Physiologische Ursachen für das Verhalten belastungsspezifischer EKG Charakteristika im Vergleich zu anderen Kenngrößen der Belastung

An der Sportwissenschaftlichen Fakultät der Universität Leipzig

eingereichte

DISSERTATION

zur Erlangung des akademischen Grades Doctor philosophiae (Dr. phil.) vorgelegt

eingereicht von:	Dipl. Sportlehrer Sven Fikenzer
	geb. am 25.09.1975 in Karl-Marx-Stadt

Gutachter:	Prof. Dr. Dr. med. M.W: Busse
	Prof. Dr. med. U. Tegtbur
	PD. Dr. med. M. Thomas

Tag der Verleihung:27. Januar 2009

Danksagung

Mein Dank gilt all denjenigen Menschen, die mir bei der Realisierung dieser Arbeit mit Rat und Tat zur Seite standen, insbesondere danke ich Herrn Professor Dr. med. habil. M. W. Busse, meiner Frau Dr. med. K. Fikenzer und Frau B. Jahn für Ihre Unterstützungen.

Bibliographische Beschreibung:

Fikenzer, Sven

Physiologische Ursachen für das Verhalten belastungsspezifischer EKG Charakteristika im Vergleich zu anderen Kenngrößen der Belastung

Universität Leipzig, Dissertation April 2008 230 S., 85 Lit., 221 Abb., 10 Tab.

Referat:

Das EKG ist ein etabliertes und einfach durchzuführendes diagnostisches Routineverfahren. Belastungsuntersuchungen in denen das EKG beispielsweise Aufschluss über myokardiale Ischämien und Rhythmusstörungen geben kann, belegen den hohen diagnostischen Stellenwert des EKGs. Die Veränderungen der Parameter des EKGs sind charakteristisch und unterliegen dabei den unterschiedlichen physiologischen Bedingungen. Die vorliegende prospektive klinische Untersuchung beschäftigt sich mit der Fragestellung, welche physiologischen Bedingungen für diese Veränderungen ursächlich verantwortlich sind. Dazu wurden 10 männliche Probanden in 2 doppelten Stufen- und 2 Dauertests mit und ohne ß-Blockade untersucht.

Es konnte festgestellt werden, dass in Ruhe und bei intensiver Belastung die ß-Blockade eine Wirkung hatte, was auf einen relevanten Einfluss des Sympathikus schließen lässt. Bei leichter und mittlerer Belastung und in der unmittelbaren Nachbelastungsphase waren hingegen keine Unterschiede in den Tests ohne und mit ß-Blockade festzustellen. Deshalb ist die Annahme plausibel, dass die Regulation der Herzfunktionen durch den Parasympathikus stattfindet, während der Sympathikus hier lediglich eine ergänzende Modulationsfunktion hat. Grundsätzlich unterstützt dies insgesamt die Theorie der zentralen Mitinnervation, die nach den vorliegenden Ergebnissen allerdings vorrangig in der Bedeutung des Parasympathikus und nachrangig in der des Sympathikus liegt.

Inhaltsverzeichnis

Abkürzung	sverzeichnis07
1	Einleitung08
1.1	Leistungsdiagnostik08
1.2	Das EKG10
1.2.1	Die EKG-Abschnitte10
1.2.2	Das Vektorkardiogramm11
1.2.2.1	Vektor-Magnitude12
1.2.2.2	Flächen im Vektorkardiogramm13
1.3	Zum Verhalten und zur Adaptation der EKG-Parameter an13
	Belastung
1.3.1	EKG-Parameter in der Übersicht13
1.3.2	Die P-Welle14
1.3.3	Die Q-Zacke14
1.3.4	Die R-Zacke14
1.3.5	Die S-Zacke15
1.3.6	Die T-Welle15
1.3.7	P-Dauer16
1.3.8	PQ-Zeit16
1.3.9	PQ-Strecke17
1.3.10	QRS-Komplex17
1.3.11	ST-Strecke17
1.3.12	T-Dauer18
1.3.13	QT-Intervall
1.4	Sympathikotones System19
1.5	ß-Rezeptoren Blocker21
1.6	Wirkung von ß- Rezeptorenblockern unter Belastung22
1.7	Belastungswirkung von ß- Rezeptorenblockern23
	auf EKG Parameter
1.8	Zielstellung und Hypothesen24
1.8.1	Ziele der Arbeit24
1.8.2	Fragestellung25

2	Methodik	26
2.1	Untersuchungskollektiv	26
2.2	Untersuchungsgang	27
2.2.1	Studienprotokoll	27
2.2.2	Belastungstest	28
2.3	Datenerhebung	30
2.3.1	Spirometrie	30
2.3.2	Vektorkardiographie und Vektormathematik	30
2.3.3	Laktat	32
2.3.4	Katecholamine	32
2.3.5	Elektrolyte	33
2.3.6	Herzminutenvolumen	33
2.4	Datenauswertung	34
2.5	Messgeräte	34
2.6	Statistik	35
3	Ergebnisse	37
3.1	Basisergebnisse zur allgemeinen Leistungsfähigkeit	37
3.2	Doppelstufentest	39
3.2.1	Herzfrequenz im doppelten Stufentest	39
3.2.2.	Katecholamine im doppelten Stufentest	43
3.2.3	Kalium im doppelten Stufentest	51
3.2.4	P-Welle im doppelten Stufentest	55
3.2.5	QRS-Fläche im doppelten Stufentest	59
3.2.6	T-Welle im doppelten Stufentest	63
3.2.7	P-Dauer im doppelten Stufentest	67
3.2.8	PQ-Zeit im doppelten Stufentest	71
3.2.9	PQ-Strecke im doppelten Stufentest	75
3.2.10	QRS-Komplex im doppelten Stufentest	79
3.2.11	ST-Strecke im doppelten Stufentest	82
3.2.12	T-Dauer im doppelten Stufentest	86
3.2.13	QT-Zeit im doppelten Stufentest	90
3.2.14	Spirometrie im doppelten Stufentest	95
3.2.15	Laktat im doppelten Stufentest	99

3.3	Dauertest	103
3.3.1	Herzfrequenz im Dauertest	103
3.3.2	Katecholamine im Dauertest	106
3.3.3	Kalium im Dauertest	111
3.3.4	P-Welle im Dauertest	113
3.3.5	QRS-Fläche im Dauertest	116
3.3.6	T-Welle im Dauertest	119
3.3.7	P-Dauer im Dauertest	122
3.3.8	PQ-Zeit im Dauertest	125
3.3.9	PQ-Strecke im Dauertest	128
3.3.10	QRS-Komplex im Dauertest	131
3.3.11	ST-Strecke im Dauertest	133
3.3.12	T-Dauer im Dauertest	136
3.3.13	QT-Zeit im Dauertest	138
3.3.14	Spirometrie im Dauertest	141
3.3.15	Laktat im Dauertest	146
4	Diskussion	149
4.1	Effekte der ß-Blockade während Belastung	149
4.1.1	Effekte der ß-Blockade auf die Leistung im	
	doppelten Stufentest	151
4.1.2	Effekte der ß-Blockade während Belastung auf die	153
	Herzfrequenz	
4.1.3	Effekte der ß-Blockade während Belastung auf die	158
	Veränderungen der Fläche der P-Welle	
4.1.4		
	Effekte der IS-Blockade wahrend Belastung auf die	163
	Effekte der IS-Blockade wahrend Belastung auf die	163
4.1.5	Effekte der ß-Blockade wahrend Belastung auf die Veränderungen der Fläche der T-Welle Effekte der ß-Blockade während Belastung auf die	163 167
4.1.5	Effekte der ß-Blockade wahrend Belastung auf die Veränderungen der Fläche der T-Welle Effekte der ß-Blockade während Belastung auf die Veränderungen die P-Dauer	163 167
4.1.5 4.1.6	Effekte der ß-Blockade wahrend Belastung auf die Veränderungen der Fläche der T-Welle Effekte der ß-Blockade während Belastung auf die Veränderungen die P-Dauer Effekte der ß-Blockade während Belastung auf die	163 167 170
4.1.5 4.1.6	Effekte der ß-Blockade wahrend Belastung auf die Veränderungen der Fläche der T-Welle Effekte der ß-Blockade während Belastung auf die Veränderungen die P-Dauer Effekte der ß-Blockade während Belastung auf die Veränderungen die PQ-Strecke	163 167 170
4.1.5 4.1.6 4.1.7	 Effekte der ß-Blockade wahrend Belastung auf die Veränderungen der Fläche der T-Welle Effekte der ß-Blockade während Belastung auf die Veränderungen die P-Dauer Effekte der ß-Blockade während Belastung auf die Veränderungen die PQ-Strecke Effekte der ß-Blockade während Belastung auf die 	163 167 170 173
4.1.5 4.1.6 4.1.7	 Effekte der ß-Blockade wahrend Belastung auf die Veränderungen der Fläche der T-Welle Effekte der ß-Blockade während Belastung auf die Veränderungen die P-Dauer Effekte der ß-Blockade während Belastung auf die Veränderungen die PQ-Strecke Effekte der ß-Blockade während Belastung auf die Veränderungen die QT-Zeit und die Teilintervalle 	163 167 170 173

4.2	Effekte der ß-Blockade in der unmittelbaren Nachbelastung	177
4.3	Vergleich der EKG-Charakteristik der T-Fläche mit anderen	185
	leistungsdiagnostischen Kenngrößen	
5	Zusammenfassung	188
6	Literaturangabe	191
7	Anhang	198
7.1	Tabellenverzeichnis	199
7.2	Abbildungsverzeichnis	200
7.3	Versicherung	208
7.4	Thesen	209
7.5	Tabellen mit Rohdaten	214

Abkürzungsverzeichnis

[A] _p	Adrenalinkonzentration im Plasma
AS	Aerob-anaerobe-Schwelle
AV	atrio-ventrikulär
BMI	Body-Mass-Index
cAMP	zyklisches Adenosin-Mono-Phosphat
EDV	endiastolisches Volumen
EF	Ejektionsfraktion
EKG	Elektrokardiogramm
FFM	fettfreie Masse
Hf	Herzfrequenz
HZV	Herzzeitvolumen
IAS	Individuelle anaerobe Schwelle
[K ⁺] _p	Kaliumkonzentration im Plasma
КНК	koronare Herzkrankheit
maxLaSS	maximales Laktat-steady-state
MW	Mittelwert
Na-K-ATP _{ase}	Natrium-Kalium-Adenosintriphosphatase
[NA] _p	Noradrenalinkonzentration im Plasma
ns	nicht signifikant
P1-25	1. Minute nach Belastung bei 25 % P_{max}
P3-25	3. Minute nach Belastung bei 25 % P_{max}
P5-25	5. Minute nach Belastung bei 25 % P_{max}
PST	Parasympathetic-Sympathetic Threshold
R-R Abstand	Abstand zwischen 2 R-Zacken im EKG
RRdia	systolischer Blutdruck
RRsys	systolischer Blutdruck
SD	Standardabweichung
S/min	Schläge pro Minute
SV	Schlagvolumen
T2-100	maximale Leistung im 2. Testabschnitt
TBW	total Body Water
V _E	Atemminutenvolumen/Atemzeitvolumen
VKG	Vektorkardiogramm
VO ₂	Sauerstoffaufnahme

1 Einleitung

1.1 Leistungsdiagnostik

Im Alltag stellen Sport, Belastung und Bewegung in der Therapie und Prävention eine wesentliche Komponente dar.

Die Trainings- und Therapiebelastung umfasst in Anlehnung an Schnabel et al. (1997) die Auseinandersetzung des Sportlers oder Patienten mit den an ihn durch das Training bzw. die Therapie gestellten physischen, psychischen und intellektuellen Anforderungen unter der Zielstellung der Steigerung der Leistungsfähigkeit. Das betrifft sowohl die äußere Belastung (Elemente der methodischen Gestaltung des Trainings und der Therapie wie Umfang, Zeitdauer, Intensität, Qualität der Ausführung, Art und Dynamik der Übung) als auch die innere Belastung (Beanspruchung, Reaktion, Adaptation des morphologischen Organismus) sowie den Charakter der physiologischen und biochemischen Anpassung.

Die Belastungsintensität, die man als Stärke der Einwirkung, die durch eine Übung verursacht wird, bezeichnet, steht dabei im Mittelpunkt (Schnabel et al. 1997). Gleichbedeutende Faktoren sind Belastungsdauer und –frequenz.

Aus der empirischen Betrachtung des Zusammenhangs zwischen Leistung und der Summe ihrer Erscheinungsformen wurde in der Medizin und speziell der Sportmedizin eine Vielzahl an Methoden zu ihrer Beurteilung entwickelt.

Neben der Bestimmung von maximaler Herzfrequenz (Hf_{max}) und maximaler Leistung (P_{max}) mittels EKG, Pulsmessgeräten und Ergometern nimmt die Spiroergometrie eine zentrale Rolle bei der Beurteilung der allgemeinen Leistungsfähigkeit als direktes Messverfahren ein. Die Analyse der Atemparameter maximale Sauerstoffaufnahme (VO_{2max}), Atemminutenvolumen (V_E) und Atemäquivalent erlaubt während ansteigender Belastung Aussagen über die funktionelle Kapazität, eine Graduierung des Schweregrades einer funktionellen Beeinträchtigung, eine Objektivierung der Auswirkungen therapeutischer Interventionen auf die körperliche Leistungsfähigkeit, die objektive Überwachung der Progression einer Erkrankung, die die Leistungsfähigkeit beeinflusst, und die Differenzierung kardialer von pulmonaler Limitierung bei eingeschränkter körperlicher Leistungsfähigkeit (Wonisch et al. 2003 und 2003). Neben der Spirometrie ist die Laktatdiagnostik ein invasives Verfahren zur Beurteilung der körperlichen Leistungsfähigkeit. Dabei wurden in den letzten 30 Jahren eine Vielzahl an unterschiedlichen Konzepten und Verfahren publiziert, auf die hier im Detail nicht eingegangen wird.

Da die Spirometrie sowohl von der Toleranz der Patienten und Sportler gegenüber dem Tragen einer Maske während der Untersuchung als auch deren Einsatzbereitschaft, abhängig ist und die Laktatdiagnostik ein invasives Verfahren darstellt ergibt sich die Frage nach weiteren nicht invasiven Untersuchungsverfahren zur Bestimmung der kardialen Leistungsfähigkeit.

Dabei stellt die EKG-Diagnostik ein theoretisch mögliches Verfahren dar, da sie einerseits nicht invasiv ist und andererseits nicht vom Engagement der zu Untersuchenden abhängt. Das EKG ist ein etabliertes und einfach durchzuführendes diagnostisches Routineverfahren. Belastungsuntersuchungen, in denen das EKG beispielsweise Aufschluss über myokardiale Ischämien und Rhythmusstörungen geben kann, belegen den hohen diagnostischen Stellenwert des EKGs (Heinecker und Gonska 1992).

Mit modernen Überwachungseinheiten wie der EKG-Telemetrie werden Leistungs- und Funktionsdiagnostik des Herzens in vollem Umfang über Entfernungen von bis zu 1 km ermöglicht. Die Auswertung und Beurteilung des EKGs erhält dadurch einen besonderen Stellenwert.

Es sind in den letzten 80 Jahren einige belastungsspezifische Reaktionen des EKGs beschrieben worden. Allgemein bekannt sind dabei die Verkürzung des R-R Abstandes als Ausdruck des Herzfrequenzanstiegs oder Veränderungen der ST-Strecke als Ausdruck der myokardialen Ischämie. Es existieren darüber hinaus noch weitere Reaktionen des EKGs unter Belastung, deren physiologische Begründung noch nicht hinreichend geklärt ist.

Aus dieser Tatsache und einer praktischen Notwendigkeit leitet sich die Zielstellung der vorliegenden Arbeit ab, die EKG-Diagnostik als nicht invasives leistungsdiagnostisches Verfahren aufzugreifen und die physiologischen Ursachen für die Veränderungen des EKGs unter Belastung aufzuklären.

1.2 Das EKG

1.2.1 Die EKG-Abschnitte

Das EKG ist ein Verfahren zur Registrierung der Aktionspotentiale des Herzens, die als Veränderung der Potentialdifferenz zwischen zwei Punkten auf der Körperoberfläche gegen die Zeit aufgezeichnet werden. Die dabei entstehenden Ausschläge im Kurvenverlauf entsprechen den einzelnen Phasen der Herzperiode. Die Kurven resultieren aus der Summe von Stärke und Richtung der Erregungsleitung in den einzelnen Myokardfasern, sie werden durch dem Herzen räumlich unterschiedlich zugeordnete Ableitungen registriert (Klinke und Silbernagel 1996). Abbildung 1 zeigt die einzelnen Abschnitte des EKGs.

Abb.1: EKG-Abschnitte (modifiziert nach Heinecker und Gonska: EKG in Klinik und Praxis, 1992)

1.2.2 Das Vektorkardiogramm

Das Vektorkardiogramm ist eine räumliche Darstellung des zeitlichen Verlaufs der vom Herzen generierten Potentialdifferenzen, wie sie sich auf die Körperoberfläche projizieren.

Im Gegensatz zum Elektrokardiogramm (EKG), das nur den zeitlichen Spannungsverlauf von empirisch festgelegten Ableitungen, Einthoven-, Goldberger-, Wilson- und Nehb-Ableitungen als skalare Spannungs-Zeit-Kurve darstellt, gibt das Vektorkardiogramm (VKG) zusätzlich den räumlichen Verlauf der Spannungsänderungen zum Zeitpunkt von atrialer und ventrikulärer Depolarisation sowie ventrikulärer Repolarisation vektoriell, dass heißt in Form von Vektorschleifen, wieder. Das VKG erfordert deshalb die Verwendung bestimmter Ableitungssysteme. Im klinischen Kontext wird meist die orthogonale Frank-Ableitung verwendet (Frank 1956).

Die Frank-Ableitung ermöglicht eine Betrachtung der elektrischen Vorgänge am Herzen über 3 Ebenen. Dies wird durch die 3 Hauptachsen X, Y und Z des orthogonalen Koordinatensystems erreicht (Abbildungen 2 und 3). Diese Hauptachsen bilden somit die Summationsvektoren der elektrischen Vorgänge am Herzen ab. Eine solche Abbildung stellt gleichzeitig eine Vereinfachung und damit verbunden eine Reduktion des Informationsgehalts dar.

Abb. 2: Orthogonales Koordinatensystem

Abb.3: Vektorschleifen in Ebene und Raum

Die P- und QRS-Schleife repräsentiert den räumlichen Verlauf der Spannungsvektoren der atrialen (P-Schleife) bzw. ventrikulären (QRS-Schleife) Depolarisation, während die T-Schleife die Spannungsentwicklung während der ventrikulären Repolarisation repräsentiert.

1.2.2.1 Vektor-Magnitude

Der Vektor zeigt mit seiner Pfeilspitze zu jedem Zeitpunkt vom elektrischen Nullpunkt des Herzens in eine bestimmte Richtung im Raum. Der Betrag des Summenpotenzials, auch als Vektor-Magnitude bezeichnet, wird durch die Länge des Pfeils repräsentiert. Durch die Winkel, die der Summenvektor mit der Frontalebene und der Horizontalebene bildet, ist seine räumliche Ausrichtung eindeutig definiert (Abbildung 4).

Abb.4: Bestimmung des Summationsvektors aus den Achsenkomponenten X, Y und Z

Die Länge und damit die Größe/Betrag des Vektors A ergibt sich aus folgender Rechnung:

 $A = \sqrt{A_x^2 + A_y^2 + A_z^2}$

Für das Vektorkardiogramm bedeutet dies, dass die tatsächliche Größe des Vektors über seine Teilkomponenten berechnet werden kann. Für den P-Vektor-Magnitude (P-VM) bedeutet dies:

 $P-VM=\sqrt{P_x^2+P_y^2+P_z^2}$

Eine Veränderung des P-VM kann somit zwei Ursachen haben:

Erstens eine tatsächliche Verringerung der Spannung, zweitens gleichzeitig ablaufende entgegengerichtete Spannungs- und Ladungsvorgänge.

1.2.2.2 Flächen im Vektorkardiogramm

Durch diese mathematische Grundlage kann mit Hilfe der Integralrechnung die Gesamtspannung sowohl für die Depolarisation von Atrium und Ventrikel als auch die Repolarisation der Ventrikel berechnet werden.

Für Flächenbestimmungen der P-Welle, des QRS-Komplexes und der T-Welle wurden jeweils die Integrale [AUC] unterhalb der Vektor-Magnitude Kurven bestimmt (Abbildung 5)

Abb.5: Ermittlung des Integrals des Vektormagnitudes

Diese Flächenbestimmung und damit die Ermittlung der gesamten Spannung ist nur mit Hilfe des Vektorkardiogramm und dem daraus resultierenden Vektor-Magnitude sinnvoll, da ausschließlich bei dieser Ableitungsmethode Lageveränderungen der elektrischen Herzachse auf Grund des orthogonalen Systems automatisch mit berücksichtigt werden.

1.3 Zum Verhalten und zur Adaptation der EKG-Parameter an Belastung

1.3.1 EKG-Parameter in der Übersicht

Wellen und Zacken:

P-Welle, Q-Zacke, R-Zacke, S-Zacke, T-Welle

Intervalle:

P-Dauer, PQ-Zeit, PQ-Strecke, QRS-Komplex, ST-Strecke, T-Dauer, QT-Intervall

1.3.2 Die P-Welle

Bruce et al. (1973) beschrieben die Veränderungen der P-Welle bei 30 Personen mittleren Erwachsenenalters und stellten fest, dass mit steigender Belastung die Amplitude zunimmt. Bei Deckers et al. (1990) zeigte sich bei 116 gesunden Frauen ebenfalls eine Zunahme der P-Amplitude in den Ableitungen X und Y des Vektorkardiogramms während der Belastung. Diese reduzierte sich während der Erholungsphase wieder und korrespondierte dabei mit der Herzfrequenz. Untersuchungen von Simoons et al. (1975) zeigten hingegen eine weitere Amplitudenzunahme der P-Welle in den ersten drei Minuten der Erholungsphase, obwohl sich die Herzfrequenz verringerte. Diese Ergebnisse werden weitestgehend durch Fikenzer et al. (2005) bestätigt, die den P-Vektor Magnitude bei 40 gesunden Personen während und nach reproduzierter Belastung untersuchten. Es konnte ein Anstieg des P-VM bis etwa 70% der Belastung ermittelt werden. Mit zunehmender Belastung kam es jedoch zu keinem weiteren Anstieg des P-VM. Einen Abfall des P-VM nach Belastungsabbruch konnte diese Arbeitsgruppe nicht bestätigen.

1.3.3 Die Q-Zacke

Die Q-Zacke wird nach Untersuchungen von Deckers et al. (1990) in den Ableitungen X und Y des VKGs mit steigender Herzfrequenz tiefer und flacht mit sinkender Herzfrequenz ab. Dieses Ergebnis wird durch die Aussagen von Michaelides et al. (1990) gestützt.

1.3.4 Die R-Zacke

Die Ergebnisse aus den Untersuchungen von Deckers et al. (1990) und Fikenzer et al. (2005) zeigten, dass sich bei gesunden Probanden die Amplitude der R-Zacke während der Belastung verringert und mit Beendigung der Belastung wieder zunimmt. Eine Amplitudenzunahme der R-Zacke wurde von Michaelides et al. (1990) bei KHK-Patienten ermittelt. Nach Paridon et al. (1990), die bei 82 Kindern und Jugendlichen unter anderem die Veränderungen der R-Zacke durch Belastung untersuchten, zeigte sich ebenfalls eine Reduktion der Amplitude durch Belastung. Den Autoren zufolge existieren keine statistisch signifikanten Unterschiede bezüglich des Alters und des Geschlechts. Watanabe et al. (1981) stellte die Veränderungen des R-Schleifen bei 13 gesunden und 33 KHK-Patienten gegenüber. Die Ergebnisse unterstreichen die oben benannten Veränderungen. Bei den KHK-Patienten kam es zu einer Zunahme der R-Amplitude, während es beim gesunden Kollektiv zu einer Abnahme der Amplitude durch Belastung kam. Eine etwas differenziertere Betrachtung wurde von Wolthius et al. (1979) durchgeführt. Die Autoren ermittelten eine R-Amplitudenzunahme im Belastungsbereich mit einer Hf zwischen 100 – 140/min und bei weiterem Belastungsanstieg eine Reduktion der R-Amplitude. Die niedrigste R-Zacken Amplitude wurde nach der ersten Erholungsminute ermittelt.

1.3.5 Die S-Zacke

Eine Amplitudenzunahme der S-Zacke während ansteigender Belastung wurde in den Untersuchungen von Wolthius et al. (1979) bei 22 Probanden der United States Air Force School ermittelt. Die Amplitude verringerte sich unmittelbar nach Beendigung der Belastung. Die Untersuchungen von Michaelides et al. (1990) bei 246 KHK-Patienten ergaben ähnliche Ergebnisse. Die Autoren fanden ebenfalls eine Zunahme der Amplitude während der Belastung. Deckers et al. (1990) bestätigen die Ergebnisse von Wolthius et al. (1979) und stellten eine Amplitudenzunahme der S-Zacken während der Belastungsphase bei gleichzeitig zunehmender Herzfrequenz fest.

1.3.6 Die T-Welle

Nach Ergebnissen von Simoons et al. (1975) verringerte sich die Amplitude der T-Welle während der Belastungsphase und vergrößerte sich markant nach Belastungsabbruch. Deckers et al. (1990) fanden gleiche Beziehungen. Auffällig bei diesen Untersuchungen war der Unterschied zwischen Belastung und Erholung; hier wurden unterschiedliche T-Wellen-Amplituden bei gleicher Herzfrequenz gemessen. Simoons et al. (1975) sprachen von einer Unabhängigkeit der Veränderungen der T-Welle von der Herzfrequenz. Wolthius et al. (1979) hingegen ermittelten in ihrer Studie einen Abfall zu Beginn der Belastung und einen leichten oder geringfügigen Anstieg im weiteren Belastungsverlauf. Sie beschrieben ebenfalls wie die zuvor genannten Studien die größten T-Wellen Amplituden im ersten Abschnitt der Erholungsphase, die sich mit fortschreitender Dauer wieder zurückbildeten.

Langley et al. (2002) quantifizierten die Veränderungen der T-Wellen-Form nach Belastung. Hierbei stellten sie fest, dass die größten T-Wellen-Amplituden ermittelt wurden, wenn die Herzfrequenz am höchsten war. Zusätzlich zeigten sie, dass mit abnehmender Herzfrequenz die Amplituden auch abnahmen.

Dieses Ergebnis von Langley et al. (2002) stellte hinsichtlich der Nachbelastungsphase keinen Unterschied zu den Ergebnissen der anderen Autorenkollektive dar. Da sich Langley et al. (2002) ausschließlich auf die Betrachtung der Formveränderung in Nachbelastungsabschnitten 50 s und 300 s beschränkte, fehlten die Veränderungen, die während der Belastung entstehen.

Es bestehen somit zwei Hauptgründe, die die Veränderung der T-Wellen-Amplitude während der Belastungsphase beschreiben. Dies ist zum einen die kontinuierliche Verringerung mit steigender Belastung und zum anderen die initiale Verringerung zu Beginn der Belastungsphase mit leichtem Anstieg im weiteren Belastungsverlauf.

1.3.7 P-Dauer

Busse et al. (2004) zeigten, das sich bei leichter und mittlerer Belastung die P-Dauer bei zugleich ansteigender Herzfrequenz nicht verkürzt. Erst bei zunehmend intensiverer Belastung im Bereich der "anaeroben Schwelle" kam es bei 85% der Probanden zu einer deutlichen Verkürzung der P-Dauer. Eine grundsätzlich lineare Beziehung zwischen P-Dauer und Herzfrequenz wurde bei dieser Studie mit 40 gesunden Personen nicht deutlich.

1.3.8 PQ-Zeit

Auffälligste Ergebnisse der Studie von Busse et al. (2004) waren die geringe lineare Beziehung zwischen Herzfrequenz und PQ-Zeit sowie eine Umkehrung der üblichen Beziehung zwischen Herzfrequenz und PQ-Zeit im Übergang von maximaler Belastung zur Erholung. So betrug die Verkürzung der PQ-Zeit innerhalb der 1. Nachbelastungsminute 4 ms (HF-Abfall dabei 29 Schläge/min), laut bekannter Formeln (z.B. Lepeschkin 1951) wäre jedoch eine PQ-Zeit Verlängerung von 29 ms zu erwarten gewesen. Dieser Befund war in zwei unmittelbar aufeinander folgenden Belastungstests reproduzierbar.

1.3.9 PQ-Strecke

Die PQ-Strecke wurde von Mc Pherson et al. (1985) bei 51 gesunden Erwachsenen in einem Fahrradergometertest untersucht und diese stellten eine Verkürzung des Intervalls durch Belastung fest (57,3 \pm 17,9 ms vor dem Test, 28,6 \pm 9,3 ms bei Belastungsabbruch). Das Intervall verlängerte sich wieder nach Abbruch der Belastung (45,5 \pm 16,6 ms nach 5 Minuten Erholung). Diese Ergebnisse konnten von Busse et al. (2004) nur teilweise bestätigt werden, da es in jener Untersuchung erst ab 30% der maximalen Leistung zu einer Verkürzung der PQ-Strecke kam. In der ersten Minute der Nachbelastungsphase ermittelten sie eine weitere Verkürzung der PQ-Strecke, bevor sich diese wieder verlängerte.

1.3.10 QRS-Komplex

Den Autorenkollektiven um Mc Pherson et al. (1985) und Busse al. (2004) zu folge beeinflussten Belastungs- und Erholungsphasen die Zeitdauer der Erregungsausbreitung in den Ventrikeln nicht. Bei Pilhall et al. (1992) ergaben die Untersuchungen bei 50 gesunden Probanden eine Verringerung der Zeitdauer durch Belastung, zudem konnten keine Unterschiede zwischen den Geschlechtern festgestellt werden. In den ersten Minuten der Nachbelastung kam es zu einer Verlängerung des Intervalls, die Ruhewerte wurden wieder erreicht.

1.3.11 ST-Strecke

Das ST-Intervall beinhaltet die Zeit, in der die gesamte Kammermuskulatur erregt ist. "Die Länge dieser Strecke ist keine wichtige Messgröße…", so Klinge (1997). Da dieser Erregungsabschnitt Bestandteil des QT-Intervalls ist und Veränderungen in diesem Abschnitt Einfluss auf die Veränderungen des QT-Intervalls haben könnten, erschien es anderen Autoren notwendig, diesen Abschnitt separat zu betrachten. Von Simoons et al. (1975) und Mc Pherson et al. (1985) liegen folgende Ergebnisse zum ST-Intervall vor: Mit zunehmender Belastung verkürzt sich das Intervall und nach Abbruch der Belastung verlängert es sich wieder. Fikenzer et al. (2005) konnten eine lineare Beziehung von ST-Streckendauer und Herzfrequenz nur unter Belastung nachweisen, da in der ersten Nachbelastungsphase eine weitere Verkürzung der ST-Strecke bei gleichzeitigem Abfall der Herzfrequenz beobachtet wurde.

1.3.12 T-Dauer

Nach Klinge (1997) ist das T-Intervall breiter als der Erregungsausbreitungskomplex QRS, da die Rückbildung der Erregung nicht über so geordnete Bahnen verläuft wie die Erregungsausbreitung. Die Ergebnisse von Fikenzer et al. (2005) zeigen, dass es unter Belastung zu einer Verkürzung der T-Dauer kommt. Im Übergang von maximaler Belastung zur Erholung trat eine Entkopplung der sonst bestehenden Relation von Herzfrequenz und T-Dauer auf. Als Erklärungsversuch wurde der unterschiedliche Einfluss von Sympathikus und Parasympathikus auf bestimmte Regionen des Myokards diskutiert.

1.3.13 QT-Intervall

Die Betrachtung der Dauer der elektrischen Systole und ihre klinische Bedeutung begannen mit Untersuchungen von Fridericia (1920) für den deutschen und Bazett (1920) für den angloamerikanischen Sprachraum. (1936) entwickelten weiterführend Hegglin und Holzmann eine Abhängigkeitstabelle zwischen der Herzfrequenz und dem QT-Intervall (QT= $0,39*[R-R]^{0,5} \pm 0,04$ s). Diese Ergebnisse stammten aus Untersuchungen darunter Fieberpatienten zur mit 700 Probanden, Ermittlung der Systolendauer unter tachykarden Zuständen. Es wurden hierbei keine belastungsbedingten Tachykardien zur Überprüfung herangezogen.

Es ist seit mehreren Dekaden bekannt, dass sich das QT-Intervall mit der Herzfrequenz verändert. Eine Vielzahl an Autoren stellten ihre Ergebnisse zur Veränderung des QT-Intervalls durch Belastung vor. Ihnen zufolge existiert ein umgekehrt proportionaler Zusammenhang zwischen der Herzfrequenz und dem QT-Intervall während der Belastungsphase (Kawataki et al. 1984, Garson 1993, Aytemir et al. 1999, Hnatkova et al. 1999).

Bei weiteren Vergleichen zwischen berechneten und gemessenen Intervallen wurde deutlich, dass es außer der Herzfrequenz noch weitere, bisher ungeklärte, wichtige Faktoren geben muss, die Einfluss auf das QT-Intervall haben. Wichtige Hinweise lieferten die Autorenkollektive um Huang et al. (1991), Coghlan et al. (1992), Viitasalo et al. (1996), Swan et al. (1998), Busse et al. (2004) und Fikenzer et al. (2006), die einen Unterschied der QT-Intervalle vor, während und nach Belastung ermittelten und auf eine Dissoziation zwischen der Herzfrequenz und dem QT-Intervall hinweisen.

1.4 Sympathikotones System

Die Veränderungen des EKGs sind eng mit dem sympathikotonen System und dem Katecholaminstoffwechsel assoziiert.

Das autonome Nervensystem kann via Signalsysteme den Fluss von Kalzium und anderen Ionen nachhaltig beeinflussen. Dies geschieht über adrenerge und cholinerge Rezeptoren. Beide gehören zur Gruppe der heptahelikalen Hormonrezeptoren. Heptahelikale Rezeptoren koppeln auf der Innenseite der Plasmamembran befindlichen GTP-hydrolysierte Proteine, so genannte G-Proteine.

Die G-Proteine sind dabei Relaismoleküle, die durch ihre Untereinheiten die Informationen auf getrennte Effektoren übertragen. Die Summe dieser Prozesse, bei denen extrazelluläre Hormone bzw. neuronale Stimuli zu intrazellulären physiologischen und chemischen Veränderungen führen, wird auch Signaltransduktion genannt. Dieser Prozess startet jeweils mit der Bindung eines Agonisten an den Rezeptoren und durch diese Stimulation wird ein komplexes System an sarkolemalen und zytosolen Überträgern aktiviert. Grundsätzlich existieren α - und ß-Adrenozeptoren am Myokard.

Die ß-adrenergen Rezeptoren des Herzens lassen sich in drei Subtypen (β_1 , β_2 und β_3 -Adrenozeptoren) unterteilen. Bei der Stimulierung dieser Rezeptoren durch Katecholamine wird das Signal über die ß-Adrenozeptor-Adenylylcyclase-Proteinkinase-A-Kaskade in die Zelle vermittelt. Als

"second Messenger" dient das zyklische AMP (cAMP). Eine Stimulation der Kaskade führt zu Akkumulation des cAMP und zu einer cAMP-vermittelten-Aktivierung der Proteinkinase A. Die Proteinkinase A phosphoryliert neben anderen Proteinen auch den L-Typ-Ca²⁺-Kanal. Die Phosphorylierung des L-Typ-Ca²⁺-Kanals erhöht den Ca²⁺-Einstrom in die Zelle und verursacht eine Ca²⁺-vermittelte Ca²⁺-Freisetzung aus dem sarkoplasmatischen Retikulum (Bonow et al. 2007, Wallukat 2002). In den Schrittmacherzellen des Herzens erleichtert es die hyperpolarisationsbedingte Aktivierung cAMP-gesteuerter Einwärtsströme, die die diastolische Depolarisation mitbestimmen. Das Aktionspotential wird demnach durch β -Adrenozeptoragonisten wie folgt beeinflusst:

- Die Steilheit der diastolischen Depolarisation nimmt zu und resultiert in einer Erhöhung der Sinusfrequenz (positiv chronotrop).
- An Zellen mit "slow response"-Potentialen (Tabelle 1) verkürzt sich die Aufstrichphase, so dass die AV-Überleitung beschleunigt wird (positiv dromotrop).
- Durch Verlängerung der Plateauphase wird der Ca²⁺-Einstrom an Kardiomyozyten gesteigert, so dass über eine verbesserte elektromechanische Kopplung die Kontraktionskraft erhöht wird (positiv inotrop). Die Repolarisation ist hingegen beschleunigt.

	Slow Response	Fast Response	
Geschwindigkeit der Phase 0	1-10 V/s	200-800 V/s	
(erste Phase der Depolarisation)			
Leitungsgeschwindigkeit	0,01-0,1 m/s	0,5-3,0 m/s	
Depolarisierender lonenstrom	I _{Ca}	I _{Na}	
Schwellenpotential	-50 bis -30 mV	-75 bis -65 mV	
Zeitkonstante der Inaktivierung	50-100 ms	0,5-2 ms	
Physiologisches Vorkommen	Sinus-, AV-Knoten	alle anderen Abschnitte	
		der Erregungsleitung	
		(inkl. Arbeitsmyokard)	

Tab.1: Unterschiede zwischen "slow response"- und "fast response"- Potentialen (aus Forth et al. 2001)

Um den Einfluss des Sympathikus und damit der Katecholamine auf die EKG-Parameter zu untersuchen, existieren zwei mögliche Wege. Der erste Weg wäre eine Intervention mit β-Adrenozeptoragonisten, um einen direkten Einfluss erklären zu können. Andererseits besteht aus therapeutischer Sicht eine große Bedeutung in den β-Adrenozeptorantagonisten. Dies stellt den zweiten Weg der Überprüfung des Einflusses von Katecholaminen auf EKG-Parameter dar. Dabei handelt es sich um eine indirekte Aufklärung, die, auf Grund der therapeutischen Bedeutung der β-Rezeptoren-Blocker, in dieser Untersuchungsreihe bevorzugt wurde.

1.5 ß-Rezeptoren-Blocker

Adrenerge Rezeptorantagonisten werden klinisch einerseits als Langzeittherapeutikum und anderseits als Sympatholytika zur kurzfristigen Intervention eingesetzt.

ß-Adrenozeptor-Blocker werden seit Mitte der 70er Jahre wegen ihres klinischen, haemodynamischen und neurohormonalen Nutzens eingesetzt (Waagstein et al. 1975, Anderson et al. 1993, Waagstein et al. 1989, Waagstein et al. 1993).

Verschiedene Mechanismen erklären den Nutzen für die Therapie mit ß-Blockern. ß-Rezeptor-Antagonisten blockieren die sympathische Stimulation des Herzens, reduzieren dadurch den systolischen Druck, die Herzfrequenz, die Kontraktilität und das Herzzeitvolumen und schützen überdies vor Katecholamin-induzierter Strukturveränderung am Herzen. Sie vermindern den myokardialen Sauerstoffbedarf und steigern die Belastungstoleranz. Zusätzlich erhöhen sie die Schwelle für Kammerflimmern.

Die ß-Adrenozeptorantagonisten wirken durch Abflachung der diastolischen Depolarisation Automatien entgegen und unterdrücken "slow response"-Potentiale durch Verzögerung der Ca²⁺-abhängigen ersten Phase der Depolarisation. Die Folgen sind Abnahme der Sinusfrequenz und verzögerte AV-Überleitung (erhöhte "Siebwirkung") (Forth et al. 2001).

Unter diesen postulierten Mechanismen sind der negative chronotrope Effekt sowie die hämodynamischen und stoffwechsel- Vorteile hervorzuheben (Anderson et al. 1993, Yamakawa et al. 1996). Alle ß-Rezeptoren-Blocker gelten als gleichwertig hinsichtlich ihrer antihypertensiven Wirksamkeit (Nuttall et al. 2003, Forth et al. 2001). β_1 -Rezeptoren befinden sich vorrangig am Myokard während β_2 -Rezeptoren dominierend in der Leber, sowie im Bronchial- und Gefäßsystem vorkommen (Forth et al. 2001).

Bei Patienten mit Diabetes mellitus, mit einer chronischen peripheren arteriellen Verschlusskrankheit oder mit einer chronisch-obstruktiven Lungenerkrankung (COPD) ist ein kardioselektiver ß₁- Rezeptorenblocker vorzuziehen (Acebutolol, Atenolol, Betaxolol, Bisoprolol oder Metoprolol). Die Kardioselektivität ist jedoch nur relativ und wird umso geringer, je höher die Dosis des ß-Blockers ansteigt. Beim Fehlen der oben genannten Indikationen für kardioselektive (ß₁) Rezeptorenblocker bietet ihr Einsatz keinen Vorteil gegenüber nicht-selektiven ß-Blockern (MSD Manual 2000). Die Nachteile von ß-Rezeptoren-Blockern bestehen in einer erhöhten Häufigkeit von zentralnervösen Nebenwirkungen wie z.B.: Schlafstörungen, Müdigkeit oder Abgeschlagenheit und Kontraindikationen bei AV-Block (größer als I. Grades), Sick-Sinus Syndrom und Asthma bronchiale (MSD Manual 2000).

1.6 Wirkung von ß- Rezeptoren-Blockern unter Belastung

Die Ergebnisse der jüngsten Studien belegen, dass durch Intervention mit ß-Rezeptorenblockern bei gesunden Probanden keine signifikanten Unterschiede hinsichtlich der maximalen Leistung und der VO₂max, Laktat und des V_E auftreten (Wonisch et al. 2002, 2003). Dies steht in Bezug auf die maximale Leistung im Widerspruch zu Untersuchungen, die eine Reduktion der maximalen Leistung um 4% bei ß₁-Rezeptorenblockern und 5% bei ß₂-Rezeptorenblockern feststellten (Kindermann et al. 1981, 1984) Kaiser 1984, Schmid et al. 1990, Gullestad et al. 1988). In Untersuchungen von Schnabel et al. (1983) führte eine Betablockade zu einer Leistungslimitierung in supramaximalen Bereichen.

Die Dauerleistungsfähigkeit wird durch die Wirkung der ß-Blocker je nach Testprotokoll und Betablockertyp im Ausmaß von 17%-29% reduziert (Vanhees et al. 1988, Vanhees et al. 2000, Kindermann et al. 1984, Gullestad et al. 1988). Die Applikation von ß-Blockern führt zu einer signifikanten Verringerung der Herzfrequenz und des Blutdrucks vor, während und nach Belastung (Wonisch et al. 2002, 2003, Vanhees et al. 2000, Verstappen et al. 1987, Kaiser et al. 1986, Kindermann et al. 1981, 1984).

Der Einfluss des negativen chronotropen Effektes per se durch die Einflussnahme der Betablockade wurde dabei hinreichend überprüft.

Es ist aber bei Belastungstests häufig notwendig, nicht nur die Herzfrequenz zu kontrollieren und zu regulieren, sondern auch -in Abhängigkeit zu pathologischen Zuständen- eine valide Diagnostik der abgeleiteten EKG-Parameter unter Belastung zu ermöglichen. Im Hinblick auf diese Tatsache ist es sinnvoll, leistungsphysiologische Kenngrößen wie Laktat, VO₂ und VE als korrelative Parameter für oben genannte EKG-Parameter zu verwenden. Trotz einer schon jahrzehntelangen Erfahrung mit ß-Blockern wurden bislang die Belastungseffekte unter ß-Blockade auf die EKG-Parameter (je nach Parameter) nicht oder nicht hinreichend untersucht. Hieraus ergibt sich der Ansatz der vorliegenden Arbeit.

1.7 Belastungswirkung von ß- Rezeptoren-Blockern auf EKG Parameter

Einige Wirkungen von ß-Rezeptoren-Blockern auf die EKG Parameter sind bislang untersucht. Hierbei richtete sich der Fokus vor allem auf die Parameter, die als valide Kennzeichen für Herzerkrankungen Anerkennung finden. Dies sind im Detail das QT-Intervall und die ST-Strecke. Die Effekte von ß-Rezeptoren-Blockern liegen vor allem in einer Verlängerung des QT-Intervalls in Ruhe. Sie führen umgekehrt zu einer deutlicheren relativen Verkürzung bei maximaler Belastung. Dies wird auf die erhöhte extrazelluläre Kaliumkonzentration, die zu Verkürzung der Aktionspotentialdauer in der Ventrikelmuskulatur führt, zurückgeführt (Sarma et al. 1988, Fletcher et al. 1990). Zudem geht dies mit einer Erhöhung der Variabilität des QT-Intervalls einher (Sarma et.al. 1988, Ferraro et al. 1992, Ahnve et al. 1982, Funck-Brentano et al. 1991).

Die Applikation von ß-Rezeptoren-Blockern führt, wie oben genannt, zu einer Verringerung des O₂ – Bedarfs und dadurch bei Patienten mit koronarer Herzkrankheit zur Reduzierung einer möglichen ST-Strecken-

Senkung und einer besseren Verträglichkeit von Belastung. (Schnellbacher et al. 1986, Kohli et al. 1985, Kaski et al. 1987, Burkart et al. 1986, Capone et al. 1986, Fogari et al. 1992). Zu anderen zuvor genannten Parametern existieren keine Befunde.

1.8 Zielstellung und Hypothesen

1.8.1 Ziele der Arbeit

Primärparameter:

Belastungs- und Nachbelastungsphase beeinflussen das EKG. Diese Gegebenheiten stehen im direkten Zusammenhang mit dem Sympathikustonus. Somit ist es unumgänglich, das Ausmaß der Wirkung der Katecholamine zum einen unter Belastung, zum anderen in der Nachbelastungsphase bezogen auf die Leistung und die EKG Diagnostik zu untersuchen. Um diesen Einfluss der Katecholamine zumindest bedingt quantifizieren zu können, wird ein kardioselektiver ß-Rezeptoren-Blocker als Interventionsmittel eingesetzt.

Eine entscheidende Komponente in dieser Studie stellt die Überprüfung der Wiederholbarkeit im intraindividuellen Vergleich der jeweiligen Testsituation dar.

Sekundärparameter:

Zusätzlich wird der Einfluss der Belastung auf folgende Parameter untersucht und mit den EKG Parameter Daten korreliert:

-	VO ₂	[ml/min]
-	V _E	[l/min]
-	Laktat	[mmol/l]
-	HF	[S/min]
-	Adrenalin	[nmol/l]
-	Noradrenalin	[nmol/l]
-	Kalium	[mmol/l]

1.8.2 Fragestellung

Mit dieser Untersuchungsreihe sollen folgende Fragen untersucht werden:

- Welchen Einfluss hat der Sympathikustonus auf die Veränderungen der EKG-Parameter in unterschiedlichen Belastungsphasen?
- Existiert ein Zusammenhang im Verhalten der EKG-Parameter bei gegebener Belastung in reproduzierten Tests?
- 3. Gibt es eine Steady-State-Kinetik der EKG-Parameter in reproduzierten Dauerstufentests?
- 4. Welchen Einfluss hat der Sympathikustonus auf eine mögliche Steady-State Kinetik?
- 5. Welchen Einfluss hat der Sympathikustonus auf die Leistung?
 Inwieweit spiegelt sich gegebenenfalls eine Beeinflussung der Leistung in den EKG-Parametern wieder?
- 6. Inwieweit korrelieren belastungsinduzierte EKG-Charakteristika mit Kenngrößen der submaximalen Belastung (z.B. "anaerobe ventilatorische Schwelle, Laktatsenke)?

2 Methodik

2.1 Untersuchungskollektiv

Für diese Studie lag die Genehmigung der lokalen Ethikkommission. Alle Probanden gaben ihr schriftliches Einverständnis zur Teilnahme an der Studie. Die Untersuchungsgruppe bestand aus 10 jungen Erwachsenen Männern mit Prähypertonie bzw. Hypertonie Stadium I (vgl. 7. Report of the Joint National Committee, 2003). Die Personen waren im Alter von 23 – 30 Jahre (MW= 25,1 ± 2,5). Das Durchschnittsgewicht betrug dabei 79,3 ± 11,7 kg. Die Durchschnittgröße wurde mit 180 ± 9,1 cm gemessen. Alle Personen waren sportlich aktiv (> 4h/Woche) und hatten außer des erhöhten Ruhe-Blutdrucks keine sonstigen akuten oder chronischen Erkrankungen. Das Untersuchungskollektiv kann als spezifisch sportgeübt bezeichnet werden, da alle Teilnehmer bereits mehrfach auf einem Fahrradergometer zu diagnostischen Zwecken Untersuchungen absolviert hatten. Eine detaillierte Auskunft über das Untersuchungskollektiv, Ein- und Ausschlusskriterien ist in Tabelle 2 und 3 zu finden.

Die Personen waren zum Zeitpunkt der Untersuchungen frei von entzündlichen Erkrankungen. Bei keinem der Patienten bestand zum Zeitpunkt der Untersuchung eine medizinische Kontraindikation für einen Belastungstest. Dabei wurden die in der Praxis üblichen Kriterien für Belastungsuntersuchungen zugrunde gelegt (Löllgen 1995).

Proband	Alter	Gewicht	Größe	RRsys	RRdia	Hf	BMI	TBW	FFM
Nr	(Jahre)	(kg)	(cm)	(mmHg)	(mmHg)	(S/min)	(kg/m²)	(%)	(%)
1	25	87	181	130	70	81	26,6	61,8	84,5
2	24	60	172	125	84	80	20,3	60,9	83,2
3	29	78	174	145	90	57	25,8	59,2	80,9
4	30	93	188	125	88	65	26,3	56,3	77,0
5	23	93	195	147	71	64	24,5	63,7	87,0
6	23	82	171	135	90	58	28,0	58,9	80,5
7	24	80	180	127	70	63	24,7	61,3	83,7
8	23	73	178	135	63	53	23,0	66,1	90,3
9	26	86	192	143	84	60	23,3	65,1	89,0
10	24	61	169	140	75	67	21,4	63,3	86,6
MW	25,1	79,3	180,0	135,2	78,5	64,8	24,4	61,7	84,3
Stabw	2,5	11,7	9,1	8,3	9,8	9,3	2,4	3,0	4,1

Tab.2: Basisdaten	des	Untersuchungskollektivs
-------------------	-----	-------------------------

Einschlusskriterien	Ausschlusskriterien		
Prähypertonie, Hypertonie Stadium I	• KHK		
 Keine weitere bekannte Herz-Kreislauferkrankung 	Herzinsuffizienz		
 Keine orthopädischen Erkrankungen 	Erregungsleitungsstörung		
 Alter zwischen 20 und 35 Jahren 	jegliche Herzrhythmusstörungen		
 Transthorakale Echokardiographie ohne path. Befund 	 Ruhe-Bradykardie (unter 50 b/min) 		
	Asthma bronchiale		
	 Hypotonie (unter 110 mmHg systolisch) 		
	Angina Pectoris		
	 orthopädisch und traumatologisch patholog. Befund 		
	akute virale/ bakterielle Infekte		
	jünger als 20 Jahre		
	 älter als 35 Jahre 		

Tab.3: Kriterien zum Ein- und Ausschluss an der Studie

2.2 Untersuchungsgang

Alle Teilnehmer nahmen vor Studieneintritt an einer klinischen Untersuchung teil (Anamnese, Erhebung von anthropometrischen Daten, Routinelabor, transthorakale Echokardiographie, Ruhe EKG und Bio-Impedanz).

Nach Einschluss der Teilnehmer in die Studie erfolgte eine Terminvereinbarung für die Zeitpunkte der vier Belastungsuntersuchungen anhand des Studienprotokolls (Abbildung 6)

2.2.1 Studienprotokoll

Das Studienprotokoll war so angelegt, dass zwischen den Tests einerseits ausreichend Erholungszeit für die Patienten bestand und andererseits keine Effekte eines Trainings auf die Ergebnisse Einfluss nehmen konnten.

Die Personen unterzogen sich am ersten Untersuchungstag der oben beschriebenen Voruntersuchung. Nach Einschluss in die Untersuchungsgruppe erfolgte am zweiten Tag der erste Doppelstufentest (T 1, Abschnitt 2.2.2). Nach zweitägiger Pause erfolgte auf der Grundlage der erreichten Maximalleistung der erste Dauertest (T 2, Abschnitt 2.2.2).

Am zweiten Tag nach Dauertest 1 begann die insgesamt sechstägige Intervention mit dem kardioselektiven ß₁-Rezeptorenblocker Bisoprololhemifumarat. Dabei mussten die Patienten täglich 1 Tablette 5 mg Bisoprolol zwei Stunden vor ihrer jeweiligen Testzeit einnehmen. Am dritten Tag der Intervention wurde dann erneut ein Doppelstufentest durchgeführt (T 3, Abschnitt 2.2.2), und am sechsten und letzten Tag der Intervention folgte dann der Dauertest (T 4, Abschnitt 2.2.2).

Abb. 6: Übersicht zum Ablaufplan im Studienprotokoll

2.2.2 Belastungstest

Die fahrradergometrischen Belastungsuntersuchungen wurden in der Zeit von 10.00 Uhr bis 15.00 Uhr entsprechend des Studienprotokolls (Abb. 6) durchgeführt. Dabei wurde berücksichtigt, dass die Untersuchungen jedes einzelnen Patienten zum exakt gleichen Tageszeitpunkt stattfand, um tageszeitliche Leistungsschwankungen zu verhindern.

Zur Untersuchung wurde die Halbliegeergometrie in einem für Belastungs-EKG vorgesehenem Labor verwendet. Der Vorteil der Halbliegeergometrie gegenüber der Sitzendergometrie besteht in der deutlich ruhigeren Oberkörperposition und damit geringerer EKG-Artefakte. Da die Arme nicht zum Abstützen nicht benötigt werden, sind Blutdruckmessungen und Blutabnahmen besser möglich.

Der Anstellwinkel des Halbliegeergometers betrug 35°. Sattelhöhe und Druckpunkt der Pedale konnten dabei den Körperproportionen angepasst werden. Die Füße wurden mit Klettverschlusspedalen fest am Ergometer fixiert. Die Trittfrequenz wurde mit 75 – 85 U/min festgelegt. Eine dauerhafte Unterschreitung von 70 U/min wurde als Belastungsabbruch gewertet.

Die Untersuchung beinhaltete folgende Belastungstests:

1. Doppelstufentest 1 (T 1)

Der Doppelstufentest 1 (T 1) fand ohne medikamentöse Intervention statt. Der Test sah folgenden Ablauf vor.

2. Dauertest 1 (T 2)

Der Dauertest 1 (T 2) fand ohne medikamentöse Intervention statt. Der Test sah folgenden Ablauf vor.

Ruhe:(3 Min. vor Belastung)Phase1:9 Min. bei 25% von PmaxPhase2:9 Min. bei 50% von PmaxPhase3:9 Min. bei 75% von PmaxPhase4:9 Min. bei 25% von PmaxPhase5:9 Min. bei 50% von PmaxPhase6:9 Min. bei 75% von Pmax

Testablauf:

Abb. 8: Testablauf Dauertest

Doppelstufentest 2 (T3) sowie Dauertest 2 (T4) fanden analog nach Medikamentengabe statt.

2.3 Datenerhebung

In Tabelle 4 sind die Parameter aufgelistet, welche während der Belastungsuntersuchungen erhoben und ausgewertet wurden.

Für die Belastungstests T1 und T3 startete die Datenerhebung in Ruhe drei Minuten vor Belastung. Während der Belastung wurden alle 3 Minuten bis zum Belastungsabbruch die Daten erhoben. Während der Pause erfolgte die Datenerhebung zur 1., 3. und 5. Minute. Im zweiten Testabschnitt erfolgte die Datenerhebung erneut aller 3 Minuten (außer Laktat mit minütlichen Abnahmen). Berücksichtigt wurde dabei, dass es sich dennoch um die gleichen Belastungspunkte wie im ersten Testabschnitt handelte (z.B.: bei 80 Watt im ersten Testabschnitt dann auch, sofern die Pausenbelastung niedriger war, ebenfalls bei 80 Watt im zweiten Testabschnitt usw.).

Diagnostisches	Parameter	
Verfahren		
Spirometrie	VO ₂ , V _E	
Vektorkardiographie	Intervalle:	
	P-Dauer, PQ-Zeit, PQ-Strecke, QRS-Komplex, ST-Strecke, T-Dauer, QT-Zeit	
	Amplituden:	
	P-Vektor-Magnitude, R-Vektor-Magnitude, T-Vektor-Magnitude	
	Flächen:	
	P-Fläche, QRS-Fläche, T-Fläche	
Klinische Chemie	Laktat, Kalium, Natrium, Adrenalin, Noradrenalin	
Bioimpedanz/Physioflow	FFM, TBW , HZV (Physioflow)	

Tab.4: Untersuchungsparameter

2.3.1 Spirometrie

Die spirometrischen Parameter wurden kontinuierlich mit der "breath by breath"-Methode erfasst. Um die Schwankungen, die durch unterschiedliche Atemtiefe während der Belastung zustande kommen, abzufangen, wurden die jeweils letzten 15 s der entsprechenden Untersuchungsminute gemittelt.

2.3.2 Vektorkardiographie und Vektormathematik

Die Vektorkardiographie stellt eine Sonderform des EKGs dar. Die Frank-Ableitung ermöglicht eine Betrachtung der elektrischen Vorgänge am Herzen über 3 Ebenen. Dies wird durch die 3 Hauptachsen X, Y und Z des orthogonalen Koordinatensystems erreicht (Abbildung 9 und 10)

Abb.9: Orthogonales Koordinatensystem aus den

Abb.10: Bestimmung des Summationsvektors Achsenkomponenten X, Y und Z

Die Länge und damit die Größe des Vektors A ergibt sich aus folgender Rechnung:

 $A = \sqrt{A^2_x + A^2_y + A^2_z}$

Für die Amplituden innerhalb des EKG P, R und T ergeben sich daraus folgende Vektor-Magnitude (VM) Gleichungen.

Abb.11: VKG und resultierendes VM

Die Intervalle wurden beginnend mit dem frühesten Komplex der einen Achse sowie dem Ende des letzten elektrischen Signals einer anderen Achse bestimmt. Am Beispiel eines QRS-Komplexes heißt das, dass die Zeitdauer vom frühesten Q einer Achse bis zum letzten J-Punkt einer anderen Achse gemessen wurde. Bei der Festlegung der Intervallgrenzen wurden die Empfehlungen von Heinecker und Gonska (1992) übernommen. Für Flächenbestimmungen der P-Welle, des QRS-Komplexes und der T-Welle wurden jeweils die Integrale [AUC] unterhalb der Vektor-Magnitude Kurven bestimmt.

Abb.12: Ermittlung des Integrals des Vektormagnitudes

Die binären Daten der Vektorkardiographieeinheit HP MIDA M045 wurden als minütlich gemittelte Datensätze mit Hilfe der Extraktionssoftware von NIßING & FIKENZER (2002) in alphanumerische Datensätze überführt. Die Aufzeichnung erfolgte dabei mit einer Frequenz von 500 Hz und die Speicherung mit einer Frequenz von 250 Hz.

Zeitliche Marker dienten der Synchronisation der Vektorkardiographie mit den anderen Messeinheiten und damit der korrekten Zuordnung zum jeweiligen Testzeitpunkt.

2.3.3 Laktat

Das Laktat wurde abweichend zu den anderen Parametern mit Beginn des zweiten Testabschnitts jede Minute abgenommen, um so einen noch differenzierteren Verlauf der Laktatkinetik im Senkentest nach Braumann et al. (1991) erfassen zu können. Für die Laktatanalyse wurden 20 µl Vollblut aus den kapillaren Blutgefäßen des linken Ohrläppchens entnommen.

2.3.4 Katecholamine

Die Katecholamine Adrenalin und Noradrenalin wurden abweichend von allen anderen Parametern in den Belastungstests T2 und T4 nur jeweils am Ende einer Belastungsstufe (alle 9 Minuten) erhoben. Grundsätzlich erfolgte die Blutentnahme über die Vena mediana cubiti des linken Armes unter Zuhilfenahme einer peripheren Verweil-Kanüle. Es wurden dabei 6,0 ml Blut in EDTA S-Monovetten entnommen. Während der Tests wurden auf Grund der geringen Temperaturstabilität der Katecholamine die EDTA-Röhrchen direkt im Anschluss an die Entnahme in Eiswasser gelagert.

Vor jeder Blutentnahme wurden 2,5 ml (als Totraumvolumen) verworfen. Das gesamte effektive Totraumvolumen, einschließlich Venenverweilkanüle und Dreiwegehahnsystem wurde mit 1,0 ml berechnet.

Nach jeder Entnahme wurde das System mit 10 ml 0,9%iger NaCI-Lösung gespült und gleichzeitig das entnommene Volumen wieder ausgeglichen. Nur im Übergang von maximaler Ausbelastung und der ersten Minute der Nachbelastung wurde aus zeitlichen Gründen auf ein Spülen verzichtet.

Nach Abschluss des Tests wurde das EDTA-Blut bei 3500 Umdrehungen/min 10 Minuten kühl (8 °C) zentrifugiert. Anschließend wurde der Überstand zu je 1 ml in 2 Eppendorf Becher abpippetiert. Dabei diente eine Probe als Hauptprobe und die zweite als Kontrolle bzw. Ersatzprobe. Die Lagerung bis zur Auswertung erfolgte dann bei -30°C.

2.3.5 Elektrolyte

Für die Bestimmung der Elektrolyte wurde 1,5 ml Vollblut aus dem Venenverweilkatheter nach der Abnahme der Katecholamine alle 3 Minuten entnommen, beginnend in Ruhe und während der Tests alle 3 Minuten. Die Abnahme folgte dabei der bereits zuvor beschriebenen zeitlichen Struktur.

Die Blutentnahme in T2 und T4 erfolgte, abweichend zu den Katecholaminen, alle 3 Minuten. Hierbei wurden ebenfalls erst 2,5 ml Blut (Totraum) verworfen und anschließend mit 0,9%iger NaCI-Lösung gespült.

