm) equivalent brightness temperaturesTWV, derived from METEOSAT
observations (EUMETSAT, 2000). The approximation ofTIR andTWV from simulation results
took into account 3D fields of temperature, humidity, cloud cover, liquid water content, ice con-
tent, and pressure. Furthermore, predicted 2D fields of surface albedo, surface temperature, and
surface pressure fields were considered (Hellmuthet al., 2002).

The infrared equivalent brightness temperature was used to compare predicted and observed
multilevel cloud coverage (Fig.4.7(a, b, c)). Since highest values ofTIR correspond to radiation
coming from the surface, medium values ofTIR were related to low clouds, and lower values of
TIR were related to radiation emitted by medium and high clouds. Furthermore, predicted and
observed water vapour equivalent brightness temperatures were considered for examination of
cloud coverage (Fig.4.7(d, e, f)). In clear conditions,TWV depends on water content above the
500 hPa level, whereas in cloudy conditions,TWV is determined by cloud top temperature, cloud
optical properties, and water vapour above the cloud layer (Rocaet al., 1997).

The patterns of observedTIR (Fig.4.7(a)) andTWV (Fig.4.7(d)) indicating an elongation of the
clouds to the main flow from north-west to south-east, were well reproduced in both LM runs.
However, the observed cloud cover in terms of brightness temperatures was clearly underesti-
mated in both simulations.

Based on correlation coefficient and centred pattern root-mean-square difference, the impli-
cations of different turbulent mixing length on computedTIR andTWV were examined. Using
Ai, j related to interpolated 2D fields ofTIR andTWV derived from METEOSAT (Heide, 2003),

andBi, j related to computed 2D fields ofTIR andTWV from the simulations,ρM,I , ρM,II andδ CP
M,I ,

δ CP
M,II were calculated after Eqs. (4.1)-(4.4).

Only a weak correlation forTIR andTWV was found between METEOSAT observations and
results of RUN I, RUN II (Tab.4.2). This could be due to an underestimation of the cloud
long-wave impact by the assumption of too transparent clouds in the radiation model (Morcrette,
1991). Furthermore, an underestimation of simulation variables, related to computedTIR and
TWV is possible.

The investigation of differences between RUN I and RUN II, compared to the METEOSAT
observations (∆ρ/ρM,I and∆δ CP/δ CP

M,I ) showed in most cases only small deviations. This result
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FIGURE 4.7: Verification of LITFASS simulations RUN I and RUN II against METEOSAT observations
based on (top) infrared equivalent brightness temperatures and (bottom) water vapour equiv-
alent brightness temperatures observed at 12:00 UTC by (a, d) METEOSAT and computed
from LITFASS LM forecast of (b, e) RUN I and (c, f) RUN II using the model-to-satellite
approach (Morcrette, 1991).

indicated a rather low sensitivity ofTIR andTWV against changes in the formulation of the tur-
bulent mixing length. However, indicated by positive∆ρ/ρM,I and negative∆δ CP/δ CP

M,I , Tab.4.2
suggested in some cases a better agreement (green areas) withTIR andTWV computed from RUN
II and METEOSAT observations.

4.3.2 Verification against model-analysis data

A further examination of the impact of different turbulent mixing length formulations in RUN I
and RUN II was performed using analysis data provided by DWD (Vogel and Schubert, 2002).
The analysis data resulted from 4D data assimilation of LM (Schraff and Hess, 2002; Wergen,
2002) including specific moisture at surfaceqvs, 2 m-temperatureT2 m, 2 m-dew point tem-
peratureTd2 m

, and 2 m-current (integration time) maximum (minimum) temperatureTMAX 2 m
,

(TMIN2 m
). Furthermore, 10 m-zonal wind velocityu10 m, 10 m-meridional wind velocityv10 m,

10 m-horizontal wind velocityU10 m, and wind directionα as well as coverage with high,
medium, and low clouds were taken into account.

The verification was based on correlation coefficientρA,I , ρA,II and centred pattern root-
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TABLE 4.2: Verification of LITFASS simulations against METEOSAT observations of infrared (10.5µm-
12.5µm) equivalent brightness temperatureTIR and water vapour (5.7µm-7.1µm) equiva-
lent brightness temperatureTWV based on statistical measures (Eqs. (4.1)-(4.4)). Green areas
are related to an increase and red areas to a decrease of∆ρ/ρM,I and∆δ CP/δ CP

M,I .

Quantity Time ρM,I ρM,II
∆ρ

ρM,I
=

ρM,II−ρM,I
ρM,I

δ CP
M,I δ CP

M,II
∆δ CP

δ CP
M,I

= δ CP
M,II−δ CP

M,I

δ CP
M,I

(UTC) (·100 %) (K) (K) ( ·100 %)

03:00 0.533 0.535 0.315 11.600 11.524 -0.652
05:00 0.449 0.449 -0.122 13.011 12.945 -0.509
09:00 0.417 0.429 2.716 13.624 13.410 -1.573

TIR 12:00 0.304 0.303 -0.464 14.618 14.459 -1.094
15:00 0.434 0.436 0.605 13.049 12.796 -1.934
18:00 0.51 0.505 -0.977 11.128 10.793 -3.010
21:00 0.507 0.506 -0.322 9.105 9.058 -0.525
23:00 0.434 0.432 -0.429 9.449 9.414 -0.375

