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Chapter 1

Introduction

1.1 Motivation

The formal analysis of reasoning about knowledge has attracted much attention re-
cently. Epistemic logic was invented in the early 1960’s by philosophers as a tool
for describing epistemic concepts such as knowledge and belief formally.! At the be-
ginning, the main interest was to find inherent properties of knowledge (and related
concepts) and to apply the analysis to epistemology. More recently, researchers from
other disciplines such as linguistics, economics, game theory, and computer science
have become increasingly interested in reasoning about knowledge. In addition to the
more traditional topics, many other questions have become relevant for those who are
more interested in applications, e.g., questions about computational complexities or
the relationship between and agent’s knowledge and his action.

Within computer science, reasoning about knowledge plays an extremely impor-
tant role in contemporary theories of intelligent agents. In recent years a number of
approaches have been proposed in (Distributed) Artificial Intelligence (DAI) to specify
rational agents in terms of mental qualities like knowledge, belief, want, goal, commit-
ment, and intention. There is no universally accepted definition of the term “agent”
in the literature, yet there seem to be a common picture of artificial agents within the
DAT community: “agents” are, or should be, formal versions of human agents, pos-
sessing formal versions of mental attitudes like knowledge, belief, goals. In short, the
notion of an “intentional stance” ([Den87], [McC79]) is adopted. It has proved possible
and useful to characterize agents using those attitudes.? There is no clear consensus
in the DAT community about precisely which combination of mental attitudes is best
suited to characterizing agents. However, it seems to be an agreement that belief (or
knowledge) should be taken as one of the basic notions of the agent theory ([WJ95]).

The emphasis on epistemic concepts is not accidental. First, the role that knowl-
edge plays in decision and action is obvious. Second, knowledge and belief are most
intensively studied among all mentalistic concepts. In fact, the other concepts are usu-
ally modeled after the way the epistemic ones are modeled. Third, epistemic concepts
are arguably among the most fundamental mental notions: many other mentalistic

!Sometimes the term “epistemic logic” is reserved for the logic of knowledge, and “doxastic logic”
is used to denote that of belief. In the present thesis we shall use the term “epistemic logic” in the
wider sense.

2See [FG97] for a recent discussion of the agent concept. McCarthy ([McC79]) discusses the problem
of ascribing human-like qualities to artificial entities.
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concepts seem to be derivable from the epistemic ones, but not vice versa. For exam-
ple, an old philosophical thesis states that the concept of desire is reducible to that of
belief: an agent desires something if he believes that having it is useful. A discussion of
this desire-as-belief thesis can be found in [Lew88], [Lew96]. The normative concepts
of obligation and permission could also be reduced to the concept of belief. Anderson’s
reduction of deontic logic to alethic modal logic (“something is obligatory if and only if
not doing it necessarily leads to punishment”, cf. [And58], [And67]) can be interpreted
epistemically as: “something is obligatory if and only if the agent knows (or believes)
that not doing it leads to punishment”. It can be shown that under this epistemic
interpretation, the deontic axioms can be derived from axioms of epistemic logic.

In short, formal theories of knowledge constitute the most important foundation
for theories of agency. Consequently, all strengths and weaknesses of the underlying
epistemic theory propagate to the agent theory based on it. We will see that this has
important consequences for the suitability of agent theories for characterizing intelligent
agents.

Typically, formal theories of agents are used as internal specification languages,
i.e., languages used by agents to reason about themselves and about other agents.
As such, agent theories must describe agents accurately and realistically. In order to
interact with each other, each agent needs an accurate representation of themselves
and of other agents, their information states, their preferences et cetera. I shall show
that this requirement cannot be met if mainstream epistemic logic is used to model an
agent’s cognitive state.

The purpose of my thesis is to provide a more suitable epistemic foundation to
theories of intelligent agents. I will argue that agent theories need to be based on better
logics of knowledge than the ones on which they are based now. The main reason
is that agents — both human and non-human — are inherently resource-bounded:
they cannot perform arbitrarily complex reasoning tasks within constant, limited time.
Mainstream modal epistemic logic, however, is not able to account for that resource
boundedness. The most obvious indication of this inability is the so-called logical
omniscience problem of epistemic logic. I shall show that almost all work that purports
to be about knowledge is done under assumptions that are unreasonable for knowledge
of realistic, resource-bounded agents. Then I will propose some systems of epistemic
logic which can be used for resource-bounded reasoning?®.

1.2 Structure of the thesis

The thesis is organized as follows. First, I shall review briefly the possible-worlds
approach to epistemic logic and its relationship to recent agent theories in chapter 2.
I shall show that the modal approach can at most account for the concept of implicit
knowledge, but that concept is not helpful in describing agents, simply because agents
need to act upon what they ezplicitly know, and not what they merely implicitly know.

In chapter 3 I examine some influential alternative approaches to epistemic logic

3Some authors use the term “bounded rationality” to express the idea that an agent cannot compute
everything he could if his resources were unlimited. That term is somewhat misleading, so I shall use
“resource boundedness” throughout the thesis.
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and evaluate how they may be suited to describing realistic agents. I shall show that
almost all attempts proposed in the literature to overcome the difficulties of the modal
approach consist in weakening the standard epistemic systems. That is, weaker sys-
tems are considered where the agents do not possess the full reasoning capacities of
ideal reasoners. I shall argue that those alternatives are not satisfactory because they
restrict the agents’ intelligence arbitrarily, so the intuition that agents are rational gets
lost. Consequently, they are not suitable for formalizing the informational aspect of
intelligent agents.

In chapter 4 a framework for reasoning about explicit knowledge will be developed.
I shall show that axioms for explicit knowledge must have the following form: if the
agent knows all premises of a valid inference rule, and if he thinks hard enough, then
he will know the conclusion. To formalize such an idea, I propose to introduce a
dynamic component into the epistemic language. I shall show that my approach offers
an intuitive solution to the logical omniscience problem while preserving the intuition
that agents are rational. My approach is therefore is suitable for formalizing the notion
of actual, or explicit knowledge.

In chapter 5 I shall develop logics of algorithmic knowledge — a new concept of
knowledge which generalizes both implicit and explicit knowledge. The main idea is to
combine epistemic logic with a complexity analysis: we consider how long an agent will
need to compute the solution to a certain problem. After explaining the underlying
intuitions I shall introduce the concept of algorithmic knowledge and develop formal
theories of this new concept.

A short overview of modal, temporal, and dynamic logic is given in appendix A.
Formal proofs of some theorems are found in appendix B.

1.3 Main results

The main result of this thesis is the clarification of some central concepts of agent the-
ories, namely, the concepts describing the informational aspect of intelligent, resource-
bounded agents. The main technical result is a framework for establishing direct con-
nections between an agent’s knowledge and his available resources. In the thesis two
epistemic concepts — the concepts of explicit knowledge and algorithmic knowledge
— will be introduced and characterized axiomatically. It will be shown that these
concepts are important for resource-bounded reasoning about knowledge and useful for
describing rational, but realistic and implementable agents.

Although the thesis is primarily concerned with (Distributed) Artificial Intelligence,
I am convinced that it will have a considerable impact on other fields of research,
especially on philosophy and game theory.

In the philosophical literature, epistemic logic has been frequently criticized for not
being able to model agents realistically. Several researchers have therefore drawn the
conclusion that epistemic logic is either not possible, or it is not useful for epistemolo-
gists interested in actual knowers in the actual world ([Hoc72], [Hal95]). My attempt
to model realistic, resource-bounded reasoners can be seen as a defense against those
attacks. By actually specifying a theory of knowledge that can be verified empirically
I will provide the evidence that epistemic logic is indeed possible.
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In the field of game theory and mathematical economics, resource boundedness
has been a primary concern for a long time ([Sim57]). Since Aumann’s seminal work
([Aum76]), game theorists have become interested in the role of knowledge (and es-
pecially common knowledge) in games. Recent works on the epistemic foundations
of games (e.g., [Bin90], [Wal92], [Bac94]) have made clear what implicit assumptions
concerning the players’ knowledge are made when modeling a game. Because these
assumptions are recognized as too strong for realistic agents, several attempts have
been made to weaken the underlying epistemic logic in order to describe players more
realistically ([Bac94], [LM94], [Hei95]). My investigation can contribute to the search
for a more suitable epistemic foundation of game theory.

Some results of this thesis have been published previously. Chapter 4 is based on
[Ho95] and [Ho97]. Parts of chapter 5 are based on [Ho98|.

1.4 Notations and preliminaries

In the following we shall use the following symbols and abbreviations: w denotes the
set of natural numbers. =g4.s is the symbol for a definition. Pow is the power set
function: if X is any set then Pow(X) is the powerset of X. 'wrt’ abbreviates ’with
respect to’, and ’iff’ stands for ’if and only if’.

Let X be any set and R C X x X a binary relation on X. Then R' denotes the
transitive closure and R* the reflexive, transitive closure of R. If R and S are two
relations on X then R;S denotes the composition of the two relations, i.e., (s,t) € R; S
iff there exists a u such that (s,u) € R and (u,t) € S.

Let R C X x X a binary relation on a set X. We will be considering relations
having certain algebraic properties:

o R is reflexive iff for all z € X, zRx.
e R is transitive iff for all z,y,z € X, if zRy and yRz then xRz.
e R is symmetric iff for all z,y € X, if xRy then yRz.

e R is serial iff for all z € X there is a y € X such that zRy.

R is Euclidean iff for all z,y,z € X, if zRy and xRz then yRz.

e R is directed iff for all z,y, z € X, if zRy and xRz then there is some ¢ € X such
that yRt and zRt.

The relation R is said to be an equivalence relation if it is reflexive, transitive, and
symmetric. It is easy to verify that every reflexive relation is also serial and every
reflexive, transitive and Euclidean relation is an equivalence relation. Often the term
“confluent” is used as a synonym for “directed”.

To construct a formal language we will start with a countable set of atomic formulae
and use the usual Boolean connectives: negation (=), conjunction (A), disjunction (V),
implication (—), and material equivalence (), possibly together with additional (non-
extensional) connectives, to form more complex formulae.* Atomic formulae will be

“We avoid using the word “intensional” because epistemic concepts are not intensional in the sense
of Carnap [Car47]. Those concepts are — as Cresswell pointed out ([Cre80] — hyper-intensional.
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denoted by ¢, ¢g, p1,.... To denote arbitrary formulae we use a,f,7,..., possibly
with indexes. We take negation and implication as basic connectives. Disjunction,
conjunction, and material equivalence are introduced as abbreviations:

(aVﬂ) =def Q¢ — B
(@A B) =ges =(-aV =p)
(a < B) =ges ((a = B) A (B — a))

To omit parentheses where possible we also adopt the convention that the bind-
ing powers of the connectives decrease in the following order: negation, conjunction,
disjunction, implication, and material equivalence.

Let £ be a formal language which contains the above-mentioned Boolean connec-
tives. A logic A in this language will be defined by specifying a set of axiom schemata
and rules of inference. Formulae derivable (or provable) from the axioms using the
inference rules of the logic are called theorems. We often identify a logic with the set
of its theorems. We write 5 « to indicate that « is a A-theorem. If ' C Land o € L
then we say that « is A-deducible from I', denoted T -5 «, if there exist £1,...,8, € T
such that Fp B1 A ... A B, = «a. (In the case n = 0, this means that Fy «.) We write
I' #p a if « is not A-deducible from I'. A set I' C £ is A-consistent if there is no
formula « such that T /5 (o A —a). The deductive closure of a set I' C £ with respect
to the logic A is defined as:

C‘nA(F) =def {a eL:THp a}

The semantic counterpart of the provability concept is the concept of validity. We
shall define precisely the notion of a model for a formal language and the concept of
validity in a model, i.e., we shall specify when a formula a € £ is valid in some model
M (for the language £), in symbol M |= a. A formula « is called valid with respect to
some class C of models, denoted |=¢ «, if it is valid in all models of that class. A logic
is said to be sound with respect to a class of models if and only if all of its theorems are
valid wrt that class of models. It is complete wrt a class of models iff all valid formulae
of that class of models are theorems of the logic. We say that a logic A is determined
by a class C of models just in case it is sound and complete wrt C, i.e., Fp «a iff ¢ .
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Chapter 2

Modal epistemic logic

At the beginning of epistemic logic, attempts were made to develop systems to describe
actual knowledge of real agents. The term “knowledge” was originally used in its
ordinary language meaning: to say that an agent knows a sentence either means that
he consciously assents to it, or that he immediately sees it to be true when the question
is presented. However, it was soon realized that describing actual knowledge is a nearly
impossible task: actual knowledge does not seem to obey any logic. If we consider real
agents and ask what they actually know, we can check empirically that an agent’s
knowledge is often not closed under any logical law. From some epistemic statement
one cannot infer reliably any other epistemic statement, i.e., one can hardly find any
genuine epistemic statement that may claim universal validity. There seems to be
no general epistemic principle that cannot be disproved with a counter-example. It
seems impossible to develop a logic of actual knowledge because — to quote Eberle
([Ebe74]) — such a logic must be able to “provide for total ignoramusses (ones who
knows nothing), complete idiots (ones who cannot draw even the most elementary
inferences), and ultimate fools (ones who believe nothing but contradictions)”.

In order to make epistemic logic possible, idealizations were made concerning the
reasoning capacities of the agents, and modal systems were proposed to describe such
idealized agents. However, the idealizations made by modal epistemic logic are too
strong for any realistic agent: they require that agents be very powerful reasoners
who know all logical consequences of what they know, including all logical truths. If
“knowledge” is interpreted in its normal, ordinary language meaning then such per-
fectly rational, logically omniscient agents are non-existent. No human agent has the
reasoning capacities required by modal epistemic logic. We cannot build artificial
agents that possess the reasoning power described by normal modal systems. Thus,
modal epistemic logic cannot be interpreted as describing what agents actually know.

To save modal logic as logic of knowledge, a new interpretation of epistemic logic
has been proposed: the concept of implicit knowledge is invented, and modal epistemic
logic is now interpreted as describing this concept. That is, epistemic logic is not taken
as describing what an agent actually knows, but only what is implicitly represented in
his information state, i.e., what logically follows from his actual knowledge. What an
agent actually knows is called his explicit knowledge.

In the following I review briefly the modal approach to epistemic logic. (An overview
of basic modal logic is contained in appendix A.) I shall argue that that approach
cannot serve as an adequate foundation for agent theories, because modal epistemic

7
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logic cannot account for the concept of explicit knowledge, but only explicit knowledge
can constitute a cognitive state which can play a certain justificatory role for agents’
action.

2.1 The “received view”: modal epistemic logic

Among all approaches to epistemic logic that have been proposed, the modal approach
has been the most widely used for modeling knowledge. An important reason for
the popularity of that approach is its simplicity: systems of modal logic are given an
epistemic interpretation, and the main technical results about epistemic logic can be
obtained almost automatically. To interpret modal logic epistemically one reads modal
formulae as epistemic statements expressing the attitude of certain agents towards
certain sentences, and the semantics for modal logic is also given a new interpretation.

The interpretation of modal axioms as axioms for knowledge are not without diffi-
culties. If we follow the ordinary usage of the word “knowledge” then that interpreta-
tion is certainly wrong. For example, consider the modal formula OaAD(a — §) — Op.
If interpreted epistemically, it says that if an agent knows the two premises of modus
ponens then he also knows the conclusion. This is clearly too strong: there may be
sentences « and (8 such that an agent knows both a and a — 8 and yet fails to know
(. In general, from some epistemic statements one cannot deduce any other epistemic
statement. Given the information that an agent’s knowledge includes a set I' of sen-
tences, in reality we can never infer reliably that the agent knows a sentence from the
deductive closure Cn(T") of " with respect to a deductive system Cn (except for those
already in I'), even if we suppose Cn to be very weak (but not degenerate in the sense
that Cn(T") = T'.) This point has led many people to raise the question if epistemic
logic is possible at all, or do we have to leave the realm of logic when reasoning about
knowledge and belief ([Hoc72], [Bar89].)

Given the mentioned difficulty, how can we make epistemic logic possible? The
answer is idealization. One restricts attention on the class of rational agents, where
rationality is defined by certain postulates: agents have to satisfy at least some condi-
tions to qualify as rational. For example, such a condition may read: “If an agent is
rational then he should know the laws of logic, therefore, if he knows « and (o — ),
he should be able to use modus ponens to infer 3”. Those “rationality postulates” for
knowledge show a striking similarity with the laws of modal logic, so we may attempt
to interpret the necessity operator in modal axioms as knowledge operator and try to
justify them as axioms for knowledge. A systematic way to justify epistemic axioms is
by way of semantics: one tries to find a plausible epistemic interpretation of a semantics
for modal logic. Such an interpretation of the possible worlds semantics was proposed
by Hintikka ([Hin62]) and adopted widely hence.

2.1.1 The language of epistemic logic

Suppose that we have a group consisting of N agents. Then we augment the language
of propositional logic by N knowledge operators Ki,..., Ky (one for each agent), and
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form formulae in the obvious way. A statement like K« is read “agent 1 knows o”'.

The state that agent 1 knows that agent 2 knows « is formalized by K; Koa. A formula
like K1 A Ki(a — ) — K, is interpreted: “if agent 1 knows « and o — [ then he
knows (7.

Formally, the language L% of modal epistemic logic is defined as follows:

Definition 1 (The language of epistemic logic) Let Atom be a nonempty, count-
able set of atomic formulae and Agent = {1,..., N} a set of agents. LK is the least
set such that

1. Atomgﬁﬁ
2. If a € LK then ~a € LK
3. f a € LK and B € L then (a — B) € L

4. If a € £X and i € Agt then K;a € LK

The modal depth of a formula is defined by the following conditions: depth(¢$) = 0
for all ¢ € Atom; depth(—«a) = depth(a); depth(a — ) = max(depth(c),depth(f));
and depth(K;a) = depth(a) + 1.

2.1.2 Axioms for modal epistemic logic

A modal epistemic logic for N agents is obtained by joining together N modal logics,
one for each agent. For simplicity’s sake it is usually assumed that the agents are
homogeneous, i.e., they can be described by the same logic. So an epistemic logic for
N agents consists of N copies of a certain modal logic. Such a system is denoted by
the same name as the modal system, but with the subscript IV, e.g., Ky is the logic
consisting of N copies of the logic K.

Definition 2 (Modal epistemic logic Ky) Ky is the modal epistemic logic speci-
fied by the following axioms and rules of inference (where i =1,...,N):

(PC) All propositional tautologies
(K) KiaNKi(a — B) = K;8
(MP) Modus ponens: from o and a — f to infer 3

(NEC) From «a to infer K;a

Stronger logics can be obtained by adding additional principles, which express the
desirable properties of the concept of knowledge, to the basic system K. The following
properties are often considered:

1The truth values of epistemic statements also depend on other parameters such as time, location,
context. However, it is a common practice in epistemic logic to take only agents into consideration and
to assume certain standard values for the other parameters, i.e., the sentences are interpreted relative
to the “current” situation. If only one agent is considered then even the reference to the agent is
omitted.
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(T) Kia = «

(D) Kia = —-K;~«a
(4) Kia = K;K;«
(5) ~K;a - K;—-K;«

The formula (T) states that knowledge must be true. One normally takes this
property to be the major one distinguishing knowledge from belief: you can have
false beliefs, but you cannot know something that is not true. For that reason (T) is
sometimes called the Knowledge Axiom or the Truth Axiom (for knowledge). Systems
containing the schema (T) (such as S4) and S5y ) are then called logics of knowledge,
and logics without the schema (T) are called logics of belief.?