2.3.6 Herzminutenvolumen

Die Ermittlung der HZV erfolgte über ein transthorakales Impedanzverfahren. Hierbei wurden die Widerstände, die durch die Volumenverschiebungen (Blutfüllung und Auswurf im Herzen) entstehen, gemessen und analysiert. Durch diese Messmethode wurde eine kontinuierliche Erfassung des Herzminutenvolumen (HZV) und zugehöriger Parameter wie Schlagvolumen (SV), enddiastolisches Volumen (EDV) und Ejektionsfraktion (EF) ermöglicht.

2.4 Datenauswertung

Die qualitative und quantitative Auswertung der Untersuchungsparameter unter Belastung beschränkte sich auf die in der Einleitung formulierten Fragestellungen.

Auf Grund unterschiedlicher Leistungsgrade der einzelnen Personen war eine vergleichende Betrachtung der absoluten Daten nicht möglich. Daher bezogen sich alle Berechnungen auf Relativdaten, wobei die Ausbelastung im ersten Testabschnitt von T1 als 100% der Leistungsfähigkeit angesehen wurde. Im Anschluss daran erfolgte die Interpolation der Parameter für jeden Teilnehmer. Die vergleichende Analyse fand dann bei 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% der Belastung statt.

Die Pausenbelastung wurde mit 25% von P_{max} als gegeben angesehen und benötigte daher keine weitere Vorbereitung zur Analyse.

In Test 2 und Test 4 sind die Dauerbelastungen auf relativen Belastungsstufen durchgeführt worden und benötigten daher keine weitere Vorbereitung zu Auswertung und Analyse.

2.5 Messgeräte

In Verbindung mit dieser Studie kamen folgende Geräte und Verfahren zum Einsatz:

Fahrradergometer

Liegeergometer der Firma Ergoline® Typ "Ergometrics 900"

Vektorkardiographie

Vektorkardiographieeinheit der Firma Hewlett Packard® Typ "HP MIDA M2045"

Katecholamine

Die Katecholamine wurden mittels Enzymimmunassay (ELISA) der Firma IBL-Hamburg gemessen.

Elektrolyte

Die Elektrolyte Kalium und Natrium wurden mit Hilfe der KoneMikrolythe® der Firma Kone Instruments GmbH gemessen.

Laktat

Die Laktatkonzentrationen wurden kapillär mit Hilfe des "Super G®" der Firma Diasys-Diagnostic System ermittelt.

Herzminutenvolumen

Bei fünf von 10 Teilnehmern stand die Impedanz HZV-Messeinheit "Physioflow®" der Firma Manatec Biomedical zur Verfügung.

Spirometrie

Die Parameter wurden mit Hilfe des Spirometriesystems der Firma Cosmed® Typ "K4b²" erfasst.

2.6 Statistik

Folgende Verfahren wurden angewandt:

- Deskriptive Statistik
- Allgemeines lineares Modell f
 ür Messwiederholungen folgende Effekte wurden dabei gepr
 üft:

Haupteffekt Zeit:	Verändert sich der Parameter über
	die Zeit, unabhängig von den
	Gruppen?
Haupteffekt Gruppe:	Unterscheiden sich die Gruppe
	generell, unabhängig von den
	Messzeitpunkten?
Interaktionseffekt Gruppe * Zeit:	Verändern sich die Gruppen über
	die Zeit unterschiedlich, macht es
	einen Unterschied, ob man Gruppe
	A oder Gruppe B ist? $ ightarrow$ Hat die
	Intervention einen Einfluß?
- WILCOXEN Test
- Regressionsanalyse
- Korrelationsanalyse nach PEARSON bzw. SPEARMAN

Die statistische Berechnung der Daten erfolgte mit SPSS 11.5 und GraphPad-Prism 4.0. Die grafische Darstellung der Ergebnisse erfolgte mit GraphPad-Prism 4.0.

Die Ergebnisse werden als Mittelwerte (MW), Standardabweichungen (Stabw) und Standardfehler des Mittelwertes (SEM) angegeben.

Bei Verletzung der Sphärizität wurden die entsprechenden Korrekturverfahren berücksichtigt.

Signifikanzangaben:	signifikant:	p<0.05:	*
	hochsignifikant:	p<0.01:	**

3 Ergebnisse

3.1 Basisergebnisse zur allgemeinen Leistungsfähigkeit

In Tabelle 5 sind die Basisdaten zur allgemeinen Leistungsfähigkeit mit und ohne ß-Blockade dargestellt.

Während in dieser Studie die Teilnehmer die gleiche maximale Leistung sowohl mit als auch ohne ß-Blockade erreichten, war durch die Intervention sowohl die Herzfrequenz in Ruhe signifikant um 10,6 Schläge pro Minute (p<0,05) als auch die maximale Herzfrequenz um 27,8 Schläge pro Minute hochsignifikant verringert (p<0,01).

Unter ß-Blockade war der systolische Blutdruck in Ruhe im Mittel um 19,4 mmHg und bei maximaler Belastung um 17,7 mmHg hochsignifikant verringert (p<0,01). Im diastolischen Blutdruck bestanden keine relevanten Unterschiede sowohl in Ruhe als auch bei maximaler Belastung.

Bei maximaler Sauerstoffaufnahme (VO₂) und Atemminutenvolumen (V_E) lagen mit bzw. ohne ß-Blockade keine relevanten Unterschiede vor.

Katecholamine: ß-Blockade verursachte keinen relevanten Unterschied in den Plasmakonzentrationen für Adrenalin in Ruhe bzw. bei maximaler Ausbelastung. Bei Noradrenalin fand sich im Trend eine höhere Plasmakonzentration bei maximaler Belastung (p=0,08).

Auch bei Laktat konnten keine Unterschiede in Bezug auf die Ruhe- und Maximalwerte ermittelt werden.

Die Kaliumwerte waren bei maximaler Ausbelastung unter ß-Blockade signifikant höher (p<0,05).

			ohne ß-Blockade		mit ß-Blockade		Differenz		
Parameter		Einheit	MW	SD	MW	SD	MW	SD	р
Leistung	Max	Watt	269,00	41,49	269,00	41,49	0,00	0,00	ns
Hf	Ruhe	1/min	64,80	9,26	54,20	8,30	-10,60	11,09	<0,05
Hf	Max		179,90	13,99	152,10	13,74	-27,80	6,58	<0,01
RRsys	Ruhe	mmHg	135,20	8,31	115,80	9,11	-19,40	9,34	<0,01
RRsys	Max		221,70	19,06	204,00	22,91	-17,70	15,25	<0,01
RRdia	Ruhe	mmlla	78,50	9,82	72,00	8,22	-6,50	11,45	ns
RRdia	Max	ттнд	74,50	13,97	70,10	10,94	-4,40	11,65	ns
VO ₂	Ruhe	ml/min	262,73	27,35	263,87	20,41	1,14	29,86	ns
VO ₂	Max	[[]]	3110,01	481,91	3076,62	424,95	-33,39	314,44	ns
VE	Ruhe	l/min	12,41	2,64	13,35	4,38	0,94	3,13	ns
VE	Max	1/11111	111,37	21,84	117,13	28,40	5,76	8,99	ns
Adrenalin	Ruhe	nmol/l	0,52	0,42	0,58	0,23	0,06	0,53	ns
Adrenalin	Max	nmoi/i	2,04	1,77	2,44	2,01	0,40	2,08	ns
Noradrenalin	Ruhe	nmol/l	2,63	1,49	3,11	1,33	0,48	1,69	ns
Noradrenalin	Max	nmol/l	12,78	7,85	16,89	12,25	4,11	5,02	ns
Laktat	Ruhe	mmol/l	1,22	0,42	1,04	0,20	-0,18	0,49	ns
Laktat	Max	mm0l/l	8,67	2,62	8,61	3,15	-0,06	1,22	ns
Kalium	Ruhe	mmol/l	3,96	0,25	4,26	0,35	-0,30	0,36	ns
Kalium	Max		5,34	0,67	5,73	0,62	-0,42	0,54	<0,05

Tab.5: Basisdaten zur allgemeinen Leistungsfähigkeit

Zusammenfassung: Signifikante Effekte der
ß-Blockade auf Ruhe- und Maximalwerte

Erniedrigung:

Herzfrequenz, Blutdruck (systolisch)

Erhöhung: Kalium, Noradrenalin (tendenziell)

3.2 Doppelstufentest

3.2.1 Herzfrequenz im doppelten Stufentest

Herzfrequenz im doppelten Stufentest ohne ß-Blockade

In Abbildung 13 sind die Veränderungen der Herzfrequenz während des doppelten Stufentests dargestellt (MW und SD).

Grundsätzlich ist zu erkennen, dass mit zunehmender Belastung die Herzfrequenz stieg. Mit Einsetzen der aktiven Erholung sank die Herzfrequenz direkt wieder ab. Dieses Verhalten galt praktisch für zwei aufeinander folgende Belastungstests.

Von der durchschnittlichen Ruheherzfrequenz von 64,8 (\pm 9,3) Schlägen pro Minute stieg die Hf hochsignifikant (p<0,01) während der ersten Belastungsphase auf maximal 179,9 (\pm 14,0) Schläge/Minute an.

In der ersten Nachbelastungsphase fiel die Herzfrequenz im Mittel um 55,3 Schläge pro Minute.

In der zweiten Belastungsphase stieg die Herzfrequenz auf 172,7 (± 13,6) Schläge pro Minute hochsignifikant (p<0,01) an.

In der abschließenden zweiten Nachbelastungsphase sank die Herzfrequenz wieder auf 120,6 (± 18,6) Schläge/Minute.

Abb. 13: Verlauf der Herzfrequenz im Doppelstufentest (MW±SD)

Abb. 14: Relative Veränderung der Herzfrequenz in Testphase 1 und 2 (MW±SD)

Abb. 15: Lineare Regression der Herzfrequenz von Testphase 1 und 2

Herzfrequenz im doppelten Stufentest mit ß-Blockade

In Abbildung 16 sind die Veränderungen der Herzfrequenz während des doppelten Stufentests unter Einfluss einer ß-Blockade dargestellt (MW und SD).

Grundsätzlich ist zu erkennen, dass mit zunehmender Belastung die Herzfrequenz stieg. Mit Einsetzen der aktiven Erholung sank die Herzfrequenz direkt wieder ab. Dieses Verhalten galt praktisch für zwei aufeinander folgende Belastungstests.

Unter dem Einfluss der ß-Blockade stieg die durchschnittlichen Ruheherzfrequenz von 54,2 (\pm 8,3) Schlägen pro Minute hochsignifikant (p<0,01) während der ersten Belastungsphase auf maximal 152,1 (\pm 13,7) Schläge/Minute an.

In der ersten Nachbelastungsphase fiel die Herzfrequenz im Mittel auf 99,4 (± 12,7) Schläge pro Minute.

In der zweiten Belastungsphase stieg die Herzfrequenz auf 142,6 (± 8,4) Schläge pro Minute hochsignifikant (p<0,01) an.

In der abschließenden zweiten Nachbelastungsphase senkte sich die Herzfrequenz wieder auf 98,7 (± 12) Schläge/Minute.

Abb. 16: Verlauf der Herzfrequenz im Doppelstufentest (MW±SD).

Abb. 17: Relative Veränderung der Herzfrequenz in Testphase 1 und 2 (MW±SD)

Abb. 18: Lineare Regression der Herzfrequenz von Testphase 1 und 2

Vergleich der Tests mit und ohne ß-Blockade

In Abbildung 19 sind die relativen Veränderungen der Herzfrequenz während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden. Dieser Unterschied lag am unterschiedlichen Verhalten der Herzfrequenz von 20% auf 30% (p<0,05), von 50% auf 60% (p<0,01) und von 60% auf 70% (p<0,01) der maximalen Leistung innerhalb der Testbedingungen in der ersten Testphase. Über die anderen Zeitpunkte existierten keine Hinweise auf Unterschiede im Hinblick auf die Testbedingung.

Abb. 19: Veränderungen der Herzfrequenz (in Δ Hf) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD)

Zusammenfassung: Herzfrequenz im Stufentest

- Die ß-Blockade reduzierte die Herzfrequenz in Ruhe (im Mittel um 11 S/min) und bei maximaler Belastung (im Mittel um 28 S/min).
- 2. Unter ß-Blockade war der HF-Anstieg von 20%-70% der Maximalleistung im Mittel um 13 Schläge verringert.
- Von 0%-20% sowie von 70%-100% der Maximalleistung war der HF-Anstieg mit und ohne
 ß-Blockade gleich.

3.2.2. Katecholamine im doppelten Stufentest

Adrenalin im doppelten Stufentest ohne ß-Blockade

In Abbildung 20 sind die Veränderungen der Plasma-Adrenalinkonzentration ([A]_p) während des doppelten Stufentests dargestellt (MW und SD).

Grundsätzlich ist zu erkennen, dass mit zunehmender Belastung $[A]_p$ bis 60% P_{max} moderat anstieg. Mit weiterem Belastungsanstieg verstärkte sich der Anstieg deutlich. In der aktiven Erholung sank $[A]_p$ 5 Minuten nach Belastung wieder ab.

Dieser Verlauf war im zweiten Testabschnitt entsprechend vorhanden. Von einer durchschnittlichen Adrenalinkonzentration von 0,52 (\pm 0,4) nmol/l in Ruhe stieg die Konzentration moderat bis 60% P_{max} auf 0,69 (\pm 0,6) nmol/l und anschließend hochsignifikant (p<0,01) maximal auf 2,04 (\pm 1,8) nmol/l.

In der ersten Nachbelastungsphase fiel $[A]_p$ signifikant von der ersten Minute an im Mittel auf 0,77 (± 0,6) nmol/l.

In der zweiten Belastungsphase stieg Adrenalin wiederum erst moderat bis etwa 60% an, um dann wieder verstärkt auf 1,58 (± 1,3) nmol/l anzusteigen (p<0,01).

In der abschließenden zweiten Nachbelastungsphase sank $[A]_p$ erst ab der 3. Nachbelastungsminute signifikant und erreichte bei 5 Minuten Nachbelastung eine Konzentration von 0,52 (± 0,4) nmol/l (p<0,01).

Abb. 20: Verlauf des Adrenalins im Doppelstufentest (MW±SD).

Abb. 21: Relative Veränderung von [A]_p in Testphase 1 und 2 (MW±SD)

Abb. 22: Lineare Regression von [A]_p von Testphase 1 und 2

Adrenalin im doppelten Stufentest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg die durchschnittliche Adrenalinkonzentration im Plasma von 0,58 (± 0,2) nmol/l in Ruhe moderat bis 60% P_{max} auf 0,69 (± 0,3) nmol/l und anschließend hochsignifikant (p<0,01) maximal auf 2,44 (± 2,0) nmol/l (Abbildung 23).

In der ersten Nachbelastungsphase fiel die Adrenalinkonzentration signifikant von der ersten Minute an im Mittel auf 0,73 (± 0,4) nmol/l.

In der zweiten Belastungsphase stieg Adrenalin wiederum erst moderat bis etwa 60%, um dann wieder verstärkt anzusteigen auf 1,35 (± 0,6) nmol/l (p<0,01).

In der abschließenden zweiten Nachbelastungsphase senkte sich die Adrenalinkonzentration signifikant und erreicht bei 5 Minuten Nachbelastung eine Konzentration von 0,59 (\pm 0,3) nmol/l (p<0,05).

Abb. 23: Verlauf des Adrenalins im Doppelstufentest (MW±SD).

Abb. 24: Relative Veränderung von $[A]_p$ in Testphase 1 und 2 (MW \pm SD)

Abb. 25: Lineare Regression von $[A]_{\rm p}$ von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 26 sind die relativen Veränderungen der Plasmakonzentrationen des Adrenalins während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Abb. 26: Veränderungen der $[A]_p$ (in Δ Adrenalin) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: Adrenalin im Stufentest

- 1. Bis 60% der maximalen Belastung stieg die Plasmakonzentration für Adrenalin moderat an (im Mittel 0,14 nmol/l).
- 2. Ab 60% kam es zu einer deutlichen Zunahme der Adrenalin-Plasmakonzentration (im Mittel um 1,26 nmol/l).
- ß-Blockade hatte keinen relevanten Einfluss auf [A]_p in Ruhe und unter Belastung.

Noradrenalin im doppelten Stufentest ohne ß-Blockade

In Abbildung 27 sind die Veränderungen der Plasmakonzentration von Noradrenalin [NA]_p während des doppelten Stufentests dargestellt (MW und SD).

Grundsätzlich ist zu erkennen, dass mit zunehmender Belastung die Plasmakonzentration erst moderat bis 60% anstieg. Mit weiterem Belastungsanstieg verstärkte sich der Anstieg der Noradrenalinkonzentration massiv.

In der aktiven Erholung sank das Noradrenalin ab der 3. Minuten nach Belastung wieder ab. Dieser Verlauf war im zweiten Testabschnitt entsprechend vorhanden. Von einer durchschnittlichen Noradrenalinkonzentration von 2,70 (± 1,7) nmol/l in Ruhe stieg die Konzentration moderat bis 60% P_{max} auf 3,64 (± 1,6) nmol/l und anschließend hochsignifikant (p<0,01) maximal auf 12,78 (± 7,9) nmol/l.

In der ersten Nachbelastungsphase blieb die Konzentration von Noradrenalin zunächst bis 1 Minute nach Belastung auf dem Niveau der maximalen Ausbelastung. Anschließend sank die Konzentration von Noradrenalin bis 5 Minuten nach Belastung hochsignifikant auf 6,49 (\pm 4,7) nmol/l (p<0,01).

In der zweiten Belastungsphase stieg Noradrenalin wiederum erst moderat bis etwa 60%, um dann wieder verstärkt anzusteigen auf 9,43 (\pm 6,2) nmol/l (p<0,01).

In der folgenden zweiten Nachbelastungsphase sank die Noradrenalinkonzentration ebenfalls erst ab der 3. Nachbelastungsminute signifikant und erreichte bei 5 Minuten Nachbelastung eine Konzentration von 4,85 (\pm 2,9) nmol/l (p<0,01).

Abb. 27: Verlauf des Noradrenalins im Doppelstufentest (MW±SD)

Die folgenden 2 Abbildungen zeigen die Reproduzierbarkeit der Effekte dargestellt. Einerseits wird die relative Veränderung bei Belastung und andererseits die Regression beider Testabschnitte gegeneinander abgebildet.

Abb. 28: Relative Veränderung von [NA]_p in Testphase 1 und 2 (MW±SD)

Abb. 29: Lineare Regression von [NA]_p von Testphase 1 und 2

Noradrenalin im doppelten Stufentest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg die durchschnittliche Noradrenalinkonzentration von 3,00 (\pm 1,4) nmol/l in Ruhe moderat bis 60% P_{max} auf 4,24 (\pm 1,6) nmol/l und anschließend hochsignifikant (p<0,01) maximal auf 16,89 (\pm 12,3) nmol/l (Abbildung 30).

Erst ab der 3. Nachbelastungsminute fiel $[Na]_p$ signifikant im Mittel auf 7,24 (± 4,2) nmol/l in der 5. Minute nach Belastung.

In der zweiten Belastungsphase stieg $[Na]_p$ erst moderat bis etwa 60%, und dann verstärkt auf 9,11 (± 4,4) nmol/l (p<0,01) an.

In der abschließenden zweiten Nachbelastungsphase sank die $[Na]_p$ ebenfalls erst ab der 3. Minute signifikant und erreichte bei 5 Minuten Nachbelastung eine Konzentration von 4,83 (± 2,2) nmol/l (p<0,05).

Abb. 30: Verlauf des Noradrenalins im Doppelstufentest (MW±SD)

Abb. 31: Relative Veränderung von [NA]_p in Testphase 1 und 2 (MW±SD)

Abb. 32: Lineare Regression von [NA]_p von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 33 sind die relativen Veränderungen der Plasmakonzentrationen für Noradrenalin während des doppelten Stufentests beider Testserien dargestellt (MW und SD). Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Abb. 33: Veränderungen der [NA]_p (in Δ Noradrenalin) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: Noradrenalin im Stufentest

- 1. Bis 60% der maximalen Belastung stieg die Plasmakonzentration für Noradrenalin moderat an (im Mittel 1,10 nmol/l).
- Mit weiterem Belastungsanstieg kam es zu einer deutlich verstärkten Zunahme der [Na]_p (im Mittel 10,9 nmol/l).
- ß-Blockade hatte keinen Einfluss auf die [Na]_p in Ruhe bis zu submaximaler Belastung.
- Bei maximaler Belastung lag das [Na]_p mit ß-Blockade tendenziell und in der ersten Nachbelastungsminute signifikant höher.
- 5. Es gab keinen Rückgang von [Na]_p im unmittelbaren Übergang von maximaler Belastung zur 1. Minute nach Belastung. Erst ab der dritten Nachbelastungsminute kam es zu einem deutlichen Abfall.

3.2.3 Kalium im doppelten Stufentest

Kalium im doppelten Stufentest ohne ß-Blockade

In Abbildung 34 sind die Veränderungen der Plasmakonzentration von Kalium während des doppelten Stufentests dargestellt (MW und SD).

Grundsätzlich ist zu erkennen, dass mit zunehmender Belastung die Plasmakonzentration $[K^{\dagger}]_{p}$ erst moderat bis 60% anstieg. Mit weiterem Belastungsanstieg verstärkte sich der Anstieg der Kaliumkonzentration.

In der aktiven Erholung sank das Kalium bis 5 Minuten nach Belastung wieder ab. Dieser Verlauf war im zweiten Testabschnitt entsprechend vorhanden.

Von einer durchschnittlichen Kaliumkonzentration von 4,01 (± 0,2) mmol/l in Ruhe stieg die Konzentration moderat bis 60% P_{max} auf 4,37 (± 0,3) mmol/l und anschließend hochsignifikant (p<0,01) maximal auf 5,33 (± 0,7) mmol/l.

In der Nachbelastungsphase fiel die Kaliumkonzentration signifikant von der ersten Minute an im Mittel auf $4,18 (\pm 0,1)$ mmol/l.

In der zweiten Belastungsphase stieg Kalium wiederum auf 4,93 (\pm 0,4) mmol/l (p<0,01) an.

In der abschließenden zweiten Nachbelastungsphase sank die Kaliumkonzentration signifikant und erreicht bei 5 Minuten Nachbelastung eine Konzentration von 4,47 (\pm 0,3) mmol/l (p<0,01).

Abb. 34: Verlauf des Kaliums im Doppelstufentest (MW±SD)

Abb. 35: Relative Veränderung von $[K^{\dagger}]_{p}$ in Testphase 1 und 2 (MW±SD)

Abb. 36: Lineare Regression von $[K^{^{+}}]_{p}$ von Testphase 1 und 2

Kalium im doppelten Stufentest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg die durchschnittliche Kaliumkonzentration von 4,26 (± 0,4) mmol/l in Ruhe moderat bis 60% P_{max} auf 4,62 (± 0,3) mmol/l und anschließend hochsignifikant (p<0,01) auf maximal auf 5,75 (± 0,7) mmol/l (Abbildung 37).

In der Nachbelastungsphase fiel die Kaliumkonzentration signifikant von der ersten Minute an im Mittel auf 5,15 (± 0,2) mmol/l.

In der zweiten Belastungsphase stieg Kalium wiederum auf 4,97 (\pm 0,5) mmol/l (p<0,01) an.

In der abschließenden zweiten Nachbelastungsphase sank die Kaliumkonzentration signifikant und erreichte bei 5 Minuten Nachbelastung eine Konzentration von 4,51 (\pm 0,2) mmol/l (p<0,05).

Abb. 37: Verlauf des Kaliums im Doppelstufentest (MW±SD)

Abb. 38: Relative Veränderung von $[K^{+}]_{\rho}$ in Testphase 1 und 2 (MW±SD)

Abb. 39: Lineare Regression von $[K^{\dagger}]_{p}$ von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 40 sind die relativen Veränderungen der Kaliumkonzentration während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte nur bei höherer Belastung im 2. Test ein tendenzieller Unterschied ermittelt werden.

Abb. 40: Veränderungen der $[K^{^*}]_{\scriptscriptstyle p}$ (in Δ Kalium) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: [K ⁺] _p im Stufentest				
1.	Bis 60% der maximalen Belastung stieg die Plasmakon-			
	zentration für Kalium nur moderat (+0,4 mmol/l) an.			
2.	Mit weiterem Belastungsanstieg kam es zu einer deutlich			
	verstärkten Zunahme der Kaliumkonzentration (+ 1,38			
	mmol/l).			
3.	ß-Blockade hatte keinen Einfluss auf die $[K^{+}]_{p}$ in Ruhe.			
4.	Unter ß-Blockade war die $[K^{^{\scriptscriptstyle +}}]_{\scriptscriptstyle p}$ bei maximaler Belastung im			
	Mittel um 0,24 mmol/l höher (p<0,05).			
5.	ß-Blockade hatte keinen relevanten Einfluss auf die Ent-			
	wicklung der [K⁺] _p während Belastung.			

3.2.4 P-Welle im doppelten Stufentest

P-Welle im doppelten Stufentest ohne ß-Blockade

In Abbildung 41 sind die Veränderungen des Integrals unter der P-Welle während des doppelten Stufentests dargestellt (MW und SD).

Grundsätzlich ist zu erkennen, dass mit zunehmender Belastung die Fläche bis 70% anstieg. Mit weiterem Belastungsanstieg kam es zu keiner messbaren Veränderung.

In der aktiven Erholung stieg das Integral bis 3 Minuten nach Belastung und fiel anschließend bis 5 Minuten wieder ab. Dieser Verlauf war im zweiten Testabschnitt gleichermaßen vorhanden.

Von einem durchschnittlichen Integral von 8152 (± 2075) in Ruhe stieg das Integral bis 70% P_{max} auf 15294 (± 4240), p<0,01 an. Mit weiterem Belastungsanstieg war im Mittel keine Veränderung nachweisbar.

In der Nachbelastungsphase stieg die P-Wellen-Fläche im Trend bis 3. Minute nach Belastung auf 18701 (\pm 4955), p=0,058 und fiel dann bis 5 Minuten nach Belastung wieder signifikant auf 16869 (\pm 3309), p<0,05 ab.

In der zweiten Belastungsphase war eine Veränderung die P-Wellen-Fläche nicht nachweisbar.

In der abschließenden zweiten Nachbelastungsphase stieg die P-Wellen-Fläche signifikant bis 3 Minuten nach Belastung auf 18178 (\pm 3545), p<0,05 und fiel im Trend bis 5 Minuten nach Belastung auf 16539 (\pm 3466), p=0,059 ab.

Abb. 41: Verlauf des Integrals unter der P-Welle im Doppelstufentest (MW±SD).

Abb. 42: Relative Veränderung der P-Fläche in Testphase 1 und 2 (MW±SD)

Abb. 43: Lineare Regression der P-Fläche von Testphase 1 und 2

P-Welle im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade stieg die P-Fläche von 6353 (\pm 1854) bis zum Belastungsabbruch hochsignifikant an 15724 (\pm 1854), p<0,01 (Abbildung 44).

Unter Einfluss der ß-Blockade wurde im Trend das Integral der P-Welle bis 5 Minuten nach Belastung auf 13053 (± 2299) wieder kleiner (p=0,074).

Im zweiten Abschnitt nahm die P-Welle-Fläche wieder signifikant zu 15717 (± 3627), p<0,05.

In der abschließenden zweiten Nachbelastungsphase fiel die P-Welle nach Belastung signifikant auf 13553 (± 2585), p<0,05 ab.

Abb. 44: Verlauf des Integrals unter der P-Welle im Doppelstufentest (MW±SD).

Abb. 45: Relative Veränderung der P-Fläche in Testphase 1 und 2 (MW±SD)

Abb. 46: Lineare Regression der P-Fläche von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 47 sind die relativen Veränderungen des Integrals während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden (p<0,01).

Abb. 47: Veränderungen der P-Fläche (in Δ P-Fläche) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: P-Welle im Stufentest

- Bis 70% der maximalen Belastung stieg das Integral der P-Welle ohne
 ß-Blockade an, mit weiterem Belastungsanstieg kam es zu keiner weiteren Zunahme des Integrals.
- Unter
 ß-Blockade stieg die P-Wellen-Fläche dagegen stetig bis zum Belastungsmaximum.
- ß-Blockade hatte keinen Einfluss auf das Integral der P-Welle in Ruhe und bei maximaler Belastung.

3.2.5 QRS-Fläche im doppelten Stufentest

QRS-Fläche im doppelten Stufentest ohne ß-Blockade

Abbildung 48 zeigt die Veränderungen des Integrals des QRS-Komplexes (AUC QRS-Komplex) während des doppelten Stufentests (MW und SD) Grundsätzlich ist zu erkennen, dass mit zunehmender Belastung die Fläche des QRS-Komplexes kleiner wurde.

Bis zur ersten Minute der aktiven Erholung verblieb das Integral des QRS-Komplexes auf dem Niveau der maximalen Belastung. Ab der 3. Minute stieg das Integral dann wieder an.

Dieser Verlauf war im zweiten Testabschnitt gleichermaßen vorhanden.

Von einer durchschnittlichen Integral von 63167 (± 15377) in Ruhe fiel das Integral P_{max} auf 59226 (± 15538), p<0,01 ab.

In der ersten Nachbelastungsphase verblieb das Integral bei 59353 (± 15975) und stieg anschließend ab der 3. Minute nach Belastung auf 65744 (± 15332) bei 5 Minuten nach Belastung an (p<0,01).

Im zweiten Belastungsabschnitt verringerte sich die QRS-Fläche bis 60% (p<0,05) und verblieb dann auf diesem Niveau bis zum Belastungsabbruch.

In der zweiten Nachbelastungsphase fanden sich gleiche Veränderungen wie in der ersten Nachbelastungsphase. In der ersten Minute verblieb die QRS-Fläche auf dem Niveau der Ausbelastung 56738 (± 15128) und stieg dann hochsignifikant bis zur 5. Minute nach Belastung an (p<0,01).

Abb. 48: Verlauf des Integrals unter dem QRS-Komplex im Doppelstufentest (MW±SD).

Abb. 49: Relative Veränderung der QRS-Fläche in Testphase 1 und 2 (MW±SD)

Abb. 50: Lineare Regression der QRS-Fläche von Testphase 1 und 2

QRS-Fläche im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade sank die QRS-Fläche von 65891 (± 17665) bis 60% von P_{max} auf 60522 (± 15044), p<0,01 ab. Anschließend verblieb sie bis zur maximalen Belastung auf diesem Niveau ohne statistisch relevante Unterschiede (Abbildung 51).

Auch unter ß-Blockade blieb das Integral des QRS-Komplexes in der ersten Nachbelastungsphase unbeeinflusst.

Anschließend stieg die QRS-Fläche bis 5 Minuten nach Belastung auf (67373 ± 15569), p<0,01an.

Im zweiten Abschnitt nahm die QRS-Fläche bis 60% von P_{max} hochsignifikant ab (61436 ± 13875), p<0,01.

In der abschließenden zweiten Nachbelastungsphase verharrte das Integral des QRS-Komplexes bis 1 Minute nach Belastung und stieg anschließend auf 67373 (± 15569), p<0,01 an.

Abb. 51: Verlauf des Integrals unter dem QRS-Komplex im Doppelstufentest (MW±SD).

Abb. 52: Relative Veränderung der QRS-Fläche in Testphase 1 und 2 (MW±SD)

Abb. 53: Lineare Regression der QRS-Fläche von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 54 sind die relativen Veränderungen des Integrals während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden (p<0,01).Dieser Unterschied kam durch die unterschiedlichen Verläufe im ersten Testabschnitt zustande. Im Test mit ß-Blockade sank die QRS-Fläche schneller bis 60% von P_{max} und erreichte im Belastungsmaximum das gleiche Niveau wie im Test ohne ß-Blockade.

Abb. 54: Veränderungen der QRS-Fläche (in Δ QRS-Fläche) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: QRS-Fläche im Stufentest

- 1. Ohne ß-Blockade sank das Integral des QRS-Komplexes im ersten Testabschnitt bis zum Belastungsmaximum stetig.
- Unter
 ß-Blockade dagegen sank das Integral des QRS-Komplexes nur bis zu 60% der maximalen Leistung.
- ß-Blockade hatte keinen Einfluss auf das Integral des QRS-Komplexes in Ruhe und maximaler Belastung.
- Es gab keinen Rückgang in den QRS-Flächen beider Tests im unmittelbaren Übergang von maximaler Belastung zur 1. Minute nach Belastung.

3.2.6 T-Welle im doppelten Stufentest

T-Welle im doppelten Stufentest ohne ß-Blockade

Abbildung 55 zeigt die Veränderungen des Integrals der T-Welle während des doppelten Stufentests (MW und SD)

Von einem durchschnittlichen Integral von 35087 (± 13219) in Ruhe fiel das Integral bis 60% P_{max} auf 19129 (± 6635), p<0,01 ab. Anschließend stieg es signifikant bis zum Belastungsmaximum auf 24268 (± 7614), p<0,05 an.

In der ersten Nachbelastungsphase verblieb das Integral bei 24484 (\pm 7614) und stieg hochsignifikant bis zur 3. Minute nach Belastung auf 39082 (\pm 19940) an. Anschließend verringerte sich die T-Wellen-Fläche bis 5 Minuten nach Belastung wieder signifikant (p<0,05).

Im zweiten Belastungsabschnitt verringerte sich die T-Wellen-Fläche bis 40% auf 26062 (± 10202), p<0,01 und verblieb dann auf diesem Niveau bis zum Belastungsabbruch 27422 (± 9865).

In der zweiten Nachbelastungsphase stieg die T-Wellen-Fläche hochsignifikant bis zur 3. Minute nach Belastung an (p<0,01) und fiel anschließend bis zur 5. Minute nach Belastung wieder hochsignifikant ab (p<0,01).

Abb. 55: Verlauf des Integrals unter der T-Welle im Doppelstufentest (MW±SD).

Abb. 56: Relative Veränderung der T-Fläche in Testphase 1 und 2 (MW±SD)

Abb. 57: Lineare Regression der T-Fläche von Testphase 1 und 2

T-Welle im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade sank die T-Wellen-Fläche von 50963 (± 26730) bis 80% von P_{max} auf 24856 (± 8868), p<0,01 (Abbildung 58). Anschließend verblieb sie bis zur maximalen Belastung ohne statistisch relevante Unterschiede auf diesem Niveau. Unter ß-Blockade stieg das Integral der T-Welle bis zur 3. Minute nach Belastung hochsignifikant auf 41652 (± 13082), p<0,01 an. Anschließend fiel die T-Wellen-Fläche wieder signifikant bis 5 Minuten nach Belastung auf 37547(± 12165), p<0,05 ab.

Im zweiten Abschnitt nahm die T-Wellen-Fläche wieder bis 80% von P_{max} hochsignifikant auf 28244 (± 9288) ab (p<0,01). Es ergaben sich keine weiteren Veränderungen bis zum Belastungsmaximum.

In der abschließenden zweiten Nachbelastungsphase stieg die T-Wellen-Fläche bis zur 3. Minute nach Belastung hochsignifikant auf 41200 (\pm 13124) an (p<0,01).

Abb. 58: Verlauf des Integrals unter der T-Welle im Doppelstufentest (MW±SD).

Abb. 59: Relative Veränderung der T-Fläche in Testphase 1 und 2 (MW±SD)

Abb. 60: Lineare Regression der T-Fläche von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 61 sind die relativen Veränderungen des Integrals während des doppelten Stufentests beider Testserien dargestellt (MW und SD). Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden (p<0,01).

Abb. 61: Veränderungen der T-Fläche (in Δ T-Fläche) im Doppelstufentest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: T-Fläche im Stufentest

- 1. Ohne ß-Blockade sank das Integral der T-Welle bis 60% von P_{max} und stieg dann wieder bis zum Belastungsmaximum an.
- 2. Unter ß-Blockade sank das Integral der T-Welle dagegen bis 80% der maximalen Leistung ohne folgenden Anstieg.
- Das Integral der T-Welle war unter
 ß-Blockade in Ruhe signifikant gr
 ößer, im Belastungsmaximum unterschieden sich die T-Fl
 ächen dagegen nicht

3.2.7 P-Dauer im doppelten Stufentest

P-Dauer im doppelten Stufentest ohne ß-Blockade

Abbildung 62 zeigt die Veränderungen der P-Dauer während des doppelten Stufentests (MW und SD)

Von einer durchschnittlichen Zeit von 96 (± 11) ms in Ruhe verlängerte sich die Zeit bis 50% P_{max} auf 105 (± 10) ms, p<0,05. Anschließend verkürzte sie sich hochsignifikant bis zum Belastungsmaximum auf 78 (± 16) ms, p<0,01. In der ersten Nachbelastungsphase (bis 1 Minute nach Belastung) verkürzte sich die P-Dauer weiter auf 74 (± 15) ms, p<0,05 und verlängerte sich hochsignifikant bis zur 5. Minute nach Belastung auf 97 (± 14) ms (p<0,01).

Im zweiten Belastungsabschnitt verlängerte sich die P-Dauer bis 40% im Mittel auf 105 (\pm 27) ms und verkürzte sich dann bis zum Belastungsabbruch auf 87 (\pm 17) ms, p<0,01.

In der zweiten Nachbelastungsphase kam es zu einer hochsignifikanten Zunahme der P-Dauer ab der 3. Minute bis zur 5. Minute nach Belastung (p<0,01).

Abb. 62: Verlauf der P-Dauer im Doppelstufentest (MW±SD).

Abb. 63: Relative Veränderung der P-Dauer in Testphase 1 und 2 (MW±SD)

Abb. 64: Lineare Regression der P-Dauer von Testphase 1 und 2

P-Dauer im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade verlängerte sich die P-Dauer von 92 (± 14) ms bis 80% von P_{max} auf 108 (± 13) ms, p<0,05 (Abbildung 65). Anschließend verkürzte sie sich bis zum Belastungsmaximum auf 100 (± 14) ms (p<0,05).

In der Nachbelastung sank unter ß-Blockade die P-Dauer weiter bis zur 1. Minute nach Belastung signifikant auf 97 (± 15) ms (p<0,05). Im weiteren Verlauf der aktiven Erholung veränderte sich die P-Dauer nicht.

Im zweiten Abschnitt nahm die P-Dauer wieder bis 80% von P_{max} signifikant auf 105 (± 12) ms zu (p<0,05). Es ergaben sich keine weiteren Veränderungen bis zum Belastungsmaximum.

In der abschließenden zweiten Nachbelastungsphase verblieb die P-Dauer auf dem Niveau des Belastungsmaximums.

Abb. 65: Verlauf der P-Dauer im Doppelstufentest (MW±SD).

Abb. 66: Relative Veränderung der P-Dauer in Testphase 1 und 2 (MW±SD)

Abb. 67: Lineare Regression der P-Dauer von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 68 sind die relativen Veränderungen der Zeitdauer während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden (p<0,01).

Dieser Unterschied war auf die verschiedenen Entwicklungen der P-Dauer ab jeweils 50% von P_{max} in beiden Testabschnitten zurückzuführen.

Abb. 68: Veränderungen der P-Dauer (in Δ P-Dauer) im Doppelstufentest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: P-Dauer im Stufentest

- Ohne ß-Blockade verlängerte sich die P-Dauer bis 50%
 P_{max}, anschließend verkürzte sie sich wieder bis P_{max}.
- unter ß-Blockade verlängerte sich die P-Dauer bis 80%
 P_{max}; eine dann folgende Verkürzung der P-Dauer wie bei fehlender ß-Blockade besteht nicht.
- In Ruhe unterschied sich die P-Dauer mit und ohne ß-Blockade nicht.
- Ohne ß-Blockade war dagegen die P-Dauer bei P_{max} kürzer.
- Der Unterschied in der P-Dauer unter Belastung mit und ohne
 ß-Blockade war ab 50 % P_{max} signifikant.

3.2.8 PQ-Zeit im doppelten Stufentest

PQ-Zeit im doppelten Stufentest ohne ß-Blockade

Abbildung 69 zeigt die Veränderungen der PQ-Zeit während des doppelten Stufentests (MW und SD)

Von einer durchschnittlichen Zeit von 155 (± 14) ms in Ruhe verkürzte sich die PQ-Zeit ab 40% P_{max} bis zum Belastungsmaximum auf 103 (± 17) ms (p<0,01).

In der frühen Nachbelastungsphase (bis 1. Minute nach Belastung) verblieb die PQ-Zeit weiter auf dem Niveau der Ausbelastung und verlängerte sich dann hochsignifikant bis zur 5. Minute nach Belastung auf 136 (\pm 18) ms (p<0,01).

Im zweiten Belastungsabschnitt verkürzte sich die PQ-Zeit ab 40% P_{max} auf 109 (± 11) ms bei maximaler Belastung.

In der zweiten Nachbelastungsphase verblieb die PQ-Zeit bis 1 Minute nach Belastung auf dem Niveau des Belastungsmaximums und verlängerte sich anschließend ab der 3. Minute hochsignifikant bis zur 5. Minute nach Belastung auf 138 (\pm 21) ms (p<0,01).

Abb. 69: Verlauf der PQ-Zeit im Doppelstufentest (MW±SD).
Die folgenden 2 Abbildungen zeigen die Reproduzierbarkeit der Effekte. Einerseits wird die relative Veränderung bei Belastung und andererseits die Regression beider Testabschnitte gegeneinander abgebildet.

Abb. 70: Relative Veränderung der PQ-Zeit in Testphase 1 und 2 (MW±SD)

Abb. 71: Lineare Regression der PQ-Zeit von Testphase 1 und 2

PQ-Zeit im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade verkürzte sich die PQ-Zeit von 160 ms (\pm 17) in Ruhe ab 50% P_{max} bis zum Belastungsmaximum auf 131 (\pm 14) ms, p<0,01 (Abbildung 72).

Bis zur 1. Minute nach Belastung veränderte sich die PQ-Zeit nicht. Im weiteren Verlauf der aktiven Erholung verlängerte sich die PQ-Zeit auf 148 (± 13) ms (p<0,01).

Im zweiten Abschnitt verkürzte sich die PQ-Zeit wieder signifikant ab 50% bis zum Belastungsabbruch auf 137 (\pm 13) ms (p<0,01).

In der folgenden zweiten Nachbelastungsphase verblieb die PQ-Zeit bis zur 1. Minute nach Belastung auf dem Niveau des Belastungsmaximums. Anschließend verlängerte sich die PQ-Zeit bis 5 Minuten nach Belastung auf 150 (\pm 13) ms (p<0,01).

Abb. 72: Verlauf der PQ-Zeit im Doppelstufentest (MW±SD).

Die folgenden 2 Abbildungen zeigen die Reproduzierbarkeit der Effekte. Einerseits wird die relative Veränderung bei Belastung und andererseits die Regression beider Testabschnitte gegeneinander abgebildet.

Abb. 73: Relative Veränderung der PQ-Zeit in Testphase 1 und 2 (MW±SD)

Abb. 74: Lineare Regression der PQ-Zeit von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 75 sind die relativen Veränderungen der Zeitdauer während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden (p<0,01).

Dieser Unterschied war auf die verschiedenen Entwicklungen der PQ-Zeit ab jeweils 50% von P_{max} in beiden Testabschnitten zurückzuführen.

Die ß-Blockade führte zu einer verzögerten Verkürzung der PQ-Zeit während Belastung.

Belastung [% P_{max}]

Abb. 75: Veränderungen der PQ-Zeit (in Δ PQ-Zeit) im Doppelstufentest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: PQ-Zeit im Stufentest

- Ohne ß-Blockade verkürzte sich die PQ-Zeit ab 40% von P_{max}, unter ß-Blockade dagegen ab 50%.
- In Ruhe unterschied sich die PQ-Zeit mit und ohne ß-Blockade nicht.
- 4. ohne ß-Blockade war dagegen die PQ-Zeit bei P_{max} kürzer.
- ß-Blockade hatte einen Einfluss auf die Entwicklung der PQ-Zeit während Belastung.
- 6. Bis zur 1. Minute nach Belastung blieb die PQ-Zeit verkürzte, erst danach verlängerte sie sich wieder.

3.2.9 PQ-Strecke im doppelten Stufentest

PQ-Strecke im doppelten Stufentest ohne ß-Blockade

Abbildung 76 zeigt die Veränderungen der PQ-Strecke während des doppelten Stufentests (MW und SD).

Von einer durchschnittlichen Zeit von 57 (\pm 14) ms in Ruhe verkürzte sich die PQ-Strecke bis zum Belastungsmaximum auf 25 (\pm 4) ms (p<0,01).

In der ersten Nachbelastungsphase (bis 1. Minute nach Belastung) verblieb die Zeit der PQ-Strecke weiter auf dem Niveau der Ausbelastung und verlängerte sich anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 39 (\pm 11) ms (p<0,01).

Im zweiten Belastungsabschnitt verkürzte sich die PQ-Strecke im Mittel auf 26 (± 5) ms bei maximaler Belastung (p<0,01).

In der zweiten Nachbelastungsphase verblieb die PQ-Strecke zunächst wieder auf dem Niveau des Belastungsmaximums (bis 1 Minute nach Belastung) und verlängerte sich anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 39 (\pm 8) ms (p<0,01).

Abb. 76: Verlauf der PQ-Strecke im Doppelstufentest (MW±SD).

Abb. 77: Relative Veränderung der PQ-Strecke in Testphase 1 und 2 (MW±SD)

Abb. 78: Lineare Regression der PQ-Strecke von Testphase 1 und 2

PQ-Strecke im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade verkürzte sich die PQ-Strecke von 68 ms (\pm 21) in Ruhe bis zum Belastungsmaximum auf 30 (\pm 5) ms, p<0,01 (Abbildung 79).

Bis zur 1. Minute nach Belastung veränderte sich die PQ-Strecke nicht. Im weiteren Verlauf der aktiven Erholung verlängerte sich die PQ-Strecke auf $50 (\pm 12) \text{ ms} (p<0,01).$

Im zweiten Abschnitt verkürzte sich die PQ-Strecke wieder signifikant bis zum Belastungsabbruch auf 33 (\pm 5) ms (p<0,01).

In der abschließenden zweiten Nachbelastungsphase verblieb die PQ-Strecke bis zur 1. Minute nach Belastung auf dem Niveau des Belastungsmaximums. Anschließend verlängerte sich die PQ-Strecke bis 5 Minuten nach Belastung auf 47 (± 10) ms (p<0,01).

Abb. 79: Verlauf der PQ-Strecke im Doppelstufentest (MW±SD).

Abb. 80: Relative Veränderung der PQ-Strecke in Testphase 1 und 2 (MW±SD)

Abb. 81: Lineare Regression der PQ-Strecke von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 82 sind die relativen Veränderungen der Zeitdauer während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Es konnte ein signifikanter Unterschied der Ruhewerte ermittelt werden (p<0,01). Insgesamt war kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit zu verzeichnen.

Belastung [% P_{max}]

Abb. 82: Veränderungen der PQ-Strecke (in Δ PQ-Strecke) im Doppelstufentest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: PQ-Strecke

- 1. Unter Belastung verkürzte sich die PQ-Strecke ohne und mit ß-Blockade um ca. 56% des Ausgangswertes.
- 2. Ohne ß-Blockade war die PQ-Strecke in Ruhe und im Belastungsmaximum signifikant kürzer.
- ß-Blockade hatte keinen Einfluss auf die PQ-Strecke während Belastung.
- Bis zur 1. Minute nach Belastung blieb die PQ-Strecke verkürzt. Erst danach verlängerte sich die PQ-Strecke wieder.

3.2.10 QRS-Komplex im doppelten Stufentest

QRS-Komplex im doppelten Stufentest ohne ß-Blockade

Abbildung 83 zeigt die Veränderungen des QRS-Komplexes während des doppelten Stufentests (MW und SD)

Von einer durchschnittlichen Zeit von 88 (\pm 7) ms in Ruhe verlängerte sich die Dauer des QRS-Komplexes bis zum Belastungsmaximum auf 92 (\pm 9) ms (p<0,05).

In der ersten Nachbelastungsphase verblieb die Zeit des QRS-Komplexes weiter auf dem Niveau der Ausbelastung.

Im zweiten Belastungsabschnitt veränderte sich die Dauer des QRS-Komplexes im Mittel nicht und blieb bei 90 (± 8) ms zum Zeitpunkt des zweiten Belastungsabbruchs.

In der zweiten Nachbelastungsphase veränderte sich die Dauer des QRS-Komplexes ebenfalls nicht.

Abb. 83: Verlauf des QRS-Komplexes im Doppelstufentest (MW±SD).

Abb. 84: Relative Veränderung desAbb. 85: Lineare Regression desQRS-Komplex in Testphase 1 und 2 (MW±SD)QRS-Komplex von Testphase 1 und 2

QRS-Komplex im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade veränderte sich die Dauer des QRS-Komplexes von 87 (± 9) ms in Ruhe zum Belastungsmaximum nicht. In der ersten Nachbelastungsphase ergaben sich keine Veränderungen in der Dauer des QRS-Komplexes (Abbildung 86).

Im zweiten Abschnitt verkürzte sich die Dauer des QRS-Komplexes von 90 (± 9) ms signifikant bis zum Belastungsabbruch auf 87 (± 9) ms (p<0,05).

In der abschließenden zweiten Nachbelastungsphase verblieb die Dauer des QRS-Komplexes unverändert.

Abb. 86: Verlauf des QRS-Komplexes im Doppelstufentest (MW±SD).

Die folgenden 2 Abbildungen zeigen die Reproduzierbarkeit der Effekte. Einerseits wird die relative Veränderung bei Belastung und andererseits die Regression beider Testabschnitte gegeneinander abgebildet.

Abb. 87: Relative Veränderung desAbb. 88: Lineare Regression desQRS-Komplex in Testphase 1 und 2 (MW±SD)QRS-Komplex von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 89 sind die relativen Veränderungen der Zeitdauer während des doppelten Stufentests beider Testserien dargestellt (MW und SD). Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Abb. 89: Veränderungen des QRS-Komplexes (in Δ QRS-Komplex) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: QRS-Komplex im Stufentest

1.	Unter	Belastung	verlängerte	sich	die	Dauer	des	QRS-
	Kompl	exes nur im	n ersten Testa	absch	nitt i	n der Se	erie o	hne ß-
	Blocka	ade um ca. 4	4.5%.					

 ß-Blockade hatte keinen Einfluss auf die Dauer des QRS-Komplexes in Ruhe und bei maximaler Belastung.

3.2.11 ST-Strecke im doppelten Stufentest

ST-Strecke im doppelten Stufentest ohne ß-Blockade

Abbildung 90 zeigt die Veränderungen der ST-Strecke während des doppelten Stufentests (MW und SD).

Von einer durchschnittlichen Zeit von 102 (\pm 14) ms in Ruhe verkürzte sich die ST-Strecke bis zum Belastungsmaximum auf 42 (\pm 12) ms (p<0,01) um 58%.

In der frühen Nachbelastungsphase verblieb die Zeit der ST-Strecke weiter auf dem Niveau der Ausbelastung und verlängerte sich anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 60 (± 12) ms (p<0,01).

Im zweiten Belastungsabschnitt verkürzte sich die ST-Strecke um 36 % im Mittel auf 41 (± 11) ms bei maximaler Belastung (p<0,01).

In der zweiten Nachbelastungsphase verblieb die ST-Strecke zunächst wieder auf dem Niveau des Belastungsmaximums (bis 1 Minute nach Belastung) und verlängerte sich anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 61 (\pm 10) ms (p<0,01).

Abb. 90: Verlauf der ST-Strecke im Doppelstufentest (MW±SD).

Abb. 91: Relative Veränderung der ST-Strecke Abb. 92: Lineare Regression der in Testphase 1 und 2 (MW±SD)

ST-Strecke von Testphase 1 und 2

ST-Strecke im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade verringerte sich die ST-Strecke von 121 (\pm 15) ms in Ruhe bis zum Belastungsmaximum auf 52 (\pm 9) ms, p<0,01 (Abbildung 93).

Bis zur 1. Minute nach Belastung verkürzte sich die ST-Strecke weiter auf 48 (\pm 7) ms (p<0,05). Im weiteren Verlauf der aktiven Erholung verlängerte sich die ST-Strecke auf 78 (\pm 13) ms (p<0,01).

Auch im zweiten Abschnitt trat eine Verringerung der ST-Strecke signifikant bis zum Belastungsabbruch ein 58 (± 9) ms (p<0,01).

In der abschließenden zweiten Nachbelastungsphase verkürzte sich die ST-Strecke weiter bis zur 1. Minute nach Belastung auf 52 (\pm 8) ms (p<0,05). Anschließend verlängerte sich die ST-Strecke bis 5 Minuten nach Belastung auf 83 (\pm 10) ms (p<0,01).

Abb. 93: Verlauf der ST-Strecke im Doppelstufentest (MW±SD).

Abb. 94: Relative Veränderung der ST-Strecke Abb. 95: Lineare Regression der in Testphase 1 und 2 (MW±SD)

ST-Strecke von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 96 sind die relativen Veränderungen der Zeitdauer während des doppelten Stufentests beider Testserien dargestellt (MW und SD). Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Belastung [% P_{max}]

Abb. 96: Veränderungen der ST-Strecke (in Δ ST-Strecke) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: ST-Strecke

- 1. Unter Belastung verkürzte sich die ST-Strecke.
- Ohne ß-Blockade war die ST-Zeit in Ruhe und im Belastungsmaximum kürzer; im Gegensatz dazu war allerdings die Verkürzung unter ß-Blockade während Belastung tendenziell stärker.
- 3. Bis zur 1. Minute nach Belastung blieb die ST-Strecke verkürzt, erst danach verlängerte sie sich wieder.

3.2.12 T-Dauer im doppelten Stufentest

T-Dauer im doppelten Stufentest ohne ß-Blockade

Abbildung 97 zeigt die Veränderungen der T-Dauer während des doppelten Stufentests (MW und SD).

Von einer durchschnittlichen Zeit von 188 (\pm 20) ms in Ruhe verkürzte sich die T-Dauer bis zum Belastungsmaximum auf 104 (\pm 9) ms (p<0,01) um 45%.

Bis zur 1. Minute nach Belastung verlängerte sich die Zeit der T-Dauer moderat auf 108 (\pm 9) ms (p<0,05) und anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 145 (\pm 26) ms (p<0,01).

Im zweiten Belastungsabschnitt verkürzte sich die T-Dauer im Mittel auf 114 (± 13) ms bei maximaler Belastung (p<0,01).

In der zweiten Nachbelastungsphase verblieb die T-Dauer bis 1 Minute nach Belastung auf dem Niveau des Belastungsmaximums und verlängerte sich anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 150 (± 21) ms (p<0,01).

Abb. 97: Verlauf der T-Dauer im Doppelstufentest (MW±SD).

Abb. 98: Relative Veränderung der T-Dauer in Testphase 1 und 2 (MW±SD)

Abb. 99: Lineare Regression der T-Dauer von Testphase 1 und 2

T-Dauer im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade verkürzte sich die T-Dauer von 198 (\pm 21) ms in Ruhe bis zum Belastungsmaximum auf 126 (\pm 16) ms (p<0,01) um 36% (Abbildung 100).

Bis zur 1. Minute nach Belastung blieb die T-Dauer weiter bei 126 (\pm 10) ms. Im weiteren Verlauf der aktiven Erholung verlängerte sich die T-Dauer auf 166 (\pm 14) ms (p<0,01).

Im zweiten Abschnitt verkürzte sich die T-Dauer wieder signifikant bis zum Belastungsabbruch auf 134 (\pm 12) ms (p<0,01).

In der abschließenden zweiten Nachbelastungsphase verblieb die T-Dauer weiter bis zur 1. Minute nach Belastung auf 134 (\pm 9) ms. Anschließend verlängerte sich die T-Dauer bis 5 Minuten nach Belastung auf 166 (\pm 12) ms (p<0,01).

Abb. 100: Verlauf der T-Dauer im Doppelstufentest (MW±SD).

Abb. 101: Relative Veränderung der T-Dauer in Testphase 1 und 2 (MW±SD)

Abb. 102: Lineare Regression der T-Dauer von Testphase 1 und 2

Vergleich der Tests mit und ohne ß-Blockade

In Abbildung 103 sind die relativen Veränderungen der Zeitdauer während des doppelten Stufentests beider Testserien dargestellt (MW und SD). Tendenziell war die Verkürzung der T-Dauer unter Belastung ohne ß-Blockade ausgeprägter.

Belastung [% P_{max}]

Abb. 103: Veränderungen der T-Dauer (in Δ T-Dauer) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: T-Dauer im Stufentest

- 1. Ohne ß-Blockade war die T-Dauer in Ruhe und im Belastungsmaximum signifikant kürzer.
- 2. ß-Blockade führte tendenziell zu einer weniger ausgeprägten Verkürzung der T-Dauer.
- 3. Bis zur 1. Minute nach Belastung blieb die T-Dauer verkürzt und verlängerte sich erst danach wieder.

3.2.13 QT-Zeit im doppelten Stufentest

QT-Zeit im doppelten Stufentest ohne ß-Blockade

Abbildung 104 zeigt die Veränderungen der QT-Zeit während des doppelten Stufentests (MW und SD).

Von einer durchschnittlichen Zeit von 378 (\pm 30) ms in Ruhe verkürzte sich die QT-Zeit bis zum Belastungsmaximum auf 238 (\pm 17) ms (p<0,01) um 37%.

In der ersten Nachbelastungsphase (bis 1. Minute nach Belastung) blieb die QT-Zeit bei 238 (\pm 16) ms und verlängerte sich anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 295 (\pm 39) ms (p<0,01).

Im zweiten Belastungsabschnitt verkürzte sich die QT-Zeit im Mittel auf 244 (± 20) ms bei maximaler Belastung (p<0,01).

In der zweiten Nachbelastungsphase blieb die QT-Zeit zunächst auf dem Niveau des Belastungsmaximums (bis 1 Minute nach Belastung) und verlängerte sich anschließend hochsignifikant bis zur 5. Minute nach Belastung auf 301 (\pm 33) ms (p<0,01).

Abb. 104: Verlauf der QT-Zeit im Doppelstufentest (MW±SD).

Abb. 105: Relative Veränderung der QT-Zeit in Testphase 1 und 2 (MW±SD)

Abb. 106: Lineare Regression der QT-Zeit von Testphase 1 und 2

QT-Zeit im doppelten Stufentest mit ß-Blockade

Unter ß-Blockade verkürzte sich die QT-Zeit von 407 (\pm 30) ms in Ruhe bis zum Belastungsmaximum auf 266 (\pm 22) ms (p<0,01) um 34% (Abbildung 107).

Bis zur 1. Minute nach Belastung verblieb die QT-Zeit weiter bei 262 (\pm 18) ms. Im weiteren Verlauf der aktiven Erholung verlängerte sich die QT-Zeit auf 333 (\pm 27) ms (p<0,01).

Im zweiten Abschnitt verkürzte sich die QT-Zeit wieder signifikant bis zum Belastungsabbruch auf 279 (\pm 16) ms (p<0,01).

In der abschließenden zweiten Nachbelastungsphase erfolgte eine Verkürzung der QT-Zeit weiter bis zur 1. Minute nach Belastung auf 276 (\pm 17) ms (p<0,05). Anschließend verlängerte sich die QT-Zeit bis 5 Minuten nach Belastung auf 337 (\pm 25) ms (p<0,01).

Belastung [% P_{max}]

Abb. 107: Verlauf der QT-Zeit im Doppelstufentest (MW±SD).

Abb. 108: Relative Veränderung der QT-Zeit in Testphase 1 und 2 (MW±SD)

Abb. 109: Lineare Regression der QT-Zeit von Testphase 1 und 2

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 110 sind die relativen Veränderungen der Zeitdauer während des doppelten Stufentests beider Testserien dargestellt (MW und SD). Insgesamt bestand kein Unterschied der QT-Zeit mit oder ohne ß-Blockade.

Abb. 110: Veränderungen der QT-Zeit (in Δ QT-Zeit) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: QT-Zeit im Stufentest

- Unter Belastung verkürzte sich die QT-Zeit um 37% ohne ß-Blockade und 34% mit ß-Blockade.
- Die QT-Zeit war in Ruhe und im Belastungsmaximum ohne ß-Blockade signifikant kürzer.
- ß-Blockade hatte keinen Einfluss auf die Entwicklung der QT-Zeit unter Belastung.
- 4. Bis zur 1. Minute nach Belastung blieb die QT-Zeit verkürzt, erst danach verlängerte sie sich wieder.

3.2.14 Spirometrie im doppelten Stufentest

Sauerstoffaufnahme (VO₂) im doppelten Stufentest ohne ß-Blockade

In Abbildung 111 sind die Veränderungen der Sauerstoffaufnahme während des doppelten Stufentests dargestellt (MW und SD).

Die Sauerstoffaufnahme stieg von 263 (\pm 27) ml/min in Ruhe hochsignifikant maximal auf 3110 (\pm 438) ml/min an (p<0,01).

Auch in der zweiten Belastungsphase war eine Zunahme der Sauerstoffaufnahme auf 2726 (± 1,3) ml/min zu verzeichnen (p<0,01).

Abb. 111: Verlauf der Sauerstoffaufnahme im Doppelstufentest (MW±SD).

Sauerstoffaufnahme (VO₂)im doppelten Stufentest mit ß-Blockade

Unter dem Einfluss der ß-Blockade erfolgte ein Anstieg von einer durchschnittlichen Sauerstoffaufnahme von 264 (\pm 20) ml/min in Ruhe auf maximal auf 3077 (\pm 425) ml/min, p<0,01 (Abbildung 112).

In der zweiten Belastungsphase stieg die Sauerstoffaufnahme auf maximal 2706 (± 383) ml/min (p<0,01).

Abb. 112: Verlauf der Sauerstoffaufnahme im Doppelstufentest (MW±SD).

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 113 sind die relativen Veränderungen maximalen Sauerstoffaufnahme während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Belastung [% P_{max}]

Abb. 113: Veränderungen der Sauerstoffaufnahme (in Δ VO₂) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: Sauerstoffaufnahme im Stufentest

 ß-Blockade hatte keinen Einfluss auf die Sauerstoffnahme in Ruhe und Belastung.