03:00 0.719 0.723 0.504 2.396 2.352 -1.832
05:00 0.680 0.684 0.574 2.586 2.565 -0.841
09:00 0.676 0.679 0.375 2.912 2.899 -0.465

TWV 12:00 0.548 0.553 0.963 3.362 3.331 -0.929
15:00 0.471 0.469 -0.464 3.395 3.411 0.469
18:00 0.434 0.450 3.847 3.215 3.059 -4.859
21:00 0.301 0.294 -2.254 3.132 3.104 -0.874
23:00 0.232 0.219 -5.458 3.215 3.223 0.251

mean-square differenceδ CP
A,I , δ CP

A,II (Eqs. (4.1)-(4.4)). Here,Ai j was related to 2D fields of anal-
ysis data andBi j was related to 2D fields of RUN I, RUN II, respectively. The examination of
deviations in wind direction between analysis data (Ai j ) and simulation data (Bi j ) was based on
the mean deviation, given as

δαA,B =
1

NxNy

Nx

∑
i=1

Ny

∑
j=1

∣∣∣αAi, j
−αBi, j

∣∣∣ . (4.5)

Based on∆ρ/ρA,I and∆δ CP/δ CP
A,I , the sensitivity on turbulent mixing length scale was ex-

amined using simulations and analysis data (Table4.3). A large sensitivity was assumed for
∆ρ/ρA,I ≥+5 %and∆δ CP/δ CP

A,I ≤−5 %.
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TABLE 4.3: Verification of LITFASS simulations against analysis data of 2 m-temperatureT2 m, 2 m-
dew point temperatureTd2 m

, current (integration time) 2 m-maximum temperatureTMAX 2 m
,

current (integration time) 2 m-minimum temperatureTMIN2 m
, specific moisture at surfaceqvs,

10 m-zonal wind velocityu10 m, 10 m-meridional wind velocityv10 m, 10 m-horizontal wind
velocity U10 m, wind directionα, coverage with high (CLCH), medium (CLCM), and low
clouds (CLCL) based on statistical measures ((Eqs. (4.1)-(4.4) and Eq. (4.5)). Green areas
are related to an increase and red areas to a decrease of∆ρ/ρM,I , ∆δ CP/δ CP

M,I , and∆δα/δαA,I .

Quantity Time ρA,I ρA,II
∆ρ

ρA,I
δ CP

A,I δ CP
A,II

∆δ CP

δ CP
A,I

δαA,I δαA,II
∆δα

δαA,I

(UTC) (·100 %) (units of quantity) (·100 %) (◦) (◦) (·100 %)

06:00 0.95 0.951 0.1 0.84 0.835 -0.616
T2 m 12:00 0.913 0.91 -0.343 1.637 1.714 4.7

18:00 0.955 0.954 -0.158 1.088 1.106 1.646
06:00 0.92 0.912 -0.921 1.278 1.339 4.796

Td2 m
12:00 0.761 0.749 -1.456 1.909 1.947 1.967

18:00 0.783 0.787 0.423 1.905 1.886 -0.974
06:00 0.945 0.947 0.231 0.886 0.869 -1.965

TMAX 2 m
12:00 0.916 0.918 0.274 1.584 1.609 1.6

18:00 0.89 0.891 0.094 1.838 1.881 2.357
06:00 0.906 0.904 -0.265 1.387 1.407 1.467

TMIN2 m
12:00 0.651 0.648 -0.465 2.769 2.781 0.454
18:00 0.948 0.948 0.048 1.189 1.185 -0.374
06:00 0.906 0.909 0.321 1.402 1.414 0.891

qvs 12:00 0.598 0.516 -13.634 1.604 1.606 0.136
18:00 0.667 0.667 0.107 1.526 1.512 -0.914
06:00 0.963 0.956 -0.725 0.834 0.866 3.817

u10 m 12:00 0.849 0.833 -1.841 1.463 1.466 0.199
18:00 0.758 0.752 -0.737 1.577 1.566 -0.718
06:00 0.922 0.887 -3.815 0.786 0.9 14.612

v10 m 12:00 0.817 0.826 1.101 1.419 1.328 -6.424
18:00 0.797 0.812 1.902 1.231 1.14 -7.351
06:00 0.955 0.944 -1.127 0.864 0.921 6.598

U10 m 12:00 0.857 0.829 -3.363 1.284 1.376 7.175
18:00 0.781 0.774 -0.883 1.367 1.352 -1.068
06:00 8.6 8.6 -0.7

α 12:00 16.8 15.7 -6.8
18:00 33.1 33.4 0.9
06:00 0.595 0.601 1.006 0.372 0.37 -0.6

CLCH 12:00 0.443 0.423 -4.479 0.446 0.455 2.012
18:00 0.333 0.353 6.12 0.418 0.41 -1.89
06:00 0.822 0.823 0.148 0.245 0.245 -0.32

CLCM 12:00 0.705 0.7 -0.82 0.318 0.319 0.392
18:00 0.653 0.651 -0.348 0.342 0.341 -0.235
06:00 0.749 0.746 -0.42 0.289 0.291 0.491

CLCL 12:00 0.629 0.698 10.88 0.358 0.319 -10.959
18:00 0.711 0.707 -0.592 0.315 0.314 -0.455
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The verification indicated only a weak sensitivity of most near surface variables on formu-
lation of the turbulent mixing length (Table4.3). Except forqvs the ∆ρ/ρM,I was smaller than
5 %. Using∆δα/δαA,I , the verification of observed and simulated wind direction indicated a
sensitivity on turbulent mixing length in the order of∆δα/δαA,I ∼ 7 % at 12:00 UTC.

