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Abstract

Knowledge of social contact patterns still represents the most critical step for understanding the spread of directly
transmitted infections. Data on social contact patterns are, however, expensive to obtain. A major issue is then whether the
simulation of synthetic societies might be helpful to reliably reconstruct such data. In this paper, we compute a variety of
synthetic age-specific contact matrices through simulation of a simple individual-based model (IBM). The model is informed
by Italian Time Use data and routine socio-demographic data (e.g., school and workplace attendance, household structure,
etc.). The model is named ‘‘Little Italy’’ because each artificial agent is a clone of a real person. In other words, each agent’s
daily diary is the one observed in a corresponding real individual sampled in the Italian Time Use Survey. We also generated
contact matrices from the socio-demographic model underlying the Italian IBM for pandemic prediction. These synthetic
matrices are then validated against recently collected Italian serological data for Varicella (VZV) and ParvoVirus (B19). Their
performance in fitting sero-profiles are compared with other matrices available for Italy, such as the Polymod matrix.
Synthetic matrices show the same qualitative features of the ones estimated from sample surveys: for example, strong
assortativeness and the presence of super- and sub-diagonal stripes related to contacts between parents and children. Once
validated against serological data, Little Italy matrices fit worse than the Polymod one for VZV, but better than concurrent
matrices for B19. This is the first occasion where synthetic contact matrices are systematically compared with real ones, and
validated against epidemiological data. The results suggest that simple, carefully designed, synthetic matrices can provide a
fruitful complementary approach to questionnaire-based matrices. The paper also supports the idea that, depending on the
transmissibility level of the infection, either the number of different contacts, or repeated exposure, may be the key factor
for transmission.
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Introduction

A century after the first contributions giving birth to

mathematical epidemiology, and after 20 years of fast growth

since the first public health oriented contributions [1–3], infectious

diseases modeling has recently received a further dramatic impulse

from pandemics threats. The Bio-terrorism and SARS first, the

fear of a potentially devastating pandemic of avian flu then, and

finally the recent pandemic of A/H1N1 influenza, have all

fostered the development of more and more detailed predictive

tools. These range from traditional models to network analysis, to

highly detailed, large scale, individual-based models (IBM) [4–17].

IBM are highly flexible tools for policy makers as they allow to

define intervention measures at the finest possible levels (e.g., the

contact network of single individuals during a specific activity). For

the first time, a pandemic model on a continental scale has been

proposed [17].

A critical aspect common to all such models, is the

parameterization of social contact patterns, i.e. how people

socially mix with each other [18]. Social contact patterns are the

key factors underlying the transmission dynamics of directly

transmitted close-contacts infectious diseases [18]. Different

models, independently of their level of complexity or geographical

scale, are sensitive to the parameterization of social contact

patterns.

In a relatively simple case, where individuals are stratified by

age only, contact patterns are represented in the form of contact

matrices whose entries represent the average number of contacts
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that individuals in age group i have with individuals in age group j,

per unit of time. Until recently, contact patterns were estimated

‘‘indirectly’’ by calibrating suitably restricted contact matrices

using observed epidemiological data, such as serological or case

notifications data. The two major examples of this indirect

approach are the Who-Acquires-Infection-From-Whom (WAIFW)

matrix [3], and the proportionate/preferred mixing approach

[19]. Such approaches have important restrictions: in a population

divided in n age groups, a contact matrix contains nxn = n2

unknown entries. Therefore, in order to estimate the n2 parameters

from the n data points (e.g., serological data) some simplifying

assumptions about the structure of the matrix are needed. In

addition, indirect approaches can only estimate adequate contacts

or transmission rates, i.e. composite parameters given by the

product between a contact rate and the corresponding risk of

infection per contact.

Recently, important progress has been made in this area through

direct collection of contact data by means of sample surveys [20–

25]. The direct approach is based on appropriate definitions of an

‘‘at risk event’’ (e.g., a face-to-face conversation). Survey respon-

dents are then asked to record in a diary relevant characteristics

(e.g., age) of all the individuals they had contact with during a

randomly assigned day, or other factors such as the location where

the contact occurred (e.g., home, school, public transportation).

Standardized international survey data on social contact patterns in

8 European countries are currently available [24]. In addition,

contact matrices, and ‘‘time in contact’’ matrices, have been

estimated from secondary data sources such as transportation

surveys [26] or time use data [27], which are increasingly available.

In the case of time use data, the underlying hypothesis is that the

amount of time people spend doing the same activity in the same

place is relevant for the transmission of the disease.