The property (D), occasionally called the Consistency Axiom, requires that agents
be consistent in their knowledge: they do not know both a formula and its negation.
Often the formula —K;(a A =) is used instead of (D). These two formulae are equiv-
alent in all logics containing K;a A K;8 <> K;(a A f3), in particular in all normal modal
systems. Generally, (D) is a weaker condition than (T).

The properties (4) and (5) are called positive and negative introspection axioms,
respectively. They say that an agent is aware of what he knows and what he does
not know. Their converses, i.e., the formulae K;K;a — K;a and K;-K;a — - K;a,
are instances of the schema (T). Taking (4) and (5) together with their converses we
have K;K;a < K;a and K;—~K;a <> = K;a, which allow to reduce multiple knowledge
operators to a single (positive or negative) knowledge operator.

The commonly used epistemic logics are specified as follows:

e Ty is Ky plus (T)

e Sd4y is Ty plus (4)

S5y is S4x plus (5)

KDN is KN plus (D)
e KD4y is KDy plus (4)
e KD45y is KD4y plus (5)

That is, the logics KDy, KD4y and KD45y are obtained by substituting the
axiom schema (D) for (T) in the axiomatization of Ty, S4n5 and S5x respectively.

It is easily verified that the following inference rules are valid for Ky and its normal
extensions:

(NEC) From « to infer K;« (Necessitation)

(MON) From a — f to infer K;a — K;3 (Monotony)

21t should be noted, however, that in AI terminology, no sharp distinction between knowledge and
belief as in philosophy is made: knowledge is not required to be true. Unless stated otherwise I shall
follow this terminology and use the term “knowledge” in the wider sense.
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(CGR) From a «+ f to infer K;a <> K; (Congruence)

(RK,) From oy A... Aoy, — (B to infer K;a1 A ... A Ko, — K3, for all n € w

2.1.3 Possible-worlds semantics for epistemic logic

The intuitive idea behind the possible worlds approach is that an agent can build
different models of the world using some suitable language. He usually does not know
exactly which one of the models is the right model of the world. However, he does not
consider all these models equally possible. Some world models are incompatible with
his current information state, so he can exclude these incompatible models from the set
of his possible world models. Only a subset of the set of all (logically) possible models
are considered possible by the agent. For example, an agent possesses the information
that he is 30 years old. Then among the models of the world he will not consider
possible all those models in which he is not 30 years old. The smaller the set of worlds
an agent considers possible, the smaller his uncertainty, and the more he knows.

The set of worlds considered possible by an agent ¢ depends on the “actual world”,
or the agent’s actual state of information. This dependency can be captured formally
by introducing a binary relation, say R;, on the set of possible worlds (read possible
models of the world.) To express the idea that for agent 7, the world ¢ is compatible
with her information state when he is in the world s, we require that the relation R;
holds between s and t. One says that ¢ is an epistemic alternative to s (for agent 7).
If a sentence « is true in all worlds which agent ¢ considers possible then we say that
this agent knows a. Formally, the concept of models is defined as follows:

Definition 3 A model M for the language L5 comprises a nonempty set S of possible
worlds (or states), N binary relations Ri,...,Ry on S (one for each agent), and
a valuation function V' : Atom — Pow(S). The satisfaction relation |= is defined
recursively on £LX as follows:

o M,s = ¢ iff s € V(¢), for all atomic formulae ¢ € Atom

o M,s|=—aiff M,s [~ a, ie., it is not the case that M, s | «
e M,sFa—pit M,slFaor M,sl=p0

o M,s = Kia iff for all t € S, sR;t implies M, = «

The relations Ry, ..., Ry are called relations of epistemic alternativeness, or acces-
sibility relations. A formula « is said to be valid with respect to a class of models if
for each model M in that class and each world s € S we have that M, s |= a.

We can easily check that according to definition 3, if a1 A... Aa, — [ is valid
then so is K;a1 A ... A K;ap, — K;f, for all i € Agent and all natural numbers n =
0,1,2,.... These rules can be interpreted as saying that any agent i’s knowledge is
closed under logical laws: whenever 7 knows all premises of a valid inference rule then
he also knows the conclusion.

If we restrict the class of models by imposing appropriate conditions on the epis-
temic alternativeness relations R;’s then we get larger classes of valid formulae and
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may obtain characteristic models for extensions of Ky. The well-known results for
modal logic can be transferred to epistemic logic without any difficulty. The following
theorem summarizes some completeness and decidability results for modal epistemic
logic (cf. [Che80], [HCY96], [Gol87], [HM92], [FHMV95]).

Theorem 4 1. Ky is determined by the class of all models with N accessibility
relations.

2. Ty is determined by the class of models with N reflexive accessibility relations.

3. S4y is determined by the class of models with N reflexive and transitive acces-
sibility relations.

4. S5y is sound and complete wrt the class of models with NV equivalence relations
as accessibility relations.

5. KDy is determined by the class of models with N serial accessibility relations.

6. KD4y is determined by the class of models where the N accessibility relations
are serial and transitive.

7. KD45y is sound and complete wrt the class of models where the N accessibility
relations are serial, transitive, and Euclidean.

8. Ky, Tn, S4y, S5y, KDy, KD4 )y, and KD45y are all decidable.

The logic S5, is considered by many researchers as the standard logic of rational
knowledge, and KD45y as the standard belief logic. It is generally accepted that nega-
tive introspection is a more demanding condition than positive introspection. Therefore
many researchers argue that it is more reasonable to adopt S4,, rather than S5y, as
the logic of knowledge.

2.2 Adding common knowledge

Using the language LK it is possible to express that some agent knows a certain fact,
or an agent knows that another agent knows that he knows some fact, and so on.
However, for a number of situations this language is not expressive enough: the state
of knowledge in certain situations can only be described by an infinite number of
iterations: everyone (in a group) knows simultaneously a fact «, everyone knows that
everyone knows «, everyone knows that everyone knows that everyone knows «, and
so on. In such a case we say that « is common knowledge among the group.

Common knowledge turns out to be a crucial concept in in explaining the rationality
of certain actions, namely those co-operative enterprises such as conventional social
practices, including language. It was first studied by David Lewis in the context of
convention ([Lew69]), who observes that in order for something to be a convention, it
must be common knowledge in the group. The notion has subsequently been applied
to the analysis of language and discourse understanding ([Sch72], [CM81]), of games
([Aum?76], [Gea92]), and of distributed systems ([Hal87]).
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Current theories of intelligent agents usually take an agent-centric viewpoint, i.e.,
agents are viewed from the perspective of the designer of a single agent. Therefore,
individual knowledge is of far greater interest than common knowledge. Nevertheless,
the concept of common knowledge is of interest because it raises problems about the
complexity of cognitive states which we can sensibly attribute to each other.

Although we could define common knowledge for each nonempty subset of the set
Agt of agents, for simplicity we consider only common knowledge of the whole group.
The language L of epistemic logic with common knowledge is obtained by adding a
new operator C to the language L‘,% . The formula C« is interpreted as: “« is common
knowledge of the agents”. Formally, L{¥ is defined as follows:

Definition 5 (The language of epistemic logic with common knowledge) Let
Atom be a set of atomic formulae and Agent a set of agents as defined in Definition 1.
L§K is the least set such that

1. Atom C L§K

2. If a € LK then —a € LGK

If « € LG and B € LK then (o — B) € LK
If a € L§K and i € Agt then K;a € LK

Ifae E%K then Ca € E%K

ook

The auxiliary operator E (to be interpreted as “everyone knows”) is defined as:

Ea =def KiaN...NKya

Logics of common knowledge can be axiomatized on the basis of the corresponding
epistemic logics by adding suitable axiom schemata and inference rules. The following
axiomatization is due to Halpern and Moses ([HM92]).

Definition 6 (Systems of epistemic logic with common knowledge) Let A be
one of the logics Ky, Ty, S4n, S5n, KDy, KD4y and KD45y. Then A€ is the
logic obtained by adding to A the following axiom postulates:

(FP) Ca — E(a A Ca) (Fixpoint axiom)
(RI) From a — E(a A () infer @« — C (Rule of Induction)

Various other axiomatizations exist, e.g., by Kraus and Lehmann ([KL88]), Lismont
([Lis93]), Lismont and Mongin ([LM94]), and Bonanno ([Bon96]).

Logics of common knowledge can be given an adequate possible worlds semantics
(cf., e.g., [KL88], [HM92], [FHMV95]). As in definition 3, each knowledge operator is
interpreted by means of a binary relation on the set of possible worlds. An additional
alternativeness relation is introduced to interpret the common knowledge operator. To
capture the relationship of individual and common knowledge, it is stipulated that the
relation corresponding to the common knowledge operator is the transitive closure of
the union of the accessibility relations which correspond to the knowledge operators.
Formally:
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Definition 7 A model for the language £{X with N agents is a structure M =
(S,R1,...,RN,R",V) where S is a nonempty set, Ry,..., Ry, R" are binary relations
on S such that R = (R U...URy)",and V is a valuation function V : Atom —
Pow(S). The satisfaction relation = is defined recursively as follows:

M,s = ¢ iff s € V(¢), for all atomic formulae ¢ € Atom

M,s = —a iff M,s [~ a, ie., it is not the case that M,s = «

M,sEa—pit M,st-aor M,s ES
e M,s = K;a iff for all t € S, sR;t implies M,t = «
o M,s | Caiff sR*t implies M,t = «

A model is said to have a certain property if the accessibility relations Ry,..., Ry
have that property. (Note that R* needs not necessarily have that property.) The
following theorem ([FHMV95]) lists some well-known completeness results about logics
of common knowledge.

Theorem 8 1. K is determined by the class of all models.
2. T% is determined by the class of reflexive models.
3. 84§ is determined by the class of reflexive and transitive models.

4. S5% is determined by the class of reflexive, transitive and symmetric models (i.e.,
Ry,..., Ry are equivalence relations.)

5. KDY is determined by the class of serial models.
6. KDA4Y is determined by the class of serial and transitive models.

7. KD45% is determined by the class of serial, transitive, and Euclidean models.

2.3 Epistemic logic and agent theories

Relating an agent’s beliefs and desires to its action has been one of the major challenges
to practical reasoning, i.e., reasoning that we use to decide what to do. Practical
reasoning has long been a field of philosophical studies. Examples include the study of
various forms of the so-called practical syllogism:

z wants B
z knows that doing A leads to B
Therefore x does A

The logical analysis of practical reasoning was pioneered by G. H. von Wright
([vW63], [vWT72]). Since the 1980s, Al research has seen a revival of interest in theories
of knowledge and action. The relationship between knowledge and action are being
investigated intensively in the field of intelligent agents research, and a number of
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sophisticated theories have been proposed for describing this relationship. In this
section I will examine briefly the role that the epistemic concepts play in some of
the more influential agent theories. For an overview of recent agent theories consult
[WJ95].

Modern theories of knowledge and action are built up from some basic mental,
i.e., informational and motivational attitudes (like knowledge, belief, goal, intention),
together with some “objective” modalities (like time, possibility, chance). By far, the
latter concepts are much less controversial than the former ones. Formal theories of
these “objective” modalities can be developed independently on any theory of mental
concepts, but the converse is not necessarily true. For example, systems of modal or
temporal logic do not presume any logic of mental notions, but a theory of intention
is typically developed on the basis of some temporal logic.

As to the mental attitudes, there is no agreement about the choice of the set of
the primitive notions. However, the informational aspect seems so fundamental that
it is agreed that knowledge (in the sense of know-that) cannot be defined in terms
of others and should be included as one of the basic concepts. On the other hand,
the concept of knowledge is essential in theories of other mental notions like intention,
know-how, or even desire and goal. For example, know-how is normally defined in
terms of knowledge: knowing how to achieve a goal includes the knowledge that after
doing something, certain facts will obtain.

The first formalizations of knowledge and action in AI was carried out in the late
1970s and early 1980s. The primary interest was to study knowledge as pre-condition
for executing plans. Inspired by ideas of McCarthy and Hayes ([MH69]), Robert Moore
developed a formal theory of knowledge which is essentially modal logic S4, but ex-
pressed in the first-order metatheory ([Mo0090)).

More recently, Cohen and Levesque’s theory of intention ([CL90]) has been very
influential. Following Bratman’s analysis of intention and the role that intentions play
in human practical reasoning ([Bra87], [BIP88]), Cohen and Levesque identify the key
properties that must be satisfied by a reasonable theory of intention. They develop
a formal theory based on two primitive mental notions: belief and goal. The logic of
belief is assumed to be the modal system KD45, and that of goal KD. Together with
two (temporal) modalities indicating that some event will happen next and some event
has just happened, they are able to define the concept of intention and to show that
many of Bratman’s requirements for a theory of intention are satisfied.

In another attempt to formalize Bratman’s theory of intention, Rao and Georgeff
([RGI1Db], [RGI1a]) have developed a logical framework for agent theory based on three
primitives: belief, desire, and intention. Within this BDI (Belief - Desire - Intention)
architecture, belief is treated as a basic modality which satisfies the KD45 axioms.
Desire and intention are assumed to be KD-modalities. The BDI architecture has
been adopted and further developed subsequently by a number of researchers ([GR95],
[Sin94], [Sin95], [W0096]).

In related work to formalize properties of intelligent agents, Meyer et. al. have
proposed the KARO (Knowledge - Abilities - Results - Opportunities) architecture
([vdHvLM94], [vLvdHM94]). In this architecture, KD45 is assumed as the logic of
belief, and S5 is used to formalize knowledge.
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Although not strictly a logic-based theory of agency, the AOP (Agent oriented pro-
gramming) paradigm ([Sho93]) also deals with the behavior of rational agents. Again,
belief is taken as one basic mental concept and is formalized using the modal logic
KD45. Moreover, belief is also used to characterize commitment (or obligation), an-
other basic mental concept: besides the KD-axioms, the concept of commitment must
also satisfy some additional rationality postulates, which basically say that commit-
ments are known.

To summarize, the most influential among the recent agent theories are developed
on the basis of modal epistemic logic. Now I shall argue that the modal approach is
not suitable because it does not yield specifications of cognitive states which can play
a justificatory role for agents’ action. The agent model provided by modal epistemic
logic does not accord with generally agreed facts about the nature of intelligent agents,
in particular with the fact that they are limited in the amount and complexity of the
information they can handle.

2.4 The problem of logical omniscience

The treatment of epistemic logic as a branch of modal logic brings some advantages.
However, there is a high price to pay. The most important objection to the modal
approach is that it makes unrealistic assumptions about the reasoning power of the
agents. The problem is known as the “logical omniscience problem” (LOP) and occurs
in several forms. In its strongest form the problem can be stated as follows:

Lemma 9 Let A be any normal modal logic containing K. For any I' C £L¥, a € £,
and ¢ € Agent, if T' -5 « then K;(T') Fo Ko, where K;(I') =ge5 {K;y: v € T}

That is, whenever an agent knows all of the formulae in a set I and « follows logi-
cally from I, then the agent also knows a. In particular, the agent knows all theorems
(taking ' in lemma 9 to be the empty set), and he knows all logical consequences of a
sentence that he knows (taking I" to consist of a single sentence.)

Besides this strong form there are other, generally weaker forms of logical omni-
science. The following are listed in [FHMV95]:

e Knowledge of valid formulae: agent i knows all logical truths (rule (NEC)).

e Closure under logical implication: if agent ¢ knows « and if « logically implies
(i.e., a — [ is valid), then agent 7 knows 3 (rule (MON)).

e Closure under logical equivalence: if agent ¢ knows « and if @ and 3 are logically
equivalent (i.e., a <> (8 is valid), then agent 7 knows g (rule (CGR)).

e Closure under material implication: if agent ¢ knows a and if agent ¢ knows
a — (3 then agent i knows (§ (axiom (K)).

e Closure under conjunction: if agent ¢ knows « and if agent ¢ knows § then agent
i knows a A B (axiom (C)).
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The list of questionable properties could be extended to include any other instance
of the rule (RK,) (from a1 A ... A a, — B to infer K;a1 A ... A Ko, — K;3.) More-
over, the axiom schemata (D), (4) and (5) can also be shown to be too strong for
realistic agents. In particular, under certain circumstances axiom (5) suggests that
agents can even decide undecidable problems ([BS92], [SW94])! In general, there seems
to be no genuine epistemic principle that may claim universal validity?.

If epistemic logic is to be interpreted as describing actual knowledge of realistic
(though idealized) agents, then the discussed closure properties require agents to be
very powerful reasoners whose computational capacities cannot be achieved by real
(human or artificial) agents, who are simply not logically omniscient. Logical omni-
science poses a problem because it contradicts the fact that agents are limited in their
reasoning powers. They are inherently resource-bounded and therefore cannot han-
dle an unlimited amount of information. Agents may establish immediately certain
logical truths or simple consequences of what they consciously assented to. However,
there are highly remote dispositional states which could only be established by com-
plex, time-consuming reasoning. The modal framework cannot distinguish between
a sentence that an agent consciously assented to and a piece of potential knowledge
which could never be made actual by the agent and is therefore not suited to model
resource-bounded reasoning®.

2.4.1 Implicit knowledge

The LOP shows that the view that modal epistemic logic describes actual knowledge of
idealized agents is not tenable. A certain degree of idealization is meaningful and even
necessary in philosophical and scientific research. However, the idealizations made by
modal epistemic logic are so strong that the agents they describe have hardly anything
in common with real agents. Those “agents” are merely theoretical constructs without
any empirical basis. Hence, the modal approach is not suited to capturing the notion
of actual knowledge (or belief) adequately.

But if modal epistemic logics do not describe what agents actually know, what do
they describe then? Well, they can be interpreted as logics of a related, but different
concept. It is remarked by several authors that the laws of modal systems are acceptable
if the formula K;« is read “agent i knows « implicitly” ([Lev84], [FH88],) “«a follows
from 7’s knowledge” ([FHMV95]), “agent i carries the information o” ([Bar89]), or “a
is agent ¢’s possible knowledge” ([HK91]), instead of “the agent 7 knows «”. Although
the technical definitions may differ, “implicit knowledge” and similar terms are all
used in the same spirit: they refer to what is implicitly represented in an agent’s

3Some formulae containing the knowledge operators are always valid, but they are not genuine
epistemic statements: a formula like K;a — K;a does not say anything about an agent’s reasoning
capacities. Counterexamples to the commonly assumed epistemic closure principles are presented in
[Len78], [Hal95], among others.

*If the possible-worlds semantics is adapted for modeling motivational concepts such as goals, de-
sires, or intentions, then the resulting logics suffer from a similar problem: if an agent intends to do
something then he intends all logical consequences of his intention. This is not a desirable property:
one might intends to go to the dentist without having an intention of suffering pain, although the
latter is a necessary consequence of the former. This problem is known as the side-effect problem (cf.
[Bra90]).
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information state, i.e., what logically follows from his actual knowledge. They describe
dispositional states which could only be established by reasoning and reflection upon
one’s mental states. The concept of implicit knowledge is used without any notion of
agents computing knowledge or having to answer questions based on their knowledge.
What an agent actually knows is called his explicit knowledge.

