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as Schoenmakers–Coffey matrices, which have a role in 
financial applications. The main results are related to the 
eigenvalue distribution of sequences of Green matrices of 
increasing size, while for the subclass of interest mentioned 
above, we also study the eigenvector oscillation structure: 
interestingly enough, even if these matrices are not shift 
invariant (Toeplitz), the results are obtained by using tools 
coming from Toeplitz technology. Indeed, for the asymptotic 
spectral distribution analysis, we use the theory of Generalized 
Locally Toeplitz sequences, while techniques taken from 
the study of Kac–Murdoch–Szegö matrices (again connected 
to Toeplitz matrices) are employed for the eigenvector 
oscillation structure results of the Schoenmakers–Coffey 
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matrices. Few numerical tests are reported in order to 
illustrate the theoretical findings.

© 2015 Published by Elsevier Inc.

1. Introduction

The paper is concerned with the spectral properties of Green matrices and of a special 
subclass of the latter, known as Schoenmakers–Coffey matrices. The main results concern 
the eigenvalue distribution of sequences of Green matrices of increasing size in the sense 
of Weyl [5]: in particular, despite its apparent complicate expression, we prove that these 
matrices can be seen as the product of diagonal matrices and inverse of Toeplitz matrices 
generated by linear trigonometric polynomials. Under the assumption that the diagonal 
matrices can be seen as samplings of Riemann integrable functions over the interval 
[0, 1], we prove that the limit distribution of the spectra of the considered sequence is 
independent of such functions and indeed equals the constant zero. In other words, the 
Green matrix sequence {Gn} shows a cluster at zero of the eigenvalues, i.e., for every ε, 
for the size n large enough, most of the eigenvalues of Gn have modulus bounded by ε, 
except o(n) of them. In practice, as shown in the numerical experiments, the quantity 
indicated as o(n) behaves just as O(

√
n), so it seems that there is room for improving 

the theoretical result.
Concerning the subclass of the Schoenmakers–Coffey matrices we also study the eigen-

vector oscillation behavior. We recall that these structures appear as special instances 
of correlation matrices and the oscillations of the first three eigenvectors provide useful 
information in trendy financial problems, associated with interest rates models and risk 
management/valuation (see Section 4 for a brief account and [12,14,17] for more details).

Even if these matrices are not shift invariant, that is they do not enjoy the Toeplitz 
structure, it is worth stressing that the results are obtained by using tools coming from 
Toeplitz technology. Indeed, concerning the asymptotic spectral results, we use the theory 
of Generalized Locally Toeplitz (GLT) sequences [23,24], while, for the second type of 
results, tools used in the study of Kac–Murdoch–Szegö matrices (again connected to 
Toeplitz matrices) are employed [10].

The paper is organized as follows. In Section 2 we report the definition of spectral 
distribution in the sense of Weyl and we briefly introduce Toeplitz matrices and GLT 
matrix sequences. In Section 3 we introduce the Green matrices and we use the tools 
of the previous section in order to identify the distribution symbol of Green matrix 
sequences: selected numerical tests are reported and commented. In Section 4 we define 
the subclass of the Schoenmakers–Coffey matrices and we study the oscillatory behavior 
of the eigenvectors, by including also some examples. Finally Section 5 is devoted to 
conclusions and to stress few open problems.

Query text:
Inserted query:
Q5: The name "Murdock" (Murdoch) was spelled differently. Please check and amend if necessary.
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2. Asymptotic analysis of Green matrix sequences via the GLT theory

The section contains the mathematical tools that we use for studying the global 
behavior of the spectra of Green matrix sequences. In Subsection 2.1 we introduce the 
notion of spectral distribution in the Weyl sense [5,8] and in Subsection 2.2 we give the 
definition of Toeplitz matrices generated by a symbol (see [5]) and of the class of GLT 
sequences (see [23,24]), whose main properties are reported and discussed.

2.1. Definitions and distribution results

Before starting, let us introduce some notations. We denote by C0(C) and C0(R+
0 )

the set of continuous functions with bounded support defined over C and R+
0 = [0, ∞), 

respectively. Given a function F : C → C and a matrix A of size m, with eigenvalues 
λj(A) and singular values σj(A), j = 1, . . . , m, we set

Σλ(F,A) := 1
m

m∑
j=1

F (λj(A)), Σσ(F,A) := 1
m

m∑
j=1

F (σj(A)).

We use the notation ‖A‖p for the Schatten p-norm of A, defined as the p-norm of the 
vector formed by the singular values of A. In symbols, ‖A‖p = (

∑m
j=1 σ

p
j (A))1/p for 

1 ≤ p < ∞ and ‖A‖∞ = maxj=1,...,m σj(A) = ‖A‖ is the usual spectral norm [4].

Definition 2.1. Let f : G → C be a complex-valued measurable function, defined on a 
measurable set G ⊂ R with finite and positive Lebesgue measure, 0 < μ(G) < ∞. Let 
{An} be a matrix-sequence, with An of size dn, dn < dn+1. We say that:

• {An} is distributed as the pair (f, G) in the sense of the eigenvalues, in symbols 
{An} ∼λ (f, G), if for all F ∈ C0(C) we have

lim
n→∞

Σλ(F,An) = 1
μ(G)

∫
G

F (f(t))dt. (1)

• {An} is distributed as the pair (f, G) in the sense of the singular values, in symbols 
{An} ∼σ (f, G), if for all F ∈ C0(R+

0 ) we have

lim
n→∞

Σσ(F,An) = 1
μ(G)

∫
G

F (|f(t)|)dt. (2)

Finally we say that two sequences {An} and {Bn} are equally distributed in the sense of 
the eigenvalues [30] if, ∀F ∈ C0(C), we have

lim
n→∞

[Σλ(F,An) − Σλ(F,Bn)] = 0.

An analogous definition works for singular values with F ∈ C0(R+
0 ) and σ in place of λ.
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Notice that if two sequences are equally distributed and one of them has a distribution 
function, then the other necessarily has the same distribution function.

A matrix sequence {An} is distributed in the eigenvalue sense as the pair (f, G) if and 
only if the sequence of linear functionals {φn} defined by φn(F ) = Σλ(F, An) converges 
weak-∗ to the functional

φ(F ) = 1
μ(G)

∫
G

F (f(t))dt,

as in (1), the same is true for the singular values. A useful tool for the study of the spectral 
distribution of a matrix sequence is the notion of approximating class of sequences.