The largest sensitivity was found for the coverage with low clouds at 12:00 UTC. The de-
termined∆ρ/ρA,I ∼ +11 %and∆δ CP/δ CP

A,I ∼ −11 % suggested that compared to RUN I using
the original scheme, the prediction of low cloud coverage was improved by the present model,
contained in RUN II.

Due to the large sensitivity of low cloud coverage on turbulent mixing length, a closer exam-
ination using the 2D field of CLCL at 12:00 UTC was performed. The analysis data indicated a
large area of low clouds, elongated from north-west to south-east of the LM domain (Fig.4.8(a)).
This was well reproduced in both simulations (Fig.4.8(b,c)). However, the predicted low cloud
coverage of RUN II indicated less clouds than RUN I in the north and the north-east of the LM
domain (Fig.4.8(c)). Compared to RUN I, this was in better agreement with the analysis data.

Based on centred subsections of CLCL at 12:00 UTC covering 128×128 LM gridpoints, the
2D covariance (Eq. (2.43)) for CLCL of analysis data and simulations were computed (Fig.4.8).
The stretching ofRCLCL

A,I (rx, ry) and RCLCL
A,II (rx, ry), respectively reflected the elongation of the

CLCL field (Fig.4.8). This indicated a higher correlation of CLCL in the direction of the elon-
gation than in perpendicular direction. Compared toRCLCL

A,I (rx, ry), higher values ofRCLCL
A,II (rx, ry)

at small positive displacementsry emphasised the better agreement of CLCL predicted by RUN
II with CLCL from the analysis data at the north of the LM domain.
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FIGURE 4.8: Coverage with low clouds (CLCL) at 12:00 UTC determined from (a) analysis data, (b)
LITFASS simulation RUN I, and (c) LITFASS simulation RUN II.

FIGURE 4.9: Normalised 2D covariance of coverage with low clouds (CLCL), (left) based on CLCL of
model analysis database and LITFASS simulation RUN I (X=I) and (right) based on CLCL
of model analysis database and LITFASS simulation RUN II (X=II).





CHAPTER 5

Conclusions and future directions

Turbulence parameterisations, used in regional and large scale atmospheric models are often
based on local closure schemes. However, these schemes are known to show serious deficiencies
in simulation of the convective boundary layer, since they fail to represent the impact of coherent
turbulence structures on mean variables. Even under convective conditions, these structures are
of primary importance. They contain most of the turbulent energy and dominate the vertical
turbulent transports.

Based on down-gradient approximation, local closure schemes (e.g., the popular Mellor-
Yamada model) often use a master length scale to determine the eddy diffusivity. However, such a
master length scale is representative of neutral atmospheric stability. Thus, this approach requires
additional dimensionless stability functions to take into account stable and unstable stratification.
However, these stability functions depends on local gradient Richardson number. Therefore,
they have difficulties to account for varying vertical stratification throughout the whole depth
of the CBL. This is primarily important for the parameterisation of entrainment processes in
the upper CBL, which strongly influence cloud development. However, clouds have a large
impact on radiation balance between the atmosphere and earth’s surface. Thus, an improvement
of formulations for the turbulent mixing length is of great importance to improve present-day
atmospheric models.

The aim of this work was the examination of a new formulation of characteristic turbulence
length scales for application in turbulence parameterisation. Since these length scales are related
to the energy spectrum of turbulent fluctuations, empirical stability functions are not required
any longer. However, this approach requires the determination of characteristic turbulence length
scales over a wide range of CBL stability conditions. Although measurements are very useful to
examine energy spectra and characteristic turbulence length scales, they are representative only
for a limited parameter space. Due to the non-linearity of turbulent processes, a generalisation
of characteristic turbulence length scales based on a few measurement results is very difficult or
impossible, respectively.

Therefore, in this work the characteristic turbulence length scales were derived from large-
eddy simulations. Based on a LES model that considers cloud formation and radiative processes,
dry and moist CBLs were simulated. Covering atmospheric stability from−zi/LMO = 2 – 48,
these simulations provide high resolution 3D turbulence data. Based on a representative subset
of four simulations, the flow statistics and turbulence properties of the simulated CBLs were
examined at final state (after 9 hrs integration time). At this time, the simulations were in quasi-
steady state, indicated by a linear change with height of the turbulent fluxes of momentum and
heat. Compared to the resolved flow statistics, non-resolved turbulence processes had only minor
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impact on the LES results except for the near surface range.
The simulated CBLs showed a vertical structure, which agreed well with observations as well

as with theoretical expectations, consisting of a well mixed layer, which was topped by an en-
trainment zone. Indicated by large gradients of mean horizontal wind velocity, temperature, and
total water content at CBL top, strong entrainment was simulated. Based on an examination of
the variances of horizontal wind velocity and temperature, a dependence on atmospheric stability
parameter was found for the entrainment strength. In agreement with observations and theoret-
ical considerations, a strong maximum of vertical velocity variance at mid-CBL was observed
indicating that coherent structures contribute the main part to the TKE within the well mixed
layer. Based on two-dimensional auto-covariances of vertical velocity, temperature and TWC,
coherent structures in the simulated CBLs were examined and an occurrence of role structures
was observed. The structure wavelengths of these role structures were in the order of twice the
CBL depth at mid-CBL. These findings agreed in order of magnitude with aircraft measurements,
numerical simulations, and laboratory experiments.