A drawback of time use data is that they usually do not give

direct information about the number of social contacts of

respondents, or the time they spent in contacts. They only give

‘‘marginal’’ information on the time individuals allocated to the

various daily activities [27]. Therefore, these data need to be

augmented with other data and/or assumptions to produce

reliable estimates of contact matrices [27]. A way to supplement

time use data relies on socio-demographic sources (e.g., routine or

census data) which provide information on the size and

distribution of the ‘‘arenas’’ (e.g., school, workplaces, households)

where contacts take place. For example, for school contacts we

often know the average class size and the average pupils-teacher

ratio for all compulsory grades. As for contacts within the

household, we have information on household size and compo-

sition. For most other activities, however, there is little informa-

tion. Assumptions, e.g. independency, are therefore necessary to

give some coarse ideas of contact patterns [27]. However, this

approach ignores the structure of the social networks where

contacts are formed. A promising approach is then to reconstruct

such networks by the simulation of appropriate artificial social

networks. A first example is the social network generated by the

‘‘Portland’’ synthetic population [26]. In that case, ‘‘contact’’ and

‘‘time in contact’’ matrices by age are by-products of the social

dynamics of the Portland model. These matrices have the standard

expected features: population contacts cluster around children and

adult, children interact most frequently with other children close to

their own age, etc. However, such matrices were neither compared

with other contact matrices, nor validated against empirical

epidemiological data. Thus, no actual evaluation of their

‘‘goodness’’ in explaining transmission of infections is available.

In this paper, we follow the same line and aim to reconstruct

contact and time-in-contacts matrices by simulating a suitable

‘‘minimalistic’’ socio-demographic individual-based model for

Italy. The model is parameterized by integrating time use data

from the Italian time use survey [28] and other official socio-

demographic data [29–30]. In the model, each artificial agent is a

‘‘clone’’ of a real individual, i.e. there is a one-to-one correspon-

dence between the diary of each ‘‘artificial’’ agent and the one of a

corresponding ‘‘real’’ survey participant. Since the sample is

representative of the Italian population, but the size of the model

population is comparable to that of a small Italian city, we named

the model ‘‘Little Italy’’. From this point of view, our model

resembles the Portland model [6], and the Eemnes (a small Dutch

city) model [31]. In the Little Italy world, agents ‘‘physically’’

displace during the day in order to attend their various daily

activities in the corresponding location. In these locations, agents

‘‘contact’’ other agents. We defined a contact as ‘‘having shared

the same physical environment’’ (i.e. house, the same class at

school, the same bus) during a given time slot.

With our approach we generate three different types of contact

matrices, possibly informative of distinct aspects of the biology of

transmission: (a) a matrix describing the time spent in contact

(Type 1) [27], (b) a matrix counting the number of repetition of

contact episodes (Type 2), and (c) a matrix counting contacts as the

average number of different persons contacted, i.e. the number of

different social partnerships, (Type 3) as in [24].

In addition, we extracted an adequate [19] contact matrix from

the socio-demographic model underlying the Italian IBM for

pandemic prediction and mitigation [15], that we named ‘‘Big-

Italy’’. The synthetic contact matrices computed by simulation of

Little and Big-Italy are tested against recently collected Italian

serological data on Varicella and ParvoVirus (B19). Their

performances are compared with other contact matrices available

for Italy, i.e. the ‘‘Polymod’’ and ‘‘time use’’ matrices.

Materials and Methods

Italian time use and routine data
The Italian Time Use (TU) survey was carried out by the Italian

National Statistical Agency between 2002 and 2003 [28], with a

sample of 55,773 individuals, grouped into 21,075 households.

Respondents, with the exception of children less than 3 years old,

were asked to fill in a questionnaire with a diary of the activities

done during a randomly selected day. To take into account the

differences between workdays and week-ends, the sample was

divided into three groups. One group was asked to fill the diary on

a given workday (18,085 diaries collected), one on a Saturday

(16,828) and one on a Sunday (16,293).

Author Summary

Data on social contact patterns are fundamental to design
adequate control policies for directly transmissible infec-
tious diseases, ranging from a flu pandemic to tuberculo-
sis, to recurrent epidemics of childhood diseases. Most
countries in the world do not dispose of such data. We
propose an approach to generate synthetic contact data
by simulating an artificial society that integrates routinely
available socio-demographic data, such as data on
household composition or on school participation, with
Time Use data, which are increasingly available. We then
validate the ensuing simulated contact data against real
epidemiological data for varicella and parvo-virus. The
results suggest that the approach is potentially a very
fruitful one, and provide some insights on the biology of
transmission of close-contact infectious diseases.

Artificial Contact Matrices
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A 24-hour day, starting from 4am, is divided into 144 time slots

of 10 minutes each, called ‘‘ticks’’. For each tick, the respondent’s

diary records the type of location where the person was, and the

type of activity done. Due to privacy issues, records always refer to

types of places and types of activities, instead of exact places and

exact activities. Types of places and types of activity are given

unique codes (i.e. 1 for home, 2 for office, etc. for locations; 1 for

working, 2 for caring children, etc. for activities). However, these

codes are identical for every individual. Therefore, if at the same

chronological time two people are both working, each one in his/

her own office, we have two records with the same codes, but this

does not imply they are in the same office doing the same thing.

This has some drawbacks. First, there is never any clue about the

purpose of the undertaken activity. For example, if in a certain tick

someone reports being on the public transportation network, there

is no indication about the reasons for being there. For instance, it

could be for going from home to office, or bringing children, if

any, to school and then going to work, or anything else. The same

applies for places, with a single remarkable exception: if at any

time two individuals report that they are at home, and we know

from other data that they both belong to the same household, we

can infer that they are in the same place. This is the only case in

which the partial information given by respondents can be

correctly augmented.

