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Abstract

This paper describes FBK’s submission to the end-to-end
English-German speech translation task at IWSLT 2018. Our
system relies on a state-of-the-art model based on LSTMs
and CNNs, where the CNNs are used to reduce the tem-
poral dimension of the audio input, which is in general
much higher than machine translation input. Our model was
trained only on the audio-to-text parallel data released for
the task, and fine-tuned on cleaned subsets of the original
training corpus. The addition of weight normalization and
label smoothing improved the baseline system by 1.0 BLEU
point on our validation set. The final submission also fea-
tured checkpoint averaging within a training run and ensem-
ble decoding of models trained during multiple runs. On test
data, our best single model obtained a BLEU score of 9.7,
while the ensemble obtained a BLEU score of 10.24.

1. Introduction
End-to-end speech translation (that is, the direct translation
of an audio signal without intermediate transcription steps)
has recently gained increasing interest in the scientific com-
munity thanks to the recent advances of neural approaches in
the related ASR and MT fields [1, 2, 3, 4, 5]. Effective ap-
proaches to the task can become a useful solution to deal with
languages that do not have a formal writing system [6], as it is
possible to create a collection of spoken utterances with their
respective translations in a more common language. We can
also expect that, in the future, end-to-end speech translation
systems will overcome problems related to the cumulative
effect of speech recognition errors introduced in pipelined
architectures. FBK’s submission to the IWSLT 2018 Speech
Translation (ST) task relies on a single model that takes as
input features extracted from an English audio signal and re-
turns as output a written translation in German. As the in-
put is not in raw wave form, one might argue that the “end-
to-end” denomination does not fit in this formulation of the
task. Nevertheless, since feeding the network with the input

* Work performed during an internship at FBK

features released by the task organizers was allowed, we ad-
here to the looser definition of “end-to-end” implicit in this
year’s task formulation.1

Our system was trained using the state-of-the-art
sequence-to-sequence model based on LSTMs and CNNs
introduced in [2]. Considering the high number of exper-
iments to run, and the high number of epochs needed to
train a speech translation model (up to 87 in the case of
our final submission), the model was implemented using
the fairseq2 [7] sequence-to-sequence learning toolkit from
Facebook AI Research. The tool, which is tailored to NMT,
was adapted to the ST task showing considerable reductions
in training time compared to the same models implemented
on other platforms (from hours to minutes in the processing
of the same amount of training instances).

One of the main challenges we faced was how to max-
imize the usefulness of the available training data by weed-
ing out noisy (and potentially harmful) instances. For this
purpose, we developed the two data cleaning procedures de-
scribed in Section 2. The architectural choices and the main
implementation details of our system are described in Sec-
tion 3. In Section 4, we report the results on our validation
set, which were obtained by using different data conditions
and hyper-parameters. Section 5 concludes the paper with
final remarks.

2. Data Cleaning
Our submission was obtained by a model solely trained with
the data released for the speech translation task. Before
building the model, we devoted particular attention to the
quality of the training material, aiming to reduce the pos-
sible impact that noise in the data can have on training time
and model convergence. Indeed, the initial training set of
171, 121 instances comprised elements featuring either a par-
tial alignment between the audio signal and the correspond-

1Our work has been pursued during a summer project with the goal of
gaining hands-on expertise in this new promising field with the simplifica-
tion of a standardized data set.

2http://github.com/facebookresearch/fairseq
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ing transcription, or a skewed ratio between the number of
feature frames and the characters in the transcription. To
identify and weed out such noisy and potentially harmful
training items, we applied two cleaning procedures. Both the
procedures take advantage of the available English transcrip-
tions of the audio signals3 and were run in cascade, after the
removal of 1, 000 items to be used as our development set.
As discussed in Section 4.1, though smaller in size, the re-
sulting subsets of the original training corpus yielded perfor-
mance improvements on development data, especially when
used for fine-tuning a model trained on the original unfiltered
corpus.

2.1. Cleaning Based on Alignment

Starting from the initial training corpus of 170, 121 instances
(called “Parallel” henceforth), the first cleaning step was
aimed to identify and remove the items featuring a poor
alignment between the audio signal and the text. Assum-
ing that the English and German texts are parallel, the po-
tential noise introduced by such instances is represented by
wrong transcriptions/translations (either totally inadequate or
containing spurious words) of the original source signal. To
identify them, our approach was to align each audio signal
with the corresponding English transcription and then decide
what to retain based on the alignment quality (i.e. consider-
ing unaligned words as evidence of noise). We performed the
alignment on a sentence-by-sentence basis using Gentle,4 a
forced aligner based on Kaldi.5 After the alignment, we re-
moved all the training instances in which at least one word in
the transcription was not aligned with the corresponding au-
dio segment. This strict cleaning policy (due to time limita-
tions, we did not experiment with less aggressive strategies)
resulted in the removal of 24, 240 instances, which reduced
the initial “Parallel” corpus to 145, 881 items. Henceforth,
the corpus resulting from this first cleaning step will be re-
ferred to as “Clean 1”.