Definition 2.2. Suppose a sequence of matrices {An}, An of size dn, dn < dn+1, is given. 
We say that {{Bn,m} : m ∈ N}m is an approximating class of sequences (a.c.s.) for {An}
if, for all sufficiently large m ∈ N, the following splittings hold:

An = Bn,m + Rn,m + Nn,m,

with

rank(Rn,m) ≤ dnc(m), ‖Nn,m‖ ≤ ω(m), ∀n > nm,

where nm, c(m) and ω(m) depend only on m and

lim
m→∞

c(m) = 0, lim
m→∞

ω(m) = 0.

Proposition 2.1. (See [22].) Suppose a sequence of matrices {An}, An of size dn, 
dn < dn+1, is given and let {{Bn,m} : m ∈ N}m be an a.c.s. for {An} in the sense of 
Definition 2.2. Suppose that, for all sufficiently large m ∈ N we have {Bn,m} ∼σ (fm, G), 
and limm→∞ fm = f . Then it holds {An} ∼σ (f, G).

Similarly, if the matrices An and Bn,m are eventually Hermitian, and for all suffi-
ciently large m ∈ N we have {Bn,m} ∼λ (gm, G), with limm→∞ gm = g, then it also holds 
{An} ∼λ (g, G).

Finally we introduce the definition of sparsely vanishing sequence: a sequence of ma-
trices {An}, An of size dn, is said to be sparsely vanishing if, for each M > 0 there exists 
an nM such that for n ≥ nM we have

#{i : σi(An) < M−1} ≤ r(M)dn, lim
M→∞

r(M) = 0.
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2.2. Toeplitz, Locally Toeplitz and Generalized Locally Toeplitz sequences

Given an integrable complex-valued function f , f ∈ L1(Q), Q = (−π, π), from the 
Fourier coefficients of f

aj = 1
2π

∫
Q

f(x)e−ijxdx, j ∈ Z, i2 = −1,

we can build the sequence of Toeplitz matrices {Tn(f)} as follows:

Tn(f) := [ai−j ]ni,j=1.

The eigen/singular values asymptotic distribution of a sequence of Toeplitz matrices, 
started in a famous theorem by Szegö [8], has been studied by many authors (see [5,26,
31] and the references reported therein). The results are reported below.

Theorem 2.1. (See [31].) If f ∈ L1(Q) and {Tn(f)} is the sequence of Toeplitz matrices 
generated by f , then

{Tn(f)} ∼σ (f,Q).

Moreover, if f is also real-valued, then each matrix Tn(f) is Hermitian and

{Tn(f)} ∼λ (f,Q). (3)

Now we introduce the notion of (unilevel) Locally Toeplitz matrix-sequence that leads 
to a generalization of (unilevel) Toeplitz sequences. We mention that, with respect to the 
original paper by Tilli [27], the definitions will take into account very minor improvements 
(as discussed in Remark 1.1 of [23]). We recall that, given two matrices A ∈ C

n×n and 
B ∈ C

m×m, their direct sum is defined as

A⊕B =
[
A O

O B

]
∈ C

(n+m)×(n+m),

where O is the null matrix, and the tensor product A ⊗ B ∈ C
nm×nm is defined as the 

n × n block matrix with m × m blocks, whose block (i, j), i, j = 1, . . . , m, is given by 
ai,jB.

Definition 2.3. A sequence of matrices {An}, An of size n, is said to be Locally Toeplitz 
with respect to a pair of functions (a, f), with a : [0, 1] → C and f : Q → C, if f is 
Lebesgue integrable and, for all sufficiently large m ∈ N, the following splitting holds:

An = LTm
n (a, f) + Rn,m + Nn,m, (4)
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with

rank(Rn,m) ≤ c(m), ‖Nn,m‖1 ≤ ω(m)n, ∀n > nm,

where nm, c(m) and ω(m) are functions of m and limm→∞ ω(m) = 0. The matrix 
LTm

n (a, f) in (4) is defined as

LTm
n (a, f) = Dm(a) ⊗ T�n/m�(f) ⊕On mod m,

where �n/m� is the integer part of m/n and n mod m = n −m �n/m� (it is understood 
that the zero block Onmod m is not present if n is a multiple of m). Moreover Dm(a) is the 
m ×m diagonal matrix whose entries are given by a(j/m), j = 1, . . . , m, Tk(f) denotes 
the Toeplitz matrix of order k generated by f and Oq is the null matrix of order q. In 
this case we write in short {An} ∼LT (a, f).

The topological closure of the space of Locally Toeplitz sequences is that formed by 
Generalized Locally Toeplitz sequences.

Definition 2.4. A sequence of matrices {An}, An of size n, is approximated by unilevel 
Locally Toeplitz sequences with respect to a measurable function κ if, for every ε > 0,

• there exist pairs of functions {(ai,ε, fi,ε)}Nε
i=1 with fi,ε polynomial and ai,ε defined 

over Ω = [0, 1] such that 
∑Nε

i=1 ai,εfi,ε −κ converge in measure to zero over Ω ×Q as 
ε tends to zero,

• there exist matrix sequences {{A(i,ε)
n }}Nε

i=1 such that {A(i,ε)
n } ∼LT (ai,ε, fi,ε)

• {{
∑Nε

i=1 A
(i,ε)
n } : ε = (m + 1)−1, m ∈ N}m is an a.c.s. for {An}.

In this case the sequence {An} is said to be a Generalized Locally Toeplitz sequence 
with respect to κ and we write in short {An} ∼GLT κ.

Some remarks are in order. When {An} ∼LT (a, f), we call a the weight function, and 
f the generating function. Furthermore, in the splitting (4), the matrices Rn,m are called 
rank corrections, while the matrices Nn,m are called norm corrections.

If {An} ∼GLT κ, it is evident that the unique function κ has simultaneously the role 
of weight function and of generating function: we call κ the kernel function or symbol.

For the class of Generalized Locally Toeplitz sequences the following Szegö-like result 
holds.