Finally, routine socio-demographic data on a) family size and

composition [28]; b) firms size by number of employees [29]; and

c) school class size for any school grade [30], were used to inform

our model.

Building Little Italy
To create an artificial society that matches the one that is

revealed by the Time Use survey, some assumptions were made.

Unlike other approaches (e.g., the Portland model), whose aim is

to create artificial societies that are as close as possible to a real

population, we opted for an artificial society based on a

‘‘minimally’’ complex set of rules, that is nonetheless representa-

tive of the Italian population. This seems to be a useful departure

point: by considering a simple spatial structure and a minimal set

of activities/locations (school and work, the household, and

‘‘other’’, non-school, non-household contacts), which are those

considered fundamental in basic epidemiological explanations, we

avoid the need to include several extra-assumptions for model

parameterization. Further activities and locations can nonetheless

be easily included.

Let us list the assumptions adopted. First, we restricted our

model to individuals followed over an average workday. This

choice sets Little Italy’s population to 18,085 (artificial) individuals.

We chose to ignore week-end days because the groups of

respondents to the surveys are different and therefore some

additional assumptions would be necessary to link workdays and

week-end days agendas.

During the day, agents move to and from different places. Most

of the time, respondents reported to be at home, in the office or at

school. For the rest, they either declared to be in more specific

places (e.g., bakery, park, etc.) or that they were moving from one

place to another (e.g., on foot, by car or by bus). We chose a

square grid as Little Italy’s ‘‘environment’’, with grid’s size

1506150, in order to allocate families in single cells representing

houses, leaving appropriate space for schools and workplaces.

Each square in the grid is identified by a pair of coordinates. We

allocated one house for each household on a random cell on the

grid. House cells can contain at most 5 families.

In order to host all students aged 3–18, and Little Italy’s only

university, we allocated schools at random on the grid.

The setting up of workplaces required a few more assumptions,

since respondents only reported that they were at work during

some ticks but gave no information about either the size of the

company they were working for, or the number of colleagues (and

in many situations, like, for instance, bus drivers, workers ‘‘share

the environment’’ with people that are not necessarily colleagues).

Therefore, we drew samples of firms from the workforce size

distribution of Italian firms in cities having population size

comparable to Little Italy, i.e. 10,001–20,000 inhabitants [29].

This yielded a number of alternative configurations for the

number of firms, and for their sizes, which are representative of

the real variability observed in small Italian towns having the size

of Little Italy. We finally put each firm on a single random cell and

assigned each worker to a firm.

Two aspects of the previous process are worth mentioning. First,

each agent declares how much time she/he spends going, say,

from home to office by car. This time is a proxy for the distance

from home to office which must be respected all over Little Italy. It

is not possible, for example, that agent A takes 1 time slot

(10 minutes) to move by 20 cells on the grid while agent B covers

the same distance in 6 time slots (1 hour) if they both declare using

the car. This would mean that A’s car moves 6 times faster than

B’s one, which is possible, but unlikely. We proceeded as follows.

After workers are assigned to firms, a random re-assignment of

houses is performed: two households exchange their houses if, in

the new configuration, the actual distances between offices and

houses are closer to the ones that can be inferred from their

diaries. A large number of exchanges is carried out until the error

cases are a negligible fraction of total workers.

Second, there are workers who declared not having a single

workplace, like, for examples, a plumber. For them, we decided to

set their moving workplace at random. Each time they are about

to go somewhere, the simulation chooses a random square on the

grid as their next workplace. Commercial places are created on the

grid and their workers are assigned to them. Students are assigned

to classes in schools, according to routine data [30], which

prescribe an average number of students per classroom on a

regional basis. These figures are very close to the observed ones

[28]. The related numbers (averaged over Italy) are: 25 for

individuals less than 2 years old; 23 for individuals from 3 to 5; 18

for kids from 6 to 10; 21, from 11 to 13, and 22 for teenagers (14–

18). Higher education is represented by a university with about

700 students.

To run Little Italy, at every tick each agent must be put

somewhere on the grid. This requires each agent’s list of activities

to be put in a one-to-one correspondence with a pair of

coordinates. This, in turn, requires a detailed modelling of

the agents movements over Little Italy. Details are reported in

Text S1.

Simulation of Little Italy
Little Italy was coded in Java, using Repast 3 libraries [32]. We

first drew a large number of alternative configurations in the

number of firms and their sizes. From this initial set we discarded

those configurations which resulted to be inconsistent with Little

Italy. From the consistent set, we selected at random a subset of

100 ‘‘worlds’’. For each of these worlds, we ran 100 single-day (i.e.

each one lasting 144 ticks) simulations. Results obtained from

multi-day simulations are not considered because of the limited

variability: most agents in Little Italy have small stochastic

components in their daily life, the only random elements being

the displacement of their house, their office and the paths they

follow during the day.

