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Abstract Machine learning techniques are increasingly

adopted in computer-aided diagnosis. Evaluation methods

for classification results that are based on the study of one

or more metrics can be unable to distinguish between cases

in which the classifier is discriminating the classes from

cases in which it is not. In the binary setting, such cir-

cumstances can be encountered when data are unbalanced

with respect to the diagnostic groups. Having more healthy

controls than pathological subjects, datasets meant for

diagnosis frequently show a certain degree of unbalanc-

edness. In this work, we propose to recast the evaluation of

classification results as a test of statistical independence

between the predicted and the actual diagnostic groups. We

address the problem within the Bayesian hypothesis testing

framework. Different from the standard metrics, the pro-

posed method is able to handle unbalanced data and takes

into account the size of the available data. We show

experimental evidence of the efficacy of the approach both

on simulated data and on real data about the diagnosis of

the Attention Deficit Hyperactivity Disorder (ADHD).

1 Introduction

Classification-based machine learning techniques are

increasingly adopted in computer-aided diagnosis because

they have limited need for a pathophysiological model of

the disease under investigation. The efficacy of such

model-free approaches depends on many factors, like the

size of the available training sample. A bigger sample size

allows for the training of a more robust classifier and might

improve the prediction accuracy (PA) on the test set.

However, even an enormous amount of data does not

guarantee the correct diagnosis of a disease via classifier.

Once a suitable classification algorithm has been

trained, its efficacy has to be assessed by predicting the

diagnostic groups of subjects in a test set and comparing

them against the true values. It is common practice to

calculate one or more metrics such as the PA, F1-Score,

Matthews Correlation Coefficient, j-statistic [6, 11, 12] or

AUC/ROC [3, 13] to decide whether the classifier is able to

discriminate between healthy controls and one or more

stages/types of the pathology of interest. Each of those

metrics has different strengths and drawbacks. For exam-

ple, PA is not able to properly handle datasets where the

number of available examples per class is not equal, a

setting referred to as unbalanced. More importantly,

common metrics for evaluating classifiers do not depend on

the actual test set size, i.e. they do not measure the amount

of evidence the results of prediction provide.

Through an example, we illustrate how a metric, in this

case the PA, can be influenced by the characteristics of the

dataset, e.g. unbalancedness. Given a test set of 100 sub-

jects where 90 are healthy controls (H) and 10 are patients

(P), a classifier that obtains 90 % of PA could be either

highly accurate in discriminating the two classes, and

therefore diagnosing the disease, or not able at all. These

E. Olivetti � S. Greiner � P. Avesani (&)

NeuroInformatics Laboratory (NILab), Fondazione Bruno

Kessler, Trento, Italy

e-mail: avesani@fbk.eu

E. Olivetti

e-mail: olivetti@fbk.eu

S. Greiner

e-mail: greiner@fbk.eu

E. Olivetti � S. Greiner � P. Avesani

Centro Interdipartimentale Mente e Cervello (CIMeC),
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two extreme cases are illustrated in Fig. 1 by means of

their confusion matrices.A confusion matrix reports the

joint results of the predicted and the true diagnostic groups.

The table on the left shows a classifier that always predicts

the most frequent diagnostic group, i.e class H, which is a

typical issue of classifiers that are not able to discriminate

the two classes. The table on the right shows a classifier

that correctly discriminates the two diagnostic groups and

incurs in only 10 errors over 90 examples in the most

frequent class H.

The confusion matrix is a convenient way to represent

results of a classifier because all the metrics used to eval-

uate classifiers can be computed from it. In the same way,

the method that we propose in this work is based on the

analysis of the confusion matrix. Specifically, we propose

to quantify the evidence between two alternative hypoth-

eses about the underlying generation mechanism of the

observed confusion matrix. The first hypothesis is that the

predicted class labels are statistically independent from the

true class labels. This is the case were the classifier is not

able to discriminate the classes. The second hypothesis is

that the predicted class labels are statistically dependent on

the true class labels. In this case, the classifier predicted

according to the true class labels. The degree of evidence in

favour of one hypothesis or of the other is the measure that

we propose for evaluating the classifier.

In order to implement the proposed method, we draw

from the statistics literature and adopt a recent Bayesian

test of independence for contingency tables [2], which was

proposed in a context different from that of classification.