Atemminutenvolumen (V_E) im doppelten Stufentest ohne ß-Blockade

In Abbildung 114 sind die Veränderungen des Atemminutenvolumens während des doppelten Stufentests dargestellt (MW und SD).

Von einem durchschnittlichen Atemminutenvolumen von 12,41 (\pm 2,6) l/min in Ruhe stieg das Atemminutenvolumen hochsignifikant auf maximal auf 111,37 (\pm 21,8) l/min (p<0,01).

In der zweiten Belastungsphase war ebenfalls ein Anstieg des Atemminutenvolumens auf 93,05 l/min (\pm 17,5) zu verzeichnen (p<0,01).

Abb. 114: Verlauf des Atemminutenvolumens im Doppelstufentest (MW±SD).

Atemminutenvolumen (V_E) im doppelten Stufentest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg das durchschnittliche Atemminutenvolumen von 13,35 (\pm 4,4) l/min in Ruhe hochsignifikant auf maximal 117,13 (\pm 28,4) (p<0,01) l/min an (Abbildung 115).

In der zweiten Belastungsphase erfolgte ebenfalls ein Anstieg des Atemminutenvolumens auf 89,43 (\pm 15,1) l/min (p<0,01).

Abb. 115: Verlauf des Atemminutenvolumens im Doppelstufentest (MW±SD).

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 116 sind die relativen Veränderungen des Atemminutenvolumens während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Abb. 116: Veränderungen des Atemminutenvolumens (in ΔV_E) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: Atemminutenvolumen im Stufentest 1. ß-Blockade hatte keinen Einfluss auf das Atemminutenvolumen in Ruhe und Belastung.

3.2.15 Laktat im doppelten Stufentest

Laktat im doppelten Stufentest ohne ß-Blockade

In Abbildung 117 sind die Veränderungen der Laktatkonzentration während des doppelten Stufentests dargestellt (MW und SD).

Von einer durchschnittlichen Laktatkonzentration von 1,22 (\pm 0,4) mmol/l in Ruhe stieg die Konzentration hochsignifikant auf maximal auf 9,21 (\pm 2,9) mmol/l (p<0,01).

In der Nachbelastungsphase fiel die Laktatkonzentration signifikant nach der ersten Minute im Mittel auf 8,21 (\pm 3,1) mmol/l (p<0,05).

Zu Beginn der zweiten Belastungsphase sank die Laktatkonzentration weiter bis 70% P_{max} auf 4,47 mmol/l (± 2,6) (p<0,01). Anschließend nahm die Laktatkonzentration im Mittel auf 5,63 mmol/l (± 2,6) zu (p<0,01).

In der abschließenden zweiten Nachbelastungsphase stieg die Laktatkonzentration weiter bis 1 Minute nach Belastung signifikant an und fiel dann bis 5 Minuten Nachbelastung wieder ab.

Abb. 117: Verlauf von Laktat im Doppelstufentest (MW±SD).

Laktat im doppelten Stufentest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg die durchschnittlichen Laktatkonzentration von 1,04 (\pm 0,2) mmol/l in Ruhe auf maximal auf 9,33 (\pm 3,3) mmol/l (Abbildung 118).

In der Nachbelastungsphase fiel die Laktatkonzentration signifikant im Mittel auf 8,44 (± 3,8) mmol/l.

Zu Beginn der zweiten Belastungsphase sank die Laktatkonzentration weiter bis 70% von P_{max} auf 4,56 (± 2,8) mmol/l (p<0,01). Anschließend nahm die Laktatkonzentration im Mittel auf 5,52 (± 2,2) mmol/l zu (p<0,05).

In der abschließenden zweiten Nachbelastungsphase stieg die Laktatkonzentration weiter bis 1 Minute nach Belastung signifikant auf 6,13 (\pm 2,7) mmol/l (p<0,05) und fiel dann bis 5 Minuten Nachbelastung wieder ab.

Abb. 118: Verlauf von Laktat im Doppelstufentest (MW±SD).

Vergleich der Tests mit ß-Blockade und ohne ß-Blockade

In Abbildung 119 sind die relativen Veränderungen der Laktatkonzentration während des doppelten Stufentests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Belastung [% P_{max}]

Abb. 119: Veränderungen der Laktatkonzentration (in Δ Laktat) im Doppelstufentest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: Laktatkonzentration im Stufentest

- 1.ß-BlockadehattekeinenEinflussaufdieLaktatkonzentration in Ruhe und bei maximaler Belastung.
- 2. ß-Blockade hatte keinen Einfluss auf die Ausbildung der Laktatsenke.
- ß-Blockade hatte keinen Einfluss auf die Entwicklung der Laktatkonzentration unter Belastung.

3.3 Dauertest

Zur Darstellung und Interpretation der Ergebnisse muss zum besseren Verständnis folgendes vorausgesetzt werden:

Die Testform beinhaltet zwei unabhängige Variablen, die für die Entwicklung der physiologischen Parameter Bedeutung haben können:

- Stufenweise Veränderung der Belastung alle 9 Minuten
- 9-minütige Belastungsdauer jeder Stufe

Grundsätzlich können also Veränderungen der Parameter (z.B. Katecholamine) durch die Steigerung oder Absenkung der Belastung verursacht werden.

Eine Veränderung kann aber z.B. auch dadurch bewirkt werden, dass eine intensive 9 minütige Dauerbelastung zu einem Verlust eines möglichen steady-state führt, obwohl die Belastung konstant bleibt. Ursache könnte in diesem Beispiel die Tatsache sein, dass die Katecholamine nicht nur aufgrund einer Belastungssteigerung, sondern auch aufgrund einer Akkumulation bei gleich bleibender Belastung ansteigen können.

Insoweit werden sowohl Veränderungen innerhalb der Dauertestphasen als auch Veränderungen durch Wechsel der Dauertestphasen getrennt betrachtet.

3.3.1 Herzfrequenz im Dauertest

Herzfrequenz im Dauertest ohne ß-Blockade

In Abbildung 120 sind die Veränderungen der Herzfrequenz während des Dauertests dargestellt (MW und SD).

Der Frequenzanstieg betrug im Übergang von Ruhe zu 25% P_{max} 28,8 (± 7,1) Schläge pro Minute (p<0,01), von 25% zu 50% 23,1 (± 5,2) Schläge pro Minute (p<0,01) und von 50% zu 75% 25,3 (± 5,2) Schläge pro Minute (p<0,01).

Von der 6. bis zur 9. Minute der jeweiligen Dauertestphase war der Anstieg bei 25% P_{max} nicht signifikant, bei 50% mit 5,2 (± 3,9) Schlägen pro Minute (p<0,01) und bei 75% mit 9,6 (± 4,5) Schlägen pro Minute (p<0,01) jeweils signifikant.

In Abschnitt 2 zeigte sich ein ähnliches Bild. Zu Beginn sank die

Herzfrequenz von 160,9 (± 4,5) Schlägen pro Minute auf 112,4 (± 17,1) Schlägen pro Minute am Ende der 25%-Phase. Der Zuwachs auf 50% lag anschließend bei 20,5 (± 4,5) Schlägen pro Minute (p<0,01) und von 50% auf 75% bei 22,7 (± 6,5) Schlägen pro Minute (p<0,01).

Der Anstieg innerhalb der 9 Minuten bei 50% betrug 6,1 (\pm 1,7) Schläge pro Minute (p<0,01) und bei 75% 7,2 (\pm 2,7) Schlägen pro Minute (p<0,01).

Abb. 120: Verlauf der Herzfrequenz im Dauertest (MW±SD).

Herzfrequenz im Dauertest mit ß-Blockade

In Abbildung 121 sind die Veränderungen der Herzfrequenz während des Dauertests unter Einfluss einer ß-Blockade dargestellt (MW und SD).

Unter dem Einfluss der ß-Blocker betrug die Zunahme der Herzfrequenz von Ruhe zu 25% P_{max} im Mittel 27,1 (± 4,1) Schläge pro Minute (p<0,01), im Übergang von 25% zu 50% im Mittel 18,0 (± 2,1) Schläge pro Minute (p<0,01) und im Übergang von 50% zu 75% 18,1 (± 4,6) Schläge pro Minute (p<0,01).

Innerhalb der Dauerstufen ließ sich bei 25% P_{max} kein signifikanter Anstieg, bei 50% 3,2 (± 3,0) Schläge pro Minute (p<0,01) und bei 75% 10,0 (± 4,3) Schlägen pro Minute (p<0,01) verzeichnen.

In der zweiten Belastungsphase zeigte sich ein ähnliches Bild. Zu Beginn sank die Herzfrequenz von 133,0 (± 14,6) Schlägen pro Minute auf 97,2 (± 14,1) Schläge pro Minute stark ab. Anschließend stabilisierte sie sich auf dem Niveau von 91,6 (± 13,0) Schlägen pro Minute. Der Zuwachs auf 50%

lag anschließend bei 18,8 (\pm 2,5) Schlägen pro Minute (p<0,01) und von 50% auf 75% bei 21,3 (\pm 3,7) Schlägen pro Minute (p<0,01).

Der Anstieg innerhalb 50% betrug 2,1 (\pm 2,8) Schlägen pro Minute (p<0,01) und bei 75% 6,8 (\pm 2,9) Schlägen pro Minute (p<0,01).

Abb. 121: Verlauf der Herzfrequenz im Dauertest (MW±SD).

Vergleich der Tests mit und ohne ß-Blockade

In Abbildung 122 sind die relativen Veränderungen der Herzfrequenz während des Dauertests beider Testserien dargestellt (MW und SD). Insgesamt bestand ein unterschiedlich starker Anstieg der Herzfrequenz über die Teststufen (p<0.001), bei ähnlichem Verlauf.

Abb. 122: Veränderungen der Herzfrequenz (in Δ Hf) im Dauertest relativ zum Ruheausgangswert (MW±SD)

Zusammenfassung: Herzfrequenz im Dauertest

- 1. In beiden Testabschnitten bestand bzgl der Hf ein reproduzierbarer Verlauf.
- 2. Die ß-Blockade führte zu einem signifikant geringeren Anstieg der Herzfrequenz.
- ß-Blockade hatte keinen Einfluss auf die steady-state Kinetik bei 25% und bei 50% von P_{max}.

3.3.2Katecholamine im DauertestAdrenalin im Dauertest ohne ß-Blocker

In Abbildung 123 sind die Veränderungen der Plasmakonzentration von Adrenalin während des Dauertests dargestellt (MW und SD).

Eine (statistisch) relevante Zunahme von einer Belastungsstufe zur nächsten war nur im Übergang von 50% zu 75% mit im Mittel 0,4 (\pm 0,2) nmol/l (p<0,01) messbar.

In der zweiten Belastungsphase sank die Adrenalinkonzentration von 0,88 (\pm 0,4) nmol/l auf 0,49 (\pm 0,2) nmol/l (p<0,01). Anschließend stieg sie bei 50% auf 0,62 (\pm 0,2) nmol/l (p<0,05) und bei 75% auf 1,28 (\pm 1,3) nmol/l (p<0,01).

Abb. 123: Verlauf von Adrenalin im Dauertest (MW±SD).

Adrenalin im Dauertest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg die durchschnittliche Adrenalinkonzentration von 0,36 (± 0,4) nmol/l in Ruhe auf maximal 1,05 (± 0,6) nmol/l. Über die Belastungsstufen hinweg war eine (statistisch) relevante Zunahme lediglich im Übergang von Ruhe auf 25% P_{max} und von 50% auf 75% zu verzeichnen. Dabei stieg die Konzentration von Ruhe auf 25% im Mittel um 0,24 (± 0,2) nmol/l auf 0,60 nmol/l (± 0,3) (p<0,01) und im Übergang von 50% auf 75% um 0,405 (± 0,4) nmol/l auf 1,05 (± 0,6) nmol/l, p<0,01 (Abbildung 124).

Im zweiten Belastungsabschnitt sank die Adrenalinkonzentration zunächst von 1,05 (\pm 0,6) nmol/l auf 0,50 (\pm 0,4) nmol/l (p<0,01). Anschließend stieg sie bei 50% auf 0,90 (\pm 0,4) nmol/l (p<0,01) und bei 75% auf 2,42 (\pm 2,9) nmol/l (p<0,01).

Abb. 124: Verlauf von Adrenalin im Dauertest (MW±SD).

Vergleich der Tests mit und ohne ß-Blockade

In Abbildung 125 sind die relativen Veränderungen der Plasmakonzentrationen des Adrenalins während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein relevanter Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Abb. 125: Veränderungen der Plasmakonzentration für Adrenalin (in Δ Adrenalin) im Dauertest relativ zum Ruheausgangswert (MW±SD). Lediglich der Unterschied am Ende des Testabschnitts 2 war im Wilcoxon matched pairs test signifikant.

Zusammenfassung: Adrenalin im Dauertest							
Kardioselektive ß-Blocker hatten keinen relevanten Einfluss auf die Adrenalinkonzentration in Dauertests.							
						Eine signifikante Zunahme der Adrenalinkonzentration	
wurde erst ab einer intensiven Belastungsstufe (75% $P_{\text{max}})$							
gesehen.							
Diese Effekte waren im wiederholten Test reproduzierbar.							

Noradrenalin im Dauertest ohne ß-Blockade

Eine statistisch relevante Zunahme von einer Belastungsstufe zur nächsten Belastungsstufe war nur im Übergang von 50% auf 75% messbar ($4,2 \pm 3,3$ nmol/l; p<0,01) (Abbildung 126).

In der zweiten Belastungsphase sank die Noradrenalinkonzentration initial von 7,44 (± 4,7) nmol/l auf 3,28 (± 2,8) nmol/l (p<0,01). Anschließend stieg sie bei 50% auf 4,80 (± 3,2) nmol/l (p<0,05) und bei 75% auf 16,09 (± 25) nmol/l (p<0,01).

Abb. 126: Verlauf von Noradrenalin im Dauertest (MW±SD).

Noradrenalin im Dauertest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg die durchschnittliche Noradrenalinkonzentration von 3,21 (\pm 2,4) nmol/l in Ruhe auf maximal 15,93 (\pm 15,3) nmol/l. Über die Belastungsstufen hinweg war eine statistisch relevante Zunahme um 11,34 (p<0,01) nmol/l lediglich bei 75% P_{max} signifikant (Abbildung 127).

In der zweiten Belastungsphase sank die Noradrenalinkonzentration von 15,93 (± 15,3) nmol/l auf 4,72 (± 2,7) nmol/l (p<0,01). Anschließend stieg sie bei 50% auf 5,78 (± 2,2) nmol/l (p<0,01) und bei 75% auf 22,87 (± 25,2) nmol/l (p<0,01).

Abb. 127: Verlauf von Noradrenalin im Dauertest (MW±SD).

Vergleich der Tests mit und ohne ß-Blocker

In Abbildung 128 sind die relativen Veränderungen der Plasmakonzentrationen für Noradrenalin während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein relevanter Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Abb. 128: Veränderungen der Plasmakonzentration für Noradrenalin (in Δ Noradrenalin) im Dauertest relativ zum Ruheausgangswert (MW±SD). Lediglich der Unterschied am Ende des Testabschnitts 2 war im Wilcoxon matched pairs test signifikant.

Zusammenfassung: Noradrenalin im Dauertest

- 1. Kardioselektive ß-Blocker hatten keinen relevanten Einfluss auf die Noradrenalinkonzentration in Dauertests.
- Eine signifikante Zunahme der Noradrenalinkonzentration konnte erst ab einer intensiven (75% P_{max}) Belastungsstufe ermittelt werden.
- 3. Die Effekte waren im wiederholten Test reproduzierbar.

3.3.3 Kalium im Dauertest

Kalium im Dauertest ohne ß-Blocker

In Abbildung 129 sind die Veränderungen der Plasmakonzentration von Kalium während des Dauertests dargestellt (MW und SD).

Im Vergleich der einzelnen Belastungsphasen war zu erkennen, dass in der ersten Testphase die Kaliumkonzentration kontinuierlich zunahm. Von einer mittleren Ruhekonzentration von 4,03 (\pm 0,1) mmol/l stieg die Kalium-konzentration auf maximal 4,86 (\pm 0,3) mmol/l (p<0,01).

Im zweiten Belastungsabschnitt zeigte sich ein etwas verändertes Bild. Zu Beginn sank die Kaliumkonzentration von 4,86 (\pm 0,3) mmol/l auf 4,37 (\pm 0,1) mmol/l stark ab. Anschließend stabilisierte sie sich auf dem Niveau von 4,32 (\pm 0,1) mmol/l. Der Anstieg von 25% auf 50% lag bei 0,17 mmol/l (p=0,054), von 50% auf 75% bei 0,33 (\pm 0,3) mmol/l (p<0,01). Innerhalb der einzelnen Stufen war kein weiterer Anstieg messbar.

Abb. 129: Verlauf von Kalium im Dauertest (MW±SD).

Kalium im Dauertest mit ß-Blockade

Unter dem Einfluss der ß-Blockade stieg die durchschnittliche Kaliumkonzentration von 4,21 (\pm 0,2) mmol/l in Ruhe auf maximal auf 5,19 (\pm 0,4) mmol/l (Abbildung 130).

Der Anstieg erfolgte dabei von Belastungsstufe zu Belastungsstufe. Im Übergang von 25% zu 50% stieg die Kaliumkonzentration von 4,44 (\pm 0,2) mmol/l auf 4,65 (\pm 0,3) mmol/l (p<0,01) und im Übergang von 50% zu 75%

von 4,65 (± 0,3) mmol/l auf 5,03 (± 0,4) mmol/l (p<0,01).

Lediglich in der Stufe 75% P_{max} war ein weiterer Anstieg der Kaliumkonzentration von 5,03 (± 0,4) mmol/l auf 5,19 (± 0,4) mmol/l (p<0,05) nachweisbar.

In der zweiten Belastungsphase zeigte sich ein ähnliches Bild. Zu Beginn sank die Kaliumkonzentration von 5,19 (± 0,4) mmol/l auf 4,57 (± 0,1) mmol/l stark ab. Anschließend stabilisierte sie sich auf dem Niveau von 4,52 (± 0,1) mmol/l. Der Zuwachs auf 50% lag bei 0,16 (± 0,1) mmol/l (p<0,05) und von 50% auf 75% bei 0,20 (± 0,2) mmol/l (p<0,05).

Innerhalb der einzelnen Stufen war kein weiterer Anstieg messbar.

Abb. 130: Verlauf von Kalium im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 131 sind die relativen Veränderungen der Kaliumkonzentration während des Dauertests beider Testserien dargestellt (MW und SD). Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Abb. 131: Veränderungen der Plasmakonzentration für Kalium (in Δ Kalium) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: Plasmakalium im Dauertest

1. Kardioselektive ß-Blocker hatten keinen relevanten Einfluss auf die Kaliumkonzentration im ansteigenden reproduzierten Dauertest.

Im Folgenden werden die Ergebnisse der Belastungen mit und ohne ß-Blockade auf die Flächen des EKGs betrachtet.

3.3.4 P-Welle im Dauertest

P-Welle im Dauertest ohne ß-Blocker

In Abbildung 132 sind die Veränderungen des Integrals unter der P-Welle während des Dauertests dargestellt (MW und SD).

Nach initialem Anstieg zu Beginn des Tests stellte sich bei 25% ein steadystate ein. Das Integral der P-Welle stieg dabei vom Ruheausgangswert 6696 (\pm 2575) auf 9577 (\pm 2575) bei 25% von P_{max} (p<0,01).

Im weiteren Verlauf der Belastung nahm die P-Fläche während 50% P_{max}

erst zu und erreichte von der 6. Minute bis zur 9. Minute innerhalb dieser Stufe ein steady state bei einem Integral von 12927 (± 4605).

Es kam zu keiner signifikanten Veränderung zur Belastungsstufe mit 75% von Pmax. Auch innerhalb dieser Stufe ergaben sich keine statistisch relevanten Veränderungen.

Mit Beginn der zweiten Testphase stieg die P-Fläche initial auf 15313 (± 5107) (p<0,01) an und fiel anschließend bis auf 11860 (± 3988) ab (p<0,01). Anschließend steigerte sich die Flächemaßzahl bis zum Ende der 50%-Stufe kontinuierlich und erreichte einen Wert von 13966 (± 4993) (p<0,01).

Auf diesem Niveau blieben die Integrale bis zum Ende des Tests. Es ergaben sich keine weiteren Veränderungen über die Zeit.

Abb. 132: Verlauf des Integrals unter der P-Welle im Dauertest (MW±SD).

P-Welle im Dauertest mit ß-Blocker

Unter ß-Blockade stieg die P-Fläche von 5710 (\pm 1777) initial bis auf 8267 (\pm 2742) bei 25 % von Pmax an (p<0,01) (Abbildung 133). Anschließend stellte sich ein steady state ein.

Im Übergang zur 50% Belastungsstufe stieg das Integral signifikant an (p<0,01). Nach einem weiteren Anstieg in den ersten 3 Minuten dieser Stufe von 9494 (\pm 2971) auf 10461 (\pm 3164) (p<0,01) bildete sich ein steady-state ab der 6. bis zur 9. Minute.

Im Übergang von 50% zu 75% stieg das Integral erneut signifikant an (p<0,05). Anschließend ergaben sich keine weiteren Veränderungen

innerhalb dieser Belastungsstufe.

Im zweiten Teil des Dauertests sank die P-Fläche bis zur 9. Minute bei 25%. Anschließend stieg die P-Fläche erneut bei 50% an und bildet innerhalb dieser Belastungsstufe ein steady state aus. Auch in der 75%-Stufe stellte sich ein steady-state ein.

Abb. 133: Verlauf des Integrals unter der P-Welle im Dauertest (MW±SD).

Vergleich der Tests mit und ohne ß-Blockade

In Abbildung 134 sind die relativen Veränderungen des Integrals während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Auch war für den Faktor Gruppe kein Hinweis auf Unterschiede zu ermitteln.

Abb. 134: Veränderungen des Integrals der P-Welle (in Δ P-Fläche) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: P-Fläche im Dauertest

- Innerhalb der einzelnen Belastungsstufen bildete sich ein steady state.
- 2. Kardioselektive ß-Blocker hatten keinen relevanten Einfluss auf das Integral der P-Welle in ansteigenden reproduzierten Dauertests.

3.3.5 QRS-Fläche im Dauertest

QRS-Fläche im Dauertest ohne ß-Blocker

Abbildung 135 zeigt die Veränderungen des Integrals des QRS-Komplexes während des Dauertests (MW und SD)

Der Faktor Zeit hatte keinen signifikanten Einfluss auf das Integral des QRS-Komplexes im Dauertest, das heißt, die Messzeitpunkte unterschieden sich nicht voneinander.

Abb. 135: Verlauf des Integrals unter dem QRS-Komplex im Dauertest (MW±SD).

QRS-Fläche im Dauertest mit ß-Blockade

Auch unter ß-Blockade blieb die Integral des QRS-Komplexes unter Belastung des Dauertests unbeeinflusst. Es ergaben sich keine Hinweise auf Unterschiede über die Messzeitpunkte (Abbildung 136).

Abb. 136: Verlauf des Integrals unter dem QRS-Komplex im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 137 sind die relativen Veränderungen des Integrals während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein relevanter Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Bei Betrachtung des Faktors Gruppe existierte kein Hinweis auf Unterschiede. Die Gruppen unterscheiden sich grundsätzlich nicht voneinander.

Abb. 137: Veränderungen des Integrals des QRS-Komplexes (in Δ QRS-Fläche) im Dauertest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: QRS-Fläche im Dauertest

- 1. Dauerbelastung führte nicht zu bedeutenden Veränderungen des Integrals des QRS-Komplexes.
- Es bestand allerdings eine Tendenz zu Verringerung des Integrals bei leichter Belastung und eine Tendenz zur Vergrößerung bei intensiver Belastung.
- Kardioselektive ß-Blocker hatten keinen relevanten Einfluss auf das Integral des QRS-Komplexes in reproduzierten Dauertests.

3.3.6 T-Welle im Dauertest

T-Welle im Dauertest ohne ß-Blocker

Abbildung 138 zeigte die Veränderungen des Integrals der T-Welle während des Dauertests (MW und SD).

Grundsätzlich war zu erkennen, dass sich nach initialem Abfall zu Beginn des Tests ein steady state bei 25% einstellte. Das Integral der T-Welle sank dabei vom Ruheausgangswert 38138 (\pm 10061) auf 23776 (\pm 6184) bei 25% von P_{max} (p<0,01).

Im weiteren Verlauf der Belastung nahm die T-Fläche während 50% P_{max} erst signifikant auf 18539 (± 6042) ab (p<0,01) und stieg anschließend auf ein steady state zwischen der 6. und 9. Minute bei einer Integral von 20108 (± 6693) an (p<0,05).

Bei Einstellung der 75% Stufe kam es zu Beginn zu keiner Veränderung. Mit weiterer Dauer auf dieser Stufe nahm dann ab der 6. Minute die T-Fläche signifikant bis zum Ende hin auf 26575 (± 8206) zu (p<0,01).

Mit Beginn der zweiten Testphase war eine Zunahme der T-Fläche initial auf 39562 (± 14154) (p<0,01) zu verzeichnen mit darauf folgender Verringerung auf 27275 (± 11256), p<0,01.

Anschließend zeigte sich ein weiteres Absinken der Flächemaßzahl zu Beginn der 50% Stufe weiter ab und erreichte einen Wert von 22359 (\pm 9988) (p<0,01). Die T-Fläche nahm dann kontinuierlich bis zum Ende dieser Belastungsstufe auf 28143 (\pm 11713) zu (p<0,01).

Mit Beginn der 75% Stufe sank das Integral erneut initial auf 25388 (± 10964) ab (p<0,05). Anschließend stieg es kontinuierlich bis zum Ende der Belastung auf 31406 (± 12224) an (p<0,01).

Abb. 138: Verlauf des Integrals unter der T-Welle im Dauertest (MW±SD).

T-Welle im Dauertest mit ß-Blockade

Unter ß-Blockade sank die T-Fläche von 61012 (± 19741) initial bis auf 57962 (± 18485) bei 25 % P_{max} (p<0,01). Anschließend stellte sich ein steady-state ein (Abbildung 139).

Im Übergang zur 50% Belastungsstufe sank das Integral signifikant ab (p<0,01). Innerhalb dieser Stufe bildete sich ein steady state.

Im Übergang von 50% zu 75% verringerte sich die Integral erneut signifikant (p<0,05). Anschließend stieg die T-Fläche bis zum Ende dieser Stufe kontinuierlich an (p<0,01).

Im zweiten Teil des Dauertests stieg die T-Fläche bis zur 3. Minute bei 25% P_{max} . Es bildete sich ein steady state bis zum Ende der Belastungsstufe. Anschließend fiel die T-Fläche erneut bei 50% ab und bildete innerhalb dieser Belastungsstufe ein steady state aus.

In der 75% Stufe sank initial die T-Fläche auf 56403 (± 16115) (p<0,05) und stieg dann kontinuierlich bis zum Belastungsabbruch auf 57915 (± 16626) an (p<0,05).

Abb. 139: Verlauf der Integral unter der T-Welle im Dauertest (MW±SD).

Vergleich der Tests mit und ohne ß-Blocker

In Abbildung 140 sind die relativen Veränderungen der Integral während des Dauertests beider Testserien dargestellt (MW und SD).

Es konnten für die Hauptfaktoren Zeit und Gruppe signifikante Unterschiede ermittelt werden. Die Belastungsstufen hatten einen Einfluss auf die Veränderungen der T-Fläche. Überdies unterschieden sich die Gruppen grundsätzlich voneinander.

Ebenso war ein Interaktionseffekt aus Gruppe und Zeit zu ermitteln. Die Gruppen verhielten sich im Mittel unterschiedlich über die Messzeitpunkte.

Abb. 140: Veränderungen des Integrals der T-Welle (in Δ T-Fläche) im Dauertest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: T-Fläche im Dauertest

- Leichte bis mittlere Dauerbelastungen führten zu einer Abnahme der T-Fläche.
- 2. Intensive Dauerbelastung bewirkte einen Zunahme der Fläche.
- 3. In der frühen Nachbelastungszeit kam es zu einer deutlichen weiteren Vergrößerung des T-Integrals
- 4. Bei erneuter leichter Dauerbelastung verkleinerte sich dann die T-Fläche erneut.
- Durch kardioselektive ß-Blocker kam es zu einer absoluten und relativen Verzögerung der T-Wellenvergrößerung bei intensiver Dauerbelastung und in der frühen Nachbelastungsphase.

Im Folgenden werden die Ergebnisse der Belastungen mit und ohne ß-Blockade auf die Intervalle des EKGs betrachtet.

3.3.7 P-Dauer im Dauertest

P-Dauer im Dauertest ohne ß-Blocker

Abbildung 141 zeigt die Veränderungen der P-Dauer während des Dauertests (MW und SD).

Von einer durchschnittlichen Zeit von 92 (\pm 9) ms in Ruhe verlängerte sich die Zeit intial auf 99 (\pm 9) ms (p<0,05). Anschließend blieb sie ohne statistisch relevante Unterschiede auf diesem Niveau bis zum Ende der 50%-Belastungsstufe. Die P-Dauer verkürzte sich in der 75% Belastungsstufe bis zum Ende kontinuierlich auf 90 (\pm 14) ms (p<0,05).

Im zweiten Belastungsabschnitt verlängerte sich die P-Dauer bis 3 Minuten bei 25% im Mittel auf 98 (± 12) ms und blieb dann unverändert bis zum Ende der 50% Belastungsstufe.

In den ersten 3 Minuten der 75% Stufe verkürzte sich die P-Dauer erneut auf 86 (± 12) ms (p<0,05) und verblieb dann bis zum Ende des Tests auf diesem Niveau.

Abb. 141: Verlauf der P-Dauer im Dauertest (MW±SD).

P-Dauer im Dauertest mit ß-Blockade

Unter ß-Blockade verlängerte sich die P-Dauer im Trend von 91 ms (\pm 7) zu Beginn der Belastung auf 97 (\pm 8) ms, p=0,07 (Abbildung 142).

Innerhalb der einzelnen Stufen waren keine relevanten Unterschiede zu erkennen. Tendenzielle Veränderungen gab es bei Erhöhung oder Erniedrigung der Belastungsstufen.

In der Nachbelastung sank unter ß-Blockade die P-Dauer weiter bis zur 1. Minute nach Belastung signifikant auf 97 (± 15) ms (p<0,05). Im weiteren Verlauf der aktiven Erholung veränderte sich die P-Dauer nicht.

In der zweiten Belastungsphase nahm die P-Dauer bis zum Ende der 25%-Stufe signifikant auf 94 (\pm 9) ms ab (p<0,05). In der Folge ergaben sich keine weiteren Veränderungen bis zum Ende der 75%-Belastungsstufe.

Abb. 142: Verlauf der P-Dauer im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 143 sind die relativen Veränderungen der Zeitdauer während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden (p<0,01). Sowohl unterschieden sich signifikant die Haupteffekte Zeit und Gruppe als auch der Interaktionseffekt aus Zeit mal Gruppe.

Abb. 143: Verlauf der relativen Veränderungen der P-Dauer (in Δ P-Dauer) im Dauertest bezogen auf den Ruheausgangswert (MW±SD).

Zusammenfassung: P-Dauer im Dauertest

- 1. Geringe und mittlere Belastung führten ohne und mit ß-Blockade zu einer Verlängerung der P-Dauer.
- Intensive Belastung verursachte ohne
 ß-Blockade eine Verk
 ürzung, mit
 ß-Blockade eine tendenzielle weitere Verl
 ängerung der P-Dauer.

3.3.8 PQ-Zeit im Dauertest

PQ-Zeit im Dauertest ohne ß-Blocker

Abbildung 144 zeigt die Veränderungen der PQ-Zeit während des Dauertests (MW und SD)

Zu Beginn der Belastung veränderte sich die PQ-Zeit bis zum Ende der 25% P_{max} -Belastungsstufe nicht. Mit Beginn der 50% P_{max} -Belastungsstufe verkürzte sich die PQ-Zeit von 153 (± 15) ms auf 148 (± 16) ms (p<0,05) und anschließend kontinuierlich bis zum Ende der 75% P_{max} Belastungsstufe auf 117 (± 15) ms (p<0,01)

Im zweiten Belastungsabschnitt verlängerte sich die PQ-Zeit bis zur 6. Minute bei 25% P_{max} im Mittel auf 144 (± 14) ms (p<0,01) und verblieb auf diesem Niveau bis zum Ende der Stufe.

Mit Beginn der Belastungsstufe 50% P_{max} verkürzte sich die PQ-Zeit wieder signifikant auf 136 (±15) ms (p<0,01). Eine erneute Verkürzung bestand erst mit Einsetzen der 75% Belastungsstufe und die PQ-Zeit nahm sich auf 106 (±13) ms ab (p<0,01).

Abb. 144: Verlauf der PQ-Zeit im Dauertest (MW±SD).

PQ-Zeit im Dauertest mit ß-Blocker

Unter ß-Blockade verkürzte sich die PQ-Zeit von 162 (± 17) ms in Ruhe ab der Belastungsstufe 50% P_{max} auf 153 (± 11) ms (p<0,05). Innerhalb der 50%-Stufe gab es keine weiteren Veränderungen (Abbildung 145).

Mit Beginn der 75% P_{max} -Belastungsstufe verkürzte sich die PQ-Zeit bis zum Ende der Stufe signifikant auf 141 (± 14) ms (p<0,05).

Im zweiten Abschnitt verlängerte sich die PQ-Zeit signifikant bis 6 Minuten bei 25% P_{max} auf 150 (± 14) ms (p<0,01). Anschließend blieb die PQ-Zeit bis zum Ende der 50% P_{max} Stufe auf diesem Niveau.

In der abschließenden 75% Pmax Stufe sank die PQ-Zeit bis zur 6. Minute auf 135 (\pm 16) ms (p<0,01). In den letzten 3 Minuten ergaben sich keine Veränderungen.

Abb. 145: Verlauf der PQ-Zeit im Dauertest (MW±SD).

Vergleich der Tests mit und ohne ß-Blocker

In Abbildung 146 sind die relativen Veränderungen der Zeitdauer während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte ein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden (p<0,01). Es waren sowohl die Haupteffekte Zeit und Gruppe als auch der Interaktionseffekt aus Zeit und Gruppe signifikant.

Abb. 146: Veränderungen der PQ-Zeit (in Δ PQ-Zeit) im Dauertest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: PQ-Zeit im Dauertest

- 1. Geringe und mittlere Belastung führten ohne und mit ß-Blockade zu einer moderaten Verkürzung der PQ-Zeit.
- Intensive Belastung verursachte ohne und mit
 ß-Blockade eine weitere signifikante Verk
 ürzung, allerdings war der Unterschied zwischen der PQ-Zeit ohne und mit
 ß-Blockade dann gleichfalls signifikant; dies erkl
 ärt sich durch einen geringeren Abfall mit
 ß-Blockade.

3.3.9 PQ-Strecke im Dauertest

PQ-Strecke im Dauertest ohne ß-Blocker

Abbildung 147 zeigt die Veränderungen der PQ-Strecke während des Dauertests (MW und SD)

Es ist erkennbar, dass die Veränderung von Stufe zu Stufe größer war als innerhalb jeder einzelnen Belastungsstufe. Die Verkürzung der PQ-Strecke betrug von Ruhe zu 25% P_{max} 8 (± 8) ms (p<0,01), von 25% zu 50% 9 (± 6) ms (p<0,01) und von 50% zu 75% 8 (± 6) ms (p<0,01).

Innerhalb der einzelnen Stufen bestand folgende Veränderung: Bei 25% P_{max} bestand keine signifikante Veränderung. Bei 50% P_{max} verkürzte sich die PQ-Strecke im Mittel um 5 (± 3) ms (p<0,01), bei 75% P_{max} um 3 (± 4) ms (p<0,05).

In der zweiten Belastungsphase verlängerte sich die PQ-Strecke bis zum Ende der Belastungsstufe 25% Pmax um 10 (\pm 8) ms (p<0,01). Anschließend verkürzte sich die PQ-Strecke über die beiden Belastungsstufen 50% und 75% auf 26 (\pm 3) ms (p<0,01).

Abb. 147: Verlauf der PQ-Strecke im Dauertest (MW±SD).

PQ-Strecke im Dauertest mit ß-Blocker

Auch unter ß-Blockade waren die Veränderungen von Stufe zu Stufe größer als innerhalb jeder einzelnen Belastungsstufe. Die Verkürzung der PQ-Strecke betrug von Ruhe zu 25% $P_{max} 8 (\pm 6 \text{ ms}) (p<0,01)$, von 25% zu 50% 9 (± 11) ms (p<0,01) und von 50% zu 75% 9 (± 8) ms, p<0,01 (Abbildung 148).

Innerhalb der einzelnen Stufen bestand folgende Veränderung: Bei 25% P_{max} und 50% P_{max} bestanden keine signifikanten Unterschiede. Bei 75% P_{max} verkürzte sie sich um 7 (± 10) ms (p<0,01).

Im zweiten Belastungsabschnitt verlängerte sich die PQ-Strecke bis zum Ende der Belastungsstufe 25% P_{max} um 10 (± 15) ms (p<0,01). Anschließend verkürzte sich die PQ-Strecke über die beiden Belastungsstufen 50% und 75% auf 32 (± 6) ms (p<0,01).

Abb. 148: Verlauf der PQ-Strecke im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 149 sind die relativen Veränderungen der Zeitdauer während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt gab es keinen Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit.

Es existieren signifikante Unterschiede für die Faktoren Zeit und Gruppe, hingegen keine in der Interaktion.

Abb. 149: Veränderungen der PQ-Strecke (in Δ PQ-Strecke) im Dauertest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: PQ-Strecke im Dauertest

- 1. Zunehmend intensive Dauerbelastung führte zu einer zunehmenden Verkürzung der PQ-Strecke mit steady-state Einstellung innerhalb der Dauertestanteile.
- Kardioselektive ß-Blocker hatten keinen Einfluss auf die Veränderung der PQ-Strecke in reproduzierten Dauertests.

3.3.10 QRS-Komplex im Dauertest

QRS-Komplex im Dauertest ohne ß-Blocker

Abbildung 150 zeigt die Veränderungen des QRS-Komplexes während des Dauertests (MW und SD).

Der Faktor Zeit hatte keinen Einfluss auf die Dauer des QRS-Komplexes im Dauertest. Die Messzeitpunkte unterschieden sich aber nicht voneinander.

Abb. 150: Verlauf des QRS-Komplexes im Dauertest (MW±SD).

QRS-Komplex im Dauertest mit ß-Blocker

Auch unter ß-Blockade blieb der QRS-Komplex unter Belastung des Dauertests unbeeinflusst. Es ergaben sich keine Hinweise auf Unterschiede über die Messzeitpunkte (Abbildung 151).

Abb. 151: Verlauf des QRS-Komplexes im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 152 sind die relativen Veränderungen der Zeitdauer während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Zudem gab es bezogen auf den Faktor Gruppe keinen Hinweis auf Unterschiede. Die Gruppen unterschieden sich grundsätzlich nicht voneinander.

Abb. 152: Veränderungen des QRS-Komplexes (in Δ QRS-Komplex) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: QRS-Komplex im Dauertest

- 1.Dauerbelastungen führten nicht zu Veränderungen in der
Dauer des QRS-Komplexes.
- 2. Kardioselektive ß-Blocker hatten keinen Einfluss auf die Dauer des QRS-Komplexes in reproduzierten Dauertests.

3.3.11 ST-Strecke im Dauertest

ST-Strecke im Dauertest ohne ß-Blocker

Abbildung 153 zeigt die Veränderungen der ST-Strecke während des Dauertests (MW und SD).

Von einer durchschnittlichen Zeit von 110 (± 10) ms in Ruhe verkürzte sich die ST-Strecke bis zum Ende der 75% P_{max} -Phase im ersten Testabschnitt auf 47 (± 9) ms (p<0,01).

Im zweiten Belastungsabschnitt verlängerte sich die ST-Strecke bis zur 9. Minute bei 25% P_{max} im Mittel auf 76 (± 9) ms (p<0,01). Anschließend verkürzte sich die ST-Strecke wieder kontinuierlich bis zum Ende der zweiten Testphase auf 42 (± 10) ms (p<0,01).

Abb. 153: Verlauf der ST-Strecke im Dauertest (MW±SD).

ST-Strecke im Dauertest mit ß-Blocker

Unter ß-Blockade verkürzte sich die ST-Strecke von 123 (± 11) ms in Ruhe bis zum Ende der ersten Testphase bei 75% P_{max} auf 58 (± 6) ms, p<0,01 (Abbildung 154).

Im zweiten Belastungsabschnitt verlängerte sich die ST-Strecke bis zur 9. Minute bei 25% P_{max} im Mittel auf 91 (± 10) ms (p<0,01). Anschließend verkürzte sich die ST-Strecke wieder kontinuierlich bis zum Ende der zweiten Testphase auf 50 (± 10) ms (p<0,01).

Abb. 154: Verlauf der ST-Strecke im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 155 sind die relativen Veränderungen der Zeitdauer während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Es existieren Signifikante Unterschiede für die Faktoren Zeit und Gruppe, hingegen keine in der Interaktion.

Abb. 155: Veränderungen der ST-Strecke (in Δ ST-Strecke) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: ST-Strecke im Dauertest

- 1. In den Dauertests verkürzte sich die ST-Strecke kontinuierlich in Abhängigkeit von Dauer und Intensität.
- 2. Dauertests von 9 min führten nicht zur steady state Bildung.
- 3. Kardioselektive ß-Blocker hatten keinen Belastungseffekt
 - auf die ST-Strecke während reproduzierter Dauerbelastung.

3.3.12 T-Dauer im Dauertest

T-Dauer im Dauertest ohne ß-Blocker

Abbildung 156 zeigt die Veränderungen der T-Dauer während des Dauertests (MW und SD)

Es ist zu erkennen, dass die Effekte der Belastungsintensität größer waren die als die der Belastungsdauer. Die Verkürzung der T-Dauer betrug von Ruhe auf 25% P_{max} 17 (± 10) ms (p<0,01), von 25% auf 50% 13 (± 6) ms (p<0,01) und von 50% auf 75% 11 (± 9) ms (p<0,01).

Von einer durchschnittlichen Zeit von 188 (± 20) ms in Ruhe verkürzte sich die T-Dauer bis zum Ende der ersten Belastungsphase bei 75% P_{max} auf 119 (± 17) ms (p<0,01).

Innerhalb der einzelnen Stufen bestand folgende Veränderung. Bei 25% P_{max} verkürzte sich die T-Dauer im Mittel um 8 (± 6) ms (p<0,01), bei 50% P_{max} um 11 (± 7) ms (p<0,01) und bei 75% P_{max} um 8 (± 5) ms (p<0,01).

Im zweiten Belastungsabschnitt verlängerte sich die T-Dauer bis zum Ende der Belastungsstufe 25% Pmax um 14 (\pm 12) ms (p<0,01). Anschließend verkürzte sich die T-Dauer über die beiden Belastungsstufen 50% und 75% auf 114 (\pm 12) ms (p<0,01).

Abb. 156: Verlauf der T-Dauer im Dauertest (MW±SD).

T-Dauer im Dauertest mit ß-Blocker

Auch unter ß-Blockade waren die Effekte der Belastungsintensität größer als die der Belastungsdauer. Die Verkürzung der T-Dauer betrug von Ruhe zu 25% P_{max} 18 (± 10) ms (p<0,01), von 25% zu 50% 9 (± 7) ms (p<0,01) und von 50% zu 75% 8 (± 7) ms (p<0,01) (Abbildung 157).

Innerhalb der einzelnen Stufen bestand folgende Veränderung. Bei 25% $P_{max} 8 (\pm 6) ms (p<0,01)$, bei 50% $P_{max} 7 (\pm 6) ms (p<0,01)$ und bei 75% $P_{max} um 11 (\pm 11) ms (p<0,01)$.

Im zweiten Belastungsabschnitt verlängerte sich die T-Dauer bis zum Ende der Belastungsstufe 25% P_{max} um 21 (± 7) ms (p<0,01). Anschließend verkürzte sich die T-Dauer über die beiden Belastungsstufen 50% und 75% auf 140 (± 21) ms (p<0,01).

Abb. 157: Verlauf der T-Dauer im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 158 sind die relativen Veränderungen der Zeitdauer während des Dauertests beider Testserien dargestellt (MW und SD).

Im Vergleich der Kurven wurde ein Trend zur rascheren Verkürzung der T-Dauer in Abhängigkeit von Dauer und Intensität ohne ß-Blockade erkennbar. Dieser Unterschied war allerdings nicht signifikant.

Abb. 158: Veränderungen der T-Dauer (in Δ T-Dauer) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: T-Dauer im Dauertest							
1.	Es kam zu einer Verkürzung in Abhängigkeit von der Dauer und mit stärkerem Effekt der Intensität						
2.	Dieser	Effekt	wurde	durch	kardioselektive	ß-Blockade	
	tendenziell gehemmt						

3.3.13 QT-Zeit im Dauertest

QT-Zeit im Dauertest ohne ß-Blocker

Abbildung 159 zeigt die Veränderungen der QT-Zeit während des Dauertests (MW und SD).

Von durchschnittlich 383 (± 26) ms in Ruhe verkürzte sich die QT-Zeit bis zum Ende der 75% P_{max} –Belastungsphase im ersten Testabschnitt auf 255 (± 23) ms (p<0,01).

Im zweiten Belastungsabschnitt verlängerte sich die QT-Zeit bis 9. Minute bei 25% P_{max} im Mittel auf 283 (± 34) ms (p<0,01). Anschließend kam es wieder kontinuierlich zu einer Verkürzung auf 244 (± 16) ms (p<0,01) bis zum Ende der zweiten Testphase.

Abb. 159: Verlauf der QT-Zeit im Dauertest (MW±SD).

QT-Zeit im Dauertest mit ß-Blocker

Unter ß-Blockade verkürzte sich die QT-Zeit von 408 (± 30) ms in Ruhe bis zum Ende der ersten Testphase bei 75% P_{max} auf 284 (± 20) ms, p<0,01 (Abbildung 160).

Im zweiten Belastungsabschnitt verlängerte sich die QT-Zeit bis 9. Minute bei 25% P_{max} im Mittel auf 318 (± 22) ms (p<0,01).

Anschließend verkürzte sich die QT-Zeit wieder kontinuierlich bis zum Ende der zweiten Testphase auf 280 (\pm 30) ms (p<0,01).

Abb. 160: Verlauf der QT-Zeit im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 161 sind die relativen Veränderungen der Zeitdauer während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Es existierten Signifikante Unterschiede für die Faktoren Zeit und Gruppe, hingegen keine in der Interaktion.

Abb. 161: Veränderungen der QT-Zeit (in Δ QT-Zeit) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: QT-Zeit im Dauertest

- 1. Es kam zu einer Verkürzung in Abhängigkeit von Dauer und (mit stärkerem) Effekt von Intensität.
- 2. Kardioselektive ß-Blocker hatten keinen Einfluss auf die Entwicklung der QT-Zeit während reproduzierter Dauerbelastung.

3.3.14 Spirometrie im Dauertest

Sauerstoffaufnahme (VO2) im Dauertest ohne ß-Blocker

In Abbildung 162 sind die Veränderungen der Sauerstoffaufnahme während des Dauertests dargestellt (MW und SD).

Bei leichter und mittlerer Belastungsstufe stellte sich ein steady-state für die Sauerstoffaufnahme ein, bei intensiverer Belastung ab 75% P_{max} dagegen nicht mehr.

Die Erhöhung der Sauerstoffaufnahme betrug von Ruhe zu 25% P_{max} 909 (± 228) ml/min (p<0,01), von 25% zu 50% 592 (± 169) ml/min (p<0,01) und von 50% zu 75% 582 (± 108) ml/min (p<0,01).

Innerhalb der einzelnen Stufen bestand folgende Veränderung. Bei 25% P_{max} und 50% P_{max} ergaben sich keine signifikanten Veränderungen. Bei 75% P_{max} erhöhte sich die Sauerstoffaufnahme um 134 (± 113) ml/min (p<0,01).

Dieser Verlauf war im zweiten Testabschnitt ähnlich vorhanden.

Abb. 162: Verlauf der Sauerstoffaufnahme im Dauertest (MW±SD).

Sauerstoffaufnahme (VO2) im Dauertest mit ß-Blocker

Auch unter ß-Blockade stellte sich bei leichter und mittlerer Belastungsstufe ein steady state für die Sauerstoffaufnahme ein, bei intensiverer Belastung ab 75% P_{max} nicht mehr (Abbildung 163).

Die Erhöhung der Sauerstoffaufnahme betrug von Ruhe zu 25% P_{max} 897 (± 134) ml/min (p<0,01), von 25% zu 50% 596 (± 62) ml/min (p<0,01) und von

50% zu 75% 620 (± 166) ml/min (p<0,01).

Folgende Veränderungen traten innerhalb der einzelnen Stufen auf: Bei 25% P_{max} und 50% P_{max} ergaben sich keine signifikanten Veränderungen. Bei 75% P_{max} erhöhte sich die Sauerstoffaufnahme um 117 (± 107) ml/min (p<0,01).

Dieser Verlauf war im zweiten Testabschnitt ähnlich vorhanden.

Abb. 163: Verlauf des Adrenalins im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 164 sind die relativen Veränderungen maximalen Sauerstoffaufnahme während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Es gab keinen Hinweis auf Unterschiede für den Faktor Gruppe und den Interaktionseffekt aus Gruppe und Zeit.

Abb. 164: Veränderungen der Sauerstoffaufnahme (in Δ VO₂) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: VO₂ im Dauertest

- Dauerbelastungstests von 9 Minuten führten bei leichter und mittlerer Belastung zur Einstellung eines steady-states von VO₂.
- Kardioselektive ß-Blocker hatten keinen Einfluss auf die Entwicklung der Sauerstoffaufnahme während reproduzierter Dauertests.

Atemminutenvolumen (V_E) im Dauertest ohne ß-Blocker

In Abbildung 165 sind die Veränderungen des Atemminutenvolumens während des Dauertests dargestellt (MW und SD).

Bei leichter und mittlerer Belastungsstufe stellte sich ein steady state für das Atemminutenvolumen ein, bei intensiverer Belastung ab 75% P_{max} dagegen nicht mehr.

Die Erhöhung der V_E betrug von Ruhe zu 25% P_{max} 16,9 (± 4,4) l/min (p<0,01), von 25% zu 50% 15,3 (± 4,4) l/min (p<0,01) und von 50% zu 75% 19,6 (± 4,2) l/min (p<0,01).

Innerhalb der einzelnen Stufen bestand folgende Veränderung. Bei 25% P_{max} und 50% P_{max} ergaben sich keine signifikanten Veränderungen. Bei
75% P_{max} erhöhte sich das Atemminutenvolumen um 9,5 (± 6,1) l/min (p<0,01).

Dieser Verlauf war im zweiten Testabschnitt ähnlich vorhanden.

Abb. 165: Verlauf des Atemminutenvolumens im Dauertest (MW±SD).

Atemminutenvolumen (V_E) im Dauertest mit ß-Blocker

Auch unter Einfluss der kardioselektiven ß-Blocker stellte sich bei leichter und mittlerer Belastungsstufe ein steady-state für das Atemminutenvolumen ein, bei intensiverer Belastung ab 75% P_{max} nicht mehr (Abbildung 166).

Die Erhöhung der V_E betrug von Ruhe zu 25% P_{max} 15,4 (± 2,5) l/min (p<0,01), von 25% zu 50% 14,0 (± 2,2) l/min (p<0,01) und von 50% zu 75% 21,5 (± 5,0) l/min (p<0,01).

Innerhalb der einzelnen Stufen ergab sich folgende Veränderung: Bei 25% P_{max} und 50% P_{max} ergaben sich keine signifikanten Veränderungen. Bei 75% P_{max} erhöhte sich das Atemminutenvolumen um 9,0 (± 5,7) l/min (p<0,01).

Dieser Verlauf war im zweiten Testabschnitt entsprechend ähnlich vorhanden

Abb. 166: Verlauf des Atemminutenvolumens im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 167 sind die relativen Veränderungen des Atemminutenvolumens während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Es gab keinen Hinweis auf Unterschiede für den Faktor Gruppe und den Interaktionseffekt aus Gruppe und Zeit.

Abb. 167: Veränderungen des Atemminutenvolumen (in Δ V_E) im Dauertest relativ zum Ruheausgangswert (MW±SD).

Zusammenfassung: Atemminutenvolumen im Dauertest

- Bezüglich des V_Es führten 9-minütige Dauerbelastungstests bei leichter und mittlerer Belastung zur Einstellung eines steady-states.
 Kardioselektive ß-Blocker hatten keinen Einfluss auf die
 - Entwicklung des Atemminutenvolumens während reproduzierter Dauertests.

3.3.15 Laktat im Dauertest

Laktat im Dauertest ohne ß-Blocker

In Abbildung 168 sind die Veränderungen der Laktatkonzentration während des Dauertests dargestellt (MW und SD).

Es war zu erkennen, dass eine Dauerbelastung mit 25% Pmax zu einer Verringerung der Laktatkonzentration führte. Von einem Ruhewert mit 1,12 (\pm 0,5) mmol/l ausgehend sank die Konzentration bis zum Ende der 9 Minuten bei 25% Pmax auf 0,91 (\pm 0,3) mmol/l (p<0,01). Innerhalb der folgenden Belastungsstufe mit 50% stellte sich ein steady-state auf einem Niveau von 1,70 (\pm 0,8) mmol/l ein.

Bei 75% Pmax stieg die Laktatkonzentration bis zum Ende der Stufe auf 5,44 (\pm 2,2) mmol/l an (p<0,01).

Im zweiten Testabschnitt sank die Laktatkonzentration kontinuierlich bis zum Ende der 50%-igen Dauerbelastung auf 1,81 (\pm 1,0) mmol/l (p<0,01) und stieg dann wieder bis zum Testende auf 4,97 (\pm 2,2) mmol/l an (p<0,01).

Abb. 168: Verlauf von Laktat im Dauertest (MW±SD).

Laktat im Dauertest mit ß-Blocker

Auch unter dem Einfluss der kardioselektiven ß-Blocker kam es bei einer Dauerbelastung mit 25% P_{max} zu einer Verringerung der Laktatkonzentration. Von einem Ruhewert mit 1,32 (± 0,5) mmol/l ausgehend sank die Konzentration bis zum Ende der 9 Minuten bei 25% P_{max} auf 0,93 (± 0,3) mmol/l (p<0,01). Innerhalb der folgenden Belastungsstufe mit 50% stellte sich ein steady-state auf einem Niveau von 1,56 (± 0,6) mmol/l ein (Abbildung 169).

Bei 75% P_{max} stieg die Laktatkonzentration bis zum Ende der Stufe auf 5,29 (± 2,4) mmol/l an (p<0,01).

Im zweiten Testabschnitt sank die Laktatkonzentration kontinuierlich bis zum Ende der 50%-igen Dauerbelastung auf 1,95 mmol/l (\pm 1,1) (p<0,01) und stieg dann wieder bis zum Testende auf 5,03 mmol/l (\pm 2,3) an (p<0,01).

Abb. 169: Verlauf von Laktat im Dauertest (MW±SD).

Vergleich der Tests mit ß-Blocker und ohne ß-Blocker

In Abbildung 170 sind die relativen Veränderungen der Laktatkonzentration während des Dauertests beider Testserien dargestellt (MW und SD).

Insgesamt konnte kein Unterschied zwischen den Testbedingungen in Bezug auf die Veränderungen über die Zeit ermittelt werden.

Es gab keinen Hinweis auf Unterschiede für den Faktor Gruppe und den Interaktionseffekt aus Gruppe und Zeit.

Abb. 170: Veränderungen des Laktats (in Δ Laktat) im Dauertest relativ zum Ruheausgangswert (MW \pm SD).

Zusammenfassung: Laktat im Dauertest

- Dauerbelastungstests führten bei leichter Belastung zur Absenkung der Laktatkonzentration und bei mittlerer Belastung zu Einstellung eines steady-states.
- 2. Kardioselektive ß-Blocker hatten keinen Einfluss auf die Entwicklung der Laktatkonzentration während reproduzierter Dauertests.

4 Diskussion

4.1 Effekte der ß-Blockade während Belastung

Im Folgenden werden vorrangig die Ergebnisse und Parameter diskutiert, die besondere Verlaufscharakteristiken aufwiesen.

Grundsätzlich sollen noch einmal typische Ursachen für physiologische Veränderungen innerhalb der Zacken und Wellen im EKG beschrieben werden. Neben Elektrolytverschiebungen zählen hierzu vor allem die Veränderung der Lage des jeweiligen Hauptvektors zur Projektionsachse und eine zeitliche Veränderung innerhalb der Erregungsabläufe.

Ursachen für Veränderungen der EKG-Amplitude:

Fall 1: Veränderung des elektrischen Lagetyps

Im Fall einer Veränderung des elektrischen Lagetyps kommt es in den einzelnen Achsen zu Veränderungen der Ausschlaghöhe. Im Fall B ist der Lagetyp steiler. Dies geschieht durch eine Größenzunahme der Y-Ableitung, im gleichen Maße verkleinert sich der Ausschlag auf der X-Achse. In der Größe des Hauptvektors (Magnitude (Ā)) gibt es dagegen keine Veränderungen.

Fall 2: Ab- und Zunahme der Potentiale generell

Im Fall einer Veränderung der Potentiale kommt es in den einzelnen Achsen zu Veränderungen der Ausschlaghöhe, die sich wiederum in der Größe des Hauptvektors (Magnitude (Ā)) widerspiegelt.

Fall 3: Zeiteffekte bei gegenläufigen Erregungen in einer Achse

Fall 3 zeigt, dass nicht nur die Potentialstärke, sondern auch das Zusammenfallen unterschiedlicher Potentiale die Ausschlaghöhe beeinflussen kann. Sind also entgegensetzte Erregungsabläufe am Herz weitgehend zeitgleich, können die Einzelerregungen unter Umständen nicht erkennbar sein. Das Vektormagnitude würde also in diesem Fall kleiner werden, ohne dass sich die eigentlichen Erregungsabläufe am Herz geändert hätten. Allein das Zueinanderrücken der Erregungsabläufe bei erhöhter Herzfrequenz könnte so eine Spannungsabnahme suggerieren.

Um mögliche Ursachen variierender EKG-Amplituden einzugrenzen, wurde

in der hier vorliegenden Arbeit auf das Vektormagnitude zurückgegriffen. Durch dessen Nutzung können zumindest Änderungen des Lagetyps als Ursachen für Amplitudenschwankungen ausgeschlossen werden.

Ein weiteres Kriterium für die Beurteilung der Erregungsvorgänge ist das Integral der Wellen und Zacken, da die Flächen unter den Kurven den kompletten Erregungsvorgang repräsentieren.

Veränderungen innerhalb der Wellen- und Zackenflächen im Vektormagnitude können demnach ebenfalls nur die Folge eines zeitlichen Zusammenrückens/ Versetzens entgegen gerichteter Erregungen einer Ableitung oder einer effektiven Zu- oder Abnahme der Potentialstärke einer Erregung sein.

Fazit: Beeinflussung der EKG-Amplitude, Beurteilung des Vektormagnitudes

- Keine Änderung des Vektormagnitudes durch:

 -Änderung des Lagetyps

 Änderungen des Vektormagnitude durch:
 - -Effektive Zu- oder Abnahme der Potentialstärke einer Erregung
 - -Zeitliches Zusammenrücken oder Versetzen entgegen gerichteter Erregungen einer Ableitung

4.1.1 Effekte der ß-Blockade auf die Leistung im doppelten Stufentest

Alle Probanden erreichten die gleichen maximalen Leistungen in den Tests. Da keine Unterschiede hinsichtlich maximaler Plasmakonzentrationen der Katecholamine in den Tests mit und ohne ß-Blockade ermittelt werden konnten und eine Intervention mit einem kardioselektiven ß-Blocker stattgefunden hatte, wurde anhand der Ergebnisse schlussfolgernd festgestellt, dass die endogenen Katecholamine auf die maximale Leistung bei Stufentests auf dem Halbliegeergometer keinen Einfluss hatten. Dieses Ergebnis wurde durch die Untersuchungen von Wonisch et al. (2002), Wonisch et al. (2003), in denen ebenfalls der ß-Blocker Bisoprolol mit derselben Tagesdosis von 5 mg als Interventionsmittel zum Einsatz kam, bestätigt. Die Abbildungen 171 und 172 zeigen die besprochenen Ergebnisse.

Abb. 171: Relative Veränderung der Adrenalinkonzentration (Δ) in Abhängigkeit zur relativen Leistung(MW).

Abb. 172: Relative Veränderung der Noradrenalinkonzentration (Δ) in Abhängigkeit zur relativen Leistung (MW).

Um die Verhältnisse und Effekte besser zu verdeutlichen, wurden die Tests reproduziert. Für die Katecholamine konnte festgestellt werden, dass sich auch im jeweils zweiten Teil der Tests gleiche Verhältnisse wie im ersten Testabschnitt ergaben. Die Abbildungen 173 und 174 sollen dies noch einmal verdeutlichen.

Im Ergebnis konnte festgehalten werden, dass die Katecholamine keinen Einfluss auf die maximale Leistung hatten.

Abb. 173: Relative Veränderung der Adrenalinkonzentration (Δ) im 2. Testabschnitt in Abhängigkeit zur relativen Leistung, ausgehend von 5 Minuten nach Belastung des ersten Testabschnitts (MW)

Abb. 174: Relative Veränderung der Noradrenalinkonzentration (Δ) im 2. Testabschnitt in Abhängigkeit zur relativen Leistung, ausgehend von 5 Minuten nach Belastung des ersten Testabschnitts (MW).

4.1.2 Effekte der ß-Blockade während Belastung auf die Herzfrequenz

Doppelter Stufentest

Durch die ß-Blockade konnte eine Verringerung der Herzfrequenz in Ruhe und unter maximaler Belastung ermittelt werden. Dieses Ergebnis wurde durch Aussagen von Hofmann et al. (2005), Mier et al. (1997) und Wonisch et al. (2002) bestätigt.

Der Einfluss der ß-Blockade auf die Herzfrequenz soll mit den folgenden Abbildungen 175 und 176 verdeutlicht werden.