Taking into account, turbulent fluctuations of vertical velocity, temperature, and TWC, aver-
aged energy spectra and auto-covariance functions in all LES model levels of the simulated CBL
were determined. They were used to derive vertical profiles of characteristic turbulence length
scales in dependence on atmospheric stability. These length scales were related to peak wave-
length and integral length scale, representative of the LES resolved energy-containing range. In
agreement with theoretical expectations, both characteristic turbulence length scales indicated a
pronounced dependence on CBL stability. Furthermore, the assumption derived from measure-
ments of an analytical relationship between peak wavelength and integral length scale of vertical
velocity was confirmed. Moreover, the LES results indicated a similar relationship for character-
istic turbulence length scales of temperature and TWC. A dependence on stability was observed
for the ratio of peak wavelength to integral length scale of vertical velocity and virtual potential
temperature.

A comprehensive verification of the characteristic turbulence length scales of vertical velocity
was performed. Although a comparison with laboratory experiments showed some deviations,
a good agreement with numerical simulations and atmospheric measurements was found. The
differences with laboratory experiments are mainly related to an overestimation of role structures
in the laboratory flows associated with an underestimation of entrainment processes. Therefore,
further investigations are necessary, e.g., setup of LES input parameter more comparable with
laboratory conditions. The LES derived characteristic length scales of virtual potential tempera-
ture and TWC constitute a unique data set, required for comparison with future measurements.

Based on non-linear least square fitting, an former approximation for the peak wavelength
of vertical velocity was revised by the LES results and extended to a larger parameter space.
Furthermore, a new formulation for the integral length scale of vertical velocity was developed
using non-linear least square fitting of LES derived integral length scales for different stability
parameters. The resulting database of fit parameters reflects the impact of atmospheric stability
on the integral length scale approximation. The reliability of this new approximation was exam-
ined by a statistical analysis. The results indicated a high significance of the new approximation
for integral length scale over the range of simulated stability states.

The application of the new integral length scale approximation in a revised turbulent mix-
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ing length formulation for the Mellor-Yamada model was examined. Thus, a verification of
the revised Mellor-Yamada scheme using the new turbulent mixing length formulation against
the Mellor-Yamada scheme with master length scale was performed. Compared to the original
Mellor-Yamada model, the new formulation indicated larger values of eddy diffusivity coeffi-
cients in the upper CBL. A comparison with turbulent fluxes and variances derived from LES
showed an improvement of the revised Mellor-Yamada scheme for the parameterisation of tur-
bulent fluxes and variances in the upper CBL.

The implications of the revised turbulent mixing length formulation on the evolution of the
dynamic and thermodynamic state of the atmosphere at regional scale were examined for a
mesoscale model simulation. A simulation scenario based on 24 hrs of the most intensive mea-
surement campaign during the LITFASS-98 field experiment was successfully used as a test case
for the revised turbulent mixing length.

A model-to-model comparison showed a strong impact of the mixing length on magnitude
and time evolution of sensible and latent heat flux, primarily in the entrainment zone range
of the well developed CBL. Furthermore, 3D simulation fields of cloud coverage, cloud-water
content, and water vapour as well as two-dimensional precipitation fields of both simulations
were examined by a statistical analysis. The results indicated a non-negligible impact of the
revised turbulent mixing length on cloud parameters and convective induced precipitation.

The verification of the simulation results against observations was based on analysis data,
derived from 4D data assimilation and from satellite observations of METEOSAT. However, the
present data assimilation provided only observations related to near-surface variables and to the
cloud coverage in discrete model levels. The METEOSAT observations of infrared brightness
temperatures have been compared with simulated one from model-to-satellite approach taking
into account a large number of predicted 2D and 3D mesoscale fields.

The impact of various turbulent mixing lengths on near-surface fields and brightness temper-
atures was low as expected. However, for the present simulation the verification against observed
cloud coverage, derived from data assimilation indicated an improvement of simulated low cloud
coverage in case of the LES derived turbulent mixing length. Compared to simulation results us-
ing the master length scale this improvement was in the order of 11 %.

A comprehensive assessment of the new turbulent mixing length formulation requires much
more simulations at regional and global scale. However, an improved verification of these sim-
ulations needs 3D measurement data of liquid-water content, water vapour and microphysical
cloud properties. As an first step in this direction, the new formulation was successfully applied
by the DWD Potsdam for LM verification during the whole LITFASS measurement campaign
(May/June 1998). It is also intended to be applied in the very large-eddy simulation model of the
DWD (“LITFASS Lokal-Modell (LLM)”). The revised scheme can only be evaluated on a sta-
tistical base, i.e., running it for a large number of weather situations in a systematic way. In close
co-operation with DWD, now the revised turbulence length scheme will be extensively verified
in the framework of the routinely NWP procedure.