If “knowledge” is understood as “implicit knowledge”, then the forms of logical om-
niscience discussed previously are no longer a problem: although the discussed axioms
and inference rules are not reasonable for the explicit view, they are acceptable for the
implicit view of knowledge. Thus, modal epistemic logics seem to be acceptable for the
purpose of formalizing the concept of implicit knowledge. They should be interpreted
as logics of implicit, or potential knowledge, and not as logics of explicit, or actual
knowledge.

From the viewpoint of agent theories, actual (explicit) knowledge is clearly more
important than implicit knowledge: it is the former kind of knowledge that agents can
act upon, but not the latter. The mere implicit knowledge that some path connecting
all towns in a region is the shortest one is useless for a traveling salesman who seeks to
maximize his profit — he must make this implicit knowledge explicit in order to choose
what path to travel. The implicit, but not explicit knowledge of a winning strategy
is useless for a chess player who must make the next move within a short time. An
information agent whose knowledge is represented as a knowledge base must normally
make complex and time-consuming inferences before he can answer a query.

Since agents need to act on the basis what they actually know, and not what they
merely potentially know, agent theories must be based on logics that can capture what
agents actually know. Because of the importance of explicit knowledge for agents’
action, the search for logics of explicit knowledge has been continuing, and a number
of systems have been proposed for that purpose. In the next chapter I shall review
the most important attempts to model explicit knowledge and show why they are not
suitable as a basis for agent theories.



Chapter 3

Other models of knowledge

Any adequate theory of agency must be able to describe explicit knowledge correctly,
because this is the concept of knowledge that can provide justification and explanation
for action. What an agent chooses to do depends on his explicit, and not on his implicit
knowledge. As I have argued in the last chapter, any theory of explicit knowledge must
avoid logical omniscience. Because modal epistemic logic cannot characterize explicit
knowledge, a number of alternative approaches have been proposed.

In this chapter I shall examine some of the more prominent attempts to develop
logics for explicit knowledge of non-omniscient agents. I shall show that although the
existing approaches to explicit knowledge can solve the logical omniscience problem,
they are not suited to characterizing the information states of agents. In order to be
useful, a logic of explicit knowledge must satisfy some additional conditions besides
the lack of omniscience. This explains why all influential agent theories use modal
epistemic logics for formalizing the informational aspect of agents, although the modal
approach does not capture the explicit notion of knowledge adequately.

3.1 Logics for non-omniscient agents

The lack of logical omniscience can stem from various sources. An agent may not be
aware of a sentence and therefore does not know it. He may be restricted in his logical
capabilities and does not know all the axioms and inference rules. Or he may be biased
and refuses to use certain rules of inference. It is also possible that an agent does
not care about the consequences of a sentence, so he does not even try to compute
them. However, the most important source of non-omniscience is the agents’ resource
boundedness: they simply do not have enough computational capacities (time, memory
etc.) to compute all the consequences of their knowledge, even if all inference rules are
available. It is not difficult to supply an agent with a sound and complete deduction
mechanism, especially in the context of artificial intelligent agents. Such agents are
not omniscient simply because they are resource bounded.

By exploiting the different sources of non-omniscience it can be possible to model
non-omniscient agents. For example, by demanding that knowledge include awareness
one can describe agents who are not logically omniscient because they are not aware
of some formulae. By restricting the set of admissible inference rules that can be
used by agents one can model agents who are not able to or refuse to use certain
inference rules. Another way to develop a model of knowledge and belief based on the
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resource-bounded inferential capabilities of agents is to stipulate that the agents can
only compute formulae whose derivations require at most n inference steps, for some
fixed value of n.

3.1.1 Weak deduction mechanisms

The obvious strategy to solve the logical omniscience problem is to weaken epistemic
logic. One denies the universal validity of the mentioned inference rules (NEC),
(MON), and (CGR), or one of the essential axioms like (K). In fact, almost all
attempts to solve the LOP have in common that they consider (families of) systems
that are weaker than the standard modal epistemic logics in the following sense. Firstly,
not all theorems of modal epistemic logic are provable in those systems. Secondly, the
set of formulae known by an agent at a state is not necessarily closed under the laws

of the propositional calculus: a formula 8 may be provable from «q,...,a, by using
axioms and inference rules of the propositional calculus, but K;8 cannot be derived
from K;aq, ..., K;a, within the epistemic logic under consideration.

To construct such weak systems we can postulate, for example, that the agent
only knows some “obvious” logical truths, but not necessarily the “more complicated”
ones. We can assume that the agent can draw all “obvious” consequences, but not any
arbitrary consequence of a certain sentence. This is achieved by postulating that the
deduction mechanism of the agents is not complete, that is, it is not powerful enough to
allow the agents to draw all logical consequences of their knowledge ([Hin70], [Ebe74],
[Ste84], [Kon86], [Wut91], [GGI3]). If an agent’s inference mechanism is kept very
weak, then logical omniscience could be avoided.

Certain systems of modal logic are able to characterize agents whose inference
mechanisms are weaker than propositional consequence. For example, non-normal
systems can be used for describing an agent who does not know all logical truths, and
non-monotonic modal logics can model agents whose knowledge is not closed under
logical consequence'. If a very weak modal logic (e.g., a classical system) is employed
to model knowledge, then most versions of the LOP are solved: neither the necessitation
rule (NEC), nor the monotony rule (MON), nor the axiom schema (K) is valid in a
weak classical system. However, some weaker versions of the LOP still remain unsolved.
All classical modal logics are closed under the congruence rule (CGR), so an agent
described by such a modal system knows all logical equivalences of a sentence that he
knows. Such a closure property is obviously too strong for real agents.

Another group of attempts to gain control over the LOP is to consider nonstandard
logics to model agents’ reasoning. The intuitive idea is as follows. Modal epistemic
logic assumes that agents use classical logic (or more accurately, some extension of
classical logic) in their reasoning. This causes logical omniscience because the notion
of logical consequence defined by classical logic is too powerful, i.e., too much can
be inferred from some base of knowledge. In particular, all tautologies are known

!Normal modal logics are systems which are closed under the (knowledge) necessitation rule (NEC),
and monotonic modal logics are closed under the monotony rule (MON). In the context of modal logic,
the term “monotonic” means that the rule (MON) holds. This usage should not be confused with the
terminology of non-monotonic reasoning research. Consult appendix A for a brief overview of modal
systems weaker than the minimal normal modal logic K.
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because classical logic allows to derive them from the empty set. Hence, if the notion
of logical consequence is restricted so that not all classical consequences can be drawn
then certain forms of omniscience can be avoided. Such a restriction can be achieved
by employing a nonstandard logic. Among the non-classical logics that have been
employed for that purpose are several variants of relevance logic ([Lev84], [FHV95])
and many-valued logics ([Ho93]).

Although the approaches based on nonstandard logics solve certain forms of the
LOP, they cannot eliminate the LOP completely. The agents described by those log-
ics are not logically omniscient wrt classical logic, but they are omniscient wrt to
some (nontrivial) non-classical logic. Such attempts cannot be considered satisfactory
solutions to the LOP. Consequently, they are not suitable for characterizing explicit
knowledge. In general, any logic that cannot model what is explicitly available to the
agents but only information that must be inferred using some — possibly incomplete
— deduction mechanism must be viewed as a logic of implicit knowledge?.

3.1.2 Impossible possible worlds

A number of systems have been proposed which assume still more restricted reasoning
capacities of the agents and in this way avoid all forms of logical omniscience. One
framework that eliminates logical omniscience completely is the so-called impossible-
worlds approach. Logical omniscience can be avoided if one allow “impossible possible
worlds” in which the valuation of the sentences of the language is arbitrary. In other
words, the logical laws do not hold in the “impossible possible worlds” ([Cre70], [Cre73],
[Hin75], [Ste79], [Ran82], [Wan90)).

The intuition underlying the introduction of impossible worlds is that an agent may
regard some models of the (real) world possible, although they are logically impossible.
For example, a logical contradiction cannot be true. However, an agent may not
have enough resources to determine the truth value of that contradiction and simply
assumes it to be true. So he will consider some worlds possible, although logically they
are impossible.

Definition 10 (Impossible-worlds structures) An impossible-worlds model for the
language L% is a tuple M = (S, W, Ry, ...,Rn,V) where S is a nonempty set (the set
of worlds), W C S is the set of possible worlds (elements of S\ W are called impossible
worlds), Ry, ..., Ry are binary relations on S, and V : L§ x S~ {1,0} is a function
that assigns arbitrary truth values to formulae of the language £X in impossible worlds
which behaves standardly on possible worlds, i.e., if s € W then:

o V(na,s) =1iff V(e,s) =0
o Ve — f,5) =1iff V(a,s) =00r V(8,s) =1
o V(K,a,s) =1iff V(a,t) =1 for all ¢t € S such that sR;t.

2Strictly speaking, Levesque’s logic of “explicit” belief ([Lev84]) still describes a kind of implicit
belief, because what is defined to be explicit belief of an agent in that model is not immediately
available to the agent. The same criticism applies to other models which intend to model explicit belief
but still fall prey to some form of logical omniscience, e.g., Konolige’s deduction model [Kon86], or the
notion of algorithmic knowledge of Halpern et. al. ((HMV94)]).
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Satisfaction is defined as: M, s = a iff V(«, s) = 1. Validity is defined with respect
to possible worlds only: « is valid wrt impossible-worlds models iff for each impossible-
worlds model M and possible world s € W we have M, s = a.

Because knowledge is evaluated with respect to all states and the laws of logic do
not hold in some states, all forms of logical omniscience are avoided. For instance, the
tautology a V —a may be false in an impossible world, but an agent may consider that
world possible, so K;(a V —a) does not hold universally. In other words, the necessita-
tion rule is not valid. Similarly, axiom (K) (closure under material implication) fails
to hold, because it is possible that in an impossible world both formulae & and o — 3
are true while g is false.

The logic determined by the class of all impossible-worlds models is rather un-
interesting, because no genuine epistemic statement is universally valid. Epistemic
principles can be obtained by imposing appropriate conditions on the models. For
example, axiom (K) is valid if for every impossible world, if the value 1 is assigned to
both @ and a@ — g then it must be assigned to the formula § as well.

3.1.3 Awareness

Another solution to the LOP consists in introducing a new operator of awareness into
the language and to require that belief include awareness ([FH88].) The underlying
intuition is that agents need to be aware of some concept before they can have beliefs
about it: one cannot know something one is completely unaware of. On the other hand,
if an agent is aware of a formula « and implicitly knows «, then he knows « explicitly.
The notion of awareness is left unspecified. Some possible interpretations of “agent i
is aware of o” are: “i is familiar with all the propositions mentioned in «”, “; is able
to figure out the truth of o”, or “¢ is able to compute the truth of o within time 7'.”

For better comparison with other approaches, my presentation of the awareness
framework will not follow the original definition ([FH88]) in details. The main intu-
itions are retained, however. In particular, there are no modal operators for implicit
knowledge and awareness. The knowledge operators of the language LK are now in-
terpreted as explicit knowledge and will be evaluated accordingly in the definition of
models.

Definition 11 (Awareness structures) An awareness model for the language £ is
atuple M = (S,Ry,...,Rn,A1,..., AN, V) where M = (S, R1,...,Ry,V) is a Kripke
model in the sense of definition 3, and A; : S — Pow(L%) is a function associating a
set of formulae with each state, wherei = 1,..., N. The semantics for atomic formulae,
negations, and implications is as usual (cf. definition 3.) The clause for formulae of the
form Ko becomes:

e M,s | Kia iff a € A;j(s) and for all t € S, if sR;t then M,t | «

Intuitively, 4;(s) is the set of formulae that agent i is aware of at state s, and the
relations Ry,..., Ry are used to model implicit knowledge. The set of formulae that
an agent is aware of can be arbitrary and needs not be closed under any law. Moreover,
there is no relationship between (implicit) knowledge and awareness at all: the function
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A; and the relation R; are completely independent. Since explicit knowledge is defined
as implicit knowledge plus awareness, it is obvious that if an agent is aware of all
formulae of the language then explicit knowledge reduces to implicit knowledge.

Because it is possible that an agent is aware of some sentence but he is not aware
of its logical consequences or its equivalent sentences, the theorems and inference rules
of modal epistemic systems do not hold in general. So the forms of logical omniscience
discussed in chapter 2 are avoided.

That the awareness approach is able to model non-omniscient agents can be seen
in another way. We have seen earlier that the impossible-worlds approach avoids all
forms of logical omniscience. The following theorem shows that although the intuitions
are quite different, the impossible-worlds approach and the awareness approach are
equivalent in a precise sense (cf. [Wan90], [Thi93], [FHMV95]).

Theorem 12 e Let M = (S,W,Ry,...,Ry,V) be an impossible-worlds model.
Then there is an awareness model M’ = (W, R},..., Ry, A1,...,An,V’) such

that for any formula « of the language L5 and any s € W we have that M, s = «
it M sEa

e Let M = (S,Ry,...,Rn,A1,..., AN, V) be an awareness model. Then there
exists an impossible-worlds model M’ = (S’, S, R}, ..., R}y, V') such that for any

formula « of the language £X and any s € S we have that M, s = a iff M', s = «

As an immediate consequence of this theorem, the awareness framework also solves
all forms of the LOP: if an undesirable property can be falsified in an impossible-worlds
model, then it can also be falsified in an awareness model. In fact, it can be seen
easily that the set of LX-formulae which are valid wrt all awareness models consists of
exactly the instances of propositional tautologies. In other words, no genuine epistemic
statement is valid with respect to the class of all awareness models.

So far the concept of awareness has been left unspecified, so no meaningful restric-
tions can be placed on the set of formulae that an agent is aware of. Once a concrete
interpretation has been fixed, some closure properties can be added to the awareness
function to capture certain types of “awareness”.

For example, if we consider a computer program that never computes the truth of
a formula unless it has computed the truth of all its subformulae, then we may assume
that awareness is closed under subformulae, i.e., if @ € A;(s) and £ is a subformula of
a then 8 € A;(s). This assumption may seem innocuous at first, but it turns out to
have a rather strong impact on the properties of explicit knowledge. It can be shown
easily that if awareness is closed under subformulae then an agent’s knowledge is closed
under material implication, i.e., the schema (K) is valid. In general, whenever £ follows
logically from aj,...,a, and § is a subformula of one of a4,...,a,, then K;3 follows
from K;aq,..., K;a,, for any agent 1.

Another possible closure property for awareness is that agent might be aware of
only a subset X of the atomic formulae. In this case one could assume that A;(s)
consists of exactly those formulae that are built up from the atomic formulae in X.
Under this assumption some forms of logical omniscience are avoided, e.g., knowledge
of valid formulae or closure under logical implication. However, all forms of the LOP
occur again when attention is restricted to the sublanguage generated by X.
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3.2 Logical omniscience vs. logical ignorance

In the previous section several attempts to develop logics of explicit knowledge have
been reviewed. The proposed approaches try to avoid logical omniscience by consid-
ering agents with less deductive powers than those suggested by modal systems. By
weakening epistemic logic the LOP can be solved, at least to some extent, and an
agent’s explicit knowledge can be described more realistically. Weak epistemic logics
can be used to describe agents with very restricted reasoning capacities. In fact, many
of the discussed approaches can even model agents who know nothing (“total igno-
ramusses”), those who cannot draw even the most elementary inferences (“complete
idiots”), and those who believe nothing but contradictions (“ultimate fools”).

Those irrational agents are clearly not very interesting. To describe more intelligent
agents, the common way is to postulate axioms which describe the regularities of an
agent’s knowledge. Such axioms usually require that an agent’s belief set, i.e., the
set of formulae that he believes, is closed under certain logical laws. In this way
the intuitive idea that the agent under consideration is somehow rational could be
captured. The epistemic axioms are generally of the form: if all premises of a certain
valid inference rule are known, then the conclusion is known. (This is also the general
form of a theorem of a modal epistemic logic.) The more axioms are postulated, the
more rational is the agent. In this way subsystems of the logic Ky can be obtained
which do not suffer from the LOP and may describe agents more realistically than the
modal systems. So, existing logics of explicit knowledge typically contain a subset of
the axioms and rules for knowledge in the system Ky, while other rules are rejected.

The strategy of employing weak epistemic logics for describing explicit knowledge
can solve the logical omniscience problem, at least to some extent. However, other
serious problems arise. Here I shall not discuss in details the specific problems of the
various frameworks or try to solve them. I shall rather present a more fundamental
criticism of the strategy of weakening epistemic logic and discuss the problems which
arise when this strategy is pursued.

The use of subsystems of normal modal logics to describe explicit knowledge de-
pends on the following assumption. Although it normally takes some effort to make
a piece of implicit knowledge explicit, there are “obvious” logical consequences that
should be recognized easily by rational agents. Therefore, it may be supposed that an
agent’s knowledge set at a time is always closed under those principles, although it is
not closed under all logical laws. In other words, only closure properties corresponding
to the “simple” inferences are regarded valid. So, the task of developing logics of explicit
knowledge involves that of identifying “obvious” tautologies and logical inferences.

This assumption is far from plausible. However weak the epistemic postulates may
be, they may still be too strong, at least for some agents. Moreover, a single axiom
may seem innocuous, but joining it with other axioms may result in a rather powerful
deductive system — and if a sentence can only be deduced by means of a powerful
logic, then it is hardly justifiable to call it explicit knowledge. But even if the above
assumption is accepted, many problems remain to be solved.

The first challenge is to select a set of postulates for knowledge which may be
assumed to be valid for any rational agent. This is not at all an obvious choice. There
is no objective, generally accepted criterion for deciding which tautologies are obvious,



§3.2 Logical omniscience vs. logical ignorance 25

which inferences are simple. Many criteria for identifying obvious consequences could
be considered (and have been proposed). For example, one might maintain that obvious
tautologies should be provable in less than n steps, where n is a fairly small natural
number. One could restrict the modal depth of knowledge formulae to a small number.
One could also demand that only consequences that are built up from subformulae
of the premises can be drawn. However, none of these criteria is wholly convincing.
The proof length is not a suitable measure for the simplicity of a tautology because
it depends on the syntactical system being used. Many theorems have modal depth 1
and satisfy the subformulae condition, but they are still far from obvious, so neither
the modal depth nor the subformulae condition is an adequate criterion. Therefore it
is not possible to draw a sharp line between “simple rules” that should be usable by
all rational agents and “complicated inferences” which cannot be assumed to be valid.

Another challenge is to find an appropriate way for modeling non-omniscient agents
without making them logically ignorant. In order to account for the resource-boundedness
of agents, their reasoning powers must be kept reasonably weak. However, if the use
of certain inference rules is denied then the resulting logics may become too weak for
many applications. Surely, logical omniscience must be avoided. But at the same time
we are interested in having epistemic logics which are strong enough to allow sufficiently
many conclusions to be drawn from a given set of facts about an agent’s propositional
attitudes. To interact with other agents, an agent needs to make assumptions about
their rationality, and he should be able to assume that they are not logically ignorant.
We want to model agents who know at least a large class of logical truths, and can
draw sufficiently many conclusions from their knowledge.