Theorem 2.2. (See [23].) Assume that {An}, An of size n, is a sequence of complex 
matrices. Let κ be measurable over Ω ×Q. Then

{An} ∼σ (κ(x, s),Ω ×Q),
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holds whenever {An} is a GLT sequence with respect to κ as in Definition 2.4 and the 
functions ai,ε involved in Definition 2.4 are Riemann integrable over Ω. If in addition the 
matrices An are eventually Hermitian, then the relation is true also for the eigenvalues.

The GLT sequences form a ∗-algebra. More precisely, the GLT sequences are stable 
under linear combinations, product, pseudo-inversion, and adjoint.

Theorem 2.3. (See [23,24].) If {An} ∼GLT κA and {Bn} ∼GLT κB, then we have

• {αAn + βBn} ∼GLT ακA + βκB;
• if the functions a(A)

i,ε and a(B)
i,ε involved in Definition 2.4 are Riemann integrable 

over Ω, then {AnBn} ∼GLT κAκB;
• if the function a(A)

i,ε involved in Definition 2.4 is Riemann integrable over Ω and if 
{An} is sparsely vanishing then {A+

n } ∼GLT κ−1
A , where A+

n is the pseudo inverse 
of An (we can replace the superscript + with −1 if An is also invertible);

• {A∗
n} ∼GLT κ∗

A, where A∗
n denote the conjugate transpose of An.

The class of GLT sequences contains all Toeplitz sequences, generated by L1 symbols, 
and diagonal sequences, obtained as a uniform sampling of Riemann integrable functions.

Theorem 2.4. (See [23].) If {Tn(f)} is a sequence of Toeplitz matrices generated by 
f ∈ L1(Q), then {Tn(f)} is a GLT sequence with respect to the function f .

Theorem 2.5. (See [23].) If {Dn(a)} is a sequence of diagonal matrices [Dn(a)]i,i =
a(i/n), i = 1, . . . , n, generated by a Riemann integrable function a, then {Dn(a)} is a 
GLT sequence with respect to the function a.

3. Green matrices

A Green matrix Gn = [gij ]ni,j=1 [16] is defined by

gij =
{

aicj if i ≤ j,

ajci if i > j,
ai, cj ∈ R \ {0}. (5)

By construction, Gn is symmetric. Furthermore, it can be proved that Gn is a nonsingular 
Green matrix if and only if its inverse G−1

n is a symmetric tridiagonal matrix with nonzero 
superdiagonal elements, whose explicit form is (see [3,2,11] and [15] for a study of the 
conditioning)
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(
G−1

n

)
ij

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
aici+1−ai+1ci

i = j − 1,
1

ai−1ci−aici−1
i = j + 1,

ai+1ci−1−ai−1ci+1
(aici−1−ai−1ci)(ai+1ci−aici+1) i = j �= 1, n,

a2
a1(a2c1−a1c2) i = j = 1,

cn−1
cn(ancn−1−an−1cn) i = j = n,

0 otherwise.

(6)

Hence, the pair (λ,h), λ ∈ R and h ∈ R
n, h = [h1, . . . , hn]T , is an eigenpair of G−1

n if 
and only if it satisfies the discrete Sturm–Liouville Problem (SLP){

−Δ (pi−1Δhi−1) = (μ− qi)hi i = 1, . . . , n,
h0 = 0; hn+1 = 0

(7)

with μ = 1/λ, and

Δhi = hi+1 − hi,

pi = 1
ai+1ci − aici+1

, i = 0, . . . , n,

qi = ai−1 (ci − ci+1) + ai (ci+1 − ci−1) − ai+1 (ci − ci−1)
(aici−1 − ai−1ci)(ai+1ci − aici+1)

, i = 1, . . . , n,

where, by convention, we have set a0 = cn+1 = 0 and an+1 = c0 = 1.
Regarding the spectral properties of Green matrices, we recall a result on the ordering 

of the eigenvalues and on the oscillatory properties of the eigenvectors that passes through 
the theory of totally positive matrices [11,16]. We first introduce a definition and two 
theorems.

Definition 3.1. An n × n matrix An is called: (strictly) totally positive, denoted by TP 
(STP), if all its minors are nonnegative (positive); oscillatory if it is TP and there exists 
a q ∈ N\ {0} such that Aq is STP.

Of course, an STP matrix is also oscillatory with q = 1.

Theorem 3.1. (See [11], Theorem 3.1 of Chapter 3.) A Green matrix Gn is TP if and 
only if {ai} and {ci} have the same strict sign and {ai/ci} is increasing. Moreover, 
Gn−1

n is STP if and only if {ai} and {ci} have the same strict sign and {ai/ci} is strictly 
increasing.

The importance of being TP is well-illustrated by the following well-known result.

Theorem 3.2. An n × n oscillatory matrix An has eigenvalues λ1 > λ2 > · · · > λn > 0
and S (vk) = k − 1 for each k ∈ {1, . . . , n}, where vk is the k-th eigenvector of An.
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Regarding the previous result, we recall that the symbol S (vk) denotes the number 
of sign variations of vk that coincides with the common value S− (vk) = S+ (vk), where 
S− (vk) is the number of sign changes of vk when zero terms are discarded, and S+ (vk)
is the maximum number of sign changes of vk when values +1 or −1 are arbitrarily 
assigned to zero terms. Notice that S+ (vk) and S− (vk) can coincide only if the first 
and the last components of vk are not zero and if for every zero component the preceding 
and the following components are not zero and of different sign.

In the following, we will be interested in characterizing the asymptotic spectral dis-
tribution of specific sequences of Green matrices and in analyzing, when possible, the 
monotonicity properties of the components of the eigenvectors; the latter analysis has 
an impact from an economic viewpoint (see [12,14,17]).

3.1. Spectral distribution of sequences of Green matrices

In this section we use the theory reported in Section 2 in order to show that a sequence 
of Green matrices is a GLT sequence: as a noteworthy result we obtain that the spectral 
distribution is independent of the possible parameters and in fact it is equal to zero.

Theorem 3.3. Suppose that aj and cj in (5) are equally spaced sampling of Riemann 
integrable real valued functions a(x) and c(x), respectively, on the interval [0, 1], i.e. 
aj = a(j/n) and cj = c(j/n), j = 1, . . . , n, then {Gn} ∼σ 0 and {Gn} ∼λ 0.