The proposed method is able to handle imbalancedness,

takes the sample size of the test set into account and pro-

vides the correct answer in cases in which standard metrics

are misleading. Furthermore, this kind of approach can be

extended to the multi-class setting, while traditional eval-

uation methods are often tailored and limited to the binary

setting. We defer the presentation of the multi-class case to

future work.

In the following, we describe the standard classification

task for diagnosis in medical image analysis and define

where the problem concerning result evaluation lies. Sub-

sequently, we introduce the Bayesian test of independence

and show its efficacy on a simulated toy example and on

real data concerning the computer-aided diagnosis of the

attention deficit hyperactivity disorder (ADHD).

2 Methods

The first part of this section formally defines the notation

and framework of classification-based diagnosis. The sec-

ond part introduces the Bayesian hypothesis testing

framework and the proposed solution to the problem of

evaluating the classification result.

2.1 Classification-based diagnosis

Let X ¼ R
d be the multidimensional feature space under

investigation, e.g. medical image data, and let Y ¼
f1; . . .; cg be the set of classes that represents the possible

values of the variable of interest.

Each training example is then a vector X 2 X , e.g. the

data from one subject of the study, with class label Y 2 Y,

e.g. the subject’s pathology. Let PXY be the unknown joint

distribution over X � Y. We are given a previously trained

classifier f : X ! Y that predicts the variable of interest

given the data about which the performance is to be

determined. We call � ¼ EXY ½f ðXÞ 6¼ Y� the generalization

error of f .

In practical cases, the test set is of finite size m, therefore

we do not know the actual joint distribution PXY and � can

only be estimated. Let S ¼ fðx1; y1Þ; . . .; ðxm; ymÞg be the

test set which is assumed to be an i.i.d. set of observations,

i.e. examples, drawn from PXY . The standard estimator of �

is �̂ ¼ e
m
; where e is the total number of misclassified

examples.

The set of true class labels and predicted class labels can

be summarized by the confusion matrix Z, which is a

contingency table (see Fig. 1) that reports the number of

occurrences zij of each possible pair of outcomes. The sum
P

zij ¼ m equals the test set size and the diagonal contains

all correctly classified examples
P

i zii ¼ m� e. The esti-

mated PA is defined as PA ¼ m�e
m
¼ 1� �̂.

For the binary case, the two values on the diagonal of Z

are defined as true positive (TP) and true negative (TN),

respectively, and Type I error as false positive (FP) as well

as Type II error as false negative (FN). The sensitivity or

true positive rate TPR, the false positive rate (FPR) and

specificity (SPC) are defined as

TPR ¼ TP

TPþ FN
FPR ¼ FP

FPþ TN

SPC ¼ TN

FPþ TN
ð1Þ

and the Matthews correlation coefficient (MCC), the F1-

score [11, 12] and the j-Statistic [6] as

prediction
H P

true diagnosis
H 90 0
P 10 0

prediction
H P

true diagnosis
H 80 10
P 0 10

Fig. 1 Two simulated examples of confusion matrices, true class

labels on the rows and predicted class labels on the columns. Both

confusion matrices have the same prediction accuracy (PA), i.e.

PA ¼ 1� �̂ ¼ 0þ90
100
¼ 80þ10

100
¼ 90 %. Nevertheless, in the first case,

there is no evidence that the classifier is able to discriminate H from

P, while in the second one there is.
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MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p

ð2Þ

F1 ¼ 2
TP

2TPþ FPþ FN
ð3Þ

j ¼ PA� rPA

1� rPA
; ð4Þ

where

rPA ¼ ðTN þ FPÞðTN þ FNÞ þ ðFN þ TPÞðFPþ TPÞ
m2

:

The receiver operating characteristic (ROC) analysis is the

study of the curve of FPR versus TPR while a sensitivity or

threshold parameter is varied [3]. In our case, classification

has already been performed, meaning that there is no such

parameter variation and the ratio between both rates is

fixed. Nonetheless, the intercept of the ROC point with the

line at 90 degrees to the no-discrimination line, also known

as Youden’s J statistic [13], can be used as a measure for

the evaluation of performance:

J ¼ TPRþ SPC � 1: ð5Þ

2.2 Evaluation by the Bayesian test of independence

As noted in [8], when data are unbalanced with respect to

the class-label distribution, the PA (or the misclassification

error rate) of a classifier can be a misleading statistic to

assess whether the classifier actually discriminated the

classes or not. An alternative solution to the issue of

evaluating classifiers through the error rate/accuracy is

testing the full confusion matrix.