The dilemma between logical omniscience and logical ignorance explains why modal
epistemic logics are still widely used in agent theories despite the facts that implicit
knowledge is useless when agents need to act and logics of explicit knowledge are readily
available. The existing logics of explicit knowledge are not suited to characterizing
agents because we want to model rational, intelligent agents, and not “complete idiots”.
They avoid logical omniscience, but they cannot offer anything what can account for the
rationality of agents. Surely agents are not perfectly rational, yet they are rational.
Facing the choice between “perfectly rational agents” and “complete idiots”, agent
theorists understandably opt for the former and use logics of implicit knowledge for
modeling their agents, hoping that such logics can describe “almost correctly” what
agents actually know.

The assumptions underlying the use of modal epistemic logics may be justified
in some simple domains (“small worlds”, “toy examples”), where the reasoning tasks
involved are quite simple, where the decision process is not very complex, or when the
time available is unlimited. In such simple domains, it can be assumed that whenever
an agent needs some (implicitly available) information, he can perform the necessary
inferences to have the information explicitly. However, such an assumption is not
justified in more complex applications. Agents normally have to act under tight time
constraints, their decisions what actions to be performed depend strongly on their
actual knowledge, and the reasoning needed for making correct choices can be very
complex and time-consuming. For example, calculating the shortest tour linking all
towns in a region, computing the winning strategy in chess, and inferring the answer
to a query from a given database are all very hard problems. It is obvious that modal
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epistemic logics and other logics of implicit knowledge cannot describe correctly what
agents actually know in such applications. To describe agents realistically in knowledge-
intensive applications, we simply need other logics of knowledge.

What properties should a logic of knowledge have if it is to be useful for describing
realistic, implementable agents? The first obvious requirement is that it must not
suffer from the LOP. That is, it must not make unrealistic assumptions about the
computational capabilities of agents. An epistemic principle can be regarded to be
realistic if it can be confirmed empirically. For our purposes we shall employ the
criterion that an agent can be implemented which constitute a model of the principle.
Because agents can only handle a limited amount of information, we shall deal with
agents whose explicit knowledge can be represented as a finite set of formulae and
whose reasoning mechanism contains a finite number of inference procedures. This
finiteness condition ensures that agents can be implemented.

Solving the LOP is necessary, but not sufficient for making a logic suitable for
reasoning about knowledge. There are other requirements that must be fulfilled. It
is important that the logic can do justice to the intuition that agents are rational:
although the agents do not automatically know all consequences of their knowledge,
they are in principle able to do so. Because of this rationality the agents are able to
act upon their knowledge: they can answer questions based on their knowledge, they
can plan their actions in advance, they can predict what other agents can and will do,
and so on. If a logic cannot account for the agents’ rationality, then there is hardly
any justification at all to call it a logic of knowledge.

Another important requirement is that the logic be expressive enough to formalize
“interesting” situations. This condition must remain somewhat vague, because different
applications will require different expressive powers of the logic. However, we should
keep in mind that the complexity of a logic generally increases with its expressive
power, so we must try to find a good trade-off between expressiveness and simplicity.

The next two chapters describe some ways to model agents which are neither logi-
cally omniscient nor logically ignorant. In chapter 4 I shall show how explicit knowledge
can be modeled without restricting the agents’ rationality arbitrarily by denying them
the use of certain inference rules. For modeling resource-bounded reasoning, what
should be restricted is not the number of admissible inference rules, but the number of
times they can be applied. I will show in chapter 5 how epistemic logic can be combined
with a complexity analysis to describe resource-bounded reasoning more accurately.



Chapter 4

Explicit knowledge

In the last chapter I have reviewed some prominent attempts to model the notion of
explicit knowledge and discussed their main problems. In my opinion, the existing
approaches fail to capture explicit knowledge adequately because they try to model
entailment relations where none exists, namely within the set of sentences known by an
agent at a single time point. Those attempts are doomed to failure because an agent’s
explicit knowledge at a time is simply not closed under logical laws and therefore cannot
be described by any nontrivial logic. Forcing regularities upon an agent’s explicit
knowledge to make reasoning about it possible is not the proper way to cope with the
difficulties.

In the following I shall suggest a new approach to reasoning about explicit knowl-
edge which overcomes the drawbacks of existing approaches. The idea is to consider
the evolution of one’s knowledge over time: at one moment an agent may or may not
know (explicitly) a certain consequence of his knowledge; however, he can perform
some reasoning steps to know it at some moment in the future. I have argued that the
traditional approaches fail to capture the concept of actual knowledge correctly because
they do not take the cost of inferring new information into account: they assume that
whenever an agent knows all premises of a valid inference rule then he automatically
knows the conclusion. I will argue that axioms for epistemic logics must have the form:
“if the agent knows all premises of a valid inference rule, and if he performs the correct
inference step, then he will know the conclusion”. In section 4.1 I shall discuss the
main intuitions of my approach. Then, in section 4.2 formal systems will be defined
and discussed.

4.1 The dynamics of knowledge

4.1.1 Explicit knowledge and reasoning actions

Let us consider an inference rule, say R. It can be a valid inference rule of classical
logic, or some other (non-classical) logic, for example, intuitionistic logic, conditional
logic or relevant logic. Assume that an agent accepts R as valid and he can use R.
What does it mean? In the modal approach we formalize this idea by an axiom saying
that the knowledge set of the agent is closed under this rule, that is, if all premises
of the rule are known then the conclusion of R is also known. However, as we noted
before, it is only true of implicit knowledge. In the context of explicit knowledge it

27
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must mean something different. It means rather that, if the agent knows all premises
of the rule, and if he perform the inference according to the rule R, then he will know
the conclusion. The agent does not know the conclusion automatically, but rather as
the result of some action, viz. the (mental) action of performing the corresponding
inference. If he does not perform this action, then we cannot require him to know the
conclusion, although this conclusion may seem to be an obvious consequences of the
sentences under consideration.

The same line of argumentation applies to logical axioms, which can be viewed
as inference rules without any premises. We cannot require an agent to know all
axioms automatically and permanently, he must rather carry out some action before
he can acquire knowledge of a certain axiom. Gaining knowledge of other, less obvious
theorems is even harder: agents usually need to perform more complex computations
in order to establish a theorem. Thus, it is possible that the agent knows all logical
truths, but merely in principle. This knowledge is only implicit. In reality he never
knows them all at once explicitly.

For formalizing the reasoning actions it is natural to use (a form of) dynamic logic
([Har84], [Gol87], [KT90]; see also appendix A for a brief overview.) We can add a set
of basic actions to the language of epistemic logic. The set of formulae now includes
formulae like [R;]K;c or (R;) K;a with the intended meaning: “always after using rule
R (or sometimes after using R) the agent 7 knows «”. The formalization of the idea
that an agent accepts and is able to use an inference rule is straightforward. For
example, the idea that the agent i accepts modus ponens can be formalized by the
axiom: Kja A Kij(a — B) - (MP;)K;. This axiom says no more than if agent i
knows a and he also knows that « implies 8, then after a suitable inference step he
will know 3.1

As the axioms can be viewed as special inference rules we can introduce an action
corresponding to each agent and each axiom of the basis logic, which describes the
ability of the agent to use this axiom in his reasoning. (In general, different agents may
have different logics, so that the sets of basic actions are different for different agents.
However, we assume a set of homogeneous agents, for the sake of simplicity.) By means
of the familiar program connectives for dynamic logic (such as composition or iteration)
we can formalize the idea that the agent may know the consequences of some sentence
which he already knows explicitly, provided that he performs the right reasoning steps.
For example, assume that the agent ¢ knows the conjunction of o and o — 3, that is,
Ki(aA(a — £)). In all normal modal systems we can deduce K;(a A 3). However, this
inference is not sound for actual knowledge of realistic agents. There is no guarantee
that the agent will know a A § automatically, as the modal approach suggests. We can
only say that if the agent reasons correctly, then he will know a A 5. In our concrete
case, let CE,CI, M P be the conjunction elimination rule, the conjunction introduction
rule, and modus ponens, respectively, and let the symbol “;” denote the composition
of actions. Then our theorem must be: K;(aA (o — 3)) = (CE;; MP;; CLI;)K;(a A ),
and not K;(a A (@ — ) = K;(a A ) as in the standard modal approach.

Tnstead of K;a — (R;)K;B3 we could also introduce a binary operator K;a({R;YK;3 with the
interpretation “in a state where the agent ¢+ knows «, after the application of the rule R he may know
B”. However, the former notation is closer to that of dynamic logic, whereas the latter one does not
offer any obvious advantage.
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In general, suppose that g follows from « in some basis logic (which is accepted
by the agent) and that the agent knows «. For explicit knowledge we cannot assume
that the agent automatically knows (. Let a proof of 8 from « be given, where the
axioms and inference rules used in the proof are R!,...R" (in this order, where the
same axiom or inference rule may occur at different places in the sequence.) Then,
instead of the monotonicity rule in the standard modal approach we have the axiom:
Kia — (R};...; R")K; 3, where RF is i’s reasoning action of applying the inference rule
RF (k =1,...,n). This axiom says that if the agent 7 performs the sequence of actions
corresponding to the rules R!,... , R™ (in this order) then he will know 3 under the
given circumstances. Whether or not the agent can come to this conclusion depends
crucially on his logical ability. In this way we see that the logical omniscience problem
can be solved easily in a natural way: we can describe agents whose knowledge may or
may not be closed under logical laws. On the other hand we can still say that the agent
thinks rationally, that he is not logically ignorant. Theoretically he may produce all
logical truths, and all logical consequences of his knowledge, but only if he is interested
in doing so, if he has enough time and memory, et cetera.

In the above argumentation we have made an implicit assumption. We have as-
sumed that all premises, once known by the agent, are still available after the agent
performs a reasoning step. In the previous example, if the agent forgets the premise
o immediately after using modus ponens, then he cannot apply the conjunction in-
troduction rule to come to the conclusion oo A 8. Thus, we have to postulate that
the agent does not forget what he previously knows after performing some reasoning
action. This assumption can be formalized using persistence axioms for knowledge, for
example, K;a — [R;|K;a.

Are such persistence axioms reasonable? Only under two conditions. First, the
truth value of a should not change over time. If o becomes false after i’s inference
using rule R then it is not reasonable to postulate that 7 still knows « after the use
of R. This point should be taken into account when we formally define the language
of our logic. In particular, if our language contains temporal indexicals then sentences
containing them cannot be regarded as persistent. Second, the truth value of o may
not change through the agent’s actions. This excludes formulae such that —K;8: it is
possible that agent 7 does not know 8 now, but will know it as a result of his reasoning.
In general, a formula in which a knowledge operator occurs essentially negative (i.e.,
within the scope of an odd number of the negation sign) is not a suitable candidate
for a persistent one. So, we may assume that persistent formulae are built up from
objective formulae using conjunction, disjunction, and the knowledge operators only.

4.1.2 The abstract action of reasoning

In order to define systems of dynamic-epistemic logic formally we can fix a basis logic
and then associate with each axiom schema and each inference rule an atomic action.
The formal language is then defined over this set of atomic actions. The logic comprises
all theorems of dynamic logic and the specific epistemic axioms discussed above.
However, there are some problems with this approach. First, there might be many
different, but equivalent axiomatizations of the basis logic, so the choice of the basic
actions must be arbitrary. Moreover, as the resulting dynamic-epistemic system con-
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tains dynamic logic entirely, it becomes very complex and therefore difficult to be dealt
with. Even more importantly, in most cases we do not need to care about what course
of actions the agents just carried out; we are only interested in the result of the actions,
so to speak. We only need to know that a certain agent has carried out some reasoning
steps, and after that he gains certain new information.

This last point leads us to another approach. We introduce an auxiliary action F;
with the following intended reading: do any one of the atomic actions (we don’t know
what action;) repeat the non-deterministic choice finitely many times (at least once,
but we don’t know how many times!) The action F; could be interpreted as a course
of thought of the agent 7. From the viewpoint of dynamic logic: if the set of all atomic
actions associated with the agent 7 and his basis logic is a finite set {r;,...,r"}, then
F; can be viewed as (r} U r2 U ... U )", where the symbols U and T denote choice
and non-zero iteration, respectively.? The choice of the symbols F; is not accidental
at all: in temporal logic it stands for the operator “Future”. It turns out that our
auxiliary action behaves in the same manner as the future operator of temporal logic:
the operator (F') satisfies all the axioms for the minimal temporal logic K:4. It is
no surprise at all: we know that the minimal temporal logic can be embedded into
dynamic logic, and one way to do this is to take the iteration of an action to interpret
the future operator. The formal language in which our dynamic-epistemic logics are
formulated is called LY and will be defined in the following section.

4.2 Dynamic epistemic logic

4.2.1 The language of dynamic-epistemic logic

Definition 13 (The language £{F) Let Agt = {1,..., N} be a set of N agents and
let £X be the language of epistemic logic as defined in definition 1. LR is the least
set such that

1. L8 c cDE
2. If a € LYP then —a € LYF
3. fae LYP and B € LR then (o — B) € LYF

4. If o € LR then (F)a € LEF

Conjunction and disjunction are defined as usual. [F;|a abbreviates —(F;)—«a. The
formula (F;)« is read: “a is true after some course of thought of 7", [F;]a means “a is
true after any course of thought of ”. (We could think of (F;) and [F;] as the modalities
“at some future times” and “at all future times” of temporal logic, but now time is
subjective time, i.e., agent-dependent, generated by the agent’s actions.) Note that we
do not allow the operator (F;) to occur inside the scope of any knowledge operator.
The reason is that such expressions are indexicals: they contain temporal indexicals

*In dynamic logic another form of iteration is considered, viz. the one that allows for running a
program zero time, denoted by *. But one can easily extend dynamic logic to include non-zero iteration
as well.
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like “later” or “always” implicitly. We want to exclude indexical expressions from our
language because they require special treatment, which could be very involved and may
obscure more important points.

Definition 14 (Knowledge-persistent formulae) The sublanguage Eﬁ*’ of LK is
the smallest set of formulae from £ which contains all objective formulae and is closed
under the condition: if a, 3 € E%*’ and i € Agt then {(a A ), (aV @), K;a} C E%*’.

4.2.2 Axioms for dynamic-epistemic logic

Let us discuss some potential candidates for dynamic-epistemic axioms. We shall ex-
amine the common modal axioms and see if their dynamic-epistemic counterparts are
suitable for formalizing explicit knowledge.

As T have argued in the previous section, if § can be derived from the premises
ai, - ..,y by means of the inference rules Ry, ..., R,, then the correct corresponding
epistemic axiom should be K;a1 A ... A Koy, — (RY;...; R?)K; 3. Translated into the
language LﬁE , keeping in mind the intuitive reading of the operator (F;), the axiom
becomes K;a1 A ... A K;a,, = (F;)K;(. In particular, the following formulae could be
assumed as axioms for explicit knowledge:

o K;aAKi(a— B) = (F)K;
o KiaNK,f — (F))Ki(aAp)
o Ki(aApB) = (F)K;a

o (F)K;(aV -a)

I have also argued that some persistence postulates must be assumed in order to
guarantee that all premises, once known by an agent, are still available after the agent
performs a reasoning step. The idea that known sentences remain known after any
course of thought of an agent i can be expressed through the axiom K;a — [F;|K;a,
provided that « is persistent.

According to their intuitive interpretation, the dual operators (F;) and [F;] must
satisfy at least the postulates of K4, the minimal temporal logic of transitive time
(see also appendix A), i.e., the (temporal) necessitation rule (from « to infer [F;la)
and the following two axioms should be assumed:

o [Fil(a = ) = ([Fi]a — [Fi]B)
o [Fla = [F][Fla

Can stronger principles be imposed on the operator [F;]? Linearity does not seem
reasonable: courses of thought can go to several different directions. There are certainly
many ways to extend one’s knowledge, e.g., by applying two different inference rules.
We can imagine that an agent currently has a certain information state so where two
sentences a1 and ag are implicitly available. After some course of thought he knows
a1 explicitly, and after some other course of thought he knows as. In this way two
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different new information states s; and so are possible: in one state (say s;) the formula
ay is (explicitly) known, but not ag, and in the other one ag is known, but not «;.

Consider now the information state s; where «; has been established. If the nec-
essary conditions to establish ay are still available as in the original state sg, then the
sequence of reasoning steps leading to as could be started at si, leading to a new,
more complete information state s3 where both a; and as are known explicitly. The
agent could also arrive at s3 by starting the process of deriving a; from s9. Thus, the
principle of directedness seems attractive: any two developments originating from the
same point will eventually be merged again. This principle corresponds to the axiom
(F;)[Fila — [F;](F;)a. In modal logic, this formula is known as schema (G).

To distinguish genuine knowledge from belief, the axiom K;a — « can be assumed.
This Truth axiom seems unproblematic in dynamic-epistemic settings. As to consis-
tency, two variants of the Consistency axiom are possible. The first is —K;(a A —a),
which says that ¢ does not believe obvious contradictions. In normal modal logics,
that formula is equivalent to the formulae K;a — —K;—«a. However, this needs not be
true in the context of dynamic-epistemic logic, because agents may believe two sen-
tences without believing their conjunction. These two consistency axioms seem to be
acceptable rationality postulates.

Let us now examine how the ability of the agents to introspect their knowledge can
be captured within our dynamic framework. An agent’s action of introspection can
be considered one of his basic reasoning actions?. Thus, we may view agent 4’s intro-
spection action as one part of his abstract action F;. Consider positive introspection
first. Suppose that ¢ knows a. Can we infer that he will know after introspecting his
knowledge that he knows a? Not necessarily! We can assume that ¢ will know that he
previously knows «, but to support the inference that after his introspection action the
agent knows that he knows a we need one more argument, namely that i’s knowledge
of a will not be changed through his reasoning actions. We have argued previously
that such a persistence axiom is reasonable for a subclass of formulae. Thus, we have
the following axiom of positive introspection, which corresponds to the schema (4) in
modal epistemic logic: K;a — (F;)K;K;a, provided that « is persistent.

The same argumentation can be used to show that the candidate for the negative
introspection axiom —K;a — (F;) K;—K;a is not acceptable. It can happen that after
a reasoning step the agent knows something what he did not know previously.

4.2.3 Systems of dynamic-epistemic logic

Now we go on to define axiomatic systems for reasoning about the dynamics of knowl-
edge. We have three groups of axioms: the usual axioms of the propositional calculus,
axioms for temporal logic, and axioms governing the interaction between knowledge
and reasoning activities.

Definition 15 (The system DEKy) The logic DEKy (Dynamic-Epistemic Ky)
has the following axiom schemata:

30ne may ask how seriously one can take introspection as action. Well, it is true that introspection
may differ from the “genuine” reasoning actions in some aspects. However, the differences are not
quite significant. It seems reasonable to treat introspection as test of a certain kind, which is used by
the agents to reason about their own mental state.
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(PC1) a— (B — «)
(PC2) (a— (B—7) = ((a—=p) = (a—=1))
(PC3) (-8 = —a) = (a = p)
(TL1) [F](a — B) — ([Fi]a — [F]p)
(TL2) [Fi]a — [F][F]a
(DE1) K;a A Ki(a — ) = (F;)K; (Closure under implication)
(DE2) K;a — [Fj]K;a, provided that o € LY T (Persistence)
(DE3) (Fi)Ki(a = (8 — a))
(DE4) (F)Ki((a = (B —=17)) = (@ = B) = (@ = 7))
(DE5) (F)K;((=8 = —a) = (a = )
The rules of inference are:

(MP) From a and o — S to infer 8 (Modus ponens).

