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Abstract

In the spoken language translation pipeline, machine translation
systems that are trained solely on written bitexts are often un-
able to recover from speech recognition errors due to the mis-
match in training data. We propose a novel technique to sim-
ulate the errors generated by an ASR system, using the ASR
system’s pronunciation dictionary and language model. Lex-
ical entries in the pronunciation dictionary are converted into
phoneme sequences using a text-to-speech (TTS) analyzer and
stored in a phoneme-to-word translation model. The translation
model and ASR language model are combined into a phoneme-
to-word MT system that “damages” clean texts to look like ASR
outputs based on acoustic confusions. Training texts are TTS-
converted and damaged into synthetic ASR data for use as adap-
tation data for training a speech translation system. Our pro-
posed technique yields consistent improvements in translation
quality on English-French lectures.

Index Terms: spoken language translation, machine transla-
tion, pronunciation modeling, error modeling

1. Introduction

A spoken language translation (SLT) system minimally
consists of two main components: an automatic speech recog-
nition (ASR) system that transcribes source language utterances
into a transcript and a machine translation (MT) system which
translates the transcripts. While there have been a number of
efforts to construct tightly-coupled ASR and MT systems that
are jointly trained and/or optimized [1, 2], the majority of SLT
systems employ a cascading approach in which speech recog-
nition is first performed and the results are translated by an MT
system [3, 4, 5]. The major disadvantage of using the cascading
approach is the mismatch between MT training data and ASR
output. Most statistical MT (SMT) systems are trained on writ-
ten bitexts which have different artifacts from ASR output. The
ASR system may contain recognition errors and cannot output
out-of-vocabulary (OOV) words. Ideally, this could be over-
come by training the SMT however, there are few corpora of
this type available and they are expensive to construct. how-
ever, SMT training is usually limited to using small amounts of
translated speech transcripts as adaptation data.

To overcome the paucity of bilingual speech training data,
an ideal solution is to convert the source side of a bitext to ASR-
like outputs. Considering the ASR system as a noisy chan-
nel that converts the actual transcripts of the speech input to
error-prone outputs, we can employ technologies to model such
a channel and apply it on a large amount of bitexts. By do-
ing so, we can introduce possible ASR errors into the training
data of SMT system. A straightforward method is to actually
pronounce every source language sentence in the corpus into a
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Figure 1: Damaging channel pipeline. A Source language texts
are transformed into phoneme sequences and translated back
into words, corresponding by a phoneme-to-word SMT system
that models errors performed during ASR decoding.

microphone and pass the audio signal through the actual ASR
system that will be used in the pipeline. However, this method
is too costly. Instead of mapping the text to a signal represen-
tation and back to text, we can stop at the phoneme level and
model (1) The phonetic confusion between phonemes and (2)
The ambiguity of phoneme sequences, using actual ASR output
on a small amount of speech data.

This text—phoneme—text pipeline requires (a) a reliable
conversion from written text to phonemes, and (b) a model-
ing technology that can optimize towards a small development
set of actual ASR output. For (a), we employ the text analysis
component of a TTS engine, which dictates written text based
via a pronunciation dictionary (PD), letter-to-sound (LTS) rules
and context-dependent pronunciation rules for numbers, ordi-
nals and acronyms. For (b), we use phrase-based MT with
MERT on actual ASR outputs. In a nutshell, we build an MT
system that translates TTS-generated phoneme sequences into
ASR-like output, and apply it on the source side of MT training
data to improve ASR error tolerance.

2. Damaging Channel

Our SLT system is a standard cascading ASR-MT pipeline,
where the MT system accepts as input a single-best hypothe-
sis from an ASR system, which is recased, punctuated, and
tokenized prior to translation. Our goal is to build an phrase-
based SMT system [6] that translates TTS-generated phoneme
sequences to ASR-like output and applies it to the larger SMT
training data. We divide the pipeline into two stages, as shown
in Fig. 1. First, the damaging channel learns how to trans-
form clean source language texts into output that contains syn-
thetic ASR errors. Each word in an ASR system’s PD is con-



verted into a sequence of phonemes using the LTS rules pro-
vided by a TTS analyzer. The mapping between phoneme se-
quences and their lexical forms are entered into a phoneme-to-
word phrase table with uniform forward and backward proba-
bilities. This phrase table is combined with the language model
used by the original ASR system. Since the conversion of
phonemes into words is monotonic, no reordering table is re-
quired. The phoneme-to-word SMT system is tuned using Min-
imum Error Rate Training (MERT) [7], using a small super-
vised set of source language speech transcripts and the corre-
sponding single-best ASR hypotheses. Due to homophones and
other pronunciation anomalies, the phrase table may have mul-
tiple entries for a single phoneme sequence. For example, the
phoneme sequence /T UW/ may be mapped to two, fo and too.