Proof. The matrix Gn in (5) can be written as

Gn = Dn(a)Dn(c) + Dn(a)T (1)
n Dn(c) + Dn(c)T (2)

n Dn(a), (8)

where

Dn(a) = diag {a1, a2, . . . , an} , Dn(c) = diag {c1, c2, . . . , cn} ,

and

T (1)
n =

⎡⎢⎢⎢⎢⎣
0 1 · · · 1
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0

⎤⎥⎥⎥⎥⎦ , T (2)
n =

⎡⎢⎢⎢⎢⎣
0 · · · · · · 0

1
. . .

...
...

. . . . . .
...

1 · · · 1 0

⎤⎥⎥⎥⎥⎦ .

We study separately the four sequences {Dn(a)}, {Dn(c)}, {T (1)
n } and {T (2)

n }.
From Theorem 2.5 we have {Dn(a)} ∼GLT a and {Dn(c)} ∼GLT c.
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Consider the Toeplitz matrix T (1)
n , we can write

T (1)
n =

⎡⎢⎢⎢⎢⎣
0 1 · · · 1
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 −1 0

0
. . . . . .

...
. . . . . . −1

0 · · · 0 1

⎤⎥⎥⎥⎥⎦
−1

− I = Tn(f̃1)−1 − I,

with f̃1(θ) = 1 − e−iθ ∈ L1(Q). By Theorem 2.4 {Tn(f̃1)} ∼GLT f̃1. Since the se-
quence {Tn(f̃1)} is sparsely vanishing (Tn(f̃1) is invertible), from Theorem 2.3 we obtain 
{Tn(f̃1)−1} ∼GLT f̃−1

1 .
The same reasoning can be repeated verbatim for T (2)

n :

T (2)
n =

⎡⎢⎢⎢⎢⎣
0 · · · · · · 0

1
. . .

...
...

. . . . . .
...

1 · · · 1 0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0

−1
. . . . . .

...
. . . . . . 0

0 −1 1

⎤⎥⎥⎥⎥⎦
−1

− I = Tn(f̃2)−1 − I,

with f̃2(θ) = 1 − eiθ ∈ L1(Q). Again we can conclude that {Tn(f̃2)−1} ∼GLT f̃−1
2 .

Using Theorem 2.3, putting together the previous results we have

{Gn} ∼GLT a(x)c(x) + a(x)
(

1
1 − e−iθ − 1

)
c(x) + c(x)

(
1

1 − eiθ
− 1

)
a(x)

= a(x)c(x)
(

1 + 1
1 − e−iθ − 1 + 1

1 − eiθ
− 1

)
= 0,

that is {Gn} ∼GLT 0. Theorem 2.2 ensures that {Gn} ∼σ 0 and {Gn} ∼λ 0 since Gn is 
also Hermitian. �
Remark 3.1. We can prove Theorem 3.3 using a result on the spectral distribution of 
nonscaled sampling matrices obtained in [1], but again with the support of GLT theorems.

The Green matrix Gn in (5) can be obtained as a nonscaled sampling of the Green 
function (kernel) defined as

K(x, y) =
{

a(x)c(y) 0 < x ≤ y ≤ 1,
a(y)c(x) 0 < y ≤ x ≤ 1,

= a(x)c(y) +
{

0 0 < x ≤ y ≤ 1,
a(y)c(x) − a(x)c(y) 0 < y ≤ x ≤ 1,

(9)
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that is, K(x, y) is the sum of a separable function a(x)c(y) and a function φ(x, y) whose 
associated nonscaled sampling matrix (using the notation in (8)) is given by

Φn := Dn(c)T (2)
n Dn(a) −Dn(a)T (2)

n Dn(c).

If a(x) and c(y) are Riemann integrable real valued functions, using the GLT theorems 
as in the proof of Theorem 3.3, it follows that {Φn} ∼σ 0, so, from Theorem 5 in [1], 
{Gn} ∼σ 0, and {Gn} ∼λ 0 since Gn is also Hermitian.

Remark 3.2. If Bn − Gn = En,m, where Gn is the Green matrix defined in (5) and, 
for all sufficiently large m ∈ N, En,m = Rn,m + Nn,m (where Rn,m and Nn,m are as in 
Definition 2.2), that is, if Bn is a perturbation of Gn, then {Bn} ∼σ 0 and {Bn} ∼λ 0
if En,m are Hermitian (see Proposition 2.1); that is, {Gn} and {Bn} have the same null 
distribution.

Remark 3.3. The decomposition (8) of Gn is interesting from the computational point of 
view. Starting from the two sets {aj} and {cj}, the product Gnx, x ∈ C

n, requires only 
n multiplications for each diagonal matrix and n − 2 sums for each Toeplitz matrix. The 
total cost is 6n + 2(n − 2) = 8n − 4 operations.

3.2. Few numerical experiments

We start by giving the notion of proper (or strong) cluster and the notion of weak 
cluster.

Definition 3.2. A matrix sequence {An} of size dn, dm < dm+1 for each m, is properly
(or strongly) clustered at s ∈ C (in the eigenvalue sense), if for any ε > 0 the number of 
outliers, that is the eigenvalues of An off the disk

B(s, ε) := {z : |z − s| < ε},

can be bounded by a pure constant qε possibly depending on ε, but not on n. In other 
words

qε(n, s) := #{i : λi(An) /∈ B(s, ε)} = O(1), n → ∞.

If every An has only real eigenvalues (at least for all n large enough), then s is real 
and the disk B(s, ε) reduces to the interval (s − ε, s + ε). Finally, the term “properly (or 
strongly)” is replaced by “weakly”, if

qε(n, s) = o(dn), n → ∞,

in the case of a point s (a closed set S), respectively.
If the number of outliers grows as a function φ(n), we speak about φ(n)-clustering.
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Table 1
Number of eigenvalues of Gn, defined in (5) with ai = (i/n +1)−1, cj = ln(j/n +2), greater than ε1 = 10−1, 
ε2 = 10−2, and ε3 = 10−3.

n qε1 (n, 0) qε2 (n, 0) qε3 (n, 0)
qε1 (n,0)

n

qε2 (n,0)
n

qε3 (n,0)
n

20 4 16 20 0.2000 0.8000 1.0000
40 6 19 40 0.1500 0.4750 1.0000
80 8 25 80 0.1000 0.3125 1.0000

160 11 35 142 0.0688 0.2188 0.8875
320 16 49 174 0.0500 0.1531 0.5437
640 22 68 226 0.0344 0.1063 0.3531

1280 31 96 311 0.0242 0.0750 0.2430
2560 43 136 433 0.0168 0.0531 0.1691
5120 61 192 609 0.0119 0.0375 0.1189

It is immediate to see that a sequence of matrices is weakly clustered at s if and only if 
it admits a distribution in the sense of Definition 2.1 and the distribution function is equal 
to the constant s (almost everywhere on a reference domain [0, 1]). Therefore Theorem 3.3
tells us that any Green matrix sequence, with Riemann integrable coefficients a(·) and 
c(·), is weakly clustered at zero.

