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Abstract—The analysis of human brain connectivity networks
has become an increasingly prevalent task in neuroimaging. A
few recent studies have shown the possibility of decoding brain
states based on brain graph classification. Graph kernels have
emerged as a powerful tool for graph comparison that allows
the direct use of machine learning classifiers on brain graph
collections. They allow classifying graphs with different number
of nodes and therefore the inter-subject analysis without any
kind of previous alignment of individual subject’s data. Using
whole-brain fMRI data, in this paper we present a method based
on graph kernels that provides above-chance accuracy results
for the inter-subject discrimination of two different types of
auditory stimuli. We focus our research on determining whether
this method is sensitive to the relational information in the data.
Indeed, we show that the discriminative information is not only
coming from topological features of the graphs like node degree
distribution, but also from more complex relational patterns in
the neighborhood of each node. Moreover, we investigate the
suitability of two different graph representation methods, both
based on data-driven parcellation techniques. Finally, we study
the influence of noisy connections in our graphs and provide a
way to alleviate this problem.
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I. INTRODUCTION

During the last decade, brain decoding [1] has become
a common approach to fMRI data analysis. Generally, this
approach aims at predicting whether a perceptual, cognitive,
or behavioral stimulus associates with a collected sample of
fMRI data. Usually, fMRI data is represented as volumes of
four dimensional samples, where each sample is associated
to a category. The common vectorial encoding of brain data
introduces a bias towards functional segregation studies [2]
in contrast to functional integration studies. In segregation
studies the inference is driven by regions of voxels with
high statistical dependency. This approach is effective when
the experiment’s design tests a hypothesis investigating brain
activity that might be localized to a particular area. In contrast,
functional integration studies aim to decode the information
captured by relationships between distributed brain regions.
Here, an activation pattern is assessed by its network structure,
rather than by specificity in a particular region.

Network analyses of brain activation [3] are quite common
in brain connectivity studies. Their main purpose is to perform
either hypothesis testing on the functional connectivity or in-
ference from topological graph properties such as modularity,
node degree distribution or clustering coefficient. All of these
methods have in common a graph based encoding of fMRI
recording. A recent survey [4] reviews the different ways to
model the brain activation as a graph.

Early attempts to approach the brain decoding task with
graph encoding were based on vectorial embedding [5]. The
graph representation is conceived as an adjacency matrix that
is subsequently unfolded into a real vector. There are some
restrictive conditions if the method is applied to brain decoding
across subjects: the fMRI data has to be registered into a
common space, thus leading to graphs with the same number
of nodes and a correspondence between nodes across subjects.
This constraint is called fixed-cardinality vertex sequence
property [6].

An alternative approach is based on the notion of graph
kernels [7]. In this case, the challenge is to design a graph
kernel that is sensitive to the relational information and also
computationally efficient. The practical application of graph
kernels to the problem of brain decoding overcomes the
efficiency issue by reducing the size of the graphs, either
by focusing on a region of interest [8] or by computing
a parcellation of the brain data [8], [9]. More recently, an
efficient graph kernel has been proposed: the Weisfeiler-
Lehman kernel [10]. Its reduced computational complexity
enables whole brain graph analysis [11]. It has also been
successfully applied to a Mild Cognitive Impairment study
on resting state [12].

In general, different kinds of graph kernels have been ap-
plied in neuroimaging problems: a custom-designed kernel [8],
the shortest-path kernel [9] and the previously mentioned
Weisfeiler-Lehman kernel [11]. However, there is still no clear
evidence on whether they are effective to detect the relational
information encoded in the fMRI signal. The graph kernel
designed in [8] is only able to detect pairwise relationship
information. The computation is done at the level of edge
comparison and more complex relations are not considered.
In [9], the computation of the graph kernel is affected by the
fixed-cardinality vertex sequence property. Moreover, it can
only be applied on small graphs due to its high computational
complexity. In [11], it is shown that the graph kernel may
produce above-chance accuracy results. However, it is not clear
what kind of information is decisive in the discrimination task.

In this paper, we address the question whether a graph
kernel is really exploiting the relational information encoded
in a graph representation of fMRI data. More in detail,
we investigate whether the information is captured by the
node degree distribution of graphs or even by higher order
relationships that are difficult to quantify by following other
approaches. We focus our work on Weisfeiler-Lehman graph
kernel because it supports the whole brain analysis and it does
not require the fixed-cardinality vertex sequence property.

The additional contribution of this work is concerned with
the relationship between the method to encode the graphs
and the graph kernel. We are interested in assessing how the978-1-4799-4149-0/14/$31.00 c©2014 IEEE



choice of graph encoding can influence the subsequent task
of learning from graphs. Moreover, we analyze the impact of
node labeling techniques in the graph encoding and how we
can alleviate the effect of noisy connections.