In the second stage, the source side of the training bitexts
are again transformed into phoneme sequences by the TTS an-
alyzer, which are subsequently translated by the phoneme-to-
word SMT system to generate synthetic ASR outputs for train-
ing the MT component. All training bitexts are duplicated prior
to “damaging” to allow MT training simultaneously on clean
source language bitexts and synthetic ASR outputs.

2.1. TTS-based pronunciation generation

There are several drawbacks to using the phoneme se-
quences in the ASR PD to construct a phoneme-to-word phrase
table:

1. No coverage for OOV words. SMT vocabularies contain

a lot of OOV words w.r.t. ASR pronunciation dictionar-
ies; usually they will be output as phonetically similar
words or phrases in ASR output. If we want to simulate
such phenomena in our damaging channel, we need to
employ LTS rules on these words.

2. No rules for some acronyms (e.g. ADHD, MTV) and nu-
meric sequences (e.g. 1998 or $275,000). We need to
apply rules to correctly “pronounce” these tokens.

3. Context dependency. Words may contain different pro-
nunciations given their context (i.e. record in to record
music vs. a music record).

Instead, we use the text analysis module from a TTS sys-
tem, which can provide a pronunciation hypothesis for any
word. TTS analyzers may use different phoneme sets from the
ASR PD or they may have been trained on different dialects;
thus, we replace the pronunciations from the ASR PD with the
hypotheses from the text analysis module before constructing
the phone-to-word phrase table. To account for multiple pro-
nunciations of words in the ASR PD, we may also augment the
phone-to-word phrase table with alternative pronunciations of
words from the written text.

2.2. Phoneme-level confusion

Thus far, we have assumed that the PD contains only valid
transcriptions. As such, the decoding process undergone by the
phoneme-to-word SMT system defines segmentation bound-
aries on a sequence of phonemes to reconstruct words. How-
ever, during ASR decoding, phonemes may be missing or dis-
torted in the input signal, rendering the decoder likely to mis-
recognize parts of the actual utterance. In response, we intro-
duce an additional step in the damaging channel pipeline to
model phonetic confusability by introducing distortions into a
sequence of phonemes, based on the observed decoding behav-
ior of an ASR system. This process is a phoneme-to-phoneme
SMT pipeline, similar to that of [8]. A phoneme-to-phoneme
phrase table is estimated on a set of phoneme-transcribed source
language transcripts and their single-best ASR hypotheses. A

Phone Pron ASR Transcript
Trans Dict BLEU TER | BLEU TER
lex lex 74.68 1620 98.37 0.81
tts* 20.39  79.53 25.79  72.05
lex+tts 74.67 1622 98.27 0.87
tts lex* 2797  58.13 33.57  52.00
tts 47.84 4037 5726 3223
lex+tts 51.73  35.82 61.94 27.15

*Mismatch between pronunciations.

Table 2: Damaging channel models, converting English tran-
scripts into ASR-like outputs, evaluated on dev2010. Phoneme
conversion uses either the ASR PD (lex) or TTS (#ts). Evaluated
on the target ASR texts and the original transcripts.

phoneme language model is estimated on the phoneme se-
quences of the ASR hypotheses. The weights of the models
are optimized using MERT on a held-out development set. The
trained phoneme-to-phoneme SMT system can perform the fol-
lowing operations: (1) delete one or more potentially silent
or unrecognizable phonemes; (2) insert one or more adjacent
phonemes; and (3) exchange phonemes that have similar con-
text. The resulting system is applied to each lexical entry in
the ASR PD to generate n distorted pronunciation alternatives
which are used to expand the dictionary.

3. Experiments

We perform experiments on the English-French TED
speech translation task from the IWSLT 2014 evaluation cam-
paign [9]. Our baseline SLT system is a cascaded ASR-MT
pipeline. The ASR system is described in [10]; as a brief sum-
mary, the acoustic model is trained on TED talk videos released
before December 31, 2010, corresponding to 820 talks and 144
hours of speech after filtering. It uses a deep neural network
(DNN) that is trained using the Karel setup of the open-source
Kaldi ASR toolkit [11]. Tt is trained over acoustic features
generated in the second pass after having applied LDA-MLLT-
fMLLR transformations with SAT HMMs. An eleven-frame
context window of LDA-MLLT-fMLLR features (5 frames at
each side) is used as input to form a 440-dimensional feature
vector. The DNN has 6 hidden layers each with 2048 neurons
and is pre-trained with Restricted Boltzmann Machines (RBM),
followed by mini-batch Stochastic Gradient Descent training,
and sequence-discriminative training such as Minimum Phone
Error (MPE) and state-level Minimum Bayes Risk (sMBR). The
single-best ASR hypotheses are punctuated, recased, and tok-
enized prior to being translated by the MT system. Our ASR
system yields a word error rate (WER) of 11.7% on tst2012.

