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PREFACE. 

Background. 

Tissue engineering is a very attractive branch of modern medicine. In fact, it represent not only a 

promising vehicle to face the “regenerative medicine” requests, but it is also a very sophisticate tool 

for the in vitro studies of complex biological systems such as tissues development and regeneration. 

A great step forward in tissue engineering advancement is represented by the improvement of 

biomimetic materials that are able to active interact with cells in order to provide 

microenvironments suitable for the clinical application and the basic theory progress. From this 

point of view, hydrogels are nowadays considered as a very interesting materials thanks to their 

biocompatibility and controllable mechanical features. Their utilization range from the 3D matrix 

for cells development to the drug delivery systems. Thus, the hydrogel development course is an 

excellent possibility for the making of a platform for biological and clinical investigations. 

 

Aim and presentation of the Thesis. 

In this PhD Thesis, it will be reported the three years activities of the candidate. The main purposes 

has been the development of a novel hydrogel with thermo-sensitive and thermo-reversible features. 

After that first crucial step, the selected hydrogel has been tested for biomedical purposes facing 

different applications. Therefore, the Thesis has been divided into 4 different chapter in order to 

better detail the succeeding steps that are all related to each others. In turn, each of the 4 chapters is 

characterized by a specific introduction, materials and methods and results and discussion sections 

with the purpose to minutely explain the biological hypothesis encountered and the strategies used 

to face them. As support of the selected techniques, a chapter specific references section was spent 

to each one.  

• In the Chapter 1, it will be described the methylcellulose-based (MC) thermo-reversible 

hydrogel development from a mechanical point of view. The purpose was to select the best 

salts-MC w/v compositions in order to produce a hydrogel able to reverse the physical phase 

(from liquid to gelation and vice-versa) at 37°C that is the optimal temperature for cells 

cultivation. Furthermore, the selected hydrogel cytocompatibility was first verified in vitro and 

then the biocompatibility evaluation was extended to the in vivo immunological reaction study. 

Experimental procedures of this part were performed in the Biomedical Materials Laboratory of 

the Health Sciences Department in Novara for the biological part and in the Laboratory of 

Materials Sciences of the Polytechnics of Milan for the mechanical assays part. 
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• After the MC-hydrogel biocompatibility confirmation, in the Chapter 2, it will be showed a 

first biological application for the in vitro production of artificial cartilage. In this section, the 

MC hydrogel has been used in combination with a porous polyurethane scaffold (PU) as 3D 

matrix for mesenchymal stem cells (MSCs) chondrogenesis. The MSCs differentiation has been 

carried out using a specific bioreactor able to promote chondrogenesis by the appliance of 

compression and shear forces on the PU-hydrogel-MSCs composite. By this way, it was 

possible to produce artificial cartilage via mechanical stimulation, avoiding the use of 

biochemical stimulation. The successful results were an important proof of the MC-hydrogel 

suitability as 3D matrix for cells development. All the experiments were performed in the 

Musculoskeletal Regeneration Laboratory of the AO Research Institute of Davos Platz 

(Switzerland) within the COST-NAMABIO exchange program (European grant to the 

candidate). 

• In the Chapter 3, it will be described the use of the hydrogel as scaffold for the in vitro 

biofabrication of implantable cell sheets (CS). Therefore, it will be detailed the protocol used to 

cultivate a monolayer of cells onto the MC-hydrogel surface and the subsequent spontaneous 

detachment allowed by the hydrogel temperature-guided inversion phase. CS were successfully 

produced, collected and their ability to adhere to a new substrate was in vitro confirmed. 

Afterwards, CS were in vivo implanted into recipient mice; thanks to the presence of cells 

natural extracellular matrix (ECM), the CS were able to adhere to the naïve tissue without the 

use o sutures. The successful implantation was confirmed by the neo-vascularization occurred 

after 2 weeks. Thus, the suitability of the MC-hydrogel for the biofabrication of implantable CS 

was confirmed. All the procedures were performed in the Biomedical Material Laboratory.  

• Finally, in the  Chapter 4, it will be detailed the MC-hydrogel derived CS technique application 

for skin regeneration. For this purpose, a complex system composed of a human recombinant 

elastin (HELP) layer and gingival derived primary human fibroblasts (HGF) was realized. The 

HELP-HGF CS was detached from MC-hydrogel surfaces and in vitro characterized. 

Afterwards, HELP-HGF CS were implanted into the dorsal skin of nude mice carry a 1cm 

diameter skin excision mimicking a 3rd degree burn. The CS were attached by fibrin glue 

avoiding the use of sutures and after 1and 3 weeks the regenerative potency of the CS was 

confirmed as a complete repair of the skin excision was noticed. These findings represented a 

strong proof of the CS technology suitability for soft tissues repair. The experiments were 

performed in the Biomedical Materials Laboratory, while the HELP were kindly produced and 
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provided by the Laboratory of Recombinant proteins of the Life Sciences Department of the 

University of Trieste. 

 

Finally, the candidate declare that all the presented data were original and that all animals surgical 

procedures were performed after local ethical committee approval, following pre-approved surgical 

procedures. 

 

 



6 

 

Chapter 1. 
 

 

Thermo-reversible methylcellulose-based Hydrogel 
production, mechanical characterization and 
biocompatibility evaluation. 
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1.1     INTRODUCTION 

1.1.1. Hydrogels characteristics. 

Between the polymeric materials class, a very interesting role is played by the hydrogels. They can 

be defined as 3D macromolecular structures able to retain a high amount of solvent thanks to their 

thermodynamic affinity with it. In fact, hydrogels are composed by complex reticular networks 

supported by physic, ionic and covalent interactions [1-3]. Therefore, hydrogels present both high-

energy (covalent bonds) and low-energy (hydrophobic interactions) crosslinks (Figure 1A). 

However, it is very important the presence of high-energy covalent bonds between polymer chains 

since they confer to the hydrogel the ability to absorb the solvent without losing their 

macromolecular integrity (Figure 1B) [2].  

Hydrogels can be composed by a multiple repetition of a single polymer (homopolymer) or by the 

presence of different polymers (copolymer); moreover, it is possible to distinguish between 

hydrogels presenting a random polymer chains network (amorphous), a partly ordered network 

(semi-crystalline) or a complete ordered network (crystalline) [4, 5].  

Another important hydrogels peculiarity is related to the chemical groups that strongly condition the 

ionic charge. From this point of view, it is possible to divide hydrogels in neutral (no charge), 

positive/negative charged (presenting a prevailing (+) or (-) charge) or ampholytes when they have 

the ability to act both as positive or negative charged responding to an environmental stimulus. 

Neutral hydrogels develop a complex 3D structure thanks to the energy balance between the solvent 

osmotic force and the deformation energy of the polymer chains network. In the case of charged 

hydrogels, the ability to absorb solvent is mainly leaded by two driven forces: the electrostatic 

repulsion between the polymer chains charges and the osmotic force derived by the presence of 

charges into the solvent-polymer solution [4, 5].   

 

1.1.2. Hydrogels as smart materials. 

A novel interesting class of materials suitable for biomedical applications consists on the “smart” 

materials. These particular polymers are able to range their physical/chemical properties following 

an external stimulus such as pH or temperature changing [6-9] (Figure 1C). Some hydrogels belong 

to this peculiar order of materials. In fact, they present two distinct phases (Figure 1B): in the (I) 

collapsed phase, the hydration solvent is repulsed since the interactions energy between the polymer 

chains are predominant to the solvent-polymer ones. In the (II) swollen phase, the hydration solvent 

is absorbed because the polymer chains-hydration solvent become predominant to the chains-chains 

ones [7]. The passage from a collapsed to a swollen state correspond to a physical change of the 
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hydrogel from a liquid phase, in which the polymer is solved, to a gel phase. In the gel phase, the 

hydrogel finally tend to jellify because of the polymer chains network reticulation. 

     

Figure 1 A-C. Schematic representation of the low/high energy network supporting hydrogel macromolecular structure 
(A). Hydrogel ability to absorb solvent without losing the polymer chains crosslink (B).  Smart materials are able to 
vary their chemical/physical phase following an external stimuli (C).  
(A=modified from [3], B=modified from [6], C=modified from [9])  
 

1.1.3. Methylcellulose-derived thermo-reversible hydrogels. 

Methylcellulose (MC) is commonly derived from cellulose by the substitution of hydroxyl groups  

(-OH) with methoxy groups (-OCH3) in a two-steps process involving first sodium hydroxide and 

then methyl chloride [10]. At the end of the process, MC achieve a structure characterized by the 

presence of both hydrophilic (-OH) and hydrophobic (-OCH3) groups (Figure 2A). Accordingly, the 

MC phase in solution is directly determined by the system temperature (T) [10-11]. In fact, when 

T>55°C MC became not solvable due to the prevalence of the polymer chains hydrophobic 

interactions; on the opposite, when T<20°C MC results as solvable as the hydrophilic interactions 

between solvent and polymer chains are predominant on the hydrophobic ones. So, by mixing the 

MC powder in a defined weight/volume (w/v) percentage in a solvent, it is possible to obtain smart 

hydrogels that are able to undergo a solution-gelation (sol-gel) phase change guided by the system 

temperature [12-14]. 

The presence of salts in the hydrogels hydration solvent (that is normally water) is very useful to 

improve the stability of the hydrogel and it is also a tool to determine the decrease of the phase-

changing temperature. In fact, when the T is raised, the system tend to absorb the heat and to 

convert it into the energy necessary to originate the MC chains-chains crosslink. The water 

molecules tend to accumulate close to the salts reducing the total number of hydrophilic 

interactions. Therefore, the energy that is necessary to broke these hydrophilic interactions and 

undergo MC chains-chains crosslink is lower and the system T for the phase-change decrease 

(Figure 2B) [12-14]. 