Thus, the examination results of this thesis can contribute to a further improvement of re-
liability and significance of atmospheric model simulations. These are required in numerical
weather prediction, air pollution modeling as well as regional integrated models for an improved
assessment of the implications of global change on natural and social systems.





APPENDIX A

Non-linear least square fit parameters of
peak wavelength and integral length scale

A.1 Peak wavelength of the vertical velocity

TABLE A.1: Parameter set for approximation of〈(λm)w〉 (Eq. (3.23)), whereχ2
r andQ are measures for

the goodness-of-fit,ai are fit parameter, and∆ai the corresponding standard deviations.

Case χ2
r Q a0 ∆a0 a1 ∆a1 a2 ∆a2 a3 ∆a3 a4 ∆a4

A 0.08 1.000 9.45 0.10 1.183 0.042 11.02 0.45 6.3E-2 2.6E-2 1.43 0.34
B 0.28 2.2E-8 11.60 0.19 1.143 0.023 10.72 0.44 5.0E-4 4.2E-4 7.14 0.85
C 1.17 0.086 9.99 0.33 0.754 0.048 18.23 0.85 8.0E-2 3.3E-2 2.32 0.42
D 0.77 0.172 10.86 0.26 0.916 0.012 11.79 0.40 5.5E-5 5.0E-5 9.26 0.94
E 1.12 0.156 11.65 0.56 0.960 0.021 8.91 0.35 4.1E-4 3.6E-4 7.30 0.89
F 1.25 0.022 11.93 0.51 0.807 0.024 11.10 0.54 6.1E-5 1.6E-4 9.06 2.73
G 0.78 0.959 11.87 0.37 1.072 0.017 10.41 0.37 1.6E-4 1.5E-4 8.25 0.96
H 0.94 0.673 12.30 0.19 0.960 0.016 11.38 0.43 2.0E-4 2.0E-4 7.88 0.96
I 0.30 1.000 11.70 0.22 1.066 0.013 9.75 0.23 9.6E-4 4.8E-4 6.38 0.51
J 1.39 0.002 11.00 0.37 0.758 0.014 12.47 0.66 3.0E-7 1.7E-6 14.02 5.81
K 1.02 0.418 11.98 0.29 1.063 0.017 8.98 0.27 9.7E-5 6.7E-5 8.96 0.72
L 0.33 1.000 10.09 0.16 0.968 0.013 10.28 0.26 2.2E-4 1.8E-4 7.76 0.85
M 1.05 0.321 11.07 0.28 0.868 0.017 10.67 0.30 3.4E-4 3.1E-4 7.28 0.91
N 0.23 1.000 10.55 0.26 0.884 0.006 9.66 0.20 9.2E-4 3.4E-4 6.46 0.37
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A.2 Integral length scale of the vertical velocity

TABLE A.2: Parameter set for approximation of〈Λw〉 (Eq. (3.24)), whereχ2
r andQ are measures for the

goodness-of-fit,ai are fit parameter, and∆ai the corresponding standard deviations.

Case χ2
r Q a0 ∆a0 a1 ∆a1 a2 ∆a2 a3 ∆a3

A 0.59 1.000 1.910 0.091 0.4905 0.0074 0.8382 0.0188 0.969 0.132
B 0.04 1.000 1.992 0.025 0.4773 0.0033 0.8910 0.0026 1.444 0.047
C 3.73 3.1E-44 1.754 0.144 0.3092 0.0169 0.5610 0.4045 -0.104 0.781
D 0.42 1.000 1.756 0.047 0.4251 0.0057 0.9004 0.0046 1.390 0.082
E 0.16 1.000 1.819 0.051 0.3603 0.0019 0.8933 0.0038 1.378 0.049
F 0.03 1.000 1.857 0.009 0.3630 0.0013 0.9074 0.0022 1.822 0.046
G 0.29 1.000 1.704 0.015 0.3930 0.0041 0.8991 0.0046 2.457 0.140
H 0.07 1.000 1.736 0.016 0.3581 0.0014 0.8961 0.0020 2.281 0.047
I 0.61 1.000 1.736 0.009 0.3886 0.0039 0.8877 0.0058 1.591 0.082
J 0.14 1.000 1.402 0.019 0.3219 0.0016 0.8552 0.0060 1.565 0.060
K 0.33 1.000 1.659 0.012 0.4087 0.0038 0.8452 0.0086 0.780 0.068
L 0.23 1.000 1.584 0.025 0.3321 0.0029 0.8732 0.0059 1.605 0.080
M 0.17 1.000 1.570 0.012 0.3166 0.0020 0.9211 0.0024 2.708 0.062
N 1.54 3.2E-5 1.506 0.029 0.3510 0.0034 0.9586 0.0041 3.818 0.220
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A.3 Peak wavelength of the virtual potential temperature

TABLE A.3: Parameter set for approximation of〈(λm)
θv
〉 (Eq. (3.26)), whereχ2

r andQ are measures for
the goodness-of-fit,ai are fit parameter, and∆ai the corresponding standard deviations.