Artificial Contact Matrices
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Computation of Little Italy contact matrices
To keep track of contacts between agents, a definition of contact was

necessary. The adopted ‘‘marker’’ of contact was ‘‘having shared the

same physical environment with someone else’’ (i.e. house, the same

class at school, the same bus) during a given tick. This corresponds to a

form of localized random mixing. Assume, for instance, that during a

given tick there are 20 pupils aged 7 and one teacher aged 44 in a class-

room. Based on our definition each pupil has 19 contacts with people

of the same age, and one contact with adult people (aged 44), while the

teacher has 20 contacts with 7 years old people.

By aggregating across time ticks, matrices reporting the total

number of contacts between each pair of ages were computed for

the following activity/locations: household, school, work, transport,

other activities. Then, by summing through activities we computed

overall (i.e. including contacts through all locations) contact

matrices by age, whose elements Kij represent the total number of

contacts between individual in age-groups i and j. In fact, three

different types of contact matrices were computed (we call them

Type 1,2,3 matrices). They represent, respectively, the time in

contact, the number of episodes of contact, and the number of social

partnerships. As an illustrative example, assume that two agents of

age i and j, respectively, share the same square on the grid for 6

ticks, then they are elsewhere for some time, and finally they ‘‘meet’’

again for two further ticks. These agents will contribute to the

element Kij of the Type 1 matrix with 8 units of ‘‘time in contact’’.

On the other hand they contribute to element Kij of the Type 2

matrix with only 2 contact episodes. Finally, using the definition of

contact commonly adopted in surveys [21–24], our two individuals

contribute to the element Kij of the Type 3 matrix with only 1 unit of

contacts. Note that all Types of matrices are symmetric by

definition (‘‘If individual A has shared a given location with B,

then also B must have shared the same location with A’’).

From total matrices Kij and the number ni of individuals in each

age group, we computed standard mean contact matrices, i.e.

matrices whose entries are the mean numbers mij of contacts with

individuals having age j per individual having age i, using the

(symmetric) relation Kij = mijni = mjinj = Kji.

Since Little Italy matrices do not offer information on contacts

for the age group 0–2 years (it is not included in the Italian Time

Use Survey), we integrated our matrices using Polymod data from

that age group. These computations were applied to each ‘‘world’’,

and then the average of the ensuing matrices was taken.

We note that the different types of contact matrices considered

correspond to different views of the contact process, perhaps useful

to capture different aspects of the biology of transmission. Type 1

matrix might be relevant for infections for which the time of

exposure matters (for instance, for those infections with low

transmissibility rates, where the probability of transmission

cumulates over time). Type 3 matrix implies that what really

matters is the number of social partnerships, independently of the

number of repetition of contact episodes and of the time spent

together [24]. Type 2 lies in between, i.e. the transmission depends

on repetition of contacts but not necessarily on their duration.

The Big-Italy matrix
The Big-Italy matrix was extracted from the IBM used to

simulate the spread and control of an influenza pandemic in Italy

[15]. In this model, differently from Little Italy, each Italian

individual is explicitly represented by a model agent. This agent is

characterized by age, household membership, and school/

workplace membership. The ensuing synthetic population has

been obtained by using official socio-demographic data only. In

other words, differently from the Little Italy population, it does not

include time use data. Since the Big-Italy agents do not physically

displace among the different types of locations, only one ‘‘general’’

contact matrix could be computed from the simulation of Big-

Italy, by counting the number of contacts among the model agents

and then weighting each contact by considering the location where

the contact took place (namely households, schools, workplaces, or

general community). Details on the computation of the Big-Italy

matrix are given in Text S2.

Other contact matrices
We compared the performances of the Little and Big Italy

matrices with two other contact matrices available for Italy: a) the

overall (i.e. including all reported contacts) Polymod matrix based

on survey data collected in eight European countries [24]; b) the

Time Use matrix obtained with the methodology described in

[27]. The matrix in (b) relies on the same Time Use Survey as

Little Italy, but does not use additional socio-demographic data.

Serological data
Recently collected Italian serological data (age range 0–79

years, sample size = 2,517) on varicella-zoster-virus (VZV) [33],

and ParvoVirus B19 [34] were used. For these infections no mass

vaccination programme is in place in Italy, so that their observed

immunity profiles may be assumed to represent pre-vaccination

equilibrium.