Abb. 175: Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 176: Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Den Abbildungen ist zu entnehmen, dass die peripheren Stresshormone für die Veränderung der Herzfrequenz bei leichter und mittlerer Arbeit nicht ursächlich verantwortlich waren. Bei geringer Belastung zeigte sich ein Anstieg der Herzfrequenz von 50 S/min unabhängig von der Plasma-Katecholaminkonzentration. Es war zu erkennen, dass die initiale Herzfrequenzveränderung in der Testserie mit ß-Blockade in gleichem Maß stattfand und erst im weiteren Verlauf die Wirkung der ß-Blockade deutlich wurde. Diese Ergebnisse ließen den Rückschluss zu, dass initial andere Faktoren als die Plasmakatecholamine für die Veränderungen der Herzfrequenz ursächlich waren. Diese Ergebnisse fanden durch die Resultate der Belastungsuntersuchungen von Ferretti et al. (2002) an 17 Herztransplantierten Bestätigung. In dieser speziellen Patientengruppe war die zentrale Mitinnervation aufgrund Durchtrennung der Herznerven ausgeschlossen. Es zeigte sich, dass die Anpassung der Herzfrequenz an Belastung deutlich verzögert war, bei gleichzeitig signifikant höheren Plasmakatecholaminkonzentrationen. In Untersuchungen bei 41 Herztransplantierten mit einer sympathikotonen Reinnervation des Sinusknoten bei Wilson et al. (2000) konnte zudem gezeigt werden, dass bei Reinnervation des Sinusknotens eine zentrale Mitinnervation wieder möglich war und eine schnellere Anpassung der Herzfrequenz an Belastung erfolgte. Eine Kontrollgruppe mit persistierender Denervation zeigte dagegen eine Regulation, wie sie in der Untersuchung von Ferretti et al. (2002) auch festgestellt wurden.

Dies bestätigte, dass die initiale Veränderung der Herzfrequenz durch die zentrale Mitinnervation ausgelöst wird. Erst im weiteren Belastungsverlauf stieg der Einfluss der frei zirkulierenden Katecholamine.

Unklar blieb hierbei aber die Rolle des nervalen Sympathikustonus für die frühe Belastungsphase. Ebenfalls über die zentrale Mitinnervation könnte auch eine Reduktion des Parasympathikustonus gleiche Effekte haben. Der Anteil des Sympathikus oder Parasympathikus für die Ruhefrequenz ist offensichtlich aktuell nicht geklärt (De Angelis et al. 2004). In jedem Fall ergab sich hier der Haupteffekt der ß-Blockade, so dass davon ausgegangen werden kann, dass der Sympathikustonus für die Ruheeinstellung der Herzfrequenz neben dem Parasympathikustonus eine relevante Rolle spielte. Grundsätzlich anders stellten sich aber die Bedingungen bei Belastung dar. Das <u>Belastungs</u>verhalten der Herzfrequenz war durch die ß-Blockade zumindest bei leichter und mittlerer Belastung praktisch nicht beeinflusst. Dies würde bedeuten, dass der Frequenzanstieg in diesem Bereich grundsätzlich unabhängig vom Sympathikustonus ist. Warum aber kam es zu dem typischen Belastungsanstieg? Der zweite wesentliche Faktor der Frequenzregulation ist der Parasympathikustonus. In der Umsetzung der Befunde würde dies bedeuten, dass unter Belastung bis zu einem Frequenzanstieg von ca. 50 S/min eine lineare Reduktion des Parasympathikustonus allein für die Frequenzmodulation verantwortlich ist. Erst bei intensiver Belastung würde dann ein zunehmender Sympathikustonus insbesondere durch die zirkulierenden Katecholamine zu einem ergänzenden Frequenzeffekt beitragen (Abbildung 177).

Abb. 177. Herzfrequenzanstieg im Stufentest mit und ohne ß-Blockade (MW ± SD).

Während bei leichter Belastung die Werte nahezu identisch waren, kam es bei höherer Intensität zu einem verzögerten Anstieg unter ß-Blockade.

Eine Reduktion des Parasympathikotonus bei Belastung würde genau diese Effekte bewirken. Es ist bekannt, dass bei Patienten nach Herztransplantation die Ruhefrequenz deutlich erhöht ist (Tegtbur et al. 2004; Hachida et al. 1999). Charakteristisch für diese Patienten ist der Wegfall der Vaguskontrolle. Insoweit kam es hier zu einem Überwiegen des hormonellen Sympathikusantriebs, der allerdings auch durch dabei gemessene höhere Ruhewerte der Katecholamine begründet sein kann (Hachida et al. 1999). Wie sind die Befunde des zweiten Stufentests zu bewerten? In Abbildung 178 und 179 sind die Verhältnisse von Katecholaminen und Herzfrequenz in der zweiten Testphase dargestellt. Auch hier zeigte sich, daß initial nicht die frei zirkulierenden Plasmakatecholamine für die Veränderungen der Herzfrequenz verantwortlich waren. So z.B. kam es zu einem Frequenzanstieg um 20 Schläge bei gleichzeitig sinkender Noradrenalinkonzentration.

Abb. 178: Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ), ausgehend von 5 Minuten nach Belastung des ersten Testabschnitts (MW).

Abb. 179: Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ), ausgehend von 5 Minuten nach Belastung des ersten Testabschnitts (MW).

Dauertests

Der Einfluss der ß-Blockade auf die Herzfrequenz in den Dauertests soll mit den Abbildungen 180 und 181 verdeutlicht werden.

140ohne ß-Blocker mit
 ß-Blocker 120 A Herzfrequenz [S/min] 100-80-60-40-20 0ò ż 4 6 8 10 12 14 16 ∆ Noradrenalin [NA]_P [nmol/I]

Abb. 180: Relative Veränderung der Herzfrequenz (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 181: Relative Veränderung der Herzfrequenz (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Auch im Dauertest war die initiale Veränderung der Herzfrequenz offensichtlich nicht unmittelbar an die frei zirkulierenden Katecholamine gebunden.

Insgesamt ließ sich feststellen, dass der Haupteffekt der ß-Blockade durch die Veränderung der Ruhewerte und der Werte bei intensiver Belastung gegeben war. Das galt in gleicher Weise für das Blutdruckverhalten, das hier nicht weiter besprochen wird. Die entscheidende und unseres Erachtens auch neue Schlussfolgerung aus den Ergebnissen ist: Der Frequenzanstieg bei leichter und mittlerer Belastung ist erkennbar unabhängig vom Sympathikustonus. Da das Herz bei Belastung generell einer Außensteuerung unterliegt, kommen hier nur zwei Erklärungen in Frage:

- Fehlende Wirkung der
 ß-Blockade auf die sympathischen Synapsen, Wirkung vorrangig auf sympathische Hormonrezeptoren: Grundsätzlich wäre dies denkbar, allerdings finden sich keine Hinweise in der Literatur, die eine entsprechende unterschiedliche Wirkung der
 ß-Blockade belegen.
- Herunterreglung des Parasympathikus: Auch hierf
 ür finden sich in der Literatur keine Belege, die nachfolgenden Befunde an P- und T-Welle weisen jedoch deutlich in diese Richtung.

Fazit: Effekte der ß-Blockade auf die Herzfrequenz

- Der Ruhetonus des Herzens ergibt sich im Wesentlichen durch die Kontrolle des Parasympathikus, modifiziert durch das Niveau der zirkulierenden Katecholamine. Dies wurde erkennbar an dem starken Effekt der ß-Blockade auf die Ruhefrequenz.
- 2. Bei leichter und mittlerer Belastung dagegen erscheint der Belastungsanstieg der Herzfrequenz als primäre Folge der linearen Reduktion des Parasympathikus. Wie oben erwähnt ist dies z.B. aus dem Vergleich mit herztransplantierten Patienten zu entnehmen. Ganz offensichtlich hat hier die ß-Blockade aber keinen Effekt.
- 3. Bei starker Belastung kommt es wieder zu einer deutlichen Effizienz der ß-Blockade. Dies korreliert damit, dass bei intensiver Belastung ein sehr nachhaltiger Katecholaminanstieg vorliegt, der auf die Frequenz ergänzend modifizierend wirkt.

4.1.3 Effekte der ß-Blockade während Belastung im doppelten Stufentest und im Dauertest auf die Veränderungen der Fläche der P-Welle

In der vorliegenden Arbeit konnte gezeigt werden, dass mit zunehmender Belastung die Fläche unter der P-Welle bis 70% in der Testserie ohne ß-Blockade anstieg und dann auf diesem Niveau stagnierte, während im Test mit ß-Blockade die Fläche bis zum Belastungsabbruch anstieg. Eine differenzierte Betrachtung von P-Dauer und P-Amplitdue (hier nicht dargestellt) zeigte, dass die Belastungsveränderungen der P-Fläche im Wesentlichen auf entsprechenden Veränderungen der P-Dauer beruhten.

Der Einfluss der ß-Blockade auf die Veränderungen der P-Fläche soll mit folgenden Abbildungen (182 und 183) deutlich gemacht werden.

Die Katecholamine stiegen bei leichter und mittlerer Belastung nur gering an

und hatten keinen erkennbaren Einfluss auf die Vergrößerung der Fläche unter der P-Welle. Eine deutliche Zunahme der zirkulierenden Stresshormone bei intensiver Belastung korrelierte ohne ß-Blockade mit einer tendenziellen Abnahme der P-Fläche. Unter ß-Blockade kam es zu einem deutlich abgeschwächten tendenziellen weiteren Anstieg der P-Fläche.

Abb. 182: Relative Veränderung der P-Fläche (Δ) während Belastung in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ (MW).

Abb. 184: Relative Veränderung der P-Fläche (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 185: Relative Veränderung der P-Fläche (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Wie erklärte sich der scheinbar paradoxe Effekt der ß-Blockade auf die P-Fläche in Ruhe (relative Verkleinerung) und unter Belastung (relative Vergrößerung)?

Die differenzierte Betrachtung der Flächenkomponenten Dauer und Magnitude ergibt hier die Lösung (Tabelle 06).

In Tabelle 6 sind das P-Vektormagnitude und die P-Dauer in Ruhe und bei Belastung (Stufen- und Dauertest) mit und ohne ß-Blockade dargestellt. Die Angaben in Prozent entsprechen der relativen Leistung/Belastung von P_{max}.

Stufentest	Ρ-νΜ (μν)			P-Dauer (ms)			
	ohne ß-Blockade	mit ß-Blockade	р	ohne ß-Blockade	mit ß-Blockade	Р	
Ruhe	136,3 (± 28,9)	112,5 (± 31,2)	<0,01	96,4 (± 11,1)	91,6 (± 13,8)	Ns	
70%	233,5 (± 43,0)	190,5 (± 33,3)	<0,01	98,3 (± 15,0)	106,3 (± 11,8)	<0,05	
100%	257,1 (± 73,3)	238,4 (± 59,4)	ns	77,6 (± 16,5)	100,4 (± 14,3)	<0,01	

Tab. 6: Effekte einer ß-Blockade auf P-Vektormagnitude und P-Dauer in Ruhe und Belastung

Dauertest	Ρ-VΜ (μV)			P-Dauer (ms)			
	ohne ß-Blockade	mit ß-Blockade	р	ohne ß-Blockade	mit ß-Blockade	Р	
Ruhe	127,3 (± 43,9)	110,1 (± 31,1)	<0,05	92,0 (± 9,0)	90,8 (± 6,6)	Ns	
50%	210,5 (± 45,5)	178,3 (± 29,6)	<0,01	104,4 (± 11,5)	101,6 (± 8,5)	Ns	
75%	265,7 (± 63,2)	230,9 (± 43,7)	<0,01	89,6 (± 13,6)	105,2 (± 14,1)	<0,01	

Hier wurde deutlich, und dies gilt in gleicher Form für die Dauertests, dass ß-Blockade <u>in Ruhe</u> eine deutliche Verkleinerung des P-Magnitude verursachte. Die P-Dauer dagegen war kaum betroffen. <u>Unter Belastung</u> blieb die Differenz des Magnitudes mit und ohne ß-Blockade in etwa erhalten. Die P-Dauer dagegen verkürzte sich unter Belastung ohne ß-Blockade signifikant, mit ß-Blockade kam es sogar zu einer tendenziellen Verlängerung.

In Ruhe verringerte sich die P-Fläche demnach auf Grund der Verkleinerung des P-Magnitudes durch die ß-Blockade.

Unter Belastung dagegen dominierte der Effekt der ß-Blockade auf die P-Dauer. Dies führte dann zu einer Vergrößerung der P-Fläche.

Es verdeutlichte sich, dass unterschiedliche Angriffspunkte durch die jeweilige Wirkung von Sympathikustonus und Parasympathikustonus wirksam wurden. Angriffspunkt bildete entweder Dauer oder Magnitude (Größe). Die <u>Verkleinerung</u> der P-Welle (P-VM) in Ruhe dürfte als Effekt der Sympathikusreduktion gesehen werden (relative <u>Steigerung</u> des Parasympathikus). Die <u>Vergrößerung</u> des P-VM war bei leichter und mittlerer Belastung unabhängig von der ß-Blockade und damit offensichtlich auch vom Sympathikustonus. Diese initiale Vergrößerung des P-VM konnte also nur als Effekt einer entsprechenden arbeitsinduzierten <u>Reduktion</u> des Parasympathikus interpretiert werden. Bei intensiver Belastung kam es ohne ß-Blockade zu einer Reduktion der P-Dauer. Das weitgehende Ausbleiben dieses Effekts unter ß-Blockade wies darauf hin, dass diese belastungsinduzierte Verkürzung wiederum Effekt des Sympathikustonus war.

Parasympathikus ↑		Parasympathikus ↓		Sympathikus ↑		Sympathikus ↓		
P-VM	$\downarrow\downarrow$	P-VM	$\uparrow\uparrow$	P-VM	î	P-VM	\downarrow	
P-Dauer		P-Dauer		P-Dauer	$\downarrow\downarrow$	P-Dauer	$\uparrow\uparrow$	
P-Fläche _R	\downarrow	P-Fläche _B	↑	P-Fläche _B	\downarrow	P-Fläche _B	1	

Tabelle 07: Effekte von Sympathikus und Parasympathikus auf P-Dauer, P-VM und P-Fläche in Ruhe (R) und unter Belastung (B)

Die scheinbar widersprüchlichen Effekte auf die P-Fläche ergaben sich durch die unterschiedlichen Wirkungen des Sympathikus- und Parasympathikustonus auf Dauer und Amplitude in Abhängigkeit von Ruhe und Belastung.

Die Veränderung der Ausschlagshöhe unter Belastung unterlag erkennbar der nervalen Steuerung. Hier kam es im gesamten Belastungsbereich zu einem nahezu linearen Anstieg ohne relevante Unterschiede in der Steilheit mit und ohne ß-Blockade. Die P-Dauer dagegen schien in entscheidender Weise dem hormonellen Sympathikuseinfluss zu unterliegen. Der Verkürzungseffekt der Belastung entfiel unter ß-Blockade vollständig.

Die Veränderungen des P-Magnitudes während Belastung wurden von Deckers et al. (1990) bei 116 gesunden Frauen überprüft. Die ermittelten Vergrößerungen des P-Vektors während Belastung wurden einer Richtungsänderung des Hauptvektors zugeschrieben. Da unsere Untersuchung die Fläche des P-Vector-Magnitudes überprüft hat, konnte zumindest festgestellt werden, dass sich die Vergrößerung nicht kausal auf die Lageveränderung zurückführen ließ.

In der Untersuchung von Simoons et al. (1975) wurden die ermittelten Vergrößerungen bei 56 gesunden Männern einer verbesserten Synchronisation von rechtem und linken Vorhof während maximaler Belastungstests zugeschrieben. Da die vorliegende Arbeit die größere P-Fläche für die Testserie mit ß-Blockade bei maximaler Ausbelastung

ermitteln konnte, blieb zumindest fraglich, ob eine direkte Ursache-Wirkungs-Beziehung zwischen Synchronisation und P-Fläche existierte. Im Test ohne ß-Blockade war die Herzfrequenz bei maximaler Belastung knapp 28 Schläge pro Minute höher als im Test mit ß-Blockade, und das diese Bedingung eine schlechtere Synchronisation zwischen rechten und linken Vorhof im Vergleich zur Testserie mit ß-Blockade erzeugt, blieb unwahrscheinlich. Da keine Unterschiede in den Katecholaminkonzentrationen zwischen den Testserien existierten, war auch eine verbesserte Synchronisation auf Grund von erhöhten Plasmakatecholaminen nicht herleitbar.

Fazit: Effekte der ß-Blockade auf die Fläche der P-Welle

- In Ruhe unterlag die P-Fläche im Wesentlichen der Kontrolle des Parasympathikus, modifiziert durch das Niveau der zirkulierenden Katecholamine. Dies wurde an dem starken Effekt der ß-Blockade auf die P-Amplitude erkennbar.
- Bei leichter und mittlerer Belastung dagegen erschien der Belastungsanstieg der P-Fläche als primäre Folge der linearen Reduktion des Parasympathikus, ganz offensichtlich hatte hier die ß-Blockade aber keinen Effekt.
- 3. Bei intensiver Belastung scheint eine deutlichere Effizienz der ß-Blockade vorzuliegen. Diese Annahme wird unterstützt durch einen sehr nachhaltigen Katecholaminanstieg, der offenbar auf die P-Fläche ergänzend modifizierend wirkte. Die damit verbundene Verringerung der P-Fläche im Test ohne ß-Blockade bestätigte diese Vermutung.

4.1.4 Effekte der ß-Blockade während Belastung auf die Veränderungen der Fläche der T-Welle

Doppelter Stufentest

Die Ergebnisse der vorliegenden Studie zeigten, dass die Fläche der T-Welle in der Testreihe ohne ß-Blockade bis 60% P_{max} absank und anschließend wieder anstieg. In der Testreihe mit ß-Blockade fand sich ein Absinken bis 80% P_{max} mit anschließender Stagnation.

Ein Absinken und anschließendes Ansteigen der T-Welle bei steigender Belastung stellte zumindest unter dem Blickwinkel ansteigender Katecholaminkonzentrationen ein physiologisch gegenläufiges Verhalten dar.

Der Einfluss der ß-Blockade auf die Veränderungen der T-Fläche soll mit folgenden Abbildungen (186 und 187) deutlich gemacht werden.

Abb. 186: Relative Veränderung der T-Fläche (Δ) während Belastung in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 187: Relative Veränderung der T-Fläche (Δ) während Belastung in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Bei noch fehlendem oder geringem Katecholaminanstieg war der Abfall der T-Fläche von der ß-Blockade nicht beeinflusst.

Bei Belastung mit deutlichem Katecholaminanstieg verkleinerte sich die T-Fläche unter ß-Blockade zunächst einmal weiter, während sie ohne ßca. 60% Pmax wieder größer wurde. Da nach unserer Blockade ab Vorstellung das Herz bei leichter und mittlerer Belastung nur unter dem Reduktion des Parasympathikus steht, Effekt der war die initiale Verkleinerung möglicher Effekt dieser nervalen Regulation. Die Vergrößerung der T-Welle bei höherer Belastung mit deutlichem Anstieg der Plasmakatecholamine wurde dagegen durch die ß-Blockade offensichtlich beeinträchtigt. Dies lässt insgesamt auf einen Effekt der Plasmakatecholamine am Herzen schließen. Die Befunde von Spataro et al. (1998), die bei Stimulation des Ganglion stellatum sinister (Aktivierung des Sympathikus) eine Zunahme der T-Amplitude feststellten, unterstützen unsere Annahme der Effekte durch die Plasmakatecholamine.

Simoons et al. (1975) untersuchten an 56 gesunden Personen das T-Vektor Magnitude (T-VM) während Belastung und stellten lediglich eine signifikante Abnahme des T-VM von Ruhe zu maximaler Belastung fest. Auch die Arbeit von Deckers et al. (1990) fand Verringerungen der T-Vektoren über die 3 orthogonalen Achsen X, Y und Z. Da bei dieser Untersuchungsreihe kein Vektormagnitude berechnet wurde und eine weitere Negativierung der Z-Achse zu erkennen war, bleibt zumindest zu vermuten, dass es möglicherweise durch ein Bestimmung des T-VM zu einem Wideranstieg der T-Fläche gekommen sein könnte.

Die Ergebnisse von Leuthäusel (1977) bestätigten die Ergebnisse der vorliegenden Arbeit. Auch dort waren die T-VM bei 28 gesunden Männern unmittelbar nach verschiedenen Belastungsintensitäten gemessen worden und es wurde festgestellt, dass es bei leichter und mittlerer Belastung zu einer Verringerung des T-VM kam und mit weiterer Intensivierung der Belastung es zu einem Anstieg des T-VM kam. Leuthäusel diskutierte diese Befunde mit einer Orientierung auf eine belastungsbedingte reversible Inneschichtischämie. Ursache sollte die Tatsache sein, dass der Vektor vom Ischämiebezirk zum normal aktivierten Myokard weist, das hieße, dass die bioelektrischen Kräfte in gleicher Richtung zeigen wie der normale Repolarisationsvektor. Dies wäre als Addition der bioelektrischen Kräfte zu verstehen und könnte die späte Vergrößerung der T-Fläche auf die Summation der Vektoren erklären.

Die Veränderungen der T-Welle erreichten im Test ohne ß-Blockade bei einer Herzfrequenz von 137 (\pm 18) S/min (Range: 122-159) und im Test mit ß-Blockade bei einer Herzfrequenz von 128 (\pm 11) S/min (Range: 113-144) ihren tiefsten Punkt und stiegen anschließend an. Ob hierfür eine verminderte Sauerstoffversorgung verantwortlich ist, scheint eher fraglich (Abbildung 188). Dass Belastungen, bei gesunden jungen Männern, bei einer Herzfrequenz von 113-159 Schlägen pro Minute zu ischämischen Situationen führen sollen, ist so in der Literatur nicht bekannt.

Stufentest	T-VM (µV)			T-Dauer (ms)			
	ohne ß-Blockade	mit ß-Blockade	р	ohne ß-Blockade	mit ß-Blockade	р	
Ruhe	598,3 (± 157,9)	834,8 (± 344,6)	<0,01	187,6 (± 20,1)	198,4 (± 21,4)	ns	
70%	385,1 (± 129,3)	508,7 (± 133,7)	<0,01	123,8 (± 18,9)	150,5 (± 15,9)	<0,01	
100%	477,8 (± 173,8)	523,5 (± 187,0)	ns	104,4 (± 8,9)	126,4 (± 15,6)	<0,01	

Tab. 8: Effekte einer ß-Blockade auf T-Vektormagnitude und T-Dauer in Ruhe und Belastung

Dauertest	T-VM (μV)			T-Dauer (ms)			
	ohne ß-Blockade	mit ß-Blockade	р	ohne ß-Blockade	mit ß-Blockade	р	
Ruhe	697,3 (± 161,5)	797,3 (± 267,0)	<0,05	186,4 (± 18,7)	198,0 (± 23,3)	ns	
50%	396,5 (± 116,4)	522,7 (± 108,8)	<0,01	138,4 (± 17,1)	156,4 (± 13,5)	<0,01	
75%	490,0 (± 146,5)	507,9 (± 157,8)	ns	119,2 (± 17,0)	138,2 (± 13,4)	<0,01	

Abb. 188: Veränderung der T-Fläche (MW) in Abhängigkeit zur Herzfrequenz.

Als Erklärung des Phänomens scheint Folgendes in Frage zu kommen: Die Reduktion des Parasympathikustonus führt bei leichter und mittlerer Belastung zu einer Verkleinerung der T-Fläche. Die mit zunehmend intensiver Belastung hinzukommenden frei zirkulierenden Katecholamine kompensieren bzw. überkompensieren dann die Effekte des Parasympathikus. Dies führt zu einer Vergrößerung der T-Fläche. Unter ß-Blockade besteht der gleiche Effekt in deutlich abgeschwächter Form. Dies bestätigt insgesamt die Vorstellung, dass bei leichter und mittlerer Belastung diese kardialen Effekte (Verkleinerung der T-Welle) vorrangig mit einem Rückgang des Parasympathikuseffekts zu erklären sind.

Dauertest

Mit den Abbildungen 189 und 190 sollen die relativen Veränderungen der T-Fläche in den Dauertests in Abhängigkeit zur relativen Veränderung der Katecholamine dargestellt werden.

Abb. 189: Relative Veränderung der T-Fläche (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ (MW).

Abb. 190: Relative Veränderung der T-Fläche (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Auch die Ergebnisse der Dauertests zeigten, dass eine divergierende Wirkung der frei zirkulierenden Katecholamine zur Reduktion des Parasympathikustonus nicht unwahrscheinlich ist. Eine Diskussion im Sinne einer Ischämie ist hier ebenfalls nicht herzuleiten.

Parasympathikus ↑		Parasympathikus ↓		Sympathikus ↑		Sympathikus ↓	
T-VM	$\uparrow \uparrow$	T-VM	$\downarrow\downarrow$	T-VM	$\uparrow \uparrow$	T-VM	1
T-Dauer		T-Dauer	$\downarrow\downarrow$	T-Dauer	\downarrow	T-Dauer	↓
T-Fläche _R	1	T-Fläche _B	$\downarrow\downarrow$	T-Fläche _B	1	T-Fläche _B	

Tabelle 09: Effekte von Sympathikus und Parasympathikus auf T-Dauer, T-VM und T-Fläche in Ruhe (R) und unter Belastung (B)

Insgesamt sprechen die Ergebnisse für unterschiedliche Wirkungsmechanismen bezüglich zentraler Regulation und peripherer Katecholamine.

Fazit: Effekte der ß-Blockade auf die Fläche der T-Welle

- In Ruhe unterlag die T-Fläche im Wesentlichen der Kontrolle des Parasympathikus, modifiziert durch das Niveau der zirkulierenden Katecholamine. Dies wurde erkennbar an dem starken Effekt der
 ß-Blockade auf die T-Amplitude.
- Bei leichter und mittlerer Belastung dagegen erschien die Reduktion der T-Fläche als primäre Folge der linearen Reduktion des Parasympathikus. Ganz offensichtlich hatte hier die ß-Blockade keinen zusätzlichen Effekt.
- 3. Bei starker Belastung kam es wieder zu einer deutlichen Effizienz der
 ß-Blockade. Dies korreliert damit, dass bei intensiver Belastung ein sehr nachhaltiger Katecholaminanstieg vorlag, der offenbar auf die T-Fläche ergänzend modifizierend wirkte. Die damit verbundene Vergrößerung der T-Fläche im Test ohne ß-Blockade unterstützt diese Vermutung.

4.1.5 Effekte der ß-Blockade während Belastung auf die Veränderungen die P-Dauer

Doppelter Stufentest

Die Ergebnisse der vorliegenden Studie zeigten, dass sich die P-Dauer bei 90% der Probanden in der Testreihe ohne ß-Blockade bis 55,6% P_{max} (± 15,1) verlängerte und anschließend wieder verkürzte. In der Testreihe mit ß-Blockade wurde bei 90% der Probanden eine Verlängerung bis 67,8% P_{max} (± 18,6) mit anschließender Verkürzung berechnet.

Der Einfluss der Katecholamine auf die Veränderungen der P-Dauer soll mit folgenden Abbildungen (191, 192a und 192b) deutlich gemacht werden. Dabei wurden die relativen Veränderungen der P-Dauer auf die relativen Veränderungen der Katecholamine bezogen.

Abb. 191: Relative Veränderung der P-Dauer (Δ) während Belastung in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ (MW).

Abb. 192a: Relative Veränderung der P-Dauer (Δ) während Belastung in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Bei geringer Belastung war die Verlängerung der P-Dauer unabhängig von der Katecholaminkonzentration. Dass sich die P-Dauer unter ß-Blockade trotz weiteren Anstieges der Katecholaminkonzentration zunächst einmal weiter verlängerte, bedeutet, dass die Abnahme des Parasympathikus unter physiologischen Bedingungen zumindest bis 67% der Maximalleistung relevant ist.

Dieses Ergebnis wurde durch die Ergebnisse von Busse et al. (2004) bestätigt, die bei 40 Gesunden feststellten, dass erst mit intensiver Belastung eine Verkürzung der P-Dauer eintrat. Ein Einfluss der Katecholamine wurde zwar diskutiert, konnte aber auf Grund der nicht parallel erfolgten Messung nur gemutmaßt werden. Cheema et al. (1995) überprüften die P-Dauer in Ruhe bei 14 gesunden Personen. Dabei wurde eine ß-Blockade und eine Blockade des Parasympathikus medikamentös provoziert. Eine Zugabe von Adrenalin führte zu keiner Verkürzung der P-Dauer. Dagegen verkürzte eine Zugabe von Isoprenalin (wirksam an β_1 -und β_2 - Rezeptoren) die P-Dauer signifikant. Dies bedeutet, dass eine Stimulation der ß-Rezeptoren stattgefunden hat.

Dauertest

Mit den Abbildungen 193 und 194 sollen die relativen Veränderungen der P-Dauer in den Dauertests in Abhängigkeit zur relativen Veränderung der Katecholamine dargestellt werden.

Abb. 193: Relative Veränderung der P-Dauer (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 194: Relative Veränderung der P-Dauer (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Grundsätzlich ergeben sich hier die gleichen Schlussfolgerungen wie für die Stufenteste.

Fazit: Effekte der ß-Blockade auf die P-Dauer

- In Ruhe wurde die P-Dauer modifiziert durch das Niveau der zirkulierenden Katecholamine. Dies zeigte sich an dem starken Effekt der
 ß-Blockade auf die P-Dauer.
- Bei leichter und mittlerer Belastung erscheinte die Verlängerung der P-Dauer als primäre Folge der Reduktion des Parasympathikustonus. Ganz offensichtlich hat hier die ß-Blockade keinen Effekt.
- 3. Bei starker Belastung trat offenbar eine stärkere Effizienz der ß-Blockade auf. Dies korreliert mit einem, bei intensiver Belastung ein sehr nachhaltigem Katecholaminanstieg, der auf die P-Dauer ergänzend modifizierend wirkte. Die damit verbundene Verringerung der P-Dauer im Test ohne ß-Blockade unterstützte diese Vermutung.

4.1.6 Effekte der ß-Blockade während Belastung auf die Veränderungen die PQ-Strecke

Doppelter Stufentest

Die Ergebnisse zeigten, dass die PQ-Strecke sich fast kontinuierlich von Belastungsbeginn bis zum Abbruch hin verkürzte.

Der Einfluss der Katecholamine auf die Veränderungen der PQ-Strecke soll mit folgenden Abbildungen (195, 196a und 196b) deutlich gemacht werden. Dabei wurden die relativen Veränderungen der PQ-Strecke auf die relativen Veränderungen der Katecholamine bezogen.

Abb. 195: Relative Veränderung der PQ-Strecke (Δ) während Belastung in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 196a: Relative Veränderung der PQ-Strecke (Δ) während Belastung in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Abb. 196b: Relative Veränderung der PQ-Strecke (Δ) während Belastung in Abhängigkeit zur definierten Veränderung der Noradrenalinkonzentration (Δ) (MW).

In den Ergebnissen wurde dargestellt, dass sich die PQ-Strecke in Ruhe und bei gleicher relativer Belastung unter ß-Blockade verlängerte (Abb. 76, 79). Die Abbildungen 196b wiederum zeigen, dass bezogen auf Katecholaminveränderungen die ß-Blockade keinen Effekt hatte. In der Schlussfolgerung bedeutet dies, dass die Verkürzung der PQ-Strecke bei leichter und mittlerer Belastung primär ein Effekt des nachlassenden Parasympathikustonus sein muss. Und erst bei deutlich höheren Katecholaminkonzentrationen ein tendenzieller Effekt der ß-Blockade erkennbar ist.

Dauertest

Mit den Abbildungen 197 und 198 sollen die relativen Veränderungen der PQ-Strecke in den Dauertests in Abhängigkeit zur relativen Veränderung der Katecholamine dargestellt werden.

Abb. 197: Relative Veränderung der PQ-Strecke (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 198: Relative Veränderung der PQ-Strecke (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Die PQ-Strecke repräsentiert die Erregungsdauer durch den AV-Knoten. Demnach wurde die Wirkung der ß-Blockade im Bereich des AV-Knotens durch andere Einflussgrößen während Belastung überlagert und es kam dadurch zu einer gleichen relativen Verkürzung im Test mit ß-Blockade.

Das grundsätzliche Ergebnis einer Verkürzung der PQ-Strecke wurde durch die Ergebnisse von Busse et al. (2004) bestätigt. Die Veränderungen und Beeinflussung durch ß-Blockade und Belastung auf die PQ-Strecke sind in dieser Form noch nicht diskutiert worden.

Fazit: Effekte der ß-Blockade auf die PQ-Strecke

- In Ruhe wurde die PQ-Strecke modifiziert durch das Niveau der zirkulierenden Katecholamine. Dies zeigte sich an dem starken Effekt der ß-Blockade auf die PQ-Strecke.
- Bei leichter und mittlerer Belastung erschien die Verlängerung der PQ-Strecke als primäre Folge der Reduktion des Parasympathikustonus. Ganz offensichtlich hatte hier die ß-Blockade keinen Effekt.
- bei intensiver Belastung kam es zu einer tendenziell stärkeren Effizienz der
 ß-Blockade.

4.1.7 Effekte der ß-Blockade während Belastung auf die Veränderungen die QT-Zeit und die Teilintervalle ST-Strecke und T-Dauer

Doppelter Stufentest

Die Veränderung der QT-Zeit ist gekoppelt an die Veränderungen der Teilintervalle QRS-Komplex, ST-Strecke und T-Dauer. Der QRS-Komplex veränderte sich während der Belastung nicht und braucht daher in Bezug auf die Veränderungen der QT-Zeit nicht weiter berücksichtigt werden.

Die Abbildungen (199, 200a und 200b) verdeutlichen den Einfluss der Katecholamine auf die Veränderungen der QT-Zeit. Dabei wurden die relativen Veränderungen der QT-Zeit auf die relativen Veränderungen der Katecholamine bezogen.

Abb. 199: Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 200a: Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Abb. 200b: Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur definierten Veränderung der Noradrenalinkonzentration (Δ) (MW).

Es ist zu erkennen, dass sowohl die Katecholamine initial als auch die ß-Blockade im gesamten Verlauf der Belastung keinen Einfluss auf die Veränderungen der QT-Zeit hatten (Abbildung 200b). Erst bei mittlerer und hoher Belastung wirkten offenbar die frei zirkulierenden Katecholamine. Ebenfalls wird deutlich, dass die ß-Blockade keinen Einfluss auf die relativen Veränderungen der QT-Zeit während Belastung hatte.

ST-Strecke und T-Dauer im doppelter Stufentest

Als Bestandteile der QT-Zeit wirken sich eine Veränderung der ST-Strecke und T-Dauer direkt auf die Veränderung der QT-Zeit aus.

Die Abbildungen (201 und 202) verdeutlichen den Einfluss der Katecholamine auf die Veränderungen der ST-Strecke und T-Dauer. Dabei stellen ich die relativen Veränderungen der ST-Strecke und T-Dauer auf definierte Veränderungen des Noradrenalins bezogen dar.

Abb. 201: Relative Veränderung der ST-Strecke (Δ) während Belastung in Abhängigkeit zu definierten Veränderung der Noradrenalinkonzentration (Δ) (MW).

Abb. 202: Relative Veränderung der T-Dauer (Δ) während Belastung in Abhängigkeit zu definierten Veränderung der Noradrenalinkonzentration (Δ) (MW).

ST-Strecke:

Es ist zu erkennen, dass Noradrenalin initial keinen Einfluss auf die Veränderungen der ST-Strecke hatte. Erst bei mittlerer und hoher Belastung scheinen die frei zirkulierenden Katecholamine zu wirken.

T-Dauer:

Hier kann festgestellt werden, dass initial die deutlichste Ursache-Wirkungsbeziehung zwischen der Veränderung der T-Dauer und Noradrenalin existierte. Bei zunehmender Katecholaminkonzentration blieb das Verhältnis zwischen Änderungen der Katecholamine und der T-Dauer dagegen konstant. Insgesamt ist also die belastungsbedingte Verkürzung der T-Dauer allenfalls teilweise ein Sympathikuseffekt (entsprechend der Differenz ohne und mit ß-Blockade). Die grundsätzliche Verkürzung der T-Dauer scheint aber auch hier wieder vor allem ein Effekt des nachlassenden Parasympathikustonus zu sein.

Die Ergebnisse zeigen, dass die Veränderung der QT-Zeit unter Belastung von der ß-Blockade nicht relevant beeinflusst wird. Allerdings ist diese kritisch zu bewerten, da Verkürzung der T-Dauer besonders bei Belastungsbeginn unter dem Einfluss der ß-Blockade abgeschwächt wird, während die ST-Strecke im Gegensatz dazu sogar tendenziell stärker verkürzt ist.

Die QT-Zeit wird seid mehr als 80 Jahren in ihrer Bedeutung und ihrem Zusammenhang mit der Herzfrequenz diskutiert. Immer wieder wurden Arbeiten vorgestellt, die die "typische" negative Korrelation zwischen QT-Zeit und Herzfrequenz zeigen z.B.: Aytemir et al. (1999), Bazett (1920), Fridericia (1920), Hegglin und Holzmann (1937), Viitasalo et al. (1996). Eine Aufhebung dieses Zusammenhangs unter bestimmten Bedingungen wie z.B.: die Verzögerung der Verkürzung bei Belastungsbeginn oder eine eine Entkopplung im unmittelbaren Nachbelastungsbereich wurde allerdings auch beschrieben (Ahnve et al. 1982, Busse et al. 2004, Coghlan et al. 1992, Fikenzer et al. 2006 und Huang et al. 1991).

Ahnve et al. (1982) zeigten bei 13 gesunden älteren Erwachsenen, dass bei fixierten Herzfrequenzen von 90 und 130 Schlägen pro Minute durch atriales Pacing die Gabe von Atropin (Blockierung des Parasympathikus) zu einer weiteren Verkürzung der QT-Zeit führte. Dies bestätigte die Ergebnisse der Untersuchungen von Huang et al. (1991) und Coghlan et al. (1992) die zu Beginn von Belastungsuntersuchungen divergierende Effekte auf Herzfrequenz und QT-Zeit ermittelten und dies auf neuronale Mechanismen zurückführten. Unklar blieb dennoch, welche Einflüsse dabei ausschlaggebend waren.

Festzustellen bleibt, dass die QT-Zeit initial nicht von den Katecholaminen beeinflusst wird. Die anfangs beobachteten Veränderungen könnten somit durch die zentrale Mitinnervation ausgelöst werden, hier in Form einer belastungsinduzierten Hemmung des Parasympathikus. Erst im weiteren Verlauf verstärken sich dann die Effekte durch die höhere Konzentration der Plasmakatecholamine. Außerdem konnte gezeigt werden, dass die ß-Blockade auf die relativen Veränderungen der QT-Zeit während der Belastung keinen Einfluss hatte.

Dauertest

In den Abbildungen 203 und 204 sollen die relativen Veränderungen der QT-Zeit in den Dauertests in Abhängigkeit zur relativen Veränderung der Katecholamine dargestellt werden.

Abb. 203: Relative Veränderung der QT-Zeit (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW).

Abb. 204: Relative Veränderung der QT-Zeit (Δ) während des Dauertests in Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW).

Grundsätzlich ergeben sich hier keine ergänzenden Aspekte.

Fazit: Effekte der ß-Blockade auf die QT-Zeit, ST-Strecke u. T-Dauer

- In Ruhe verlängerte sich die QT-Zeit durch
 ß-Blockade um ca. 8%. Wesentliche Ursache hierf
 ür war die Verlängerung der ST-Strecke.
- 2. Bei leichter und mittlerer Belastung kam es zu keiner relevanten Beeinflussung der QT-Zeit durch die ß-Blockade. Effektiv jedoch war die belastungsbedingte Verkürzung der T-Dauer durch ß-Blockade abgeschwächt, im Gegensatz dazu die Verkürzung der ST-Strecke leicht akzentuiert.
- Auch unter Belastung fand sich eine grundsätzliche Regulation durch den Parasympathikustonus. Eine ergänzende Modulation erfolgte durch den Sympathikustonus.

4.2 Katecholamine und Herzfrequenz in der unmittelbaren Nachbelastungsphase

Im Folgenden werden die Ergebnisse der Intervalle diskutiert, die eine besondere Verlaufscharakteristik in der unmittelbaren Nachbelastungsphase aufwiesen.

Vorangestellt werden soll der Verlauf der Katecholamine in der unmittelbaren Nachbelastungsphase.

Zu erkennen ist, dass sich reproduzierbar in beiden Serien die Adrenalinkonzentration unmittelbar in der ersten Minute nach maximaler Belastung wieder signifikant verringerte, Noradrenalin hingegen sich in der ersten Nachbelastungsphase nicht veränderte.

Die Herzfrequenz sank mit Belastungsabbruch sofort signifikant ab. Damit wird deutlich, dass die Wirkung des Noradrenalins auf die Herzfrequenz in dieser Phase der Belastungstests gering oder gar nicht vorhanden ist. Eine zentrale Regulation durch den Parasympathikus auf den Sinusknoten könnte hier demnach den größeren Effekt haben.

Während der Belastung war festzustellen, dass die Katecholamine erst bei intensiven Belastungen eine relevante Bedeutung hatten. Die Veränderungen der Intervalle im unmittelbaren Übergang von maximaler Belastung zu einer Minute nach Belastung werden folgend dargestellt.

Abb. 205: Adrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Abb. 206: Noradrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne &-Blockade

Abb. 207: Adrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade

Abb. 208: Noradrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade

Fazit: Katecholamine Herzfrequenz und in der Nachbelastungsphase Bei signifkant niedrigerer Herzfrequenz war die Adrenalin-1. konzentration praktisch gleich, die Noradrenalinkonzentration tendenziell höher unter ß-Blockade. 2. Einer Verringerung der HF um ca. 26 bzw. 28 S/min mit bzw. ohne ß-Blockade stand kein relevanter Noradrenalin-Abfall in der gleichen Zeit gegenüber. Dieser Sachverhalt deutete daraufhin, dass der Frequenzabfall unmittelbar nach Belastung im Wesentlichen einem absoluten Anstieg des Parasympathikustonus unterliegen muss. 3. Das Herzfrequenzverhalten in der frühen Nachbelastungsphase war unabhängig von der ß-Blockade.

P-Dauer in der unmittelbaren Nachbelastung

Es konnte festgestellt werden, dass sich die P-Dauer unmittelbar nach Belastung weiter verkürzte und im zweiten Testabschnitt zumindest auf dem bisherigen Niveau verblieb. Dies schließt einen direkten Zusammenhang zwischen Herzfrequenz und P-Dauer in diesem Abschnitt der Belastung aus. Als mögliche Erklärung kann hier die noch hohe Noradrenalinkonzentration dienen, die eine erhöhte Geschwindigkeit in der Weiterleitung der Erregung im Vorhofmyokard ermöglicht, während es durch die direkte Wirkung des Parasympathikus am Sinusknoten zu einer Herzfrequenzverringerung kommt. Diese Theorie wurde bereits 2004 durch Busse et al. belegt.

Abb. 209: P-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Abb. 210: P-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Fazit: P-Dauer in der Nachbelastung

- Am Ende der ersten Nachbelastungsminute fand sich keine Korrelation zwischen HF und P-Dauer; dies bedeutet, dass hier keine grundsätzliche Ursache-Wirkungsbeziehung bestand.
- Die Verkürzung der P-Dauer in der ersten Nachbelastungsminute betrug mit und ohne ß-Blockade 3,6 ms.
 Dies deutet darauf hin, dass die primäre Steuergröße der P-Dauer der Wiederanstieg des Parasympathikustonus ist.

PQ-Strecke in der unmittelbaren Nachbelastung

Die PQ-Strecke veränderte sich unmittelbar nach Belastung nicht. Dies schließt einen direkten Zusammenhang zwischen Herzfrequenz und PQ-Strecke in diesem Abschnitt der Belastung aus. Als mögliche Erklärung kann hier die noch hohe Noradrenalinkonzentration dienen, die eine erhöhte Geschwindigkeit in der Weiterleitung der Erregung im AV-Knoten ermöglicht, während es durch die direkte Wirkung des Parasympathikus am Sinus-
knoten zu einer Herzfrequenzverringerung kommt. Diese Theorie wurden durch Busse et al. (2004) bestätigt.

Abb. 211: PQ-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Abb. 212: PQ-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Fazit: PQ-Strecke in der Nachbelastung

- 1. Eine unmittelbarer Ursache-Wirkungsbeziehung zwischen der HF und der PQ-Strecke war nicht erkennbar.
- 2. Die für die PQ-Strecke relevanten Steuermechanismen in der ersten Nachbelastungsminute waren aus den vorliegenden Ergebnissen nicht zu erklären.

ST-Strecke in der unmittelbaren Nachbelastung

Auch bei der ST-Strecke war zu erkennen, dass es nach Abbruch der Belastung nicht zu einer direkten Verlängerung kam, sondern dass auch dieser Erregungsabschnitt verkürzt blieb.

Hf mit ß-Blocker 120 200 110 100 175 90 p<0,01 ST-Strecke [ms] p<0,01 80 150 70 [S/min] 60 125 p<0.05 50 40 100 30 20 75 10 • 0 -50 Testphase 1 Testphase 2 100 P1-25 100 P1-25 Belastung [%]

ST mit ß-Blocke

Abb. 213: ST-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Abb. 214: ST-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne &-Blockade

Fazit: ST-Strecke in der Nachbelastung

1. Die Verkürzung der ST-Strecke in der 1. Nachbelastungsminute war unter ß-Blockade akzentuierter; dies entsprach auch dem Belastungsbefund

T-Dauer in der unmittelbaren Nachbelastung

Bei der T-Dauer fanden sich grundsätzlich (abgesehen von der ersten Nachbelastungsphase im Test ohne ß-Blockade) ähnliche Bedingungen wie für die anderen Intervalle auch. Die Ergebnisse wurden durch die Literatur (Fikenzer et al. 2005) bestätigt.

Abb. 215: T-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Abb. 216: T-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne $\ensuremath{\$}\xspace$ -Blockade

Fazit: T-Dauer in der Nachbelastung

- 1. Die T-Dauer blieb in der 1. Nachbelastungsminute im Wesentlichen unverändert.
- 2. Die Regulationsmechanismen waren aus den vorliegenden Ergebnissen nicht abzuleiten.

QT-Zeit in der unmittelbaren Nachbelastung

Eine Abhängigkeit zwischen Herzfrequenz und QT-Zeit wird seit Beginn der Messungen der Systolendauer diskutiert (Fridericia 1920, Bazett 1920, Hegglin und Holzmann 1937, Lepeschkin 1951,1952, Aytemir et al. 1999,

Viitasalo et al. 1996, Kawataki et al. 1984, McPherson et al. 1985 und Kligfield et al. 1996). Auch die vorliegende Studie kann eine Korrelation zwischen Herzfrequenz und QT-Zeit während Belastung nachweisen. Eine solche Korrelation lässt jedoch keine Ursache- Wirkungsbeziehung zu. So kommt es im Übergang von maximaler Belastung zur Erholung zur Entkoppelung der sonst bestehenden Relation von Herzfrequenz und QT-Zeit.

Dieses Ergebnis wurde von Busse et al. (2004) und Fikenzer et al. (2006) ebenfalls so für die QT-Zeit ermittelt. Die QT-Zeit blieb im unmittelbaren Übergang von Belastung zu Erholung verkürzt. Eine endgültige Begründung konnten die genannten Arbeiten dabei nicht liefern. Es wurde der unterschiedliche Effekt des Parasympathikustonus auf Sinusknoten und Arbeitsmyokard diskutiert.

Als mögliche Erklärung kann somit folgende Hypothese aufgestellt werden: In den ersten Nachbelastungsminuten kommt es zu einem relativen und absoluten Anstieg des Parasympathikustonus. Dieser bewirkt am Sinusknoten durch bekannte Mechanismen einen Frequenzabfall. Aufgrund der noch hohen Noradrenalinkonzentration überwiegt am Ventrikelmyokard zunächst noch der Sympathikustonus. Diese Gegebenheiten würden zumindest eine Dissoziation von Herzfrequenz und QT-Zeit in der initialen Nachbelastungsphase erklären. Dieser Hypothese widerspricht allerdings die Tatsache, dass das Nachbelastungsverhalten der QT-Zeit mit und ohne ß-Blockade praktisch gleich war. Im Ende bleiben die Regulationsmechanismen auch hier ungeklärt.

Übergang von maximaler Belastung und Erholung

im Test ohne ß-Blockade

Abb. 217: QT-Zeit (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade

Belastung [%] Abb. 218: QT-Zeit (MW) und Herzfrequenz (MW) im

Fazit: QT-Zeit in der Nachbelastung

1.	Die QT-Zeit blieb in der 1. Nachbelastungsminute im
	Wesentlichen unverändert.
2.	die Regulationsmechanismen waren aus den vorliegenden
	Ergebnissen nicht abzuleiten
3.	eine Korrelation zwischen QT-Zeit und HF bestand in der 1.
	Nachbelastungsminute nicht: die übliche Annahme zu einer

fixierten Beziehung zwischen QT-Zeit und Frequenz galt für diesen Belastungsabschnitt nicht

Fazit der Belastungs- und Nachbelastungsergebnisse

Die in dieser Studie besprochenen EKG-Parameter wurden unter folgenden Bedingungen überprüft:

Ruhe, Belastung (Stufen- und Dauerteste), wiederholte Teste zur Überprüfung der unmittelbaren Reproduzierbarkeit, Nachbelastungssituation, alle Gegebenheiten ohne und mit ß-Blockade.

In Ableitung der Einzelbefunde konnten folgende Kernaussagen getroffen werden (Tabelle 10)

- ß-Blockade verursachte in Ruhe einen sehr deutlichen Abfall der Herzfrequenz und eine Senkung des systolischen Blutdrucks; dies lässt auf einen relevanten Einfluss des Sympathikustonus schliessen.
- ß-Blockade verursachte keinen relevanten Effekt auf die Herzfrequenz und die EKG-Parameter (außer bei P-Dauer und T-Dauer) bei leichter und mittlerer Belastung; dies lässt für diese Belastungsbedingungen auf einen prioritiven Effekt des nachlassenden Parasympathikustonus schliessen.
- ß-Blockade verursachte einen zunehmend relevanten Effekt auf Herzfrequenz, systolischen Blutdruck, P-Fläche, T-Fläche und P-Dauer bei intensiver Belastung; bei der vermutlich unverändert führenden Bedeutung des Parasympathikustonus kommt dem Sympathikotonus hier eine offensichtlich modulierende Funktion zu.

 ß-Blockade verursachte überwiegend keine relevanten Effekte in der
 1. Nachbelastungsminute; auch fiel die Adrenalinkonzentration in dieser Zeit stark ab. Der starke Abfall der Herzfrequenz in der 1. Nachbelastungsminute kann so als Haupteffekt des absolut und relativ zunehmenden Parasympathikus gewertet werden

Belastung (1 Pfeil nach oben = Anstieg/Zunahme, 2 Pfeile = stärkerer Effekt, Strich = keine Veränderung)
Tab. 10: Gesamtuberblick uber die Regulationsmechanismen wahrend und unmittelbar nach

.....

.

	leichte bis	mittlere	inten	sive	unmittelbare	
	Belastung		Belastung		Nachbel	astung
	Reduktion Para	sympathikus	Verstärkung Sympathikus		Verstärkung Pal	asympathikus
	ohne ß-Blockade	mit ß-Blockade	ohne ß-Blockade	mit ß-Blockade	ohne ß-Blockade	mit ß-Blockade
Herzfrequenz	$\uparrow\uparrow$	$\uparrow \uparrow$	$\uparrow\uparrow$	↑	$\downarrow\downarrow$	$\downarrow\downarrow$
Adrenalin	-	-	$\uparrow\uparrow$	$\uparrow \uparrow$	$\downarrow\downarrow$	$\downarrow\downarrow$
Noradrenalin	-	-	$\uparrow\uparrow$	$\uparrow \uparrow$	-	-
Kalium	1	1	$\uparrow\uparrow$	$\uparrow \uparrow$	$\downarrow\downarrow$	$\downarrow\downarrow$
P-Dauer	-	1	$\downarrow\downarrow$	\downarrow	-	-
PQ-Strecke	-	-	$\downarrow\downarrow$	$\downarrow\downarrow$	-	-
PQ-Zeit	-	-	$\downarrow\downarrow$	$\downarrow\downarrow$	-	-
QRS-Komplex	-	-	-	-	-	-
ST-Strecke	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	-	-
T-Dauer	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	\downarrow	-	-
QT-Zeit	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	-	-
P-Fläche	1	1	$\downarrow\downarrow$	1	-	-
QRS-Fläche	\downarrow	\downarrow	\downarrow	\downarrow	-	-
T-Fläche	\downarrow	\downarrow	$\uparrow\uparrow$	↑	-	-

Die Vorstellung, Belastung nicht dass unter der Anstieg des Sympathikustonus, sondern der Abfall des Parasympathikustonus die zentrale Steuergröße darstellt, wurde bereits in der Literatur aufgezeigt (Rosenwinkel et al. 2001, Carter et al. 2003, Dickhuth et al. 2004). Die Annahme, dass die zentrale Mitinnervation für Herz-Kreislauf und Atemantrieb entscheidend ist, dürfte im Wesentlichen akzeptiert sein. Neu erscheint allerdings die Überlegung, dass nicht der Sympathikus, sondern der Parasympathikus als Hauptmediator der zentralen Mitinnervation dient, zumindest soweit dies das Herz betrifft. Dies wäre auch regulatorisch nicht unplausibel, da der Sympathikustonus im Rahmen der physiologischen

*** **

Stressreaktion eine Vielzahl von variablen Aufgaben hat. So dient der arbeitsbedingte Katecholaminanstieg z.B. der allgemeinen Ressourcenfreisetzung, steuert u.a. die Na-K-ATP_{ase}, beeinflusst den Gefässtonus usw. Alle diese Funktionen variieren entsprechend sehr unterschiedlichen Ausgangsbedingungen. Im Gegensatz dazu sind die Anforderungen an das Herz grundsätzlich konstanter und bedürfen nur moderater Feineinstellung. Deshalb ist die Annahme plausibel, dass die grundsätzliche Regulation der Herzereignisse durch den Parasympathikus stattfindet, während der Sympathikus hier lediglich eine ergänzende Modulationsfunktion hat. Grundsätzlich unterstützt dies insgesamt die Theorie der zentralen

Mitinnervation, die nach den hier vorliegenden Ergebnissen allerdings vorrangig in der Bedeutung des Parasympathikus und nachrangig in der des Sympathikus liegt.

4.3 Vergleich der EKG-Charakteristik der T-Fläche mit anderen leistungsdiagnostischen Kenngrößen

Im abschließenden Kapitel soll der charakteristische Verlauf der T-Fläche mit Laktat und Atemminutenvolumen als anerkannte Leistungsdiagnostische Kenngrößen methodisch verglichen werden. Dies soll die Möglichkeit der abklären, ob der besondere Verlauf der T-Fläche als diagnostischer Parameter grundsätzlich vorstellbar wäre.

Die T-Fläche war in ihrer Verlaufscharakteristik markant. Sie fiel bei leichter und mittlerer Belastung ab und stieg bei intensiver und hoher Belastung an. Dies war besonders gut mit der verstärkten Katecholaminkonzentration bei intensiver Belastung zu erklären. Um methodisch zu prüfen, ob dieses Kriterium stabil genug ist, muss geklärt werden, wie sich diese Verlaufscharakteristik im Vergleich zu anderen bekannten leistungsdiagnostischen Kenngrößen wie Atemminutenvolumen und Laktatsenke darstellt.

Zur Aufklärung dient der Methodenvergleich nach Bland und Altmann. Beurteilt wird neben der gruppendurchschnittlichen Differenz zweier Methoden (Bias) das Verhältnis der individuell berechneten Differenzen beider Messungen zu deren Mittelwert. Die Methoden sind dann vergleichbar, wenn die "limits of agreement" bzw. die gruppendurchschnittliche Differenz (± doppelte Standardabweichung der Individualdifferenzen) in einem klinisch akzeptablen Bereich liegen.

Abb. 219: Bland- und Altman Plot der Differenzen zwischen ventilatorischer Schwelle ($VE_{Schwelle}$) und T-Wellen-Senke (T-Senke) im doppelten Stufentest. Durchgezogene Linie: Mittlere Differenz zwischen $VE_{Schwelle}$ und T-Senke. Gestrichelte Linien: Limits of agreement (doppelte Standardabweichung der Differenzen um die Abweichung der Mittelwerte)

Abb. 220: Bland- und Altman Plot der Differenzen zwischen Laktatsenke (Lac-Senke) und T-Wellen-Senke (T-Senke) im doppelten Stufentest. Durchgezogene Linie: Mittlere Differenz zwischen Lac-Senke und T-Senke. Gestrichelte Linien: Limits of agreement (doppelte Standardabweichung der Differenzen um die Abweichung der Mittelwerte)

Um zu prüfen, ob die Ergebnisse in einem klinisch noch akzeptablen Bereich liegen, wurden als Vergleich die anerkannten Verfahren der ventilatorischen Schwelle und der Laktatsenke miteinander verglichen.

Abb. 221: Bland- und Altman Plot der Differenzen zwischen ventilatorischer Schwelle (VE_{Schwelle}) und Laktat-Senke (Lac-Senke) im doppelten Stufentest. Durchgezogene Linie: Mittlere Differenz zwischen VE_{Schwelle} und Lac-Senke. Gestrichelte Linien: Limits of agreement (doppelte Standardabweichung der Differenzen um die Abweichung der Mittelwerte)

Zu erkennen ist, dass die Abweichungen zwischen der T-Senke und den anderen beiden Verfahren größer sind, als im Vergleich von ventilatorischer Schwelle und Laktatsenke untereinander. Da es sich hierbei um ein mögliches neues Verfahren handelt, muss weiterführend geprüft werden, ob sich durch Erhöhung der Untersuchungszahlen ein konstanterer Wert ermitteln lässt.

Für eine erste Betrachtung lässt sich allerdings sagen, dass alle Werte grundsätzlich innerhalb der "Limits of agreement" liegen; mit dem Trend, dass die T-Senke im Durchschnitt etwa 17% weniger Belastung im Vergleich mit der ventilatorischen Schwelle und ca. 8% weniger Belastung im Vergleich zur Laktatsenke bedeutet. Eine Abweichung in beide Richtungen sagt aus, dass sich kein konstanter Faktor in eine Richtung ermitteln läßt. Dies gilt allerdings auch für den Vergleich zwischen Laktatsenke und ventilatorischer Schwelle.

Zudem müssen die Schwellen und Senkenkonzepte nicht zwangsläufig ein und denselben Zeitpunkt bzw. das gleiche physiologische Konstrukt abbilden. Es ist bedeutsam, dass die T-Senke als mögliches Kriterium der sympathikotonen Modulation des Myokards etwas anderes darstellt als die Laktatsenke. Diese spiegelt den Ausgleichspunkt von Laktatproduktion und Laktatelimination während der Belastung wieder, die T-Senke korreliert eher mit dem Eintreten eines deutlichen Sympathikustonus.

Grundsätzlich müssen allerdings die Untersuchungszahlen erhöht werden, um zukünftig eine Aussage über die Nutzbarkeit der EKG-Diagnostik zur Leistungsdiagnostik treffen zu können.

Fazit: Vergleich der EKG-Charakteristik der T-Fläche mit anderen leistungsdiagnostischen Kenngrößen (Atemzeitvolumen, Laktatsenke)

- Die T-Senke liegt ca. 8% niedriger als die Laktatsenke und ca. 17% niedriger als die ventilatorische Schwelle.
- 2. Die Abweichung der T-Senke zu den anderen Verfahren ist jeweils größer als Laktatsenke und ventilatorische Schwelle untereinander.
- Die Abweichungen der T-Senke liegen innerhalb der "limits of agreement", sind aber in beide Richtungen vorhanden, so dass sich kein einheitlicher bzw. konstanter Faktor ergibt.

5 Zusammenfassung

Einleitung

Es sind in den letzten 80 Jahren verschiedene EKG-Charakteristika unter Belastung beschrieben worden. Allgemein bekannt sind dabei die Verkürzung des R-R Abstandes in Relation zum Herzfrequenzanstieg oder Veränderungen der ST-Strecke als Ausdruck der myokardialen Ischämie. Es existieren darüber hinaus noch weitere Reaktionen des EKGs unter Belastung, deren physiologische Begründung nicht hinreichend geklärt ist. Aus dieser Tatsache leitet sich die Zielstellung der vorliegenden sportmedizinischen Arbeit ab.

Folgende Fragen wurden dabei überprüft:

- 1. Welchen Einfluss hat der Sympathikustonus auf die Veränderungen der EKG-Parameter in unterschiedlichen Belastungsphasen?
- 2. Existiert ein Zusammenhang im Verhalten der EKG-Parameter bei gegebener Belastung in reproduzierten Tests?
- 3. Gibt es eine steady-state Kinetik der EKG-Parameter in reproduzierten Dauerstufentests?
- 4. Welchen Einfluss hat der Sympathikustonus auf eine mögliche steadystate Kinetik?
- 5. Welchen Einfluss hat der Sympathikustonus auf die Leistung? Inwieweit spiegelt sich gegebenenfalls eine Beeinflussung der Leistung in den EKG-Parametern wieder?

Methodik

Zehn junge erwachsene Männer im Alter von 23 - 30 Jahren (MW= $25,1 \pm 2,5$) mit Prähypertonie bzw. Hypertonie Stadium I (vgl. 7. Report of the Joint National Committee, 2003) wurden in vier verschieden Tests untersucht. Dabei wurden jeweils ein doppelter Stufentest und ein reproduzierter Dauertest durchgeführt. Diese Teste fanden vor und 6 Tage nach Gabe des kardioselektiven ß-Blocker Bisoprolol (5mg/d) auf einem Halbliegeergometer statt.