Case χ2
r Q a0 ∆a0 a1 ∆a1

A 0.70 0.996 34.52 2.30 1.1462 0.0143
B 0.12 1.000 24.86 0.49 1.4258 0.0046
C 6.39 0.000 22.51 1.27 1.1976 0.0163
D 2.47 1.5E-17 20.41 0.70 1.0785 0.0118
E 1.83 4.8E-9 22.48 1.08 1.0048 0.0103
F 0.70 0.998 19.81 0.79 1.0061 0.0053
G 0.80 0.944 29.62 0.44 1.2731 0.0027
H 0.79 0.964 22.79 1.55 1.0430 0.0068
I 0.36 1.000 23.67 0.46 1.0659 0.0056
J 0.98 0.550 20.11 0.47 1.0049 0.0084
K 1.62 3.6E-6 21.25 0.51 1.0800 0.0076
L 0.70 0.998 20.20 0.74 0.9815 0.0060
M 1.16 0.085 22.37 1.58 0.9651 0.0037
N 0.56 1.000 19.25 1.37 0.8625 0.0055
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A.4 Integral length scale of the virtual potential temperature

TABLE A.4: Parameter set for approximation of〈Λ
θv
〉 (Eq. (3.26)), whereχ2

r andQ are measures for the
goodness-of-fit,ai are fit parameter, and∆ai the corresponding standard deviations.

Case χ2
r Q a0 ∆a0 a1 ∆a1

A 3.85 1.4E-44 8.36 0.43 0.2942 0.0053
B 1.04 0.373 5.26 0.47 0.3919 0.0082
C 3.57 2.4E-41 5.24 0.31 0.2321 0.0033
D 0.29 1.000 5.34 0.11 0.2985 0.0017
E 2.86 1.2E-27 4.49 0.13 0.2175 0.0021
F 0.31 1.000 4.81 0.25 0.2502 0.0025
G 0.31 1.000 5.90 0.31 0.3157 0.0034
H 1.02 0.420 4.17 0.16 0.2299 0.0037
I 1.43 0.001 4.17 0.30 0.2447 0.0027
J 2.13 3.8E-13 3.84 0.10 0.2280 0.0035
K 2.35 1.4E-17 3.93 0.31 0.2583 0.0031
L 0.54 1.000 4.83 0.16 0.2078 0.0015
M 1.03 0.383 4.65 0.17 0.2173 0.0033
N 1.98 1.5E-11 5.18 0.60 0.2644 0.0026
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A.5 Peak wavelength of the total water content

TABLE A.5: Parameter set for approximation of〈(λm)q〉 (Eq. (3.26)), whereχ2
r andQ are measures for

the goodness-of-fit,ai are fit parameter, and∆ai the corresponding standard deviations.

Case χ2
r Q a0 ∆a0 a1 ∆a1

A 0.96 0.612 52.48 7.23 1.4507 0.0174
B 0.84 0.874 48.58 6.22 1.8668 0.0150
C 0.62 1.000 38.06 1.42 1.5448 0.0047
D
E 0.28 1.000 29.32 0.73 1.1417 0.0038
F 0.23 1.000 28.31 0.83 1.1964 0.0053
G 2.99 1.2E-24 44.55 3.52 1.6502 0.0153
H 0.26 1.000 43.41 0.37 1.7413 0.0126
I
J 0.63 1.000 33.34 1.89 1.3863 0.0105
K 0.58 1.000 40.06 1.28 1.2989 0.0065
L 0.02 1.000 52.17 1.02 1.7871 0.0057
M 0.06 1.000 43.71 1.49 1.4780 0.0047
N 0.13 1.000 48.98 2.18 1.8003 0.0171
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A.6 Integral length scale of the total water content

TABLE A.6: Parameter set for approximation of〈Λq〉 (Eq. (3.26)), whereχ2
r andQ are measures for the

goodness-of-fit,ai are fit parameter, and∆ai the corresponding standard deviations.

Case χ2
r Q a0 ∆a0 a1 ∆a1

A 2.06 1.6E-11 14.39 1.98 0.3705 0.0076
B 0.25 1.000 13.77 1.10 0.5688 0.0047
C 0.33 1.000 8.40 0.26 0.3465 0.0020
D
E 1.36 0.003 5.85 0.14 0.2437 0.0022
F 0.05 1.000 8.47 0.23 0.3109 0.0006
G 1.22 0.057 9.92 0.47 0.4737 0.0048
H 0.26 1.000 12.55 0.49 0.5918 0.0031
I
J 1.51 1.1E-4 8.30 1.56 0.3536 0.0065
K 0.44 1.000 10.03 0.54 0.3405 0.0042
L 0.14 1.000 13.37 0.42 0.5434 0.0038
M 0.01 1.000 12.74 0.22 0.4711 0.0009
N 0.34 1.000 13.17 0.52 0.4939 0.0031
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Approximation of peak wavelength and
integral length scale

B.1 Approximation of the peak wavelength

FIGURE B.1: Horiontally averaged peak wavelengths〈(λm)w〉, 〈(λm)
θv
〉, and 〈(λm)q〉 (coloured solid

lines) for (a-c) casesB, (d-f) G, (g-i) J and (j-l)K, where the black solid lines denote the fit
approximation (Eq. (3.23)) using fit parameter of Tab.A.1,A.3, andA.5. Grey shaded areas
denote the standard deviationsσ(λm)w

, σ(λm)
θv

, andσ(λm)q
.