As in the presence of salts the system sol-gel phase transition is more easy controlled and require 

lower T, it is very important to underline that this phenomenon results as reversible. Is in fact 
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possible with MC-based hydrogels to carry out the sol-gel transition and return to the sol phase by 

lowering the T for a gel-sol phase transition [12].  

     

Figure 2 A-B. Methylcellulose chemical structure characterized by the presence of both hydrophilic (left) and 
hydrophobic (right) groups (A). Representative scheme of the sol-gel phase transition of MC-based hydrogels in the 
presence of salts and solvent (B).  
(Modified from [4]) 
 

In conclusion, it is possible to consider the MC-based hydrogel as a smart thermo-reversible 

material sensitive to the system temperature. 

 

1.1.4. Aim of the work. 

In this first part of the Thesis, thermo-responsive hydrogels composed of MC and different salt 

solutions were prepared and characterized. Rheological analysis were performed to determine 

variations of complex viscosity (η*), conservative shear modulus (G’) and viscous shear modulus 

(G”) of hydrogels after temperature increase. The thermo-reversible features of MC-based 

hydrogels was also investigated by the inversion test and rheological characterization. Selected 

prepared MC-based hydrogels were preliminary in vitro tested to investigated possible cytotoxicity 

towards mouse fibroblasts. Afterwards, gel-phase MC hydrogels biocompatibility were in vivo 

evaluated into wild type mice.  

 

 

1.2. MATERIALS and METHODS. 

1.2.1. Materials. 

Methylcellulose (MC, Methocel A4M, η =4000 mPa×s for a 2% w/v aqueous solution at 20°C) was 

kindly supplied by The Dow Chemical Company. All basic chemicals were obtained from Sigma-

Aldrich unless mentioned otherwise. 

 

1.2.2. Thermo-reversible MC-based hydrogel preparation. 

Aqueous MC solutions in different concentrations (Table 1) were prepared with the addition of 

selected salts (sodium sulphate, Na2SO4, sodium phosphate, Na3PO4, calcium chloride, CaCl2) or 
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Phosphate Buffered Saline (PBS), varying their concentration in the MC solution (Table 1).  

In the following, the composition of 

the prepared and characterized MC 

hydrogels will be summarized by 

acronyms in which the first number is 

referred to the MC concentration (% 

w/v), the letters indicate the salt and 

the last number is referred to the salt 

or PBS concentration (moles/l for 

salts, g/l for PBS).  The preparation of 

the MC hydrogels consisted in three 

main steps, as reported in Figure 3A: 

1) preparation of the saline solution; 

2) addition of the MC to the saline 

solution; 3) hydration of the MC 

powder (i.e. sol phase).  

Step 1: preparation of saline solution: saline solutions were prepared mixing the appropriate 

quantity of the salt with distilled water or PBS (Table 1) at 50°C under magnetic stirring. 

Step 2: mixing: the MC was added to the saline solution under stirring at 50°C using the dispersion 

technique [15], to allow a homogenous distribution of the MC powder in the solution. The MC 

suspension was poured in tissue culture polystyrene Petri dishes or in the wells of TCPS multi-well 

plate. 

Step 3: MC suspension hydration: to allow the complete hydration of the MC powder, after the 

mixing step, the suspension was cooled down to 4°C. At 30-35°C, depending on the MC hydrogel 

composition, MC powder started to hydrate and the viscosity of the solution increased (gel phase). 

The prepared MC solutions (Table 2) were then stored at 4°C overnight to allow the complete 

hydration of the MC powder, thus obtaining the hydrogel in the sol phase. 

 

1.2.3. Gelation test. 

The physical gelation of MC hydrogels was observed visually using the inversion method already 

described in literature [13, 15]. Briefly, specimens (10 ml each, n=3) of MC hydrogels (Table 2) 

were put in different Falcon tubes (15 ml), and heated up to 40°C in a standard bath. Temperature 

was then decreased down to 20°C, at approximately 0.5°C/min. At 37 and 20°C, the Falcon tube 
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was inclined of 90° and the possible flow of the MC solution was observed. At each temperature, 

the solutions/gels were allowed to equilibrate for 1 h. The gelation criterion was defined as the 

temperature at which the clear solution did not flow upon inversion of the Falcon tube [b]. 

 

1.2.4. Rheological characterization. 

Rheological characterization of MC hydrogels was performed with a rotational rheometer (AR-

1500ex, TA Instruments, USA), using a flat plate geometry (diameter=2 cm, working gap=1 mm). 

A home-made isolation chamber in polymethyl methacrilate (Plasting srl, Segrate, MI, IT) was 

designed and assembled to the rheometer to prevent the possible dehydration of the MC hydrogels 

during the test. Tests were performed using five samples for each considered MC hydrogel 

composition. To investigate the rheological properties of the MC hydrogels, dynamic viscosity (η*), 

storage shear modulus (G’) and viscous shear modulus (G”) were registered over the temperature 

range 5-50°C, with a temperature ramp of 5°C/min. The oscillation frequency during the 

temperature ramp was held at 1 Hz. Thermo-reversibility characteristic of the MC hydrogels was 

studied with a first run increasing the temperature from 4 up to 40°C and a second run decreasing 

the temperature down to 4°C (temperature ramp=10°C/min, oscillation frequency=1 Hz). 

 

1.2.5. In vitro cytotoxicity evaluation. 

In vitro cytotoxicity of the MC hydrogel extracts was assessed using murine fibroblasts (L929, 

ECACC No. 85011425). The hydrogels with the highest salt concentration (Table 3) were prepared 

under laminar hood using saline solutions previously sterilized with antibacterial filter (Minisart 20 

nm, Sartorius Stedim Biotech). Then, the obtained hydrogels were sterilized by UV light exposure 

(t=30 min). L929 fibroblasts were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM, 

Sigma-Aldrich) supplemented with 10% foetal bovine serum (Sigma) and 1% 

penicillin/streptomycin at 37°C, 5% CO2; when cells reached 80-90% confluence, they were 

detached by trypsin-EDTA solution, harvested and used for experiments. Cylindrical (diameter=10 

mm, thickness=3 mm, n=3) samples of different considered hydrogels compositions (Table 3) were 

put into the wells of a 24 TCPS multiwell plate (CellStar, VWR-PBI International) and submerged 

for 1 week with 2 ml of complete medium.  

Afterwards, surnatants were collected 

from different samples and used to 

cultivate cells (cell density=1 x 104 

cells/well, cell suspension=500 
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µl/well) for 24, 48 and 72 h. At each time-point, cells viability was evaluated by the (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric metabolic assay (MTT, 

Sigma). Briefly, 50 µl of MTT solution (3 mg/ml in PBS) were added to each well and incubated 

for 4 h in the dark. Then, surnatants were removed, formazan crystals were dissolved with 100 µl of 

dimethyl sulphoxyhde (DMSO), and 50 µl were spotted into a 96 TCPS multiwell plate. Sample 

optical density (O.D.) was evaluated by spectrophotometer (SpectraCount, Packard Bell) at 570 nm. 

Cells cultivated with fresh DMEM were used as positive control and their O.D. was considered as 

100% viability. Furthermore, cells morphology was observed 72 h after seeding by light microscope 

(Leica AF6500, Leica Instruments). Experiments were performed 3 times using triplicates. 

 

1.2.6. In vivo biocompatibility evaluation. 

Considering the mechanical assays results and the promising cytocompatibility evaluation data, the 

8% w/v Na2SO4 0.05M was selected as the best composition for further in vivo biocompatibility 

investigations. One centimetre diameter specimens of the selected hydrogel were subcutaneously 

implanted into a pocket realized in the dorsal skin of 6-8 weeks old mice (C57BL/6JOlaHsd, wild 

type, Harlan Laboratories) (Figure 8 A-B). After 1, 3 and 6 weeks cellular immune responses were 

determined by using a lymphocyte proliferation assay in tissue culture wells [16]. Spleens were 

harvested and single cell suspensions prepared by tissue disruption. Lymphocytes were washed, 

counted, and assessed for viability in trypan blue counting fluid, and adjusted to a suspension of 2.5 

× 106 cells/mL in Minimal Essential Medium Alpha modification (α-MEM, Sigma) supplemented 

with 10% FBS, 1% antibiotics. Triplicate aliquots were dispensed in wells previously coated with 

100µl of hydrogel solution or buffer alone. Positive controls consisted of cells stimulated with the 

mitogen ConA (5 mg/mL) in additional wells to confirm that they were competent. Plates were 

incubated at 37°C, 5% CO2 for 48 hours. Cells viability was evaluated by the MTT assay and the 

cellular responses were expressed as stimulation indices (SI) calculated according to the formula: 

[(Mean OD of cells cultured with hydrogel - Mean OD of cells cultured without hydrogel) / Mean 

OD of cells cultured without hydrogel] x 100 [16]. 

 

1.2.7. Statistical analysis of data. 

Results are expressed as mean and standard deviation. Data, where possible, were statistically 

compared by a t-test (Student test) or a One-Way ANOVA test (significance level p=0.05), using 

Bonferroni test for mean comparison (8.5 software). 
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1.3. RESULTS and DISCUSSION. 

1.3.1. Gelation test. 

All the compositions of MC blended with saline solution changed from a clear solution at lower 

temperature (sol phase) to an opaque gel (gel phase) at elevated temperature (T ≥ 37°C). As a 

representative example (Fig. 3B), the 4SO0.2 hydrogel appears as a clear solution (sol phase, Fig. 