The baseline MT component of our SLT system is a phrase-
based Moses system [6, 12], trained on the TED talk training
set permitted in the IWNSLT 2014 evaluation. Our baseline sys-
tem features a statistical log-linear model including a phrase-
based translation model (TM) and a lexicalized phrase-based
reordering model (RM), both trained on TED data, a 5-gram
language model (LM) trained with IRSTLM [13] and converted
into KenL.M’s binary format [14] on the French side of the TED
training corpus, and distortion, word, and phrase penalties.

3.1. Damaging channel

The monotonic phoneme-to-word SMT system is trained
on one of three PD configurations: (1) the ASR pronunciations
(lex); (2) a TTS-generated set of pronunciations for each word
(tts); or (3) a union of the two (lex+1ts). In tts configurations,
each word in the original PD is converted into phonemes using
the Festival TTS system with the CMU PD [15].



Transcript

LEX PHONEMES
LEX-DAMAGE
TTS PHONEMES
TTS-DAMAGE

Their hunters could smell animal urine at 40 paces and tell you what left it behind
dhaxrhhahntaxrzkuhdsmehlaenaxmelyuhrihnaet40peysaxz..

they’re hunters could smell animal urine at 40 paces and tell you what species left it behind
dhehrhhahnterzkuhdsmehlaenaxmaxlyeraxnaetfaortiypeysaxz..

their hunters could smell animal urine at forty paisa Zand tell you what species left Iturbe a hind
TTS-DAMAGE-P2P | their hunters could smell animal urine at forty paces as and tell you what species left it behind

Table 1: Example damaging channel output on dev2010, using the original ASR pronunciation dictionary and TTS.

The ASR system’s language model is included in the
phoneme-to-word SMT system and all model weights are tuned
via MERT and evaluated on bitexts that map ASR references
to our ASR system’s single-best hypotheses. The clean tran-
scripts are transcribed into phonemes prior to translation, either
using the ASR PD or by running Festival’s TTS analysis com-
ponent. We additionally augment the PD described above with
phoneme confusions using a phoneme-to-phoneme SMT sys-
tem, which is trained on phoneme sequencies corresponding to
English bitexts from tst2010. A 4-gram language model is es-
timated on the ASR phoneme sequences using IRSTLM and
is binarized in KenLM format. The model weights are tuned
on dev2010. Five or 10-best lists of phoneme sequences are
generated for each word in the PD by translating each TTS-
generated phoneme sequence into damaged phonemes. The
resulting damaging channel configurations are used to gener-
ate SMT adaptation data from the TED training bitexts, where
the source-side transcripts are processed through the damaging
channel to generate synthetic ASR output. The synthetic out-
puts are tokenized, recased, and punctuated prior to inclusion.

3.2. Synthetic ASR outputs

No phoneme confusions. We first measure how well the dam-
aging channel converts reference transcripts into ASR hypothe-
ses, compared to how much it diverges from itself. Table 2
evaluates the effects of phoneme-to-word translation, without
factoring in phonetic confusability, both on the ASR hypotheses
and the original, unpunctuated transcripts. | While damaging
channel models trained on the original ASR PD (/ex) yield TER
scores around 16% against the ASR hypotheses, the damaged
texts are virtually the same as the originals; thus, it does not
model acoustic confusability well enough. On the other hand,
TTS-generated pronunciations yield TER scores around 40%
on ASR hypotheses and a similar amount on the original tran-
scripts. We similarly observe a 5% absolute TER improvement
when combining the #£s and lex pronunciations. Mismatches be-
tween phoneme converters (e.g. transcribing transcripts with lex
and damaging with #zs) yield abysmal results.

Phoneme confusions. Fig. 2 shows the effects of phoneme
transduction on the damaging channel. In nearly every damag-
ing channel configuration, adding up to 10 distorted phoneme
sequences to each PD before training the damaging channel
yields nearly a 10% absolute improvement in TER, both against
the ASR outputs and the original transcripts. The effects of
merging fts and lex dictionaries become insignificant when
phoneme confusions are introduced, since the valid pronunci-
ation variants are covered in the n-best lists.