B.2 Approximation of the integral length scale

FIGURE B.2: Horizontally averaged integral length scales〈Λw〉, 〈Λθv
〉, and〈Λq〉 (coloured solid lines)

for (a-c) casesB, (d-f) G, (g-i) J, and (j-l) K, where the black solid lines denote the fit
approximation (Eq. (3.24)) using fit parameter of Tab.A.2,A.4, andA.6. Grey shaded areas
denote the standard deviationsσΛw

, σΛ
θv

, andσΛq
.
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APPENDIX C

Nomenclature

Greek Letters

α wind direction

β Bowen ratio

χ flow variable

χr statistical parameter

∆δ CP difference of centred pattern root-mean-
square difference

∆ρ difference of correlation coefficient

∆t time step

∆x zonal grid resolution

∆y meridional grid resolution

∆z vertical grid resolution

∆θl temperature jump at initial boundary
layer height

δ Kronecker symbol

δαA,B mean deviation of wind direction

δ CP
A,B centred pattern root-mean-square dif-

ference of two-dimensional fields

ε dissipation

εm model dissipation rate

η Kolmogorov length scale

Γ>
θ

lapse rate of potential temperature above
CBL top within the entrainment zone

γ
φ

counter-gradient eddy diffusivity

Γ
θl

lapse rate of liquid water potential tem-
perature

κ von-Karman constant

Λ1 particular length scale of the MY-model

Λ2 particular length scale of the MY-model

Λχ integral length scale of a flow variable

λm peak wavelength

ν fluid viscosity

φ scalar variables

φ ′ subgrid-scale fluctuations of scalar vari-
ables

ΦM general stability function

Φχi
Fourier transform of variableχi

πE Exner function

σχ standard deviation of a flow variable

τi j residual stress tensor

θ potential temperature

θl liquid water potential temperature

θv virtual potential temperature

θ∗ mixed layer convective temperature scale

θv,s virtual potential temperature of near
surface air
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ρA,B correlation coefficient of two-dimensional
fields

Roman Letters

` size of a coherent turbulent region (eddy)

`0 length scale of energy-containing range

`ε dissipation length scale

`k turbulent mixing length scale

`εχ
dissipation length scale of a flow vari-
able

εχ dissipation of a flow variable

Ci j cross stress tensor

Li j Leonard stress tensor

Ri j Reynolds stress tensor

A two-dimensional mesoscale field

Aχ structure parameter of a flow variable

ai fit parameter

B constant of relationship for peak wavenum-
ber

B two-dimensional mesoscale field

Cχ Kolmogorov constant

cp specific heat at constant pressure

E model turbulent kinetic energy

e residual kinetic energy

EB
χ Bezier approximated spectral energy

of a flow variable

Ex
χ zonal spectral energy of a flow vari-

able

Ey
χ

meridional spectral energy of a flow
variable

Eχ spectral energy of a flow variable

eχ turbulent energy of a flow variable

f Coriolis parameter

F1 stability expression

F2 stability expression

F3 stability expression

F4 stability expression

g earth acceleration

GM stability expression of momentum

GM stability expression of scalars

k wavenumber

Kχ eddy diffusivity of flow variableχ

K
φ

eddy diffusivity for scalars

KM eddy diffusivity for momentum

km peak wavenumber

L length scale of the flow

l master length scale of the MY-model

l0 asymptotic length scale

L1 first dual-choice length scale

l1 particular length scale of the MY-model

L2 second dual-choice length scale

l2 particular length scale of the MY-model

ldown downward displacement

lup upward displacement



97

LD model domain size in one direction

Ls structure wavelength

Lv latent heat of vaporisation of water

Lx zonal model domain size

Ly meridional model domain size

Lz vertical model domain size

l
σ2

χ

averaging length of a flow variable

LMO Monin-Obukhov length scale

M index of fit parameters

Na number of parameters

ND number of model gridpoints in one di-
rection

nD number of degrees of freedom

Nx zonal number of gridpoints

Ny meridional number of gridpoints

p pressure

p0 initial pressure

Pb buoyancy production

Ps shear production

Q goodness-of-fit

q total water content

q∗ mixed layer convective humidity scale

qc cloud-water content

ql liquid water content

qv water vapour content

qvs specific moisture at surface

r displacement

RCLCL
A,X covariance of low cloud coverage

Rx
χ zonal auto-covariance of a flow vari-

able

Ry
χ

meridional auto-covariance of a flow
variable

R1 stability expression

Rd gas constant

rx zonal displacement

ry meridional displacement

Rχi χi
auto-covariance of a flow variable

Rχi χ j
covariance of two flow variables

S
φ

stability function for scalars

SE stability function for turbulent kinetic
energy

SM stability function for momentum

T temperature

t∗ convective time scale

T2 m 2 m-temperature

tav averaging time

tmax time of finish of averaging process

tmin time of start of averaging process

TIR infrared equivalent brightness temper-
ature

TMAX 2 m
2 m-current maximum temperature

TMIN2 m
2 m-current minimum temperature

TWV water vapour equivalent brightness tem-
perature
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Td2 m
2 m-dew point temperature