3B, left panel) at low temperature (T = 4°C), then the gelation of the solution becomes evident by 

the opacity of the formed gel up to 37°C (gel phase, Fig.3B, right panel). The inversion test 

performed for all the investigated compositions (Table 2) evidenced the influence on the gelation 

temperature of the MC and the salt concentration (Fig. 4). In general, hydrogels obtained using high 

MC concentration showed a slower flow rate for the higher viscosity. On the contrary, hydrogels 

with low MC concentration showed a lower viscosity, hence flowed faster. Besides, at the same 

concentration of MC, different gelation temperature can be detected varying the salt (Fig. 4A). In 

particular, comparing 4SO0.1 and 4PBS10, a higher gelation temperature value was found for the 

hydrogel prepared with PBS. For the 8% w/v MC concentration, no correlation with type of salt 

was evidenced. Considering higher MC concentration, PBS and Na2SO4 showed the same low 

gelation temperature (T=20°C), instead, the gel prepared with CaCl2 maintained a higher gelation 

temperature (T=37°C). For all the investigated salts (Fig. 4B) and PBS (Fig. 4C) concentrations 

blended with MC, a decrease in the gelation temperature below 37°C was observed increasing the 

salt concentration. In addition, the limit salt concentration value, corresponding to the gelation 

temperature of 37°C, is not the same for all the investigated salt. This is due to a different ionic 

interaction between the salt ion and the MC. As an example, for 10SOx and 12SOx the limit 

concentration is 0.05 M, while for 12Clx is 0.1 M. Moreover, for PBS, the limit concentration is 10 

g/l for 2PBSx and 8PBSx, while for 10PBSx and 12PBSx corresponds to 5g/l. These qualitative 

data indicated that the temperature at which the gelation starts can be varied by changing either the 

MC concentration and the formulation of the saline solution. 
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Figure 3 A-B. Schematic representation of the 3-steps hydrogel production process (A). Example of a sol-gel phase 
transition of a hydrogel spotted into a Petri dish (B). 

 

 

Figure 4 A-C. Gelation temperature of MC blended with salt: (A) effect of concentration of MC blended with 0.1 M 
Na2SO4 or CaCl2, or 10 g/l PBS; (B) effect of Na2SO4 or CaCl2 concentration; (C) effect of PBS concentration. (x 
indicates the different MC concentration in the hydrogel). 
 

 

1.3.2. Rheological characterization. 

In Figure 5, the storage shear modulus (G’) and the loss shear modulus (G’’) obtained from the 

temperature sweep rheological analysis are reported for the compositions that showed a gelation 

temperature about 37°C in the inversion test. In fact, this value appears the optimal one for a 

possible use as smart hydrogel in regenerative tissue applications. For all the selected MC solutions, 

at low temperature (approximately in the range 5-10°C), G’ (Fig. 5 A-C) was lower than G’’ (Fig. 5 
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D-F) due to the viscous/liquid-like behavior of the MC solution, i.e. sol phase. Increasing the 

temperature, G’ first showed a decrease, reaching a minimum, then it rapidly increased for the 

sol/gel transition, as a soft elastic gel is formed. In addition, increasing the MC concentration higher 

values of G’ can be detected. Besides, increasing the salt concentration, at the same MC 

concentration, G’ increased and a slight shifting towards lower temperature (T<37°C) was 

evidenced for the gelation temperature, confirming the inversion test results. 

 

     

Figure 5 A-F. Shear storage modulus (G’) and shear loss modulus (G’’) versus temperature for the solutions prepared 
varying MC and salt concentration: A-D) MC blended with Na2SO4; B-E) MC blended with CaCl2; C-F) MC blended 
with PBS. Curves represent the average behavior of G’ ad G’’ obtained by the rheological data collected at every 0.5°C 
temperature interval at a frequency of 1 Hz.  
 

In the heating and cooling tests (Fig. 6), a hysteresis is observed for all the investigated solutions. In 

particular, a higher hysteresis is detected when MC concentration increases for MC blended with 

salts (Fig. 6A, e.g. 12SO0.02, 8SO0.1, Fig. 6B, e.g. 10Cl0.2, Fig. 6C, e.g. 12PBS5). The high 

hysteresis detected for some MC compositions could suggest that the solution did not reach the 

thermal equilibrium in the gelled state and that the dissociation in the MC gel-sol transition (during 

the cooling run) is not an exact reversal of the association process (during the heating run) [17]. 

MC based hydrogels prepared in this work exhibited reversible thermo-responsive properties. Phase 

transition was confirmed both by physical and rheological characterizations. Interesting, it was 

easily observed how temperature determined variations to hydrogel mechanical properties. When 

samples were heated, mechanical parameters increased confirming that polymer structure became 
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more and more ordinate and compact. Conversely, immediately after cooling down temperature, 

samples showed a decreasing of mechanical parameters which indicated that polymers were losing 

their compact structure to come back to the liquid phase. These properties are certainly related with 

MC chemical structure. In fact, it is characterized by the presence of both hydrophobic and 

hydrophilic groups. Methoxy groups (-CH3) represent the hydrophobic regions while hydroxy 

groups (-OH) represent the hydrophilic ones. At low temperature (< 10ºC) hydrophilic interactions 

between –OH groups and solvent are predominant so MC molecules are hydrated and the polymer 

structure is held together by simple entanglements. As temperature increase, hydrogels absorb 

energy and gradually lose their hydration water. Polymer-polymer interactions take place between –

CH3 groups, forming a gel-network structure.  

      

Figure 6 A-C. Temperature dependence of the shear storage modulus (G’) for the solution prepared varying either MC 
and salt concentration: A) MC blended with Na2SO4; B) MC blended with CaCl2; C) MC blended with PBS. Straight 
curves represent the average behavior of G’ during the heating up to 40°C, the dash curves during the cooling down to 
5°C.  
 

Rheological characterizations showed that MC and salts concentration strongly influenced 

hydrogels mechanical properties. In fact, the increasing of MC and salts concentration determined 

an increasing in mechanical parameters. Those are expected results because by adding more MC the 

final polymer will be composed by a higher number of hydrophobic regions that will form a more 

structured and compact gel-network. Increasing salts concentration, water molecules are forced to 

locate around them, reducing the intermolecular hydrogen-bond formation between water molecules 

and the hydroxyl groups of MC. Not only concentration but also the type of salts strongly 

influenced hydrogels mechanical properties. In fact usually salts have greater affinity for water than 

polymers molecules resulting from removing hydration water from the polymer and thus 

dehydrating the polymer. This phenomena is termed “salt-out” (or salt-assisted) effect and means 

that  water is dropped out from polymer structure [4, 5, 14]. 

The ability of a salt to salt-out a polymer generally follows the salts order in the lyotropic series 

[14]. Cations follow the order Li+ > Na+ > K+ > Mg2+ > Ca2+ > Ba2
+, and more common anions 
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follow the order CNS- < I- < Br- < NO3
- <Cl- < tartrate < SO4

2- < PO4
3- [14]. These effects depend 

mostly on the anions. Accordingly, with the same MC and salts concentrations, more water 

molecules were removed from MC hydrogels when Na2SO4 was used than CaCl2.  

Evaluating G’ and η* values obtained during cooling down phase, it was noticed that they were 

higher than heating ones. In contrast to the sharp increase of both the parameters from the heating 

process in the temperature range from 30 to 40°C, the gradual decrease of the parameters with 

temperature in the cooling process showed an outstanding deviation from the heating curve. This 

clearly indicates that the thermally induced hydrophobic dissociation is not an exact reversal of the 

hydrophobic association in the heating process. The hysteresis between the heating and cooling 

processes may be due to the existence of some associated aggregates or weak connections that have 

not completely disassociated [17]. Differences may be also due to a different dynamic in forming 

and destruction of the chain to chain interactions related to the different dynamic in absorbing and 

realising water. Only under 7ºC the values became again comparable.  

Another factor that may affect the destruction of the polymeric structure is the time for which the 

system has equilibrated at the highest temperature before cooling. In this work, cooling process 

initiated immediately after the heating process. However, if the sample is allowed to equilibrate for 

some time before cooling starts, the time should have effect on the hydrogels behaviour during 

cooling process. Samples should be more difficult to dissociate because of the more perfect network 

formed, compared to a freshly formed gel at the same temperature and a different trend should be 

recorded. The aforementioned results indicated that the temperature at which gelation is initiated 

and the mechanical proprieties can be altered by the concentration of MC and the formulation of the 

aqueous solvent. In addition, MC hydrogel’s composition can be easily manipulated to obtain 

specific physic-chemical behaviours for different use. 

 

1.3.3. In vitro cytotoxicity evaluation. 

In vitro cytotoxicity tests were performed on extracts of complete medium previously put in contact 

with 4SO0.2, 4Cl0.2, and 4PBS50 MC hydrogels for 7 days in order to exclude the release of toxic 

compounds. These hydrogels have been selected for the in vitro test for their higher content of salt 

used in the preparation of the hydrogels. In fact, a possible cytotoxic effect would be more evident 

for these hydrogels compared to the ones with a lower salt concentration. The MTT assay showed at 

each considered time-point (Fig. 7A), no cytotoxic effect caused by the possible release of toxic 

compounds from the tested MC hydrogels. Indeed, cells viability resulted in a range of 94-99% 

comparable to the control values for all the time-points with no significant statistically differences 
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(p>0.05) between the controls and the eluates. Besides, MTT results were also supported by the 

light microscopy observation (Fig. 7B). Cells cultivated for 72 h in contact with the MC hydrogel 

eluates showed a morphology, spread and density comparable when seeded in presence of the tested 

eluates and in fresh medium, confirming that no toxic compounds were released into the culture 

medium.  

      

Figure 7 A-B. In vitro cytotoxicity evaluation results. (A)  Cells viability after 24, 48 and 72 h after seeding in contact 
with hydrogel eluates; at each time-point, viability values were comparable between control and tested samples and no 
statistically significant differences were noticed (p>0.05); (B) optical microscopy images of L929 cells 72 h after 
seeding in contact with hydrogel eluates; a comparable cell morphology, spread and density was observed, supporting 
cell viability assay results. Bars represent means and standard deviations; bar scale = 200 µm. 
 