The literature answering the question ‘‘did the classifier

learn to discriminate the classes?’’ was recently reviewed

in [8], and a novel approach based on the analysis of the

statistical independence between predicted and true class

labels was proposed based on the work of [2]. In this work

we adopt a similar approach that we summarise here. The

intuitive idea is that, following the definition of statistical

independence between random variables, in the case of a

classifier predicting at random, the predicted class labels

are statistically independent of the true class labels. Con-

versely, the more the predictions match the true class

labels, the stronger is the statistical dependence between

them. We propose the use of the Bayesian test of inde-

pendence in contingency tables described in [2] to compute

the ratio of the posterior probabilities of the following two

hypotheses:

– H0: the predictions are statistically independent of the

true class labels.

– H1: the predictions are statistically dependent on the

true class labels.

According to the Bayesian hypothesis testing framework

[5], the comparison of two hypotheses can be quantified by

the ratio of their posterior probabilities. That ratio can be

rewritten as

PðH1jZÞ
PðH0jZÞ

¼ PðH1Þ
PðH0Þ

PðZjH1Þ
PðZjH0Þ

¼ PðH1Þ
PðH0Þ

B10; ð6Þ

where B10 is called Bayes factor and measures the evidence

of the data in favour of H1 with respect to H0. When

B10o1 the evidence is in favour of H1 against H0.

Guidelines for the interpretation of the strength of evidence

are presented in [5] and reported here in Table 1.

In order to compute B10 for the hypotheses of interest of

this work, it is necessary to define a sampling model for the

confusion matrix Z under each hypothesis. Notice that

while evaluating the classification results, the total number

of examples per class in the test set can be assumed as

known. This assumption is usually known as one margin

fixed and it means that the row marginals of Z are known

and then that the sampling model for each row of the

confusion matrix is Binðzijni; piÞ, where zi is one of the two

values of the i-th row (the other being ni � zi), ni is the

known i-th row marginal and pi the unknown probability of

predicting that class when the true class is i.

The sampling model under H0 is that p1 and p2 are

identical and drawn from one distribution, while, under

H1; p1 and p2 are drawn independently from their own

distributions. The exact form of these distributions, called

prior distributions pðp1; p2jHiÞ, is a matter of debate and,

in this work, we follow a recent result presented in [2]

which is based on the use of a standard prior for

pðp1; p2jH0Þ and the intrinsic prior [1] for pðp1; p2jH1Þ. In

this context, the idea of the intrinsic prior is that

pðp1; p2jH1Þ should concentrate its mass around

pðp1; p2jH0Þ to ensure that the inference process distin-

guishes between H0 and close alternatives and gives less

weight to extremely unlikely models. In [2], the degree of

concentration is parametrised by the non-negative integer

parameters t1 and t2, one for each row. From the definition

of intrinsic prior and considering a uniform standard prior

for H0, i.e pðp1 ¼ p; p2 ¼ pjH0Þ ¼ Uð0;1ÞðpÞ, we get [2]:

Table 1 Guidelines for the interpretation of the logarithm of the

Bayes factor logðB10Þ in terms of the strength of evidence in favour of

H1 and against H0, from [5]

logðB10Þ \0 0 to 1 1 to 3 3 to 5 [5

Strength Negative Bare mention Positive Strong Decisive

Statistical independence for the evaluation
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pðp1; p2jt1; t2Þ ¼
Xt1

i¼0

Xt2

j¼0

t1

i

� �
t2

j

� �

� Cðiþ jþ 1ÞCðt1 þ t2 � i� jþ 1Þ
Cðt1 þ t2 þ 2Þ

� Betaðp1jiþ 1; t1 � iþ 1Þ
Betaðp2jjþ 1; t2 � jþ 1Þ

ð7Þ

Then, the Bayes factor B10 measuring the ratio of the

evidence of H1 against H0 is

B10ðz1; z2; t1; t2Þ ¼
R

Pðz1; z2jp1; p2;H1Þpðp1; p2jH1Þdp1dp2R
Pðz1; z2jp1; p2;H0Þpðp1; p2jH0Þdp1dp2

¼ n1 þ n2 þ 1

ðn1 þ t1 þ 1Þðn2 þ t2 þ 1Þ

� �
ðt1 þ 1Þðt2 þ 1Þ

t1 þ t2 þ 1

� �

� n1 þ n2

z1 þ z2

� �Xt1

i¼0

Xt2

j¼0

t1
i

� �2 t2

j

	 
2

t1þt2
iþj

	 

n1þt1
z1þi

	 

n2þt2

z2þj

	 
 :