In the following we report selected experiments and we also discuss the fact that the 
cluster is often strong, depending on the nature of the considered functions. This shows 
that there is room for improving the theoretical findings in Theorem 3.3.

We choose the functions a(x) and c(x), x ∈ [0, 1], compute the number of eigenvalues 
of the matrix Gn in (5) greater, in modulus, of a certain tolerance ε ∈ {10−1, 10−2, 10−3}, 
for various sizes n.

First of all, we observe that, if we set c(x) = ka(x), with k ∈ C, we obtain a rank-one 
matrix. Indeed, if we use the decomposition in (8) we have

Gn = k2Dn(a)(In + T (1)
n + T (2)

n )Dn(a) = k2Dn(a)1nDn(a),

where 1n is the matrix of size n with all elements equal to one. Now, since rank(1n) = 1
and rank(AB) ≤ min{rank(A), rank(B)}, where A, B are matrices of size n, the result 
follows. In this case, obviously, the cluster is strong.

In Tables 1–3 we fix the function a(x) = (x + 1)−1 and we choose the functions c(x)
with different growth: logarithmic: c(x) = ln(x + 2) (Table 1); polynomial c(x) = x + 1
(Table 2); and exponential: c(x) = ex (Table 3). The experiments seem to suggest a 
deterioration of the cluster when the slope of c(x) increases and a(x) is a decreas-
ing function, moreover, in all three cases, we can note that qε2(n, 0) ≈ 3qε1(n, 0) and 
qε3(n, 0) ≈ 10qε1(n, 0). Finally, we can observe that the growth of the outliers is propor-
tional to the square root of the dimension n of the matrix.

In Table 4 we consider a combination of a sinusoidal function a(x) with a linear 
function c(x) with positive and negative values, in detail a(x) = sin

(
π
2x + π

4
)

and 
c(x) = x − 1/3. Also in this case the same considerations of the previous cases on 
the proportionality of qε(n, 0) and on the growth of the outliers as the square root of n
are valid.
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Table 2
Number of eigenvalues of Gn, defined in (5) with ai = (i/n + 1)−1, cj = j/n + 1, greater than ε1 = 10−1, 
ε2 = 10−2, and ε3 = 10−3.

n qε1 (n, 0) qε2 (n, 0) qε3 (n, 0)
qε1 (n,0)

n

qε2 (n,0)
n

qε3 (n,0)
n

20 6 20 20 0.3000 1.0000 1.0000
40 8 31 40 0.2000 0.7750 1.0000
80 11 37 80 0.1375 0.4625 1.0000

160 15 50 160 0.0938 0.3125 1.0000
320 22 68 290 0.0688 0.2125 0.9063
640 30 96 338 0.0469 0.1500 0.5281

1280 43 135 445 0.0336 0.1055 0.3477
2560 60 190 612 0.0234 0.0742 0.2391
5120 85 268 854 0.0166 0.0523 0.1668

Table 3
Number of eigenvalues of Gn, defined in (5) with ai = (i/n + 1)−1, cj = ej/n, greater than ε1 = 10−1, 
ε2 = 10−2, and ε3 = 10−3.

n qε1 (n, 0) qε2 (n, 0) qε3 (n, 0)
qε1 (n,0)

n

qε2 (n,0)
n

qε3 (n,0)
n

20 7 20 20 0.3500 1.0000 1.0000
40 9 40 40 0.2250 1.0000 1.0000
80 13 45 80 0.1625 0.5625 1.0000

160 18 59 160 0.1125 0.3688 1.0000
320 25 81 320 0.0781 0.2531 1.0000
640 36 113 422 0.0563 0.1766 0.6594

1280 50 158 533 0.0391 0.1234 0.4164
2560 71 223 724 0.0277 0.0871 0.2828
5120 100 314 1007 0.0195 0.0613 0.1967

Table 4
Number of eigenvalues of Gn, defined in (5) with ai = sin(πi/(2n) + π/4), cj = j/n − 1/3, greater than 
ε1 = 10−1, ε2 = 10−2, and ε3 = 10−3.

n qε1 (n, 0) qε2 (n, 0) qε3 (n, 0)
qε1 (n,0)

n

qε2 (n,0)
n

qε3 (n,0)
n

20 5 20 20 0.2500 1.0000 1.0000
40 7 25 40 0.1750 0.6250 1.0000
80 10 32 80 0.1250 0.4000 1.0000

160 14 44 160 0.0875 0.2750 1.0000
320 19 61 246 0.0594 0.1906 0.7688
640 27 85 291 0.0422 0.1328 0.4547

1280 38 120 391 0.0297 0.0938 0.3055
2560 54 169 542 0.0211 0.0660 0.2117
5120 76 238 759 0.0148 0.0465 0.1482

4. Eigenvectors of Schoenmakers–Coffey matrices

In this section we prove a result on the “shape” of the eigenvectors of a general subclass 
of Green matrices, the so-called Schoenmakers–Coffey matrices, motivated by a financial 
problem that we now briefly illustrate.

We recall first that Σn = [σij ]ni,j=1 is a covariance matrix if it is symmetric and (for 
simplicity) positive definite. Its corresponding correlation matrix Rn = [ρij ]ni,j=1 has 
elements ρij = σij/

√
σii

√
σjj that is Rn = DΣnD where D = diag (Σn)−1/2. Thus, 

a correlation matrix is symmetric, positive definite with 1 on the main diagonal.
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Covariance and/or correlation matrices play a crucial role in multifactor models of in-
terest rates where changes in the shape of the yield curve are largely attributed to some 
unobservable factors. Their estimation on real data through the multivariate statistic 
technique of principal component analysis highlighted the importance of the first three 
factors, formally captured by the first three eigenvectors of the covariance (or corre-
lation) matrix of yields: for details refer to [12,14,17]. These three eigenvectors were 
respectively called shift, slope and curvature (of the yield curve), hereafter SSC, because 
of the behavior of their elements. Approximately:

• a shift has constant sign and an “humped shape”: when it is positive, it is first 
increasing then decreasing (see e.g. [7]);

• a slope is monotone, with a change of sign;
• a curvature has a one-peaked shape with two changes of sign.