According to the in vitro preliminary biological characterization results, the selected MC hydrogels 

showed to be not cytotoxic for mouse fibroblasts. In fact, the viability of cells cultivated in medium 

previously put in contact with the different hydrogels was comparable to the results obtained for 

cells cultivated with fresh medium. These data suggest that up to 7 days of hydrogel-medium direct 

contact, no toxic products were released into the medium. Since the hydrogels containing the 

highest amount of salts were tested, these findings could be extended also to the other compositions 

containing a lower salt amount. Besides, MC itself could not be considered as a possible source of 

toxicity since the one selected is a commercial MC powder largely used for different purposes such 

as for the food industry  and it is well established its cytocompatibility.  

 

1.3.4. In vivo immune response evaluation. 

Mice implanted with hydrogel did not reported any macroscopic inflammatory reactions such as 

fibrosis (data not shown) also after a long period after operations. The collected spleens were 

comparable between control and hydrogel implanted mice (Figure 8 C) revealing the absence of  

macroscopic evidences of inflammatory processes.  When the SI index was calculated at each time-
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point, the hydrogel-coated samples score was always < 1 confirming that no inflammatory reactions 

were raised toward hydrogel. On the opposite, lymphocytes stimulated with the mitogen conA fast 

reacted reporting SI score always > 1. After 1, 3 and 6 weeks after hydrogel specimens 

implantation, comparing the SI scores, a statistical significant differences was always noticed 

between hydrogel and conA groups (Figure 8 D). These findings suggest that the collected primary 

lymphocytes were competent but reactive towards hydrogel, confirming the polymer 

biocompatibility.  

 

                             

Figure 8 A-D. In vivo immunological reaction. Hydrogel cylindrical samples (A) were implanted in a subcutaneous 
pocket realized in the  mice dorsal skin (B); at each time-point spleens resulted as comparable with controls (C, 
representative for the 6 weeks) and the SI index revealed that no immune reaction was caused by the hydrogel implants 
(D) whereas lymphocytes reacted towards conA (D). Bars represent means and standard deviations.   
 

1.4. CONCLUSIONS. 

Capitolo 1 In the first part of the Thesis, the salt concentrations were selected to investigate the 

influence on MC-hydrogels properties, in particular focusing on the thermo-reversible 

characteristic. It has been demonstrate that some of the prepared MC hydrogels have not only 

thermo-responsive properties but also reversible thermo-responsive properties. Preliminary in vitro 

cytotoxicity assay confirmed that hydrogels were compatible with mouse fibroblasts and no toxic 

compounds were released from them. Between the different tested compositions, the 8% MC 

Na2SO4 0.05M was selected and used for in vivo biocompatibility evaluation. The very encouraging 

results obtained with the biocompatibility evaluation suggest that the selected hydrogels represent a 
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very promising materials for biomedical applications. 
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2.1      INTRODUCTION. 

2.1.1.  Mesenchymal stem cells (MSCs) as possible source for cartilage repair. 

Cartilage defects present a challenging reconstructive problem due to the tissue’s limited intrinsic 

capacity for self-repair. Currently, the only FDA-approved cellular-based therapy for cartilage 

defects involves autologous chondrocyte implantation (ACI), in which chondrocytes harvested from 

low-contact areas are expanded in culture and then re-injected into a defect [1]. This technique has 

shown promising results in early clinical studies [1], but is restricted by limited expansion of 

chondrocytes ex vivo, difficulty maintaining chondrocyte phenotype in vitro, and donor site 

morbidity [2, 3]. Alternative cellular therapies have turned to progenitor cell populations such as 

bone marrow derived stem cells (BMSCs), which have the ability to differentiate into several con-

nective tissue cells types, including cartilage [4]. Clinically, autologous BMSCs have been used to 

repair articular cartilage defects by surgically transplanting collagen-embedded BMSCs [5-7] and 

by intra-articular injections of BMSCs [8]. Both techniques have yielded promising results with 

noted improvements in clinical symptoms such as pain and walking ability.  

Adipose derived stem cells (ADSCs) have also been investigated as a less invasive source of 

chondrocyte progenitors that can be differentiated into chondrocytes in vitro [9]. Important 

considerations in this process include the use of appropriate growth factors, primarily those in the 

TGF-β superfamily [10], as well culture in a 3-dimensional environment by utilizing cellular 

scaffolds [11]. These preconditioned ADSCs are then capable of forming cartilage tissue in vivo 

[12]. In addition, uninduced ADSCs transplanted into hyaline cartilage defects in patellofemoral 

joints [13] and ear auricle defects [14] in animals have completely restored the native cartilage 

structure and fully repaired the defects at six months and three months, respectively.  

 

2.1.2.  The influence of mechanical forces into stem cells chondrogenesis. 

Mechanical stimuli are of crucial importance for the development and maintenance of articular 

cartilage. Many forces are involved in the cartilage microenvironment: hydrostatic pressure, 

tension, compression and shear (Figure 1 A). Studying in vitro models for cartilage regeneration 

using mesenchymal stem cells (MSCs), it is very interesting to notice how all of these forces are 

able to shape cells fate when applied. During loading of the joint, water from the synovial fluid is 

retained within the cartilage matrix by the presence of charged proteoglycans, resulting in increased 

hydrostatic pressure (HP). The collagen network functions to prevent swelling of the tissue. 

Experimental studies indicate intermittent application of HP in the physiological range of 7 to 10 

MPa over longer time periods promotes matrix synthesis, whereas constant pressure seems 



23 

 

unsuitable [15]. Tensile loading is not generally regarded as physiologically relevant for articular 

cartilage and has therefore attracted little attention. However, is evidence that articular cartilage in 

vivo is under a degree of static pretension: therefore, the effect of intermittent static biaxial tensile 

strains on cartilaginous constructs was studied [16]. Results showed that average magnitudes of 

3.8% radial and 2.1% circumferential tensile strains for 30 minutes lead to the greatest increase in 

proteoglycan content. By far the greatest number of studies involving mechanical load has been 

performed using bioreactors that apply uniaxial compression. Direct compression results from direct 

contact between joint surfaces and has been simulated in a diverse number of reactor systems. For 

articular cartilage of the major weight bearing joints in the hip and the knee, average loadings of 

approximately 0.5 to 7.7 MPa and average compression amplitudes of more than 13% have been 

measured during normal daily movements [17]. A wide range of loading frequencies (0.001–5 Hz) 

and amplitudes has been applied to TE cartilaginous constructs. A number of studies involving 

dynamic compression suggest a beneficial effect of load for chondrogenesis of MSCs, resulting in 

an increase in collagen II and aggrecan. Most of these studies used a frequency of 1 Hz and either 

10% [18] or 15% [19] compression. These are similar magnitudes to those that lead to the greatest 

increase in chondrogenic gene expression and GAG synthesis in chondrocytes [20]. Finally, shear 

stress is a potent modulator of the amount and type of extracellular matrix synthesized, suggesting 

that the best way to envision the typical loading processes affecting articular cartilage is to 

recognize them as a rolling movement of direct compression in concert with a generation of shear 

and tensile forces and high hydrostatic pressure [21]. 

 

2.1.3.  Bioreactor-guided chondrogenesis. 

Many different biomaterial scaffolds have been used to study the effect of dynamic loading on 

chondrocytes and MSCs. There is a strong dependency of the mechanical signal sensed by the cells 

on the material mechanical properties as shown by the wide range of compressive load applied. 

Tailored synthetic crosslinked poly(ethylene glycol) hydrogels have been prepared to study the 

interactions between chondrocytes and material in compressive static and dynamic culture systems 

[22]. Over short culture periods, dynamic loading of 15% strain at 1 Hz did not affect considerably 

the chondrocyte extracellular matrix gene expression (Type I and II collagen and aggrecan) 

compared with the static mode when encapsulated in a non degradable crosslinked pure 

poly(ethylene glycol) hydrogel [22]. At first glance, this seems to contradict others’ findings that 

demonstrate the importance of dynamic loading on chondrocyte gene expression and differentiation 

of MSCs encapsulated in a three-dimensional matrix. However, chondrocytes cultured in a similar 



24 

 

poly(ethylene glycol) hydrogel decorated with RGD peptides, which can act as a binding site for 

chondrocytes, showed substantial gene expression upregulation under mechanical loading compared 

with static culture [23]. Even if the presence of RGD peptides is not beneficial to the conservation 

of chondrocyte gene expression, this demonstrates the importance of the interaction/binding 

between the encapsulating matrix (ie, poly[ethylene glycol]) and the chondrocytes for conveying 

mechanical signals [23]. The importance of scaffold binding sites or ‘‘bioactivity’’ to transmit 

mechanical signals to seeded chondrocytes has also been demonstrated for other matrices [24]. 

MSC survival and differentiation are markedly dependent on their ability to attach on the substrate 

they have been seeded on. Therefore, similarly as for chondrocytes, the ability of the cells to bind 

the material is critical to convey mechanical signals. This is one reason for the frequent use of fibrin 

gel, a favorable substrate for cell attachment with mechanical properties easily tuned by variation of 

concentration and gelling mechanism. The effect of the hydrogel stiffness on viability could be 

clearly demonstrated using fibrin gels of different concentrations [25]. Taken together these data 

suggest culture in a scaffold material that allows for cell attachment, combined with greater than 

10% compression at a frequency of 1 Hz, may be a suitable starting point for the physical 

stimulation of both MSCs and chondrocytes (Figure 1 B-D). 