ð8Þ

The detailed derivation can be found in [2]. Notice that

B10ðz1; z2; t1; t2Þ is parametric in t1 and t2, which means that

different degrees of concentration of pðp1; p2jH1Þ around

pðp1; p2jH0Þ will lead to a different amount of evidence

supporting H1 against H0. In [2], it is claimed that robust

inference can be obtained only when B10ðz1; z2; t1; t2Þ is stable

w.r.t. variations of t1 and t2. Here we propose a conservative

approach and define B10ðz1; z2Þ ¼ mint1;t22f0...mg B10ðz1; z2;

t1; t2Þ. This means that when stability is an issue, we may not

be able to claim that the classifier is able to discriminate

among the classes.

In [2], it is shown how to extend Eq. 8 to the multi-class

case, which we do not present here.

3 Materials: the ADHD dataset

Our study refers to the ADHD-200 Initiative and dataset

which is dedicated to support the scientific community in

studying and understanding the neural basis of ADHD.

The aim of the initiative is also meant to support the

clinical community with the advance of objective tools

for computer-aided diagnosis. Eight institutions collected

neuroimaging datasets from almost one thousand young

subjects (age 7–26) with and without ADHD. For

each subject, multiple types of data were collected: phe-

notypic data, structural (T1) magnetic resonance imaging

(MRI) data and functional MRI (fMRI) resting-state

data. Accompanying phenotypic information included:

age, gender, handedness and IQ measure. The ADHD-200

dataset is publicly available and freely distributed with

the support of the International Neuroimaging Data-shar-

ing Initiative.1

Even though the ADHD-200 dataset comprised three

different levels of the ADHD disorder and the healthy

controls, in this work, we restrict our analysis to the dis-

crimination between two diagnostic categories, i.e. healthy

controls and ADHD patients, by aggregating patients into

one class. In the following, we refer to the whole dataset

comprising the data of 1339 recordings from 923 subjects,

where the diagnostic classes are distributed as follows:

62 % typically developing control and 38 % ADHD. For a

few subjects, data were only partially available or cor-

rupted. These subjects were excluded from our study.

In this work, we analyse the confusion matrices pre-

sented in [7]. We report a brief summary of the prepro-

cessing and classification steps because a detailed

presentation is beyond the scope of this paper and it can be

found in [7]. The preprocessed data were retrieved from the

NeuroBureau initiative2 and specifically from the Athena

and Bruner pipelines managed by C. Craddock and C. Chu.

Both structural (T1) volumes and statistical volume from

fMRI resting-state recordings were transformed into vec-

tors through the dissimilarity representation [9]. The clas-

sification algorithm adopted was the extremely randomized

tree [4] with different cross-validation schemes.

In Sect. 4, we use the confusion matrices obtained in [7]

from phenotypic data (denoted as PHEN) and fMRI rest-

ing-state data preprocessed according to the spatial multi-

ple regression proposed in [10] (denoted as SMR0-9).

4 Experiments

We compared the efficacy of the proposed test of inde-

pendence against multiple standard metrics introduced in

Sect. 2. Experiments were conducted on data from a sim-

ulated toy example and on real data concerning the com-

puter-aided diagnosis of ADHD brain disease. The code of

the experiments is freely available from https://github.com/

FBK-NILab/brin2014.

4.1 Simulated toy example

We expand the example introduced in Fig. 1 in order to

clearly explain the differences between the proposed

method and the standard metrics frequently used when

evaluating classification results. In Table 2, we report the

estimated PA, the Matthew correlation coefficient (MCC),

the F1-score, the j-statistic (j) and Youden’s J-statistic (J)

together with the proposed logðB10Þ for both the extreme

1 http://fcon_1000.projects.nitrc.org/indi/adhd200/
2 http://neurobureau.projects.nitrc.org/ADHD200/Data.html
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cases introduced in Sect. 1 and two additional cases. The

first of them refers to perfect prediction of all available

examples and the second one to random prediction without

considering the prior distribution of the diagnostic groups.

In Table 3, we report the results from confusion matrices

analogous to those in Table 2, but with exactly 1/5 of the

examples. This second table aims at showing that only the

proposed method is able to quantify the evidence in the

data taking into account the test set size.