Zur Auswertung der EKG-Parameter dienten die Frank-Ableitungen X, Y und Z und das sich daraus ergebende Vektormagnitude (VM). Untersucht wur-

den die Parameter im doppelten Stufentest zu Beginn in Ruhe (0% P_{max}) bis maximale Belastung (100% P_{max}) in 10%-Stufen sowie in der 1., 3. und 5. Minute der aktiven Pause (25% P_{max}) und im reproduzierten Dauertest bei 9 Minuten (25% P_{max}), bei 9 Minuten 50% (50% P_{max}) sowie bei 9 Minuten (75% P_{max}). Zur statistischen Prüfung dienten das Allgemeine Linear Modell für Messwiederholung, Wilcoxon-Test für gepaarte Stichproben sowie das Methodenvergleichsverfahren nach Bland und Altmann.

Ergebnisse

In der vorliegenden Studie ließ sich Folgendes feststellen:

- 1. ß-Blockade hat keinen Einfluss auf die maximale Leistung.
- Bei leichter und mittlerer Belastung sind Veränderungen der Herzfrequenz und der EKG-Parameter in den Stufentests als auch in den Dauertests Effekte einer Reduktion des Parasympathikustonus.
- 3. Bei intensiver Belastung führt eine Verstärkung des Sympathikustonus zu einer Modulation dieser Effekte.
- 4. Im Übergang von maximaler Ausbelastung zur ersten Minute nach Belastung kommt es bei den Intervallen zum größten Teil zu keinen Veränderungen. Die Herzfrequenz hingegen sinkt hochsignifikant. Dies schließt einen direkten Zusammenhang zwischen Herzfrequenz und Intervallen für diesen Abschnitt der Belastung aus.
- 5. Eine steady-state Kinetik wie beim VO₂ oder dem Atemminutenvolumen bildet sich bei den EKG-Parametern nicht aus.
- 6. Die T-Fläche (AUC T-Welle) wird bei leichter und mittlerer Belastung kleiner und steigt bei intensiver Belastung wieder an
- 7. Die Effekte der EKG-Intervalle, der P-Fläche und der T-Fläche sind reproduzierbar.

Diskussion

Die beobachteten Veränderungen der EKG-Parameter unter Belastung werden von verschieden Systemen beeinflusst. Zu Beginn der Belastung ist die zentrale Steuerung durch Reduktion des Parasympathikus für die Veränderungen der EKG-Parameter verantwortlich. Im weiteren Belastungsverlauf, vor allem im intensiven Belastungsbereich, führt ein gesteigerter Sympathikustonus zu einer Verstärkung der Effekte (Intervalle) oder zu einer völlig divergierenden und entgegen gesetzter Wirkung (Flächen).

Erstmalig in der Literatur können in der vorliegenden Arbeit bestimmte Parameter als diskriminierende Kenngrößen von Parasympathikus- und Sympathikusaktion beschrieben werden. Gleichfalls neu in der Literatur ist die Beobachtung einer vollständigen Entkopplung von Herzfrequenz und QT-Zeit im Übergang von Maximalbelastung zur Nachbelastung.

6 Literaturangabe

Ahnve S, Vallin H. (1982)

Influence of heart rate and inhibition of autonomic tone on the QT interval. Circulation 1982; 65 (3): 435-439

Andersson B, Lomsky M, Waagstein F. (1993)

The link between acute haemodynamic adrenergic beta-blockade and long-term effects in patients with heart failure. Eur Heart J 1993 14(10):1375-1385

Aytemir K, Maarouf N, Gallagher MM, Yap YG, Waktare JE, Malik M. (1999)

Comparison of formulae for heart rate correction of QT Intervall in exercise electrocardiograms. Pace 1999; 22: 1397-1401

Bazett HC. (1920)

An analysis of the time relationships or time-relations of electrocardiograms. Heart 1920; 7: 353–380.

Bonow RO, Zipes DP, Libby P. (2007)

Braunwald's Heart disease 7th Edition, Saunders, St. Louis 2007

Burkart F, Pfisterer M, Steinmann E. (1986)

Effects of bisoprolol in relation to metoprolol and bufuralol on left ventricular hemodynamics at rest and during exercise in chronic ischemic heart disease. J Cardiovasc Pharmacol 1986, 8 Suppl 11: 78-82

Busse M, Nißing A, Thomas M, Tegtbur U, Fikenzer S. (2004)

EKG-Parameter und Herzfrequenz bei Belastung. I. QT-Zeit und Herzfrequenz bei Belastung. KCS 2004; 5: 39-44

Busse M, Nißing A, Tegtbur U, Miltzow S, Thomas M, Fikenzer S. (2004)

EKG-Parameter und Herzfrequenz. II. PQ-Zeit und Herzfrequenz bei Belastung. KCS 2004; 5: 45-49

Busse M, Nißing A, Tegtbur U, Miltzow S, Thomas M, Fikenzer S. (2004)

EKG-Parameter und Herzfrequenz. III. P-Dauer und Herzfrequenz bei Belastung. KCS 2004; 5: 50-54

Busse M, Nißing A, Tegtbur U, Miltzow S, Thomas M, Fikenzer S. (2004)

EKG-Parameter und Herzfrequenz. IV. PQ-Strecke und Herzfrequenz bei Belastung. KCS 2004; 5: 55-58

Busse M, Nißing A, Tegtbur U, Miltzow S, Thomas M, Fikenzer S. (2004)

EKG-Parameter und Herzfrequenz. V. QRS-Dauer und Herzfrequenz bei Belastung. KCS 2004; 5: 59-62

Capone P, Mayol R. (1986)

Celiprolol in the treatment of exercise induced angina pectoris. J Cardiovasc Pharmacol 1986; 8 Suppl 4: 135-137

Carter JB, Banister EW, Blaber AP. (2003)

Effect of endurance exercise on autonomic control of heart rate. Sports Med. 2003; 33 (1): 33-46

Cheema AN, Ahmed MW, Kadish AH, Goldberger JJ. (1995)

Effects of autonomic stimulation and blockade on signal averaged P wave duration. J Am Coll Cardiol 1995; 26(2): 497-502

Coghlan JG, Madden B, Norell MN, Ilsley CD, Mitchell AG. (1992)

Paradoxical early lengthening and subsequent linear shortening of the QT interval in response to exercise. Eur Heart J 1992; 13: 1325-1328

Das MSD Manual

6. Auflage, Urban & Fischer, München, Jena 2000

De Angelis K, Wichi RB, Jesus WR, Moreira ED, Morris M, Krieger EM, Irigoyen MC. (2004)

Exercise training changes autonomic cardiovascular balance in mice. J Appl Physiol. 2004; 96(6): 2174-2178

Deckers JW, Vinke RV, Vos JR, Simoons ML. (1990)

Changes in the electrocardiographic response to exercise in healthy women. Br Heart J. 1990; 64 (6): 376-380

Dickhuth HH, Röcker K, Mayer F, König D, Korsten-Reck U. (2004)

Endurance training and cardial adaptation (athlete's heart). Herz 2004; 29(4):373-380

Ferraro S, Maddalena G, D'Agosto V, D'Alto M, Fazio S, Santomauro M, Romano M, Chiariello M. (1992)

Influence of atenol on the relationship between heart rate and QT interval in patients with exercise-induced myocardial ischemia. Clin Cardiol 1992, 15(12): 911-915

Ferretti G, Marconi C, Achilli G, Caspani E, Fiocchi R, Mamprin F, Gamba A, Ferrazzi P, Cerretelli P. (2002)

The heart rate response to exercise and circulating catecholamines in heart transplant recipients. Pflugers Arch. 2002; 443(3): 370-6

Fikenzer S, Nißing A, Tegtbur U, Thomas M, Busse M. (2005)

ST-Strecke und Herzfrequenz bei Belastung. Klinische Sportmedizin/ Clinical Sports Medicine Germany (KCS) 2005; 6 (3): 19-23

Fikenzer S, Nißing A, Tegtbur U, Thomas M, Busse M. (2005)

T-Dauer und Herzfrequenz bei Belastung. Klinische Sportmedizin/ Clinical Sports Medicine Germany (KCS) 2005; 6 (3): 24-28.

Fikenzer S, Nißing A, Tegtbur U, Thomas M, Busse M. (2005)

P-VM und Herzfrequenz bei Belastung. Klinische Sportmedizin/ Clinical Sports Medicine Germany (KCS) 2005; 6 (3): 46-50.

Fikenzer S, Nißing A, Tegtbur U, Thomas M, Schulze A, Drechsler K, Busse M. (2006)

QT-interval and heart rate during exercise in young healthy subjects. Clinical Sports Medicine International.

Fikenzer S, Nißing A, Tegtbur U, Thomas M, Drechsler K, Schulze A, Busse M. (2006)

QRS-segment and heart rate during exercise in young healthy subjects. Clinical Sports Medicine International.

Fletcher GF, Fletcher BJ, Sweeney ME. (1990)

Effects of exercise testing, training and beta blockade on serum potassium in normal subjects. Am J Cardiol 1990 ; 65(18): 1242-1245

Fogari R, Zoppi A, Corradi L, Pasotti C, Malamani GD, Gradnik R, Bokor D, Gala C. (1992)

Comparison of bisoprolol and diazepam in the treatment of cardiac neurosis. Cardiovasc Drugs Ther 1992; 6(3): 249-253

Forth W, Henschler D, Rummel W. (2001)

Allgemeine und spezielle Pharmakologie und Toxikologie. Urban & Fischer, München 2001

Frank E. (1956)

An accurate, clinically practical system for spatial vectorcardiography. Circulation 1956 May;13(5):737-49

Fridericia LS. (1920)

Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med Scand 1920; 53: 469-486

Funck-Brentano C, Kibleur Y, Le Coz F, Poirier JM, Mallet A, Jaillon P. (1991)

Rate dependence of sotalol-induced prolongation of ventricular repolarization during exercise in humans. Circulation. 1991;83(2): 536-545

Garson A. (1993)

How to measure the QT interval – What is Normal? Am J Cardiol 1993; 72: 14B – 16B

Gullestad L, Dolva LO, Søyland E, Kjekshus J. (1988)

Difference between beta-1-selective and non-selektive beta-blockade during continuos and intermitted exercise. Clin Physiol 1988; 8(5): 487-99

Hachida M, Saitou S, Nonoyama M, Hoshi H, Hanayama N, Ohkado A, Bonkohara Y, Koyanagi H. (1999)

Mechanisms of exercise response in the denervated heart after transplantation. Transplant Proc. 1999; 31(5): 1966-1969

Hegglin R, Holzmann M. (1936)

Die klinische Bedeutung der verlängerten QT-Distanz (Systolendauer) im Elektrokardiogramm. Zeitschrift für klinische Medizin 1936; 132: 1-32

Heinecker R, Gonska BD. (1992)

EKG in Klinik und Praxis. Thieme, Stuttgart 1992

Hnatkova K, Malik M. (1999)

"Optimum" formulae for heart rate correction of the QT Interval. Pace 1999; 22: 1683-1687

Hofmann P, Wonisch M, Pokan R, Schwaberger G, Smekal G, von Duvillard SP. (2005)

Beta1-adrenoceptor mediated origin of the heart rate performance curve deflection. Med Sci Sports Exerc 2005; 37(10): 1704-1709

Huang MH, Ebey J, Wolf S. (1991)

Heart rate-QT interval relationship during postural change and exercise. Integr Physiol Behav Sci 1991; 26 (1): 5 – 17

Klinge R. (1997)

Das Elektrokardiogramm. Thieme, Stuttgart 1997

Klinke R, Silbernagl St. (1996)

Lehrbuch der Physiologie, Thieme, Stuttgart 1996

Kaiser P, Tesch PA, Frisk-Holmberg M, Juhlin-Dannfelt A, Kaijser L. (1986)

Effect of beta 1-selective and non-selective beta-blockade on work capacity and muscle metabolism. Clin Physiol 1986; 6(2): 197-207

Kaiser P. (1984)

Physical performance and muscle metabolism during beta-adrenergic blockade in man. Acta Physiol Scand Suppl 1984; 536: 1-53

Kaski JC, Rodriguez-Plaza L, Brown J, Maseri A. (1987)

Efficacy of carvedilol in exercise-induced myocardial ischemia. J Cardiovasc Pharmacol 1987, 10 Suppl 11: 137-140

Kawataki M, Kashima T, Toda H, Tanaka H. (1984)

Relation between QT Interval and heart rate. Applications and limitations of Bazett's formular. J. Electrocardiology 1984; 17 (4): 371-376

Kindermann W, Schmitt WM, Biro G, Schnabel A. (1981)

Metabolic and hormonal response to physical exercise under acute beta 1-adrenergic blockade (author's transl). Z Kardiol 1981; May, 70(5): 406-412

Kindermann W, Scheerer W, Salas-Fraire O, Biro G, Wölfing A. (1984)

Behavior of physical endurance and metabolism during acute beta 1 and beta 1/2blockade. Z Kardiol 1984; 73(6): 380-387

Kligfield P, Lax KG, Okin PM. (1996)

QT – Interval – Heart Rate Relation during exercise in normal men and women: Definition by linear Regression analysis J Am Coll Cardiol 1996; 28: 1547 – 1555

Kohli RS, Khurmi NS, Kardash MM, Hughes LO, Lahiri A, Raftery EB. (1985)

Efficacy of once daily bisoprolol in stable angina pectoris: an objective comparison with atenolol and long term follow-up. Eur Heart J 1985; 6(10), 845-850

Langley P, Di Bernardo D, Murray A. (2002)

Quantification of T wave shape changes following exercise. Pacing Clin Electrophysiol 2002; 25 (8):1230-1234

Leuthäusel W. (1977)

Vector analysis of the repolarization phase in the exercise-ecg with Frank leads. Basic Res Cardiol. 1977; 72(6): 605-610

Lepeschkin E. (1951)

Modern Electrocardiography (vol 1). The P-QR-S-T-U Complex. Williams and Wilkins, Baltimor, p 150

Lepeschkin E, Surawicz B. (1952)

The measurement of the Q-T interval of the electrocardiogram. Circulation 1952; 6(3): 378-388

Löllgen R, Erdmann E (Hrsg.). (1995)

Ergometrie. Belastungsuntersuchungen in Klinik und Praxis. Springer, Berlin, 1995

McPherson DD, Horacek BM, Sutherland DJ, Armstrong CS, Spencer CA, Montague TJ. (1985)

Exercise Electrocardiographic Mapping in normal subjects. J Electrocardiology 1985; 18(4): 351-360

Michaelides AP, Triposkiadis FK, Boudoulas H, Spanos AM, Papadopoulos PD, Kourouklis KV, Toutouzas PK. (1990)

New coronary artery disease index based on exercise-induced QRS changes. Am Heart J. 1990; 120(2): 292-302

Mier CM, Domenick MA, Wilmore JH. (1997)

Changes in stroke volume with beta-blockade before and after 10 days of exercise training in men and women. J Appl Physiol. 1997; 83(5): 1660-1665

Nuttall SL, Routledge HC, Kendall MJ. (2003)

A comparison of the β 1-selectivity of three β 1-selective β -blockers. Journal of Clinical Pharmacy & Therapeutics 2003; 28 (3): 179-186(8)

Paridon SM, Bricker JT. (1990)

Quantitative QRS changes with exercise in children and adolescents. Med Sci Sports Exerc. 1990; 22 (2): 159-164

Rosenwinkel ET, Bloomfield DM, Arwady MA, Goldsmith RL. (2001)

Exercise and autonomic function in health and cardiovascular disease. Cardiol Clin. 2001; 19(3): 369-387

Sarma JS, Venkataraman K, Samant DR, Gadgil UG. (1988)

Effect of Propranolol on the QT intervals of normal individuals during exercise: a new method for studying interventions 1988; Br Heart J, 60: 434-439

Schmid P. (1990)

Use of beta receptor blockers in performance sports. Wien Med Wochenschr 1990; 15, 140(6-7): 184-188

Schnabel A, Kindermann W, Salas-Fraire O, Cassens J, Steinkraus V. (1983)

Effect of beta-adrenergic blockade on supramaximal exercise capacity. Int J Sports Med 1983, 4(4): 278-281

Schnabel G, Harre D, Borde A. (1997)

Trainingswissenschaft, Sportverlag Berlin, 1997

Schnellbacher K, Marsovszky E, Roskamm H. (1986)

Effect of bisoprolol on exercise tolerance in patients with coronary heart disease: placebocontrolled double-blind crossover study. J Cardiovasc Pharmacol 1986; 8 Suppl 11: 143-147

7. Report of the Joint National Committee

Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Hypertension (2003); 42: 1206-1252

Simoons ML, Hugenholtz PG. (1975)

Gradual changes of ECG waveforms during and after exercise in normal subjects. Circulation 1975; 52: 570-577

Spataro A, La Mura G, Marcello G, Alabiso A, Naccari D, Pelliccia A. (1998)

The electrocardiographic T wave changes in highly trained athletes during training. J Sports Med Phys Fitness 1998, 38: 164-168

Tegtbur U, Busse MW, Jung K, Markofsky A, Machold H, Brinkmeier U, Künsebeck HW, Haverich A, Pethig K. (2003)

Phase III rehabilitation after heart transplantation. Z Kardiol. 2003; 92(11): 908-915

Vanhees L, Fagard R, Amery A. (1988)

Effect of calcium channel blockade and beta-adrenoceptor blockade an short graded and singel-level endurance exercise in normal men. EUR J Appl Physiol Occup Physiol 1988; 58(1-29): 87-91

Vanhees L, Defoor JG, Schepers D, Lijnen P, Peeters BY, Lacante PH, Fagard RH. (2000)

Effect of bisoprolol and atenolol on endurance exercise capacity in healthy men. J Hypertension 2000; 18(1): 35-43

Verrier RL, Stone PH. (1997)

Exercise stress testing for T wave alternans to expose latent electrical instability. J. Cardiovasc. Electrophysiol 1997; 8 (9): 994-997

Verstappen FT, van Baak MA. (1987)

Exercise capacity, energy metabolism, and beta-adrenoceptor blockade. Comparison between a beta 1-selective and a non-selective beta blocker.Eur J Appl Physiol Occup Physiol 1987; 56(6): 712-718

Viitasalo M, Rovamo L, Toivonen L, Pesonen E, Heikkilä J. (1996)

Dynamics of the QT interval during and after exercise in healthy children, Eur Heart J 1996; 17: 1723-1728

Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I. (1975)

Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 1975; 37: 1022-1036

Waagstein F, Caidahl K, Wallentin I, Bergh CH, Hjalmarson A. (1989)

Long-term beta-blockade in dilated cardiomyopathy. Effects of short- and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation. 1989; 80: 551–563

Waagstein F, Bristow MR, Swedberg K, Camerini F, Fowler MB, Silver MA, Gilbert EM, Johnson MR, Goss FG, Hjalmarson A. (1993)

Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Lancet. 1993;342:1441–1446

Wallukat G.

The beta-adrenergic receptors, Herz 2002; 27: 683-690

Watanabe K, Bhargava V, Froelicher VF. (1981)

The relation between exercise induced R wave amplitude changes and QRS vector loops. J Electrocardiology 1981; 14 (2): 129-138

Wilson RF, Johnson TH, Haidet GC, Kubo SH, Mianuelli M. (2000)

Sympathetic reinnervation of the sinus node and exercise hemodynamics after cardiac transplantation. Circulation. 2000; 101(23): 2727-33

Wolthuis RA, Froelicher VF, Hopkirk A, Fischer JR, Keiser N. (1979)

Normal electrocardiographic waveform characteristics during treadmill exercise testing. Circulation 1979; 60 (5): 1028-1035

Wonisch M, Hofmann P, Fruhwald FM, Hoedl R, Schwaberger G, Pokan R, von Duvillard SP, Klein W. (2002)

Effect of ß1-selective adrenergic blockade on maximal blood lactate steady state in healthy men. EUR J Appl Physiol 2002; 87: 66-71

Wonisch M, Hofmann P, Fruhwald FM, Kraxner W, Hödl R, Pokan R, Klein W. (2003) Influence of beta-blocker use on percentage of target heart rate exercise prescription. EUR J Cardiovasc Prev Rehabil 2003; 10(4): 196-201

Wonisch M, Fruhwald FM, Hödl R, Hofmann P, Klein W, Kraxner W, Maier R, Pokan R, Smekal G, Watzinger N. (2003)

Spiroergometrie in der Kardiologie - Grundlagen der Physiologie und Terminologie Journal für Kardiologie 2003; 10 (9): 383-390

Wonisch M, Fruhwald FM, Hödl R, Hofmann P, Klein W, Kraxner W, Maier R, Pokan R, Scherr D, Watzinger N. (2003)

Spiroergometrie in der Kardiologie - Klinische Anwendungsmöglichkeiten Journal für Kardiologie 2003; 10 (10): 440-446

Yamakawa H, Takeuchi M, Takaoka H, Hata K, Mori M, Yokoyama M. (1996)

Negative Chronotropic Effect of ß-Blockade Therapy Reduces Myocardial Oxygen Expenditure for Nonmechanical Work. Circulation 1996;94: 340-345

7 Anhang

- 7.1 Tabellenverzeichnis
- 7.2 Abbildungsverzeichnis
- 7.3 Versicherung
- 7.4 Thesen
- 7.5 Tabellen mit Rohdaten

7.1 Tabellenverzeichnis

Tabelle	Inhalt	. Seite
---------	--------	---------

Tab. 1:	Unterschiede zwischen "slow response"- und "fast response" – Potentialen	20
Tab. 2:	Basisdaten des Untersuchungskollektivs	26
Tab. 3:	Kriterien zum Ein- und Ausschluss an der Studie	27
Tab. 4:	Untersuchungsparameter	30
Tab. 5:	Basisdaten zur allgemeinen Leistungsfähigkeit	38
Tab. 6:	Effekte einer ß-Blockade auf P-Vektormagnitude und P-Dauer in Ruhe und	160
	Belastung	
Tab. 7:	Effekte von Sympathikus und Parasympathikus auf P-Dauer, P-VM und P-Fläche in	161
	Ruhe (R) und unter Belastung (B)	
Tab. 8:	Effekte einer ß-Blockade auf P-Vektormagnitude und P-Dauer in Ruhe und	165
	Belastung	
Tab. 9:	Effekte von Sympathikus und Parasympathikus auf T-Dauer, T-VM und T-Fläche in	166
	Ruhe (R) und unter Belastung (B)	
Tab. 10:	Gesamtüberblick über die Regulationsmechanismen während und unmittelbar nach	184
	Belastung	

7.2 Abbildungsverzeichnis

Abb.	Inhalt	Seite
Abb. 1:	EKG-Abschnitte	10
Abb. 2:	Orthogonales Koordinatensystem	11
Abb. 3:	Vektorschleifen in Ebene und Raum	11
Abb. 4:	Bestimmung des Summationsvektors aus den Achsenkomponenten X, Y und Z	12
Abb. 5:	Ermittlung des Integrals des Vektormagnitudes	13
Abb. 6:	Übersicht zum Ablaufplan im Studienprotokoll	28
Abb. 7:	Testablauf Doppelstufentest	29
Abb. 8:	Testablauf Dauertest	29
Abb. 9:	Orthogonales Koordinatensystem	31
Abb. 10:	Bestimmung des Summationsvektors aus den Achsenkomponenten X, Y und Z	31
Abb. 11:	VKG und resultierendes VM	31
Abb. 12:	Ermittlung des Integrals des Vektormagnitudes	32
Abb. 13:	Verlauf der Herzfrequenz im Doppelstufentest (MW±SD)	39
Abb. 14:	Relative Veränderung der Herzfrequenz in Testphase 1 und 2 (MW±SD)	40
Abb. 15:	Lineare Regression der Herzfrequenz von Testphase 1 und 2	40
Abb. 16:	Verlauf der Herzfrequenz im Doppelstufentest (MW±SD)	41
Abb. 17:	Relative Veränderung der Herzfrequenz in Testphase 1 und 2 (MW±SD)	41
Abb. 18:	Lineare Regression der Herzfrequenz von Testphase 1 und 2	41
Abb.19:	Veränderungen der Herzfrequenz (in Δ Hf) im Doppelstufentest relativ zum	42
	Ruheausgangswert (MW±SD)	
Abb. 20:	Verlauf des Adrenalins im Doppelstufentest (MW±SD)	43
Abb. 21:	Relative Veränderung von [A]₀ in Testphase 1 und 2 (MW±SD)	44
Abb. 22:	Lineare Regression von [A] _P von Testphase 1 und 2	44
Abb. 23:	Verlauf des Adrenalins im Doppelstufentest (MW±SD)	45
Abb. 24:	Relative Veränderung von [A] $_{ ho}$ in Testphase 1 und 2 (MW±SD)	45
Abb. 25:	Lineare Regression von [A] _p von Testphase 1 und 2	45
Abb. 26:	Veränderungen der $[A]_P$ (in Δ Adrenalin) im Doppelstufentest relativ zum	46
	Ruheausgangswert (MW±SD)	
Abb. 27:	Verlauf des Noradrenalins im Doppelstufentest (MW±SD)	47
Abb. 28:	Relative Veränderung von [NA] $_{ ho}$ in Testphase 1 und 2 (MW±SD)	48
Abb. 29:	Lineare Regression von [NA] $_{\mbox{\tiny P}}$ von Testphase 1 und 2	48
Abb. 30:	Verlauf des Noradrenalins im Doppelstufentest (MW±SD)	49
Abb. 31:	Relative Veränderung von [NA]_ $_{\rm p}$ in Testphase 1 und 2 (MW±SD)	49
Abb. 32:	Lineare Regression von [NA] $_{\!\scriptscriptstyle p}$ von Testphase 1 und 2	49
Abb. 33:	Veränderungen der [NA] _p (in Δ Noradrenalin) im Doppelstufentest relativ zum	50
	Ruheausgangswert (MW±SD)	

201

Abb. 34:	Verlauf des Kaliums im Doppelstufentest (MW±SD)	51
Abb. 35:	Relative Veränderung von $[K^\star]_{\scriptscriptstyle P}$ in Testphase 1 und 2 (MW±SD)	52
Abb. 36:	Lineare Regression von $[K^{\scriptscriptstyle +}]_{\scriptscriptstyle P}$ von Testphase 1 und 2	52
Abb. 37:	Verlauf des Kaliums im Doppelstufentest (MW±SD)	53
Abb. 38:	Relative Veränderung von $[K^\star]_{\scriptscriptstyle P}$ in Testphase 1 und 2 (MW±SD)	53
Abb. 39:	Lineare Regression von $[K^{\scriptscriptstyle +}]_{\scriptscriptstyle P}$ von Testphase 1 und 2	53
Abb. 40:	Veränderungen der [K+] $_{ m p}$ (in Δ Kalium) im Doppelstufentest relativ zum	54
	Ruheausgangswert (MW±SD)	
Abb. 41:	Verlauf des Integrals unter der P-Welle im Doppelstufentest (MW±SD)	55
Abb. 42:	Relative Veränderung der P-Fläche in Testphase 1 und 2 (MW±SD)	56
Abb. 43:	Lineare Regression der P-Fläche von Testphase 1 und 2	56
Abb. 44:	Verlauf des Integrals unter der P-Welle im Doppelstufentest (MW±SD)	57
Abb. 45:	Relative Veränderung der P-Fläche in Testphase 1 und 2 (MW±SD)	57
Abb. 46:	Lineare Regression der P-Fläche von Testphase 1 und 2	57
Abb. 47:	Veränderungen der P-Fläche (in Δ P-Fläche) im Doppelstufentest relativ zum	58
	Ruheausgangswert (MW±SD)	
Abb. 48:	Verlauf des Integrals unter dem QRS-Komplex im Doppelstufentest (MW±SD)	59
Abb. 49:	Relative Veränderung der QRS-Fläche in Testphase 1 und 2 (MW±SD)	60
Abb. 50:	Lineare Regression der QRS-Fläche von Testphase 1 und 2	60
Abb. 51:	Verlauf des Integrals unter dem QRS-Komplex im Doppelstufentest (MW±SD)	61
Abb. 52:	Relative Veränderung der QRS-Fläche in Testphase 1 und 2 (MW±SD)	61
Abb. 53:	Lineare Regression der QRS-Fläche von Testphase 1 und 2	61
Abb. 54:	Veränderungen der QRS-Fläche (in Δ QRS-Fläche) im Doppelstufentest relativ	62
	zum Ruheausgangswert (MW±SD)	
Abb. 55:	Verlauf des Integrals unter der T-Welle im Doppelstufentest(MW±SD)	63
Abb. 56:	Relative Veränderung der T-Fläche in Testphase 1 und 2 (MW±SD)	64
Abb. 57:	Lineare Regression der T-Fläche von Testphase 1 und 2	64
Abb. 58:	Verlauf des Integrals unter der T-Welle im Doppelstufentest (MW±SD)	65
Abb. 59:	Relative Veränderung der T-Fläche in Testphase 1 und 2 (MW±SD)	65
Abb. 60:	Lineare Regression der T-Fläche von Testphase 1 und 2	65
Abb. 61:	Veränderungen der T-Fläche (in Δ T-Fläche) im Doppelstufentest relativ zum	66
	Ruheausgangswert (MW±SD)	
Abb. 62:	Verlauf der P-Dauer im Doppelstufentest (MW±SD)	67
Abb. 63:	Relative Veränderung der P-Dauer in Testphase 1 und 2 (MW±SD)	68
Abb. 64:	Lineare Regression der P-Dauer von Testphase 1 und 2	68
Abb. 65:	Verlauf der P-Dauer im Doppelstufentest (MW±SD)	69
Abb. 66:	Relative Veränderung der P-Dauer in Testphase 1 und 2 (MW±SD)	69
Abb. 67:	Lineare Regression der P-Dauer von Testphase 1 und 2	69
Abb. 68:	Veränderungen der P-Dauer (in Δ P-Dauer) im Doppelstufentest relativ zum	70
	Ruheausgangswert (MW±SD)	

Abb. 69:	Verlauf der PQ-Zeit im Doppelstufentest (MW±SD)
Abb. 70:	Relative Veränderung der PQ-Zeit in Testphase 1 und 2 (MW±SD)
Abb. 71:	Lineare Regression der PQ-Zeit von Testphase 1 und 2
Abb. 72:	Verlauf der PQ-Zeit im Doppelstufentest (MW±SD)
Abb. 73:	Relative Veränderung der PQ-Zeit in Testphase 1 und 2 (MW±SD)
Abb. 74:	Lineare Regression der PQ-Zeit von Testphase 1 und 2
Abb. 75:	Veränderungen der PQ-Zeit (in Δ PQ-Zeit) im Doppelstufentest relativ zum
	Ruheausgangswert (MW±SD)
Abb. 76:	Verlauf der PQ-Strecke im Doppelstufentest (MW±SD)
Abb. 77:	Relative Veränderung der PQ-Strecke in Testphase 1 und 2 (MW±SD)
Abb. 78:	Lineare Regression der PQ-Strecke von Testphase 1 und 2
Abb. 79:	Verlauf der PQ-Strecke im Doppelstufentest (MW±SD)
Abb. 80:	Relative Veränderung der PQ-Strecke in Testphase 1 und 2 (MW±SD)
Abb. 81:	Lineare Regression der PQ-Strecke von Testphase 1 und 2
Abb. 82:	Veränderungen der PQ-Strecke (in Δ PQ-Strecke) im Doppelstufentest relativ zum
	Ruheausgangswert (MW±SD)
Abb. 83:	Verlauf des QRS-Komplexes im Doppelstufentest (MW±SD)
Abb. 84:	Relative Veränderung des QRS-Komplexes in Testphase 1 und 2 (MW±SD)
Abb. 85:	Lineare Regression des QRS-Komplexes von Testphase 1 und 2
Abb. 86:	Verlauf des QRS-Komplexes im Doppelstufentest (MW±SD)
Abb. 87:	Relative Veränderung des QRS-Komplexes in Testphase 1 und 2 (MW±SD)
Abb. 88:	Lineare Regression des QRS-Komplexes von Testphase 1 und 2
Abb. 89:	Veränderungen des QRS-Komplexes (in Δ PQ-Strecke) im Doppelstufentest relativ
	zum Ruheausgangswert (MW±SD)
Abb. 90:	Verlauf der ST-Strecke im Doppelstufentest (MW±SD)
Abb. 91:	Relative Veränderung der ST-Strecke in Testphase 1 und 2 (MW±SD)
Abb. 92:	Lineare Regression der ST-Strecke von Testphase 1 und 2
Abb. 93:	Verlauf der ST-Strecke im Doppelstufentest (MW±SD)
Abb. 94:	Relative Veränderung der ST-Strecke in Testphase 1 und 2 (MW±SD)
Abb. 95:	Lineare Regression der ST-Strecke von Testphase 1 und 2
Abb. 96:	Veränderungen der ST-Strecke (in Δ ST-Strecke) im Doppelstufentest relativ zum
	Ruheausgangswert (MW±SD)
Abb. 97:	Verlauf der T-Dauer im Doppelstufentest (MW±SD)
Abb. 98:	Relative Veränderung der T-Dauer in Testphase 1 und 2 (MW±SD)
Abb. 99:	Lineare Regression der T-Dauer von Testphase 1 und 2
Abb. 100:	Verlauf der T-Dauer im Doppelstufentest (MW±SD)
Abb. 101:	Relative Veränderung der T-Dauer in Testphase 1 und 2 (MW±SD)
Abb. 102:	Lineare Regression der T-Dauer von Testphase 1 und 2
Abb. 103:	Veränderungen der T-Dauer (in Δ T-Dauer) im Doppelstufentest relativ zum
	Ruheausgangswert (MW±SD)

Abb. 104:	Verlauf der QT-Zeit im Doppelstufentest (MW±SD)	91
Abb. 105:	Relative Veränderung der QT-Zeit in Testphase 1 und 2 (MW±SD)	91
Abb. 106:	Lineare Regression der QT-Zeit von Testphase 1 und 2	91
Abb. 107:	Verlauf der QT-Zeit im Doppelstufentest (MW±SD)	92
Abb. 108:	Relative Veränderung der QT-Zeit in Testphase 1 und 2 (MW±SD)	93
Abb. 109:	Lineare Regression der QT-Zeit von Testphase 1 und 2	93
Abb. 110:	Veränderungen der QT-Zeit (in Δ QT-Zeit) im Doppelstufentest relativ zum	93
	Ruheausgangswert (MW±SD)	
Abb. 111:	Verlauf der Sauerstoffaufnahme im Doppelstufentest (MW±SD)	95
Abb. 112:	Verlauf der Sauerstoffaufnahme im Doppelstufentest (MW±SD)	96
Abb. 113:	Veränderungen der Sauerstoffaufnahme (in Δ VO ₂) im Doppelstufentest relativ	96
	zum Ruheausgangswert (MW±SD)	
Abb. 114:	Verlauf des Atemminutenvolumens im Doppelstufentest (MW±SD)	97
Abb. 115:	Verlauf des Atemminutenvolumens im Doppelstufentest (MW±SD)	98
Abb. 116:	Veränderungen des Atemminutenvolumens (in Δ V _E) im Doppelstufentest relativ	99
	zum Ruheausgangswert (MW±SD)	
Abb. 117:	Verlauf des Laktats im Doppelstufentest (MW±SD)	100
Abb. 118:	Verlauf des Laktats im Doppelstufentest (MW±SD)	101
Abb. 119:	Veränderungen des Laktats (in Δ Laktat) im Doppelstufentest relativ zum	101
	Ruheausgangswert (MW±SD)	
Abb. 120:	Verlauf der Herzfrequenz im Dauertest (MW±SD)	104
Abb. 121:	Verlauf der Herzfrequenz im Dauertest (MW±SD)	105
Abb. 122:	Veränderungen der Herzfrequenz (in Δ Herzfrequenz) im Dauertest relativ zum	105
	Ruheausgangswert (MW±SD)	
Abb. 123:	Verlauf des Adrenalins im Dauertest (MW±SD)	106
Abb. 124:	Verlauf des Adrenalins im Dauertest (MW±SD)	107
Abb. 125:	Veränderungen des Adrenalins (in Δ Adrenalin) im Dauertest relativ zum	108
	Ruheausgangswert (MW±SD)	
Abb. 126:	Verlauf des Noradrenalins im Dauertest (MW±SD)	109
Abb. 127:	Verlauf des Noradrenalins im Dauertest (MW±SD)	109
Abb. 128:	Veränderungen des Noradrenalins (in Δ Noradrenalin) im Dauertest relativ zum	110
	Ruheausgangswert (MW±SD)	
Abb. 129:	Verlauf des Kaliums im Dauertest (MW±SD)	111
Abb. 130:	Verlauf des Kaliums im Dauertest (MW±SD)	112
Abb. 131:	Veränderungen des Kaliums (in Δ Kalium) im Dauertest relativ zum	113
	Ruheausgangswert (MW±SD)	
Abb. 132:	Verlauf des Integrals der P-Welle im Dauertest (MW±SD)	114
Abb. 133:	Verlauf des Integrals der P-Welle im Dauertest (MW±SD)	115
Abb. 134:	Veränderungen des Integrals der P-Welle (in Δ P-Fläche) im Dauertest relativ	116
	zum Ruheausgangswert (MW±SD)	

Abb. 135:	Verlauf des Integrals des QRS-Komplexes im Dauertest (MW±SD)	117
Abb. 136:	Verlauf des Integrals des QRS-Komplexes im Dauertest (MW±SD)	117
Abb. 137:	Veränderungen des Integrals des QRS-Komplexes (in Δ QRS-Fläche) im	118
	Dauertest relativ zum Ruheausgangswert (MW±SD)	
Abb. 138:	Verlauf des Integrals der T-Welle im Dauertest (MW±SD)	120
Abb. 139:	Verlauf des Integrals der T-Welle im Dauertest (MW±SD)	121
Abb. 140:	Veränderungen des Integrals der T-Welle (in Δ T-Fläche) im Dauertest relativ zum	121
	Ruheausgangswert (MW±SD)	
Abb. 141:	Verlauf der P-Dauer im Dauertest (MW±SD)	123
Abb. 142:	Verlauf der P-Dauer im Dauertest (MW±SD)	124
Abb. 143:	Veränderungen der P-Dauer (in Δ P-Dauer) im Dauertest relativ zum	124
	Ruheausgangswert (MW±SD)	
Abb. 144:	Verlauf der PQ-Zeit im Dauertest (MW±SD)	126
Abb. 145:	Verlauf der PQ-Zeit im Dauertest (MW±SD)	127
Abb. 146:	Veränderungen der PQ-Zeit (in Δ PQ-Zeit) im Dauertest relativ zum	127
	Ruheausgangswert (MW±SD)	
Abb. 147:	Verlauf der PQ-Strecke im Dauertest (MW±SD)	129
Abb. 148:	Verlauf der PQ-Strecke im Dauertest (MW±SD)	130
Abb. 149:	Veränderungen der PQ-Strecke (in Δ PQ-Strecke) im Dauertest relativ zum	130
	Ruheausgangswert (MW±SD)	
Abb. 150:	Verlauf des QRS-Komplexes im Dauertest (MW±SD)	131
Abb. 151:	Verlauf des QRS-Komplexes im Dauertest (MW±SD)	132
Abb. 152:	Veränderungen des QRS-Komplexes (in Δ QRS-Komplex) im Dauertest relativ	133
	zum Ruheausgangswert (MW±SD)	
Abb. 153:	Verlauf der ST-Strecke im Dauertest (MW±SD)	134
Abb. 154:	Verlauf der ST-Strecke im Dauertest (MW±SD)	134
Abb. 155:	Veränderungen der ST-Strecke (in Δ ST-Strecke) im Dauertest relativ zum	135
	Ruheausgangswert (MW±SD)	
Abb. 156:	Verlauf der T-Dauer im Dauertest (MW±SD)	136
Abb. 157:	Verlauf der T-Dauer im Dauertest (MW±SD)	137
Abb. 158:	Veränderungen der T-Dauer (in Δ T-Dauer) im Dauertest relativ zum	138
	Ruheausgangswert (MW±SD)	
Abb. 159:	Verlauf der QT-Zeit im Dauertest (MW±SD)	139
Abb. 160:	Verlauf der QT-Zeit im Dauertest (MW±SD)	139
Abb. 161:	Veränderungen der QT-Zeit (in Δ QT-Zeit) im Dauertest relativ zum	140
	Ruheausgangswert (MW±SD)	
Abb. 162:	Verlauf der Sauerstoffaufnahme im Dauertest (MW±SD)	141
Abb. 163:	Verlauf der Sauerstoffaufnahme im Dauertest (MW±SD)	142
Abb. 164:	Veränderungen der Sauerstoffaufnahme (in Δ VO ₂) im Dauertest relativ zum Ruheausgangswert (MW \pm SD)	143
Abb. 165:	Verlauf der Atemminutenvolumen im Dauertest (MW±SD)	144

Abb. 166:	Verlauf der Atemminutenvolumen im Dauertest (MW±SD)	145
Abb. 167:	Veränderungen der Atemminutenvolumen (in Δ V _E) im Dauertest relativ zum	145
	Ruheausgangswert (MW±SD)	
Abb. 168:	Verlauf des Laktats im Dauertest (MW±SD)	146
Abb. 169:	Verlauf des Laktats im Dauertest (MW±SD)	147
Abb. 170:	Veränderungen des Laktats (in Δ Laktat) im Dauertest relativ zum	148
	Ruheausgangswert (MW±SD)	
Abb. 171:	Relative Veränderung der Adrenalinkonzentration (Δ) in Abhängigkeit zur relativen	152
	Leistung (MW)	
Abb. 172:	Relative Veränderung der Noradrenalinkonzentration (Δ) in Abhängigkeit zur	152
	relativen Leistung (MW)	
Abb. 173:	Relative Veränderung der Adrenalinkonzentration (Δ) im 2. Testabschnitt in	153
	Abhängigkeit zur relativen Leistung. Ausgehend von 5 Minuten nach Belastung	
	des ersten Testabschnitts (MW)	
Abb. 174:	Relative Veränderung der Noradrenalinkonzentration (Δ) im 2. Testabschnitt in	153
	Abhängigkeit zur relativen Leistung. Ausgehend von 5 Minuten nach Belastung	
	des ersten Testabschnitts (MW)	
Abb. 175:	Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit	153
	zur Veränderung der Adrenalinkonzentration (Δ) (MW)	
Abb. 176:	Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit	153
	zur Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 177:	Herzfrequenzanstieg im Stufentest mit und ohne ß-Blockade (MW±SD)	155
Abb. 178:	Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit	156
	zur Veränderung der Adrenalinkonzentration (Δ). Ausgehend von 5 Minuten	
	nach Belastung des ersten Testabschnitts (MW)	
Abb. 179:	Relative Veränderung der Herzfrequenz (Δ) während Belastung in Abhängigkeit	156
	zur Veränderung der Noradrenalinkonzentration (Δ). Ausgehend von 5	
	Minuten nach Belastung des ersten Testabschnitts (MW)	
Abb. 180:	Relative Veränderung der Herzfrequenz (Δ) während des Dauertests in	156
	Abhängigkeit zur Veränderung der Adrenalinkonzentration (Δ) (MW)	
Abb. 181:	Relative Veränderung der Herzfrequenz (Δ) während des Dauertests in	156
	Abhängigkeit zur Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 182:	Relative Veränderung der P-Fläche (Δ) während Belastung in Abhängigkeit zur	159
	Veränderung der Adrenalinkonzentration (Δ (MW)	
Abb. 183:	Relative Veränderung der P-Fläche (Δ) während Belastung in Abhängigkeit zur	159
	Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 184:	Relative Veränderung der P-Fläche (Δ) während des Dauertests in Abhängigkeit	159
	zur Veränderung der Adrenalinkonzentration (Δ) (MW)	
Abb. 185	Relative Veränderung der P-Fläche (Λ) während des Dauertests in Abhängigkeit	159
	zur Veränderung der Noradrenalinkonzentration (Λ) (MW)	

Abb. 186:	Relative Veränderung der T-Fläche (Δ) während Belastung in Abhängigkeit zur	163
	Veränderung der Adrenalinkonzentration (Δ) (MW)	
Abb. 187:	Relative Veränderung der T-Fläche (Δ) während Belastung in Abhängigkeit zur	163
	Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 188:	Veränderung der T-Fläche (MW) in Abhängigkeit zur Herzfrequenz	165
Abb. 189:	Relative Veränderung der T-Fläche (Δ) während des Dauertests in Abhängigkeit	166
	zur Veränderung der Adrenalinkonzentration (Δ (MW)	
Abb. 190:	Relative Veränderung der T-Fläche (Δ) während des Dauertests in Abhängigkeit	166
	zur Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 191:	Relative Veränderung der P-Dauer (Δ) während Belastung in Abhängigkeit zur	168
	Veränderung der Adrenalinkonzentration (Δ (MW)	
Abb. 192a:	Relative Veränderung der P-Dauer (Δ) während Belastung in Abhängigkeit zur	168
	Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 192b:	Relative Veränderung der P-Dauer (Δ) während Belastung in Abhängigkeit zur	168
	definierten Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 193:	Relative Veränderung der P-Dauer (Δ) während des Dauertests in Abhängigkeit zur	169
	Veränderung der Adrenalinkonzentration (Δ) (MW)	
Abb. 194:	Relative Veränderung der P-Dauer (Δ) während des Dauertests in Abhängigkeit zur	169
	Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 195:	Relative Veränderung der PQ-Strecke (Δ) während Belastung in Abhängigkeit zur	171
	Veränderung der Adrenalinkonzentration (Δ) (MW)	
Abb. 196a:	Relative Veränderung der PQ-Strecke (Δ) während Belastung in Abhängigkeit zur	171
	Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 196b:	Relative Veränderung der PQ-Strecke (Δ) während Belastung in Abhängigkeit zur	171
	definierten Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 197:	Relative Veränderung der PQ-Strecke (Δ) während des Dauertests in Abhängigkeit	172
	zur Veränderung der Adrenalinkonzentration (Δ) (MW)	
Abb. 198:	Relative Veränderung der PQ-Strecke (Δ) während des Dauertests in Abhängigkeit	172
	zur Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 199:	Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur	173
	Veränderung der Adrenalinkonzentration (Δ) (MW).	
Abb. 200a:	Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur	173
	Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 200b:	Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur	173
	definierten Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 201:	Relative Veränderung der ST-Strecke (Δ) während Belastung in Abhängigkeit zu	174
	definierten Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 202:	Relative Veränderung der T-Dauer (Δ) während Belastung in Abhängigkeit zu	174
	definierten Veränderung der Noradrenalinkonzentration (Δ) (MW)	
Abb. 203:	Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur	176
	Veränderung der Adrenalinkonzentration (Δ) (MW)	
	-	

Abb. 204:	Relative Veränderung der QT-Zeit (Δ) während Belastung in Abhängigkeit zur	176
Abb. 205:	Adrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung	177
Abb. 206:	Noradrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade	177
Abb. 207:	Adrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade	178
Abb. 208:	Noradrenalin (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade	178
Abb. 209:	P-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade	179
Abb. 210:	P-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade	179
Abb. 211:	PQ-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade	180
Abb. 212:	PQ-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade	180
Abb. 213:	ST-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade	180
Abb. 214:	ST-Strecke (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade	180
Abb. 215:	T-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade	181
Abb. 216:	T-Dauer (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade	181
Abb. 217:	QT-Zeit (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test ohne ß-Blockade	182
Abb. 218:	QT-Zeit (MW) und Herzfrequenz (MW) im Übergang von maximaler Belastung und Erholung im Test mit ß-Blockade	182
Abb. 219:	Bland- und Altman Plot der Differenzen zwischen ventilatorischer Schwelle (VE _{Schwelle}) und T-Wellen-Senke (T-Senke) ermittelter Dauerleistungsgrenze im doppelten Stufentest	186
Abb. 220:	Bland- und Altman Plot der Differenzen zwischen Laktatsenke (Lac-Senke) und T-Wellen-Senke (T-Senke) ermittelter Dauerleistungsgrenze im doppelten Stufentest	186
Abb. 221:	Bland- und Altman Plot der Differenzen zwischen ventilatorischer Schwelle (VE _{Schwelle}) und Laktat-Senke (Lac-Senke) ermittelter Dauerleistungsgrenze im doppelten Stufentest	186

7.3 Versicherung

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Weitere Personen waren an der geistigen Herstellung der Arbeit nicht beteiligt. Insbesondere habe ich nicht die Hilfe eines Promotionsberaters in Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt und ist auch noch nicht veröffentlicht worden.

Ort, Datum: Leipzig, 18.04.2008

Unterschrift

Name:

Sven Fikenzer

7.4 Thesen

Universität Leipzig

Sportwissenschaftlichen Fakultät Institut für Sportmedizin (Direktor: Prof. Dr. Dr. med. habil. M.W. Busse)

Thesen zur

DISSERTATION

Physiologische Ursachen für das Verhalten belastungsspezifischer EKG Charakteristika im Vergleich zu anderen Kenngrößen der Belastung

vorgelegt von

Dipl. Sportlehrer Sven Fikenzer

geb. am 25.09.1975 in Karl-Marx-Stadt

Betreuer: Prof. Dr. Dr. med. habil. M.W. Busse

Tag der Verteidigung: 19.12.2008

Das EKG zeigt bekannte belastungsabhängige Charakteristika wie z.B. Herzfrequenz oder QT-Zeit. Im Verhältnis dieser Größen wird im Allgemeinen ein einfaches Ursache-Wirkungsprinzip angenommen. Die vorliegende Arbeit untersucht weitere Phänomene der Zeit und Spannung im EKG, die bislang im Wesentlichen unbekannt sind. Dies dient unter anderem zur Überprüfung, inwieweit die o.g. Kausalkette unter verschiedenen experimentellen Bedingungen gilt oder ob komplexere Mechanismen angenommen werden müssen.

An 10 Probanden werden die Effekte unterschiedlicher Belastungsformen unter selektiver Ausschaltung möglicher Induktionsfaktoren überprüft. Diese Ausschaltung erfolgt auf der Basis einer geometrischen Korrektur teilweise durch besondere Belastungsmodifikation und teilweise durch Modifikation vegetativer Komponenten. Ein grundsätzliches Problem solcher Untersuchungen am Menschen ist die Redundanz physiologischer Regelungsprozesse insbesondere bei körperlicher Belastung. Deren Ausmaß muss in den folgenden Betrachtungen unberücksichtigt bleiben.

- 1. Herzfrequenz
 - a. Die Modulation der Ruhefrequenz erfolgt insbesondere durch den Sympathikustonus.
 - b. Bei leichter und mittlerer Belastung ist der Frequenzanstieg vorrangig Effekt einer Reduktion des Parasympathikustonus.
 - c. Bei intensiver Belastung wird dieser Effekt durch eine zunehmende Sympathikusaktion verstärkt.
 - d. Durch partielle Blockade des Sympathikustonus im Verhältnis zu einer nicht blockierten Situation besteht die Möglichkeit, einen individuellen "Sympathikotonen Schwellenwert" (PST= Parasympathetic-Sympathetic Threshold) zu bestimmen.
 - e. In der physiologischen Interpretation ist dieser als möglicher Auslöser für bekannte "Schwellenwerte" wie z.B. die "anaerobe Laktat- oder Ventilationsschwelle" zu sehen.

2. EKG-Intervalle

- a. Die P-Dauer zeigt eine sehr differenzierte Reaktion auf die primär parasympathikotone und ergänzend sympathikotone Belastungssituation. Die "parasympathikoton-sympathikotone Schwellenbelastung" (PST) ist durch eine deutliche Verringerung der P-Dauer charakterisiert. Durch partielle Blockade des Sympathikustonus im Verhältnis zu einer nicht blockierten Situation ist die Trennschärfe dieser "Schwellenbelastung" noch deutlich zu steigern.
- b. Die QRS-Dauer ist von vegetativen Effekten in Ruhe und unter Belastung unabhängig.
- c. Für alle Intervalle mit Ausnahme des QRS-Komplexes gilt: Im Übergang von maximaler Belastung zur Nachbelastung kommt es zu einer vollständigen Entkopplung der in der Literatur postulierten Frequenzabhängigkeit der Intervalle.
- <u>EKG-Spannungsintegral</u> (Flächen unter P-Welle, QRS-Komplex, T-Welle)
 - a. Die P-Fläche vergrößert sich bei leichter und mittlerer Belastung als praktisch ausschließlicher Effekt des abnehmenden Parasympathikustonus. Indikator für den zunehmenden Sympathikustonus bei intensiver Belastung ist eine Flächenabnahme. Durch eine partielle Sympathikusblockade kann die Trennschärfe zwischen ausschließlich parasympathikotoner und sympathikotoner Regulation deutlicht erhöht werden.
 - b. Unter Belastung erfolgt eine moderate Reduktion der QRS-Fläche. Ein relevanter vegetativer Effekt ist aber weder durch Spezifika des Kurvenverlaufs noch durch die differenzierte Betrachtung bei partieller Sympathikusblockade erkennbar.
 - c. Die T-Fläche verkleinert sich bei leichter und mittlerer Belastung als praktisch ausschließlicher Effekt des abnehmenden Parasympathikustonus. Indikator für den zuneh-

menden Sympathikustonus bei intensiver Belastung ist eine Flächenzunahme. Durch eine partielle Sympathikusblockade kann die Trennschärfe zwischen ausschließlich parasympathikotoner und sympathikotoner Regulation deutlicht erhöht werden.

- Parasympathikoton-sympathikotone "Schwellenbelastung" (PST) in Relation zur individuellen "anaeroben Laktat- und Ventilationsschwelle"
 - a. Die PST als hypothetischer Marker f
 ür den stark einsetzenden Sympathikustonus sollte im Bereich eines deutlichen Laktatanstiegs liegen. Dies wird durch die statistische Pr
 üfung im Bland Altmann Plot best
 ätigt.
 - b. Die PST als hypothetischer Marker f
 ür den stark einsetzenden Sympathikustonus sollte im Bereich eines deutlichen Ventilationsanstiegs liegen. Der Bland Altmann Plot ergibt im Durchschnitt eine um ca. 17% h
 öhere Intensit
 ät der "Ventilationsschwelle".
 - c. Die "Laktatschwelle" liegt ca. 9% unter der "Ventilationsschwelle".