 

       

Figure 1 A-D. Schematic showing the directions of movement found within a human knee and (A) the directions of 
movement that can be applied using a multiaxial bioreactor (B). One of the six stations composing the bioreactor 
developed by Alini et al. (C) that is featured by a ceramic hip ball that compress and oscillate against a polyurethane-
fibrin-BMSCs composite as represented in D.  
(Modified from [26]) 
 

2.1.4 Aim of the work.  

In this second part of the Thesis, the biocompatible MC-based hydrogel was tested as 3D matrix for 

the bioreactor-guided chondrogenesis of BMSCs. The cells were suspended into the liquid hydrogel 

that was used to fill a porous polyurethane (PU) scaffold. The PU-hydrogel composite was used for 

the cells mechanical stimulation exploiting a bioreactor developed by Alini et al. (AO Research 

Instutite, Davos Platz, Switzerland). This particular bioreactor (Figure 1 B-D) was developed in 

order to apply with a ceramic hip ball a defined compression and shear force against a porous PU 
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scaffold (Figure 1 C-D). After a 21 days period of stimulation, BMSCs chondrogenesis was 

evaluated by PCR and immunohystochemical analysis and the suitability of the MC-based hydrogel 

as 3D matrix for cells development was verified. 

 

2.2     MATERIALS and METHODS. 

2.2.1.  Isolation and expansion of human mesenchymal stem cells. 

Fresh human bone-marrow aspirates were obtained after full ethical approval (Freiburg, EK-326/08) 

and informed patient consent. Bone marrow stromal cells were isolated from 4 donors 

(Male/Female 19-49 years old) by standard density gradient procedure (Histopaque-1077) and 

selection by plastic adherence. Mesenchymal stromal cells (MSCs) were cultured in polystyrene 

flasks (TPP) at 37°C, 5% CO2 (for a 90% humidity atmosphere) in α-modified minimal essential 

medium (α-MEM, Sigma), 10% human MSC qualified foetal bovine serum (FBS-Hyclone) with 5 

ng/mL fibroblast growth factor 2 (HGF, Fitzgerald Industries, Acton, MA, USA). Cells were 

detached with trypsin-EDTA solution at subconfluence and seeded into the required number of 

flasks. Thereafter, the medium was changed every 2 days. After the cells reached 70-80% 

confluence, they were harvested and used for the experiment at passage 2-3. Each experiment was 

performed separately in quadruplicate for each donor and the data collated for statistics. 

 

2.2.2.  Methylcellulose based hydrogel-polyurethane composite culture of MSCs. 

Cylindrical (8 mm diameter x 4 mm height) porous polyurethane scaffolds (pore size of 90-300 µm) 

were prepared as described elsewhere [27]. MSCs were suspended in a 8% w/v methylcellulose 

(MC) 0.05M Na2SO4 based hydrogel before seeding them into the polyurethane scaffolds. Hydrogel 

was prepared as previously described in Chapter 1; cells were suspended into 160 µl of the liquid 

hydrogel at a density of  3 x 106 per specimens. Hydrogel containing cells were used to fill the PU 

scaffold pores by compressing it several times until all the hydrogel was absorbed by PU pores 

(Figure 2 A-B). Constructs were then incubated for 2 hours at 37°C, 5 % CO2 and 95 % humidity to 

allow MC hydrogel transition from gel to solid phase before adding growth medium (DMEM, with 

4.5 g/L glucose and 2.2 g/L NaHCO3, non-essential amino acids, containing 11.5 mg/L L-proline 

(Invitrogen/Life Technologies, Carlsbad, CA, USA), 50 µg/mL ascorbic acid 2-phosphate 

sesquimagnesium salt hydrate (Sigma-Aldrich, Buchs SG, Switzerland), ITS+1 (10 µg/mL insulin 

from bovine pancreas, 5.5 µg/mL human transferrin (substantially iron-free), 5 ng/mL sodium 

selenite, 0.5 mg/mL bovine serum albumin and 4.7 µg/mL linoleic acid; Sigma-Aldrich), 100 U/mL 

penicillin + 100 µg/mL streptomycin (Invitrogen)). After 2 days of pre-culture in 12-well plates, 
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constructs were transferred in polyether ether ketone (PEEK) holders. The experiments were carried 

out at 37°C, 5 % CO2, 95 % humidity. Medium was changed every 2 days and collected for further 

analysis. 

 
2.2.3.  Bioreactor. 

Mechanical conditioning of the cell-scaffold constructs was performed using a pin-on-ball 

bioreactor system. Briefly, a ceramic ball 32 mm in diameter was pressed onto the scaffold [28]. 

Interface shear motion was generated by oscillation of the ball about an axis perpendicular to the 

scaffold axis. Superimposed compressive strain was applied along the cylindrical axis of the 

scaffold. Samples were exposed to unconfined dynamic compression at 1 Hz with 0.4 mm 

sinusoidal strain, superimposed on a 0.4 mm static offset strain, resulting in a strain amplitude of 

10-20 % of the scaffold height at the centre of the construct. Simultaneously samples were also 

exposed to ball oscillation of ±25° at 1 Hz, superimposed on a 0.4 mm static compression offset 

strain. Mechanical load was applied during 1 hour a day for 21 consecutive days over 3 weeks 

(Figure 2 C-D). Cell-scaffold constructs not loaded into the bioreactor were used as controls. 

Experiments were carried out in quadruplicate for each donors for both loaded and not loaded 

samples. 

    

 

Figure 2 A-D. Schematic representation of the experimental procedures. Stem cells (MSCs) were isolated from human 
bone marrow, expanded and seeded into the liquid hydrogel (A); afterwards cells-hydrogel solution were used to fill a 
porous polyurethane (PU) scaffold (B) that was mechanically stimulated for 21 days by bioreactor (C). Finally, 
scaffolds were collected and used for analysis (D).  
 
 

2.2.4.  Analysis. 

After 3 weeks of culture and 21 loading cycles, cells scaffold constructs were vertically cut in two 

halves; 3 scaffold halves were processed for biochemical analysis, 3 for gene expression analysis 

and 2 for histological and immuno-hystochemical analysis. 
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2.2.5.  Gene expression. 

Scaffolds used for gene expression analysis were homogenized in 1mL TRI reagent and 5µL 

Polyacryl Carrier (both Molecular Research Center, Cincinnati, OH, USA) per scaffold, using a 

Tissue-Lyser (Retsch & Co., Haan, Germany) and centrifuged (Eppendorf, Basel, Switzerland) at 4 

°C for 10 min at 12000g. RNA isolation was carried out according to the protocol from the 

manufacturer. RNA was reverse transcribed with TaqMan reverse transcription kit (Applied 

Biosystems, Foster City, CA, USA) using random hexamers. For real time PCR TaqMan Gene 

Expression Assays (Applied Biosystems) or custom designed primer-probe sets (from Microsynth, 

Balgach, Switzerland) were used on a GeneAmp 7500 Real Time PCR System (Applied 

Biosystems). The endogenous control gene was 18S rRNA. Chondrogenic markers (collagen type-II 

(Col 2), SRY (sex determining region Y) – box 9 (Sox9), osteogenic marker (collagen type-I (Col 

1) and hypertrophic markers (collagen type-X (Col 10)) were analyzed. The primers and probes 

used are listed in Table 1.  

Gene expression was analyzed 

according to the ∆∆Ct method, with 

expression levels normalized to the 

corresponding day 0 sample (day of 

cell seeding into scaffolds) of each 

donor.  

 

 

2.2.6.  Biochemical analysis. 

Scaffolds used for biochemical analysis were digested with 0.5mg/mL proteinase K at 56°C 

overnight and used for DNA and glycosaminoglycan (GAG) measurement. DNA concentrations 

were determined with the Hoechst method using calf DNA as a standard. Fluorescence intensity 

was measured with an HTS 7000 Perkin Elmer Bio Assay Reader (Norwalk, CT, USA). The 

amount of glycosaminoglycan (GAG) was determined by the dimethylmethylene blue dye method, 

using bovine chondroitin sulphate as the standard. Proteinase K digests were used to measure the 

GAG content of the scaffolds. The total GAG content of the culture media, collected every 2 days, 

was also measured to assess the release of matrix molecules from the sample into the media. 

Absorbance was measured with a Victor3 Perkin Elmer (Waltham, MA, USA) 1420 multilabel 

counter. GAG values were normalized to the DNA content. 
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2.2.7.  Histology and Immunohystochemistry. 

For immunohystochemical analysis scaffolds were fixed in 70 % methanol at 37°C (to prevent 

hydrogel solid-gel phase transition) and incubated in 5% D(+) sucrose (Sigma-Aldrich, St. Louis, 

MO, USA) solution in phosphate buffered saline (PBS, pH 7.4) for 12 h at 37°C before embedding 

them in Jung tissue freezing compound and cryosectioning at 10µm (Microm HM560 CryoStar, 

Thermo Scientifi c, Waltham, MA, USA). The presence of glycosaminoglycans (GAG) was 

investigated by immunohystochemistry using safranin-O GAG specific marker (Sigma). The 

deposition of collagen types I and II was determined by immunofluorescence staining. After 

enzyme pre-treatment (0.5 U/mL Hyaluronidase for collagen types I and II staining), sections were 

blocked with 5% goat serum. Then sections were incubated using primary antibodies raised against 

collagen I (COL 1, 1:150) and collagen II (COL 2, 1:50). The antibody against type I and II 

collagen were from Abcam (Abcam, UK). Primary antibody was applied overnight at 4°C; 

afterwards,  sections were washed 3 times with PBS and the appropriate secondary antibody was 

applied (1:500 in PBS). Samples were visually investigated by fluorescent microscope (Leica 

DM5500 B, Leica Microsystems, IL, USA). 

 

2.2.8.  Statistical analysis. 

Statistical analysis was performed using the software package SPSS (Version 20, SPSS Inc, 

Chigaco, IL, USA). Data were analyzed with Wilcoxon’s test. The significance level was defined at 

p< 0.05.  