(NEC;) From « to infer [F;]a (Temporal necessitation).

The axioms (PC1) — (PC3) together with the rule (MP) axiomatize completely
the propositional calculus. Together with (TL1), (TL2) and (NEC;) they form a
complete axiomatization of the minimal temporal logic of transitive time. The remain-
ing axioms and inference rules describe the dynamics of knowledge. Axiom (DE1) says
that the agents are capable of using modus ponens. Axiom (DE2) is the persistence
axiom discussed previously, which says that agents do not forget what they know when
they are reasoning. Axioms (DE3) — (DE5) state that the agents are able to use the
axioms (PC1) — (PC3) of classical logic in their reasoning.

The notions of a proof, a theorem, and a consistent set of formulae (with respect
to the logic DEK y) are defined in the usual way. The provability relation wrt DEK y
is denoted Fpgrk, as usual. Moreover, we say that a formula o € Lk is PC-provable,
in symbol Fpc @, just in case a can be proved using only instances of the schemata
(PC1) — (PC3) (in the sublanguage Lk) and modus ponens.

Of course, we can postulate that the agents can use further simple tautologies
and inference rule in their reasoning. For example, we can include axioms such as
KiaNK;f — (F))K;(a A B), or (F;)K;(a V —a). However, this is not necessary at all,
because they can be proved, as we shall see later.

Extensions of DEK y can be obtained by adding more axioms and inference rules
to the basic system. We consider logics obtained from DEK y by adding axioms from
the following list:

(TL3) (F)[Fi]o — [F](Fi)a

(DE6) Kija — «
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(DET) (F)Ki(Kia — a)
(DES8) K;a — (F;)K;K;a, provided that o € LT

Axiom (TL3) corresponds to the directedness property discussed previously. It
says that courses of thought are directed towards more epistemic completeness. Axiom
(DES®) is the well-known schema T saying that knowledge entails truth. Axiom (DET)
says that agents potentially trust their knowledge: when thinking about themselves,
they think that what they know must be true. Finally, (DES8) says that the agents
are capable of positive introspection.

Definition 16 (Extensions of DEKy) Some extensions of the logic DEKy are
specified as follows:

o DEK}, is DEKy plus (TL3)
e DES4y is DEKy plus (DE6), (DET7) and (DES8)

e DES4}, is DES4y plus (TL3)

The systems DES4y and DES47}; can be viewed as logics of explicit, true knowl-
edge. They correspond to the modal system S4p, as they require knowledge to be
true, and the agents to have positive introspection. It is easy to see that both DEKY,
and DES4y contain DEK y and are contained in DES47%;, but neither is a subsystem
of the other.

4.2.4 Some features of dynamic-epistemic logic

Theorem 17 (Consistency) The systems DEKy, DEK}, DES4y, and DES4},
are consistent.

Proof As DEKy, DEK} and DES4y are subsystems of DES47},, it suffices to
show that DES4}, is consistent.

To see that the system DES4}; is consistent, i.e., no contradiction can be derived
from it, it suffices to notice that all axioms and inference rules of DES4}; can be
mapped to valid formulae and inference rules of the propositional calculus by deleting
all occurrences of K; and (F;) from them. Therefore, all theorems of DES4}, must
become propositional tautologies when all occurrences of K; and (F;) are deleted.
Hence, a formula like a A =« cannot be derived.

The following theorem states that all the defined systems DEK y, DEK?%,, DES4y,
and DES47; solve the logical omniscience problem. It says that none of the rules NEC,
MON, and CGR is valid. Moreover, an agent’s explicit knowledge at a time, i.e., the
totality of all what this agent knows at that time, needs not be closed under any
nontrivial logical rule.

Theorem 18 (Non-Omniscience) 1. The following inference rules are not deriv-
able in the systems DEK y, DEK?’%,, DES4y, and DES4};:
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(NEC) From « to infer K;a
(MON) From a — f to infer K;a — K3
(CGR) From «a + S to infer K;a +» K;8

2. The following formulae are not provable in the systems DEK y, DEK?’;, DES4y,
and DES4};:

) Ki(a— B) = (Kia = Kif)

) Kif — Ki(a — )

) Ki(a A B) = Kia

) Ki(anB) = Kia NKif3

) KiaAK,;3 — Ki(aAp)
f) Kia — Kij(aV p)

) KiaV K, — K;(aV p)

) Ki——a — Kia

) Kia = K=«

) Kia = K;K;«

) “Kija = K;—K;a

Proof We can construct easily interpretations such that (i) all axioms of the dynamic-
epistemic logic under consideration are valid, (ii) the rules of inference lead from valid
formulae to valid ones, and (iii) the formulae and inference rules listed above are
invalidated. We omit the details.

An agent described by the given logics is not logically omniscient. On the other
hand, we cannot say that he is not rational: the agent is rational, because he can (at
least in principle) perform actions to close his knowledge under logical laws, as the
following theorems show. Instead of the necessitation rule and monotony rule in modal
epistemic logic we have now a theorem stating that the agents can know all classical
theorems and can draw all consequences of what they know, provided that they perform
the right reasoning.

Theorem 19 Let a, 8 be objective formulae and let A be one of DEKy, DEK},,
DES4y, and DES4},.

(NECde) If Fpeo a then Fx <F,)Kza
(MONy) If Fpc a — (8 then Fy K;a — (F;) K;(.
(MONZe) If Fpc a — B then Fj (E)Kza — <F,>KZ/B

Proof First, note that [Fjja A (F;)3 — (F;)(a A B) and (F;){(F;)a — (Fj)a are K4-
provable and therefore DEK y-provable. Moreover, if @« — ( is a theorem then so
is (F;)a — (F;)B. We shall make extensive use of these facts in our proof without
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mentioning them explicitly. To shorten the proofs we assume that all derivable formulae
and rules of PC and K;4 have been derived, so we do not have to write them down
explicitly.

Consider rule (NECy.). Let Fpc a. We show - (F;)K;a by induction on the
length m of the proof of . If m = 1 then a must be an instance of one of the axiom
schemata (PC1)—(PC3). The claim follows from (DE3)—(DE5). If m > 1 then
a must be obtained by applying modus ponens from, say, § and 8 — «, which are
PC-provable in less than m steps. So we assume that there is a PC-proof of « of length
m where in the k-th and [-th lines we had proved 8 and 8 — «. The PC-proof of «
can be extended to a DES4,-proof of K;«a as follows:

(k) I} Assumption
1) B — «a Assumption
(m) o (k), (1), (MP)
(m+1) <Fz‘>Kzﬂ Ind. Hyp., (k)
(m+2) [E])(F) K (m+1), (NECy)
(m+3) (F;)K. (ﬂ —) ) Ind. Hyp., (1)
(m+4) Ki(B = a) = [F]Ki(B — ) (DE2)

(m+5) (F)[F]Ki(B — o) (n+3), (m+4)
(m+6) (F3) ((F) KB A [Fi]Ki(B — @) (m+2), (m+5)
(m+7) (F3)(F3) (K ﬁ ANKi(B — ) (m+6)

(m+8) (F3)(F; )( ) K (m+7), (DE1)
(m+9) (Fi) K (m+8)

The rule (MON,) can now be derived as follows:

(1) a—f Assumption
(2) (Fi) Ki(o — B) (1), (NECge)
(3) K,a — [Fj|K;«a (DE2)

(4) Kia = ([Fi]Kia A (F))Ki(a — B)) (2), 3)

(5)  Kia— (F)(Ki(a = f) A Kia) (4)

(6) K- (F)(Fy)K (5), (DE1)
(7) Kia — (F) K3 (6)

To prove (MON,) we apply (MONy,) to derive K;a — (F;)K;3 from o — (.
Then a rule of K4 can be used to infer (F;)K;a — (F;){(F;)K;8. Using the K;4-
theorem (F;)(F;)K;8 — (F;)K;3 we get the desired result.

Corollary 20 Assume that «, 8 are objective formulae. The following formulae are
theorems of DEK y and its extensions:

1. K = (Fi)Ki(a = B)
2. Ki(aAp) = (F)K;«a
3. Ki(a A B) = (Fi)Kia A (F)KB

4. Kja — (F)K;(a V B)
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5. KiaV K — (F;)Ki(aV )
6. K;——a — (F;)K;«a

7. (F)KiB — (Fi)Ki(a — B)
8. (F)Ki(aAp) = (F)Kia
9. (Fi)Kia — (Fi)Ki(a V B)

Probably, the above rules and theorems are derivable for a larger class of formulae,
not only for objective ones. The following list comprises some more provable formulae
of DEK y and its extensions. They say that if all premises of a valid inference rule are
known, then after some steps of reasoning the agent will know the conclusion. This still
holds if one of the premises is not known yet but will be known after some reasoning.
The theorem is proved in appendix B.

Theorem 21 Assume that o and § are objective. The following formulae are theorems
of DEK y and its extensions:

L Kija A (F)Ki(a = B) = (F)Kip
2. Kia ANF)Kif — (Fi)Ki(a A\ B)
3. Kia NK;i3 — (F;)Ki(a A p)

4. Ki(a A B) = (F)(K;a A K;B)

5. (F)Ki(aAB) = (F)(K;a A K;f)

4.2.5 Systems with the directedness axiom

The following theorem states some results for specific systems which will clarify the
role played by the directedness axiom (TL3). Observe that the formula (F;)K;a A
(Fi)Ki(a — B) — (F;)K;[ is not provable in DEK y, i.e., it may be the case that both
(Fi)K;a and (F;)K;(a — () are true but (F;)K;( is not true. Generally, if a valid
inference rule has at least 2 premises, and if each of these premises will be known after
some course of thought, then it is not necessarily the case that the conclusion will be
known. Such situations are precluded in the presence of the directedness axiom.

Theorem 22 Let a and 8 be objective formulae. In logics containing the schema
(TL3), the following formulae are provable:

L (F)Kia AN(F;)Ki(a — B) — (F;)K;3
2. (F)Kia N (F)KB — (F))Ki(a A B)
Proof See appendix B.

Utilizing the previous result we can establish an embedding relation between Ky
and DEKY,. Similar relations obtain between other normal modal systems and their
dynamic-epistemic counterparts which contain schema (TL3).
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Theorem 23 Let o € LK be a formula whose modal depth is at most 1. Let o be
the [,ﬁE—formula obtained by replacing every occurrence of K; in o by (F;)K;. Then
« is a theorem of Ky if and only if ¢ is a theorem of DEKY,.

Proof Let a be a Ky-theorem. We show by induction over the proof length that o
is a DEK?,-theorem. If o is a propositional tautology then o is also a propositional
tautology. If « is an instance of the schema (K) then ¢ is an instance of the schema
(Fi)KiaN(F;)Ki(a — B) — (F;)K;(3, which is a DEK-theorem according to theorem
22. If a has been derived from 8 and 8 — a by means of modus ponens then 3 and
(8 — )" are both theorems of DEKY,, by induction hypothesis. It can be easily seen
that (8 — )’ is the same formula as 8’ — o/. So applying modus ponens yields that
o is a theorems of DEKY,. Finally, suppose that « has been derived from (3 using the
knowledge necessitation rule (NEC). Then « is K;3 and o' is (F;)K;3. Because « hat
at most the modal depth 1, § must be objective, so (F;)K;3 can be derived according
to theorem 19.

To prove the converse, observe that every DEK’-proof can be transformed to a
K y-proof by deleting all occurrences of (F;). (Recall that [Fj]« is just an abbreviation
for =(F;)—a). It can also be easily verified that if o is obtained from « by replacing
every occurrence of K; by (F;)K;, then deleting all occurrences of (F;) in o yields «
again. Therefore, if o/ is DEK},-derivable then « is Ky-derivable.



Chapter 5

Algorithmic knowledge

In the previous chapter I have developed a framework for reasoning about explicit
knowledge. The strategy is to take the cost of inferring new information into account.
Following this strategy a number of logics have been defined which can solve all variants
of the logical omniscience problem and at the same time can account for the intuition
that agents are rational beings. In my framework it is possible to model situations
where an agent’s explicit knowledge is not closed under any logical law: he may know
all premises of an inference rule without knowing the conclusion. But this does not
mean he is logically ignorant. On the contrary, he may well be perfectly rational: if he
chooses to draw a conclusion of his knowledge and if he has sufficient computational
resources, he will eventually succeed in doing it. Thus, resource-bounded reasoning
can be modeled realistically: an agent’s lack of logical omniscience stems from his
resource-boundedness, and not from his inability to use certain logical rules.

However, there are a number of situations where resource-bounded reasoning can-
not be modeled within the framework of explicit knowledge considered so far. First of
all, the dynamic-epistemic systems of the previous chapter are based on standard qual-
itative temporal logic and are therefore not suited to describe quantitative time con-
straints'. Moreover, they have too little expressive power for modeling meta-reasoning,
i.e., for modeling how an agent reasons about the reasoning process of himself or of
other agents.

In this chapter I shall introduce a new concept of knowledge which allows quan-
titative resource constraints to be formalized directly. This concept generalizes both
concepts of explicit and implicit knowledge and avoids the problems of the existing
approaches. In the next section I shall discuss the concept informally. Then I proceed
to define a formal language and some formal systems for resource-bounded reasoning
about knowledge. Finally, comparisons with other notions of knowledge will be made.

! Among the relevant resources, time is the most important one, so we shall focus on that factor
and try to model time constraints. The other resources can be modeled in a similar manner, as I shall
show later.

39
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5.1 Motivation

5.1.1 Why explicit knowledge is not enough

What an intelligent agent chooses to do depends on his available resources. The avail-
able resources are typically measured in quantitative, rather than qualitative terms.
A logic based on a qualitative time structure can model qualitative constraints like
“agent 1 always knows a before agent 2 knows it”. It fails, however, when the con-
straints placed on the resources are given in quantitative terms. It is not possible to
express, e.g., that an agent can compute the solution to some problem within a certain
time period.

The language EﬁE of dynamic-epistemic logic does not allow the operator (Fj;)
to occur within the scope of any knowledge operator. Consequently, the capacities
of the dynamic-epistemic systems to model meta-reasoning are rather restricted. For
example, K1 Ko (“agent 1 knows that agent 2 knows «”) and (F))K;Ksa (“after
some reasoning agent 1 will know that agent 2 knows «”) are well-formed formulae,
but K (Fe)Koa (“agent 1 knows that agent 2 will know « after some reasoning”) and
(F1)K1(Fy) Ko (“after some reasoning agent 1 will know that agent 2 will know «
after some reasoning”) are not.

To be able to model resource boundedness within the language we consider another
notion of knowledge. The main intuition is the following. An agent’s action depends
not only on what he currently knows, but also on what he is able to infer within some
specific amount of time (intuitively, the time within which a decision must be made —
a classical example being the time available to make the next move in chess.) Given
that an agent needs to accomplish a task within an hour but does not yet know what
actions he must perform, it cannot be inferred that he will not finish his job in time: he
may be able to calculate the plan and finish it before the deadline. If an agent knows
that another agent must act under some time constraint, he may infer what the second
agent can or cannot know under this constraint and predict his action accordingly.
Therefore, it must be considered what agents can reliably know within 1,2, 3,... time
units, and not only what they currently know, i.e., what they know within 0 unit of
time. Thus, we shall analyze sentences of the form “if asked about «, ¢ can derive
reliably the answer within n time units”, instead of sentences of the form “agent i
knows a (now)”.

In the informal characterization of knowledge above, the qualification “reliably” is
important. It distinguishes an agent’s ability to bring about certain states of affairs
from the mere logical possibility that such states of affairs may obtain. The difference
can be illustrated by an example. A shooter may accidentally hit a target at 1 km
distance, but it cannot be said that he has that ability. It cannot be safely assumed
that he will succeed if he decides to try. He may hit the target once but the success is
not repeatable. Hence, although there is the possibility that he can perform a certain
action, he does not have the ability to do it. In the context of reasoning actions,
an agent may possess a large number of algorithms which can be applied to compute
knowledge. If he chooses to derive « from his current knowledge, he may by chance
succeed very quickly if he applies the right algorithm. However, if he happens to select
another algorithm then it may take very long to compute the same sentence. It can
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even the case that the algorithm does not terminate at all. But if it cannot be safely
assumed that the agent can compute « in time, then generally the possible knowledge
of « is not enough to justify his action. Reliability implies that the agent is able to
select deterministically a suitable procedure for the input and compute the answer
within finite time.

Our goal is to represent not only what agents know or can know, but also when they
are expected to know what they can know. The first question is answered by specifying
the logic used by agents in their reasoning, and the second one by a complexity analysis.
What an agent knows or can derive from his knowledge is determined by the logic he
uses in his reasoning. An agent may not know a sentence now, but he may possess
a procedure to infer that sentence and know it at some future point. The amount of
time needed to compute that knowledge depends on several factors, of which the most
important ones are the complexity of the sentence and the agent’s reasoning power. If
the complexity of a sentence and the computation speed of an agent are known then
the time he needs to infer the sentence can be estimated.

5.1.2 The language of algorithmic knowledge

For modeling knowledge with time constraints we need to use some model of time mea-
surement. As remarked previously, we shall deal with sentences of the form “if asked
about a, agent 7 can derive reliably the answer within n time units”. For simplicity we
shall use natural numbers to measure time, i.e., we assume that n is a natural number.
So the language we consider should contain formulae of the form K'a where 4 is the
name of an agent, n is a natural number, and « is a formula. The formula K'a can be
read “agent 7 knows a within n units of time” and is interpreted: “if agent ¢ chooses to
derive a from his current knowledge, then after at most n time units he will succeed”,
or alternatively, “if asked about «, 7 is able to derive reliably the answer ’yes’ within n
units of time”. That is, we require not only that agent ¢ have at least one procedure to
compute «, but also that ¢ be able to choose the correct procedure leading to « under
the given time constraint, namely, to arrive at the conclusion « after at most n time
units?.

Sometimes it can be assumed safely that an agent is able to infer some fact, but it is
not possible to estimate accurately how long the computation would take. For example,
the complexity of the employed algorithm or the agent’s inference strategy may not
be known completely. To deal with such cases we introduce a sort of quantification
into the language. We consider statements of the form “there is a number z such that
the agent ¢ is able to compute the fact o« within z units of time”. Such a statement
is formalized by the formula Ko, which can be read: “agent i can infer a reliably
in finite time”. That is, when presented with the fact «, the agent is able to choose
a suitable algorithm which runs on « and terminates with the (correct) answer after
finitely many steps.

The formula K'a entails the following facts about the agent’s 7 information state.

2The sentence “agent i needs n time units to compute o” does not imply that ¢ will know « at time
tnow +n, where t,o is the current time. If the agent is not asked to provide the information «, then he
has no reason to waste his resources in order to find a useless answer. The aspect of goal-directedness
is implicit in our concept of knowledge.
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First, the formula « follows (with respect to the logic used by 7) from all what i knows.
Second, agent 7 has an algorithm to establish that connection and which he is able to
select to use when he chooses to compute «. Third, that computation takes at most n
time unit. The formula Kiaa is weaker in the sense that it does not tell exactly how
long the computation of a will take. It only says that the computation is guaranteed
to terminate.