7.5 Tabellen mit Rohdaten

doppelter Stufentest

Hearth org Nerror Hearth org	ohne ß-Blockade									mit ß-Blockade												
Cale ARTI7 F2R012 BMASI2 MLD700 LMV30 FRADE <	Herzfrequenz S/min										Herzfregue	enz	S/min									
0.00 0.00 0.70 F.00 7.00 <th< th=""><th>Code</th><th>AERT27</th><th>FZRO12</th><th>SRMS12</th><th>MLDY06</th><th>LNNT26</th><th>KHKD04</th><th>JHAS06</th><th>HRAR06</th><th>FRKN31</th><th>PHOR29</th><th>Code</th><th>AERT27</th><th>FZRO12</th><th>SRMS12</th><th>MLDY06</th><th>LNNT26</th><th>KHKD04</th><th>JHAS06</th><th>HRAR06</th><th>FRKN31</th><th>PHOR29</th></th<>	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
10.00 64.70 94.72 70.07 78.82 74.66 91.96 90.30 <th< td=""><td>0,00</td><td>81,00</td><td>80,00</td><td>57,00</td><td>65,00</td><td>64,00</td><td>70,00</td><td>72,00</td><td>53,00</td><td>82,00</td><td>67,00</td><td>0,00</td><td>60,00</td><td>52,00</td><td>45,00</td><td>50,00</td><td>45,00</td><td>59,00</td><td>68,00</td><td>45,00</td><td>64,00</td><td>54,00</td></th<>	0,00	81,00	80,00	57,00	65,00	64,00	70,00	72,00	53,00	82,00	67,00	0,00	60,00	52,00	45,00	50,00	45,00	59,00	68,00	45,00	64,00	54,00
20.00 89.10 11.6.8 80.44 89.51 14.52 10.00 11.60 11.60 10.00 </td <td>10,00</td> <td>84,70</td> <td>98,27</td> <td>70,07</td> <td>76,82</td> <td>74,05</td> <td>81,06</td> <td>90,73</td> <td>61,99</td> <td>94,92</td> <td>90,93</td> <td>10,00</td> <td>72,17</td> <td>66,16</td> <td>58,07</td> <td>61,82</td> <td>56,82</td> <td>71,06</td> <td>78,96</td> <td>56,11</td> <td>74,05</td> <td>67,88</td>	10,00	84,70	98,27	70,07	76,82	74,05	81,06	90,73	61,99	94,92	90,93	10,00	72,17	66,16	58,07	61,82	56,82	71,06	78,96	56,11	74,05	67,88
0.00 0.01 0.03 <th< td=""><td>20,00</td><td>89,10</td><td>116,55</td><td>83,64</td><td>89,51</td><td>84,38</td><td>92,07</td><td>109,46</td><td>71,93</td><td>103,05</td><td>114,86</td><td>20,00</td><td>83,30</td><td>80,32</td><td>71,92</td><td>73,38</td><td>67,54</td><td>83,07</td><td>89,93</td><td>66,92</td><td>81,81</td><td>81,76</td></th<>	20,00	89,10	116,55	83,64	89,51	84,38	92,07	109,46	71,93	103,05	114,86	20,00	83,30	80,32	71,92	73,38	67,54	83,07	89,93	66,92	81,81	81,76
4000 115.46 139.80 65.57 114.86 <td>30,00</td> <td>99,07</td> <td>128,15</td> <td>89,50</td> <td>103,37</td> <td>94,08</td> <td>98,77</td> <td>118,64</td> <td>89,51</td> <td>111,19</td> <td>125,39</td> <td>30,00</td> <td>86,08</td> <td>89,90</td> <td>80,29</td> <td>83,29</td> <td>75,51</td> <td>89,77</td> <td>100,15</td> <td>75,29</td> <td>87,17</td> <td>87,58</td>	30,00	99,07	128,15	89,50	103,37	94,08	98,77	118,64	89,51	111,19	125,39	30,00	86,08	89,90	80,29	83,29	75,51	89,77	100,15	75,29	87,17	87,58
BOD 111.6 15.4 107.5 124.2 114.6 15.75 96.38 105.45 96.38 105.45 96.38 105.45 96.38 105.45 96.38 105.45 96.38 105.45 96.38 105.45 96.38 105.45 96.38 105.45 105.35 117.35 91.48 105.21 115.45 117.35 91.48 105.21 115.45 117.35 117.	40,00	103,64	139,80	98,36	114,86	101,08	106,15	128,00	93,51	124,03	134,09	40,00	91,56	98,00	86,86	91,74	82,98	99,20	109,40	83,53	97,10	96,75
000 122.5 19.98 122.6 19.98 122.6 19.98 122.6 19.98 122.6 19.98 122.6 19.98 122.6 19.98 1	50,00	111,16	151,48	107,75	128,02	113,43	118,10	139,83	99,17	135,75	142,12	50,00	98,36	105,75	96,39	106,84	91,43	106,35	117,35	91,46	102,81	106,12
000 154-7 171.8 134.27 171.8 134.27 171.8 137.98 162.8 127.98 162.8 127.98 162.8 127.98 162.8 127.98 162.8 127.98 162.8 127.98 162.8 127.98 162.8 127.98 <t< td=""><td>60,00</td><td>122,93</td><td>159,98</td><td>122,02</td><td>145,12</td><td>121,80</td><td>131,48</td><td>156,06</td><td>107,27</td><td>150,87</td><td>150,94</td><td>60,00</td><td>104,96</td><td>115,80</td><td>104,16</td><td>114,64</td><td>99,56</td><td>113,48</td><td>125,08</td><td>98,69</td><td>109,62</td><td>114,25</td></t<>	60,00	122,93	159,98	122,02	145,12	121,80	131,48	156,06	107,27	150,87	150,94	60,00	104,96	115,80	104,16	114,64	99,56	113,48	125,08	98,69	109,62	114,25
B000 17/4 18/39 18/29 18/29 17/24 18/19 80.00 17/15 18/20 1	70,00	134,47	171,89	138,27	159,27	132,02	142,70	165,49	118,47	162,85	161,76	70,00	111,98	127,89	109,83	122,93	106,76	122,23	134,17	105,23	116,89	121,20
0000 185.0 180.27 185.0 180.27 185.0 182.0 <t< td=""><td>80,00</td><td>147,04</td><td>181,99</td><td>152,69</td><td>173,98</td><td>143,65</td><td>162,80</td><td>173,99</td><td>130,90</td><td>172,42</td><td>168,19</td><td>80,00</td><td>117,15</td><td>142,08</td><td>118,48</td><td>134,23</td><td>116,06</td><td>128,93</td><td>143,90</td><td>113,43</td><td>127,61</td><td>135,35</td></t<>	80,00	147,04	181,99	152,69	173,98	143,65	162,80	173,99	130,90	172,42	168,19	80,00	117,15	142,08	118,48	134,23	116,06	128,93	143,90	113,43	127,61	135,35
Hall Hall <th< td=""><td>90,00</td><td>158,50</td><td>190,27</td><td>165,27</td><td>184,95</td><td>150,96</td><td>172,12</td><td>182,95</td><td>141,27</td><td>178,76</td><td>174,81</td><td>90,00</td><td>124,28</td><td>157,08</td><td>132,95</td><td>147,93</td><td>127,94</td><td>138,12</td><td>153,27</td><td>125,27</td><td>141,71</td><td>148,55</td></th<>	90,00	158,50	190,27	165,27	184,95	150,96	172,12	182,95	141,27	178,76	174,81	90,00	124,28	157,08	132,95	147,93	127,94	138,12	153,27	125,27	141,71	148,55
188 182.00 <td>100,00</td> <td>171,00</td> <td>198,00</td> <td>177,00</td> <td>192,00</td> <td>164,00</td> <td>183,00</td> <td>193,00</td> <td>153,00</td> <td>186,00</td> <td>182,00</td> <td>100,00</td> <td>135,00</td> <td>171,00</td> <td>143,00</td> <td>170,00</td> <td>138,00</td> <td>147,00</td> <td>161,00</td> <td>137,00</td> <td>161,00</td> <td>158,00</td>	100,00	171,00	198,00	177,00	192,00	164,00	183,00	193,00	153,00	186,00	182,00	100,00	135,00	171,00	143,00	170,00	138,00	147,00	161,00	137,00	161,00	158,00
and bit 112.00 122.00	1nB1	138,00	185,00	142,00	161,00	128,00	156,00	170,00	112,00	164,00	160,00	1nB1	115,00	146,00	108,00	140,00	111,00	125,00	142,00	108,00	136,00	135,00
mon m	3nB1	119,00	168,00	117,00	137,00	107,00	133,00	147,00	91,00	135,00	137,00	3NB1 ExP1	101,00	121,00	91,00	109,00	88,00	112,00	125,00	85,00	104,00	113,00
add bit bit <td>50B1</td> <td>116,00</td> <td>162,00</td> <td>109,00</td> <td>136,00</td> <td>104,00</td> <td>122,00</td> <td>142,00</td> <td>88,00</td> <td>131,00</td> <td>136,00</td> <td>50B1</td> <td>93,00</td> <td>109,00</td> <td>84,00</td> <td>106,00</td> <td>86,00</td> <td>105,00</td> <td>121,00</td> <td>82,00</td> <td>101,00</td> <td>107,00</td>	50B1	116,00	162,00	109,00	136,00	104,00	122,00	142,00	88,00	131,00	136,00	50B1	93,00	109,00	84,00	106,00	86,00	105,00	121,00	82,00	101,00	107,00
balo balo <th< td=""><td>30,00</td><td>110,04</td><td>162,00</td><td>109,55</td><td>142.11</td><td>112.00</td><td>127,03</td><td>145,01</td><td>04,00</td><td>132,13</td><td>135,67</td><td>30,00</td><td>91,04</td><td>111,05</td><td>00,00</td><td>115.04</td><td>00,03</td><td>114.01</td><td>124,00</td><td>03,53</td><td>102,03</td><td>109,00</td></th<>	30,00	110,04	162,00	109,55	142.11	112.00	127,03	145,01	04,00	132,13	135,67	30,00	91,04	111,05	00,00	115.04	00,03	114.01	124,00	03,53	102,03	109,00
ball ball <th< td=""><td>40,00</td><td>123,00</td><td>177.44</td><td>129.01</td><td>143,11</td><td>112,00</td><td>141.02</td><td>140,23</td><td>95,66</td><td>143,20</td><td>140,47</td><td>40,00</td><td>99,08 105.52</td><td>127.05</td><td>93,62</td><td>110,24</td><td>91,00</td><td>122.51</td><td>127,59</td><td>00,94</td><td>119 52</td><td>110.07</td></th<>	40,00	123,00	177.44	129.01	143,11	112,00	141.02	140,23	95,66	143,20	140,47	40,00	99,08 105.52	127.05	93,62	110,24	91,00	122.51	127,59	00,94	119 52	110.07
7000 148,48 147,48 137,47 144,01 <td>60.00</td> <td>140.49</td> <td>182.17</td> <td>1/1 1/</td> <td>165 30</td> <td>129.57</td> <td>151 32</td> <td>164.89</td> <td>116.07</td> <td>163,00</td> <td>140,10</td> <td>60,00</td> <td>111.46</td> <td>136.89</td> <td>110.28</td> <td>122,00</td> <td>105.63</td> <td>130.11</td> <td>135,00</td> <td>106 14</td> <td>124.89</td> <td>131.60</td>	60.00	140.49	182.17	1/1 1/	165 30	129.57	151 32	164.89	116.07	163,00	140,10	60,00	111.46	136.89	110.28	122,00	105.63	130.11	135,00	106 14	124.89	131.60
abs.do 195.80 195.31 180.34 180.87 176.04 176.00 177.87 177.27 80.00 127.75 154.00 172.00 146.00 147.00 146.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 160.00 177.00 </td <td>70.00</td> <td>146.95</td> <td>187.95</td> <td>15/ 95</td> <td>174.88</td> <td>137 77</td> <td>162.98</td> <td>173.00</td> <td>128.48</td> <td>170.02</td> <td>170.61</td> <td>70.00</td> <td>110.07</td> <td>145.02</td> <td>118 19</td> <td>140.18</td> <td>114 41</td> <td>137.47</td> <td>141.01</td> <td>114 48</td> <td>136.01</td> <td>138.00</td>	70.00	146.95	187.95	15/ 95	174.88	137 77	162.98	173.00	128.48	170.02	170.61	70.00	110.07	145.02	118 19	140.18	114 41	137.47	141.01	114 48	136.01	138.00
Abbount2 196,00 112,00 112,00 112,00 112,00 112,00 112,00 113,0	80.00	156 50	191.86	165.31	180 54	148 87	176.04	176.00	139 17	176.87	177.27	80.00	127 75	154.00	127.31	148 27	124.09	146.04	146.00	127 17	145 25	147.00
198.00 198.00	AbbruchT2	166.00	194.00	172.00	182.00	154.00	179.00	176.00	148.00	178.00	178.00	AbbruchT2	130.00	154.00	136.00	149.00	131.00	150.00	146.00	137.00	146.00	147.00
3nB2 120.00 114.00 137.00 108.00 132.00 134.00 99.00 128.00 134.00 99.00 128.00 134.00 99.00 128.00 134.00 99.00 128.00 134.00 99.00 128.00 130.00 99.00 100.00 190.00 118.00 92.00 188.00 83.00 112.00 119.00 91.00 190.00 19	1nB2	138.00	180.00	136.00	155.00	122.00	152.00	152.00	110.00	145.00	152.00	1nB2	112.00	137.00	101.00	129.00	98.00	125.00	127.00	108.00	129.00	124.00
5n2 114.00 157.00 107.00 132.00 98.00 120.00 127.00 127.00 5n8.2 94.00 108.00 86.00 105.00 110.00 116.00 94.00 99.00 104.00 RR-systolisch mmtg KHC04 JHA.00 122.00 145.00 145.00 145.00 145.00 122.00 147.00 122.00 147.00 122.00 147.00 122.00 120.00 <th< td=""><td>3nB2</td><td>120.00</td><td>163.00</td><td>114.00</td><td>137.00</td><td>106.00</td><td>132.00</td><td>134.00</td><td>99.00</td><td>128.00</td><td>134.00</td><td>3nB2</td><td>94.00</td><td>118.00</td><td>92.00</td><td>108.00</td><td>83.00</td><td>112.00</td><td>119.00</td><td>91.00</td><td>103.00</td><td>109.00</td></th<>	3nB2	120.00	163.00	114.00	137.00	106.00	132.00	134.00	99.00	128.00	134.00	3nB2	94.00	118.00	92.00	108.00	83.00	112.00	119.00	91.00	103.00	109.00
R-R-systolisch mmHg RR-systolisch mmHg Code AERT27 F2RO12 SRMS12 MLDY06 LNNT26 KHKD04 JHAS06 FRKN31 PHOR29 Code AERT27 F2RO12 SRMS12 MLDY06 LNNT26 KHKD04 JHAS06 FRKN31 PHOR29 Code AERT27 F2RO12 SRMS12 MLDY06 LNNT26 KHKD04 JHAS06 FRKN31 PHOR29 Code AERT27 F2RO12 SRMS12 MLDY06 LNNT26 KHKD04 JHAS06 H74.00 140.00 120.00 120.00 127.60 127.60 127.60 127.64 <td>5nB2</td> <td>114,00</td> <td>157,00</td> <td>107,00</td> <td>132,00</td> <td>98,00</td> <td>120,00</td> <td>131,00</td> <td>93,00</td> <td>127,00</td> <td>127,00</td> <td>5nB2</td> <td>94,00</td> <td>108,00</td> <td>86,00</td> <td>105,00</td> <td>81,00</td> <td>110,00</td> <td>116,00</td> <td>84,00</td> <td>99,00</td> <td>104,00</td>	5nB2	114,00	157,00	107,00	132,00	98,00	120,00	131,00	93,00	127,00	127,00	5nB2	94,00	108,00	86,00	105,00	81,00	110,00	116,00	84,00	99,00	104,00
Code AERT27 FZRO12 SRMS12 MLDV06 LNNT26 KHKD04 JHAS06 FRKN31 PHOR29 Code AERT27 FZRO12 SRMS12 MLDV06 LNNT26 KHKD04 JHAS06 FFKN31 PHOR29 0.00 133,68 137,79 147,51 145,10 154,09 122,00 141,03 162,01 10,00 123,00 98,94 125,03 127,60 127,64 128,03 115,94 131,79 151,74 131,79 151,74 132,80 131,78 139,82 138,17 144,13 152,01 176,70 131,84 139,82 133,63 30,00 135,00 114,78 143,94 148,20 136,24 132,20 136,75 151,80 157,40 180,00 155,52 131,41 142,00 156,20 157,41 158,04 158,72 131,41 143,41 155,66 156,20 157,40 160,00 155,52 131,41 142,90 156,20 157,41 158,00 157,45 158,07 158,07 <	RR-svstoli	sch	mmHa									RR-systolis	sch	mmHa								
0.00 130.00 125.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 120.00 120.00 127.60 120.00 <td>Code</td> <td>AERT27</td> <td>FZRO12</td> <td>SRMS12</td> <td>MLDY06</td> <td>LNNT26</td> <td>KHKD04</td> <td>JHAS06</td> <td>HRAR06</td> <td>FRKN31</td> <td>PHOR29</td> <td>Code</td> <td>AERT27</td> <td>FZRO12</td> <td>SRMS12</td> <td>MLDY06</td> <td>LNNT26</td> <td>KHKD04</td> <td>JHAS06</td> <td>HRAR06</td> <td>FRKN31</td> <td>PHOR29</td>	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
1000 133.68 137.79 147.51 145.40 129.44 141.31 162.01 100.0 127.80 127.60 127.86 127.86 127.84 128.03 115.44 131.79 115.74 20.00 137.35 157.38 159.29 159.76 159.29 159.76 159.20 164.30 141.03 150.04 143.84 148.29 136.04 135.05 117.2 127.34 127.34 40.00 144.71 157.30 159.29 159.76 159.26 145.75 136.04 135.00 117.44 145.20 136.04 145.00 150.25 152.20 147.47 150.00 155.57 130.04 145.85 146.76 150.02 157.81 131.41 147.69 150.01 150.01 154.40 155.50 130.61 147.69 150.01 150.01 154.40 155.50 130.41 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147.69 147	0.00	130,00	125,00	145,00	125,00	147,00	122,00	147,00	135,00	147,00	140,00	0,00	120,00	93,00	120,00	114,00	125,00	120,00	123,00	117,00	116,00	110,00
20.00 137.35 150.82 150.92 157.93 150.92 157.93 150.92 157.93 150.92 157.93 150.92 157.93 150.92 157.93 150.92 157.93 127.93 127.93 127.90 137.93 138.63 137.07 150.30 150.92 150.91	10,00	133,68	137,79	147,51	145,10	154,09	129,54	141,52	138,17	144,13	162,01	10,00	123,70	98,94	125,03	127,60	127,96	127,54	128,03	115,94	131,79	115,74
30.0 141.03 157.39 159.29 159.16 164.30 143.77 150.30 152.09 135.20 136.08 139.23 142.15 135.44 122.23 127.34 50.00 152.55 145.78 196.14 196.00 151.20 155.20 145.78 142.01 152.00 157.40 160.00 155.52 131.41 127.23 127.41 181.04 163.32 201.37 50.00 150.91 134.36 156.20 165.20 167.40 160.00 155.52 131.41 127.63 177.64 189.34 189.31 177.45 189.48 173.41 189.49 163.32 177.45 180.34 177.45 180.34 127.31 181.43 164.53 164.54 165.64 165.20 163.17 160.00 158.52 131.41 178.80 178.80 178.80 178.84 128.24 189.44 128.24 168.40 178.49 188.4 163.01 178.80 189.61 141.60 189.42 277.41 189.02 227.41 189.02 227.44 189.02 189.01 160.00 180.00 <td< td=""><td>20,00</td><td>137,35</td><td>150,58</td><td>150,92</td><td>157,59</td><td>159,28</td><td>137,07</td><td>136,04</td><td>141,92</td><td>155,96</td><td>184,03</td><td>20,00</td><td>127,80</td><td>104,88</td><td>131,38</td><td>139,82</td><td>131,41</td><td>135,04</td><td>133,05</td><td>117,02</td><td>127,32</td><td>121,49</td></td<>	20,00	137,35	150,58	150,92	157,59	159,28	137,07	136,04	141,92	155,96	184,03	20,00	127,80	104,88	131,38	139,82	131,41	135,04	133,05	117,02	127,32	121,49
44.00 14.71 152.00 176.73 181.96 182.84 145.00 165.45 196.14 195.06 182.95 147.8 185.86 142.00 156.26 156.26 156.26 156.20	30,00	141,03	157,39	159,29	159,16	164,30	143,77	151,30	150,29	139,26	193,63	30,00	135,00	114,78	143,94	148,29	136,08	139,23	142,15	135,44	122,23	127,34
50.00 152.95 145.78 196.14 196.00 191.21 152.19 172.81 181.04 163.34 201.37 50.00 150.91 154.36 156.64 166.80 150.79 157.40 160.00 155.25 131.01 147.87 00.00 158.55 179.03 212.91 194.80 188.84 163.80 174.47 185.49 206.89 172.81 217.38 70.00 184.53 161.45 186.06 172.42 172.12 170.00 163.40 168.89 153.74 160.37 90.00 139.25 198.04 236.62 278.95 238.94 167.77 298.08 222.73 183.37 221.71 80.00 170.73 178.52 202.91 178.99 196.42 176.00 165.00 189.40 216.00 216.00 276.00 189.00 176.93 186.23 170.00 168.00 178.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176.00 176	40,00	144,71	152,00	176,73	181,96	182,64	145,00	165,40	168,57	155,20	196,55	40,00	135,00	124,40	149,18	155,86	142,20	150,25	152,20	148,71	132,90	136,75
60.00 158,55 179.03 212.91 194.40 188,48 163,80 177.45 192.33 163,83 211.97 60.00 204.63 153,69 170.64 165,56 156,20 163,17 160,00 159,04 168,78 161,45 162,20 163,17 160,00 169,04 166,00 178,40 160,73 171,45 122,22 121,01 200,00 184,55 189,42 227,44 193,92 290,93 182,44 168,40 212,60 178,40 146,60 174,47 185,40 122,60 128,00 174,40 154,60 174,40 150,00 167,00 216,00 216,00 185,00 182,44 168,40 121,60 174,40 154,00 129,00 227,00 222,00 228,00 100,00 184,55 189,40 126,00 185,00 160,00 185,00 160,00 185,00	50,00	152,95	145,78	196,14	196,00	191,21	152,19	172,81	181,04	163,34	201,37	50,00	150,91	134,36	156,46	165,80	150,79	157,40	160,00	155,52	131,41	147,69
70.0 169.34 189.41 226.0 183.21 211.36 174.47 187.87 217.38 70.00 184.33 161.45 180.06 172.42 172.12 170.00 163.40 168.89 153.74 160.73 90.00 193.25 198.04 236.02 207.98 227.06 187.87 198.08 222.301 90.00 184.95 189.42 227.44 193.92 209.93 182.44 168.40 212.60 176.97 194.62 100.00 205.00 245.00 226.00 203.00 212.00 227.00 127.00 155.00 140.00 149.00 149.00 216.00 215.00 200.00 180.00 226.00 180.00 177.31 167.37 181.4 180.00 167.00 216.00 215.00 140.00 140.00 149.00 140.00 140.00 149.00 140.00 140.00 145.00 163.00 177.00 163.00 177.00 163.00 140.00 145.00 163.00 145.00 163.00 145.00 163.00 145.00 163.00 145.00 144.00 151	60,00	158,55	179,03	212,91	194,80	188,84	163,80	177,45	192,33	163,83	211,97	60,00	204,63	153,69	170,54	165,56	156,20	163,17	160,00	159,05	138,07	158,42
80.00 180.36 194.36 236,60 278,96 187,87 198,08 222,37 183,37 221,71 80.00 170,73 178,52 202,91 170,00 165,00 189,38 166,00 178,89 100,00 210,00 236,62 218,95 238,94 167,77 209,60 228,00 100,00 184,95 189,42 221,00 200,00 216,00 226,00 280,00 212,00 227,00 220,00 190,00 184,95 189,42 216,00 216,00 226,00 180,00 176,00 180,00 150,00 161,00 205,00 180,00 185,00 161,00 185,00 166,00 170,00 154,00 151,00 120,00 3nB1 140,00 149,00 155,00 165,00 160,00 185,00 160,00 185,00 160,00 185,00 160,00 186,00 170,00 154,00 192,00 180,15 30,00 135,11 140,00 155,00 140,00 125,00 140,00 125,00 140,00 125,00 140,00 125,00 140,00 125,00 140,00 <td< td=""><td>70,00</td><td>169,34</td><td>189,81</td><td>226,06</td><td>183,21</td><td>211,36</td><td>174,47</td><td>185,49</td><td>206,89</td><td>172,81</td><td>217,38</td><td>70,00</td><td>184,53</td><td>161,45</td><td>186,06</td><td>172,42</td><td>172,12</td><td>170,00</td><td>163,40</td><td>168,89</td><td>153,74</td><td>160,73</td></td<>	70,00	169,34	189,81	226,06	183,21	211,36	174,47	185,49	206,89	172,81	217,38	70,00	184,53	161,45	186,06	172,42	172,12	170,00	163,40	168,89	153,74	160,73
90,00 193,25 198,04 236,62 218,95 238,94 167,27 209,68 228,68 192,32 223,00 90,00 184,95 189,42 227,44 193,92 209,93 182,44 168,40 212,60 176,97 194,62 100,00 110,00 226,00 226,00 226,00 226,00 226,00 226,00 226,00 226,00 226,00 226,00 226,00 226,00 226,00 256,00 185,00 161,00 205,00 165,00 160,00 185,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 165,00 155,00 165,00 155,00 165,00 155,00 165,00 170,00 154,00 154,00 154,00 154,00 152,00 185,00 151,03 172,34 160,38 164,72 144,59 150,48 140,40 132,00 5n81 130,00 144,10 135,00 145,00 152,00 140,00 120,00 125,00 126,00 125,00 126,00 135,10 132,12 40,00 155,00 155,00 156,01 161,91 144,69 150,89 152,53 132,61 177,70 40,00 144,16 110,94 137,22 144,25 134,04 118,28 127,97 146,49 119,22 127,40 155,09 156,44 155,99 156,44 155,89 156,44 156,56 161,91 144,60 156,19 172,69 130,06 183,03 50,00 140,90 128,07 146,68 144,00 157,59 161,42 150,18 140,00 157,77 131,16 149,16 70,00 171,03 167,14 208,99 193,13 199,12 168,09 173,30 208,91 153,05 203,46 70,00 144,44 163,17 180,80 164,26 176,08 163,25 153,25 178,04 138,06 170,00 127,07 181,00 186,00 145,02 147,78 163,89 157,59 161,42 150,18 140,00 157,77 131,16 149,16 170,00 177,67 181,00 186,00 140,00 127,59 161,42 150,18 140,00 157,77 131,16 149,16 170,00 177,67 181,00 186,00 144,60 146,26 176,08 163,26 153,25 178,04 138,06 170,02 177,00 144,14 165,19 194,12 208,91 133,13 199,12 126,00 178,00 228,30 170,00 228,30 170,00 228,30 170,00 228,30 170,00 228,30 170,00 228,30 170,00 228,30 170,00 228,30 170,00 237,00 184,00 173,00 228,30 170,00 283,00 162,67 181,00 280,00 185,00 180,	80,00	180,36	194,36	235,00	207,98	227,06	187,87	198,08	222,37	183,37	221,71	80,00	170,73	178,52	202,91	178,39	196,23	170,00	165,00	189,38	166,00	178,80
100.0 205.00 245.00 226.00 226.00 212.00 227.00 227.00 228.00 100.00 195.00 167.00 246.00 215.00 200.00 180.00 226.00 180.00 218.00 218.00 218.00 218.00 218.00 218.00 218.00 218.00 218.00 180.00 160.00 126.00 126.00 126.00 126.00 216.00 146.00 161.00 146.00 161.00 146.00 161.00 146.00 161.00 146.00 161.00 146.00 161.00 146.00	90,00	193,25	198,04	236,62	218,95	238,94	167,27	209,68	228,68	192,32	223,00	90,00	184,95	189,42	227,44	193,92	209,93	182,44	168,40	212,60	176,97	194,62
1hB1 x 0,00 x </td <td>100,00</td> <td>210,00</td> <td>205,00</td> <td>245,00</td> <td>226,00</td> <td>259,00</td> <td>203,00</td> <td>212,00</td> <td>227,00</td> <td>202,00</td> <td>228,00</td> <td>100,00</td> <td>195,00</td> <td>167,00</td> <td>240,00</td> <td>216,00</td> <td>215,00</td> <td>200,00</td> <td>180,00</td> <td>226,00</td> <td>183,00</td> <td>218,00</td>	100,00	210,00	205,00	245,00	226,00	259,00	203,00	212,00	227,00	202,00	228,00	100,00	195,00	167,00	240,00	216,00	215,00	200,00	180,00	226,00	183,00	218,00
3nB1 150.00 161.00 205.00 168.00 199.00 155.00 150.00 161.00 205.00 168.00 199.00 155.00 150.00 160.00 165.00 160.00 145.00 160.00 145.00 160.00 145.00 160.00 145.00 160.00 145.00 160.00 140.00 170.00 155.00 140.00 170.00 155.00 140.00 170.00 155.00 140.00 150.00 140.00 140.00 150.00 140.00 150.00 140.00 150.00 140.00 150.00	1nB1	x	0,00	x	x	x	x	x	x	x	x	1nB1	x	x	x	x	x	x	x	x	x	x
5nB1 150.00 160.00 185.00 186.00 170.00 154.00 152.00 184.00 140.00 192.00 5nB1 130.00 140.00 135.00 140.00 125.00 120.00 125.00 120.00 120.00 125.00 120.00 120.00 125.00 120.00 <td>3nB1</td> <td>150,00</td> <td>161,00</td> <td>205,00</td> <td>168,00</td> <td>189,00</td> <td>155,00</td> <td>163,00</td> <td>174,00</td> <td>151,00</td> <td>209,00</td> <td>3nB1</td> <td>140,00</td> <td>149,00</td> <td>150,00</td> <td>162,00</td> <td>165,00</td> <td>150,00</td> <td>145,00</td> <td>161,00</td> <td>144,00</td> <td>171,00</td>	3nB1	150,00	161,00	205,00	168,00	189,00	155,00	163,00	174,00	151,00	209,00	3nB1	140,00	149,00	150,00	162,00	165,00	150,00	145,00	161,00	144,00	171,00
30,00 155,06 151,03 172,34 160,38 164,72 144,59 150,08 132,02 180,85 30,00 135,11 108,43 135,00 149,33 136,23 116,38 122,47 134,91 115,03 132,12 141,69 150,05 151,03 132,12 144,59 140,40 118,03 130,06 135,11 108,43 135,00 149,33 136,23 116,38 122,47 134,91 115,03 132,12 144,51 144,04 118,28 127,97 146,49 110,94 132,52 140,00 149,00 149,04 142,52 144,04 118,20 127,40 118,20 127,40 148,91 150,05 149,74 183,03 50,00 143,62 147,78 163,89 157,59 161,42 150,18 140,00 157,37 131,16 149,16 150,04 149,16 150,04 149,16 150,04 149,16 150,04 140,00 157,37 131,16 149,16 150,04 149,16 150,04 149,16 150,04 149,16 150,04 140,00 157,37 131,06 149,16	5nB1	150,00	160,00	185,00	168,00	170,00	154,00	152,00	154,00	140,00	192,00	5nB1	130,00	114,00	135,00	152,00	140,00	120,00	125,00	129,00	135,00	137,00
40,00 199,58 148,10 164,4 151,36 156,61 141,66 150,89 152,53 132,61 1/7,70 40,00 144,16 110,94 137,22 144,25 134,04 118,28 127,97 146,49 119,72 127,40 (50,00 155,90 158,44 176,68 146,00 151,94 132,52 140,00 149,00 124,02 132,28 (50,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 140,00 155,00 125,00 140,00 145,00 145,00 145,00 145,00 145,00 140,00 155,00 125,00 140,00 145,00 140,00 144,00 155,19 15,52 140,00 149,00 124,02 132,28 (50,00 142,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 145,00 135,00 145,00 145,00 135,00 145,00 145,00 135,00	30,00	155,06	151,03	172,34	160,38	164,72	144,59	150,48	140,49	132,02	180,85	30,00	135,11	108,43	135,00	149,33	136,23	116,38	122,47	134,91	115,03	132,12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40,00	159,58	148,10	164,44	151,36	156,61	141,66	150,89	152,53	132,61	177,70	40,00	144,16	110,94	137,22	144,25	134,04	118,28	127,97	146,49	119,72	127,40
b0/00 102_25 100_1/4 192_22 171_34 176_1/1 152_56 169_0/8 191_05 199_1/2 189_1/3 190_0/2 149_1/4 189_1/3 180_0/3 161_0/2 167_1/4 126_26 151_0/3 141_0/0 167_1/3 131_16 149_1/4 189_1/3 160_0 144_0/2 176_36 151_0/3 <td>50,00</td> <td>155,90</td> <td>158,44</td> <td>176,68</td> <td>100,50</td> <td>161,91</td> <td>144,00</td> <td>156,19</td> <td>172,69</td> <td>130,06</td> <td>183,03</td> <td>50,00</td> <td>140,90</td> <td>128,07</td> <td>146,68</td> <td>144,00</td> <td>151,94</td> <td>132,52</td> <td>140,00</td> <td>149,00</td> <td>124,02</td> <td>132,28</td>	50,00	155,90	158,44	176,68	100,50	161,91	144,00	156,19	172,69	130,06	183,03	50,00	140,90	128,07	146,68	144,00	151,94	132,52	140,00	149,00	124,02	132,28
1/0.00 1/7,67 1/61,05	50,00	162,25	160,74	192,92	171,34	176,17	152,50	166,80	191,05	149,74	189,73	50,00	143,62	147,78	163,89	157,59	161,42	150,18	140,00	157,37	131,16	149,16
00/00 17/10 199/00 226/09 194/00 176/00 226/35 17/05 216/05 00/00 162/07 161/00 182/07 160/01 196/00	70,00	171,30	167,14	206,99	193,13	199,12	168,09	173,30	208,91	153,05	203,46	70,00	154,44	163,17	180,80	164,26	176,06	163,26	153,25	178,04	138,06	170,02
Non-constraint Non-con	AbbruchT2	180.00	168.00	240.00	194,50	237.00	184.00	178.00	242 00	173.00	223.00	AbbruchT?	165.00	181,00	220.00	183.00	100,02	200.00	165,00	190,00	163.00	196,00
3nB2 145,00 19,00 149,00 161,00 142,00 131,00 168,00 136,00 171,00 3nB2 125,00 19,00 140,00 129,00 140,00 155,00 125,00 150,00 140,00 129,00 140,00 150,00 120,00 140,00 120,00 140,00 110,00 140,00 110,00 1	1nB2	100,00	0.00	240,00	193,00	237,00	104,00	170,00	242,00	173,00	223,00	1nB2	103,00	101,00	220,00	103,00	130,00	200,00	100,00	134,00	103,00	130,00
5mB2 145,00 135,00 150,00 145,00 160,00 120,00 126,00 150,00 120,00	3nB2	145 00	146.00	190.00	149.00	161.00	142.00	131.00	168.00	136.00	171.00	3nB2	125.00	119.00	140.00	129.00	140.00	155.00	125.00	154 00	136.00	124 00
	5nB2	145,00	135,00	150,00	145,00	160,00	132,00	126,00	154,00	131,00	153,00	5nB2	112,00	115,00	135,00	129,00	120,00	0,00	110,00	144,00	116,00	111,00
		oh	ne ß-Blocka	ade										m	it ß-Blocka	de						
------------	--------	--------	-------------	--------	--------	--------	--------	--------	--------	---------	-----	--------------	--------	--------	-------------	---------	------------	------------	------------	------------	--------	---------
RR-diastol	isch	mmHg									RF	R-diastolise	ch	mmHg								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Co	de	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	70,00	84,00	90,00	88,00	71,00	101,00	80,00	63,00	90,00	75,00	0,0	0	80,00	70,00	75,00	74,00	85,00	80,00	67,00	64,00	66,00	59,00
10,00	72,45	80,35	87,49	87,41	64,50	94,47	81,37	57,71	91,44	76,91	10,	00	76,83	61,78	77,51	72,23	85,00	77,49	58,32	66,12	72,46	60,44
20,00	74,90	76,69	85,00	87,85	61,97	88,02	82,74	52,17	89,71	78,83	20,	00	73,90	53,55	79,08	75,23	83,59	74,96	49,64	66,90	71,95	61,87
30,00	77,35	75,37	85,00	90,00	67,00	89,69	84,25	44,64	89,74	82,81	30,	00	72,96	59,52	70,71	83,63	80,00	70,77	58,03	56,85	71,89	55,90
40,00	79,81	77,00	80,82	91,32	66,78	90,00	86,60	50,69	75,17	82,89	40,	00	70,22	64,00	70,00	78,52	80,00	70,00	70,40	67,71	63,80	56,77
50,00	80,00	80,00	80,00	96,32	64,57	87,60	88,33	55,23	77,69	83,25	50,	00	66,02	64,13	76,46	86,91	80,00	67,60	78,65	57,73	63,62	59,31
60,00	80,00	80,00	80,00	97,92	57,40	83,42	84,46	58,58	73,58	85,86	60,	00	65,00	64,91	74,73	72,28	80,00	68,17	70,92	55,22	65,65	59,86
70,00	76,89	71,83	77,98	96,49	62,25	79,23	90,81	61,62	66,08	85,09	70,	00	65,00	65,68	74,04	86,41	79,58	72,69	70,00	63,85	69,89	59,09
80,00	77,68	65,28	77,64	90,75	65,00	75,04	92,64	63,47	72,10	82,78	80,	00	67,68	66,91	78,68	80,82	75,41	60,13	70,00	68,36	62,10	59,00
90,00	76,70	61,55	85,00	88,01	65,00	70,85	90,32	61,68	67,32	81,47	90,	00	67,03	68,23	74,19	89,95	79,98	64,15	70,00	61,97	59,95	61,14
100,00	70,00	60,00	85,00	102,00	63,00	70,00	88,00	60,00	66,00	81,00	100	0,00	61,00	69,00	70,00	96,00	80,00	65,00	70,00	67,00	57,00	66,00
1nB1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	100	31	X	X	X 70.00	X 05 00	x	X 70.00	×	X 40.00	×	X 47.00
3nB1	80,00	52,00	50,00	77,00	58,00	51,00	64,00	48,00	57,00	54,00	301	51	70,00	64,00	70,00	65,00	60,00	70,00	55,00	49,00	52,00	47,00
20.00	75,00	48,00	70,00	80,00	62,00	70,00	65,00	57,00	64,00	74,00	30	00	50,00	50,00	55,00	61,00	70.11	70.95	54.04	55,00	30,00	44,00
30,00	04,94	46,00	64,93	01,14	64,70	79,41	65.42	56,69	54.24	69,05	30,	00	60,06	52,45	57,55	61,02	76,11	70,65	54,94	50,30	49,02	42,70
40,00	80,42	43,71	72 24	02,44	64,79	76,43	75 52	61.66	54,24	63,09	40,	00	65.00	40,02	70.00	69.12	70,01	67.40	53,99	61.00	50,04	44,13
50,00	72 75	42,13	20.00	95.51	66.62	62.27	73,33	54.42	55,50	65 76	50,	00	61.29	40,03	70,00	72.61	75,03	62.45	60.15	64.59	52,52	47,50
70.00	73 15	42,51	79.20	81 51	62.47	60.81	76.18	51.65	62.98	69.57	70	00	63 15	49,00	70,97	69.51	73,00	60.10	64 70	68.59	58.01	45.12
80.00	72 33	47.95	70,20	87.33	58.25	64.93	79,00	53.44	54.02	70.76	80	00	56.99	52.00	70.38	75 33	70.00	64.95	60.00	67 72	60.69	40,00
AbbruchT2	72,00	49.00	70,70	89,00	60.00	58.00	79,00	52.00	53.00	71.00	Δb	bruchT2	50,00	52,00	70,00	77,00	70,00	60,00	60,00	67.00	61.00	40,00
1nB2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10	32	30,00	32,00	70,00 ¥	×	70,00 ¥	00,00 ¥	00,00 ¥	07,00 ¥	¥	40,00
3nB2	80.00	49.00	70.00	70.00	68.00	71.00	68.00	51.00	64.00	70.00	3nF	32	60,00	52 00	70.00	66.00	75.00	70.00	55.00	44 00	51.00	48 00
5nB2	75,00	50,00	80,00	78,00	71,00	77,00	65,00	54,00	64,00	66,00	5nE	32	65,00	60,00	65,00	70,00	70,00	0,00	50,00	47,00	54,00	48,00
Adrenalin		nmol/l									Ac	Irenalin		nmol/l								
Code	AERT27	F7R012	SPMS12		LNNT26	KHKD04	IHAS06	HRAROS	ERKN31	PHOR 20	Co	de	AERT27	FZRO12	SRMS12		LNNT26	KHKD04	IHA SO6	HRAROS	ERKN31	PHOR20
0.00	0.03	0.52	1 40	0.36	0.35	0.65	0.45	0.05	1 04	0.35	0.0	0	0.43	0.96	0.41	0.52	0.98	0.35	0.53	0.73	0.54	0.34
10.00	0.05	0.45	1.40	0.37	0.29	0.53	0.42	0.05	1.02	0.40	10.	00	0.48	0.77	0.43	0.49	0.80	0.35	0.50	0.58	0.51	0.27
20.00	0.06	0.38	1.44	0.40	0.30	0.42	0.40	0.05	0.93	0.45	20.	00	0.54	0.58	0.44	0.48	0.66	0.34	0.48	0.44	0.52	0.21
30.00	0.08	0.54	1.98	0.43	0.45	0.43	0.42	0.09	0.56	0.39	30.	00	0.68	0.51	0.34	0.48	0.56	0.45	0.45	0.53	0.54	0.32
40.00	0.09	0.69	1.99	0.40	0.41	0.48	0.44	0.13	0.63	0.40	40.	00	0.59	0.74	0.42	0.43	0.52	0.44	0.41	0.52	0.68	0.32
50.00	0.30	0.77	1.83	0.45	0.44	0.54	0.46	0.16	0.58	0.44	50.	00	0.59	1.17	0.42	0.48	0.68	0.47	0.39	0.58	0.80	0.30
60.00	0.32	0.94	2.32	0.40	0.46	0.57	0.48	0.27	0.68	0.46	60.	00	0.58	1.37	0.43	0.45	0.91	0.54	0.43	0.92	0.91	0.33
70,00	0,38	1,14	3,03	0,56	0,46	0,58	0,48	0,36	0,72	0,51	70,	00	0,68	1,61	0,48	0,55	1,11	0,58	0,56	1,17	0,88	0,45
80,00	0,47	1,88	3,41	0,82	0,58	0,68	0,57	0,42	0,89	0,56	80,	00	0,78	3,50	0,50	0,73	1,50	0,53	0,63	1,44	1,68	0,60
90,00	0,60	2,71	3,70	1,80	0,72	1,01	0,67	0,56	1,33	0,59	90,	00	0,85	5,83	0,48	1,47	2,01	0,51	0,72	2,20	2,34	1,09
100,00	0,80	3,10	4,47	5,65	1,10	1,36	0,68	0,52	1,49	1,24	100	0,00	0,93	7,09	0,61	4,37	2,54	0,87	0,98	2,39	2,96	1,68
1nB1	0,76	3,83	3,49	4,41	0,75	1,12	0,67	0,36	1,18	0,38	1nE	31	0,64	х	0,57	4,40	1,66	0,84	0,80	1,61	3,63	1,30
3nB1	0,68	1,56	2,40	2,00	0,50	0,51	0,65	0,03	0,63	0,44	3nE	31	0,60	х	0,23	2,26	0,98	0,36	0,56	1,40	1,72	0,56
5nB1	0,33	1,10	1,82	1,34	0,40	0,57	0,65	0,05	0,78	0,63	5nE	31	0,51	х	0,36	1,34	0,72	0,27	0,44	1,20	1,19	0,49
30,00	0,11	0,85	1,56	0,80	0,52	0,38	0,77	0,07	0,86	0,55	30,	00	0,58	х	0,49	1,17	0,52	0,54	0,61	0,69	1,13	0,52
40,00	0,08	0,80	1,62	0,84	0,52	0,56	0,72	0,06	0,69	0,54	40,	00	0,58	х	0,45	1,08	0,60	0,45	0,61	0,60	1,00	0,57
50,00	0,19	0,79	1,72	1,02	0,56	0,60	0,65	0,08	0,67	0,55	50,	00	0,61	х	0,41	0,89	0,90	0,59	0,62	1,08	1,12	0,63
60,00	0,32	1,22	1,82	1,06	0,69	0,60	0,66	0,13	0,81	0,60	60,	00	0,72	x	0,43	1,13	1,04	0,65	0,66	1,34	1,16	0,69
70,00	0,35	1,59	2,07	1,33	0,64	0,83	0,81	0,23	0,98	0,76	70,	00	0,99	x	0,50	1,32	1,26	0,67	0,69	1,41	1,48	0,75
80,00	0,42	2,68	3,32	1,39	0,73	1,21	0,94	0,31	1,13	1,08	80,	00	1,31	x	0,56	1,81	1,41	0,68	0,71	1,74	1,85	0,82
AbbruchT2	0,48	3,78	4,17	1,41	1,09	1,37	0,94	0,25	1,15	1,17	Abl	bruchT2	1,47	x	0,61	1,93	1,59	0,68	0,71	2,42	1,89	0,82
1nB2	0,27	3,26	3,42	1,48	0,82	1,27	0,78	0,16	1,36	0,44	1nE	32	х	х	0,58	1,86	1,25	0,73	0,60	1,55	0,95	0,77
3nB2	0,05	1,10	2,21	1,08	0,60	0,48	0,60	0,10	0,83	0,39	3nE	32	1,02	х	0,40	1,11	1,08	0,51	0,50	1,16	0,84	0,55
5nB2	0,03	0,57	1,50	0,62	0,47	0,38	0,68	0.04	0,46	0,46	5nE	32	0,60	х	0,21	0,90	0,64	0,13	0,48	1,05	0,81	0,45

		oh	ne ß-Blocka	ade									rr	nit ß-Blocka	de						
Noradrena	lin	nmol/l									Norad	enalin	nmol/l								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	2,66	2,09	1,96	3,85	2,29	2,84	4,68	0,57	4,82	0,54	0,00	1,15	3,99	2,24	4,17	2,04	4,40	3,06	4,56	4,16	1,29
10,00	2,71	2,22	1,92	3,86	2,59	2,50	4,17	0,41	4,98	0,76	10,00	1,51	3,25	1,69	4,03	1,99	4,17	2,81	3,71	4,14	1,27
20,00	2,75	2,33	1,90	3,90	2,53	2,18	3,68	0,27	5,19	0,98	20,00	1,84	2,54	1,35	4,09	2,04	3,94	2,58	2,92	4,07	1,25
30,00	2,79	2,91	2,16	3,96	1,75	2,45	3,90	0,43	4,64	1,18	30,00	1,79	2,90	2,46	4,53	2,54	4,26	2,99	3,25	4,48	1,30
40,00	3,21	3,62	2,55	3,94	1,79	2,45	4,28	0,52	4,76	1,37	40,00	2,16	3,52	3,25	4,50	3,54	4,65	3,32	3,58	4,82	1,43
50,00	3,61	4,47	3,20	4,61	2,49	2,54	4,53	1,01	5,23	1,53	50,00	3,00	4,11	3,23	4,61	3,45	5,07	3,41	4,86	5,40	1,64
60,00	3,98	5,77	3,71	4,61	4,17	2,83	4,52	1,41	6,15	1,69	60,00	3,61	4,67	3,01	4,47	3,48	5,45	3,58	7,10	5,56	1,88
70,00	5,59	8,93	4,89	5,39	2,27	3,42	4,51	1,58	7,00	2,12	70,00	4,16	6,78	3,19	4,52	4,81	5,97	4,38	9,34	6,73	2,01
80,00	7,73	16,76	7,53	6,82	5,09	4,46	4,88	1,97	9,21	2,96	80,00	4,69	11,47	4,84	7,11	6,70	7,01	4,82	11,29	11,54	2,81
90,00	9,94	24,81	11,45	11,16	6,89	6,02	5,61	3,13	13,68	4,02	90,00	5,50	21,99	8,27	15,92	7,84	8,35	5,27	13,91	13,91	4,29
100,00	14,25	27,98	15,30	27,55	9,96	10,35	6,75	4,34	21,90	4,66	100,00	6,69	44,51	9,67	37,40	14,43	17,92	6,49	16,66	36,70	6,09
1nB1	5,25	x	15,82	33,05	9,07	10,95	6,99	3,76	22,11	5,45	1nB1	5,77	x	12,80	47,51	12,73	26,36	8,64	15,96	23,92	8,37
3nB1	4,00	х	9,60	21,43	5,53	7,35	7,26	1,02	21,56	4,72	3nB1	0,00	x	6,80	26,95	7,30	15,46	5,24	15,41	17,26	6,32
5nB1	7,76	х	5,62	16,16	1,88	5,86	6,15	0,78	10,74	3,45	5nB1	2,46	x	4,31	15,22	5,21	10,25	3,74	9,50	10,08	4,42
30,00	4,93	х	4,85	8,85	1,89	4,64	5,11	0,65	10,69	2,43	30,00	2,78	x	2,18	5,28	3,84	7,91	5,01	1,58	9,32	4,00
40,00	3,90	х	4,67	9,07	1,90	4,05	4,98	0,80	7,48	2,36	40,00	3,15	x	2,99	5,74	3,40	7,29	4,92	1,40	8,77	3,08
50,00	5,18	х	4,55	10,01	2,06	4,31	4,87	1,03	6,99	2,63	50,00	3,52	x	3,97	7,13	2,10	6,67	4,86	4,42	9,51	2,66
60,00	5,11	х	5,08	10,83	2,58	5,09	5,40	1,26	9,14	3,41	60,00	3,93	x	4,32	7,95	3,92	6,56	5,32	6,55	10,78	3,38
70,00	6,13	х	6,87	12,50	1,98	6,20	5,92	1,60	11,48	4,00	70,00	4,14	x	4,75	12,04	5,74	7,08	5,39	9,56	13,95	3,89
80,00	7,75	х	9,10	14,29	4,19	7,85	6,34	2,20	21,29	4,10	80,00	4,64	x	5,17	15,81	7,62	7,93	5,41	12,41	15,20	5,07
Abbruch 12	8,57	x	12,56	14,75	4,52	8,77	6,34	3,00	22,25	4,11	Abbruch	12 5,04	x	6,87	16,78	8,15	8,27	5,41	11,06	15,32	5,07
1nB2	9,67	x	12,57	17,73	4,13	6,74	7,27	1,45	18,66	4,15	1nB2	×	x	7,84	25,31	6,88	6,28	5,46	12,93	11,99	5,01
3nB2	5,20	x	6,70	13,21	2,52	5,33	5,60	1,20	11,30	3,08	3nB2	2,40	x	4,24	9,50	4,88	5,45	4,62	6,30	9,93	4,24
5nB2	4,65	x	5,32	9,53	1,89	5,42	4,57	1,21	8,79	2,30	5nB2	2,84	x	3,33	8,25	3,00	3,55	4,53	7,00	7,70	3,29
Laktat		mmol/l									Laktat		mmol/l								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	0,91	2,00	0,97	0,91	1,03	0,91	0,84	1,85	1,42	1,32	0,00	1,07	0,95	1,17	1,01	1,03	0,68	1,18	0,86	1,05	1,42
10,00	0,92	2,01	1,06	0,92	0,87	0,84	0,86	1,71	1,46	1,52	10,00	1,06	0,84	1,06	1,02	0,88	0,67	1,06	0,79	1,04	1,47
20,00	0,93	2,01	1,15	0,97	0,76	0,77	0,89	1,58	1,37	1,71	20,00	1,04	0,72	0,94	1,08	0,74	0,67	0,93	0,72	0,91	1,52
30,00	0,89	2,11	1,22	1,17	0,76	0,82	0,98	1,57	1,25	2,18	30,00	0,91	0,76	0,88	1,25	0,64	0,63	0,93	0,69	0,75	1,74
40,00	1,09	2,27	1,48	1,59	0,83	0,86	1,23	1,60	1,31	2,60	40,00	1,06	0,90	1,15	1,51	0,62	0,70	1,24	0,80	0,83	2,01
50,00	1,46	2,53	1,96	2,08	1,02	1,02	1,63	1,76	1,50	3,13	50,00	1,59	1,18	1,59	2,09	0,74	0,88	1,81	1,10	1,05	2,40
60,00	1,98	3,21	2,61	2,79	1,43	1,41	2,24	2,25	1,93	3,99	60,00	2,11	1,93	2,21	2,96	0,92	1,26	2,55	1,69	2,01	3,03
70,00	2,51	4,71	3,38	4,06	2,15	2,08	3,12	3,01	3,12	5,07	70,00	2,83	3,63	2,94	4,28	1,33	1,88	3,58	2,52	2,92	3,81
80,00	3,43	6,64	4,33	6,00	3,23	3,20	4,48	4,02	4,20	6,64	80,00	3,78	6,11	3,85	6,52	2,85	2,88	4,31	3,61	4,34	6,05
90,00	4,66	9,17	5,58	8,23	4,48	4,58	6,22	5,52	6,26	8,94	90,00	4,96	9,23	5,26	9,21	3,78	4,44	4,86	5,14	7,14	8,09
100,00	6,04	12,60	6,55	11,80	6,29	6,53	8,15	7,14	9,47	12,10	100,00	6,28	12,80	6,86	13,20	5,23	6,84	5,51	6,81	11,10	11,50
1nB1	6,24	13,30	6,63	12,50	6,60	7,03	8,95	7,10	10,40	13,30	1nB1	6,26	13,20	7,45	14,20	5,46	7,85	7,46	6,75	12,00	12,70
3nB1	6,15	12,60	6,55	12,20	6,14	6,91	9,21	6,43	10,50	13,10	3nB1	5,65	13,00	6,63	13,90	4,65	7,52	7,38	5,95	11,50	13,00
5nB1	5,21	12,30	6,14	12,50	5,30	6,16	8,86	5,32	8,34	12,00	5nB1	4,70	12,60	6,38	14,10	4,56	5,89	7,30	4,84	11,10	12,90
30,00	3,97	11,20	5,08	12,14	4,49	5,28	8,76	4,43	8,01	11,25	30,00	4,25	11,59	5,22	13,97	3,90	5,99	7,34	3,92	10,37	12,33
40,00	3,13	10,10	3,77	10,97	3,12	4,11	8,02	3,24	6,24	10,25	40,00	2,77	9,96	3,78	12,39	2,90	4,60	6,81	2,59	8,06	11,16
50,00	2,40	8,77	2,83	9,62	2,32	2,84	7,10	2,62	4,08	8,74	50,00	2,04	8,62	2,85	10,84	2,19	3,02	6,18	1,79	5,69	9,69
60,00	2,18	7,88	2,44	8,67	1,75	2,25	6,53	2,42	3,49	7,54	60,00	1,97	7,41	2,67	9,69	1,79	2,54	5,25	1,60	4,22	8,60
70,00	2,31	7,98	2,53	8,05	1,92	2,27	6,17	2,54	3,47	7,52	70,00	2,34	7,38	2,93	9,19	1,92	2,49	4,85	1,91	4,24	8,32
80,00	2,68	9,18	3,09	8,88	2,51	3,29		2,98	4,76	7,79	80,00	2,99	8,38	3,36	9,42	2,19	3,34	5,16	2,19	5,65	7,96
AbbruchT2	3,43	10,40	3,47	9,24	3,09	4,27	6,14	3,99	4,98	7,32	Abbruch	T2 3,93	8,38	4,20	9,16	2,92	4,68	5,16	3,02	5,75	7,96
1nB2	3,54	10,70		9,39	3,36	4,35	6,20	4,18	5,27	9,48	1nB2	4,21	8,91	x	10,40	3,20	5,02	4,63	3,17	6,59	9,02
3nB2		10,90		9,18	2,85	4,14	5,61	3,38	4,77	8,59	3nB2	4,10	8,52	x	10,40	2,43	4,87	5,23	2,63	6,07	8,48
5nB2		9,73		8,63	1,93	3,51	5,06	3,19	4,46	7,87	5nB2	3,25	7,44	х	9,41	2,48	4,32	4,45	1,99	5,25	7,11

		ohi	ne ß-Blocka	de									m	it ß-Blocka	de						
VE		l/min									VE		l/min								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	9,58	10,45	13,82	11,51	14,84	9,79	14,59	11,30	17,56	10,70	0,00	8,87	10,60	11,22	13,84	13,57	14,16	12,92	14,94	24,26	9,13
10,00	15,93	19,33	20,75	21,81	23,45	16,75	18,95	18,59	29,74	18,01	10,00	11,07	13,89	21,15	20,23	22,25	19,78	22,15	27,13	29,37	14,84
20,00	23,23	20,12	27,27	27,01	25,44	24,79	24,98	21,82	32,52	25,01	20,00	22,73	18,75	24,04	25,22	26,38	26,22	24,79	29,41	31,32	20,56
30,00	29,63	26,64	31,33	35,86	29,64	31,03	28,17	31,20	44,41	29,53	30,00	30,83	26,01	25,99	32,80	32,57	28,47	31,15	34,70	36,75	26,68
40,00	36,58	31,79	32,66	43,23	38,04	37,58	34,97	31,94	55,64	34,30	40,00	36,08	32,39	31,12	48,96	39,70	38,80	36,32	40,64	56,29	32,41
50,00	42,43	38,18	37,38	48,65	39,11	43,30	42,67	36,52	59,54	41,76	50,00	46,47	37,14	41,72	48,15	48,92	45,38	46,05	45,74	61,52	37,42
60,00	51,95	43,43	49,14	55,94	50,73	49,21	46,58	43,72	70,29	51,12	60,00	57,08	41,64	43,95	54,11	57,90	45,41	51,10	52,03	69,21	43,43
70,00	66,07	47,44	51,44	70,87	70,77	59,14	57,63	52,65	80,80	63,70	70,00	64,93	56,82	50,25	59,10	66,12	58,40	59,34	62,92	83,51	54,82
80,00	69,90	58,58	62,49	83,76	83,73	67,56	65,39	60,12	93,93	69,02	80,00	79,03	65,85	58,26	86,36	82,41	72,73	68,87	72,42	100,47	68,96
90,00	73,53	82,33	72,21	112,42	89,38	84,06	91,73	69,04	122,85	85,60	90,00	100,63	90,67	68,40	114,99	89,57	80,71	79,59	83,22	124,65	88,55
100,00	105,57	109,17	88,68	149,93	106,63	97,31	106,67	85,80	147,88	116,03	100,00	112,73	115,21	83,29	158,96	116,26	100,25	99,46	93,01	173,35	118,83
1nB1	54,77	70,78	58,53	87,89	74,71	70,55	76,36	60,45	102,40	74,56	1nB1	67,80	76,33	57,35	102,38	84,24	73,39	75,60	71,63	123,60	112,47
3nB1	33,90	44,37	41,31	62,20	57,46	45,02	57,38	34,46	64,80	54,17	3nB1	39,33	46,99	38,88	63,12	54,05	50,00	55,52	48,98	75,65	63,00
5nB1	34,60	42,11	33,46	57,02	46,02	40,58	57,08	27,52	57,37	44,16	5nB1	26,63	38,87	31,90	58,39	45,81	39,86	49,99	42,55	63,56	48,78
30,00	29,93	38,85	33,56	55,38	44,26	39,73	54,22	33,75	57,56	43,36	30,00	25,47	39,69	31,48	59,06	44,08	41,22	51,50	39,87	64,79	47,82
40,00	32,58	43,53	38,27	58,94	42,39	40,47	54,89	38,25	63,20	40,95	40,00	37,13	42,08	37,76	61,15	43,06	43,61	53,17	43,08	67,43	47,14
50,00	39,40	46,16	40,99	64,13	53,12	42,93	61,57	43,24	68,44	51,96	50,00	50,60	46,70	40,24	64,59	52,20	48,18	53,85	46,81	77,53	49,69
60,00	53,13	50,52	45,40	72,55	58,98	53,31	66,13	49,32	55,46	58,43	60,00	52,23	58,22	47,20	80,75	57,21	57,18	61,86	55,77	82,33	56,58
70,00	62,30	70,01	53,43	91,50	68,62	62,07	74,92	54,51	104,58	11,12	70,00	66,40	65,62	58,05	92,93	68,50	63,87	67,27	59,60	101,41	64,62
80,00 AbbsuchT2	71,90	91,62	53,01	99,00	72,40	73,46	80,15	60,02	124,59	87,08	80,00 AbbruchT2	75,13	81,18	63,48	97,06	75,90	76,19	73,70	78,10	119,58	92,60
ADDIUCITIZ 1=D2	97,03	99,46	14,00	72.00	69,00	61,25	64.42	69,22	124,97	62.24	ADDIUCITIZ	00,57	54.22	13,24	70,50	92,04	63,90	73,70	62,20	122,35	92,60
2082	20.60	20.00	49,43	13,29	42.62	26.95	49.07	29.60	64,24	29.24	2nB2	93,07	24,33	40,92	72,01 50.02	20.59	42.15	41.25	40,20	52 20	44.09
5nB2	26 70	35,05	25.00	40,10	39.75	33,78	40,57	26,00	52 10	36.17	5nB2	40.57	29.57	32.67	47.42	38.85	38.36	41,33	30.03	46.69	32.01
51162	20,70	33,34	20,00	42,00	55,75	55,76	42,72	20,45	52,15	30,17	01102	40,01	23,57	52,07	47,42	30,03	30,50	41,12	33,35	40,05	52,01
VO2		ml/min									VO2		ml/min								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	273,33	253,07	251,72	255,43	271,79	262,88	287,20	219,51	317,67	234,72	0,00	291,50	224,50	263,89	266,46	270,02	281,25	261,55	276,56	269,01	233,91
10,00	664,33	733,65	812,84	827,78	1084,58	707,87	600,04	648,76	1306,21	643,84	10,00	420,33	558,09	841,93	797,22	805,34	729,91	692,18	875,58	1247,27	512,05
20,00	992,00	914,74	1114,12	1236,50	1137,57	946,61	953,96	847,11	1516,10	938,00	20,00	951,67	863,33	1092,41	1080,41	1150,66	1189,06	888,84	1056,57	1363,91	790,19
30,00	1236,67	1177,59	1376,52	1536,39	1390,52	1208,03	1160,99	1060,60	2038,19	1132,69	30,00	1282,33	1153,15	1371,16	1323,64	1391,69	1257,70	1114,70	1298,61	1589,78	1105,17
40,00	1466,25	1361,82	1561,97	1831,51	1777,89	1471,25	1367,68	1247,89	2485,19	1379,38	40,00	1424,25	1385,22	1582,89	1605,96	1578,22	1603,50	1264,70	1542,31	2307,61	1327,98
50,00	1697,67	1698,28	1831,25	1963,43	1948,71	1673,52	1577,27	1407,02	2619,53	1560,86	50,00	1828,00	1557,54	1939,49	1831,71	1962,54	1871,55	1497,98	1776,45	2514,83	1510,74
60,00	1962,50	1818,30	2222,03	2182,15	2101,95	1891,51	1718,56	1562,53	3012,78	1839,37	60,00	2160,25	1795,01	2023,90	1948,02	2235,90	1948,25	1514,51	1978,82	2711,25	1713,65
70,00	2330,00	1902,96	2376,05	2520,20	2663,33	2295,76	1913,08	1958,57	3291,73	2070,61	70,00	2339,00	2086,95	2366,09	2223,17	2295,19	2325,70	1737,37	2327,67	3014,31	1911,82
80,00	2461,33	2077,65	2657,28	2869,83	2954,97	2445,37	2188,59	2263,16	3482,79	2382,81	80,00	2669,67	2223,04	2553,76	2531,90	2613,78	2686,41	2023,28	2642,58	3572,31	2247,84
90,00	2715,00	2306,85	3082,38	3122,99	3040,72	2798,88	2709,57	2469,10	4072,84	2571,93	90,00	3068,50	2372,14	2857,81	2811,24	2830,95	2914,96	2281,84	3014,41	3723,94	2632,21
100,00	3136,67	2365,70	3324,56	3222,66	3401,44	2889,59	2892,53	2784,46	4180,79	2901,73	100,00	3283,33	2494,63	3007,63	2851,08	3288,64	3130,00	2440,63	3278,63	3910,31	3081,33
1nB1	1574,33	1557,53	2041,94	2413,44	2131,77	1621,86	1806,93	1376,48	2563,92	1661,52	1nB1	1847,33	1556,52	1868,11	2056,89	2231,42	1873,62	1736,62	1800,61	2723,58	2613,23
3nB1	1192,33	1149,97	1501,55	1640,66	1709,10	1213,96	1370,89	1018,80	2012,78	1319,43	3nB1	1291,67	1183,92	1386,46	1503,92	1530,91	1324,35	1156,82	1415,39	1949,03	1336,69
5nB1	1141,67	1119,29	1195,81	1566,89	1575,49	1217,80	1297,61	934,48	1967,65	1271,26	5nB1	990,67	1128,38	1311,68	1454,39	1651,71	1269,88	1109,14	1433,16	1932,32	1114,98
30,00	1133,33	1170,88	1430,69	1642,59	1750,50	1342,97	1350,16	1191,54	2188,76	1364,74	30,00	904,33	1269,90	1426,01	1546,46	1652,55	1442,24	1253,54	1476,84	2063,99	1157,29
40,00	1250,67	1431,45	1769,77	1995,64	1930,17	1453,84	1542,30	1471,04	2538,71	1554,14	40,00	1494,00	1447,15	1669,40	1777,37	1798,30	1665,92	1406,36	1740,50	2247,76	1316,65
50,00	1574,33	1561,67	1986,17	2168,59	2181,91	1612,38	1737,77	1635,09	2776,28	1817,33	50,00	1894,67	1606,14	1867,54	1970,57	1973,01	1962,95	1512,37	1875,86	2665,24	1528,21
60,00	1969,33	1724,61	2186,61	2436,35	2482,28	1906,01	1955,30	1878,29	3229,59	1986,88	60,00	2003,50	1789,95	2128,01	2302,45	2218,52	2243,22	1715,72	2240,06	2816,68	1742,87
70,00	2255,00	1893,24	2363,94	2761,40	2643,84	2089,50	2159,37	2037,36	3562,56	2225,01	70,00	2451,00	1875,35	2506,08	2439,15	2444,31	2458,66	1892,92	2473,75	3048,11	1849,41
80,00	2460,00	2093,62	2771,19	2930,21	2740,94	2348,51	2366,38	2287,59	3777,54	2335,31	80,00	2639,33	2025,42	2651,08	2561,54	2647,16	2750,70	2169,61	2913,69	3203,97	2487,98
AbbruchT2	2703,33	2058,77	2897,90	2993,71	2976,42	2446,43	2366,38	2398,00	3744,57	2671,05	AbbruchT2	2852,33	2025,42	2919,28	2601,43	2931,63	2807,44	2169,61	3022,08	3238,49	2487,98
1nB2	1537,67	1352,12	1848,01	2323,32	2001,10	1487,18	1642,58	1359,50	2598,57	1515,34	1nB2	2839,00	1489,66	1807,80	1977,02	1954,55	2112,12	1462,56	1821,41	2517,03	1609,36
3nB2	1056,33	1028,16	1348,02	1482,17	1535,46	1106,94	1226,33	932,36	2121,92	1156,34	3nB2	2439,67	1123,31	1300,57	1367,36	1405,78	1317,18	1040,69	1373,58	1718,90	1112,45
5nB2	1021,67	1011,97	1091,47	1450,21	1432,30	1034,77	1241,63	927,76	1980,76	1125,80	5nB2	1366,00	1027,86	1261,68	1323,20	1393,00	1301,85	1162,55	1396,00	1568,23	965,03