Table 1 provides an example of synthetic ASR outputs on
dev2010. The PD-driven damaging channel (LEX-DAMAGE)
treats some numbers in digital form as OOV words (e.g. “40”).
SMT phrase pairs containing these numbers will never be used
in the SLT pipeline. The TTS-driven damaging channel (TTS-
DAMAGE) successfully converts them to phoneme sequences

I'While we report both BLEU and TER scores, the TER metric better
measures this divergence and it is closely correlated with conventional
WER metrics in ASR evaluation.

Transcript to ASR channel modeling: English TED
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Figure 2: Effects of augmenting the PD with phoneme confu-
sions on dev2010 (in TER).

and reconstructs their lexical form. At the same time, there
are cases where the TTS-driven damaging channel’s TM may
give higher scores to low frequency words than common words
(e.g. paisa Zand, instead of Paces and), Our TM assigns uni-
form probabilities to phoneme-to-word and word-to-phoneme
entries. Since the PD was generated in a data-driven fashion,
junk entries appear that usually are never encountered during
ASR decoding. By introducing phoneme confusions through
the phoneme-to-phoneme SMT system (TTS-DMG-P2P), the
TM scores are smoothed with the addition of 5 pronunciations
per lexical entry. TTS-DAMAGE-P2P assigns paces a pronun-
ciation with a dropped “s” (/P EY S AX/) and duplicates /AX/,
rendering the damaged output as paces as and (/P EY S AX AX
Z AE N D/). We discuss this issue in more detail in Section 3.4.

3.3. SLT evaluation

We conduct two sets of TED-only experiments to simulate
two domain adaptation scenarios: (1) the damaged TED tran-
scripts and their translations are concatenated with the clean
TED training data to estimate the translation model and reorder-
ing model (CONCAT); and (2) a separate phrase table is esti-
mated on the damaged bitexts, where previously unseen phrases
are appended using the FILL-UP technique [16, 17] with a prove-
nance feature that marks the phrase as synthetic. To control for
optimizer instability [18], we run MERT three times on each
experiment and evaluate the performance of each system us-

Phoneme Confusion n-best
System 0 5 10 0 5 10
Baseline | 28.44 - - 28.44 - -
lex 29.19 29.04 2892 | 29.06 29.02 28.83
tts 29.08 29.24 29.06 | 28.90 28.54 28.94
lex+tts 2891 29.13 29.20 | 28.90 28.84 28.77
CONCAT FILL-UP

Table 3: Evaluation results on tst2012 (in BLEU). Damaged
TED transcripts are either CONCATenated with clean transcripts
or used to generate new FILL-UP phrase table entries on the
baseline TED phrase-table.



Example 1 Example 2
English ref Since it’s digital, we can do reverse dissection. ...I've studied technologies of mobile ication
ASR output Since its digital we can do reverse dissection . ...I've studied technol , of mobile , ¢ ication
Baseline MT | Depuis que nous pouvons faire son numérique inverser sentinelles. ...J al étudié technologies , de télépk ,lac ication
LEX-DAMAGE | Puisque c’est que nous pouvons faire renverser dissection du numérique. | ...j’ai étudié les technologies de ¢ ication , de technologie mobile...
TTS-DAMAGE | Depuis ses digital , nous pouvons faire régresser axillaire. logie mobile, la ication

TTS-DMG-P2P | Depuis ses numérique , nous pouvons faire renverser axillaire.

...j" ai étudié les technologies, de tech

ai étudié les technologies de tion , de portable...

French Ref

Puisque ¢’ est numérique , nous pouvons faire une dissection a I’ envers . | ...j" ai étudié les technologies de

tion mobile...

Table 4: Example SLT outputs from tst2012, using damaging channel output as concatentated training data.

ing MultEval® on the tst2012 data set. Results are shown in
Table 3. We observe statistically significant improvements in
BLEU, ranging from 0.6-0.8 for our CONCAT and 0.4-0.6 for
FILL-UP (p < 0.01), with the exception of the TTS-trained
damaging channel. The fill-up results are weaker due to the
lack on training data to estimate count statistics for each phrase
table. However, concatenating corpora causes the larger pool
of out-of-domain corpora to dominate the TM as the amount of
training data increases [19].