Our notion of knowledge can be called algorithmic knowledge: knowledge is tied up
with an algorithm to establish it. It represents not only factual knowledge but also a
kind of procedural knowledge. The concepts of explicit and implicit knowledge can be
regarded naturally as two special cases of algorithmic knowledge. Explicit knowledge
can be defined as K{a, which says that agent i has immediate access to the information
« and can act on it. Implicit knowledge is defined as K a: agent i knows « implicitly
if he is able to compute « when required. This is, however, not the only way to define
a useful notion of implicit knowledge. For instance, one can stipulate that an agent
knows a fact implicitly it can be inferred from his explicit knowledge (with respect to
some inference system).

Our use of the term “algorithmic knowledge” as explained above should not be con-
fused with other usages found elsewhere in the literature. Binmore and Shin ([BS92])
use the term to emphasize the connection between knowledge and provability (see also
[SW94]). In their terminology, an agent’s algorithmic knowledge is whatever the agent
can infer using a Turing machine. The properties of this concept are studied and re-
lated to properties of provability concepts. Halpern, Moses, and Vardi ([HMV94]) also
define algorithmic knowledge in terms of computation: an agent is said to know a fact
at a certain state if at that state he can compute that he knows that fact. That is,
given his local data, his local algorithm terminates and outputs the answer “Yes” when
presented with the fact. Clearly, these concepts describe knowledge that is not neces-
sarily available immediately to the agent. They are in spirit related to our concept of
implicit knowledge, defined above as Kiaa. Hence, they both fall under the category
of implicit knowledge in our classification of chapter 2: they characterize a kind of
information that is implicitly available to an agent but must be computed and made
explicit before the agent can act upon.

Formally, the language L’ﬁK of algorithmic knowledge for N agents is defined as
follows:

Definition 24 Let w be the set of natural numbers, Agent = {1,...,N} a set of
agents and Atom a countable set of atomic formulae. The set of formulae is the least
set L4X such that

o Atom C L4K
o If € L3K then —a € LK

If @ € L3 and B € LYK then (a — B) € LYK

If i € Agent, n € w, and o € ER‘,K then K['a € ER‘,K

If i € Agent and o € L3K then K o € L4K
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The rationality of agents is expressed through two capacities: first, the ability to
draw logical consequences from what is already known, and second, the ability to com-
pute the complexities of certain reasoning problems in order to infer when something
can be known. It should be stressed that these two capacities are implementable.
Agents have been frequently supplied with inference machines which allow them to
infer new information from what has been known. The complexities of many problems
can be computed at a low cost from their syntactic structures alone, so it is not hard
to build into agents the capability to recognize the structure of a problem and esti-
mate the cost to solve it. It turns out that we can develop quite rich theories of the
algorithmic notion of knowledge we have introduced. To develop logics of algorithmic
knowledge we try to establish logical relationships among the formulae of the language
L‘%K . This is done by developing the framework for reasoning about explicit knowledge
(chapter 4) a step further.

5.2 Reasoning about algorithmic knowledge

Our logics of algorithmic knowledge will be built up step by step from some basis logic.
We shall take the propositional calculus as the basis and develop epistemic systems
by adding (proper) epistemic laws to this basis. Now let us see how such laws may
look like. We make the simplifying assumption that all agents have the same formal
language and employ the same logic in their reasoning.

5.2.1 Axioms for algorithmic knowledge

Let us assume that an agent i knows « within m units of time, i.e., he needs m time
units to infer a. Then naturally he is able to do it when even more time is available. So
we can take as axiom any formula K/"a — K'a where m < n. Note that this axiom
does not say that knowledge is persistent in the sense that once established it will be
available henceforth. The formula K"« does not entails that ¢ will know « at time
point m. It does not even imply that a will eventually be known at all. In this aspect
the present approach makes a more realistic assumption than the persistence axiom in
chapter 4.

We have remarked previously that the formula K'a contains more information
than KZ«. While the latter formula only says that agent i is able to derive « in finite
time if he chooses to, the former one also specifies the amount of time needed by ¢ to
complete that task. Thus, the implication K'aw — Kiaa can be assumed as an axiom.

Let a be a provable formula of the logic used by agent i. We have argued previously
that it cannot be assumed that ¢ knows a automatically (i.e., without any reasoning.)
However, he may know it after some course of reasoning. The interesting question is
whether or not he is able to compute « reliably within finite time. That would be the
case if the agent has a general strategy which fulfills the following two requirements.
First, it selects for any formula of the language an algorithm to compute that formula.
Second, if the formula is provable then the selected algorithm will terminate with the
correct answer. I shall argue that under reasonably weak assumptions, such a strategy
exists and can be adopted by any intelligent agent, so that Kiaa can be safely postulated
if @ is provable.
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The set of axioms that any agent presupposes is decidable — in the normal case even
finite. Because the number of permissible inference rules is also limited, all proofs can
be generated algorithmically. Hence, there is a general-purpose theorem prover that
can validate any theorem in finitely many steps. If the agent’s selection mechanism
always returns that general algorithm for computing knowledge, he is able to validate
every theorem . That is, when presented with a theorem « he can select an algorithm
which runs on « and outputs the answer “Yes” after a finite number of steps. Although
the described strategy (“always use the same algorithm”) satisfies the stated conditions,
it may not be the best: specific problems may be solved much more quickly by special
algorithms than by a general-purpose theorem prover. Hence, the following would be
a more reasonable strategy. First, the agent analyzes the query « and tries to select
one of his special algorithms to infer it. If no such algorithm can be found, then the
general algorithm is selected. In this way, he can always find an algorithm to verify
a. (If the selection mechanism is not reliable, i.e., if it could return a wrong algorithm
for some queries, then several algorithms can be selected and executed concurrently or
interleavingly.)

A strategy to successfully prove every provable formula can be acquired by rational
agents. An intelligent agent may learn to use some algorithms to compute knowledge.
Such algorithms (together with a suitable selection scheme) can be built into artificial
agents. Hence, the rule to infer K;'« from « can be assumed to be valid.

The statement Ko contains some uncertainty. It is not clear how long agent i
will need to infer @. Can a more definite statement be made? That is, can a natural
number n (which typically depends on the structure of the theorem «) be determined
such that Ko can be assumed as a postulate? The discussion of this question will be
postponed until section 5.2.3.

Now suppose that a3 A... Aa, — [ is provable and that each of the formulae
ai, ..., 0, can be computed reliably by an agent ¢ in finite time, i.e., Kfal, ... ,Kfan
are regarded to be true. Is it reasonable to infer that 7 can compute 3 reliably if he
chooses to derive it? I shall argue that the conclusion Kfﬂ can be justified.

When presented with a question 8, an agent ¢ naturally attempts to derive § from
all what he knows3. It is reasonable to assume that the consequence relation used by
a rational agent has a certain transitivity property: if all the formulae a4, ..., a, are
derivable from some knowledge base and 3 can be inferred from «;, ..., ay,, then 8 can
also be inferred from that knowledge base. Thus we can assume that 3 follows from
all what ¢ knows. Because agents are assumed to process only a limited amount of
information, every consequence of their knowledge can be computed algorithmically.
With a suitable selection strategy, e.g., one of the strategies outlined previously, an
agent can find an algorithm to compute his knowledge successfully. Consequently,
agent ¢ is able to compute 3 after a finite number of steps. So, if a1 A... Aayp — G is
a theorem then we can assume that Kiag A ... A K2a, — K73 is valid.

As a special case we can assume that KZaA K7 (a — 8) — K24 is valid, which says
that agent ¢ can use modus ponens in his reasoning: if he can derive both o and o —

3An agent may in fact have some relevance criteria to narrow down the search space, so he actually
tries to infer § from the relevant part of his knowledge. However, it is typically not possible to restrict
the attention to the formula a1 A ... A o, = 3, because the knowledge that 3 can be derived from the
intermediate results ai,...,a, can usually be obtained only after a proof has been constructed.
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then he is also able to derive 8. Because explicit knowledge implies implicit knowledge,
the formula Kzoal A K?an — Kiaﬁ is valid, provided that oy A... Aa,, — B is a
theorem. Thus, agents are able to compute all logical consequences of their explicit
knowledge.

Recall that in chapter 4, the persistence axiom (“everything that has been once
deduced will be available henceforth”) plays a prominent role in justifying the postu-
lates stating that agents are able to use logical laws in their reasoning. In the current
approach such an assumption is not necessary because we argue at a higher abstraction
level. Only the final result is important, not the intermediate ones.

Since the formula Kfa — « is merely a definitional stipulation, it seems uncontro-
versial. If that axiom is adopted, the formula K'a — o can be proved for all natural
numbers n. More interesting are variants of the consistency axiom. A weak consis-
tency criterion is that agents do not believe apparent contradictions, i.e., their explicit
knowledge is consistent: Kzoa — —|KZQ—|a. A stronger requirement is that an agent’s
implicit knowledge be consistent, which is captured by the schema K?a - —|Ki3—|oz.
That is, the agent’s explicit knowledge is free of contradictions and his inference pro-
cedures are sound, so that consistency is preserved. (The latter formula is indeed a
stronger condition than the former one because K« follows from K?a.)

What about self-introspection? If an agent knows or does not know something
explicitly, he only needs to reflect about himself to find it out. The cost of reflection
is usually low, so it can be assumed that self-reflection can be performed in constant
time. Hence, the formulae KYa — K} K« and —|Kzoa — K}—J(?a seem plausible.

The situation is quite different when an agent ¢ tries to compute the truth value
of K]'a where n > 0. Although he may actually compute a and reflect about that,
the result of his computation does not say much about his ability to infer a. He
may succeed to compute « within n time units, but there is still a chance that this
success is only accidental and not reproducible. On the other hand, even if K'« is
false (i.e., agent 7 cannot compute « reliably within n time units), 7 may still happen to
successfully infer « after less than n time units. Consequently, it is not sound to infer
that he can or cannot compute « reliably within n time units. So, generally neither
KPa — K" Kla nor ~KPa — K- KPa is valid. The same argument applies to
the formulae K?a — K?Kfa and —|K1-304 — K?—J(fa. Those principles can only be
assumed for agents who know their abilities well. They can, for example, be postulated
for an agent who works deterministically. For such an agent, a small number of tests
may suffice to determine if he can perform a task under certain conditions.

5.2.2 Logics of algorithmic knowledge

The basic logic of algorithmic knowledge with N agents will be called Kﬁ. It is specified
by the following axioms and rules of inference.

Definition 25 The logic K4 consists of the following axiom schemata and rules of
inference:

(PC) All propositional tautologies

(KA) K?a/\ K?(a = fB) = Kfﬂ
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(P4) KMa — Kl'a, for all m,n € w such that m < n
(Q*) K'a — Kia, for alln € w
(MP) From « and a — (3 to infer § (Modus ponens)

(NEC4) From « to infer K o

The definition of Kﬁ calls for some explanation and comment. Axiom (K#) and
rule (NEC*) correspond to the familiar modal postulates. However, the intended
interpretation of the operator K is now different: unlike the necessity operator O of
modal logic, which has an universal flavor (“true in all possible worlds”), the operator
Kf has a rather existential flavor (“the computation eventually terminates with the
correct answer”). Hence, our postulates must be justified in a different way. The
axiom schemata (P4) and (Q#) characterize the operators K[« for natural numbers
n. By means of (Q*), formulae like KYa A K?(a — ) — K23 (“agents are able to
compute consequences of their explicit knowledge”) can be proved and need not be
postulated separately. We do not have any axiom of the form KPa because nothing
can be assumed to be (explicitly) known a priori. However, for certain formulae o a
number n > 0 can be determined such that K]'a may be assumed to be logically valid.
We shall investigate such formulae later and use them to define more powerful logics
of algorithmic knowledge.

Another way to enrich the basic system is to use postulates which capture additional
properties of knowledge. We have discussed axioms which have often been used in the
context of modal epistemic logic.

(T4) Kia — o (Truth axiom)

(D*) K7a — —K7-a (Consistency axiom)

(4%) Kia — K;K;a (Positive introspection axiom)
(54) ~K7a — K7-K o (Negative introspection axiom)

Adding suitable postulates from that list to the basic system will yield stronger
logics of algorithmic knowledge. Those extensions of Kﬁ are named in the same
manner as the modal systems in chapter 2. For example, S5§ is the logic Kﬁ plus the
axioms T4, 44 and 54.

Theorem 26 (Consistency) S5%- and its subsystems are consistent.

Proof We map formulae of the language E}‘\‘,K to propositional formulae by deleting
all occurrences of the knowledge operators K; and K (for all n € w) from them.
By that transformation, all axioms of S5ﬁ are mapped to propositional tautologies.
Moreover, applying the resulting inference rules to propositional tautologies results in
tautologies. Therefore, all S5ﬁ—theorems of become propositional tautologies. So, a
contradiction like o A = cannot be derived.
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Obviously, K4 solves all variants of the logical omniscience problem with respect
to the explicit concept of knowledge. To see that, it suffices to observe that the set
{=KPa|a € L4K} is consistent with K4, i.e., K4 can describe agents who (at some
of their information states) know nothing explicitly. (However, they always know
something implicitly.) Likewise, it is easy to see that what an agent explicitly knows
(i.e., what he knows in 0 unit of time) needs not be closed under logical consequences or
even under any logical law, e.g., K)a A K? (o — B) A—K?( is perfectly K]“\‘,—consistent.
Moreover, K'a A K*(a — ) A K}’ can also be seen to be consistent for any n. On
the other hand, many closure properties hold for the notion of implicit knowledge. For
example, KYa AK?(a — B) — K73 is provable in K4.. In general, agents described by
our logic are rational in the sense that they can draw all logical consequences of their
knowledge if the necessary resources are available, as the following lemma, shows.

Lemma 27 The following rules of inference are valid for K’]‘\‘, and its extensions:
(MON#) From a — f to infer Ko — K23
(CGRA) From a + f to infer K7a « K73

Proof The rule (CGRA) is a trivial consequence of (MON#). To prove (MON4)
let us suppose that a — 3 is a theorem. By (NEC#) we can infer KZ(aw — (). The
formula K7 (a — B) — (Ko — K7f) is equivalent to (K#) and is therefore a theorem
of K]"\l,. So, Kiaa — Kigﬁ can be inferred using modus ponens.

The next theorem shows that the common systems of modal epistemic logic can be
embedded into the corresponding systems of logic for algorithmic knowledge. For that
purpose we map each formula of the language [,ﬁ to a formula of [,ﬁK and show that
provability is preserved.

Theorem 28 Let the translation function ¢r : C% — EﬁK be defined as follows:
o tr(¢p) = ¢ for all ¢ € Atom
e ir(—a) = —tr(a)

(
(
(@ = f) = (tr(a) = tr(B))
(

o ir(a
K;a) = Ktr(a)

® ir

A formula @ € L is a theorem of a modal epistemic logic if and only if the
LE-formula #r(a) is a theorem of the corresponding logic of algorithmic knowledge.
Concretely:

1. Fry aiff l_Kﬁ tr(a)
2. by aiff bpa tr(a)
3. Foay aiff Fgya tr(a)

4. I_S5N a iff |_S5§ t’f‘(Oé)
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5. Frpy aiff Fgpa tr(a)

6. Frpay o iff Frepya tr(a)

7. Frpasy a iff Frpgsa tr(a)
Proof See appendix B.

Corollary 29 Ifa; A... A ap, — (is provable then so are Kiaoq AN Kiaan — K?ﬁ
and K%a1 A ... A Ko, — K30.

5.2.3 Knowledge and complexity

We have introduced the concept of algorithmic knowledge in order to represent not
only what agents know or can know, but also how long they need to know what they
can know. Our analyses up to now can only answer the first question. By means of
the systems presented so far one can infer formulae of the form K a, but no definite
statements of the form K'a or —~K]'a. However, to decide if an agent can solve a
problem under certain constraints, it is necessary to compute the exact amount of time
he needs to solve that problem.

To answer the the “How long”-question, a complexity analysis is needed. The
underlying idea is simple. The complexities of many reasoning problem classes are
well-known and can be computed at a low cost. (Complexities are typically, but not
necessarily, measured by functions of the input size.) Since the average computation
speed of an agent can be assumed to be constant, the amount of time he needs to
solve some problem can be computed on the basis of the complexity function for the
problem’s class®.

Suppose that any formula « in a class C can be computed at the cost f(||||), where
||| is the length of «. Let ¢; be a constant number that measures the computation
speed of an agent 7. If o € C and if agent 7 is able to infer «, then it can be inferred
that 4 is able to compute « within ¢; * f(||e||) time units. That is, Kz-ci*f(”a”)a can
be assumed to be true. So, by the aid of complexity theory we can obtain epistemic
principles for specific problem classes.

We shall not make any assumption about the nature of the complexity measures
and develop our logics independent of the complexity theory in use. We calculate the
cost of computing a formula of the language L’ﬁK by way of cost functions, which are
agent-dependent, partial funtions from /.‘,ﬁK to the set of natural numbers. That is, a
cost function f; is defined for each agent 7. Intuitively, f;(«) is the number of time units
needed by ¢ to decide « on the basis of all what he knows. Such a cost funtion is defined
on the basis of known complexity functions for specific problem classes which can be
expressed in the language. Clearly, f; is defined only for certain sets of formulae, namely
for those formulae whose complexities are known. The agents’ computation speed and

4The computation speed of an agent depends on several factors, e.g., the number of inferences he
can perform per time unit, the quality of his algorithms, his ability to classify problems and to select
suitable algorithms to solve certain problems, etc. One a time frame has been fixed (i.e., when time
units are defined,) the speed can be determined empirically.
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the details how the complexity of a certain formula is measured are encapsulated in
the specification of the cost function.

If a cost function f; is defined for a formula, then certain epistemic statements
concerning that formula can be made. If the formula a can be inferred reliably by the
agent 4, then the amount of time needed to infer it is f;(«), so Kzf i@ g can be assumed
to be true. Whether or not a can be inferred reliably by 7, the introspective knowledge
of that can be established after f;(«) + 1 time units, because his computation of «
will return a positive or negative answer after at most f;(«) time units. Therefore,

Ko - K9 and ~K3a — K" K24 are valid. Those axioms will be added
to the systems of algorithmic knowledge examined earlier to make more powerful logics

for resource-bounded reasoning.

Definition 30 For each i € Agent let f;: EﬁK — w be a cost function for agent 7 on
the language of algorithmic knowledge. A system for resource-bounded reasoning about
knowledge is obtained by adding to the logic Kﬁ (or one of its extensions discussed
previously) the following axiom schemata:

(AC1) K2a— K/ @q

(AC2) Kia — Kzfi(a)—l—lKifi(a)a

(AC3) ~KZa — KO _g3g
provided that f;(c) is defined.

The complexity analysis makes it possible to prove many unconditional, definite
epistemic sentences of the form Ka. Let a be a propositional tautology and let f;(c)

be defined. Applying the rule (NEC#) yields the theorem K7a. Hence, Kzf @ can
be derived, by (AC1).