In order to address our questions we perform an empirical
analysis on a neurocognitive experiment. The experiment aims
at assessing how the brain is processing auditory stimuli of
different complexities. The protocol was designed as time
unlock stimulation and the working assumption is that no
specific brain region is devoted to this task.

II. METHODS

We study the fMRI brain decoding problem across mul-
tiple subjects. Let T = {T1, T2, . . . , Tn} be the set of n
trials in a task-related fMRI experiment with m subjects
and Y = {y1, y2, . . . , yn} be the corresponding class labels
(stimuli). Each trial Ti is composed of a set of voxels
Ti = {w1, w2, . . . , wt}, where each voxel wj = (fj , cj) is
determined by its time series fj and geometrical coordinates
cj (< x, y, z > spatial coordinates). Our approach for brain
decoding is based on three main elements:
• A graph encoding method, which builds a graph from

every fMRI trial. In other words, each trial Ti is
mapped into a graph Gi and the brain decoding prob-
lem is transformed into a graph classification problem
with the following class-labeled graph dataset DG =
{(G1, y1), . . . , (Gn, yn)}. The graph encoding techniques
that we will consider are presented in Section II-A.

• A graph kernel, which is used to compute the similarity
between each pair of graphs, and therefore a kernel matrix
for the classification problem. In Section II-B we discuss
our graph kernel choice.

• A kernel-based classifier able to work with the kernel
matrix. In this case we apply the standard Support Vector
Machines (SVM).

A. Graph encoding of fMRI data

We use simple, undirected and node-labeled graphs G =
(V,E, `) to encode the information in each fMRI trial Ti,
where V is a set of nodes, E ⊂ V × V a set of undirected
edges and ` : V → Σ is a function that assigns a label from
an alphabet Σ to each node in the graph.

We define our graphs in 3 steps. The first step is the node
definition. We follow the idea of computing a parcellation of
the brain data [4] and then assigning a node to each parcel.
The goal of parcellation is to reduce the impact of noise in the
graph computation and also to reduce the size of the graphs.
We adopted two different parcellation methods based on the
application of clustering algorithms:
• Geometrical parcellation: We apply the Ward’s hierar-

chical clustering algorithm to the set of voxels but only
using the geometrical coordinates (cj) of each voxel as
the features. Time series does not come into play when
quantifying distance between voxels. It is similar to up-
scaling the data at certain resolution.

• Functional parcellation with geometrical constraints: We
apply Ward’s algorithm by using the time series (fj) of
each voxel as features. Geometrical features (cj) of each
voxel are used as a constraint to avoid clusters with more
than one connected component in the geometrical space.

Once the nodes are defined, the average time series f̂ of
all voxels in each parcel is computed and associated to the
corresponding node. Afterwards, the edges are determined by
computing the Pearson Correlation Coefficient ρ between the
time series of each pair of nodes and thresholding it with a
fixed value τ , i.e. ejk ∈ E ⇔ ρ(f̂j , f̂k) ≥ τ .

The node labeling function ` is defined such that each node
is assigned with its node degree. Moreover, in Section IV-C
we explore the use of a more robust labeling mechanism.

B. Graph kernel
Graph kernels have become a popular choice for graph

classification problems [7]. They allow the direct use of kernel
based classifiers (e.g. SVM) on graph data. A common limita-
tion of graph kernels is their high computational complexity,
which makes them mostly useful for the comparison of small
graphs. However, recent proposals like the Weisfeiler-Lehman
(WL) subtree kernel [10] can be efficiently computed in time
O(|E|). Furthermore, it is a meaningful way of comparing
graphs since it is based on the 1-dimensional variant of
Weisfeiler-Lehman test of graph isomorphism [10].

The computation of this kernel for two graphs is performed
by an iterative process, which starts by comparing the node la-
bels of both graphs. A new artificial label is then computed for
each node by compressing the node labels of its neighboring
nodes. Afterwards, the graphs with the compressed nodes are
compared. This process is repeated until the desired number
of iterations is reached. More formally, given two graphs G
and G′, the WL kernel with h iterations is defined as:

WL[h](G,G′) =
〈
φ(h)(G), φ(h)(G

′)
〉

(1)

where φ[h](G) is a vector containing the number of oc-
currences of all existing labels until iteration h is reached for
graph G. In our experiments we set h = 2 and in Section IV-B
we analyze the type of information that the kernel is using
in each iteration. Moreover, we use a normalized version of
the kernel: ŴL(G,G′) = WL(G,G′)√

WL(G,G)·WL(G′,G′)
. This way,

the kernel takes values in the interval [0, 1] and we avoid the
possible adverse effect of the different sizes of the graphs
in the comparison. Notice that there is no correspondence
between nodes across different subjects and in general all
graphs may have different number of nodes and edges.