 

2.3.     RESULTS and DISCUSSION. 

2.3.1.  PCR Analysis. 

Polyurethane-hydrogel-MSCs composites gene expression after 21 days of mechanical stimulation 

with the bioreactor are reported in Figure 3. In general, loaded samples showed a higher expression 

of the selected genes if compared with the not loaded control ones. Therefore, it is possible to state 

that the mechanical forces of compression and shear were crucial to affect cells fate during the 21 

days of stimulation. 
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Figure 3. Relative mRNA expression of human mesenchymal stem cells after 21 days of stimulation. Loaded samples 
showed a clear over-expression of chondrogenic markers collagen 2 (COL 2), collagen 10 (COL 10). Particular, the 
COL 2 : COL 1 ratio was significant increased by the mechanical load, confirming MSCs chondrogenesis. Bars 
represent means and standard deviations; all data were normalized to day 0 values. 
 

 

Collagen 2 (COL 2) and collagen 10 (COL 10) expression are of crucial interest as they are reported 

in literature as suggestive for cartilage. Considering that the data are normalized to the day 0 

expression values, a clear over-expression of COL 2 was noticed after the loading period. The 

stimulated specimens reported a 2.5x104 folder increase compared to day 0 values, while to controls 

didn’t report same significant results. This represent a very important finding since COL 2 is 

selective expressed by chondrocytes, suggesting the successful differentiation of MSCs guided by 

the bioreactor induced forces. Another important result is related to  box 9 (SOX 9) expression; it 

represent and important chondrogenic transcription factor peculiar of cells that are undergoing to 

the chondrocytes phenotype. As noticed for COL 2, also SOX 9 expression was raised by the 

mechanical loading; conversely, the control samples expressed very low levels of SOX 9. These 

two data represent an important evidences that the loaded MSCs were successfully guided towards 

chondrogenesis. The only gene that was not reported as over-expressed after mechanical loading 

was collagen 1 (COL 1). This represent an interesting result as COL 1 is strongly related with 

osteogenesis. Since it was previously demonstrated  that is possible to induce osteogenesis by 

applying compression force alone, what it is possible to assume is that the combination with surface 

shear is satisfactory to refrain from progressing towards bone. This is not a very surprising finding 

since it is well established that surface shear forces are strongly involved in the amount and type of 

matrix synthesis. Therefore, the oscillating movement of the bioreactor was able to successfully 
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mimic the tensile forces and high hydrostatic pressure that in natural cartilage derive from the 

synovial fluid water that is retained within the cartilage matrix by the presence of charged 

proteoglycans. Since the collagen network functions to prevent swelling of the tissue, in the 3D 

microenvironment of the PU-hydrogel composite, cells were probably induced to produce a strong 

matrix to face the shear forces generated by the bioreactor. Moreover, the COL 2 : COL 1 ratio 

value suggested as this matrix was progressively composed mainly by  the cartilage specific COL 2.  

An opened question still remain regarding the data obtained for collagen 10 (COL 10). In fact, COL 

10 is representative not only for chondrogenesis but also for hypertrophy. In the literature is not rare 

to observe enhanced level of hypertrophy related to the use of  mechanical forces inductive 

bioreactors; this fact remain as unclear since one potential reason in vitro MSCs chondrogenesis 

commonly leads to terminal hypertrophy is because the developing tissue is not stimulated. So, it is 

possible to suppose that the forces applied in this study were able to induce cells towards 

chondrogenesis but not enough to completely skip hypertrophy. However, regarding this, the COL 

2 : COL 10 ratio value showed how the cells were probably differentiate to a chondrocyte 

phenotype than to the hypertophic one. In conclusion, PCR analysis proved as the mechanical 

stimulation was able to induce MSCs chondrogenesis in a MC hydrogel matrix. 

 

2.3.2.   Biochemical analysis. 

The amount of glycosaminoglycans (GAG) per DNA into the medium was calculated every 

changes (2 days) while the scaffold amount was calculated at the end of the loading (21 days) 

(Figure 4 A-C). In general, the observed trend revealed a progressive increase of GAG in the 

stimulated samples. This data are particularly noticeable looking at the GAG release into the 

medium (Figure 4 A); the load samples values steadily increased during the 21 days of loading. On 

the opposite, the GAG accumulated in the medium of the control samples showed only a small 

increase over the 21 days. These data were also confirmed when the total amount of scaffold GAG 

accumulation was considered; the difference between loaded and control samples resulted as 

significantly different (p<0.05). 
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Figure 4 A-C. Accumulated GAG released in the medium over 3 weeks of culture (A); the total amount resulted as 
increased over the loading period. After 21 days the scaffold GAG amount was calculated and the total amount 
(medium + scaffold) compared between load and control (B). The total GAG amount was significant different between 
loaded and control samples (p<0.05, indicated by the star). These data were confirmed by the GAG staining using 
safranin-O (C); the matrix into the loaded samples scaffolds reported a massive amount of GAG while only a small 
amount was noticed in the control samples. Bar scale=200µm. 
 

From a biochemical point of view, the production of GAG is an important parameter indicating a 

chondrogenic differentiation. Once MSCs acquire a chondrogenic phenotype, the challenge is to 

prevent them from becoming hypertrophic. Amongst others, this step is associated with a decrease 

in GAG secretion. Looking at the time course of GAG secretion in the medium, it was not possible 

to notice any values decrease indicating a possible hypertrophy appearance. Thus, it is possible to 

speculate that the loaded cells, even if expressed COL 10, were not undergoing an hypertrophic 

phenotype. The samples staining with GAG-specific marker safranin-O confirmed the previous 

results (Figure 4 C); in fact, microscope images showed a massive amount of GAG in the matrix 

present in the loaded samples pores. On the opposite, the matrix of control samples showed only a 

small amount of GAG, confirming the crucial role of the mechanical stimulation for 

chondrogenesis. 
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2.3.3.  Histology. 

Loaded and controls samples were investigated towards collagen I and collagen II using 

immunofluorescence (IF) in order to confirm PCR results. Collagen I staining are reported in Figure 

5. PCR analysis revealed a collagen I expression in loaded samples (about 10 folder increase 

compared to day 0); IF confirmed the presence of collagen I in small amount (lower panel in green) 

for loaded samples while no signals were detected for the control samples. Thus the IF 

investigations seems to confirm PCR analysis data. 

 

 

Figure 5. IF collagen I staining. Control samples images did not showed collagen I into the matrix (upper panel), while 
a small amount was found into the pores containing the matrix of loaded cells (lower panel, green signals). 
 

 

A very interesting result is related to the collagen II staining, reported in Figure 6. According to 

PCR analysis, collagen II reported the highest folder increase compared to day 0 of all the 

investigated genes (more than 2x104 folder increase). The IF staining confirmed the presence of 

collagen II into the cells matrix of loaded sample (lower panel, in green). The same results was not 

verified for the control samples that did not showed the presence of collagen II as previously 

indicated by the PCR analysis. So, also IF staining confirmed PCR analysis data, providing another 

important proof to the successful bioreactor-guided chondrogenesis. 
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Figure 6. IF collagen II staining. Control samples did not exhibit collagen II (upper panel) while the loaded ones clearly 
showed the collagen II presence (lower panel, in green). 
 

However, according to the PCR analysis, it was expected to detect a higher amount of collagen II in 

the scaffolds. A possible explanation of this discordance is that  Col 2 up-regulation on the protein 

level in MSCs is known to be very poor. Even under optimal medium composition, it can take 

several weeks, and one needs to consider that TGF-β, the most potent factor inducing 

chondrogenesis, is lacking in the culture medium. Second, as the matrix produced is relatively 

immature a large proportion is likely to have been released into the medium. 

 

2.4.     CONCLUSIONS. 

The aim of the work was to evaluate (I) the efficiency of the mechanical induction of 

chondrogenesis toward MSCs and (II) the suitability of the MC hydrogel as 3D matrix supporting 

cells development. The data obtained suggested a positive response for both the answers. Cells 

successfully expressed chondrogenic genes and the GAG quantification confirmed the 

differentiation route of the MSCs. Histological analysis confirmed the presence of the cells into the 

PU scaffold pores and the presence of a surrounding matrix of collagen, confirming the suitability 

of MC-based hydrogel as cells carrier.  
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Chapter 3. 
 

 

 

MC hydrogel as scaffold for the in vitro 
biofabrication of implantable proto-tissues cell 
sheets. 
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3.1.      INTRODUCTION. 

3.1.1.  Tissue engineering skills restrictions. 

New dares in tissue engineering are directed to the mimicking of the natural environment of a naive 

tissue. So, the modern strategies for tissue repair and regeneration involve the use of biomimetic 

materials able to active interacting with the surrounding tissues. These skills are based either on 

synthetic or natural scaffolds which have been modified at their surface or inside their structure in 

order to improve their therapeutic efficacy [1, 2]. However, still today the use of scaffolds is often 

associated with rejection or toxicity problems. Grafts represent a suitable alternative to overcome 

tissue engineering material problems [3]. However, the availability of tissues and organs is very 

limited representing a crucial restriction for public health. In fact, autografts are often limited by the 

poor availability of usable tissues (for example the lack of skin in 3rd degree burns cases) [4]. 

Allografts are still considered as dangerous for the high rejection risks and also the very limited 

number of donors [5]. Ideally, high biocompatible materials based on cells cultivated beforehand in 

vitro would be used as alternative. In any case, literature showed a lot of examples demonstrating 

that cells without support of a suitable scaffolds can just barely form a 3D structured tissue 

necessary for regenerative purposes [6]. The injection of single cell suspensions has been proposed 

as a possible strategy to introduce new cells as a source for the input of damaged tissue repair.  

Even if with this technique some good results has been showed in literature, it is important to notice 

that in most of the cases  injected cells cannot be retained around the target tissue, thus causing 

difficulties in controlling the location of the injected cells. This could represent a very problematic 

aspect, since the uncontrolled floating of cells could lead to the unset of conflicts in the non-specific 

tissues. In particular, the use of stem cells could move to the tumors genesis because of the potency 

of these cells [6]. Therefore, the improvement of biomaterials-cells composites for regenerative 

medicine purposes still need further improvements.  