The main task in specifying a system of algorithmic knowledge with complexity
analysis is to define the cost functions for the language £4%. Let us consider how such
cost functions can be constructed. We have argued in section 5.2.1 that if « is provable
then Kiga can be inferred. We have posed the question if natural number n can be
determined such that the stronger sentence K'a can be assumed as a postulate. It
is not yet known whether or not the provability problem for Kﬁ is decidable, so we
restrict our attention to certain subclasses. Let a be an objective formula. Then it
can be decided in time 2/, as we know from complexity theory. If an agent is able
to recognize objective formulae and to select a special procedure to compute them, he
can derive reliably each objective tautology « in a time proportional to 2/,

Interestingly, the previous analysis can be used by an agent within the system in
order to reason about himself or about other agents, provided that he has a built-in
mechanism to calculate the complexity of reasoning problems. (Such a mechanism can
be adopted easily by an agent.) Assume that an agent k tries to find out how long
agent ¢ will need to infer a formula « if he chooses to. It is plausible to assume that
k can recognize relatively easily that «a belongs to the class of objective formulae, so
he can reason about agent i exactly like we did before to find out that the time agent
i needs is proportional to 2/l°ll. Generally, & does not know i’s computation speed.
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However, he may obtain that information from external sources or through his own
observations. If & knows the computation speed of i, he will be able to compute the
amount of time needed by 7 to infer . In other words, he can calculate f;(«) for any
objective formula a. But to estimate the time ¢ would need to derive «, agent k does
not have to actually derive it. He has only to recognize the class that « belongs to and
then to calculate the complexity of «, which can be accomplished in linear time. So
K,s’”*(”a”) (Kiaoz — Kifi(a)a) is a plausible postulate, where ¢ is the computation speed
of k.

Hence, the definition of the complexity function for ¢ € Agent may include the
following clauses: for all objective formulae o

o fi(a) = cix 2l

o fi(Kla) = fi(Kia) = c; * ||a|| for all n € w and all agents k

The complexity of the decision procedures for normal modal logic has been investi-
gated extensively ([HM92].) It has been shown (cf. theorem 28) that modal epistemic
logic can be embedded faithfully to our systems of algorithmic knowledge, i.e., there
is a fragment of the language £4% which can be translated one-to-one to modal logic.
Consequently, the complexity results obtained for normal modal logic can be applied
to determine the cost of solving problems which can be formalized in that fragment.
In that way the cost function f; can be specified for that fragment.

5.2.4 Complexity and the lack of knowledge

It is often important to know not only what an agent knows, but also what he does
not know within a certain time limit. An agent’s lack of knowledge may restrict his
choices, so his action could be predicted or explained accordingly. For instance, consider
a rational, utility-maximizing agent which must complete a task under certain time
constraint. Moreover, suppose that computing a plan for doing that job is relatively
easy, but computing the optimal plan is known to be a very hard problem which cannot
be accomplished under the given constraint. (Many optimization problems belong to
that category.) Then it is rational to find and execute another plan, and not to attempt
to compute the optimal plan at all.

Another example may illustrate our considerations. When we use public-key cryp-
tography to encrypt a message, we want to be sure that someone without the secret
key will not be able to know its content within reasonable time — although he can
in principle infer it from the public key. The expectation that our message cannot be
quickly decrypted is based on the complexity of the reasoning required.

The absence of certain information can be deduced from the presence of other
information, utilizing some assumptions about agents’ consistency. There is, however,
another method for reasoning about the lack of algorithmic knowledge. The expectation
that something cannot be known within some time limit is based on the complexity of
the reasoning required. We use lower complexity bounds to estimate the least amount
of time that an agent would need to infer some sentence, and so to infer what he cannot
reliably know within some given limit of time.
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For reasoning about what agents cannot infer under some constraints we define for
each agent a partial function f; : LAK s w. Intuitively, fi(a) is the minimal amount
of time that i needs to compute a. Once such a function has been specified, any

formula —|Kz-f z{(O‘)a can be assumed, independent of the truth value of Kfa. Even if ¢
will eventually succeed to infer , the computation lasts longer than f](«).

With the ability to reason about algorithmic knowledge or the lack thereof, agents
can develop intelligent inference strategies to solve problems under time constraints.
The logics of algorithmic knowledge can be implemented and executed directly. When
an agent ¢ has to solve a problem «, he checks first if a belongs to a known problem
class C. If not, a “universal problem solver” (for any problem that can be described
in the language) is activated, and i can only hope to find the solution quickly. But
if @ € C, 1 may estimate its complexity and then decide if the optimal solution can
be obtained in time or if some heuristics is needed. Based on that information he can
then choose a procedure to solve a. Other agents can also reason about ¢ and about
the problems he has to solve to explain or predict his actions accordingly.

5.3 Modeling resources other than time

Until now I have focused solely on a single type of resource, namely time. However, an
agent normally needs other resources besides time for solving a problem. For formal-
izing temporal constraints we have used natural numbers with the standard ordering
relation to measure and to compare quantities of the resource time. We have estab-
lished logical relations between statements built up from formulae of the form Ko
(“n time units are sufficient for agent 7 to compute o”.) Now I shall outline how other
resources needed for modeling a certain domain can be represented, provided that they
are measurable.

Consider situations where m different types of resources are significant, where m is a
fixed natural number. We extend the framework of algorithmic knowledge in a natural
way. Assume that the resources of each type can be measured using natural numbers
(and hence can be compared by means of the standard ordering.) Instead of the one-
dimensional time line used previously we consider an m-dimensional resource-space for
representing resources. This means that the totality of resources that an agent has at
his disposal is represented by an m-tuple (n1,...,n,,) of m natural numbers. The fact
that m1 unit(s) of resource Rj, ny unit(s) of resource Ry, and so on, are sufficient for
an agent i to reliably compute « is formalized by the formula K" q. That is, if
agent i chooses to compute « and if he has at his disposal nj; unit(s) of resource Ry,
for Kk = 1,...,m, then he will succeed in establishing «, consuming no more than the
specified amounts of resources. Similarly, the formula Kz-aa now reads: “agent ¢ is able
to compute reliably « using finite amounts of resources.”

A meaningful ordering relation on our m-dimensional space can be defined compo-
nentwise as follows: (n1,...,ny) < (n},...,n,,) if and only if ny < nf,...,ny <nl,.
(It can be easily verified that < is in fact an ordering relation.) The strict ordering <
is defined in the obvious way. It is well-known that < and < directed, but not linear.
The arguments used in section 5.2 to justify statements about the resource time can
be used again to show that similar axioms hold in the case of m resources.
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Chapter 6

Conclusion

6.1 Summary

One of the principal goals of agent theories is to describe realistic, implementable
agents, that is, those which have actually been constructed or are at least in principle
implementable. That goal cannot be reached if the inherent resource-boundedness of
agents is not treated correctly. Since the modal approach to epistemic logic is not suited
to formalize resource-bounded reasoning, the issue of resource-boundedness remains one
of the main foundational problems of any agent theory that is developed on the basis
of modal epistemic logic.

My work is an attempt to provide theories of agency with a more adequate epistemic
foundation. It aims at developing theories of mental concepts that make much more
realistic assumptions about agents than other theories. The guiding principle of my
theory is that the capacities attributed to agents must be empirically verifiable, that
is, it must be possible to construct artificial agents which satisfy the specifications
determined by the theory. As a consequence, the unrealistic assumption that agents
have unlimited reasoning capacities must be rejected.

In my opinion, resource-bounded reasoning cannot be formalized correctly by re-
stricting the agents’ rationality. That is, all attempts to model realistic agents by
denying them the use of certain logical rules must be regarded unsatisfactory. The lack
of resources does not circumvent an agent from using any of his inference rules. What
can be restricted is not the number of logical laws but the number of times they can be
applied. Therefore, the correct way to formalize resource-boundedness is to model how
the availability of resources (or the lack thereof) can influence an agent’s computation.

To achieve the goal of describing resource-bounded agents accurately, the cost of
reasoning must be taken seriously. In the thesis I have developed a framework for mod-
eling the relationship between knowledge, reasoning, and the availability of resources.
I have argued that the correct form of an axiom for epistemic logic should be: if an
agent knows all premises of a valid inference rule and if he performs the right reason-
ing, then he will know the conclusion as well. Because reasoning requires resources,
it cannot be safely assumed that the agent can compute his knowledge if he does not
have enough resources to perform the required reasoning. I have demonstrated that
on the basis of that idea, the problems of traditional approaches can be avoided and
rich epistemic logics can be developed which can account adequately for our intuitions
about knowledge.

53
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As a first step, in chapter 4 I have investigated how the explicit concept of knowledge
can be represented. I have developed systems of explicit knowledge that can solve
the logical omniscience problem of epistemic logic and at the same time account for
the agents’ full rationality. The agents are non-omniscient, because their actual (or
explicit) knowledge at a single time point needs not be closed under any logical law.
It is even possible that at some information states they do not know any logical truth
at all. On the other hand, they are non-ignorant, because they are capable of logical
thinking. They can use their reasoning capacities to infer new information from what
they already know. Their rationality is not restricted by any artificial, ad hoc postulate
saying that their inference mechanisms are incomplete.

In the next step (chapter 5) I have introduced algorithmic knowledge — a concept of
knowledge that is suited for establishing direct relations between and agent’s available
resources and his knowledge. I have argued that the proposed algorithmic concept of
knowledge can serve as a basis for action. The main idea is to consider how much
resources an agent will need to compute the answer to a certain query. That question
can be answered by combining epistemic logic with a complexity analysis. Following
this strategy I have developed systems for reasoning about algorithmic knowledge which
can describe non-omniscient, albeit fully rational agents. Moreover, the defined systems
have enough expressive power to formalize quantitative constraints.

6.2 Related works

My work is complementary to other approaches to resource-bounded agents (e.g.,
[Kor98]) in the following sense: instead of trying to find near-optimal solutions to
some specific problem (or class of problems) I try to model the control mechanism
used by an agent to select a suitable action sequence for the given situation. Such
a mechanism could be used, e.g., to decide if in a certain situation it is necessary or
desirable to trade quality of results for time or other resources.

Most theories of agency have tried to integrate knowledge and time in a single
framework. However, in most cases some modal epistemic logic is combined with some
temporal logic, yielding a hybrid system that can at best be used to describe implicit
knowledge. There are in fact very few works that treat time as a valuable resource for
computing knowledge. In the following I shall discuss briefly some other attempts to
investigate the relation between knowledge and reasoning actions and the evolution of
knowledge over time.

Elgot-Drapkin et. al. ((EDMP91], [NKP94]) developed what they called step-logics
(later renamed as active-logics) to model the reasoning of agents over time. The under-
lying intuition of their approach is that an agent can carry out one step of reasoning at
each time step: if two premises of a rule are known at some point then the agent will
apply the rule to know the conclusion at the next point. For example, if both « and
(B are known at time ¢ then their conjunction is known at time ¢ + 1, so the formula
Kla A K!B — KT (a A B) is assumed as an axion.

Although the step-logics framework takes the cost of reasoning into account, this
is not done consequently. Therefore, the assumptions about the agents’ reasoning ca-
pacities are too strong. For example, the knowledge necessitation rule (“agents believe
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all logical truths”) and the congruence rule (“agents believe all logically equivalent for-
mulae of his beliefs”) are valid. Moreover, if & — 3 is provable and « is known at time
t, then ( is known at time ¢ + 1, however complex the derivation of § from « may be.
Finally, unlimited space and parallelism must be assumed implicitly in order to justify
an axiom like Kla A K!3 — Kﬁl(a A B): it is supposed that any logical consequence
which can be derived in one step is actually derived after one time unit. Thus, the
step-logics framework suffers from several strong forms of logical omniscience.

Stelzner ([Ste84]) discussed a number of epistemic concepts, their role in rational
discourses and their dependency on parameters such as time, agent, context. He pro-
posed a family of logics to formalize the concept of a (hypothetical) obligation to defend
some asserted sentence. That concept is related to the concepts of knowledge and belief
in the following way. In a rational discourse, if an agent asserts some sentence, then
he has the obligation to defend it when it is challenged, because he has made public
through his assertion that he believes in the sentence. The obligation to defend the
sentence is only hypothetical, because it does not arise if the agent’s assertion is not
challenged.

To qualify as rational, the agents in a discourse must satisfy certain conditions. A
rationality postulate may say, for example, that if an agent is obligated to defend «
at time ¢ and if 8 can be inferred from a by one inference step, then the agent can
be obligated to defend B at time ¢ + 1. Hence, K}(a A f) — K. ™'a is assumed as
an axiom. (A time line isomorphic to the set of natural numbers, generated by the
consecutive “moves” in the discourse, is assumed.) With the aid of such axioms one
can classify agents according to their rationality.

If interpreted as logics of knowledge, Stelzner’s logics could be regarded as formaliza-
tions of the concept of implicit knowledge, but not of explicit knowledge. A statement
such as K!(aAB) — K™ a may be more acceptable than the axiom K}(aAf) — K}(a),
but it is still too strong for the notion of actual knowledge.

Halpern, Moses, and Vardi ([HMV94]) developed a general framework for modeling
knowledge and computation. It is assumed that at any state, an agent has some local
data and exactly one local algorithm which is defined for all formulae and always
terminates with one of three possible answers “Yes”, “No”, or “7”. Intuitively, “Yes”
means that the formula in question is the agent’s implicit knowledge, “No” means that
it is not, and the answer “?” means that the agent is unable to determine whether or
not the formula follows from all what he knows. At any state, the agent is said to know
a fact if the output of his local algorithm is “Yes” when running on that fact and his
local data. In other words, he can compute that he (implicitly) knows that fact. This
notion of knowledge is called algorithmic knowledge by the authors. A local algorithm
of an agent 1 is said to be sound if for any formula « and any local data, the answer
“Yes” implies that « is in fact ¢’s implicit knowledge at the state in consideration,
and the answer “No” implies that he does not know « implicitly at that state. The
algorithm is called complete if it does not return the answer “7”.

Obviously, if the employed algorithms are not complete then logical omniscience is
avoided, so some aspect of resource boundedness can be modeled. The authors view
their concept of knowledge as a kind of explicit knowledge. However, an agent cannot
really act upon that knowledge immediately because that information must be inferred
first. Hence, that kind of knowledge may not suffice to justify an agent’s actions if he
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needs to act before the computation is completed. Moreover, under certain circum-
stances that concept of knowledge exhibits certain properties of implicit knowledge. In
fact, as the authors pointed out, their notion of algorithmic knowledge coincides with
implicit knowledge when sound and complete algorithms are employed.

The framework of Halpern et. al. specifies a general epistemic language which can be
used to describe a large number of situations where computing knowledge is involved.
However, it does not really specify a logic for reasoning about knowledge: because their
notion of an algorithm is too general, their class of models is too large, therefore no
genuine epistemic statement is valid in all models. There seems to be no easy way
to make their concept of knowledge more specific so that epistemic inference relations
can be established. My framework differs from that of [HMV94] in that aspect: I have
shown that certain epistemic statements are valid for intelligent, resource-bounded
agents. The epistemic consequence relations defined in my framework justify inferences
about agents once a general rationality assumption has been made.

In the literature on belief revision some authors have considered belief-changing ac-
tions. For example, Van Linder, van der Hoek and Meyer ([vLvdHM95a], [vLvdHM95b])
have done some work to formalize the change of knowledge through actions. However,
they made very strong assumptions about knowledge: their agents are logically omni-
scient. The actions they consider lead from one deductively closed belief set to another.
Thus, their work should be read in terms of information dynamics, and not knowledge
dynamics.

6.3 Future directions

The proof systems defined for explicit knowledge (chapter 4) and algorithmic knowl-
edge (chapter 5) provide a procedural semantics for these concepts. It remains an open
problem to develop an intuitively acceptable declarative semantics for them. Although
it is possible to develop a model theory along the lines of [Ho95] and to prove com-
pleteness of the specified systems with respect to those models, such a model theory
is simply a reformulation of the procedural semantics and not very useful. It does not
provide us with a tool to determine if all (semantically) valid epistemic statements have
been captured by the proof system, and it does not allow us to analyze the concepts
of knowledge and belief in terms of simpler, more fundamental concepts. But this is
exactly what a well-motivated and intuitively acceptable semantics should do.

Semantics has also proved helpful for studying the complexity of modal epistemic
logic. The complexity analysis for the specified logics of explicit and algorithmic knowl-
edge remains an open issue. It is hoped that their complexities can be determined by
embedding them into systems whose complexities are known.

The investigated logics of explicit knowledge (DEK y and its extensions) have been
monotonic in two aspects. First, their consequence operations are monotonic. Second,
the knowledge of the agents always grows over time. A very interesting, still open
problem is to develop logics of explicit knowledge based on non-monotonic logic, where
the agents can revise their knowledge when they find out that their knowledge is in-
consistent. We may expect to find interesting connections with two other, very active
fields of AT research, viz. to non-monotonic reasoning and to the logic of belief revision.



§6.3 Future directions 57

This seems to be a promising field of research and needs further investigations.

My study of algorithmic knowledge has concentrated on a single time point in the
real time line. A formula like K'« is primarily a statement about the agent’s 7 current
ability to compute knowledge. It does not say anything about his actual knowledge
n time units from now — except for the case n = 0. An interesting problem is to
relate an agent’s algorithmic knowledge at different time points to each other. Let me
elaborate that issue in some more details.

Let the integers be the representation of the objective time structure (“real time
line”, “real world history”). For any integer ¢ we shall write K7 instead of Kl'a to
make clear that ¢ is the time point under consideration. That is, if at time ¢ the agent ¢
starts computing a then he will needs at most n time units to complete the task, so he
will succeed at ¢t +n at the latest. The question is how the inference relations between
an agent’s algorithmic knowledge at two different points can be formalized.

Consider the simple case n = 0 first. Can we assume that an agent’s explicit
knowledge persists over time? For example, is the formula K?,ta — Kz-o,t Lo valid? As T
have argued in chapter 4, such a persistence axiom cannot be assumed for all formulae.
So we may ask under which circumstances those persistence axioms are valid, or if
certain default inference rules can be used for reasoning about the evolution of explicit
knowledge over time.

A related question is how an agent’s reasoning capacities change over time. If at
time ¢ he needs n time units to compute «, will it remain true at time ¢ + 17 That
is, is the formula Kjo — Kj;, ;o valid? This is apparently not true universally,
since the truth-value of a may not be the same at different states. Moreover, at time
t + 1 the agent ¢ may need more time to compute the same query. Nevertheless, it
seems plausible to assume that an agent’s reasoning capacities do not decrease over
time. Under this assumption, the mentioned formula may be valid if @ has a certain
syntactic structure, e.g., if a is objective and does not contain any negation sign.

Finally, the connection between K}, and th 1 is worth examining. The former
formula says that « is implicit knowledge of agent ¢ at time ¢, and he has the capacity
to make it explicit if he chooses to do so and if he has enough resources to carry
out his computation, in this case n time units. The latter formula says that o has
actually become explicit knowledge of 7 at time ¢ + n. A framework for reasoning
about knowledge and action should be able to formalize the agent’s ¢ computation of
a between t and t + n.

To summarize, an agent’s algorithmic knowledge at different moments can be re-
lated to each other through certain consequence relations. The concrete conditions
under which such inferences may be drawn must be examined carefully. It can be ex-
pected that default logic and other mechanisms of non-monotonic reasoning can help
to specify consequence relations for algorithmic knowledge.
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Appendix A

Propositional modal, temporal,
and dynamic logic

A.1 Modal logic

In this section we shall review modal logic briefly. We shall only define the syntax
and semantics of the basic propositional systems and state without proofs some of the
most basic results about them. More complete overviews of the subject can be found
in [HC96], [Che80], or [Gol87].