III. MATERIALS

We use in our analysis the data from 19 healthy participants
(with normal hearing) engaged in a passive listening task
lacking any executive component. Subjects were presented
with two types of auditory stimuli: Ordered and Disordered,
as well as two other conditions not discussed here. These
stimuli were designed by using sequences of pure tones at
262, 294, 330 and 349 Hz, corresponding to middle “C”,
“D”, “E” and “F” notes on the Western major scale. The tone
sequence order was determined by using a first-order Markov
process applied to two transition matrices with different levels
of Markov entropy (0.81 and 1.56). The two entropy levels
marked the two experimental conditions in this study. Each
transition matrix was used to generate 90 sec of auditory
stimuli where tones were presented at a rate of 3.3 Hz.
The time series collected within these 90 sec were the core



data of the study, representing a single trial (sample) in our
dataset. Each stimulus was presented once to each participant,
therefore our dataset is composed of 38 trials or samples.

All images were acquired using a 4T Bruker/Siemens sys-
tem. For functional images, we used a single shot echo planar
imaging sequence to collect 25 interleaved slices parallel to
the AC/PC, with TR = 1500 ms, TE = 33 ms, flip angle = 75
degrees, voxel size = 4× 4× 4.8 mm, matrix = 64× 64 mm,
and slice skip factor = 0.2. We collected 471 of these blood
oxygen level dependent scans over a single 706.5 sec run.
For anatomical images, we used a 3D T1weighted MPRAGE
sequence to collect 176 sagittal slices, with TR = 2700 ms,
TE = 4 ms, flip angle = 7 degrees, matrix = 256 × 224, and
isotropic voxel size of 1 mm.

IV. RESULTS AND DISCUSSION

In our experiments, we perform a leave-one-subject-out
(LOSO) cross-validation, i.e. in each fold, we train with the
data of 18 subjects and test on the data of the remaining one.
According to a Binomial distribution, any accuracy above 0.65
is significant for this problem, with a p-value below 0.05.

A. Different graph encoding techniques
In this experiment we are comparing the classification

accuracies we obtain when using two different node definition
techniques for graph encoding: geometrical parcellation and
functional with geometrical constraints (see Section II-A).
Both parcellation techniques depend on two parameters:
• cr: Cluster ratio. The hierarchical clustering algorithm

requires the number of clusters k to be computed. How-
ever, we will not define the value k directly because each
subject may have different number of voxels as we are
working on individual subject spaces. Thus, a parameter
cr is defined such that k = ni/cr, where ni represents
the number of voxels for the i-th subject.

• τ : Threshold for correlation. The threshold to be used for
the definition of the edges in the graph.

In order to optimize these parameters and provide a fair
estimation of the accuracy, we follow the idea of grid-
search. In each fold of the LOSO we do an internal
cross validation (again leaving one subject out) to esti-
mate the parameters. We tested the following values in our
grid-search, cr = {100, 120, 140, 160, 180, 200} and τ =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

In Figure 1 we show the accuracy for the best parameters in
the grid-search associated to each fold in the external cross-
validations procedure.

The average accuracy of the whole LOSO procedure is:
• Geometrical encoding: 73.68%
• Functional encoding: 60.52%

These results were obtained with the best combination of
values for the parameters from the grid-search inside each fold
of the LOSO cross-validation.

In general, these results could be counter-intuitive at first
sight. One could expect a higher accuracy from a parcellation
process that uses the functional information of the voxels.
However, the use of functional information causes the joining
of voxels that belong to different spatial regions in the brain.
This avoids the creation of strong links between these regions,
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Fig. 1. Comparison of the best accuracy values in the internal grid-search
for each one of the 19 folds in the LOSO procedure.

therefore leading to graphs with less discriminative informa-
tion for the problem. Consequently, we decided to discard the
functional parcellation-based encoding and will focus on the
geometrical-based encoding.

In order to show the complexity of this problem, in Figure 2
we provide a general description of the graph population we
are working with. Analyzing the best parameter configuration
for each fold in the cross-validation, we obtained that the most
stable parameters for the geometrical-based encoding were
cr = 140 and τ = 0.4. Thus, the graph dataset shown in this
figure, corresponds to the geometrical encoding procedure for
this parameter’s combination.
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Fig. 2. Top: Number of edges vs. number of nodes for all graphs. Bottom:
Average node degree distribution for class.