These features are formally captured in the following definition (that resumes the ones 
in [18] and [20]) in terms of changes of sign of vectors v ∈ R

n, v = [v1, . . . , vn]T , and 
Δv ∈ R

n−1 defined by (Δv)i = vi+1 − vi for i = 1, . . . , n − 1.

Definition 4.1. Let Γn be an n × n, n ≥ 3, correlation (or covariance) matrix having its 
first three eigenvalues simple, whose corresponding eigenvectors v1, v2 and v3 have, by 
convention, non negative first element. We define:

v1 weak shift if S− (v1) = 0, shift if it is weak shift and S− (Δv1) = 1 where the first 
no zero element of Δv1 is positive, pure shift if it is constant;

v2 weak slope if S− (v2) = 1, slope if it is weak slope and S− (Δv2) = 0;
v3 weak curvature if S− (v3) = 2, curvature if it is weak curvature and S− (Δv3) = 1.

In the empirical literature both cases of SSC and SSC in a weak form can be found 
(see Figures 3.16 and 3.17 in [14], Exhibit 5 in [7], Figures 1 and 2 in [12,13]). Anyway, 
in all the weak cases, in each interval where the elements of the first three eigenvectors 
are of constant sign, there is at most one hump, that is the conjecture S (Δv1) ≤ 1, 
S (Δv2) ≤ 2 and S (Δv3) ≤ 3 appears reasonable.

We will show that this is the case for a class of Green matrices, those of Schoenmakers–
Coffey, denoted by SCn = [rij ]ni,j=1 where [21]:

rij = min {bi, bj}
max {bi, bj}

, i, j = 1, . . . , n, (10)

and

H1) {bi} is real and strictly positive;
H2) {bi} is strictly increasing;
H3) {bi/bi+1} is strictly increasing, that is {bi} is log-concave.

Original text:
Inserted Text:
a
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We prove now that SCn is a correlation matrix that possesses the following standard 
properties of the correlations ρij of interest rates:

a) ρij > 0 for all i, j;
b) {ρij} is increasing in i and decreasing in j for i < j;
c) {ρi,i+1} is increasing.

In fact, assumptions H1) and H2) ensure that SCn satisfies a) and b); furthermore, H1) 
and H3) imply c) in a strict sense. Moreover, SCn is Green’s with ai = bi and cj = 1/bj
for i < j, and since {ai

ci
} = {b2i } is positive and strictly increasing, by Theorem 3.1 SCn

is oscillatory (see also Corollary 4 of [13]), so it is a correlation matrix. Theorem 3.2
ensures that the first three eigenvectors of SCn are SSC in a weak form (obviously, the 
existence of a weak shift eigenvector can be justified via the Perron–Frobenius Theorem 
too).

From what we have just shown it follows that SCn is a nonsingular symmetric Green 
matrix and then has tridiagonal inverse SC−1

n as in (6). The corresponding SLP (7) has 
coefficients

pi = bibi+1

b2i+1 − b2i
, i = 0, . . . , n,

qi = bi (bi+1 − bi−1)
(bi + bi−1) (bi + bi+1)

, i = 1, . . . , n,

with b0 = 0 and bn+1 = ∞.
Since {bi} is positive and increasing, both {pi}n−1

i=1 and {qi}n−1
i=1 are positive. Further 

insight are given in the following.

Lemma 4.1. The sequence {pi}n−1
i=1 is (strictly) increasing if and only if {bi/bi+1} is 

(strictly) increasing.
The sequence {qi}n−1

i=2 is bounded from above by 1 and (strictly) decreasing if {bi/bi+1}
is (strictly) increasing.

Proof. The monotonicity statements straightforwardly follows by

pi − pi−1 =
b2i bi+1 (bi−1 + bi+1)

(
bi

bi+1
− bi−1

bi

)
(
b2i − b2i−1

) (
b2i+1 − b2i

) , i = 2, . . . , n− 1,

qi − qi−1 =
bi−1bi+1

(
bi−2
bi−1

− bi
bi+1

)
(bi−1 + bi−2) (bi + bi+1)

, i = 3, . . . , n− 1,

and properties H1)–H3) of {bi}. Furthermore, since bi > 0 for any i = 1, . . . , n, we have:

qi <
bi+1 − bi−1

< 1. �

bi + bi+1
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We recall now a definition and a theorem due to Hartman [9].

Definition 4.2. A solution h = [h1, . . . , hn]T of Eq. (7) has a generalized zero at i0
provided hi0 = 0 if i0 = 1 and if i0 > 1 either hi0 = 0 or hi0−1hi0 < 0.

Theorem 4.1. (Rolle’s) Assume the sequence of real numbers v1, . . . , vn has Nj generalized 
zeros and Δv1, . . . , Δvn−1 has Mj generalized zeros. Then Mj ≥ Nj − 1.

Given a vector h ∈ R
n, set

Ωi = −Δ
(
pi−1 (Δh)i−1

)
= pi−1 (hi − hi−1) − pi (hi+1 − hi) .

Obviously if hi−1 = hi = hi+1 then Ωi = 0. Furthermore, if in i there is a strict 
maximum, that is (Δh)i−1 > 0 and (Δh)i < 0, then Ωi > 0; analogously, if in i there is 
a strict minimum then Ωi < 0.

We are now able to prove the main result of this section.

Theorem 4.2. The k-th eigenvector hk of a Schoenmakers–Coffey matrix SCn of size n, 
n ≥ 4, has exactly k − 1 changes of sign; between two consecutive changes of sign of hk

there is exactly one change of monotonicity and k − 2 ≤ S− (Δhk) ≤ k.