2.2. Cleaning Based on Frames/Characters Ratio

The second cleaning step was aimed to identify and remove
from “Clean 1” the training instances featuring a skewed ra-
tio between the number of feature frames and the characters
in the transcription. In this case, the potential noise is due
to portions of the original speech that correspond to long si-
lences, background noise (e.g. laughter and applause), or
words that are not present in the transcription/translation. To
identify such possible outliers, looking at the ratios reported
in Figure 1, we decided to cut the distribution so to retain
only the training instances belonging to ratio bins that con-
tain at least 5, 000 items. The corresponding cutting values
of 3.5 and 7.5 resulted in the removal of 29, 898 instances,

3Note that data cleaning is the only phase in which we used the English
transcriptions. Being this step independent from the actual system training,
our approach is still fully end to end.

4https://lowerquality.com/gentle/
5http://kaldi-asr.org/index.html

Figure 1: Distribution of the training instances in terms of
the ratio between the number of feature frames and the char-
acters in the transcription.

which further reduced our training corpus to 115, 983 items.
Henceforth, the corpus resulting from our second cleaning
step will be referred to as “Clean 2”.

3. Seq2seq Speech Translation model
We re-implemented the seq2seq ST model introduced in [2],
which uses an encoder-decoder-attention architecture based
mainly on LSTMs [8]. The source-side input length is some
order of magnitudes higher than the decoder side, and thus
some reduction in the temporal dimension was performed us-
ing 2-D CNNs with stride (2, 2). The decoder is inspired by
the early deep-transition decoder used in Nematus [9], which
stacks two LSTM units in a way that the single LSTMs are
not recurrent by themselves, while the stack of the two is
globally recurrent. A schema of the model is depicted in
Figure 2.

3.1. Encoder

The input to the encoder is a variable-length audio se-
quence with 40 features for each time step. At first, the in-
put sequence is processed by two time-distributed densely-
connected layers with size of 256 and 128 respectively,
each followed by a tanh activation. The output of the
densely-connected layers is then processed by two stacked
2-dimensional convolutional layers, each having a 3× 3 ker-
nel and stride = 2. Let n be the sequence length and f be
the number of input features to the first convolutional layer.
The output of the first convolution is of size (16, n/2, f/2)
and for the second convolution is of size (16, n/4, f/4).
The 16 filters are then flattened to obtain an output of size
(n/4, 4 × f), which is subsequently processed by a stack
of three bidirectional LSTM layers [10]. The initial state of
the LSTM is initialized as a zero vector at the beginning of
the training, but then it is optimized via back-propagation to-
gether with the rest of the network. We found that training
the initial state gives a boost in performance and speeds up



Figure 2: Schema of our end-to-end model architecture. The
numbers on the left represent the dimensionality of each en-
coder layer’s output. The batch size is not written.

the model convergence.

3.2. Decoder

The decoder consists of a two-layered deep-transition
LSTM [9] followed by a deep output layer [11]. The in-
put of the first layer is the character embedding of the last
character. The output of the first layer is used as a query
vector to compute an attention over the last layer of the en-
coder. The attention output is then used as input to the second
LSTM layer. The hidden and cell states received as input by
the two LSTM layers are, for every time step, the last hid-
den and cell states produced by the other LSTM layer. The
last encoder output is averaged over the time dimension and
this new tensor is passed as input to two different densely-
connected layers with tanh non-linearity. The two functions
compute the initialization of the hidden and cell states for the
first LSTM layer. The deep output is a densely-connected
nonlinear function, which takes as input the concatenation of
the LSTM output, the attention output and the current symbol
(character) embedding, and outputs a tensor of size 512. This
tensor is finally multiplied by a second character embedding
matrix to compute the scores over the whole vocabulary.

3.3. Attention

The attention layer computes a distribution of weights that
sums up to 1 for the encoder output sequence (soft attention)
with no positional information (global attention). The scores
for each encoder position are computed according to their
relevance with respect to the decoder state. The relevance
score is computed using the general attention score proposed
in [12].

3.4. Increased Regularization

Due to the small size of the training data, we found useful to
apply some regularization tricks. The first and more common
technique is the dropout applied to each layer [13]. Instead
of variational dropout [14], we preferred to use the fastest
implementation of LSTMs provided by the Pytorch library,
which uses regular dropout.