 

3.1.2.  Cells Sheet technology. 

Common strategies in tissue engineering employing the use of biodegradable scaffolds have so far 

only shown limited success. To undergo the regeneration of some tissues such as heart, liver or 

skin, it is necessary to produce complex structures as much cell-dense as possible in order to 

resemble the native architecture of the natural tissue. Tightly cell-to-cell interaction and cell-to-

extracellular matrix (ECM) interaction are crucial for maintaining the tissue and mimic the natural 

tissue structure. The common in vitro procedures that are necessary for the production of complex 
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models require the use of proteolytic treatment  for the cells cultivation. However, these treatments 

inevitably cause the degradation of cell surface proteins, which are basic for cell-to-cell and cell-to-

ECM interactions (Figure 1 A). Okano et al. have first developed a particular technology known as 

Cell Sheet in order to overcome these problems [7]. This technique makes it possible to fabricate a 

sheet composed by high-density cells with their natural extracellular environment (Figure 1 B). 

Because of its properties and the fact that its fabrication can be subject to automation, Okano et al. 

showed that cell sheet technology is an ideal approach to biofabrication. Indeed, in biofabrication, 

when the objective is medical therapy, living cells and bioactive materials are used as building 

blocks to fabricate advanced biological models on a large scale, and a cell sheet here plays the role 

of one building block of organ-like structures. The Okano group produced cell sheets using 

particular polystyrene dishes grafted by a temperature-responsive polymer poly(N-

isopropylacrylamide) (PIPAAm) [3]. PIPAAm-coated dishes are temperature-responsive culture 

dishes where the surface becomes either hydrophilic or hydrophobic in a reversible manner, 

depending on the temperature. This characteristic has been exploited to detach an intact cell sheet 

from the culture dishes. The surface of the dishes is relatively hydrophobic, and therefore suitable 

for cell culture, when the temperature is 37°C or higher. When the temperature is reduced to 32°C 

or lower, however, the surface of the dish becomes very hydrophilic, and hence confluent sheets of 

cultured cells can be spontaneously released from the dish surface as described in Figure 1. 

 

        

Figure 1 A-B. Schematic representation of the PIPAAm thermo-reversibility mediated cell sheet detachment (A). 
Avoiding the use of enzymes, it is possible to collect an entire high-density cells monolayer with the natural ECM still 
present. The final result (B) is an implantable artificial proto-tissue composed by cells tightly interconnected to each 
other with their natural ECM still present. 
(Modified from [6]) 

 

The PIPAAm polystyrene plates grafting is based on a very complex process based on an irradiation 

with an electron beam; therefore, the success of the procedure is vitally linked to the use of 

polystyrene as cells cultivation substrate [8]. This is a limitation for further procedural 



39 

 

improvements such as the use of bioreactors chambers that need the implication of others materials 

than polystyrene (for examples those that needs flexibility to respond to a mechanical stimulation). 

Moreover, the entire production process is very complex and time-consuming, leading to a very 

high cost of the final product [8]. So, even if PIPAAm grafting represent without any doubt an 

excellent tool to produce cell sheet of various nature, it is possible to speculate to the possibility of 

using an alternative polymer for the cell sheets biofabrication. 

 

3.1.3.  Clinical evidences. 

The cell sheet (CS) technology is relatively recent, but some very encouraging clinical results has 

already been reported supporting the efficacy of this tool for regenerative purposes. As briefly 

described in Figure 2, Nishida et al. [9] in 2004 reported the suitability of the CS for cornea 

regeneration in a patient’s damaged eye. Here, As an alternative to corneal epithelial cell sheets, 

autologous oral mucosal epithelial cell sheets were successfully used without any need for scaffolds 

or carrier substrates [10]. Patients’ own oral mucosal epithelial cells were utilized (Figure 2 A). 

Epithelial cells, including their stem/progenitor cells, are isolated from a small biopsy and subjected 

to the fabrication of transplantable epithelial cell sheets (Figure 2 B-C). Clinical results have shown 

that the corneal surface remains clear with significantly improved visual acuity more than 1 year 

after the corneal epithelial cell sheet transplantation [11]. 

 

         

Figure 2 A-C. Schematic representation of the cornea repair described in 2004 by Nishida et al. Patient’s own oral 
mucosa was collected (A) and cells extracted were cultivated onto PIPAAm grafted plate. When a complete monolayer 
was formed, the entire CS was collected by temperature-depending detachment (B) and implanted into the patient’s 
damaged cornea (C) without the use of sutures. 
(Modified from [6]) 

 

The cell sheet presents ample features and characteristics which make it an ideal material to use for 

biofabrication. Indeed, cell sheets can be fabricated from a wide variety of cell types including 
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periodontal ligament cells [12], esophageal epithelial cells [13], keratinocytes [14], retina 

pigmented cells [15], corneal epithelial cells [9], oral mucosal epithelial cells [16], cardiac 

myocytes [17] and others [18, 19, 20, 21]. With cell sheet technology, the use of allogenic feeder 

cells and fetal bovine serum may be excluded for the preparations [22]. Moreover, cell sheets 

harvested from temperature-responsive culture surfaces can be directly attached to host tissues 

without the use of any mediators such as fibrin glue or sutures [23]. Also, upon transplantations, 

cell sheets attach stably and quickly (5–30 min) to tissue beds due to the presence of the ECM on 

the basal sheet surface [23]. Furthermore, cell sheets can be layered on top of one another, creating 

three-dimensional constructs such as thick cardiac muscle.  

 

3.1.4.  Aim of the work. 

In this third part of the Thesis, the MC-based thermo-reversible hydrogel was investigated as 

suitable alternative to the PIPAAm grafting for the cell sheet technology. So, the cells adhesion and 

viability onto hydrogel surface was investigated; afterwards, once cells reach a total confluence 

forming a continuous monolayer, the hydrogel phase was inverted by cooling down temperature 

allowing the gel-sol transition. The cell sheet spontaneously detached from the top of the hydrogel; 

the CS was collected, investigated by immunofluorescence in order to confirm the presence of the 

interconnected high-density cells. Afterwards, the CS obtained from the hydrogel ability to adhere 

was in vitro and in vivo investigated, confirming the hypothesis of the intrinsic adhesion ability.  

 

 

3.2.     MATERIALS and METHODS. 

3.2.1.  Hydrogel preparation. 

Methylcellulose (MC, Methocel A4M, with a viscosity of 4.000 mPa*s for a 2% by w/v aqueous 

solution at 20°C, The Dow Chemical Company, E461) and salts were obtained from Sigma (Sigma 

Aldrich, St. Louis, MO, USA). Aqueous MC solution was prepared by a dispersion technique as 

described by Tate et al. [24]. Briefly, 8% w/v MC powder was mixed with a pre-heated (55°C) 

0.05M Na2SO4 solution in ultrapure MilliQ water (EMD MilliPore Corporation, Billerica, MA, 

USA) and agitated until all polymer particles were wetted. At 55°C the MC is hydrophobic and 

remains in suspension. As temperature was lowered to 4°C, the polymer became water soluble, 

forming a clear solution. Hydrogels were then stored at 4°C overnight to allow complete hydration 

and heated at 37°C in a 95% humid atmosphere prior to use with cells.  
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3.2.2. Mouse fibroblast Cell Sheet (CS) in vitro biofabrication and characterization. 

NIH-3T3 mouse embryo fibroblasts (CRL1658; American Type Culture Collection, Manassas, VA) 

were used for cell sheet biofabrication protocol standardization. Cells were transduced with third-

generation lentivirus, using the pCCLsin.PPT.hPGK.eGFP.pre vector transfer construct as 

previously described [25]. Cells were cultivated in Dulbecco’s modified Eagle’s minimal essential 

medium (DMEM, Sigma-Aldrich, St-Louis, MO, USA) supplemented with 10% foetal bovine 

serum (FBS, Lonza Group, Basel, CH) and 0.25% penicillin-streptomycin (Gibco, Grand Island, 

NY, USA) and detached by 0.05% trypsin (Sigma-Aldrich, St-Louis, MO, USA) at 80-90% 

confluence.  

Two hundred microliters of hydrogel were used to coat each wells of a 24 multiwell plate (CellStar, 

VWR PBI International, Milan, Italy). Plate was heated 2 hours at 37°C in a 95% humidity and 

coated with 20µl of Type I collagen (BD, 2mg/ml) prior to use with cells. Cells were seeded at high 

concentration (1x106/cm2) onto heated hydrogel surface and cultivated for 48 hours until they 

reached 100% confluence. Afterwards, 24 wells plate were cooled down to 4°C for 30 minutes to 

allow hydrogels solid-gel phase transition. Cell sheet spontaneously detached from gel-phase 

hydrogel without the use of any enzymes and cells sheet were collected by a common 25ml pipette 

and washed 3 times with phosphate buffered saline (PBS, pH 7.4) before use (Figure 3). Cells 

adhesion, spread and detachment were visually checked after 8, 12 and 48 hours by fluorescence 

microscope (Leica DM5500 B, Leica Microsystems, IL, USA). Cells viability was verified by the 

colorimetric MTT assay; cells cultivated in polystyrene wells coated with collagen I were used as 

control. 

 

                            

Figure 3. Schematic representation of the cell sheet (CS) detachment from the hydrogel surface. Cells were seeded onto 
the collagen-coated hydrogel in the sol-phase at 37°C (1) and they were cultivated until a monolayer was formed (2). 
Afterwards, the system temperature was lowered to 4°C allowing the hydrogel gel-sol phase transition; with liquid 
hydrogel, CS spontaneously detached as monolayer (3). 
 