In Table 2, we observed that perfect prediction, i.e. (c),

produces the highest scores for all the metrics considered,

i.e. 1.0. The score of the proposed method, i.e.

logðB10Þ ¼ 19:61, means decisive evidence in favour of H1,

according to the interpretation guidelines in Table 1. So it

agrees with all other metrics. The case of perfectly random

prediction irrespective of the prior distribution, i.e. (d), is

again correctly detected by all methods by scoring 0:0,

with the exception of the F1 score. The score of the

proposed method, i.e. logðB10Þ ¼ �0:94, is negative evi-

dence for H1
3 in agreement with most of the standard

metrics.

The comparison of the cases (a) and (b) of Table 2

shows that prediction accuracy (PA) and F1 score are not

reliable for unbalanced datasets. The related confusion

matrices represent opposite situations but those scores do

not significantly change. For the confusion matrices in (a),

the Matthews Correlation Coefficient (MCC) and Youden’s

J score are undefined and only the j-statistic correctly

detects the difference between (a) and (b). In agreement

with the j-statistic, the proposed method reports negative

evidence for H1 for case (a) and decisive evidence for H0

for case (b).4

Table 2 Confusion matrices on a test set of 100 examples, logðB10Þ,
prediction accuracy (PA), Matthews Correlation Coefficient (MCC),

F1-Score (F1), j-Statistic and Youden’s statistic (J) for different

settings. (a) always predicting the dominant class, (b) errors only in

the dominant class, (c) perfect prediction, (d) random prediction

a) H P
H 90 0
P 10 0

log(B10) -2.29
PA 0.90

MCC n.d.
F1 0.95
κ 0.00
J n.d.

b) H P
H 80 10
P 0 10

log(B10) 10.67
PA 0.90

MCC 0.67
F1 0.94
κ 0.62
J 0.50

c) H P
H 90 0
P 0 10

log(B10) 19.61
PA 1.00

MCC 1.00
F1 1.00
κ 1.00
J 1.00

d) H P
H 45 45
P 5 5

log(B10) -0.94
PA 0.50

MCC 0.00
F1 0.64
κ 0.00
J 0.00

Table 3 Confusion matrices on a test set of 20 examples obtained by

dividing the values of the confusion matrices in Table 2 by a factor

of 5. Accordingly, logðB10Þ, prediction accuracy (PA), Matthews

Correlation Coefficient (MCC), F1-Score (F1), j-Statistic and

Youden’s statistic (J) are reported

a) H P
H 18 0
P 2 0

log(B10) -0.99
PA 0.90

MCC n.d.
F1 0.95
κ 0.00
J n.d.

b) H P
H 16 2
P 0 2

log(B10) 1.84
PA 0.90

MCC 0.67
F1 0.94
κ 0.62
J 0.50

c) H P
H 18 0
P 0 5

log(B10) 3.37
PA 1.00

MCC 1.00
F1 1.00
κ 1.00
J 1.00

d) H P
H 9 9
P 1 1

log(B10) -0.35
PA 0.50

MCC 0.00
F1 0.64
κ 0.00
J 0.00

3 Since B01 ¼ 1
B10

, this corresponds to positive evidence for H0.

4 Those correspond to positive (a) and negative (b) evidence for H0.
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In Table 3 the confusion matrices represent the same sit-

uations of those in Table 2 but with a reduced number of

examples. This means that their interpretation in terms of

scores must go in the same direction but the amount of evi-

dence provided in Table 3 is much lower than that of Table 2

and the evaluation has to take that into account. In other words,

we cannot draw the same conclusions from a test set of 20

examples with respect to a test set of 100 examples and this

should be represented in the scores. As it can be seen from the

comparison of the scores in Table 3 with respect to those in

Table 2, all the standard metrics provide the same exact scores

despite having 1=5 of the data. Different from them, the

proposed method shows a great reduction in value, correctly

reflecting the reduced size of the test set. For example, in case

(b), the amount of evidence in favour of H1 is decisive in

Table 2 (log B10 ¼ 10:67) but only worthy of a bare mention

in Table 3 (log B10 ¼ 1:84).