U wind speed

u vertical wind

u zonal wind

u∗ friction velocity

U10 m 10 m-horizontal wind velocity

u10 m 10 m-zonal wind velocity

ug zonal geotrophic wind

ui velocity components

u′i subgrid-scale fluctuations of velocity
components

v meridional wind

v10 m 10 m-meridional wind velocity

vg meridional geotrophic wind

w∗ convective velocity scale

wLS large scale subsidence

x cartesian coordinate

y cartesian coordinate

z cartesian coordinate

z∗ normalised height

z0 roughness length

zB height of cloud base

zT inversion height above cloud top

zi,0 initial boundary layer height

q< total water content below the initial bound-
ary layer height

q> total water content above the initial bound-
ary layer height

Re Reynolds number

Ri local gradient Richardson number

Constants

A1 = 0.92

A2 = 16.6

B1 = 0.74

B2 = 10.1

C = 0.24± 0.04

c0 = 5.9

C1 = 0.08

c1 = 1.8

c2 = 4.0

c3 = 0.0003

c4 = 8.0

Abbreviations

1D one dimensional

2D two dimensional

3D three dimensional

4D four dimensional

CBL convective boundary layer

CLC cloud coverage

CLCH cloud coverage of high clouds

CLCL cloud coverage of low clouds

CLCM cloud coverage of medium clouds
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DNS direct numerical simulation

DWD Deutscher Wetterdienst

GCM general circulation model

IFT Leibniz-Institut für Troposphärenforschung

LES large-eddy simulation

LITFASS Lindenberg Inhomogeneous Terrain
- Fluxes between Atmosphere and Sur-
face: a longterm Study

LLM Lindenberger Lokal-Modell

LM non-hydrostatic limited area model

LT look-up table

LT-TML look-up table turbulent mixing length
formulation

LWC liquid water content

MCBL marine convective boundary layer

MM mesoscale model

MOL Meteorological Observatory Lindenberg

MPI Max-Planck Institute

MY local closure approximation of order
11/2 after Mellor and Yamada(1974)
andMellor and Yamada(1982)

MY-TML turbulent mixing length formula-
tion of Mellor and Yamada(1974) and
Blackadar(1962)

MY25 Level 2.5 local closure approximation
of order 11/2 afterMellor and Yamada
(1974) andMellor and Yamada(1982)

NWP numerical weather prediction

PBL planetary boundary layer

PRR-CON precipitation rate of convective pre-
cipitation

PRR-GSPprecipitation rate of gridscale pre-
cipitation

RAIN-CON amount of rain from convective
precipitation

RAIN-GSP amount of rain from gridscale pre-
cipitation

RIM regional integrated model

SEMAPHORE Structure des Echanges Mer-
Atmosphere, Proprietes des Heterogeneites
Oceaniques: Recherche Experimentale

SGS subgrid scale

Tab. Table

TKE turbulent kinetic energy

TMLF turbulent mixing length formulation

TMLS turbulent mixing length scale

TOT-PREC amount of rain from total precip-
itation

TWC total water content

UTC universal time
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Referat:
Turbulente Austauschprozesse in der atmosphärischen Grenzschicht spielen eine Schlüsselrol-
le beim vertikalen Impuls-, Energie- und Stofftransport in der Erdatmosphäre. In meso- und
globalskaligen Atmosphärenmodellen sind turbulente Austauschprozesse jedoch subskalig und
müssen unter Verwendung geeigneter Schliessungsansätze parametrisiert werden. Hierbei spielt
die Spezifikation der charakteristischen Turbulenzlängenskala in Abhängigkeit vom Stabilitäts-
zustand der Atmosphäre eine entscheidende Rolle. Gegenwärtig verwendete Ansätze, die auf
der Verwendung der turbulenten Mischungslänge für neutrale Schichtung sowie dimensionslo-
ser Stabilitätsfunktionen basieren, zeigen vor allem Defizite im oberen Bereich der konvektiven
Grenzschicht sowie in der Entrainmentzone, wo starke vertikale Gradienten auftreten.

In der vorliegenden Arbeit wurden hochaufgelöste dreidimensionale Grobstruktursimulatio-
nen der trockenen und feuchten Grenzschicht für ein weites Spektrum von Labilitätsbedingungen
durchgeführt. Erste und zweite Momente atmosphärischer Strömungsvariablen wurden aus den
simulierten hydro- und thermodynamischen Feldern berechnet und diskutiert.

Die Spektraleigenschaften turbulenter Fluktuationen der Strömungsvariablen, das raumzeit-
liche Verhalten kohärenter Strukturen sowie charakteristische Turbulenzlängenskalen wurden
abgeleitet. Eine Verifizierung der charakteristischen Turbulenzlängenskalen erfolgte durch Ver-
gleich mit Ergebnissen früherer numerischer Simulationen, mit Turbulenzmessungen in der at-
mosphärischen Grenzschicht sowie mit Laborexperimenten.

Mit Hilfe der nichtlinearen Datenmodellierung wurden leicht verwendbare Approximationen
der charakteristischen Turbulenzlängenskalen abgeleitet und deren statistische Signifikanz dis-
kutiert. Unter Verwendung dieser Approximationen wurde ein existierendes Parametrisierungs-
modell revidiert und mit Hilfe von Grobstruktursimulationen verifiziert.

Desweiteren wurde der Einfluß der turbulenten Mischungslänge auf die Prognose mesokali-
ger Felder untersucht. Hierzu wurde mit dem Lokal-Modell des Deutschen Wetterdienstes eine
entsprechende Sensitivitätsstudie durchgeführt. Anhand von Satellitendaten und Analysedaten
aus der 4D-Datenassimilation wurden die Simulationsergebnisse verifiziert.
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