Table 4 provides examples of end-to-end SLT English-
French translations on tst2012, generated by the baseline SMT
system and SMT systems trained with LEX-DAMAGE, TTS-
DAMAGE, and TTS-DAMAGE-P2P. In the first example, the
contraction it’s is misrecognized as the possessive pronoun its.
While all damaging channel systems permit the error-tolerant
mapping of its to ¢’est, only LEX-DAMAGE applies it success-
fully. However, it comes at the cost of splitting the source
phrase it’s digital into two separate phrases and digital is re-
ordered incorrectly to the end of the sentence. The second ex-
ample demonstrates punctuation errors that change a segment’s
meaning. Technologies of mobile communication becomes a
list of three items. The baseline and TTS-DAMAGE-P2P sys-
tems translate mobile either as a physical telephone device or
a portable object. LEX-DAMAGE and TTS-DAMAGE-P2P gen-
erate translations related to communication technologies, which
captures part of the original meaning. TTS-DAMAGE, on the
other hand, generates a translation for mobile technology. While
imperfect, each damaging channel-trained system manages to
reorder phrase pairs in order to cross the erroneous punctuation
boundaries, thereby improving the translation quality.

3.4. Analysis

Our damaging channel’s phoneme-to-word TM suffers
from forward probability dilution when multiple pronunciations
for a word exist. For instance, LEX-DAMAGE has 12 pronunci-
ations for intercontinental, each with a forward score of 0.077.
The problem is exacerbated when introducing phoneme con-
fusions. The 12 original pronunciations inflate to 34 and 69
when adding the 5- and 10-best phoneme confusions, respec-
tively, while a word with a single pronunciation gains a quan-
tity proportional to n. This behavior may result in junk word
sequences like in ter continent tall to be favored, in spite of the
word penalty feature and the low LM probabilities. This im-
pact of this issue may be reduced by weighting the probability
distribution by corpus frequencies, or pruning infrequent words.

Using a single TTS pronunciation for each word proves to
be detrimental to the damaging channel. Gerund words such
as doing and creating in the PD are transcribed with a /TH NG/
suffix in isolation by Festival, but in context they are commonly
transcribed as /AX NG/ in context.® No valid pronunciations ex-
ist in the phrase table, causing the damager to back off to non-
sense constructions like due a ng and create ng. Phoneme-to-

2https://github.com/jhclark/multeval
3This issue may occur anytime there is a mismatch between TTS
and the entries in the PD.

phoneme pronunciation expansions minimize this effect, at the
cost of diluting phrase table scores. Instead, the TTS analyzer
should generate additional word pronunciations by leveraging
the pronunciation contexts in a corpus.

4. Related work

Techniques to generate synthetic ASR errors have been
used for discriminative language modeling [20, 21, 22], ASR
error prediction [23], and speech translation [24, 25].

[20, 26] use a weighted finite state transducer (WFST) com-
piled from ASR PD converts to convert phoneme sequence back
into words. The ASR system’s acoustic model is used to mea-
sure confusability between phonemes. [22] propose a variant
to phoneme transduction by estimating phoneme substitution
probabilities using maximum likelihood estimates on Leven-
shtein alignments between the reference transcript and a n-best
list of ASR hypotheses. In both methods N-Best outputs were
generated and utilized in discriminative LM training.

[8] implement a similar phoneme-to-phoneme transducer,
modeled as a SMT system and propose its use in conjunction
with a FST-based phoneme-to-word transducer to damage texts.
However, they assume that no OOVs are present in the texts to
damage and did not apply their work on MT training data. Our
method uses a TTS analyzer to bridge the crucial gap between
ASR PD and MT data. [25] extend the method by using a phone
confusion transducer. The transducer allows substitutions based
on phone clusters, consonant deletions, vowel duplications, and
suffix insertions. Like [8], they compose the transducer with the
ASR PD and LM and apply the transducer on each entry in the
SMT phrase table, generating alternative source phrases.

Our approach is an extension and deeper analysis of the text
normalization approach of [24], which uses a text-to-speech en-
gine to introduce phonetic confusability by generating alterna-
tive pronunciations for existing words in an ASR lexicon and
using phoneme-to-word SMT to reconstruct word sequences
constrained in the lexicon.

5. Conclusion

‘We have constructed several variants of a damaging channel
that utilize principles of acoustic and phonetic confusability to
convert sequences of phonemes to synthetic ASR outputs con-
taining potential errors. Clean texts are converted to phoneme
sequences by a TTS analyzer and “translated” back into words
based on the observed behavior of an ASR system. Our TTS-
driven approach successfully converts OOV words, acronyms,
and numeric sequences into words belonging to a ASR PD and
can be used to generate synthetic speech data to adapt a MT
system to the SLT task. Our experiments show that MT systems
adapted with damaged texts are better suited to receive ASR
outputs as input than systems trained only on bitexts. While the
TTS-driven damaging channel performs similarly to baselines
which use the ASR PD, the TTS-driven approach is capable of
generating synthetic texts that diverge further from the original
transcripts in such a way that utilizing multiple damaged hy-
potheses could improve error coverage during MT training.
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