Besides dropout, we applied weight normalization and
label smoothing as additional techniques for regularization.
Weight normalization [15] is a simple technique that decom-
poses the parameter matrices into their magnitude and direc-
tion components in order to easily produce a transformation
that scales the weights and reduces the gradient covariance
to zero. The result is a faster convergence and a limitation of
the weight space, which has a regularizing effect.

Label smoothing [16] smooths the cross-entropy cost
function by giving a weight of 0.9 to the probability of the
correct symbol, and 0.1 to the sum of the probabilities of
the other symbols. Label smoothing makes the model less
confident on its predictions, producing a regularizing effect.
In NMT, it has been observed that, despite the increased
loss and perplexity usually obtained with this technique, the
translations are usually better [17] and end up in improved
BLEU [18] scores.

4. Experiments
In this section we summarize the experiments that motivated
our choices for the final submission. Since the goal of our
participation was to explore the potential of a single end-
to-end model that can translate directly from audio signals,
we used as training data only the Speech Translation TED
Corpus that was released for the task. No pre-training has
been performed on different types of data (such a pre-training
would in fact rely on ASR data). All our models were trained
using the Adam optimizer [19] with learning rate of 0.001,
and values for β1 and β2 of 0.9 and 0.999. We applied
dropout of 0.2 to all layers, including the input features. The
norm of the gradients was clipped to 5. All the models have
been trained until convergence according to the loss on a
held-out set of 1, 000 sentences (see Section 2). The results
achieved by each model on the validation set are reported
Tables 1–4.

At first, we experimented with the reference implemen-
tation of the sequence-to-sequence model6 that is based on
Tensorflow [20]. However, with about 3.5 hours per epoch
on a single NVIDIA GTX-1080 GPU, its training time re-
sulted to be incompatible with the need of quickly testing a
range of alternative solutions. To avoid this bottleneck, we
re-implemented the same model within the fairseq toolkit,
which is highly optimized to significantly reduce training
time. Our re-implementation was indeed faster, with a re-
duction of the training time to about 30 minutes per epoch
for the largest version of the training corpus (“Parallel”), and

6https://github.com/eske/seq2seq



Data Val. BLEU
Parallel 8.54
Clean 1 8.98
Clean 2 8.54

Table 1: Results of the base model over the three different
versions of the dataset.

Data Val. BLEU
P→ C1 9.55
P→ C2 9.85
C1→ C2 9.89
P→ C1→ C2 10.14

(a) Dataset fine-tuning

Strategy Val. BLEU
Adam annealing 9.11
NAG annealing 8.74

(b) Restart strategy

Table 2: (a) Results for the base model in different fine-
tuning conditions. P stands for Parallel, C1 for Clean 1 and
C2 for Clean 2. Only the last row refers to a double step of
fine-tuning. (b) Results with two different restart strategies
for the model trained on Clean 2.

about 20 minutes per epoch for the smallest one (“Clean 2”).
The wall clock time of a single training run was around 30
hours, with a maximum of 10 additional hours for the fine-
tuning.

4.1. Dataset Selection

In the first round of experiments, we were interested in un-
derstanding the impact of the data cleaning procedures de-
scribed in Section 2. To this aim, we trained the base system
on the three different versions of the dataset (i.e. “Parallel”,
“Clean 1” and “Clean 2”) and evaluated the resulting mod-
els on the same validation set. The results listed in Table 1
show that Clean 1 provides us with the best result, but Clean
2 leads to a result equivalent to Parallel despite using about
36% less data. Thus, we decided to use Clean 2 for the fol-
lowing experiments in order to have faster training cycles.

4.2. Dataset Fine-tuning and Restart Strategy

In this subsection we address two questions. The first one is
whether it is useful to fine-tune a model trained on a larger
dataset by using a smaller and cleaner subset of the same cor-
pus. The second question is whether a restart strategy with
learning rate annealing can improve the performance.

The first question was addressed by restarting the training
of the model by using the new, smaller dataset as training set,
but with the same training policy and hyper parameters. The
results listed in Table 2a show that fine-tuning the model on
cleaner data always helps. In particular, fine-tuning on Clean

Model Val. BLEU
AST Seq2Seq 8.54
+ Weight Normalization (WN) 8.69
+ Label Smoothing (LS) 8.74
+ Sigmoid Attention 8.44
+ WN and LS 9.69

Table 3: Results on the data cleaned with two cleaning steps.

2 (which is smaller but of higher quality) always results in
better performance, especially in the case of a double step of
fine-tuning (P → C1 → C2). Interestingly, also using only
the clean data (C1 → C2) yields better results than training
the initial model on the original Parallel corpus.