		oh	ne ß-Blocka	ide									m	it ß-Blocka	de						
Kalium		mmol/l									Kalium		mmol/l								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	3,98	3,54	x	3,99	4,47	3,84	3,96	3,77	4,13	4,00	0,00	3,77	4,26	x	4,83	4,67	3,78	4,16	4,39	4,29	4,22
10,00	3,97	3,74	x	4,03	4,48	3,84	4,00	3,85	4,22	4,14	10,00	3,81	4,30	x	4,48	4,62	3,99	4,26	4,34	4,41	4,19
20,00	3,99	3,94	x	4,04	4,48	3,83	4,04	3,93	4,31	4,28	20,00	3,87	4,35	x	4,32	4,57	4,20	4,37	4,30	4,39	4,16
30,00	4,16	3,98	х	4,00	4,45	4,00	4,13	3,93	4,37	4,31	30,00	4,08	4,36	х	4,42	4,54	4,23	4,12	4,44	4,53	4,21
40,00	4,22	4,08	х	3,99	4,47	4,01	4,19	4,06	4,55	4,33	40,00	4,25	4,42	х	4,27	4,63	4,32	4,02	4,38	4,55	4,25
50,00	4,30	4,24	х	3,90	4,36	4,08	4,20	4,21	4,82	4,37	50,00	4,22	4,54	х	5,02	4,73	4,33	4,12	4,49	4,83	4,31
60,00	4,40	4,34	х	3,93	4,46	4,18	4,16	4,40	4,96	4,44	60,00	4,32	4,61	х	5,00	4,84	4,34	4,24	4,62	5,13	4,45
70,00	4,47	4,46	х	4,14	4,55	4,26	4,36	4,57	5,15	4,48	70,00	4,47	4,83	х	5,10	4,97	4,43	4,52	4,72	5,53	4,67
80,00	4,66	4,65	х	4,96	4,54	4,36	4,61	4,74	5,41	4,64	80,00	4,66	5,16	х	5,68	5,42	4,56	4,86	4,86	5,97	5,00
90,00	4,83	4,97	х	5,81	4,54	4,54	4,88	4,97	5,88	4,90	90,00	4,98	5,47	х	6,60	5,65	4,77	5,17	5,05	6,29	5,36
100,00	5,00	5,44	x	6,61	4,44	4,65	5,18	5,17	6,01	5,57	100,00	5,41	5,56	x	6,71	5,93	5,06	5,35	5,24	6,91	5,68
1nB1	4,63	5,36	х	4,30	4,62	4,85	4,73	4,80	5,38	4,78	1nB1	4,68	х	х	6,08	5,23	4,65	4,68	4,97	5,83	5,09
3nB1	4,26	4,33	х	4,29	4,37	4,28	4,42	4,36	4,51	4,33	3nB1	4,62	х	x	5,31	4,81	4,14	4,47	4,43	4,63	4,42
5nB1	4,08	4,08	x	3,97	4,23	4,04	4,33	4,20	4,31	4,30	5nB1	4,62	х	x	4,60	4,68	4,15	4,42	4,31	4,40	4,31
30,00	4,32	4,08	x	4,02	4,29	4,01	4,35	4,16	4,36	4,37	30,00	4,38	х	x	4,70	4,69	4,12	4,44	4,30	4,46	4,35
40,00	4,43	4,17	x	4,17	4,39	4,43	4,42	4,26	4,60	4,46	40,00	4,22	х	x	4,91	4,73	4,37	4,51	4,47	4,69	4,57
50,00	4,52	4,37	x	4,52	4,44	4,49	4,53	4,41	4,75	4,50	50,00	4,82	x	x	5,20	4,89	4,57	4,62	4,72	5,25	4,81
60,00	4,58	4,63	х	4,78	4,48	4,38	4,62	4,52	4,95	4,53	60,00	4,84	x	х	5,49	5,05	4,62	4,74	4,81	5,62	4,99
70,00	4,60	4,78	х	4,92	4,57	4,47	4,75	4,61	5,14	4,74	70,00	4,87	x	х	6,01	5,23	4,65	4,94	4,87	6,01	5,20
80,00	4,66	4,93	х	5,71	4,64	4,47	4,85	4,70	5,04	4,92	80,00	5,01	x	х	6,19	5,40	4,82	5,11	5,02	6,20	5,67
AbbruchT2	4,72	5,03	х	5,93	4,61	4,52	4,85	4,79	5,03	4,97	AbbruchT2	5,10	х	х	6,24	5,59	5,07	5,11	5,15	6,22	5,67
1nB2	4,60	5,04	x	5,34	4,52	4,39	4,59	4,81	5,03	4,57	1nB2	4,50	x	x	5,72	4,90	4,66	4,64	4,73	5,59	5,03
3nB2	4,50	7,30	x	4,17	4,37	4,46	4,40	4,40	3,61	4,34	3nB2	4,50	x	x	5,30	4,63	4,16	4,39	4,52	4,66	4,37
5NB2	4,30	4,10	x	4,25	4,38	4,35	4,44	4,44	5,22	4,38	5NB2	4,50	x	x	4,86	4,80	4,15	4,50	4,43	4,49	4,42
P-Dauer		ms									P-Dauer		ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	112,00	84,00	96,00	96,00	116,00	100,00	96,00	84,00	96,00	84,00	0,00	112,00	88,00	88,00	100,00	64,00	100,00	104,00	84,00	96,00	80,00
10,00	116,23	87,65	98,01	96,00	111,27	97,99	99,65	84,00	98,87	95,49	10,00	109,88	88,00	92,02	102,36	85,28	95,98	102,17	86,12	93,13	80,00
20,00	120,00	91,31	100,00	98,25	108,00	95,97	103,31	84,00	103,05	106,97	20,00	108,40	88,00	96,00	104,00	102,25	92,00	100,35	88,73	95,05	80,00
30,00	120,00	94,51	100,00	104,00	108,00	92,62	104,00	84,00	104,00	114,10	30,00	112,00	88,00	96,00	104,00	108,86	92,00	100,00	95,43	96,00	92,20
40,00	120,00	96,00	96,65	104,88	109,76	94,73	104,00	90,69	104,00	116,00	40,00	112,00	89,60	92,65	104,88	112,88	92,00	100,00	99,35	96,00	100,43
50,00	120,00	94,92	96,00	108,00	117,27	96,00	102,92	94,58	105,87	113,50	50,00	115,18	92,00	92,00	108,82	116,64	92,00	100,00	102,58	97,87	106,50
60,00	120,00	88,74	96,00	107,36	124,00	97,27	96,74	96,00	105,10	106,34	60,00	121,67	92,00	92,00	112,00	120,00	94,53	100,00	101,89	100,00	112,55
70,00	122,49	77,11	96,00	99,32	123,32	101,23	82,39	96,00	88,30	97,06	70,00	126,49	94,72	92,00	112,34	120,34	101,23	94,55	101,62	103,92	115,65
80,00	115,42	70,18	94,95	91,02	114,69	107,93	74,18	97,05	87,05	90,07	80,00	123,71	94,18	92,00	115,35	124,00	107,93	90,18	102,95	106,47	118,97
90,00	106,20	67,09	90,70	80,05	100,07	84,78	66,55	100,00	82,24	85,86	90,00	120,00	87,46	92,00	108,04	124,00	108,00	88,00	100,65	104,49	111,45
100,00	96,00	64,00	84,00	72,00	88,00	80,00	48,00	100,00	60,00	84,00	100,00	120,00	72,00	92,00	96,00	116,00	112,00	88,00	104,00	100,00	104,00
1nB1	88,00	64,00	72,00	76,00	80,00	80,00	44,00	96,00	60,00	80,00	1nB1	116,00	64,00	92,00	84,00	112,00	108,00	92,00	104,00	100,00	96,00
3nB1	120,00	68,00	100,00	96,00	88,00	80,00	88,00	96,00	104,00	104,00	3nB1	112,00	68,00	96,00	96,00	108,00	92,00	96,00	100,00	108,00	100,00
5nB1	124,00	68,00	92,00	100,00	88,00	104,00	92,00	96,00	108,00	100,00	5nB1	120,00	88,00	92,00	108,00	96,00	88,00	96,00	96,00	92,00	96,00
30,00	120,00	69,99	89,97	101,52	119,69	106,89	94,02	92,62	107,97	102,48	30,00	116,05	88,00	92,00	112,57	100,53	88,00	98,02	92,62	100,00	96,00
40,00	120,00	68,95	88,00	104,00	170,38	108,00	94,49	92,00	103,04	106,11	40,00	119,66	89,51	92,00	118,51	108,00	88,00	98,41	95,23	99,04	100,26
50,00	120,00	64,00	89,34	103,25	163,22	106,00	91,37	92,00	91,91	108,00	50,00	120,00	92,00	92,00	110,50	107,22	88,00	96,00	96,00	98,02	107,96
60,00	120,00	64,00	91,22	99,22	157,73	104,00	88,34	94,23	84,00	105,57	60,00	120,00	92,00	91,22	104,00	105,51	89,38	96,00	98,23	102,95	115,38
70,00	112,45	64,00	87,36	91,24	135,58	101,39	83,76	96,00	79,98	93,37	70,00	122,52	92,00	88,00	103,75	120,42	93,95	96,00	101,65	104,01	112,29
80,00	103,73	64,00	80,61	82,50	131,01	87,96	80,00	96,00	72,82	88,97	80,00	121,86	88,00	88,00	100,83	124,00	104,00	96,00	102,88	107,59	112,00
AbbruchT2	100,00	64,00	80,00	80,00	124,00	84,00	80,00	96,00	72,00	88,00	AbbruchT2	120,00	88,00	88,00	100,00	124,00	104,00	96,00	100,00	108,00	112,00
1nB2	96,00	64,00	76,00	88,00	84,00	80,00	76,00	96,00	72,00	84,00	1nB2	116,00	88,00	84,00	100,00	120,00	100,00	96,00	104,00	112,00	108,00
3nB2	120,00	68,00	92,00	104,00	88,00	100,00	96,00	100,00	108,00	104,00	3nB2	120,00	92,00	92,00	100,00	120,00	92,00	100,00	96,00	100,00	104,00
5nB2	116,00	72,00	88,00	100,00	120,00	108,00	96,00	96,00	112,00	108,00	5nB2	124,00	92,00	92,00	104,00	108,00	92,00	100,00	96,00	116,00	100,00

		oh	ne ß-Blocka	ide									rr	it ß-Blocka	de						
PQ-Zeit		ms									PQ-Zeit		ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	164,00	148,00	152,00	160,00	172,00	160,00	124,00	144,00	164,00	164,00	0,00	176,00	156,00	144,00	160,00	152,00	168,00	136,00	148,00	168,00	192,00
10,00	168,23	148,00	154,01	157,67	160,18	155,98	127,65	141,88	158,26	171,66	10,00	173,88	154,17	148,02	162,36	168,55	163,98	134,17	150,12	165,13	188,17
20,00	172,00	148,00	156,00	157,03	153,13	151,97	131,31	139,63	162,10	179,31	20,00	172,40	152,35	152,00	164,00	178,87	159,97	132,35	152,00	164,00	184,34
30,00	171,95	148,00	156,00	160,00	156,86	148,62	132,00	136,28	159,92	170,85	30,00	175,95	149,49	152,00	163,14	176,00	156,62	132,00	152,00	160,00	184,00
40,00	168,29	143,20	149,31	159,34	160,00	148,00	130,40	136,00	154,90	165,78	40,00	172,29	148,00	148,65	160,00	175,12	153,27	132,00	148,65	158,90	186,22
50,00	164,82	134,39	142,83	155,44	160,64	146,08	126,92	136,00	152,00	159,00	50,00	168,82	147,46	145,42	159,18	170,73	150,08	131,46	148,00	156,00	186,75
60,00	158,33	125,11	137,89	148,19	163,68	142,73	120,74	131,78	146,20	144,68	60,00	168,00	144,37	141,89	155,36	163,68	146,73	128,37	143,78	156,00	181,79
70,00	153,51	110,39	134,38	121,97	158,98	138,77	106,39	128,00	124,38	126,12	70,00	163,02	141,28	138,38	147,66	160,00	144,00	122,55	140,00	156,00	169,42
80,00	143,42	100,37	127,78	107,14	146,36	132,07	98,18	129,05	119,05	115,10	80,00	155,71	134,55	134,95	143,02	160,00	144,00	118,18	138,95	156,00	159,10
90,00	130,60	94,18	115,35	99,93	128,09	108,78	90,55	131,35	114,24	109,86	90,00	150,68	122,55	131,35	132,05	160,00	140,68	116,00	135,35	150,73	145,31
100,00	116,00	88,00	112,00	92,00	116,00	104,00	72,00	128,00	92,00	108,00	100,00	148,00	104,00	128,00	120,00	152,00	136,00	116,00	132,00	136,00	136,00
1nB1	108,00	88,00	100,00	100,00	108,00	104,00	68,00	124,00	92,00	108,00	1nB1	144,00	96,00	124,00	108,00	148,00	136,00	120,00	136,00	132,00	128,00
3nB1	148,00	96,00	136,00	124,00	124,00	108,00	112,00	136,00	140,00	152,00	3nB1	148,00	112,00	132,00	140,00	144,00	140,00	124,00	132,00	156,00	156,00
5nB1	156,00	100,00	136,00	132,00	144,00	136,00	116,00	136,00	152,00	156,00	5nB1	160,00	140,00	144,00	160,00	152,00	140,00	124,00	140,00	160,00	164,00
30,00	152,00	101,99	133,97	132,00	148,53	138,89	118,02	132,62	151,93	156,00	30,00	159,95	140,00	144,00	158,48	158,04	142,89	126,02	140,00	159,97	164,00
40,00	152,00	100,95	130,23	132,00	156,81	137,37	118,49	132,00	143,04	156,00	40,00	156,34	140,00	142,23	154,51	166,38	141,37	126,41	143,23	155,04	164,00
50,00	148,72	95,41	128,00	130,41	159,22	134,00	115,37	129,33	129,89	151,93	50,00	156,00	138,75	138,66	146,50	159,22	135,99	124,00	138,66	152,00	165,32
60,00	145,10	92,34	126,44	123,08	154,87	129,24	112,34	128,00	117,05	141,57	60,00	158,90	132,68	134,44	139,61	156,00	132,00	124,00	136,00	152,00	166,15
70,00	136,45	89,27	119,36	114,73	141,88	121,39	107,76	128,00	111,98	129,37	70,00	157,48	129,23	128,00	135,75	156,00	132,00	124,00	136,00	151,99	156,88
80,00	125,59	88,00	112,61	103,35	123,01	107,96	104,00	128,00	104,82	118,91	80,00	151,73	124,00	128,00	132,83	156,00	132,00	124,00	134,88	148,41	152,00
AbbruchT2	120,00	88,00	108,00	100,00	116,00	104,00	104,00	128,00	104,00	116,00	AbbruchT2	148,00	124,00	124,00	132,00	156,00	132,00	124,00	132,00	148,00	152,00
1nB2	116,00	88,00	100,00	108,00	112,00	100,00	100,00	128,00	104,00	112,00	1nB2	140,00	124,00	120,00	132,00	152,00	128,00	124,00	132,00	148,00	144,00
3nB2	148,00	108,00	132,00	132,00	132,00	128,00	120,00	120,00	148,00	152,00	3nB2	160,00	136,00	128,00	140,00	160,00	132,00	128,00	132,00	156,00	164,00
5nB2	148,00	100,00	132,00	140,00	168,00	140,00	120,00	120,00	156,00	160,00	5nB2	164,00	140,00	140,00	160,00	164,00	144,00	128,00	136,00	156,00	164,00
PQ-Strecke		ms									PO-Strecke		ms								
Code	AERT27	EZRO12	SRMS12		LNNT26	KHKD04	IHAS06	HRAROS	ERKN31	PHOR 20	Code	ΔΕΡΤ27	EZRO12	SRMS12	MI DY06	LNNT26	KHKD04	IHA SO6	HRAROS	ERKN31	PHOR20
0.00	52.00	64.00	56.00	44.00	56.00	60.00	28.00	60.00	68.00	80.00	0.00	64.00	68.00	56.00	60.00	88.00	68.00	32.00	64.00	72.00	112.00
10.00	52,00	60.35	56.00	41 64	48 91	57 99	28.00	57.88	59.39	76 17	10.00	64.00	66 17	56.00	60,00	83 27	68.00	32.00	64.00	72,00	108 17
20.00	52,00	56.69	56.00	38.87	45 13	56.00	28.00	55.63	59.05	72 34	20.00	64.00	64.35	56.00	60,00	76.62	67.97	32.00	63.27	68.95	104 34
30.00	51.95	53.49	56.00	36.00	48.86	56.00	28.00	52.28	55 92	56 75	30.00	63.95	61 49	56.00	59 14	67 14	64.62	32,00	56.57	64.00	91.80
40.00	48.29	47 20	52.65	34 24	50 24	53 27	26,00	45 31	50,92	49 78	40.00	60.29	58 40	56.00	55 12	62.24	61.27	32,00	49.31	62 90	85 78
50.00	44.82	39.46	46.83	27.36	43.36	50.08	24.00	41 42	46 13	45 50	50.00	53.64	55 46	53 42	50.36	54.09	58.08	31.46	45.42	58 13	79.00
60.00	38.33	36.37	40,00	24.00	39.68	45 47	24,00	35.78	41 10	38 34	60,00	46.33	52 37	49.89	43.36	43.68	52 20	28.37	41.89	56.00	65 79
70.00	31.02	33.28	38 38	23 32	35,66	37.53	24,00	32.00	36.08	29.06	70.00	36.53	46 55	46,38	35 32	39.66	42 77	28,00	38 38	52.08	53 42
80.00	28.00	30.18	32.84	16.33	31.67	24 13	24.00	32.00	32.00	25.03	80.00	32.00	40.37	42.95	27.67	36.00	36.07	28.00	36.00	49.53	40 13
90,00	24 40	27.09	24.65	19.98	28.02	24.00	24.00	31.35	32.00	24.00	90,00	30.68	35.09	39.35	24.02	36.00	32.68	28.00	34 70	46 24	33.86
100.00	20.00	24.00	28.00	20.00	28.00	24.00	24.00	28.00	32.00	24.00	100.00	28.00	32.00	36.00	24.00	36.00	24.00	28.00	28.00	36.00	32.00
1nB1	20,00	24,00	28,00	24.00	28,00	24,00	24,00	28,00	32,00	28.00	1nB1	28,00	32,00	32.00	24,00	36.00	28,00	28,00	32.00	32.00	32,00
3nB1	28,00	28,00	36.00	28.00	36.00	28,00	24,00	40.00	36.00	48.00	3nB1	36.00	44.00	36.00	44.00	44.00	48.00	28,00	32,00	48.00	56.00
5nB1	32.00	32.00	44.00	32.00	56.00	32.00	24,00	40,00	44.00	56.00	5nB1	40.00	52.00	52.00	52.00	56.00	40,00	28,00	44.00	68.00	68.00
30.00	32,00	32,00	44,00	30.48	52.98	32,00	24,00	40,00	43.07	53 52	30.00	13 01	52,00	52,00	45.90	57 51	52.68	28,00	47,38	59.97	68.00
40.00	32,00	32,00	42.23	28.00	48.00	29.37	24,00	40,00	40,00	10.80	40.00	36.67	50.49	50.23	36.00	58 38	53 37	28,00	48.00	56.00	63 74
50.00	28 72	31 /1	38.66	27,25	46,00	28.00	24,00	37 33	37.98	43,03	50,00	36.00	46 75	46.66	36.00	52.00	47.99	28,00	42.66	53.98	57 36
60,00	25.10	28.34	35.22	24.00	30.24	25,24	24,00	33 77	33.05	36.00	60,00	38.90	40,75	43.22	35.61	50.49	42.62	28,00	37 77	49.05	50 77
70.00	24.00	28.00	32.00	23 75	31 58	20,00	24,00	32.00	32.00	36.00	70.00	34.96	37.23	40,00	32.00	35.58	38.05	28,00	34 35	43,03	44.59
80.00	21.86	26,00	32,00	20.83	28.00	20,00	24.00	32,00	32,00	29.94	80.00	29.86	36.00	40,00	32,00	32.00	28.00	28.00	32.00	40.82	40.00
AbbruchT2	20.00	24.00	28.00	20.00	28.00	20,00	24.00	32.00	32.00	28.00	AbbruchT2	28.00	36.00	36.00	32.00	32.00	28.00	28.00	32.00	40.00	40.00
1nR2	20,00	24.00	24.00	20,00	28.00	24.00	24.00	32.00	32.00	28,00	1nB2	24.00	36.00	36.00	32.00	32.00	28.00	28.00	28.00	36.00	36.00
3nB2	28.00	32.00	40.00	28.00	44 00	28.00	24.00	36.00	40.00	48.00	3nB2	40.00	44 00	36.00	44 00	40.00	40.00	28.00	36.00	56.00	60,00
5nB2	32.00	36.00	44.00	40.00	48.00	32.00	24.00	40.00	44.00	52.00	5nB2	40.00	48.00	48.00	56.00	56.00	52.00	28.00	40.00	40.00	64.00
	,00	,00	,00			,00	,00		,00	,00			,00		,00	- 5,00	,00	,00		,00	- 1,00

		oh	ne ß-Blocka	Ide									m	it ß-Blocka	de						
QRS-Komp	ex	ms									QRS-Komp	olex	ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	80,00	80,00	88,00	88,00	96,00	84,00	84,00	96,00	100,00	88,00	0,00	80,00	80,00	88,00	80,00	88,00	80,00	84,00	96,00	108,00	88,00
10,00	80,00	80,00	88,00	88,00	96,00	84,00	85,83	98,12	102,87	88,00	10,00	80,00	78,17	88,00	80,00	88,00	80,00	84,00	98,12	105,13	88,00
20,00	80,00	80,00	88,00	86,87	96,00	84,00	87,65	100,00	104,00	88,00	20,00	80,00	76,35	88,00	80,00	89,13	80,00	84,00	100,00	104,00	88,00
30,00	80,00	80,00	88,00	84,86	96,00	84,00	88,00	100,00	104,00	91,05	30,00	80,05	76,00	88,00	80,00	92,00	80,00	86,51	100,00	104,00	88,00
40,00	80,00	80,00	88,00	88,00	96,00	84,00	88,00	100,00	104,00	92,00	40,00	83,71	77,60	88,00	80,00	92,00	80,00	88,00	100,00	104,00	88,00
50,00	80,00	80,00	88,00	88,00	96,00	84,00	88,00	102,58	104,00	90,75	50,00	84,00	80,00	88,00	80,00	92,00	80,00	88,00	100,00	104,00	89,25
60,00	80,00	80,00	88,00	88,00	96,00	84,00	88,00	104,00	104,00	88,00	60,00	84,00	80,00	88,00	80,00	92,00	80,00	88,00	100,00	104,00	92,00
70,00	82,49	80,00	88,00	88,34	96,00	84,62	88,00	104,00	104,00	88,00	70,00	84,00	80,00	88,00	80,34	92,34	80,00	88,00	100,00	104,00	92,00
80,00	84,00	80,00	89,05	91,67	96,00	87,97	88,00	104,00	108,00	88,00	80,00	86,15	80,00	88,00	84,00	96,00	80,00	86,18	100,00	104,00	92,00
90,00	87,60	80,00	92,00	88,02	96,00	88,00	88,00	104,00	106,24	85,86	90,00	86,68	80,00	88,00	84,00	96,00	80,00	84,00	100,00	104,00	89,86
100,00	92,00	80,00	92,00	88,00	96,00	88,00	88,00	104,00	108,00	84,00	100,00	84,00	80,00	88,00	80,00	92,00	84,00	84,00	100,00	100,00	88,00
1nB1	92,00	80,00	88,00	88,00	96,00	84,00	88,00	104,00	108,00	80,00	1nB1	84,00	80,00	88,00	84,00	92,00	84,00	84,00	100,00	100,00	84,00
3nB1	88,00	80,00	88,00	84,00	100,00	84,00	88,00	104,00	104,00	84,00	3nB1	88,00	80,00	88,00	80,00	92,00	84,00	84,00	100,00	104,00	88,00
5nB1	84,00	80,00	88,00	84,00	100,00	84,00	84,00	104,00	104,00	88,00	5nB1	88,00	80,00	88,00	80,00	96,00	84,00	84,00	104,00	104,00	88,00
30,00	83,95	80,00	88,00	84,00	98,49	84,00	84,00	104,00	104,00	85,52	30,00	84,00	80,00	88,00	80,00	96,00	81,11	84,00	104,00	104,00	88,00
40,00	80,34	78,48	88,00	84,00	96,00	84,00	84,00	104,00	104,96	84,00	40,00	84,00	78,49	86,23	80,00	96,00	80,00	84,00	100,77	103,04	88,00
50,00	80,00	76,00	88,00	84,00	96,00	84,00	84,00	104,00	108,00	84,00	50,00	84,00	76,00	84,00	80,00	96,00	80,00	84,00	100,00	100,00	86,68
60,00	82,90	76,00	88,00	84,00	95,62	84,00	84,00	104,00	108,00	83,39	60,00	81,10	76,00	84,00	80,00	96,00	81,38	84,00	100,00	100,00	84,00
70,00	89,04	78,73	88,00	84,25	92,42	84,00	84,00	102,35	107,99	80,34	70,00	80,00	76,00	84,00	80,00	96,00	83,35	84,00	100,00	100,01	84,00
80,00	92,00	80,00	88,00	87,17	96,00	84,00	84,00	100,00	104,41	80,00	80,00	82,14	76,00	84,00	80,00	96,00	80,00	84,00	100,00	103,59	84,00
AbbruchT2	92,00	80,00	88,00	88,00	96,00	84,00	84,00	100,00	104,00	80,00	AbbruchT2	84,00	76,00	84,00	80,00	96,00	80,00	84,00	100,00	104,00	84,00
1nB2	88,00	76,00	88,00	84,00	96,00	84,00	84,00	100,00	104,00	80,00	1nB2	84,00	76,00	88,00	80,00	96,00	84,00	84,00	100,00	104,00	84,00
3nB2	88,00	76,00	88,00	84,00	96,00	84,00	84,00	104,00	104,00	84,00	3nB2	84,00	80,00	88,00	80,00	96,00	84,00	84,00	100,00	100,00	84,00
5nB2	88,00	76,00	88,00	84,00	96,00	84,00	84,00	104,00	100,00	84,00	5nB2	84,00	80,00	88,00	80,00	96,00	80,00	84,00	100,00	100,00	88,00
ST-Strecke		ms									ST-Strecke	•	ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	92,00	80,00	96,00	116,00	104,00	112,00	124,00	108,00	84,00	100,00	0,00	104,00	116,00	124,00	128,00	152,00	124,00	136,00	112,00	108,00	108,00
10,00	87,77	74,52	91,98	111,27	99,27	105,97	111,21	101,65	84,00	88,51	10,00	101,88	112,35	119,98	120,91	133,08	117,97	130,52	105,65	102,26	104,17
20,00	83,60	69,04	86,90	108,00	94,87	99,97	98,42	95,63	84,00	77,03	20,00	99,20	108,69	114,90	113,75	117,75	111,97	125,04	99,27	90,85	100,34
30,00	79,95	62,98	76,85	104,56	90,28	96,62	90,98	92,28	75,85	60,75	30,00	91,89	102,98	104,85	107,14	110,28	108,62	113,97	92,57	83,92	93,90
40,00	76,29	60,00	72,65	90,24	84,00	93,27	84,80	81,96	65,80	51,57	40,00	84,58	93,60	93,96	100,48	103,12	99,80	103,20	85,31	80,00	85,35
50,00	66,46	58,92	72,00	82,73	83,36	88,17	78,92	72,25	60,00	46,75	50,00	84,00	82,92	89,42	85,54	98,09	90,25	93,31	76,25	78,13	77,50
60,00	64,00	52,74	67,78	75,04	79,68	81,47	72,74	65,89	54,20	43,45	60,00	78,33	76,74	79,57	75,68	87,68	82,73	77,85	69,89	73,10	70,89
70,00	61,51	49,28	64,00	63,32	75,32	72,92	66,55	60,77	44,15	40,35	70,00	71,02	70,55	70,38	71,66	83,32	79,38	70,55	64,77	68,08	64,71
80,00	57,85	44,37	59,78	55,35	67,67	56,17	58,55	52,84	31,05	37,03	80,00	61,56	64,37	64,84	68,00	75,02	76,03	66,18	58,95	60,58	55,10
90,00	52,40	39,09	47,35	48,04	64,02	52,68	52,00	43,35	26,24	33,86	90,00	56,00	55,46	54,70	68,00	64,05	69,37	61,28	56,00	48,98	47,72
100,00	48,00	36,00	44,00	40,00	60,00	48,00	52,00	40,00	20,00	28,00	100,00	56,00	40,00	48,00	60,00	64,00	60,00	52,00	56,00	40,00	40,00
1nB1	48,00	32,00	52,00	44,00	56,00	44,00	40,00	32,00	20,00	28,00	1nB1	56,00	36,00	52,00	44,00	56,00	56,00	48,00	48,00	40,00	40,00
3nB1	56,00	40,00	56,00	56,00	56,00	52,00	44,00	44,00	28,00	36,00	3nB1	64,00	56,00	56,00	64,00	76,00	72,00	52,00	56,00	44,00	44,00
5nB1	64,00	44,00	60,00	68,00	76,00	68,00	64,00	68,00	40,00	48,00	5nB1	76,00	72,00	80,00	80,00	100,00	92,00	68,00	84,00	56,00	68,00
30,00	60,05	44,00	70,13	72,57	77,51	73,79	64,00	68,00	55,97	48,00	30,00	83,95	76,05	86,08	86,10	100,00	97,79	74,07	90,75	75,97	65,56
40,00	63,66	44,00	80,00	78,51	79,19	73,37	62,49	64,77	49,13	48,00	40,00	80,34	78,49	92,00	94,51	98,38	97,37	76,81	95,23	72,96	64,00
50,00	64,00	43,41	75,99	72,00	75,22	70,00	58,75	61,33	40,00	46,64	50,00	76,72	75,37	90,66	87,25	91,22	89,99	71,37	87,99	69,93	64,00
60,00	61,10	40,34	64,89	71,22	71,62	68,00	52,68	55,53	40,00	41,57	60,00	76,00	72,34	86,44	83,61	87,24	81,24	68,34	75,07	61,05	61,53
70,00	54,96	34,54	51,36	62,99	67,15	65,39	49,88	50,35	31,99	29,37	/0,00	68,45	66,46	79,36	79,49	79,15	74,70	57,40	64,70	59,97	49,17
80,00	49,86	30,11	44,61	51,33	59,50	51,91	48,00	46,88	28,41	24,97	80,00	61,86	60,00	72,61	/3,67	/1,01	67,91	48,00	57,76	49,23	44,00
ADDruch 12	48,00	28,00	44,00	48,00	56,00	44,00	48,00	44,00	28,00	24,00	Abbruch 12	60,00	60,00	68,00	72,00	64,00	60,00	48,00	52,00	48,00	44,00
1082	48,00	32,00	44,00	44,00	52,00	48,00	48,00	32,00	28,00	24,00	1nB2	60,00	52,00	60,00	60,00	56,00	56,00	52,00	48,00	40,00	40,00
3082	52,00	36,00	60,00	56,00	64,00	52,00	52,00	32,00	40,00	36,00	3nB2	80,00	64,00	64,00	80,00	80,00	68,00	56,00	52,00	56,00	64,00
SURS	64,00	44,00	68,00	68,00	80,00	68,00	64,00	60,00	00,00	5∠,00	SURS	80,00	76,00	92,00	92,00	100,00	84,00	7∠,00	84,00	80,00	68,00

		ohi	ne ß-Blocka	Ide									m	it ß-Blocka	de						
T-Dauer		ms									T-Dauer		ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	184,00	172,00	204,00	180,00	196,00	196,00	176,00	232,00	164,00	172,00	0,00	192,00	180,00	216,00	204,00	224,00	188,00	160,00	232,00	196,00	192,00
10,00	177,65	162,86	199,98	170,54	191,27	187,96	166,86	215,07	152,51	160,51	10,00	187,77	176,35	211,98	192,18	221,64	179,96	152,69	225,65	184,51	184,34
20,00	172,00	153,73	195,63	161,75	188,00	179,90	157,73	199,27	144,95	149,03	20,00	182,80	172,69	206,53	181,75	215,49	171,97	145,38	218,53	183,05	176,69
30,00	171,89	144,48	192,28	152,56	186,28	169,85	150,98	192,57	140,00	148,00	30,00	172,00	169,49	193,13	174,28	204,00	168,62	141,49	205,13	179,85	169,90
40,00	164,58	133,60	181,96	138,24	176,48	157,07	144,80	181,96	136,70	145,78	40,00	172,00	166,40	181,96	167,12	199,60	162,53	140,00	190,62	169,80	161,35
50,00	157,64	122,39	167,09	129,46	162,09	146,25	137,31	174,83	124,25	137,75	50,00	156,09	161,85	174,83	164,00	183,36	158,08	138,39	182,83	162,13	153,50
60,00	150,33	113,11	153,67	115,04	151,68	136,20	121,85	161,46	108,40	122,89	60,00	152,00	149,48	172,00	163,36	179,36	153,47	129,11	175,78	157,10	146,89
70,00	140,53	106,55	139,92	103,32	145,96	126,77	109,11	148,77	100,08	116,71	70,00	152,00	139,83	167,15	154,98	171,32	146,15	119,83	168,77	144,23	140,71
80,00	127,42	104,00	126,95	95,67	123,67	120,07	104,00	141,89	100,95	116,00	80,00	152,00	130,55	160,00	143,02	163,35	136,10	116,00	161,89	131,63	131,10
90,00	116,40	103,09	119,45	92,02	120,02	106,73	104,00	134,05	107,51	113,86	90,00	148,04	123,09	158,70	132,05	156,04	132,68	116,00	152,75	122,24	121,58
100,00	104,00	100,00	96,00	92,00	108,00	100,00	104,00	124,00	104,00	112,00	100,00	140,00	120,00	152,00	108,00	144,00	124,00	116,00	136,00	108,00	116,00
1nB1	108,00	100,00	100,00	100,00	104,00	100,00	116,00	128,00	112,00	112,00	1nB1	136,00	120,00	140,00	124,00	136,00	124,00	116,00	136,00	116,00	116,00
3nB1	140,00	120,00	136,00	100,00	152,00	136,00	116,00	216,00	116,00	124,00	3nB1	160,00	140,00	156,00	136,00	168,00	152,00	140,00	164,00	156,00	144,00
5nB1	144,00	120,00	156,00	112,00	164,00	160,00	132,00	200,00	128,00	132,00	5nB1	168,00	152,00	184,00	156,00	188,00	152,00	152,00	176,00	172,00	156,00
30,00	156,00	120,00	153,97	110,48	167,02	151,32	134,02	200,00	124,00	139,43	30,00	167,91	156,05	184,00	154,48	188,00	149,11	147,95	179,38	164,03	165,77
40,00	156,00	120,00	148,45	108,75	170,38	145,37	136,00	193,54	122,09	141,89	40,00	160,67	158,49	182,23	152,00	187,19	150,63	144,00	180,00	165,13	169,87
50,00	146,15	120,00	144,00	109,00	163,22	139,99	134,12	186,66	113,98	135,93	50,00	153,44	154,12	175,99	150,50	181,67	145,99	144,00	174,66	153,98	164,04
50,00	135,30	120,00	141,00	95,61	157,73	130,48	125,03	175,07	106,11	127,39	50,00	149,10	145,03	166,44	142,83	171,62	140,00	144,00	167,53	146,11	154,15
70,00	124,45	120,00	131,30	92,00	135,58	120,00	113,40	161,39	104,00	124,34	70,00	148,00	138,46	159,36	130,99	166,30	139,35	141,88	159,05	127,96	144,88
00,00 AbbruchT2	116,00	116,11	124,01	92,00	131,01	109,07	104,00	147,51	104,00	124,00	00,00 AbbsuchT2	143,73	136,00	152,61	119,33	151,50	135,91	140,00	149,76	113,04	136,00
ADDIUCTI12	112,00	112.00	108.00	92,00	124,00	108,00	104,00	136,00	104,00	124,00	1pP2	140,00	130,00	144,00	124.00	146,00	128,00	140,00	144,00	12,00	130,00
2082	149.00	12,00	140.00	116.00	120,00	128.00	140.00	204.00	112.00	120,00	2082	156,00	148.00	160.00	144,00	194.00	120,00	156,00	140,00	120,00	149.00
5nB2	152.00	124.00	160.00	128.00	168.00	148.00	148.00	196.00	132.00	144.00	5nB2	172.00	152.00	176.00	160.00	192.00	156.00	156.00	172.00	164.00	148,00
	,	,			,		,	,					,		,		,	,	,		
QT-Zeit		ms									QT-Zeit		ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	356,00	332,00	388,00	384,00	396,00	392,00	384,00	436,00	348,00	360,00	0,00	376,00	376,00	428,00	412,00	464,00	392,00	380,00	440,00	412,00	388,00
10,00	345,42	317,38	379,96	369,81	386,54	377,93	363,90	414,84	339,39	337,03	10,00	369,65	366,86	419,96	393,08	442,72	377,93	367,21	429,42	391,90	376,51
20,00	335,60	302,76	370,53	356,62	378,87	363,87	343,80	394,90	332,95	314,06	20,00	362,00	357,73	409,43	375,49	422,36	363,93	354,42	417,80	377,90	365,03
30,00	331,84	287,46	357,13	341,98	372,56	350,47	329,97	384,85	319,85	299,80	30,00	343,95	348,48	385,98	361,42	406,28	357,23	341,97	397,70	367,77	351,80
40,00	320,87	273,60	342,62	316,48	356,48	334,33	317,60	363,93	306,50	289,35	40,00	340,29	337,60	363,93	347,60	394,72	342,33	331,20	375,93	353,80	334,71
50,00	304,09	261,31	327,09	300,18	341,46	318,42	304,23	349,67	288,25	275,25	50,00	324,09	324,77	352,25	329,54	373,46	328,34	319,70	359,09	344,25	320,25
50,00	294,33	245,85	309,46	278,08	327,36	301,67	282,59	331,35	266,60	254,34	60,00	314,33	306,22	339,57	319,04	359,04	316,20	294,96	345,67	334,20	309,79
70,00	204,00	230,03	291,92	234,90	317,20	264,30	203,00	313,33	240,23	245,06	70,00	307,02	290,39	325,53	306,96	340,90	305,53	270,39	333,53	316,30	297,42
00,00	209,27	220,37	2/0,/0	242,09	207,35	204,20	250,55	290,73	240,00	241,03	80,00	299,71	274,92	312,04	295,02	334,30	292,13	200,37	320,64	290,20	270,20
90,00	236,40	222,10	200,00	220,07	260,04	247,42	244,00	261,40	240,00	233,50	90,00	290,72	256,55	301,40	264,05	310,09	262,05	201,20	306,75	2/5,22	259,17
100,00	244,00	210,00	232,00	220,00	264,00	236,00	244,00	266,00	232,00	224,00	100,00	280,00	240,00	200,00	246,00	300,00	200,00	252,00	292,00	246,00	244,00
111D 1 2mD1	246,00	212,00	240,00	232,00	200,00	228,00	244,00	264,00	240,00	220,00	111D1 2mD1	210,00	236,00	200,00	252,00	204,00	204,00	246,00	204,00	256,00	240,00
SIID I En P1	204,00	240,00	200,00	240,00	306,00	212,00	246,00	364,00	246,00	244,00	50P1	312,00	276,00	300,00	260,00	336,00	308,00	276,00	320,00	304,00	210,00
20.00	200,00	244,00	212 10	264,00	242.02	200.11	200,00	372,00	292.07	200,00	20.00	225.96	212 10	352,00	220.57	284,00	328,00	304,00	274.12	332,00	210.22
40.00	300,00	244,00	316.45	271 25	345.58	302 75	282,02	362 31	203,57	272,95	40.00	325.01	315.46	360.45	326.51	381 58	328,00	304.81	376.00	344,00	321.87
50.00	200,00	230 /1	307.99	265.00	334.45	203.00	276.87	351.00	261.98	265 22	50.00	31/ 15	305 50	350.65	317 75	368.89	315.98	200 37	362.65	323 01	31/ 71
60,00	279 30	236 34	204 55	250.83	324.98	282.48	261 71	334.60	254 11	2/8 96	60,00	306.20	203 37	336.89	306.44	354.87	302.62	296.34	342.60	307.16	200.68
70.00	268.45	233.27	270 73	230,00	295 15	260,30	247.28	31/ 09	2/3 98	233 72	70.00	296.45	280.91	322 73	200,44	341.46	207 30	283.28	323 74	287.95	278.06
80.00	259 73	228 22	257 22	230.50	286 51	255 79	236.00	294 39	236.82	228 97	80.00	287 73	272.00	309 22	273.00	318 51	283.83	272.00	307 51	266.46	264.00
AbbruchT2	256.00	224.00	244.00	228.00	276.00	236.00	236.00	280.00	236.00	228.00	AbbruchT2	284.00	272.00	296.00	268.00	308.00	268.00	272.00	296.00	264.00	264.00
1nB2	248.00	220.00	240.00	224.00	276.00	240.00	236.00	276.00	236.00	224.00	1nB2	280.00	260.00	292.00	264.00	304.00	268.00	272.00	296.00	264.00	256.00
3nB2	288.00	240.00	288.00	256.00	324.00	264.00	276.00	340.00	256.00	252.00	3nB2	320.00	292.00	312.00	304.00	360.00	296.00	296.00	320.00	312.00	296.00
5nB2	304,00	244,00	316,00	280,00	344,00	300,00	296,00	360,00	288,00	280,00	5nB2	336,00	308,00	356,00	332,00	388,00	320,00	312,00	356,00	344,00	320,00

		ohn	e ß-Blockad	de									mi	t ß-Blockad	le						
P-Fläche		AUC									P-Fläche		AUC								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	8588,00	8730,00	9182,00	5902,00	13140,00	7602,00	6536,00	8432,00	6802,00	6602,00	0,00	6764,00	7660,00	8758,00	3180,00	4586,00	7642,00	6212,00	8600,00	5170,00	4954,00
10,00	9380,38	10401,95	10347,83	6152,18	12845,19	8817,15	8436,11	8707,67	8091,94	11527,21	10,00	7621,97	8137,04	10107,92	4204,20	7667,98	8579,37	7025,67	9012,46	5101,16	5652,33
20,00	10316,30	12073,91	11483,17	6769,64	12739,03	10017,97	10336,21	8997,81	8668,31	16452,43	20,00	8583,89	8614,08	11445,27	5079,87	10801,58	9501,37	7839,33	9441,70	5352,70	6350,66
30,00	12399,70	13510,20	12341,76	8432,20	13549,60	10516,28	10753,28	9419,27	9358,30	17498,16	30,00	10374,52	8902,88	12689,11	5566,35	13443,71	9669,72	8394,75	10023,38	5856,46	8063,01
40,00	14072.92	14001,70	14215.04	11409,09	19292 20	12522.16	10644,69	11460.00	11652 51	17490,40	40,00	12245 52	10747.01	13407,10	7020.06	14001,79	11252.60	0931,52	11092.46	7226 50	10540,17
60.00	16228.80	15700 17	15100.27	11226 21	23025.83	1/369.63	0823.87	13133.03	13221 70	17225.62	60,00	12240,02	11035.01	1/207 /5	9525.65	17212 68	12238.48	9291,27	12225 41	8348 45	12333,37
70.00	18084 46	14704 88	15951 20	11003.02	24082.03	16708 59	8441 23	15343 33	12485 34	16131.48	70.00	15550,30	14409.83	15010.07	10937.89	19079 49	13515 48	8425.96	13726 39	9735.26	13420 53
80.00	18131.69	14156.28	16391.62	9611.77	24506.02	18533.50	7706.33	17314.57	13216.97	15218.74	80.00	16207.00	16261.21	15708.41	11691.14	22141.27	14655.21	7881.39	15229.72	12371.18	13715.38
90.00	17362.20	13783.63	15857.45	7386.03	22480.25	15702.59	7974.38	19239.07	11961.77	14751.62	90.00	16462.59	16800.20	16076.56	11285.86	23445.82	15271.94	7723.05	16712.79	14432.68	14147.92
100.00	17599,99	12658,01	15608,00	5662,00	20564,00	15542,00	9460,00	19810,00	7132,00	15242,00	100,00	16878,00	15438,01	17766,00	7726,00	23792,00	16440,00	8110,00	18538,00	16428,00	16122,00
1nB1	16212,00	13634,00	18238,00	6736,00	18806,00	15678,00	13818,00	19180,00	7854,00	13898,00	1nB1	16532,00	14350,00	17958,00	8784,00	24488,00	16210,00	9154,00	18824,00	20536,00	15674,00
3nB1	21844,00	15770,00	22042,00	13536,00	15442,00	14838,00	15152,00	16332,00	23428,00	28630,00	3nB1	15204,00	14490,00	18188,00	11400,00	15258,00	15044,00	13076,00	16192,00	10208,00	18356,00
5nB1	19586,00	15270,00	17644,00	12330,00	14894,00	18432,00	13672,00	14616,00	18936,00	23308,00	5nB1	14082,00	13236,00	17308,00	9874,00	12456,00	13270,00	11916,00	13780,00	9576,00	15036,00
30,00	17286,00	15456,00	15928,00	13335,69	18324,56	16790,00	12724,00	12702,00	15428,00	22150,00	30,00	14268,00	12588,00	15490,00	10671,47	15462,02	12972,00	10738,00	12194,00	10056,00	14148,00
40,00	17052,63	14857,13	15389,57	12511,23	19766,72	16557,61	12344,63	12254,39	13977,94	21327,46	40,00	13383,38	12988,33	14818,58	10662,18	15915,76	12542,76	10297,59	11764,23	12545,53	14299,27
50,00	16722,18	13883,44	16271,35	12091,89	20123,45	16293,91	11741,05	13182,91	12098,19	20233,33	50,00	14359,56	13949,11	14519,44	10653,87	15487,10	13029,99	9600,84	12111,86	13475,67	15290,67
50,00	17100,61	13484,73	16963,19	12028,34	20702,41	16321,84	11/30,45	14607,21	10094,19	19441,49	50,00	14255,95	15610,91	14327,17	11900,21	17440,76	14239,79	9614,64	13903,48	13680,89	16559,35
20,00	16955 75	13000,72	17106 72	9926 56	20552,29	16446,34	11400,02	17952 71	0694.02	10924,32	80.00	15152,72	17120.00	14775,92	10225.96	20029 90	15501,07	9943,39	16900.65	14640.21	14041,37
AbbruchT2	16166.00	12355.42	17254.00	8826.00	18170.00	15880.00	11426,00	101/6 00	9034,02	18/10 00	AbbruchT2	16440.00	17120,00	172/3 08	10235,00	21796.00	15456.00	9270,00	17696.00	16622.00	15292,00
1nB2	15714.00	13476.00	17736.00	10644.00	17446.00	14708.00	10470.00	19398.00	22036.00	16514.00	1nB2	18292.00	17744.00	17114.00	10988.00	21984.00	16372.00	10340.00	18310.00	15712.00	18502.00
3nB2	20166.00	15640.00	19516.00	13472.00	18308.00	20166.00	14532.00	15848.00	18466.00	25662.00	3nB2	16472.00	17600.00	16484.00	10076.00	18380.00	15382.00	11536.00	16064.00	10420.00	18658.00
5nB2	17780,00	16386,00	17476,00	12444,00	22222,00	18318,00	11558,00	14154,00	14286,00	20770,00	5nB2	17064,00	14238,00	16566,00	9922,00	14030,00	14430,00	10156,00	14262,00	10248,00	14612,00
ODC Fläska		4110									ODS Fläck		4110								
QRS-Flache	AFDT07	AUC	0014040	MI DVOC		KUKDOA			EDIANOA	DUODOO	QRS-Flache	3 AEDT07	AUC	001010			KUKDOA			FDIANOA	DUODOO
Code	AER127	FZRU12	5KM512	MLD 106	LININ I 26	KHKD04	JHA506	54172.00	75060.00	PHUR29 49756 00	Code	AER 127	FZR012	SRN512	MLD 106	LININ I 26 102224-00	KHKD04 62002.00	JHA506	48208 00	79249.00	PHUR29
10.00	45612,00	72200,00	72200,00	50534,00 49491.01	94780,00	59373 70	56872 20	53561 73	75900,00	46750,00	10.00	47510,00	74110,00	78859 77	52367.25	00372 23	62020.28	58963 32	40290,00	76660.27	49052 55
20.00	45497 23	71056 27	68477 13	48351 57	93516.83	58264 15	57124 59	52992 48	75997 82	49362.06	20.00	46956 54	72063 48	77687 25	50523 70	96488 76	60093.32	57920.63	47316.82	75258.88	47919 10
30.00	45989.81	71427.05	68085.28	47339.50	92243.47	58171.55	57318.30	52795.68	74730.03	50482.35	30.00	45679.81	71275.55	76711.98	49140.06	93757.25	60359.31	57561.10	46599.30	73215.53	47836.80
40,00	45710,23	72278,95	66549,40	47370,20	90346,77	57461,27	57559,50	52675,76	72716,24	51116,43	40,00	45400,23	70519,03	73877,99	48480,15	91821,36	59577,60	56994,47	45341,36	72202,06	48044,55
50,00	46515,57	73000,36	65630,61	47447,82	90015,59	57767,53	57597,79	53368,91	70934,51	51229,36	50,00	44686,68	70039,42	72472,11	47448,15	90643,11	59157,14	56240,98	45014,38	72604,97	48470,99
60,00	47569,60	72549,94	65622,75	46909,01	89607,04	59111,30	57019,02	54297,55	68247,48	50896,54	60,00	44818,33	70434,45	71989,98	46887,30	90103,10	59209,25	55746,88	45604,57	71447,20	48982,37
70,00	48986,56	71106,04	65954,01	45581,16	90458,84	60433,80	56198,41	55670,11	64747,11	49653,71	70,00	44720,52	70733,34	71995,34	47063,97	90705,04	59599,15	55127,88	47069,22	69309,45	49546,41
80,00	48242,59	69623,25	65878,80	43752,75	93527,91	59551,64	54922,13	57356,18	62946,16	48788,08	80,00	44834,13	71561,52	71846,58	48030,68	91100,09	60094,10	54629,18	49148,54	68701,99	51270,83
90,00	45324,81	68078,97	65823,73	42665,83	94611,67	59202,38	53325,70	58840,11	61808,36	47940,18	90,00	46433,17	72364,70	71537,87	48045,51	92139,70	60922,32	54184,34	51475,30	69582,01	52582,13
100,00	42978,01	66256,02	65894,00	41236,00	95204,00	59112,00	51694,00	59534,00	62500,00	47850,00	100,00	49261,97	72224,00	71638,00	46092,00	94358,00	61332,00	53642,00	53694,00	64322,00	53150,00
1nB1 2nD1	44286,00	65690,00	66728,00	40226,00	95980,00	58374,00	50730,00	59246,00	65402,00	46868,00	1nB1 2=B1	50028,00	72010,00	72704,00	41452,00	94364,00	61830,00	52918,00	54402,00	69886,00	52904,00
3NB1	52564,00	70856,00	70158,00	42020,00	97688,00	60220,00	52924,00	62740,00	76102,00	53680,00	3NB1 ExP1	50374,00	78576,00	73626,00	52138,00	99330,00	67174,00	56850,00	55252,00	84448,00	58656,00
30.00	521/6 00	75214,00	69330.00	40030,00	08533 23	61448.00	524256,00	57974.00	74192,00	51908.00	30.00	53232,00	76502,00	77774.00	5/136 11	99708.89	65194.00	55698.00	55426.00	80012.00	59784,00
40.00	49562.68	68876 79	68168.80	49732,70	90333,23	50005 30	51727.07	55382 30	67084 74	50345 90	40.00	48721.84	74781 25	75085.09	53034 51	95503.05	62702 18	54446 31	52109.45	74637.24	56542 14
50.00	47778 70	65550.97	66772 30	45764 63	91757.07	57151 59	50429 43	54101 50	64607 91	48406.00	50.00	47860 72	71842 52	71899.95	52170.62	92877 21	61084.38	52457.05	50218 36	71236 70	53350.00
60.00	44679.95	62070.61	64662.17	43340.66	90546.99	56317.96	49503.19	54526.97	64692.36	46971.86	60.00	47887.99	70062.02	70123.51	49548.64	91370.99	60755.59	52452.45	49778.83	69692.16	52683.45
70,00	42876,38	61640,01	62583,75	41477,91	89842,55	56274,08	49722,68	55795,39	64215,33	44811.05	70,00	48173,70	70200,12	69705,39	48241,32	92015,52	61121,73	52202,63	50607,90	67330,30	51868,91
80,00	42740,46	62713,30	61298,35	40598,12	89877,51	56286,21	48854,00	56792,25	62791,68	43224,48	80,00	48117,05	69566,00	70134,38	48935,64	91209,46	60717,02	51360,00	52412,50	66347,29	51124,00
AbbruchT2	43010,00	62713,30	60712,01	40598,00	90721,99	56832,00	48854,00	56946,00	62720,00	42760,00	AbbruchT2	47966,00	69566,00	71187,98	48936,00	91922,00	59982,00	51360,00	54366,00	65484,00	51124,00
1nB2	41450,00	62618,00	60272,00	40224,00	90388,00	56926,00	48356,00	56988,00	67284,00	42870,00	1nB2	48818,00	69440,00	70832,00	47226,00	92418,00	59940,00	51072,00	54336,00	68942,00	51020,00
3nB2	49490,00	68898,00	69064,00	44212,00	97570,00	58470,00	51308,00	60286,00	73120,00	50550,00	3nB2	48198,00	74672,00	70878,00	51602,00	97798,00	63806,00	54940,00	55302,00	82888,00	56734,00
5nB2	51082,00	71038,00	70808,00	47678,00	99436,00	61072,00	52720,00	59762,00	70254,00	51852,00	5nB2	49968,00	76728,00	77614,00	53692,00	99002,00	66958,00	55956,00	56952,00	79770,00	57090,00

		ohr	ne ß-Blocka	de									m	it ß-Blocka	de						
T-Fläche		AUC									T-Fläche		AUC								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	31161,00	28174,00	56136,00	28384,00	49638,00	36242,00	20373,00	53017,00	20786,00	26962,00	0,00	41984,00	48981,00	77226,00	58566,00	104169,00	30544,00	17007,00	69867,00	27963,00	33322,00
10,00	28176,60	24565,50	50067,42	23112,94	46532,47	30081,20	17257,42	40827,10	19898,71	26585,36	10,00	39178,39	45966,38	71254,71	51328,05	92650,23	27888,72	14731,99	62262,13	27188,41	31502,90
20,00	25380,04	20957,01	44019,62	18677,65	44335,68	23976,37	14141,84	29961,64	19665,91	26208,71	20,00	36334,54	42951,76	64728,07	43825,69	80053,70	25240,16	12456,98	54880,50	27766,29	29683,81
30,00	24096,67	20890,70	38125,68	15775,10	42449,62	23413,56	13544,85	29867,00	18477,47	23310,05	30,00	33215,78	38327,95	54090,02	36789,82	66898,17	23256,07	10675,23	49314,35	27470,99	27897,51
40,00	21874,65	19701,90	30889,95	11884,34	35058,76	19659,87	12829,46	28018,80	16388,10	23039,50	40,00	32467,49	35215,46	46691,95	33292,80	58909,74	21121,63	9759,78	43304,99	25716,97	27041,37
50,00	21538,14	17767,64	26576,87	9655,48	31117,52	15679,07	11605,53	27906,96	14730,46	23649,34	50,00	28840,88	34096,53	41573,68	29343,60	47209,67	19209,25	9665,24	39066,31	23903,53	26455,66
60,00	20964,54	20052,92	23434,12	10096,27	28608,53	12583,68	10694,82	25681,20	14860,14	24313,75	60,00	27420,32	33703,02	37871,61	27992,47	41913,50	16998,74	10080,39	34570,96	23294,29	25549,56
70,00	20183,11	23036,61	20526,56	11420,01	31314,74	11493,83	10312,35	24250,39	16038,86	26680,96	70,00	27434,42	33587,25	34651,96	23982,01	37312,79	14349,71	10143,61	31253,07	22181,93	24217,51
80,00	18642,79	26691,39	17856,63	12183,04	32463,28	12672,21	12442,14	25718,17	20249,53	29144,24	80,00	28701,78	34352,34	31142,04	21396,94	36510,95	11946,04	10516,22	29787,20	20741,04	23467,25
90,00	17102,03	29656,66	17816,15	14205,87	36298,80	16040,36	16827,71	27416,74	22801,45	30035,23	90,00	28139,68	37669,94	28809,39	21284,56	40097,05	11304,29	11652,22	28755,79	21086,02	24446,33
100,00	15380,03	29986,00	17934,00	16645,97	38217,98	17691,99	22509,94	29631,98	24107,99	30753,98	100,00	25008,03	45703,91	23636,00	22451,99	45117,95	11184,00	14020,97	26734,02	23867,97	26327,98
1nB1	17492,00	33368,00	16620,00	13110,00	39862,00	18220,00	17010,00	32968,00	24972,00	31220,00	1nB1	24106,00	51184,00	24620,00	23600,00	45818,00	13202,00	15411,00	29210,00	28264,00	28174,00
3nB1	34342,00	45432,00	40372,00	15078,00	68118,00	31178,00	26954,00	54038,00	31030,00	44278,00	3nB1	39526,00	59631,00	41792,00	34150,00	66110,00	22892,00	27674,00	38918,00	42834,00	42988,00
5nB1	30214,00	44568,00	43058,00	13642,00	51248,00	32886,00	20044,00	40824,00	23922,00	37378,00	5nB1	38184,00	51096,00	50030,00	33712,00	54120,00	17258,00	20976,00	36719,00	39354,00	34020,00
30,00	25332,11	40996,80	23854,53	12470,38	46125,05	23500,65	18495,05	39463,11	18136,34	35845,73	30,00	35122,84	49586,52	46006,22	29932,26	54159,61	15625,51	18297,59	36914,02	30376,64	33611,54
40,00	24865,38	38240,21	22176,70	10544,51	38282,51	16973,05	17392,42	36798,42	20479,35	34872,32	40,00	33605,05	45937,76	44993,66	23512,55	54296,92	16138,60	16092,69	36031,39	27115,12	32527,50
50,00	23939,19	40266,88	21308,04	10394,68	40558,44	15551,70	18349,66	35957,67	20640,71	33723,30	50,00	33250,68	42469,99	42601,65	21901,66	53276,84	16252,20	17037,08	35415,50	23965,63	31663,91
60,00	22230,80	43731,79	22380,59	10291,40	39759,49	16089,62	19723,19	35733,33	20202,75	31882,99	60,00	30499,84	43007,43	38906,62	20199,97	47619,29	15546,99	18616,04	34547,00	23650,63	31171,93
70,00	19634,06	45005,17	23072,64	11429,91	37947,61	18023,98	20180,10	34202,92	21611,13	33624,02	70,00	28491,99	46081,49	34065,02	19596,36	44485,04	15261,99	18980,03	33535,40	21418,62	30140,11
80,00	18426,91	44827,16	21989,06	13735,34	38044,84	23865,43	20448,00	31975,33	23623,98	34883,01	80,00	27365,04	45178,00	31204,23	19577,41	38243,16	16009,82	19145,00	32538,14	21660,37	31522,00
AbbruchT2	18412,00	44166,00	21784,00	14394,00	40180,00	24183,99	20448,00	31576,00	23854,00	35224,00	AbbruchT2	26886,02	45178,00	30960,00	19572,00	41128,00	16736,00	19145,00	31733,02	21688,00	31522,00
1nB2	18590,00	44052,00	24914,00	16386,00	44808,00	24760,00	20442,00	38074,00	24270,00	35892,00	1nB2	26722,00	48562,00	30652,00	25644,00	44136,00	17556,00	19826,00	32737,00	23330,00	34036,00
3nB2	35840,00	56768,00	47714,00	21298,00	72060,00	34540,00	33076,00	67890,00	27580,00	46968,00	3nB2	38098,00	55075,00	43772,00	31149,00	69368,00	25915,00	27426,00	43984,00	37514,00	39699,00
5nB2	27654,00	44696,00	39672,00	17112,00	55833,00	26860,00	24176,00	50472,00	21901,00	37776,00	5nB2	38647,00	52773,00	52140,00	34349,00	66289,00	24211,00	21591,00	43153,00	30443,00	36803,00