A.1.1 Sytax of modal logic

The language of propositional modal logic is formed by extending that of the proposi-
tional calculus by an one-place modal operator O. Formally:

Definition 31 (Modal language) Let Atom be a nonempty set of atomic formulae.
LM is the least set such that

1. Atom C LM
2. If a € LM then —~a € LM
3. fae LM and B € LM then (o — () € LM

4. If @ € LM then Oa € LM

The formula O« is read: it is necessarily true that «. The possibility operator
is introduced as an abbreviation: oa =gy -O-a. If T' C LM is a set of formulae
then O(T') denotes the set {TJa : a € I'}. We stipulate that the modal operators bind
more strongly than the Boolean connectives. Furthermore, we introduce the following
abbreviations:

0% =def O

for all m > 0 and a € LM.

59
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All the modal systems we consider are formed by adding to a complete axiomati-
zation of the propositional calculus some specific modal axiom schemata and rules of
inference. We shall consider some modal logics determined by axioms and rules from
the following lists:

(PC) All propositional tautologies

(MP) Modus ponens: from « and o —  to infer
(K) Da A D(a— §) -+ 08

(T) Da — «

(D) Do —» O«

(4) Oa — 00«

(5) “Oa — O-0O«

(N) O(aV -a)

(C) DaAOB — O(aAp)

(G) oOa = 0o

(NEC) From « to infer Oa (Necessitation)

(MON) From a — S to infer Do — O8 (Monotony)
(CGR) From a <> 3 to infer Oa <> OF (Congruence)
(RK;) From a; A...ANay — 0 to infer Oag A ... AOa, — O, for alln € w

Instead of using (PC) for defining a logic to include all tautologies, it would suffice
to include a set of schemata from which all tautologies can be derived by appropriate
rules of inference, e.g., modus ponens. An example of such a set of schemata is:

(PC1) a— (8 — a)
(PC2) (a— (B—7) = ((a—=B) = (@—7))
(PC3) (-8 — —a) = (a— f)

Let (A) be one of the axiom schemata listed above and a the formula named
(A). Then O“(A) denotes the set {0« : i € w}. For example, O0“(K) is the set
{0Y(0aAD(a— B) - 0B) i € w}.

A modal logic (over the language £M) is called classical if it is closed under the
rule of congruence (CGR). The minimal classical logic, which is axiomatized by (PC),
(MP), and (CGR), is denoted E. A modal system is called monotonic if it is closed
under the monotony rule (MON). The minimal monotonic logic, which is axiomatized
by (PC), (MP), and (MON), is called M. A modal logic is called normal if it contains
the schema (K) and is closed under the rule of necessitation (NEC). Some equivalent
axiomatizations of the minimal normal modal logic K are given in the following.
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Lemma 32 The following axiom systems are equivalent axiomatizations of the logic
K:

(PC), (MP), (K), and (NEC).

(PC), (MP), and (RK,)

(PC), (MP), (C), (N), and (MON)

(PC), (MP), (K), (N), and (CGR)

Ov(PC1), O¥(PC2), O0¢¥(PC3), 0¥(K), and (MP)

The last of the above axiomatizations is less common than the other. It is however
of interest for epistemic logic because none of the inference rules (NEC), (MON),
and (CGR) is required.

It is easy to see that every monotonic logic is also classical, and every normal logic
is also monotonic logic and classical. In particular, one can show that E is a proper
subsystem of M, and M is in turn a proper subsystem of K, i.e., EC M C K.

Additional normal (monotonic, classical) systems of modal logic can be formed by
adding axioms to the basic systems K (M, E). The new systems are often named by
appending the names of the additional modal axioms used to the name of the basic
system, e.g., EK is the logic E together with the axiom K; the logic EK together with
the axiom 4 is called EK4; and KD45 is the logic K together with the axioms (D),
(4), and (5). Some modal logics are better known under their historical names, in
particular, K'T4 is known as S4, KT4G as S4.2, and KT45 as S5.

A.1.2 Semantics for normal modal logic: Kripke models

Normal modal logics can be given a nice semantics by means of Kripke models, also
known as possible worlds semantics.

Definition 33 (Semantics for normal modal logics) A Kripke model is a struc-
ture M = (S, R, V) where

1. S is a nonempty set (called the set of possible worlds, or states),

2. R C S x S is a binary relation on S (called the accessibility relation, or alterna-
tiveness relation), and

3. V is a valuation function V' : Atomn — Pow(S).

The satisfaction relation = is defined recursively over the complexity of formulae
as follows:

o M,s = ¢ iff s € V(¢), for all atomic formulae ¢ € Atom
o M,s|=—aiff M,s [~ a, ie., it is not the case that M, s | «
e MsEa—pift M,slEFaor M,sEpS
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e M,s =0« iff for all t € S, sRt implies M,t = «

M, s |= a is read: « is true (or satisfied) at state s in model M.

Let C be a class of models for the language £M. A formula o € LM is said to be
satisfiable with respect to C if it is true at some state in some model in C; otherwise it
is unsatisfiable. The reference to the class C of models can be omitted if it is implicitly
understood which class is meant. A formula « is called valid in a model M, in symbol
M = a, if it is true at all states of M. It is called valid with respect to some class of
models C, denoted ¢ «, if it is valid in all models of that class.

Probably the most important reason for the popularity of possible-worlds semantics
is that common modal axioms correspond exactly to certain algebraic properties of
Kripke models in the following sense: an axiom is valid in a model M if and only
if the alternativeness relation of M satisfies some algebraic condition. (In fact, the
correspondence holds on a higher abstraction level, the level of frames, consult [vB84]
for details.) In particular:

e (T) holds iff R is reflexive

e (D) holds iff R is serial

e (4) holds iff R is transitive
e (5) holds iff R is Euclidean
e (G) holds iff R is directed

The common normal modal logics can be characterized by appropriate classes of
Kripke models. In the following theorem, a Kripke model is said to be reflexive iff its
accessibility relation is reflexive, and so on.

Theorem 34 1. The minimal normal system K is determined by the class of all
Kripke models: Fk «a iff « is valid in all Kripke models.

2. KT is determined by the class of reflexive Kripke models
KD is determined by the class of serial Kripke models

S4 is sound and complete wrt the class of reflexive, transitive models.

erok oW

S5 is sound and complete wrt the class of models where the accessibility relation
is an eqivalence relation.

6. KD4 is determined by the class of serial and transitive models.

7. KD45 is sound and complete wrt the class of serial, transitive, and Euclidean
models.

The common normal propositional modal logics are conservative extensions of clas-
sical logic: if a formula « does not contain any occurrence of the modal operator then
it is provable in a system mentioned in the previous theorem if and only if it is provable
in the propositional calculus.
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A.1.3 Montague-Scott semantics

Kripke models as defined above cannot account for non-normal modal logics. To de-
velop an adequate semantics for classical (and monotonic) modal logics we need a
generalization of Kripke sematics, the so-called neighborhood semantics (also known
as Montague semantics, or Montague-Scott semantics). A complete overview of the
basic model theory of classical systems is found in [Che80].

Definition 35 (Semantics for classical systems) A neighborhood modelis a struc-
ture M = (S, N,V) where

1. S is a nonempty set, called the set of worlds

2. N: S+ Pow(Pow(S)) is a function from S to the powerset of the powerset of
S.

3. V : Atom — S is a valuation function
Satisfaction is defined as in definition 33 except that:
o M,s=0aiff {t€ S: M,t=a}e N(s)

Intuitively, N(s) consists of the intensions of all formulae which are necessary at
s, where the intension of a formulae is the set of all worlds where it is true. Thus,
something is necessarily true at a world if and only if its intension is contained in the
set of intensions of formulae considered necessary at that world.

Theorem 36 The minimal classical system E is sound and complete wrt the class of
all neighborhood models.

Semantics for extensions of E, including the common monotonic and normal logics,
can be obtained by restricting the class of neighborhood model through appropriate
conditions ([Che80]). For example, EK is determined by the class of all neighborhood
models satisfying the condition: for all X, Y C Sand s € S, if (S\ X)UY € N(s) and
X € N(s) thenY € N(s).

A.1.4 Basic temporal logic

The reading of the operator O as “always in the future” (and accordingly, ¢ as “some-
times in the future”) has proved plausible for many modal logics. Those systems are the
most simple temporal (or tense) logics. Semantically, the “possible worlds” of a Kripke
model are interpreted as moments in time, and the accessibility relation is viewed as
the the relation “later than”.

Clearly, not all algebraic properties that can be imposed on binary relations are
meaningful under a temporal interpretation. The most interesting properties are those
characterizing ordering relations. Transitivity is probably the most basic condition that
can be placed on the relation “later than”, so it is typically assumed that temporal
structures are transitive. Accordingly, the minimal temporal logic is axiomatized by
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adding to system K the axiom (4), which corresponds to transitivity. That system is
denoted K4, with the subscript ¢ indicating that a temporal logic is being considered.

More complex logics of time are usually developed on the basis of richer languages.
Typically, some past operators are also considered. Different, often incompatible mod-
els of time can be developed by adopting appropriate axioms. For example, time can
be assumed to be linear or branching, discrete or dense, limited or unlimited. For more
complete overviews consult [Bur84], [Eme90].

A.2 Propositional Dynamic Logic

The formal language of Propositional Dynamic Logic (PDL) is built up from two sets
of primitive symbols, a countable set At of atomic formulae and a countable set Prg
of atomic programs. The set of formulae is the least set containing A¢ and is closed
under the rules: if @ and § are formulae then —a and o — ( are formulae; if « is a
formula and z is a program then [z]a is a formula. The set of programs is the least
set containing all atomic programs and closed under the rule: if  and y are programs
then z;y, £ Uy and z* are programs; if « is a formula then a? is a program.
The dual operator to [z] is defined as follows:

(z)a =ges ~[z]-a
The intuitive reading of the program connectives and the formulae are as follows:
e z;y: “perform z and then 4” (composition)
e zUy: “do either z or y” (non-deterministic choice)
*

e z*: “perform z finitely many (including zero) times” (iteration)

a?: “test if a currently holds”

[z]a: “a always holds after z is performed”

(r)a: “sometimes after z is performed, « holds”.

A PDL-model is a structure M = (W, R,V), where W is a non-empty set, R is a
function which assigns to every program z a binary relation R(z) on W, and V is a
valuation function which assigns to every atomic formula ¢ a subset V(¢) of W.

The satisfaction relation “« is true at point s in model M”, denoted M, s = a, is
defined inductively on the formation of « as follows:

1. M,s = ¢ iff s € V(¢) for any atomic formula ¢
2. M,s E-aiff M,s [~ a, i.e., it is not the case that M,s = «
3. M,sEFa—piff M,sEaor M,s =0

4. M,s |= [z]a iff for all t € W, if (s,t) € R(z) then M, s = «
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To preserve the intuitive reading of the program connectives, the following formal
requirements must be met:

R(a?) ={(s,s) e Wx W : M,s = a}

Well-known results say that PDL is decidable and finitely axiomatizable (cf. [Har84],
[Gol87], [KT90]). A complete axiomatization consists of the following axioms and in-
ference rules:

(A0) All propositional tautologies

(A1) [zlaAfz)(a— B) = [z]8

(A2) [z3y]a <+ [z][y]e

(A3) [zUyla < [z]a A fyla

(A4) [z*]a — aA[z]a

(A5) [z*]a — [z¥][z*]a

(A6) [z"](a = [z]a) = (a = [2"])

(A7) [@?]B ¢ (a— B)

(R1) If @ and o — 3 are theorems, then f is a theorem

(R2) If v is a theorem, then so is [z]a

It can be shown that the axiom (A5) is still valid if R(z1) = (R(z))T, i.e., if the
program construct z* is interpreted by the transitive closure of the relation correspond-
ing to z, and not by the reflexive, transitive one. This fact explains how the minimal
temporal logic of transitive time K;4 (with only the future operators) can be embedded
into dynamic logic: the temporal operator “always in the future” is interpreted by the
operator [z*], where z is any (atomic) program.
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Appendix B

Formal Proofs

Theorem 21

L. Kia A(F))Ki(a = B) = (F) K
(2) K;a N (F,)Kz(a — ,6) — [F«L]KZOA A (Fz)Kz(a — ,3)
(3) [Fi]Kia A (Fy)Ki(a — ) = (F) K8
(4) Kia A (F;)Ki(a — B) = (Fi) K

2. Kia A (F) KB — (F;) Ki(a A B)
(1) Kia — [F]K;a
(2) K,a A <E>Kz/8 — [FZ]KZ(X A <E)KZ,3
(3) [Fi]Kia A (F;) K8 — (F;) Ki(a A B)
(4) Kia ANF)K;8 — (F;)K;(a A B)

3. Kia ANK;8 — (F;)Ki(aAp)
(1) Ki — (F)Kp
(2) Kia NK;f = Kia A (F;)K;3
(3) Kia ANF) KB — (F;)Ki(a A B)
(4) KiaNK;B — <F1>Kz(a A ﬂ)

4. Ki(a A B) = (F;)(Kia A K;f3)

) Ki(a A ,3) — (E)Kza

) Ki(a AB) = [F]Ki(aAp)

) Ki(a A ,3) — <FZ>KZOz A [F,]Kz(a A ﬁ)
) Ki(aAB) = (F)(Kia A Ki(a A B))

) Kia — [F,]Kza

) Ki(aAB) = (F) K

) Kia A Kz(a A ﬂ) — [E]K,Oé A\ <F’Z>Kzﬁ
) [Fi]Kia A (F) K8 — (F;) (Ko A K ()
) Kia A Ki(a A B) = (F;)(Kia A K;B)
0) (F)(KiaAKi(aApB) = (F){F)(KiaAK;3)
1)  Ki(aApB) = (F){F;)(Kia A K;3)

2)  Ki(aApB) = (F)(KiaAK;B)

5. (Fi)Ki(a A B) = (F)(Kia A K;B)
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1) Ki(aAB) = (F)(Kia A Kif) Th. 21.4.
(2) (Fi)Ki(a A B) = (F;)(F;)(Ka A K;B) (1), K4
(3) (Fi)Ki(a A B) = (F)(Kia A K;B) (2), K4
Theorem 22
1. (F)Kija N (F)K;(a — () = (F;)K;(.
(1) (Fi)Ki(a — B) = (F)[Fi]Ki(a — B) (DE2), K4
(2) (Fi)Ki(a — B) = [Fi|{(F;)Ki(a — ) (1), (TL3)
(3) (Fi)K;a N (F})K;(a — B) = (Fi))K;ja A [F)(F;)Ki(a — B) (2)
(4) (Fi)K;a N [F(F)Ki(a — §) = (F)(K;a A (F)K;i(a — () K4
(5) (Fi)Kia A (F;)Ki(a — 8) = (F)(Kia A (F)Ki(a — ) (3), (4)
(6) KiaN(F)Ki(a — 8) — (F) K8 Th. 21
(7) (Fi)(Kia A (Fy)Ki(a — B)) — (F)(F;) K8 (6), Ki4
(8) (Fi)(Kia N (F;)Ki(a — B)) = (F;)(F;) K8 (5), (7)
9) (Fi)(F3) KB — (Fi) K8 K4
(10) (Fi)Kia N (Fi)Ki(a — ) — (F;) K8 (8), (9)
2. (Fy)K;a N (F)K;8 — (F;)Ki(a A B)
(1) (Fi)Ki3 — (F;)[Fi]| KB (DE2), K4
(2) (Fi)KiB — [Fi[(F;) K3 (1), (TL3)
(3) (Fi)Kia A (Fi) K8 — (F;) Ko A [F](F) K8 (2)
(4) (Fi)Kia A [F)(F) KB — (F;) (Ko A (F;) K; 3) K4
(5) (Fi)Kia NFi) K8 — (Fy) (Ko A (F;) K 3) (3), (4)
(6) Kia N {F;) KB — (F;)(Kia A K;5) Th. 21
(7) (Fi) (K A (Fy) K B) — (Fi) (Fi) (Ko A Kif3) (6), Ki4
(8) (Fi)Kia A (Fi)Kip — (F)(F;) (K A K;B) (5), (7)
9) (Fi)(F)(Kia AN K;iB) — (F)(Kia A K;3) K4
(10) (F)KaN(F)Ki(a — p) = (F;) K3 (8), (9)
Theorem 28

We prove the first correspondence. That is, we shall show that « is Ky-provable if
and only if ¢r(a) is K4-provable. The other results are obtained in the same way.

First, we show that the translation of every Ky-theorem is a Kﬁ-theorem. Let
be a theorem of Ky. We show inductively over the length of the proof of o in Ky
that tr(c) is a theorem of K4.

Assume that « is one of K y-axioms, i.e., it is either a propositional tautology or an
instance of the schema K. In the former case tr(«) is also a propositional tautology, and
in the latter case tr(«a) is an instance of (K4), so in any case tr(«) is a K4 -theorem.

Now suppose that « has been derived by applying modus ponens to 8 and § — «.
By induction hypothesis, both #r(3) and tr(8 — «) are K4-theorems. By definition,
tr(B — a) is tr(B) — tr(a), so in K4 we can apply modus ponens to infer tr(c).

Finally, suppose that o has been derived from 3 using the knowledge necessitation
rule (NEC), i.e., a is K;3 and 3 is a Ky-theorem. Then tr(3) is a theorem of K4,
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by induction hypothesis. According to the definition of tr, tr(a) is K tr(3), which can
be derived from the theorem tr(B3) by applying the rule (NEC4). Hence, tr(a) is a
K4 -theorem.

To prove the converse, we define the inverse function tr=! : L4 +— LK of tr as
follows:

~1(¢) = ¢ for all ¢ € Atom
—a) = —tr~'(a)

(
(
r e ) =tr~H(a) > trH(B)
(
(

-1

o tr 1(K'a) = K;(tr~!(a)), for alln € w
o tr ! (Kja) = K;(tr~' (@)

It is easy to see that tr~(tr(a)) = « for all & € LY. However, the converse does not
hold: generally tr(tr !(a)) and « are different formulae. For instance, tr(tr—*(K!'¢)) =
tr(Ki(tr—1(9)) = tr(Ki¢) = K3¢ # Ko,

Assume that tr(a) is provable in K4. Then there is a K4-proof leading to
tr(a), i.e., there is a sequence f,..., 0B, of K4-formulae such that 3, is tr(a) and
each By (k = 0,...,n) is either an axiom of K% or is derived from previous for-
mulae in the sequence using one of the inference rules. We show that the sequence
tr=1(Bo),...,tr"*(B,) is a proof of o in Ky.

Suppose that [ is axiom of Kﬁ. If B is a propositional tautology then so is
tr=1(B). If By is an instance of (K#) then ¢tr—1(f) is an instance of (K). If 3} is an
instance of (P4) or (Q#4) then ¢tr—1(8;) is a propositional tautology.

Suppose that 34 is derived from 3 and 8 — B by modus ponens. Then tr1(3;)
and tr~1(8;, — Bi) are Ky-theorems, so tr~!(8) can be inferred from tr~1(3) and
tr=1(8) — tr~1(B) (which is by definition the same formula as tr=(3 — B%)-)

Finally, let 84 be derived from §; by applying (NEC#). Then 8 is K;3, hence
tr—1(Bg) is K(tr—1(8)), which can be derived from tr—'(43;) using (NEC).

Thus, in any case tr *(3) is a theorem of Ky. As observed earlier, tr 1(8,) =
tr=!(tr(a)) = a. So « is a theorem of Ky. This completes the proof.
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