Proof. The first statement follows by Theorem 3.2.
Assume now hk has two consecutive generalized zeroes in i∗, i∗∗ ∈ {2, . . . , n} with 

i∗ < i∗∗. Since SCn is oscillatory, if hk,i∗ = hk,i∗∗ = 0 there exists an index i∗ such 
that i∗ < i∗ < i∗∗ and hi∗ �= 0. By Rolle Theorem, Δhk has (at least) a generalized 
zero between i∗ and i∗∗. Let i+ between i∗ and i∗∗ the minimum index for which Δhk

has a generalized zero, so (Δhk)i+ = 0 or (Δhk)i+−1 (Δhk)i+ < 0. If, for example, 
(Δhk)i+−1 > 0 then hk,i+ > 0 and in both the previous cases we obtain Ωi+ > 0. Since 
{μ − qi}n−1

i=2 is strictly increasing, by (7) it follows Ωi > 0 for all i > i+ for which hi > 0
and this prevent the existence of other generalized zero of Δhk between i∗ and i∗∗. 
Assuming alternatively (Δhk)i+−1 < 0 (and then hk,i+ < 0) we get the same conclusion.

With the same argument, it is possible to show that before the first (the minimum) 
and after the last (the maximum) generalized zeroes of hk there exists at most a change 
of sign of Δhk and the last conclusion follows. �

If one removes the assumption that {bi} is log-concave, then the sequence {μ− qi}n−1
i=2

is no longer strictly increasing and the statement of Theorem 4.2 on the changes of 
monotonicity does not necessarily hold. In this last case, by the proof of the previous 
theorem it emerges that the first eigenvector presenting “internal” humps is the first one, 
as illustrated by the following example.

Example 4.1. The sequence {bi} defined by bi = exp
{6

5 i + sin 6
5 i
}
+1 is strictly increasing 

but not log-concave. One can verify that the first eigenvector of the corresponding matrix 
SCn has two humps for n ≥ 9.

Original text:
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Theorem 4.2 tells us that the first three eigenvectors of a Schoenmakers–Coffey matrix 
SCn are SSC in a strict sense if and only if they do not present an hump before their 
first and after their last zero. The following corollary formalizes this idea.

Corollary 4.1. Let (λ,h), with h ∈ R
n, h = [h1, . . . , hn]T , be an eigenpair of a 

Schoenmakers–Coffey matrix SCn with, for example, h1 > 0. Then, h does not present 
an hump before (after) its first (last) zero if an only if λ < 1 + b1

b2
(λ < 1 + bn−1

bn
).

Proof. h does not present a hump before its first zero if and only if h1 > h2. The first 
row of 

(
I − λ (SCn)−1

)
h = 0 gives:

h2 =
(
λ

b22
b21 − b22

+ 1
)(

λb1b2
b21 − b22

)−1

h1,

therefore

h1 − h2 = h1

λb1b2
(b2 − b1) (b1 + b2 − λb2) ,

and the claim follows by 0 < b1 < b2, h1 > 0 and λ > 0, as SCn is oscillatory. The 
second statement is obtained in the same way. �

Given a Schoenmakers–Coffey matrix SCn, two conclusions immediately follow by the 
previous corollary. First, if an eigenvector h of SCn does not have a hump before its first 
zero, then it does not have anyone after its last zero. Second, since SCn has positive 
elements and {bi/bi+1} is increasing, by the classical inequalities

min
j

∑
i

rij ≤ λ1 ≤ max
j

∑
i

rij ,

we obtain λ1 > 1 + b1/b2, namely, in financial terms, the first eigenvector of a 
Schoenmakers–Coffey matrix is always shift.

For what concerns the second and third eigenvector of SCn, we must notice that the 
conditions for the non-existence of an initial and/or final hump for a given eigenvector 
h of Corollary 4.1 are based on knowledge (at least in terms of estimation) of the corre-
sponding eigenvalue λ. In the absence (as usual) of such information, it is still possible 
to obtain some partial conclusions, as illustrated by the following example.

Example 4.2. If bs = sα with α > 0, then:

rij =
{(

i
j

)α

i ≤ j,(
j
)α

i > j.
i
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Since limα→0+ rij = 1 and limα→+∞ rij = 0, we obtain:

lim
α→0+

λ2 = 0; lim
α→+∞

λ2 = 1.

On the other hand

lim
α→0+

1 + b1
b2

= lim
α→0+

1 + bn−1

bn
= 2,

lim
α→+∞

1 + b1
b2

= lim
α→+∞

1 + bn−1

bn
= 1.

Therefore for α in a suitable right neighborhood of 0 there are no initial and final humps 
in h2. Similar considerations apply to λ3 and h3.

A further consideration. As it is well-known, the eigenvectors of a covariance matrix 
are different from the ones of the corresponding correlation matrix. However, in [13]
it has been shown that an invertible covariance matrix is oscillatory if and only if its 
correlation matrix is oscillatory. This means that all Green (covariance) matrices having a 
corresponding correlation matrix of Schoenmakers–Coffey type, are oscillatory and their 
first three eigenvectors are SSC in a weak sense. This raises the question of whether the 
results obtained here on the number of monotonicity changes of Schoenmakers–Coffey 
matrices extend in a natural way to the corresponding covariance Green matrices. The 
negative answer is given by the following example.

Example 4.3. Consider the Green matrix Gn defined by the sequences {ai} and {cj}
with:

tk = π

2

(
1 + k − 1

n− 1

)
, k = 1, . . . , n,

ai = ti(sin(4ti) + 2), i = 1, . . . , n,

cj = sin(4tj) + 2, j = 1, . . . , n.

The sequences {ai} and {cj} are positive but not monotone. However we have that 
{ai/ci} = {ti} is strictly increasing, therefore Gn is oscillatory and in particular is a 
covariance matrix. The sequence {bi} = {

√
ai/ci} = {

√
ti} is positive, strictly increasing 

and such that {bi/bi+1} is strictly increasing too:

bi
bi+1

− bi−1

bi
=

√
1 − 1

n− 1 + i
−

√
1 − 1

n− 2 + i
> 0.

Therefore, the corresponding correlation matrix SCn is of Schoenmakers–Coffey type and 
its first three eigenvectors are SSC (Fig. 1(a)). Nevertheless the first eigenvector of Gn is 
not shift and presents two humps (Fig. 1(b)). If we substitute sin(4ti) with sin(10ti) also 
the second and the third eigenvector of Gn are not more slope and curvature (Fig. 1(c)).
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Fig. 1. First three eigenvectors, h1 (+), h2 (×) and h3 (∗), of SC50 for sin(4ti) (a), of G50 for sin(4ti) (b), 
and of G50 for sin(10ti) (c).