		oh	ne ß-Block	ade									m	it ß-Blocka	de						
Herzfreque	enz	S/min									Herzfrequ	ienz	S/min								
Code % Pmax	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code % Pmax	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	70,00	78,00	53,00	59,00	62,00	66,00	69,00	57,00	74,00	67,00	0,00	56,00	59,00	43,00	48,00	46,00	58,00	63,00	52,00	60,00	54,00
25,00	90,00	112,00	82,00	84,00	92,00	96,00	108,00	74,00	100,00	105,00	25,00	80,00	88,00	74,00	75,00	74,00	87,00	94,00	70,00	84,00	84,00
25,00	92,00	110,00	85,00	86,00	93,00	98,00	116,00	76,00	104,00	106,00	25,00	80,00	86,00	75,00	77,00	76,00	87,00	100,00	67,00	89,00	89,00
25,00	93,00	111,00	107.00	90,00	91,00	99,00 124.00	145.00	72,00	106,00	138.00	25,00	78,00	108.00	96.00	102.00	75,00	104.00	120.00	71,00	89,00 105.00	90,00 106.00
50,00	114,00	143,00	108,00	123,00	109,00	125,00	147,00	95,00	128,00	141,00	50,00	98,00	112,00	96,00	105,00	95,00	109,00	121,00	88,00	111,00	108,00
50,00	113,00	150,00	110,00	129,00	110,00	129,00	148,00	97,00	131,00	143,00	50,00	98,00	115,00	98,00	106,00	94,00	107,00	121,00	86,00	112,00	112,00
75,00	131,00	172,00	141,00	157,00	134,00	162,00	171,00	128,00	155,00	162,00	75,00	108,00	140,00	110,00	127,00	113,00	130,00	137,00	105,00	130,00	130,00
75,00	136,00	179,00	151,00	164,00	132,00	163,00	176,00	135,00	163,00	169.00	75,00	112,00	160.00	123.00	134,00	117,00	132,00	142,00	114,00	138,00	138,00
25,00	114,00	150,00	107,00	119,00	95,00	126,00	134,00	94,00	120,00	132,00	25,00	86,00	120,00	84,00	99,00	84,00	103,00	114,00	77,00	100,00	105,00
25,00	101,00	139,00	100,00	115,00	94,00	117,00	128,00	85,00	118,00	129,00	25,00	84,00	106,00	76,00	95,00	76,00	102,00	109,00	71,00	98,00	100,00
25,00	103,00	139,00	103,00	116,00	92,00	117,00	127,00	84,00	114,00	129,00	25,00	83,00	108,00	78,00	96,00	78,00	102,00	108,00	72,00	95,00	96,00
50,00	118,00	161,00	127,00	140,00	106,00	142,00	152,00	104,00	136,00	143,00	50,00	100,00	131,00	100,00	114,00	96,00	120,00	123,00	89,00	114,00	122.00
50,00	120,00	167,00	134,00	148,00	112,00	149,00	157,00	110,00	142,00	151,00	50,00	100,00	139,00	102,00	118,00	94,00	121,00	124,00	90,00	119,00	118,00
75,00	143,00	182,00	161,00	169,00	145,00	175,00	174,00	140,00	164,00	164,00	75,00	116,00	159,00	124,00	137,00	115,00	143,00	142,00	117,00	139,00	146,00
75,00	147,00	186,00	164,00	175,00	154,00	178,00	179,00	148,00	169,00	172,00	75,00	118,00	166,00	127,00	140,00	121,00	147,00	142,00	118,00	143,00	151,00
75,00	153,00	190,00	166,00	175,00	154,00	176,00	181,00	150,00	171,00	173,00	75,00	122,00	170,00	129,00	143,00	122,00	152,00	147,00	124,00	145,00	152,00
Adrenalin		nmol/l									Adrenalin	1	nmol/l								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax											% Pmax										
0,00	0,03	0,39	0,43	0,36	0,21	0,57	0,41	0,10	0,48	0,13	0,00	0,07	0,08	1,32	0,08	0,37	0,11	0,53	0,35	0,53	0,20
25.00	x	x	x	×	×	x	x	x	x	x	25,00	×	×	x	x	×	×	x	x	x	x
25,00	0,34	0,43	0,54	0,42	0,46	0,68	0,41	0,36	0,43	0,17	25,00	x	0,36	1,27	0,49	0,54	0,37	0,42	0,75	0,60	x
50,00	x	x	x	x	x	x	х	x	х	x	50,00	x	x	x	х	x	x	х	x	х	х
50,00	X	X	X	X	×	X	X	X	X	X	50,00	X	X	X 1.62	X	X	x	X	X	X	X 0.40
75.00	0,37 X	0,65 X	0,41 X	0,54 X	0,40 X	0,45 X	0,05 X	0,20 X	0,63 X	0,35 X	75.00	0,27 X	0,64 X	1,65 X	0,09 X	0,89 X	0,20 x	0,49 X	0,60 x	0,43 X	0,40 X
75,00	x	x	x	x	x	x	x	x	x	x	75,00	x	x	x	x	x	x	x	~	x	x
75,00	0,51	1,60	0,50	1,09	0,66	0,87	1,13	0,64	1,22	0,60	75,00	0,30	1,01	2,05	1,43	1,30	0,41	1,14	x	1,31	0,55
25,00	x	x	x	x	x	x	x	x	x	x	25,00	x	x	x	x	x	x	x	x	x	x
25.00	0.36	0.99	0.39	0.57	0.52	0.72	0.53	0.09	0.36	0.36	25,00	0.19	0.03	1.34	0.11	0.55	0.41	0.49	0.82	0.65	0.43
50,00	x	x	x	x	x	x	x	x	x	x	50,00	x	x	x	x	x	x	x	x	x	x
50,00	x	x	x	x	x	x	х	x	x	x	50,00	x	x	x	x	x	x	x	x	х	х
50,00	0,44	1,12	0,60	0,60	0,61	0,49	0,62	0,40	0,94	0,38	50,00	0,43	x	1,71	0,84	1,27	0,31	0,57	1,05	0,76	0,66
75.00	x	x	x	×	x	x	x	x	x	x	75.00	x	x	×	x	×	x	x	x	x	x
75,00	0,39	4,51	х	1,45	0,71	0,54	1,27	0,62	1,21	0,80	75,00	1,46	9,81	х	3,25	1,35	0,54	1,02	1,81	0,94	1,64
Noradrena	alin	nmol/l	CDMC12	MI DVOG		KUKDOA	ILLAGOG		EDIZNO1	DHOR20	Noradren	alin	nmol/l	CDMC10	MI DV06		KUKDOA	111 4 6 0 6		EDIZNO1	DUODOO
% Pmax	AER127	FZRUIZ	SRIVIS 12	WILD 106	LININ 120	KHKD04	JHASU0	HRARUO	FRANSI	PHOR29	% Pmax	AER12/	FZROTZ	SRIVIS12	IVILD 100	LININ 120	KHKD04	JHAGUU	HRARUO	FRANSI	PHOR29
0,00	2,01	2,88	2,00	3,92	0,52	3,05	3,64	0,83	3,99	0,44	0,00	2,02	1,52	2,84	9,53	1,66	3,57	1,96	3,45	4,33	1,27
25,00	x	х	x	x	x	х	х	х	х	х	25,00	x	x	х	х	x	x	х	х	х	х
25,00	X 2.44	x	X	X	X	X 2 71	X 2.07	X	X	X	25,00	X 2 79	X 1 5 1	X 2.04	X	X	X 4 20	X 1.90	X 5 71	X	X
25,00	3,41 X	2,20 X	1,10 X	4,05 X	0,63 X	3,71 X	2,07 X	0,20 X	4,49 X	0,40 X	25,00	2,70 X	1,51 X	3,64 X	9,57 X	1,34 X	4,20 X	1,09 X	5,71 X	4,00 X	0,63 X
50,00	x	x	x	x	x	x	x	x	x	x	50,00	x	x	x	x	x	x	x	x	x	x
50,00	4,47	5,34	1,96	4,46	0,97	4,52	2,81	1,34	5,16	1,36	50,00	4,45	6,54	2,92	5,46	4,32	5,59	3,41	5,71	6,11	1,44
75,00	x	x	x	x	x	x	x	x	x	x	75,00	x	x	x	x	x	x	x	х	x	x
75.00	8.35	17.36	2.14	11.36	3.81	8.94	5.25	3.10	10.18	3.91	75,00	7.44	36.50	12.44	46.87	7.00	5.87	6.14	×	16.99	4.13
25,00	x	x	x	x	x	x	x	x	x	x	25,00	×	X	x	x	x	x	x	x	x	x
25,00	x	х	х	х	х	х	х	х	х	x	25,00	x	х	х	х	х	х	х	х	х	х
25,00	4,01	9,55	0,70	3,04	0,49	3,72	2,95	1,04	6,05	1,23	25,00	1,90	8,66	4,94	9,55	2,22	4,47	3,11	5,73	4,92	1,69
50.00	x x	x x	x	x	x	x x	× ×	x x	x	x x	50,00	x	x	x x	x	x	x	x	x x	x x	x
50,00	4,72	11,88	4,52	5,37	~	5,24	3,41	0,67	5,76	1,63	50,00	5,91	x	5,59	9,48	4,77	5,60	3,64	7,97	6,88	2,18
75,00	х	х	х	х	х	х	x	х	х	x	75,00	x	х	х	х	х	х	х	х	х	x
75,00	X 7.97	X 77.40	x	X 10.00	x	X 0.01	X	X 1 70	X	X	75,00	X	X 80.40	X 12.15	X	X 12.41	X	X	X 22.02	X	X
75,00	1,87	11,49	x	10,00	x	8,21	5,09	1,79	12,81	4,82	15,00	9,93	80,49	13,15	80,00	12,41	9,41	5,72	23,03	12,81	5,07

		ohi	ne ß-Block	ade									m	it ß-Blocka	de						
Laktat Code	AERT27	mmol/l FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Laktat Code	AERT27	mmol/l FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax											% Pmax										
0,00	1,43	0,58	0,97	0,94	2,11	0,66	1,06	1,11	0,90	1,46	0,00	1,62	1,03	1,04	1,71	1,30	1,07	1,14	0,50	2,14	1,61
25,00	1,32	0,52	0,87	1,38	1,79	0,53	0,89	0,86	1,14	1,53	25,00	1,25	0,84	0,97	1,56	1,16	0,99	1,14	0,55	1,48	1,53
25,00	1,13	0,50	0,72	1,34	1,35	0,53	0,84	0,73	0,92	1,50	25,00	1,92	0,53	0,91	1,55	0,96	0,66	1,00	0,50	1,49	1,32
50.00	1,71	1.12	1.44	2.25	1,10	0.56	1.63	1.20	1.40	2.32	50.00	1,65	1.58	1.64	1,40	1.11	0.87	1.50	0.89	1,80	2.11
50,00	1,84	1,15	1,66	2,70	1,15	0,54	2,21	1,41	1,41	2,81	50,00	1,74	1,67	1,26	2,21	1,10	0,85	1,83	0,86	1,71	2,50
50,00	1,78	1,18	1,39	2,82	1,08	0,52	2,44	1,31	1,43	3,01	50,00	1,70	1,64	1,44	2,03	1,04	0,73	1,70	0,86	1,80	2,64
75,00	3,15	4,00	2,36	4,93	2,25	1,85	3,69	3,12	3,18	5,34	75,00	2,34	4,88	3,16	3,51	2,74	2,05	2,62	2,47	3,85	4,79
75,00	3,65	6,71	3,57	7,28	3,21	2,34	5,25	4,47	4,68	7,11	75,00	3,59	8,45	3,56	5,00	3,40	2,62	3,87	3,41	5,38	7,02
75,00	3,93	8,28	3,87	8,30	3,41	2,83	5,90	4,23	5,44	8,25	75,00	4,40	10,10	4,21	6,09	3,52	3,03	3,74	3,82	5,25	8,78
25,00	3,27	7,81	3,19	7,94	2,66	1,88	5,63	3,29	4,24	7,06	25,00	4,17	9,40	3,56	4,35	2,74	2,38	3,73	2,83	5,90	8,37
25,00	2,30	5.27	2,30	6,45 5 1 5	1,70	1,37	4,64	1,75	3,40	5,83	25,00	2,57	8,22	2,44	4,76	1,75	1,53	3,21	1,96	4,54	6,73
50.00	1,01	3.55	1,43	4 4 2	1,20	0,09	3 13	1,20	1 91	3.89	50.00	2 01	4.83	1,49	1 93	1,31	0.88	2,33	1,30	2 75	3,20 4 44
50.00	1.64	2.88	1.37	3.75	1.06	0.79	2.82	1,17	1.73	3.62	50.00	1.97	3.54	1,14	2.85	1.07	0.86	1.95	1.17	2.01	4.12
50,00	1,60	2,11	1,23	3,58	1,03	0,58	2,23	0,96	1,50	3,29	50,00	1,80	3,40	1,42	2,92	0,97	0,75	1,99	1,04	1,69	3,55
75,00	2,21	4,50	2,44	4,93	2,29	1,45	2,84	2,13	2,76	5,08	75,00	3,17	5,50	2,33	4,07	1,88	1,69	2,51	2,35	2,61	5,18
75,00	2,99	6,93	3,18	6,32	3,34	2,10	3,78	3,02	3,91	6,58	75,00	3,85	8,15	2,95	5,19	2,70	2,47	3,32	2,79	3,31	6,93
75,00	3,69	8,26	3,50	8,21	3,85	2,14	4,21	3,36	4,85	7,61	75,00	4,53	9,38	3,26	5,66	3,45	2,78	4,07	3,44	5,24	8,45
VE		l/min									VE		l/min								
Code % Pmax	AER127	FZR012	SRMS12	MLDY06	LNN126	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code % Pmax	AER127	FZR012	SRMS12	MLDY06	LNN126	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	10,03	7,84	11,52	13,26	14,40	10,52	12,69	14,74	16,60	10,17	0,00	9,42	10,18	13,67	14,11	16,23	10,87	13,76	13,71	15,64	8,73
25,00	26,25	20,08	26,83	26,65	41,79	25,99	27,56	31,92	37,58	25,63	25,00	23,90	24,79	23,82	30,49	31,71	27,96	30,52	28,03	35,57	23,56
25,00	23,23	23,18	25,00	31,97	41,56	28,83	32,40	32,16	37,15	25,40	25,00	26,97	25,32	27,56	30,13	33,44	30,52	32,07	31,64	38,38	23,43
25,00	30,65	24,45	27,97	30,51	46,85	32,39	30,37	30,40	40,89	26,34	25,00	26,47	28,20	29,46	29,71	35,10	27,22	32,84	31,19	40,43	23,78
50,00	40,03	30,05	37,42	49,85	52,42	47,68	48,44	48,27	63,39 56 20	40,51	50,00	42,53	40,78	40,05	42,82	53,82	40,30	46,35	43,90	55,43	38,10
50,00	47,23	39.59	40 54	57.39	55 53	40,33	51.67	40,23	62 70	39.21	50,00	49,03	43 20	40,00	40,07	53 17	42,00	49.38	45.93	62.81	42.08
75.00	67.15	59.39	54.57	72.63	75.51	64.20	68.04	69.38	89.46	65.37	75.00	65.70	58.44	62.46	68.77	74.88	63.51	67.93	63.94	90.77	72.09
75,00	63,15	69,16	57,65	83,68	80,44	66,83	78,22	64,10	101,21	72,51	75,00	71,13	69,90	62,19	80,89	80,76	66,08	72,42	69,90	101,67	79,63
75,00	73,55	78,10	60,34	91,10	78,80	69,85	78,75	70,63	102,58	77,18	75,00	78,07	73,38	62,79	83,71	79,31	64,38	75,47	72,08	102,17	86,98
25,00	38,65	38,24	32,67	48,72	46,17	35,98	46,77	37,76	48,15	34,38	25,00	34,60	37,99	37,38	45,83	40,11	35,75	44,66	40,25	57,99	39,83
25,00	29,38	35,45	26,78	47,03	41,15	29,82	38,97	35,26	46,99	31,13	25,00	26,70	31,27	32,29	35,07	36,87	30,53	31,14	34,47	45,60	30,37
25,00	30,18	30,43	25,55	38,31	39,06	31,04	37,31	31,61	43,97	28,38	25,00	24,93	30,97	28,96	32,83	34,30	31,19	31,22	29,71	43,37	31,02
50,00	48,70	42,31	40,38	55,72	57,68	45,57	54,48	47,57	55,25 62.10	45,42	50,00	48,63	40,55	42,13	51,22	55,13	46,23	48,50	48,16	62.50	45,00
50,00	51.05	43.54	46 15	61 14	60.32	46.98	54 27	40,72	67.60	40,20	50,00	49 17	42,05	43,14	58 53	52 90	47,15	50 52	47 76	61.88	44,33
75.00	74.03	68.50	58.57	86.47	84.13	64.70	70.26	63.27	98.25	69.85	75.00	74.07	65.67	57.51	92.85	80.23	63.41	69.91	64.83	96.57	80.58
75,00	79,95	72,75	63,40	96,74	87,71	71,06	76,20	68,50	107,57	78,01	75,00	89,47	74,54	60,27	88,20	81,55	66,59	73,02	67,93	98,87	80,73
75,00	74,80	75,85	71,28	94,86	91,70	63,65	87,56	73,72	105,47	86,71	75,00	83,43	79,14	64,36	92,56	83,72	65,33	79,16	71,31	107,59	98,35
VO ₂		ml/min									VO ₂		ml/min								
Code % Pmax	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code % Pmax	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	288,00	264,81	286,28	281,17	311,93	240,18	283,43	286,14	253,22	247,97	0,00	222,50	281,87	284,01	268,05	316,11	241,30	256,09	262,24	273,27	227,32
25,00	1101,50	947,28	1184,34	1103,58	1526,96	1096,16	1074,34	1101,35	1674,38	1019,31	25,00	1026,67	1110,95	1150,85	1179,98	1384,67	1298,88	1031,16	1106,63	1374,18	942,86
25,00	930,75	999,58	1191,76	1181,43	1485,40	1193,28	1129,49	1099,61	1715,44	954,00	25,00	1072,00	1128,73	1110,10	1056,62	1395,37	1272,18	1049,07	1225,10	1463,13	967,30
25,00	1138,50	951,23	1154,55	1154,84	1974,96	1260,14	1063,20	1077,01	1752,19	1002,31	25,00	1050,00	1125,75	1143,18	1152,47	1327,53	1255,99	1032,25	1205,91	1563,35	958,11
50,00	1802,25	1547,09	1864,53	1812,99	2162,44	1799,83	1608,11	1690,31	2595,41	1563,10	50,00	1654,67	1767,05	1784,89	1774,54	2037,78	1764,45	1586,05	1741,04	2169,32	1492,53
50,00	1802,00	1582,66	1840,25	1937,18	2090,36	1753,06	1593,44	1710,94	2364,03	1541,76	50,00	1850,33	1/15,46	1830,26	1830,66	2051,71	1842,12	1532,36	1850,04	21/2,84	1630,89
75.00	2529.00	2039.82	2555 59	2047,59	2055,65	2307 74	2114 74	2361.60	2431,51	2041.81	75.00	2366 67	2108.45	2660 51	2509.37	2524.87	2468 67	2213.43	2324 13	2010,07	2438.84
75,00	2337 50	2187 61	2601.66	2736.81	2657.81	2214 72	2264.39	2250 77	3519.00	2088 42	75,00	2456.00	2160,40	2524.05	2645.08	2727.80	2432.46	2191.05	2473 94	3038.03	2378.00
75.00	2671.25	2184.88	2633.22	2760.33	2712.39	2402.64	2265.81	2397.92	3521.14	2205.88	75.00	2593.67	2120.87	2590.24	2739.91	2791.29	2530.16	2254.03	2444.70	3137.85	2569.25
25,00	1378,25	1126,93	1374,00	1455,15	1449,93	1110,79	1142,40	1205,80	1726,68	1133,09	25,00	1131,67	1165,98	1276,01	1395,02	1411,65	1274,27	1133,99	1384,83	1739,47	1116,29
25,00	1149,25	1124,36	1221,33	1378,43	1503,09	1039,92	1097,97	1136,99	1840,10	1102,36	25,00	1047,67	1117,58	1286,75	1253,58	1328,39	1168,85	1101,48	1257,74	1659,51	1117,33
25,00	1186,25	1097,05	1225,16	1227,54	1506,64	1070,76	1201,52	1064,96	1719,81	1061,76	25,00	987,33	1083,86	1145,51	1260,10	1227,71	1242,78	1083,31	1164,78	1605,44	1112,33
50,00	1965,25	1644,27	1893,90	2062,93	2122,79	1704,23	1568,41	1724,46	2221,27	1573,25	50,00	1839,00	1525,86	1843,83	1888,73	1940,53	1853,59	1656,07	1941,77	2280,60	1735,90
50,00	1996,50	1689,70	2067,75	2023,62	2149,19	1798,90	1545,41	1753,10	2473,81	1564,82	50,00	1985,00	1538,34	1863,98	2033,89	1955,88	1842,10	1619,00	1942,92	2299,77	1668,99
30,00	1921,50 2612.2F	2001 52	2153,50	2073,99	2221,27	1/41,24 2222 PF	1035,23 2000 2F	2220.00	2074,08	1474,50	30,00	1/5/,33	1000,38	1950,25	2097,11	1870,18	1970,39	1098,92	2422.14	2313,93	2205.40
75.00	2012,20	2001,52	2795 18	2634.07	2872 06	2222,00	2090,35	2230,09	3230,39 3480 QR	2009,98	75.00	2490,00	1931,02	2490,00	2700,47	2721 05	2303,10	2001,00	2432,11	2900,30	2305 10
75.00	2683.75	1961.73	2855.29	2698.31	3090.27	2292.05	2220.08	2411.68	3437.18	2393.09	75.00	2559.67	1936.43	2591.76	2897.01	2843.10	2500.45	2126.76	2424.18	3030.04	2552.41
.,==			,0		,=-	,	,	,	,.0		-,							, 0	,. 5		,

		ohi	ne ß-Blocka	ade									m	it ß-Blockad	de						
Kalium Code	AERT27	mmol/l FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Kalium Code	AERT27	mmol/l FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax 0.00	4 10	3 94	¥	4.03	4 13	4 15	3.95	4 07	4.00	3.87	% Pmax 0.00	4 04	4 42	x	4 48	4 16	4.03	3.90	4 32	4 19	4.35
25,00	4,29	4,12	x	4,03	4,26	4,07	3,84	3,94	3,96	x	25,00	4,30	4,69	x	4,52	4,35	4,44	4,15	4,31	4,35	4,29
25,00	4,10	4,07	x	4,14	4,27	4,26	3,93	4,14	4,00	4,38	25,00	4,43	4,81	x	4,35	4,42	4,51	4,17	4,16	4,54	4,28
25,00	4,31	4,50	x	4,27	4,35	4,35	3,92	4,11	4,12	4,40	25,00	4,44	4,58	x	4,33	4,48	4,51	4,24	4,25	4,75	4,37
50,00	4,36	4,65	x	4,37	4,38	4,38	4,19	4,19	4,30	4,47	50,00	4,48	5,38	x	4,36	4,60	4,69	4,47	4,36	5,05	4,45
50,00	4,41	4,66	x	4,36	4,40	4,38	4,25	4,42	4,47	4,43	50,00	4,61	4,75	x	4,52	4,68	4,64	4,33	4,38	4,97	4,54
75.00	4,42	5.20	x	4,42	4,42	4,35	4,43	4,40	4,32	4,50	75.00	4,00	5.85	x	4,37	4,05 5.05	4,89	4,38	4,44	5,20	5.12
75,00	4,68	5,36	x	4,52	4,65	4,46	4,66	4,85	4,97	4,95	75,00	5,00	5,95	x	4,80	5,07	4,88	4,69	4,80	5,60	5,34
75,00	4,67	5,25	x	4,49	4,70	4,63	4,87	4,94	5,06	5,16	75,00	5,15	5,86	x	5,11	4,84	4,94	4,72	4,95	5,75	5,39
25,00	4,38	4,48	x	4,42	4,50	4,15	4,45	4,32	4,47	4,15	25,00	4,50	4,85	x	4,47	4,53	4,39	4,54	x	4,70	4,55
25,00	4,39	X 4.22	x	4,34	4,46	4,18	4,34	4,26	4,49	4,27	25,00	4,42	4,69	x	4,40	4,53	4,39	4,55	4,32	4,63	4,45
25,00	4,43	4,33	x	4,57	4,62	4,24	4,40	4,55	4,43	4,30	25,00	4,55	4,03	×	4,42	4,49	4,40	4,54	4,27	4,60	4,49
50,00	4,74	4,94	x	4,45	4,59	4,42	4,53	4,53	4,63	4,71	50,00	4,72	5,20	x	4,69	4,46	4,61	4,59	4,81	4,47	4,70
50,00	4,61	4,88	x	4,35	4,64	4,34	4,52	4,59	4,56	4,68	50,00	4,64	5,18	x	4,71	4,47	4,59	4,57	4,69	4,45	4,89
75,00	4,71	5,20	x	5,25	5,33	4,56	4,47	4,77	4,75	5,08	75,00	4,92	5,72	x	4,94	4,41	4,83	4,63	4,96	4,36	5,18
75,00	4,84	5,44	x	5,13	4,76	4,61	4,38	4,77	4,90	5,29	75,00	4,87	6,54	x	5,13	4,43	4,89	4,70	4,89	4,36	5,37
75,00	4,60	5,56	X	5,16	5,10	4,51	4,40	4,04	4,90	5,11	75,00	4,44	5,65	x	5,01	4,47	4,05	4,71	4,95	4,39	5,54
P-Dauer		ms									P-Dauer		ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax	109.00	88.00	99.00	96.00	100.00	88.00	100.00	80.00	02.00	80.00	% Pmax	100.00	88.00	02.00	84.00	88.00	100.00	06.00	88.00	02.00	80.00
25.00	112 00	88.00	92.00	104.00	100,00	92.00	100,00	88.00	92,00	112 00	25.00	100,00	92.00	92,00	108.00	112.00	92.00	100.00	92.00	92,00	84,00
25,00	116,00	92,00	96,00	100,00	108,00	88,00	104,00	92,00	96,00	112,00	25,00	104,00	88,00	96,00	112,00	112,00	96,00	104,00	96,00	96,00	84,00
25,00	116,00	88,00	96,00	104,00	112,00	92,00	104,00	92,00	96,00	112,00	25,00	100,00	88,00	96,00	108,00	112,00	96,00	100,00	96,00	92,00	84,00
50,00	120,00	92,00	92,00	112,00	124,00	96,00	92,00	96,00	104,00	116,00	50,00	100,00	84,00	96,00	112,00	116,00	92,00	108,00	100,00	96,00	104,00
50,00	124,00	92,00	92,00	112,00	120,00	96,00	92,00	100,00	108,00	116,00	50,00	112,00	84,00	96,00	108,00	116,00	96,00	104,00	104,00	96,00	104,00
75.00	120,00	92,00	92,00	108,00	120,00	92,00	76.00	96,00	96.00	96.00	75.00	112 00	88.00	96,00 88.00	108,00	128.00	92,00	104,00	104,00	108.00	124.00
75,00	116,00	68,00	92,00	100,00	120,00	84,00	72,00	100,00	92,00	88,00	75,00	112,00	92,00	88,00	112,00	120,00	112,00	96,00	100,00	108,00	124,00
75,00	108,00	68,00	92,00	92,00	112,00	80,00	76,00	96,00	88,00	84,00	75,00	108,00	84,00	88,00	112,00	128,00	108,00	96,00		104,00	124,00
25,00	108,00	68,00	92,00	104,00	100,00	104,00	96,00	100,00	108,00	104,00	25,00	120,00	92,00	96,00	104,00	120,00	96,00	96,00	104,00	108,00	100,00
25,00	112,00	92,00	92,00	108,00	108,00	92,00	96,00	84,00	104,00	108,00	25,00	108,00	88,00	92,00	104,00	108,00	92,00	96,00	88,00	92,00	96,00
25,00	112,00	92,00	92,00	104,00	116.00	90,00	90,00	88.00	104,00	104,00	25,00	112 00	92.00	92,00	104,00	116.00	92,00	100.00	88.00	92,00	104.00
50,00	104,00	84,00	88,00	104,00	116,00	96,00	92,00	96,00	104,00	100,00	50,00	112,00	92,00	88,00	108,00	116,00	104,00	100,00	92,00	96,00	112,00
50,00	108,00	84,00	88,00	104,00	120,00	96,00	96,00	96,00	104,00	100,00	50,00	116,00	88,00	88,00	108,00	120,00	96,00	100,00	100,00	100,00	120,00
75,00	104,00	72,00	88,00	88,00	104,00	76,00	68,00	96,00	84,00	84,00	75,00	116,00	88,00	88,00	116,00	124,00	108,00	100,00	96,00	100,00	124,00
75,00	104,00	68,00	80,00	84,00	92,00	76,00	72,00	92,00	80,00	84,00	75,00	112,00	68,00	88,00	116,00	128,00	100,00	104,00	96,00	112,00	104,00
75,00	104,00	68,00	72,00	80,00	80,00	72,00	64,00	96,00	80,00	84,00	75,00	112,00	68,00	88,00	112,00	128,00	100,00	100,00	100,00	108,00	104,00
PQ-Zeit		ms									PQ-Zeit		ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax	168.00	152.00	144.00	140.00	172.00	152.00	132.00	136.00	164.00	180.00	% Pmax	164.00	156.00	148.00	148.00	172.00	164.00	140.00	152.00	168.00	204.00
25,00	168,00	148,00	148,00	144,00	160,00	152,00	128,00	140,00	160,00	188,00	25,00	164,00	148,00	148,00	164,00	176,00	152,00	140,00	152,00	164,00	192,00
25,00	176,00	152,00	148,00	140,00	160,00	148,00	132,00	140,00	160,00	184,00	25,00	160,00	148,00	152,00	168,00	176,00	156,00	140,00	148,00	164,00	192,00
25,00	168,00	148,00	148,00	144,00	164,00	148,00	132,00	140,00	156,00	184,00	25,00	156,00	152,00	152,00	164,00	176,00	152,00	136,00	148,00	160,00	192,00
50,00	168,00	140,00	136,00	144,00	168,00	144,00	120,00	136,00	156,00	164,00	50,00	156,00	144,00	144,00	160,00	164,00	148,00	140,00	144,00	156,00	176,00
50,00	164,00	136,00	132,00	148,00	164,00	140,00	120,00	136,00	156,00	160,00	50,00	164,00	144,00	144,00	160,00	164,00	144,00	136,00	144,00	156,00	176,00
75.00	156.00	116.00	124.00	120.00	156.00	132.00	100.00	128.00	128.00	132.00	75.00	168.00	136.00	136.00	144.00	168.00	152.00	128.00	140.00	156.00	164.00
75,00	144,00	100,00	124,00	120,00	152,00	108,00	96,00	128,00	124,00	116,00	75,00	156,00	132,00	128,00	144,00	160,00	140,00	124,00	,	156,00	160,00
75,00	136,00	96,00	120,00	112,00	144,00	104,00	100,00	124,00	120,00	112,00	75,00	148,00	124,00	128,00	140,00	160,00	136,00	124,00		152,00	156,00
25,00	140,00	96,00	128,00	140,00	148,00	132,00	124,00	136,00	156,00	156,00	25,00	156,00	136,00	140,00	152,00	164,00	140,00	128,00	144,00	156,00	168,00
25,00	152,00	128,00	136,00	148,00	156,00	136,00	124,00	132,00	160,00	164,00	25,00	152,00	140,00	144,00	160,00	164,00	144,00	128,00	136,00	156,00	172,00
25,00	130,00	124,00	124 00	144,00	160,00	140,00	124,00	132,00	152.00	152.00	25,00	140,00	140,00	136.00	152.00	160.00	146,00	128,00	140.00	152 00	168.00
50,00	140,00	116,00	124,00	128,00	156,00	132,00	116,00	132,00	148,00	144,00	50,00	156,00	132,00	136,00	152,00	160,00	136,00	128,00	140,00	152,00	172,00
50,00	144,00	116,00	124,00	128,00	156,00	124,00	120,00	132,00	148,00	140,00	50,00	156,00	128,00	136,00	152,00	164,00	136,00	128,00	140,00	156,00	172,00
75,00	136,00	100,00	116,00	112,00	132,00	104,00	92,00	128,00	120,00	116,00	75,00	152,00	124,00	128,00	140,00	164,00	136,00	128,00	136,00	148,00	160,00
75,00	132,00	92,00	108,00	104,00	116,00	100,00	96,00	124,00	116,00	112,00	75,00	144,00	104,00	124,00	140,00	160,00	128,00	128,00	136,00	152,00	132,00
75,00	128,00	92,00	100,00	100,00	104,00	96,00	88,00	124,00	116,00	112,00	73,00	144,00	100,00	124,00	130,00	100,00	128,00	128,00	140,00	152,00	130,00

ohne ß-Blockade											mit ß-Blockade											
PQ-Strecke) AEDT07	ms	001040	MI DVOC		KUKDOA	114000		EDIANOA	PUODOO		PQ-Streck	(e	ms	0010040	MI DVOC		KUKDOA	114 000		EDIANOA	DUODOO
Code % Pmax	AER127	FZR012	SRMS12	MLD Y06	LNN126	KHKD04	JHAS06	HRARU6	FRKN31	PHOR29		% Pmax	AER127	FZR012	SRMS12	MLDY06	LNN126	KHKD04	JHAS06	HRARU6	FRKN31	PHOR29
0,00	60,00	64,00	56,00	44,00	72,00	64,00	32,00	56,00	72,00	100,00		0,00	64,00	68,00	56,00	64,00	84,00	64,00	44,00	64,00	76,00	124,00
25,00	56,00	60,00	56,00	40,00	52,00	60,00	28,00	52,00	64,00	76,00		25,00	64,00	56,00	52,00	56,00	64,00	60,00	40,00	60,00	68,00	108,00
25,00	52 00	60,00	52,00	40,00	52,00	56.00	28,00	48,00	60,00	72,00		25,00	56,00	64,00	56,00	56,00	64,00	56.00	36,00	52,00	68,00	108,00
50,00	48,00	48,00	44,00	32,00	44,00	48,00	28,00	40,00	52,00	48,00		50,00	56,00	60,00	48,00	48,00	48,00	56,00	32,00	44,00	60,00	72,00
50,00	40,00	44,00	40,00	36,00	44,00	44,00	28,00	36,00	48,00	44,00		50,00	52,00	60,00	48,00	52,00	48,00	48,00	32,00	40,00	60,00	72,00
50,00	40,00	40,00	40,00	32,00	40,00	44,00	24,00	36,00	44,00	40,00		50,00	52,00	56,00	48,00	48,00	48,00	52,00	32,00	40,00	60,00	68,00
75,00	28.00	32,00	32,00	20.00	36,00	28,00	24,00	32,00	32,00	28.00		75,00	56,00 44.00	48,00	44,00	36,00	40,00	28.00	28,00	36,00	48,00	40,00
75,00	28,00	28,00	28,00	20,00	32,00	24,00	24,00	28,00	32,00	28,00		75,00	40,00	40,00	40,00	28,00	32,00	28,00	28,00		48,00	32,00
25,00	32,00	28,00	36,00	36,00	48,00	28,00	28,00	36,00	48,00	52,00		25,00	36,00	44,00	44,00	48,00	44,00	44,00	32,00	40,00	48,00	68,00
25,00	40,00	36,00	44,00	40,00	48,00	44,00	28,00	48,00	56,00	56,00		25,00	44,00	52,00	52,00	56,00	56,00	52,00	32,00	48,00	64,00	76,00
25,00	44,00 36,00	36.00	40,00	28.00	52,00 44.00	44,00	28,00	48,00	56,00 48.00	48.00		25,00	44,00	56,00 44.00	48.00	56,00 44.00	64,00 44.00	36.00	32,00	56,00	60.00	84,00 64.00
50,00	36,00	32,00	36,00	24,00	40,00	36,00	24,00	36,00	44,00	44,00		50,00	40,00	40,00	48,00	44,00	44,00	32,00	28,00	48,00	56,00	60,00
50,00	36,00	32,00	36,00	24,00	36,00	28,00	24,00	36,00	44,00	40,00		50,00	40,00	40,00	48,00	44,00	44,00	40,00	28,00	40,00	56,00	52,00
75,00	32,00	28,00	28,00	24,00	28,00	28,00	24,00	32,00	36,00	32,00		75,00	36,00	36,00	40,00	24,00	40,00	28,00	28,00	40,00	48,00	36,00
75,00	28,00	24,00	28,00	20,00	24,00	24,00	24,00	32,00	32,00	28,00		75,00	32,00	36,00	36,00	24,00	32,00	28,00	24,00	40,00	40,00	28,00
10,00	21,00	21,00	20,00	20,00	21,00	21,00	21,00	20,00	02,00	20,00		10,00	02,00	02,00	00,00	21,00	20,00	20,00	20,00	10,00	11,00	02,00
QRS-Komp	lex	ms										QRS-Kom	plex	ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29		Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax	76.00	76.00	00.00	84.00	02.00	80.00	84.00	06.00	104.00	84.00		% Pmax	80.00	76.00	88.00	80.00	02.00	80.00	88.00	100.00	100.00	00.00
25.00	80.00	80.00	88.00	84.00	92,00 88.00	80.00	88.00	100.00	104,00	84.00		25.00	80.00	80.00	92.00	84.00	92,00	80.00	88.00	100,00	100,00	92.00
25,00	80,00	80,00	92,00	84,00	92,00	80,00	88,00	100,00	100,00	84,00		25,00	80,00	80,00	92,00	84,00	92,00	80,00	88,00	104,00	100,00	92,00
25,00	80,00	80,00	88,00	84,00	92,00	80,00	88,00	100,00	100,00	84,00		25,00	80,00	76,00	92,00	84,00	92,00	80,00	88,00	104,00	100,00	92,00
50,00	80,00	80,00	88,00	84,00	92,00	80,00	88,00	100,00	100,00	88,00		50,00	80,00	76,00	92,00	84,00	96,00	80,00	88,00	104,00	100,00	92,00
50.00	80.00	80.00	88.00	88.00	92,00	84.00	88.00	100,00	100,00	88.00		50.00	80.00	80.00	92,00	84,00	100.00	80.00	88.00	104,00	100,00	92,00
75,00	84,00	84,00	88,00	92,00	92,00	84,00	88,00	104,00	104,00	88,00		75,00	80,00	80,00	88,00	84,00	100,00	80,00	88,00	104,00	100,00	88,00
75,00	84,00	80,00	88,00	88,00	92,00	84,00	88,00	104,00	104,00	84,00		75,00	80,00	80,00	88,00	84,00	100,00	84,00	88,00		100,00	88,00
75,00	84,00	80,00	88,00	88,00	92,00	84,00	88,00	104,00	104,00	84,00		75,00	80,00	80,00	88,00	84,00	100,00	84,00	88,00	104.00	100,00	88,00
25.00	80.00	80.00	88.00	80.00	92,00	84.00	84,00	108,00	100,00	84.00		25,00	80.00	76.00	92,00	84.00	96.00	84.00	84.00	104,00	100,00	88.00
25,00	80,00	80,00	88,00	80,00	96,00	84,00	84,00	100,00	100,00	84,00		25,00	80,00	76,00	88,00	80,00	96,00	80,00	84,00	104,00	100,00	88,00
50,00	80,00	80,00	88,00	80,00	96,00	84,00	84,00	100,00	100,00	84,00		50,00	80,00	80,00	88,00	80,00	96,00	84,00	84,00	104,00	100,00	88,00
50,00	80,00	80,00	88,00	84,00	96,00	80,00	84,00	100,00	100,00	84,00		50,00	80,00	80,00	88,00	80,00	100,00	84,00	84,00	104,00	100,00	88,00
75.00	84.00	80.00	88.00	84.00	92,00	80.00	84,00	100,00	100,00	84.00		75.00	80.00	80.00	88.00	84,00	100,00	84.00	84.00	104,00	100,00	88.00
75,00	84,00	80,00	88,00	84,00	88,00	84,00	84,00	100,00	104,00	84,00		75,00	80,00	76,00	88,00	84,00	100,00	84,00	84,00	100,00	100,00	88,00
75,00	88,00	80,00	88,00	84,00	92,00	84,00	84,00	100,00	104,00	80,00		75,00	80,00	76,00	88,00	84,00	100,00	84,00	84,00	104,00	100,00	88,00
ST-Strecke		ms										ST-Streck	e	ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29		Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax												% Pmax										
0,00	104,00	108,00	112,00	128,00	124,00	112,00	112,00	108,00	92,00	104,00		0,00	112,00	120,00	128,00	140,00	140,00	132,00	120,00	112,00	120,00	108,00
25,00	88,00	92,00	96,00 84.00	112,00	96.00	96.00	92,00	96,00	88,00	84,00 76,00		25,00	96.00	108.00	96.00	124,00	128,00	108,00	104,00	92,00	108,00	88,00
25,00	84,00	84,00	84,00	100,00	96,00	92,00	80,00	80,00	84,00	76,00		25,00	92,00	104,00	96,00	112,00	120,00	104,00	92,00	84,00	92,00	80,00
50,00	80,00	68,00	76,00	84,00	88,00	84,00	72,00	72,00	68,00	60,00		50,00	92,00	88,00	88,00	84,00	108,00	88,00	84,00	76,00	80,00	76,00
50,00	80,00	56,00	72,00	76,00	84,00	76,00	64,00	68,00	64,00	56,00		50,00	84,00	80,00	84,00	84,00	96,00	80,00	76,00	68,00	68,00	64,00
50,00	76,00	56,00	68,00	72,00	80,00	76,00	68,00	64,00 56.00	64,00 40.00	52,00		50,00	80,00	80,00	80,00	84,00 76,00	96,00 76.00	76,00	72,00	68,00	68,00	60,00
75,00	56,00	44,00	44,00	56,00	64,00	60,00	44,00	48,00	36,00	40,00		75,00	68,00	60,00	68,00	60,00	68,00	68,00	60,00	00,00	60,00	56,00
75,00	52,00	40,00	44,00	52,00	64,00	56,00	44,00	44,00	32,00	40,00		75,00	64,00	52,00	60,00	56,00	68,00	60,00	56,00		56,00	48,00
25,00	56,00	44,00	40,00	52,00	72,00	60,00	52,00	48,00	44,00	40,00		25,00	72,00	60,00	68,00	72,00	88,00	84,00	72,00	60,00	52,00	60,00
25,00	64,00	56,00	72,00	80,00	88,00	80,00	76,00	76,00	60,00	56,00		25,00	92,00	80,00	96,00	96,00	112,00	100,00	80,00	76,00	72,00	80,00
20,00 50.00	80,00	60.00	68.00	80.00	04,00 76.00	80.00	72.00	68.00	60.00	56.00		25,00	90,00 84.00	72.00	92,00	90,00 88.00	100.00	90,00 80.00	04,00 76.00	04,00 72.00	80.00	72.00
50,00	64,00	48,00	60,00	72,00	76,00	68,00	64,00	60,00	48,00	52,00		50,00	80,00	64,00	88,00	80,00	92,00	76,00	72,00	64,00	64,00	64,00
50,00	60,00	48,00	56,00	68,00	76,00	64,00	68,00	56,00	44,00	48,00		50,00	80,00	60,00	76,00	76,00	88,00	76,00	72,00	64,00	64,00	60,00
75,00	56,00	40,00	48,00	64,00	68,00	60,00	64,00	44,00	36,00	40,00		75,00	76,00	52,00	72,00	64,00	76,00	68,00	64,00	52,00	60,00	56,00
75,00 75,00	36,00 48,00	3∠,00 28.00	44,00	52 00	52 00	52,00 52,00	5∠,00 48.00	40,00	28.00	36,00		75,00	64,00	40,00	56,00	56.00	64,00 60,00	60,00	52 00	40,00	48,00	40,00
. 0,00	40,00	20,00	40,00	02,00	52,00	02,00	40,00	50,00	20,00	00,00		. 5,00	04,00	00,00	50,00	50,00	00,00	00,00	02,00	40,00	40,00	40,00

	ohne ß-Blockade										mit ß-Blockade											
T-Dauer	AEDT27	ms EZPO12	SDMS12		I NNT26	KHKD04	144506		EDKN21	PHOP20		T-Dauer	AEDT27	ms EZPO12	SDMS12			KHKD04	144 506		EDKN21	
% Pmax	ALICIZI	120012	51111512	WILD 100	LININTZO	KIIKD04	311A300	TINAKUU	TIMINGT	FIIOR23		% Pmax	ALINIZI	120012	51(10)512	MEDTOO	LININIZO	KI IKD04	311A300	TINANOU	TINNIST	FIION23
0,00	188,00	156,00	212,00	180,00	188,00	176,00	180,00	220,00	192,00	172,00		0,00	200,00	168,00	208,00	196,00	232,00	188,00	176,00	236,00	172,00	204,00
25,00	168,00	152,00	208,00	160,00	168,00	172,00	152,00	196,00	160,00	160,00		25,00	184,00	148,00	196,00	168,00	192,00	176,00	164,00	220,00	164,00	184,00
25,00	168,00	144,00	192,00	164,00	168,00	164,00	152,00	196,00	156,00	152,00		25,00	180,00	148,00	184,00	168,00	188,00	168,00	152,00	212,00	160,00	176.00
50.00	156.00	140.00	176.00	152.00	152.00	144.00	124.00	168.00	144.00	136.00		50.00	176.00	148.00	168.00	160.00	172.00	164.00	140.00	192.00	156.00	156.00
50,00	144,00	136,00	164,00	140,00	152,00	140,00	116,00	164,00	132,00	128,00		50,00	156,00	140,00	164,00	152,00	176,00	156,00	140,00	188,00	152,00	156,00
50,00	144,00	124,00	160,00	140,00	156,00	132,00	116,00	164,00	124,00	124,00		50,00	156,00	140,00	160,00	152,00	164,00	156,00	140,00	188,00	152,00	156,00
75,00	148,00	116,00	140,00	112,00	148,00	116,00	108,00	152,00	116,00	116,00		75,00	156,00	140,00	156,00	140,00	164,00	144,00	128,00	172,00	148,00	140,00
75,00	136,00	108,00	136.00	104,00	136,00	104,00	108.00	152,00	112,00	108.00		75,00	152,00	128,00	152,00	148,00	156,00	140,00	128,00		128,00	136,00
25,00	140,00	116,00	168,00	132,00	168,00	128,00	136,00	192,00	120,00	128,00		25,00	168,00	152,00	180,00	160,00	176,00	148,00	144,00	164,00	140,00	156,00
25,00	164,00	136,00	168,00	148,00	176,00	140,00	136,00	180,00	148,00	148,00		25,00	176,00	152,00	180,00	164,00	196,00	152,00	156,00	212,00	168,00	172,00
25,00	156,00	140,00	176,00	152,00	180,00	144,00	136,00	184,00	152,00	152,00		25,00	180,00	160,00	180,00	164,00	192,00	156,00	164,00	204,00	164,00	176,00
50,00	144,00	132,00	160,00	132,00	168,00	128,00	116,00	180,00	132,00	132,00		50,00	172,00	148,00	164,00	156,00	180,00	152,00	148,00	208,00	160,00	164,00
50.00	144.00	116.00	156.00	124.00	160.00	116.00	116.00	172.00	120,00	120,00		50.00	164.00	140,00	164.00	152.00	172,00	144,00	144,00	184.00	152,00	156.00
75,00	144,00	116,00	132,00	100,00	132,00	116,00	104,00	152,00	108,00	116,00		75,00	152,00	132,00	152,00	144,00	169,00	128,00	132,00	180,00	140,00	132,00
75,00	124,00	116,00	128,00	96,00	132,00	100,00	104,00	136,00	104,00	116,00		75,00	152,00	128,00	152,00	144,00	160,00	120,00	132,00	184,00	124,00	128,00
75,00	124,00	116,00	124,00	96,00	124,00	100,00	104,00	132,00	104,00	116,00		75,00	152,00	128,00	144,00	136,00	160,00	120,00	132,00	188,00	124,00	120,00
QT-Zeit		ms										QT-Zeit		ms								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29		Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax												% Pmax										
0,00	368,00	340,00	412,00	392,00	404,00	368,00	376,00	424,00	388,00	360,00		0,00	392,00	364,00	424,00	416,00	464,00	400,00	384,00	448,00	392,00	400,00
25,00	336,00	324,00	392,00	356,00	364,00	356,00	332,00	392,00	348,00	328,00		25,00	372,00	344,00	392,00	376,00	412,00	364,00	356,00	416,00	372,00	364,00
25,00	332,00	308,00	364,00	344,00	352,00	328,00	312,00	372,00	336,00	308,00		25,00	352,00	328,00	364,00	360,00	400,00	352,00	332,00	396,00	352,00	348,00
50,00	316,00	288,00	340,00	320,00	332,00	308,00	284,00	340,00	312,00	284,00		50,00	348,00	312,00	348,00	328,00	376,00	332,00	312,00	372,00	336,00	324,00
50,00	304,00	272,00	324,00	300,00	328,00	300,00	268,00	332,00	296,00	272,00		50,00	320,00	300,00	340,00	320,00	368,00	316,00	304,00	360,00	320,00	312,00
50,00	292.00	260,00	316,00	268.00	328,00	292,00	272,00	332,00	288,00	264,00		50,00	316,00	280.00	332,00	320,00	360,00	312,00	280.00	360,00	320,00	288.00
75.00	276.00	232.00	230,00	248.00	292.00	248.00	244.00	300.00	252.00	236.00		75.00	300.00	268.00	308.00	292.00	324.00	292.00	276.00	330,00	288.00	280,00
75,00	272,00	228,00	268,00	240,00	288,00	244,00	240,00	292,00	248,00	232,00		75,00	296,00	252,00	300,00	288,00	320,00	280,00	272,00		276,00	272,00
25,00	280,00	240,00	296,00	276,00	332,00	272,00	272,00	348,00	264,00	252,00		25,00	320,00	292,00	340,00	320,00	364,00	316,00	304,00	328,00	292,00	304,00
25,00	308,00	272,00	328,00	308,00	360,00	304,00	296,00	360,00	308,00	288,00		25,00	348,00	308,00	368,00	344,00	404,00	336,00	320,00	396,00	340,00	340,00
25,00	320,00	284,00	340,00	292.00	360,00	292.00	272.00	364,00	292.00	272.00		25,00	336,00	316,00	368,00	340,00	396,00	332,00	332,00	392,00	348,00	344,00
50,00	292,00	248,00	308,00	276,00	336,00	276,00	264,00	340,00	276,00	260,00		50,00	324,00	284,00	336,00	316,00	364,00	304,00	304,00	360,00	316,00	308,00
50,00	288,00	244,00	300,00	276,00	328,00	264,00	268,00	328,00	268,00	252,00		50,00	324,00	280,00	328,00	312,00	360,00	304,00	300,00	352,00	316,00	304,00
75,00	284,00	236,00	268,00	248,00	292,00	256,00	252,00	296,00	248,00	240,00		75,00	308,00	264,00	312,00	292,00	336,00	280,00	280,00	336,00	300,00	276,00
75,00	264,00	228,00	260,00	236,00	280,00	236,00	240,00	276,00	244,00	236,00		75,00	300,00	244,00	296,00	288,00	324,00	264,00	276,00	324,00	272,00	256,00
73,00	200,00	224,00	232,00	232,00	200,00	230,00	230,00	200,00	230,00	232,00		73,00	230,00	240,00	200,00	270,00	320,00	204,00	200,00	332,00	204,00	240,00
P-Fläche		AUC										P-Fläche		AUC								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29		Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0.00	6690.00	6966.00	2108.00	4012 00	10328.00	9122.00	6584.00	9842 00	5960.00	5350.00		% Pinax	5964.00	7588.00	3434.00	2826.00	5478 00	7348.00	6294.00	8250.00	5540.00	4380.00
25,00	9270,00	10662,00	2404,00	6592,00	15870,00	10762,00	8890,00	10128,00	8806,00	12384,00		25,00	8380,00	8922,00	3476,00	5898,00	13862,00	9462,00	8694,00	9794,00	6522,00	7660,00
25,00	9380,00	11324,00	2408,00	6380,00	14086,00	10416,00	9550,00	10598,00	7930,00	14988,00		25,00	8348,00	8676,00	3268,00	6078,00	12560,00	10064,00	9536,00	9912,00	6056,00	8306,00
25,00	9834,00	10762,00	2432,00	6530,00	13912,00	10626,00	9838,00	10478,00	8532,00	15118,00		25,00	8054,00	8696,00	2958,00	5732,00	13356,00	9578,00	9644,00	10116,00	6460,00	7868,00
50,00	12222,00	12660,00	3080,00	9686,00	18904,00	13388,00	6988,00	13642,00	10178,00	12572,00		50,00	7724,00	9704,00	4010,00	7668,00	15152,00	10736,00	10392,00	11346,00	7560,00	10652,00
50,00	12126,00	14910,00	2882,00	11550,00	18970,00	14408,00	8064,00	13824.00	12036,00	16222,00		50,00	11620,00	10494,00	4092.00	9014.00	15866,00	12214,00	10816,00	12542.00	9406.00	12352.00
75,00	14462,00	15226,00	3458,00	9184,00	21304,00	17626,00	5904,00	18064,00	10172,00	13592,00		75,00	12174,00	14116,00	6284,00	9184,00	20876,00	14508,00	9058,00	13804,00	11174,00	12872,00
75,00	16254,00	13798,00	4004,00	10224,00	24386,00	15020,00	6834,00	19592,00	11916,00	13704,00		75,00	14488,00	17152,00	8270,00	11244,00	21930,00	16226,00	10128,00		12256,00	14778,00
75,00	15612,00	13720,00	3708,00	9390,00	24048,00	14466,00	8454,00	20010,00	12664,00	14100,00		75,00	14678,00	17982,00	7200,00	11254,00	22854,00	16986,00	11294,00		14764,00	17112,00
25,00	16180,00	13346,00	4080,00	12618,00	15022,00	19410,00	13928,00	17086,00	17898,00	23560,00		25,00	14288,00	18052,00	4374,00	8816,00	15982,00	14462,00	12450,00	17682,00	16394,00	16092,00
25,00	12596,00	15554.00	2787.00	10190.00	15878.00	14854.00	10226,00	10450.00	12974,00	15600.00		25,00	8544.00	10774.00	3689.00	7726.00	12178.00	11952.00	9844.00	9220.00	9570.00	10466.00
50,00	12398,00	14702,00	3420,00	9510,00	19030,00	15202,00	8966,00	14734,00	10972,00	15712,00		50,00	11922,00	13402,00	3758,00	8814,00	15720,00	12778,00	9962,00	10096,00	11254,00	13108,00
50,00	12274,00	16860,00	3530,00	10342,00	19906,00	16552,00	9486,00	15924,00	12134,00	16678,00		50,00	12460,00	15258,00	4038,00	9454,00	16600,00	13420,00	10976,00	11116,00	13302,00	14864,00
50,00	12602,00	17202,00	3802,00	10308,00	21410,00	17314,00	10160,00	16588,00	13616,00	16656,00		50,00	12366,00	14782,00	4018,00	9974,00	16244,00	14252,00	10748,00	13504,00	14390,00	15744,00
75,00	15422.00	13006,00	3063.00	8318,00 7620.00	21714,00	12960,00	7376.00	20744,00	10226,00	135/8,00		75,00	15108.00	13800.00	6928.00	9014,00 11766.00	21046.00	15972.00	9486,00 11006.00	13474,00	16120.00	15182.00
75,00	14186,00	13752,00	1714,00	7964,00	17470,00	13730,00	7508.00	21886.00	12802,00	15730,00		75,00	15246,00	14320,00	7308,00	11178,00	22178,00	16650,00	11002,00	14026,00	17540,00	17066,00
																						,

ohne ß-Blockade											mit ß-Blockade										
QRS-Fläche AUC									QRS-Fläche AUC												
Code % Pmax	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code % Pmax	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
0,00	43474,00	71022,00	24729,00	59216,00	98054,00	60312,00	58250,00	53768,00	81658,00	48884,00	0,00	47924,00	69026,00	33060,00	54264,00	101764,00	56822,00	63628,00	52166,00	83582,00	47888,00
25,00	42870,00	70172,00	26711,00	53512,00	91530,00	58220,00	56228,00	53108,00	77714,00	48628,00	25,00	46562,00	66774,00	29942,00	49202,00	92852,00	54320,00	61586,00	51322,00	81640,00	45424,00
25,00	43676,00	69574,00	23897,00	51978,00	92666,00	58764,00	57300,00	53284,00	78040,00	49770,00	25,00	46280,00	68020,00	27777,00	47986,00	92700,00	54524,00	61468,00	50402,00	80892,00	45458,00
25,00	43754,00	70954,00	23750,00	52370,00	93386,00	58996,00	57590,00	54872,00	77894,00	50774,00	25,00	45868,00	67692,00	27272,00	48774,00	90628,00	54664,00	61898,00	50370,00	81376,00	45904,00
50,00	44180,00	69466,00	22101,00	48892,00	89258,00	59038,00	56474,00	54276,00	72912,00	51640,00	50,00	45188,00	66416,00	26579,00	46270,00	87714,00	53680,00	60020,00	49940,00	79422,00	44992,00
50,00	44102,00	70784,00	22883,00	49456,00	91058,00	60544,00	56318,00	56078,00	71846,00	54512,00	50,00	44664,00	68028,00	26852,00	45722,00	87578,00	55038,00	59874,00	49904,00	78404,00	46040,00
50,00	45064,00	71876,00	23506,00	51388,00	91812,00	61318,00	56382,00	57806,00	71374,00	54816,00	50,00	46230,00	69486,00	27958,00	45780,00	89170,00	55454,00	60202,00	50556,00	78428,00	47546,00
75,00	45950,00	70562,00	20479,00	50340,00	89840,00	59356,00	54072,00	58620,00	64552,00	52676,00	75,00	46806,00	67372,00	27723,00	44698,00	86438,00	55300,00	58960,00	50784,00	76900,00	47330,00
75,00	46684,00	67870,00	19823,00	50168,00	91544,00	59928,00	53760,00	60478,00	63644,00	52688,00	75,00	47100,00	70982,00	28250,00	45826,00	87810,00	57950,00	59490,00		74120,00	49276,00
75,00	46620,00	67854,00	20250,00	49598,00	92368,00	59814,00	52686,00	60452,00	62520,00	53622,00	75,00	49514,00	72178,00	29610,00	47636,00	90264,00	58600,00	59844,00		74810,00	51204,00
25,00	47848,00	66678,00	22376,00	54750,00	96964,00	62186,00	53942,00	64212,00	71346,00	56436,00	25,00	49510,00	76982,00	31660,00	50108,00	95768,00	61274,00	61442,00	52288,00	78222,00	54334,00
25,00	47432,00	72030,00	25142,00	55874,00	96154,00	62978,00	54908,00	60782,00	73246,00	55660,00	25,00	50858,00	73616,00	31631,00	49470,00	95380,00	58214,00	59386,00	55630,00	82222,00	51758,00
25,00	45318,00	68936,00	24214,00	54508,00	93224,00	61186,00	52802,00	57216,00	70072,00	54134,00	25,00	48130,00	70592,00	29800,00	47278,00	91210,00	55480,00	56880,00	51110,00	79604,00	49076,00
50,00	46254,00	65528,00	21399,00	49264,00	90242,00	57922,00	49614,00	55492,00	63154,00	52422,00	50,00	47670,00	67756,00	27955,00	45276,00	87544,00	54998,00	56174,00	49992,00	75126,00	47434,00
50,00	46460,00	63402,00	20434,00	48556,00	89990,00	58264,00	49968,00	57616,00	63352,00	52160,00	50,00	47738,00	69930,00	28896,00	45464,00	87796,00	56802,00	57388,00	49366,00	75312,00	48722,00
50,00	47416,00	63468,00	20612,00	49258,00	91314,00	59608,00	51186,00	59258,00	63864,00	52754,00	50,00	48354,00	70888,00	29036,00	46068,00	90396,00	57518,00	58020,00	51632,00	76098,00	49488,00
75,00	47362,00	63702,00	20626,00	45174,00	89266,00	59158,00	49948,00	59200,00	59862,00	51748,00	75,00	48604,00	69198,00	28966,00	44804,00	87860,00	55718,00	57358,00	52556,00	69500,00	49470,00
75,00	45628,00	63138,00	20248,00	45416,00	87718,00	59934,00	49880,00	58674,00	60144,00	52306,00	75,00	49796,00	68450,00	28425,00	45832,00	88542,00	56266,00	57456,00	53928,00	70248,00	50964,00
75,00	43214,00	64310,00	20429,00	45222,00	87238,00	59982,00	48806,00	59194,00	59914,00	52128,00	75,00	50898,00	69304,00	27824,00	46970,00	90366,00	56784,00	57204,00	56848,00	71530,00	51426,00
T-Fläche		AUC									T-Fläche		AUC								
Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29	Code	AERT27	FZRO12	SRMS12	MLDY06	LNNT26	KHKD04	JHAS06	HRAR06	FRKN31	PHOR29
% Pmax											% Pmax										
0,00	37682,00	33062,00	52081,00	37937,00	56064,00	32878,00	25062,00	45547,00	30490,00	30575,00	0,00	38196,00	35242,00	65818,00	50307,00	98854,00	41010,00	22303,00	61683,00	28929,00	45350,00
25,00	27494,00	23215,00	35698,00	22143,00	24757,00	21620,00	11006,00	25635,00	20635,00	25561,00	25,00	32434,00	25152,00	50138,00	30942,00	49138,00	33158,00	12455,00	45504,00	25827,00	34353,00
25,00	27137,00	24577,00	37647,00	22798,00	30361,00	21564,00	14545,00	29740,00	23305,00	25850,00	25,00	32338,00	27002,00	43926,00	31275,00	55582,00	31247,00	10779,00	45382,00	26542,00	35313,00
25,00	25728,00	27162,00	37558,00	22448,00	33052,00	19083,00	11734,00	31296,00	21202,00	23036,00	25,00	33067,00	28141,00	43650,00	31202,00	56264,00	32226,00	11984,00	46888,00	26931,00	35652,00
50,00	21172,00	23464,00	24219,00	14270,00	25484,00	10328,00	7716,00	22174,00	17684,00	18877,00	50,00	31230,00	23544,00	32737,00	23460,00	34524,00	25608,00	10565,00	35752,00	23664,00	27273,00
50,00	20653,00	28356,00	27086,00	14534,00	26395,00	12391,00	8979,00	25253,00	17775,00	19659,00	50,00	25829,00	26059,00	27802,00	24129,00	38002,00	21843,00	14293,00	35706,00	26793,00	31451,00
50,00	22578,00	29792,00	27228,00	13896,00	28823,00	9806,00	8438,00	27012,00	15341,00	21066,00	50,00	25229,00	26923,00	27297,00	22998,00	36690,00	20850,00	15451,00	36330,00	27852,00	31320,00
75,00	20272,00	31830,00	17552,00	10340,00	28048,00	8928,00	8596,00	26766,00	17276,00	22604,00	75,00	25449,00	30806,00	21327,00	18403,00	32311,00	14788,00	14230,00	29745,00	24992,00	27043,00
75,00	22054,00	34962,00	23760,00	15012,00	37632,00	14514,00	14958,00	33060,00	21920,00	27628,00	75,00	24801,00	34094,00	21800,00	23259,00	38828,00	15385,00	15716,00		23255,00	27645,00
75,00	23592,00	36872,00	28856,00	16854,00	38654,00	18078,00	17100,00	34784,00	22862,00	28102,00	75,00	26280,00	39334,00	22036,00	27308,00	40256,00	15506,00	17204,00		22042,00	30384,00
25,00	29774,00	40996,00	56374,00	29186,00	62068,00	25556,00	24688,00	56242,00	29144,00	41594,00	25,00	31566,00	52375,00	40070,00	36176,00	60236,00	21604,00	23069,00	31939,00	33284,00	40072,00
25,00	30278,00	38228,00	39026,00	19496,00	44300,00	15027,00	15528,00	36775,00	25831,00	30354,00	25,00	33028,00	42202,00	34298,00	28676,00	59159,00	16209,00	19758,00	50116,00	37293,00	33157,00
25,00	25175,00	32823,00	34810,00	17763,00	47296,00	11950,00	14066,00	38457,00	22557,00	27849,00	25,00	34010,00	40030,00	39471,00	29346,00	64671,00	18703,00	19858,00	49233,00	33260,00	33504,00
50,00	22745,00	31932,00	25358,00	10414,00	35878,00	8224,00	11270,00	33250,00	18368,00	26147,00	50,00	28038,00	31830,00	30856,00	22953,00	42926,00	16990,00	18509,00	55106,00	29647,00	29858,00
50,00	27816,00	39388,00	30650,00	12672,00	39914,00	14754,00	13486,00	38526,00	19010,00	26710,00	50,00	30715,00	38979,00	32392,00	26593,00	46995,00	19112,00	21847,00	44516,00	30279,00	33867,00
50,00	26774,00	37438,00	33004,00	14142,00	46621,00	16416,00	13545,00	42344,00	22412,00	28734,00	50,00	29689,00	39032,00	33495,00	26104,00	48701,00	18232,00	21286,00	41094,00	31950,00	34680,00
75,00	23802,00	38492,00	24240,00	9106,00	40106,00	1/8/0,00	11812,00	36898,00	20730,00	30824,00	75,00	24884,00	37414,00	23772,00	21674,00	37516,00	12823,00	18477,00	41849,00	25140,00	29112,00
75,00	22206,00	42256,00	29938,00	15538,00	53130,00	21570,00	16600,00	38678,00	22060,00	33938,00	75,00	27368,00	48098,00	27068,00	25330,00	45224,00	15938,00	20282,00	46924,00	29410,00	33278,00
75,00	22128,00	44216,00	35476,00	15536,00	53340,00	25902,00	18142,00	40254,00	24354,00	34710,00	75,00	27588,00	53688,00	24522,00	26998,00	46285,00	17090,00	20196,00	61722,00	30960,00	35248,00