4.2 Real-data application

A standard 10-fold stratified cross-validation scheme was

used to create the aggregated confusion matrices associated

to the dataset described in Sect. 3. Table 4 presents them

(SMR5, SMR7, SMR2 and PHEN) together with logðB10Þ
of H1 over H0, estimated accuracy, and the other metrics

introduced in Sect. 2. Each aggregated confusion matrix

was computed as the sum of the confusion matrices of each

cross-validation fold. The accuracies obtained for all single

source dataset varied between 60 and 66 %. We focused on

four cases that had a significantly different Bayes factor,

but marginal differences in prediction accuracy.

The results shown in Table 4 about SMR5 and SMR7

have prediction accuracy of 61 % in both cases. The analysis

of the confusion matrix by means of the test of independence

reveals that SMR5 does not provide relevant information

about ADHD diagnosis, while SMR7 provides strong

evidence in support of H1. The predictions in the latter case

are therefore statistically dependent on the true class labels

and a positive answer to the question, whether the classifier

learned to discriminate the classes, can be given. Notice that

MCC; j and J show little increase from SMR5 to SMR7,

making it difficult to detect such difference.

A substantially similar result can be obtained on SMR2 vs.

PHEN, in Table 4. The prediction accuracy is again at the

same level in both cases: while the SMR2 is found to obtain

positive evidence, PHEN has a logðB10Þ ¼ 9:58, which is

decisive evidence for statistical dependence between pre-

dicted and true class labels. Other standard metrics, i.e.

MCC; j and J, shows a small increase in value but the absence

of interpretation guidelines, as those in Table 1, makes it

difficult to understand the practical meaning of those changes.

Furthermore, the comparison of SMR7 vs. SMR2 shows

another example for how the prediction accuracy may be

misleading. The former has the lower prediction accuracy,

but strong evidence (logðB10Þ ¼ 4:44) that the classifier

might have learned to discriminate the classes, while the

latter has a slightly higher prediction accuracy, but only

positive evidence (logðB10Þ ¼ 2:98).

As a general comment, the ranking of relevance for diag-

nosis of the four different data sources is in agreement when

considering the proposed method based on Bayesian inference

and the Matthews correlation coefficient or the j-statistic. The

main difference is that the result of the proposed method has a

direct interpretation in terms of evidence, while the signifi-

cance of the differences in the values of the standard metrics

across the confusion matrices remains to be determined.

5 Discussion

In this work, we propose a novel method for the evaluation

of classification results that overcome the limitations of

Table 4 Confusion matrices and the related values of logðBF10Þ and

of different standard metrics for ADHD classification. The confusion

matrices considered here are from phenotypic data (PHEN) and from

the spatial multiple regression of fMRI resting state (SMR2, SMR5,

SMR7). See Sect. 3 and [7] for additional details. The standard

metrics are the prediction accuracy (PA), Matthews correlation

coefficient (MCC), F1-Score (F1), j-Statistic and the Youden’s

statistic (J)

SMR5 H P
H 739 82
P 441 77

log(B10) 0.46
PA 0.61

MCC 0.07
F1 0.74
κ 0.06
J 0.11

SMR7 H P
H 713 108
P 408 110

log(B10) 4.44
PA 0.61

MCC 0.11
F1 0.73
κ 0.09
J 0.14

SMR2 H P
H 750 71
P 441 77

log(B10) 2.98
PA 0.62

MCC 0.10
F1 0.75
κ 0.07
J 0.15

PHEN H P
H 651 170
P 340 178

log(B10) 9.58
PA 0.62

MCC 0.15
F1 0.72
κ 0.15
J 0.17
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commonly adopted metrics. The proposed method is based

on the Bayesian inference framework and provides a

measure of evidence in the data that can be easily inter-

preted by means of standard guidelines. This differs from

standard metrics where guidelines for interpretation are not

available due to the lack of a statistical foundation.

Additionally, in Sect. 4.1, we show that the proposed

method agrees with standard metrics in many cases. But it

is the only one able to provide the correct answer in more

extreme cases, where standard metrics are either undefined

or misleading.

In Sect. 4.2, on real data, we show that the proposed

method distinguishes between data sources that are of

importance for the discrimination between the diagnostic

groups of ADHD from those who are not. This is some-

times in contrast with prediction accuracy that may lead to

incorrect conclusions (see SMR7 vs SMR2).

The accurate detection of data sources which are irrel-

evant to diagnosis can lead to their exclusion from diag-

nosis protocols and therefore to improve the cost-benefit

trade-off. The proposed Bayesian test of independence is

an effective tool for such task.
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