Fitting serological data, transmission rates, R0

Fitting contact matrices to serological data was performed using a

standard approach [22,27], i.e. by plugging mean contact matrices

into a simple age-structured SIR transmission model at its endemic

equilibrium. The equilibrium force of infection (FOI, the per-capita

probability to acquire the infection per unit of time) is therefore

constant in each age group i defining the contact matrix, with the

form: li~
Pn
j~1

qmijyj , where yj denotes the infective prevalence at

equilibrium in each age group (defined as the ratios between the

number Yj of infective people in group j at equilibrium, and the

corresponding population size nj ), and q is a single age-independent

transmission parameter. By formally solving the model at

equilibrium, and letting D and hj~aj{aj{1 denote, respectively,

the average duration of the infective period and the size of the j-th

age group, one gets yj~ D=hj

� �
x aj{1

� �
{x aj

� �� �
, where

x aj

� �
~x aj{1

� �
e{lj hj ~ P

n

j~1
e{lj hj is the susceptible fraction at

exact age aj . The equilibrium FOI in each age group is then

determined by solving the system of n nonlinear equations

li~qD
Pn
j~1

mij

hj

P
i{1

j
e{lj hj {P

i

j
e{lj hj

� �
. Once the equilibrium

FOI is available, for any given q, the predicted immunity profile

at equilibrium z(a) at any given age a is computed as

z að Þ~1{x að Þ. Finally, the fitting was carried out by maximizing

the likelihood of the transmission parameter q in the explanation of

the observed age-specific proportions of people immune to VZV

and B19 in Italy.

The one-q strategy is a clear way to compare contact patterns, since

it implies that the infection process only mirrors contact patterns

rescaled by a constant representing infection transmissibility. Since

the different contact matrices considered have different scales, the

corresponding q’s have different units. For example q represents a

transmission rate per single tick of time for Little Italy Type 1, while

it is measured per single episode of contact for Type 2, etc. The

difference in units makes the qs of little direct comparability. For this

reason, the comparison of the performances of the various matrices

in explaining serological data is not based on the actual q estimates,

but only on goodness of fit measures.

Artificial Contact Matrices
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Given the estimate of the transmission parameter q, we can

compute the ‘‘next generation matrices’’, NGij = qmij, from which the

corresponding Basic Reproduction Number R0 can be obtained

[35]. In these cases, R0 is a measure of the potential of invasion of an

infection with transmissibility q in a community whose contact

patterns are summarized by the contact matrix of elements mij.

Non parametric fit
In order to achieve a high degree of explanatory power of the

data to be used as a benchmark of the goodness of fit of the various

matrices, we also considered a flexible non parametric model,

given by a constrained monotonically increasing P-splines model

[36] (details in Text S3).

Assortativeness measures
We measure assortativeness in the various matrices considered

using two different indices. The first one is the Q index [37],

defined as Q~ Tr Pð Þ{1ð Þ= n{1ð Þ where P = [pij] is the matrix

whose elements pij represent the fractions of total contacts of age

group i with age group j: pij~Kij=
P

j

Kij and Tr :ð Þ denotes the

Trace of the matrix. The Q index ranges between zero,

corresponding to proportionate mixing, and one, under full

diagonal dominance, i.e. fully assortative mixing. Therefore Q

represents a measure of departure from proportionate mixing for

groups defined on a qualitative scale. The second measure is the

dissimilarity-type index I2
s [38], defined as the mean square

deviation from perfect assortativeness of the contact distribution

gij~Kij=
P

i

P
j

Kij , normalized by its value under homogeneous

mixing. This index is a normalized measure of disassortativeness,

ranging between 0, when assortativeness is perfect, and 1, when

mixing is homogeneous. For symmetric contact distributions, I2
s is

related to the correlation coefficients rXY of the contact

distribution as: I2
s ~ 1{rXYð ÞVC

VA

, where VC ,VA respectively

denote the variances of the marginal distribution of contacts with

age, and of the age distribution of the population.

Results

Little Italy contact matrices
Contour plots of Type 1, 2, and 3 average contact matrices

based on 5-years age groups (0–4, 5–9, etc) are reported (Fig. 1).

The three matrices are very assortative, i.e. the majority of

contacts are on the main diagonal, meaning that individuals tend

to have contacts with people of the same age. Assortativeness,

however, varies significantly across age: it is very pronounced in

children, according to the stylized fact that most contacts occur

with school classmates, which essentially are of the same age. In

particular, the three Little Italy matrices are largely more

assortative than all the other matrices considered: for individuals

who are less than 15 years old, the proportion of contacts that

individuals in each age group have with other individuals in the

same age group ranges between 75 and 85% in the three Little

Italy matrices, whereas it ranges between 25 and 55% in the

Polymod matrix, even less in the Big Italy matrix (Fig. 2). This

larger assortativeness of Little Italy matrices is confirmed by the

measures Q, I2
s (Table 1).

With regards to contacts between parents and their children,

well evidenced in [24,27], these clearly appear in Type 1 matrix

(the stripes above and below the main diagonal), whereas they are

less sharply defined in Type 2 and 3 matrices. This is explained by

the fact that Type 1 matrix takes into account the long time spent

by children at home (in most cases with at least one parent)

whereas Type 2 and 3 do not. Compared to the Polymod matrix,

in all Little Italy matrices household contacts are quantitatively less

important because of the stronger assortativeness, which domi-

nates non diagonal contacts. In addition, the lack of appropriate

information in the time use diaries probably prevented several

contacts between parents and children to be accounted for, thus

leading to under estimation. Overall, we can say that Little Italy

matrices are dominated by school contacts as a consequence of the

assumptions made. The activity-specific matrices used to compute

the Type 1 matrix are reported in Text S4.