To address the second question, we used the model
trained on Clean 2 and restarted the training on the same
training set with a policy of learning rate annealing. To this
aim, the learning rate was multiplied by 0.5 every time the
validation loss did not improve over the best one computed so
far [21]. We experimented using both Adam with annealing
and SGD with Nesterov Accelerated Gradient (NAG) [22]
with annealing. The results listed in table 2b show that,
though Adam with annealing yields a better model, both the
BLEU scores are at least 0.45 points less than the worse
model with fine-tuning.

4.3. Features Exploration

In this round of experiments we trained our base model on
the Clean 2 dataset and compared its result with models that
have weight normalization, label smoothing, sigmoidal at-
tention instead of softmax attention, and weight normaliza-
tion and label smoothing together. The results on the valida-
tion set, which are listed in Table 3, show that both weight
normalization and label smoothing give a small contribution,
while the sigmoidal attention slightly decreases the transla-
tion quality. Moreover, the joint addition of label smoothing
and weight normalization gives a sensibly higher boost, sug-
gesting that the models need high regularization. Consider-
ing the scarce amount of data, the need for high regulariza-
tion was expected. However, it is interesting to note that by
increasing the dropout to 0.3 the base model converges to a
much worse point.7 From now on, we call the model with
weight normalization and label smoothing “full modell”.

4.4. Experiments with Full Model

Once we found that the full model is clearly better than the
others, we replicated the experiments on all the datasets with
the new model. In the second column of Table 4a, we can see
that this model is more sensitive to noise. In fact, training it
with the “Parallel” set leads to poor performance in trans-
lation (4.66 BLEU), but this lower translation quality was
not expected by looking at only the training and validation

7Observed in preliminary experiments, not reported here.



Data BLEU
Parallel 4.66
Clean 1 9.69
Clean 2 9.69

(a)

Data Best Avg Test
P→ C1 10.26 10.46 -
C1→ C2 9.71 10.42 -
P→ C2 10.63 10.90 9.70
P→ C1→ C2 10.41 10.78 -
+ Adam annealing 10.50 10.59 -
Ensemble of 4 - 11.60 10.24

(b)

Table 4: Results using different versions of the dataset
for training our model with weight normalization and label
smoothing.

losses. Nonetheless, the fine-tuning of this model on cleaner
data, whose results are listed in table 4b, leads to improve-
ments ranging from 0.57 to 0.94 BLEU points with respect
to the models trained only on the clean data.

Unfortunately, the score of 10.63 of the best model
(P→C2) represents only a limited improvement when com-
pared with the best model in the second column of Table 2a
(P→C1→C2), which improved from 8.54 of the base model
to 10.14. The fifth row of Table 4b shows the results when
the last fine-tuning is performed using Adam with annealing
instead of Adam with a fixed learning rate. Based on these
results, we submitted our single best model (P→ C2 Avg) as
our contrastive submission.

4.5. Checkpoint Averaging and Ensemble Decoding

Checkpoint averaging consists in computing the average of
different checkpoints of the same training. In [23], it has
been shown that, in neural machine translation, it leads to
a better translation quality than using a single model. For
each model, we computed the BLEU score on the validation
set for the last 10 checkpoints, and averaged the weights of
all the models whose results are less than 0.5 BLEU points
worse than the best one. The improvement can be observed
by comparing the Best and Avg columns of Table 4b.

We also performed ensemble decoding of models trained
in different runs. The ensemble involved all the Avg check-
points listed in table 4b, except for “C1→ C2”, which was
trained using a different vocabulary. The ensemble of the 4
models obtained a result of 11.60 BLEU on the validation
set.

4.6. Submitted Systems and Results

Based on the outcomes of the above experiments on devel-
opment data, we opted for submitting the following systems:

• Primary: ensemble of 4 systems (Section 4.5).

• Contrastive: Checkpoint averaging of P→C2 (Ta-
ble 4b).

The result of the primary system is 11.60 BLEU score on
our validation set and 10.24 on the test set, whereas the con-
trastive system scored, respectively, 10.90 and 9.70 in the
validation and the test set.

5. Conclusions
We described FBK’s participation in the end-to-end speech
translation task at IWSLT 2018. We have shown that data
cleaning is useful in reducing the training time by discard-
ing a good portion of the training data, while not hurting
translation quality. We have also observed that fine-tuning
a model using a cleaner dataset can bring improvements up
to 1.6 BLEU points. Moreover, regularizing the model with
normalization and label smoothing can produce an improve-
ment of more than 1.0 BLEU point with clean datasets, but
the same model fails to converge to a good point using all
the data. In addition, using checkpoint averaging and en-
semble decoding gave us another gain of 1.0 BLEU point.
The final score on this year’s test set is of 9.70 and 10.24
BLEU respectively for our best single model and for the pri-
mary submission based on ensemble decoding. In order to
improve the competitiveness of this system, our next exper-
iments will include ASR for pretraining the encoder [24] or
for multi-task learning [4].
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