In the top part of Figure 2, we show the relation between
the number of nodes and edges for all graphs in both classes.
Notice that any two graphs corresponding to the same subject
have the same number of nodes. It can be seen from this figure
that there is no clear pattern that allows the discrimination
between classes by only looking at the number of nodes and
edges. In the bottom panel of this figure, we show the average
node degree distribution for all graphs in both classes. Even
though the average plot is not very reliable, in this case we
can appreciate that one class tends to have nodes with higher
node degree than the other.

B. Graph kernel interpretation
In this section, we analyze the type of information that

the graph kernel is taking into account. As we mentioned in
Section II-A, we are using the node degree value of each node
as its node label in our graph encoding. Therefore, we can
expect that the node degree distribution of the graphs is a
discriminative feature for this problem (this idea is to some



extent supported by Figure 2). Analyzing the definition of WL
kernel (see Section II-B) we conclude that in fact, the first
iteration just compares the node degree distributions of the
graphs. Besides the theoretical analysis of the WL kernel, we
corroborated this claim with the use of synthetic data.

Nevertheless, this is not the only information taken into
account by the WL kernel. In its second iteration, this kernel is
sensitive to similar patterns on the neighborhood of each node
among the different graphs. All the labels in the neighborhood
of a node are used to compute a second order label. Therefore,
the matching of two second order labels means the matching
of the whole neighborhoods of two nodes in the graphs.

In the computation of the kernel, the final result is obtained
by adding the results of the two iterations. Therefore, we can
compare the accuracy results of our method when using:
• WL[1,2]: The WL graph kernel with the two iterations

(in the way it has been previously used in this section).
• WL[1]: The WL graph kernel with only the first iteration

(only node degree distribution).
• WL[2]: The WL graph kernel with only the second

iteration (only neighborhood pattern).
In the three cases we use the geometrical encoding with the

best parameters we found in our grid search, i.e. cr = 140
and τ = 0.4. The average accuracy of the LOSO experiment
for each case is:
• WL[1,2]: 73.68%
• WL[1]: 68.42%
• WL[2]: 57.89%

From these results we can conclude that a significant part
of the discriminative information comes from the node degree
distribution. However, there is also some valuable information
in the neighborhood patterns of each node. Hence, the com-
bination of both sources provides the most accurate results.

C. Influence of node labeling
The node degree has been proven to be a meaningful label

for the graph encoding. However, it can be sensitive to noise.
The node degree of a given node can be affected by just adding
or removing one edge from it. This simple variation would
affect the result of the WL graph kernel. In this section, we
explore the idea of using a more robust label definition for
the graph encoding step. The idea is to compute intervals of
consecutive node degree values and assign the same label to all
possible node degree values in the interval. Therefore, given
the node degree distribution of a graph, we are assigning the
same label to an interval of p consecutive node degrees values.

In Table I, we explore the influence of the parameter p in the
classification accuracy. We compare the average classification
accuracy for WL[1,2], WL[1] and WL[2] with cr = 140, τ =
0.4 and the following p values: p = {1, 3, 5, 7, 9, 11}.

TABLE I
AVERAGE CLASSIFICATION ACCURACY OF WL[1,2], WL[1] AND WL[2]

FOR DIFFERENT VALUES OF p.

PPPPPPGK
p =

1 3 5 7 9 11

WL[1,2] 73.68 71.05 76.31 78.94 73.68 68.42
WL[1] 68.42 71.05 71.05 76.31 71.05 68.42
WL[2] 57.89 52.63 52.63 57.89 57.89 52.63

From the results of Table I we observe an improvement of
the accuracy for some values of p. This supports the idea that

the performance of the classifier can be improved by using a
more stable labeling function. It can also be appreciated that,
in most cases, there is a similar relation between WL[1,2],
WL[1] and WL[2]. In other words, most of the information
comes from the label distribution in the graphs, but some
valuable information is also coming from the label patterns in
the neighborhood of each node. Despite the results, defining
uniform intervals of length p for the label assignment may not
always be the best choice. A more complex intervals definition,
e.g. taking into account the global node degree distribution of
the graphs, could improve the results even more.

V. CONCLUSIONS

We have shown that brain parcellation based on geometrical
features is a convenient approach for graph encoding. More-
over, we have found the Weisfeiler-Lehman kernel is a suitable
option for brain graph classification. It is able to extract
information from the node degree distribution and from more
complex relational patterns in the graphs. The node degree
distribution can be sensitive to noise, but this problem can be
addressed by using a node degree agglomeration technique. In
our experiments, we obtained above-chance accuracy results
in the inter-subject classification of auditory stimuli. These
results were obtained by using the full-brain fMRI data and
without any spatial alignment of individual subject’s data.
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