Fitting contact matrices to serological data
Table 2 reports the main output of the fit (optimal q estimates,

deviance and Akaike Information Criterion, and the correspond-

ing estimates of the Basic Reproduction Number R0) to VZV and

B19 data, for all the matrices considered. Results from the non-

parametric model are also included. Graphic comparisons

between observed and predicted sero-profiles by age are displayed

in Fig. 3 and Fig. 4.

For VZV, the Polymod matrix provides the best fit. The Big-

Italy and the Little Italy Type 2 matrices perform better than the

Time Use matrix but substantially worse than the Polymod matrix,

whereas the Little Italy Type 1 and 3 matrices fit poorly. Note that

Figure 1. Contour plot of Little Italy contact matrices (contacts in log scale). Type 1 (left), Type 2 (center), Type 3 (right). X-axis = age of the
contactors, Y-axis = age of his/her contacts.
doi:10.1371/journal.pcbi.1001021.g001
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the non-parametric model performs slightly better than the

Polymod matrix in terms of deviance, but worse in terms of

AIC, due to its larger parameterization. This suggests that the

Polymod matrix definitely represents an excellent ‘‘explanans’’ for

VZV transmission. Disregarding the Little Italy Type 1 and 3

matrices, which poorly fit, the ensuing values for R0 are in good

mutual agreement (ranging between 4 and 5), and higher than the

R0 estimates reported for Italy in [33]. We also note that both the

poorly fitting Little Italy Type 1 and 3 matrices lead to much

smaller R0 values. This follows from the limited ability of these

matrices to capture contact patterns relevant for VZV. As a result,

we observe a compensation through anomalously small values of

the infectivity parameter q.

Things are different for B19. The Type 1 matrix provides the

best fit, and overall the three Little Italy matrices perform better

than the other matrices. It is however to be acknowledged that the

fit remains far from the one provided by the non-parametric

model, suggesting that there is still room for large improvements in

Figure 2. Proportions of contacts with individuals of the same age. Proportions pii of contacts with individuals of the same age group, for
each age group, in the six contact matrices considered.
doi:10.1371/journal.pcbi.1001021.g002

Table 1. Assortativeness measures for the various contact
matrices.

Q I2
s

Little Italy Type1 0.225 0.316

Little Italy Type 2 0.184 0.412

Little Italy Type 3 0.195 0.428

Big Italy 0.094 0.661

Polymod 0.157 0.632

Time-Use 0.070 0.569

Values of selected measures of assortativeness for the various contact matrices
considered.
doi:10.1371/journal.pcbi.1001021.t001
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the explanation. In particular, the Big-Italy and the Time Use

matrices, though clearly less performant than the Little Italy

matrices, are not worse than the Polymod matrix. The ensuing

values for R0 range between 1.6 and 2.6. An explanation of the

differences in the fit of B19 and VZV is not easy since we do not

dispose of tools to globally compare the differences between two

arbitrary contact matrices. Assortativeness measures provide

however some clue. The three Little Italy matrices predict a very

steep immunity profile at low ages, which however suddenly

flattens to a plateau later on. This sudden change in regime, which

is a pattern known to occur in presence of strong assortativeness,

allows the Little Italy matrices to better explain the B19 data,

which show a sharp plateauing (though with large randomness).

On the other hand, this behavior prevents the Little -Italy matrices

to capture the observed VZV profile.

Finally, given that the large-scale (transport and shopping malls)

contacts of the Little Italy model required several assumptions to

be parameterized, it was important to check the influence of these

Figure 3. Graphic view of the fit to VZV data. Fit to Italian serological data for VZV by an SIR model based on the various contact matrices
considered: observed vs predicted immunity profiles to VZV, by age. Dots size proportional to sample frequency of serological data.
doi:10.1371/journal.pcbi.1001021.g003

Table 2. Results of fit to serological data.

q Deviance AIC R0

VZV Little Italy Type1 0.051 (0.047,0.055) 276.42 (1 df) 447.61 3.14

Little Italy Type 2 1.35 (1.29, 1.42) 111.37 (1 df) 282.57 4.94

Little Italy Type 3 1.42 (1.35,1.51) 190.15 (1 df) 361.34 3.43

Big Italy 12.35 (11.67,13.09) 101.11 (1 df) 272.30 4.80

Polymod 11.37 (10.80, 11.99) 67.34 (1 df) 238.53 4.77

Time-Use 4.28 (4.09,4.47) 114.32 (1 df) 285.51 4.11

Non-parametric 64.30 (4.92 df) 243.33

B19 Little Italy Type1 0.029 (0.028, 0.030) 135.61 (1 df) 402.11 1.72

Little Italy Type 2 0.73 (0.71, 0.75) 157.24 (1 df) 423.74 2.67

Little Italy Type 3 0.82 (0.80, 0.84) 159.90 (1 df) 426.39 1.98

Big Italy 5.39 (5.20, 5.60) 195.99 (1 df) 462.48 2.10

Polymod 5.26 (5.06, 5.48) 202.91 (1 df) 469.41 2.21

Time-Use 2.23 (2.16, 2.30) 195.60 (1 df) 462.09 2.14

Non-parametric 81.23 (3.95 df) 353.63

Results of the fit to Italian serological data for VZV and B19 by an SIR model based on the various contact matrices considered: q estimates and related 95% confidence
intervals (column 3), deviance and related number of degrees of freedom (df, column 4), Akaike information criterion (AIC, column 5), R0 estimates (column 6). Deviance
and AIC also reported for the non-parametric model.
doi:10.1371/journal.pcbi.1001021.t002
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activities/locations on the result of the fit. We therefore fitted the