In the next example the estimation of the eigenvalues of the considered correlation 
matrix allows to obtain a complete result on the existence of slope and curvature.

Example 4.4. Consider the well-known Kac–Murdock–Szegö (KMS) matrices R =[
ρ|i−j|]n

i,j=1, ρ ∈ (0, 1), [6,8,10,29]. They are Green’s (see (6)) with

ai = ρ1−i, cj = ρj−1, (11)

and represent a limit case of the Schoenmakers–Coffey ones, as {bi/bi+1} is constant. 
Indeed, by the proof of Lemma 4.1, {pi}n−1

i=1 is a constant sequence if and only if {bi/bi+1}
is constant. It is possible to show (see Theorem 3.1 in [21]) that under H1)–H3) (10) is 
equivalent to

(R)ij = exp
{
−

n∑
l=i+1

min {l − i, j − i} Δ̃l

}
, i < j, (12)

where

Δ̃l = ln bl − ln bl−1 − (ln bl+1 − ln bl) , l = 2, . . . , n− 1,

Δ̃n = ln bn − ln bn−1 = ln b2 −
n−1∑

Δ̃l.

l=2
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Hence, {bi/bi+1} is constant if and only if one chooses Δ̃l = 0 in (12) for l =
2, . . . , n − 1, obtaining (without any restrictions we assume b1 = 1) (R)ij =
exp {−min {n− i, j − i}Δn} = bi−j

2 for i < j. Therefore this is the unique case where 
the main diagonal of SC−1

n (except for the first and the last elements) and the super-
diagonals are constant.

KMS matrices are oscillatory [18], so their first three eigenvectors are SSC in a weak 
sense. The authors in [19] have shown that these matrices admit shift for all ρ ∈ (0, 1)
and slope and curvature if and only if ρ is greater than a threshold value. We briefly 
show how to extend and precise these results for n ≥ 4 (if n = 3 all is obvious, see 
Example 15 in [19]).

As it can be easily verified, the conclusions of Theorem 4.2 apply despite being in 
a borderline case. The same result can be obtained recalling that KMS matrices are 
Toeplitz’s, with the 

⌈
n
2
⌉

symmetric and 
⌊
n
2
⌋

skew-symmetric eigenvectors hk whose 
expressions (see [28]):

htk = cos
((

t− n + 1
2

)
θk

)
, k odd, (13)

htk = sin
((

t− n + 1
2

)
θk

)
, k even, (14)

are obtained by solving problem (7) with pi = ρ
1−ρ2 and qi = 1−ρ

1+ρ . As a consequence, the 
fact that between two consecutive zeros there is one and only one change of monotonic-
ity follows by noting that each eigenvector is an equispaced sampling of sine or cosine 
functions.

For what concerns the presence of initial (and by symmetry, final) humps, we recall 
that the eigenvalues of R are (interlaced, with λ1 even and) given by

λk = 1 − ρ2

1 + ρ2 − 2ρ cos θk
, (15)

where, as proved in [25] improving a previous result of [8],

(k − 1)π
n

< θk <
kπ

n + 1 , k = 1, . . . , n. (16)

As Corollary 4.1 holds with 1 + b1
b2

= 1 + bn−1
bn

= 1 + ρ, the monotonicity of the “first 
positive part” (with h1k > 0) of any eigenvector of R depends on the sign of λk−(1 + ρ). 
Apart from the obvious conclusions about λ1 (> 1 + ρ) (and λn < 1 + ρ), we show now 
that:

i) for n = 4, 5 we have (λ3 <)λ2 < 1 + ρ for all ρ ∈ (0, 1); for n ≥ 6 we have λ2 � 1 + ρ

if and only if ρ � 2 cos π − 1;
n−2
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ii) for n = 6, 7, 8 we have λ3 < 1 + ρ for all ρ ∈ (0, 1); for n ≥ 9 we have λ3 � 1 + ρ if 
and only if ρ � 2 cos 2π

n−2 − 1.

In fact, observe preliminarily that

lim
ρ→1−

λk (ρ) = λk (1) = 0 < 2 = lim
ρ→1−

1 + ρ, k = 2, 3, (17)

hence, by continuity, λk < 1 + ρ for “sufficiently large” ρ.
i) By (15) it follows λ2 � 1 + ρ if and only if 2 cos θ2 � 1 + ρ, which is equivalent to 

h12 � h22.

11
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From (14), h12 = h22 if and only if (see (16))

θ2 ∈
(
π

n
,

2π
n + 1

)
: sin

(
θ2

n− 1
2

)
= sin

(
θ2

n− 3
2

)
, (18)

that is if and only if θ∗2 = rπ
n−2 where the integer r satisfies

1 − 2
n
< r < 2 − 6

n + 1 .

Then for (3 ≤)n ≤ 5 there are no solutions, whereas for n ≥ 6 Eq. (18) admits the 
unique solution θ̃2 = π

n−2 . These conclusions jointly with (17) prove the statement with 
ρ = 2 cos π

n−2 − 1.
ii) Operating as in the proof of i), for n ≥ 9 we find a unique value θ̂3 = 2π

n−2 such 
that h13 = h23 and ρ = 2 cos 2π

n−2 − 1.
The “translation” in the financial language of these results is immediate.

5. Conclusions and remarks

We have identified some spectral properties of Green matrices, whose eigenvalue dis-
tribution is always equal to zero: this result is not surprising giving the fact that these 
matrices come from integral operators (see [1] and references therein), but we have ob-
tained it in a wider generality, by using the theory of GLT sequences. Concerning this 
first part we observe that the zero spectral distribution is equivalent to the weak clus-
tering: however, in our numerical tests, often we observed a 

√
n-clustering in the average 

case and hence it seems that there is room for improving the theoretical results.
As a second step, we have considered a subclass of the Green matrices, called 

Schoenmakers–Coffey matrices, which have a role in financial context. For this class, 
in view of its importance in applications such as in the portfolio estimation, we have 
analyzed the eigenvector oscillation structure.

As already observed in the introduction, even if these matrices are not shift invariant 
(Toeplitz), the results are obtained by using tools coming from Toeplitz technology, 
related to GLT sequences and to Kac–Murdoch–Szegö matrices, connected to Toeplitz 
matrices.
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