Little Italy matrices without taking into account such activities, i.e.

relying only on households and school/workplaces contacts. The

results in the fit of B19 by Little Italy Type 1 and 3 matrices are

reported (Table 3). In the situation where the Little Italy model

performs better, i.e. the fit of B19 by the Type 1 matrix, the

exclusion of transportation and shopping malls worsens the

goodness-of-fit very little, indicating that these components only

marginally affect the structure of the matrices.

Discussion

Substantial improvements have been achieved in recent times in

our knowledge of social contact patterns [20–27], which are

thought to be a key factor underlying the transmission dynamics of

close-contact infections. In this paper, we have investigated the

potentialities of IBM as a tool for the generation of contact data,

with two distinct approaches. The first approach is a novel one,

based on a simple socio-demographic IBM (‘‘Little Italy’’) strictly

integrating time use and routine socio-demographic data. As for

the second, we have extracted the contact matrix by age (‘‘Big-

Italy’’) implicit in the socio-demographic model underlying the

Italian IBM for pandemic prediction and control. Both models are

based on the same routine socio-demographic data, but the ‘‘Little

Italy’’ model also considers the agents’ daily allocation of time

through Time Use data. The Little Italy approach allows for the

computation of different types of contact matrices, labelled Type

1,2,3, reflecting respectively (a) the average time in contact, (b) the

average number of repetition of contacts, (c) the average number

of different persons contacted.

The ensuing contact matrices by age were fitted, on the basis of

simple transmission models, to Italian serological data for VZV

and B19. Goodness-of-fit comparisons with other available contact

matrices, such as the questionnaire-based Polymod matrix and the

Time-use matrix, were also made. The main results show that for

VZV the best fit is provided by the Polymod matrix, which

performs excellently, and much better than artificial matrices.

However, for B19, all Little Italy matrices fit the data quite well,

Figure 4. Graphic view of the fit to B19 data. Fit to Italian serological data for B19 by an SIR model based on the various contact matrices
considered: observed vs predicted immunity profiles to B19, by age. Dots size proportional to sample frequency of serological data.
doi:10.1371/journal.pcbi.1001021.g004

Table 3. Results of fit to serological data after removal of ‘‘large scale’’ contacts.

q Deviance AIC R0

Little Italy Type 1 All contacts 0.0293 (0.0284, 0.0301) 135.61 (1 df) 402.11 1.716

Without transportation 0.0293 (0.0284, 0.0301) 135.65 (1 df) 402.14 1.713

Without transportation & malls 0.0294 (0.0286, 0.0303) 138.36 (1 df) 404.85 1.661

Little Italy Type 3 All contacts 0.818 (0.796, 0.842) 159.90 (1 df) 426.39 1.982

Without transportation 0.826 (0.804, 0.850) 160.70 (1 df) 427.2 1.96

Without transportation & malls 0.867 (0.844, 0.893) 200.11 (1 df) 466.61 1.639

Fit to B19 data by Little Italy Type 1 and Type 3 matrices: comparison between the case where all contacts are considered vs the cases where: a) contacts on
transportations are excluded, and b) also contacts on shopping malls are excluded. Figures for the ‘‘All contacts’’ case are the same as in Tab. 2.
doi:10.1371/journal.pcbi.1001021.t003
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and better than available concurrent matrices, including the

Polymod one.

This paper represents, as far as the authors know, the first

comparison on real epidemiological data of bottom-up approach-

es to the generation of contact data, with the approaches based

on direct contacts estimation, such as the Polymod study. Our

results on VZV provide further evidence on the merits of the

Polymod study, which represents a great advancement in our

understanding of contact patterns. However, the better fit to B19

provided by artificial matrices compared to questionnaire-based

matrices, is indicative of the difficulty to find ‘‘universal’’ contact

patterns that can explain in a satisfactory way many different

infections. Therefore, though artificial matrices can not surrogate

observed ones, they can certainly represent valuable tools to

assist mathematical modellers in the formulation of alternative

assumptions.

An important related question is why different infections are

better explained by different types of contact matrices. May this be

due to the characteristics of the contacts which matter to various

infectious diseases? The traditional WAIFW [3] and proportionate

mixing [19] approaches, which were strongly constrained by data

availability, considered the various diseases separately, as if they

were outcomes of fully independent processes. Recent approaches

[20–24] have promoted the different idea that for a large family of

infections there might be a unique ‘‘core’’ of observable social

contact patterns, mediated through a unique, or a few, infection-

specific transmission parameters. These new approaches raise a

number of questions: first of all, whether the transmission biology

of different infections could selectively exploit different types of

contact patterns. Though this is still unclear, there is evidence that

the infection-specific hit probabilities per single viral or bacterial

unit occupy a wide range. This would suggest that for some

infections, such as measles, even very short single episodes of

contacts might be sufficient for transmission. Therefore, it is likely

that most adequate contacts are usually ‘‘wasted’’. On the other

hand, there might be infections (e.g., bacterial ones) characterized

by a very low hit probability, for which many repetitions of contact

episodes, or long exposure times, might be necessary for successful

transmission. Our results, i.e. the fact that for a mildly

transmissible infection such as B19, the best fit is obtained using

a matrix counting time spent in contacts, as opposite to VZV,

where the best fit follows from a matrix only counting encounters

with different individuals, irrespective of time of exposure, might

support this idea.

With regards to model parameterization, the Little Italy model

uses real data to parameterize the small scale components

(household sizes, schools, workplaces) of the contact network. On

the other hand, assumptions were necessary to parameterize the

large scale components of the network, e.g. travel and shopping

malls patterns. Nonetheless, we could at least make such patterns

fully consistent with the general design of the Little Italy model, i.e.

the daily time spent on travelling, or in supermarkets, by each

Little Italy agent, correctly matches, based on an optimization

procedure, the time spent on travelling by a corresponding real

agent. In order to appreciate the potential impact on data fitting of

the ad-hoc assumptions on travel patterns, we also fitted the model

by excluding contacts on transports and shopping mall, showing

that in the most significant cases the results were essentially

unaffected. This suggests that the ‘‘empirically robust’’ component

of the model is sufficient for the main target of the paper, i.e. the

generation of contact data. Obviously, given the lack of

appropriate epidemiological data to validate travel assumptions,

the possibility to use Little Italy for further investigations beyond

those presented here, i.e. for example epidemic prediction and

information of measures targeting social distance, certainly

requires caution. Future work will be devoted to the analysis of

the model robustness to the assumptions on its large scale

components.

Given the simplicity of the adopted definition of contact, the

current model cannot reproduce, unless resorting to further data

and hypotheses, the richness of data obtained by Polymod survey,

where further noteworthy information such as the intimacy and

frequencies of contacts, were collected. This is clearly a

shortcoming since these types of contacts are arguably important

for most respiratory infections [24].

However the current Little Italy model can potentially be used

to answer several important questions. For example, the model

can be expanded to describe contacts in a rural-urban environ-

ment, given the representativeness of Italian Time Use data for

rural and urban populations. Moreover, longer time simulations

could address how contacts cumulate (a) during periods of time

having a length comparable to the infectivity period, (b) between

work-days and week-end days [39]. We indeed recall that,

although in this paper we considered work-days only, the Italian

Time Use data actually include three distinct samples, one for

working days, the other two for Saturdays and Sundays. This

provides information on how time spent in the various activities/

locations cumulates through the different parts of the week.

Obviously, studies of contacts accumulation are difficult, as they

are necessarily conditional on the specific assumptions made on

the larger-scale topology of the Little Italy network, e.g. contacts

on transportations, shopping malls, and so on. Nonetheless, in

recent times, the first empirical evidence on this issue has become

available [25], and may provide a useful starting point for

comparison of contact accumulation in different social settings.

Further, this paper would like to reinforce the perspective that

contact data and time-use data provide useful complementary

information. On the data-gathering side, major gains could be

achieved by combining the two approaches. This could be

achieved, for example, by supplementing time-use surveys with a

few questions about people ‘‘contacted’’ (for example those with

whom a conversation was held) during any given activity or time

slot. This would provide data that consistently incorporate the

relationship between time of exposure and contacts. With regards

to studies of transmission, it would be important to better

understand how to integrate the two types of data, for example

by comparing time use data and Polymod data on durations of

contacts.

A final point regards the information embedded in age specific

serological data, which are the base for infection control strategies.

As clear for example for VZV [33], these data show a fast

monotonic increase during school ages, say up to age 10–15, then

the trend becomes flat, or slightly increasing with age, but with

large randomness. This suggests that these data have little

discriminating power about infection patterns at higher ages,

which are critically important when control measures are in place.

Therefore, it would be important to improve our understanding of

infection patterns among adults, for example by grounding

stochastic models of age mixing against simulation derived

matrices (and related seroprofiles by age). On a related topic, in

our models we are still relying on the assumption of monotonic

seroprofiles. This assumption follows from postulating an infection

which (a) is at steady state, and (b) decouples from the underlying

dynamics of the population. If these hypotheses are not met,

seroprofiles can become non monotonic. Recent work [40–41] has

aimed at considering infection dynamics in non-steady popula-

tions, or non steady contact networks. This work has suggested the

importance of population structures in shaping contact patterns,

Artificial Contact Matrices
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and therefore the intrinsic instability of contact matrices over time.

Time is ripe for bringing such non stationary approaches also in

epidemiological data analyses.
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