3.2.3.  Histological analysis. 

Detached cell sheets were washed 3 times with PBS, fixed 30 minutes at room temperature with 4% 

phosphate buffered formaldehyde, embedded in Kilik (Sigma-Aldrich, St.Louis, MO, USA) tissue 
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freezing compound and stored at -80°C. Samples were cryosectioning at 10µm and slices were 

seeded 30 minutes onto charged glasses (SuperFrost, Menzel-Glaser, Germany); afterwards samples 

were stained to visualize F-actins (Molecular Probes Inc, OR, USA) in order to evaluate cell sheet 

cells distribution, concentration and morphology. Samples were observed with fluorescence 

microscope (Leica DM5500 B, Leica Microsystems, IL, USA). 

 

3.2.4.  In vitro Cell Sheet (CS) adhesion. 

Detached cell sheets were collected, washed 3 times with PBS and transported to new polystyrene 

plates previously coated 4 hours with serum.  Cell sheet were attached without medium for 5-7 

hours; afterwards fresh medium (DMEM 10% FBS) was added and plates were incubated for 48-72 

hours at 37°C, 5% CO2. Cell sheet adhesion was daily checked by optical observation with 

fluorescence microscope (Leica DM5500 B, Leica Microsystems, IL, USA). 

 

3.2.5.  In vivo biocompatibility evaluation. 

All animals procedures were performed after local ethical committee approval and by following 

pre-approved surgical procedures. Six-eight weeks old NOD.SCID mice (NOD.CB17-

Prkdcscid/NCrHsd, Harlan Laboratories) were used for experiments. 

NIH 3T3 GFP+ cell sheets prepared as previously described were subcutaneous implanted into 

NOD.SCID mice as described by Obokota et al. [26]. Briefly, a skin pocket was created into the 

mice dorsal skin with scissors. Cell sheet was introduced in direct contact with natural mice tissues 

into the skin pocket by using a GoreTex® (Gore and Associates, Arizona, USA) regenerative 

membrane as scaffold. Afterwards, the pocket was closed with sutures. After 7 days, animals were 

euthanized and tissues containing cell sheets were collected. Mice implanted with only GoreTex® 

membrane were used as controls. Experiments were performed in triplicate.  

 

3.2.6.  Hystological characterization. 

Tissues grafted with cell sheet and control ones were fixed with formalin, embedded in paraffin and 

sectioned into 10µm slices. Hematoxylin and eosin staining was performed by conventional method 

as previously described [25]. Samples were analyzed by optical microscope (Leica DM5500 B, 

Leica Microsystems, IL, USA). Furthermore, tissues were stained with an anti-GFP antibody (anti-

GFP, IgG, Alexa Fluor® 488 conjugate, Molecular Probes Inc, OR, USA) to confirm cell sheet 

adhesion. Samples were blocked with 0.1% BSA in PBS for 90 minutes and reacted with the 

primary antibody at an appropriate concentration (1:2000) overnight at 4°C. Following three washes 
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with 0.1% BSA in PBS, they were incubated for 1 h with a 1:1000 dilution of FITC- conjugated 

anti-rabbit Ig antibody and again washed three times. Immunofluorescence was optically 

investigated by microscopy (Leica DM5500 B, Leica Microsystems, IL, USA). 

 

3.2.7.  Statistical analysis of data. 

Statistical analysis was performed using the software package SPSS (Version 18, SPSS Inc, 

Chicago, IL, USA). Data were analyzed using a general linear model with repeated measures. The 

significance level was defined at p< 0.05. For the post hoc, p-values were adjusted according to 

Bonferroni’s method.  

 

3.3.    RESULTS and DISCUSSION. 

3.3.1. Cells adhesion and viability onto hydrogel surface. 

The thermo-reversibility of the 8% w/v MC 0.05M Na2SO4 was successfully verified as reported in 

Figure 4 A. This particular formulation was selected (as previously described in Chapter 1) because 

resulted the best one from a mechanical point of view in the sol-gel phase transition at 37°C, that is 

the ideal temperature for cells cultivation in vitro. The presence of salts (sodium sulphate), 

increased the stability of the hydrogel in a specific phase (solution or gelation), allowing the 

transition phase stable at 37°C. Thus, the maneuverability of the hydrogel resulted as very 

serviceable even after or during the phase transition. Cells survived after seeding onto hydrogel 

surface. As reported in Figure 4 B, when the viability ratio was evaluated by the MTT assay, cells 

cultivated onto hydrogel surfaces showed a viability comparable with controls and no statistically 

significant differences were noticed between the two groups. This represent a very promising data 

as in the previous chapters the suitability of the hydrogel in cells cultivating was tested with a not 

direct cytotoxicity assay (chapter 1) and as 3D matrix with cells cultivated in the inside (chapter 2). 

Here it has been reported the viability of cells cultivated on the surface as a 2D monolayer. 

However, cells adhesion to the hydrogel surface required the presence of a collagen coating. In fact, 

onto pure hydrogel surfaces, cells tend to aggregate into spherical clusters (data not shown) instead 

of adhere as single units. Conversely, when a collagen coating was applied, cells correctly adhered 

to the surface even if the adhesion time needed was superior to the control requiring about 6-8 hours 

(Figure 4 C). After the adhesion, a correct morphology and spread was observed after about 12-14 

hours (Figure 4 C) while a continuous monolayer was formed after 48 hours (Figure 4 C). This 

phenomenon could be explained considering the low “strength” of the hydrogel layer that act as 

surface for cells. By definition, hydrogels never reach a solid phase but only a gel phase that is not 
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comparable with polystyrene. Moreover, the selected hydrogel was voluntarily not considered as the 

more firm possible but as the best one allowing the possibility to reverse the phase at 37°C. So, it is 

possible to suppose that even if cells are able to adhere to the nude hydrogel, they need a “guide” to 

correctly spread as single ones; collagen probably act as guide. The final results are very interesting 

since it was possible to successfully cultivate cells as monolayer onto hydrogel surface, mimicking 

the common procedures with polystyrene plates (Figure 4 C). 

    

Figure 4 A-C. Hydrogel sol-gel phase transition resulted as reversible since it was possible to invert the phases by 
modulating the system temperature (A). Cells cultivated onto gel-phase hydrogels reported a viability compared with 
control at all the time-points and no statistical significant differences were noticed between the control and hydrogel 
groups (B, bars represent means and standard deviations). Microscope observation (C) revealed that cells correctly 
adhered and spread in about 12 hours, while a continuous monolayer was formed after 48 hours. 
 

 

3.3.2.   Cell Sheet (CS) in vitro characterization. 

Once cells reached a 90-100% confluence onto hydrogel surface, the temperature was lowered at 

4°C for 20 minutes in order to allow the gel-sol phase transition. As the temperature decreased, it 

was possible to observe that the cells monolayer initiated to spontaneously detach from the hydrogel 

surface (Figure 5 A). It is very important to underline that, in the detaching process, no enzymes 

(such as trypsin) were used permitting the separation of the entire monolayer (Figure 5 B). Finally, 

when immunofluorescence analysis with phalloidin  (Figure 5 C, red) was applied, it was possible 

to confirm that the CS was actually formed by a 2D monolayer of fully-interconnected cells.  

 

Figure 5 A-C. By lowering the temperature at 4°C for 20 minutes, the cell sheet (CS) spontaneously detached avoiding 
the use of enzymes (A). As result, it was possible to collect the entire cells monolayer as cell sheet (B); 
immunofluorescence analysis with phallodin (red) of the detached CS confirmed the 2D monolayer structure of high-
density fully interconnected cells (C). 
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As first proof of the CS ability to adhere to a new surface, it was washed 3 time with PBS and 

transported with a 25 ml pipette to a new polystyrene plate previously coated 4 hours with serum 

(Figure 6 A-B). Surprising, the best procedure to support CS adhesion was to allow a first adhesion 

dry, without the addiction of medium in the new plate. Only some drops of medium were added in 

order to avoid the CS cells dehydration. By this way, CS attached to the new surface in about 2 

hours after that it was possible to add fresh medium without causing CS detachment (Figure 6 B). 

When the fresh medium was added immediately, the CS was not able to adhere, resulting as floating 

in it. Also the pre-coating with serum helped the CS adhesion; without the serum pre-coating, the 

time needed for the adhesion resulted between 6-8 hours. Considering the dry ambient necessary for 

the adhesion, this represent a very long period for cells without medium. By the serum pre-

treatment, the adhesion phase was reduced at about 2 hours, that is an acceptable stage even without 

medium. The role of serum could be related with the presence of collagen and other protein such as 

fibronectin that are crucial for cells adhesion. By pre-treating the plate surface with serum, the CS 

adhesion is probably promoted by these proteins and the time necessary to successfully complete  

the transplantation is lowered. However, the adhesion ability of the CS is a very interesting point. In 

fact, a in ideal clinical application of the CS is to implant them directly into the damaged tissue in 

order to promote and facilitate it repair. Avoiding the use of enzymes such as trypsin in the in vitro 

procedures, allow to collect a cells monolayer with the natural extracellular matrix (ECM) still 

present. This represent a crucial aspect for the implant success because the ECM play the 

fundamental role of connection between the CS and the naïve tissue. These preliminary in vitro 

results suggested that the CS is able to adhere to a new surface but that the process is speeded by the 

presence of adhesion proteins; afterwards, after about 12-48 hours, new cells coming from the CS 

were observed colonizing the free space of the new surface. This is a very promising result about 

the ability of the CS to induce the regeneration of a damaged tissue since it is the CS itself a first 

source of cells. Moreover, this re-colonization is supposed to promote the natural regeneration of 

the naïve tissue.  
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Figure 6 A-C. In vitro transplantation of the detached Cell Sheet (CS). After washing 3 time with PBS (A), the 
detached CS was plated dry into a new polystyrene plate previously coated with serum (B). The raise of new cells 
coming from the CS was visually investigated by microscope (C, representative for 48 hours after CS adhesion. Bar 
scale=200µm). 
 

 

3.3.3.  Cell Sheet (CS) in vivo implant. 

The CS ability to successfully adhere to a naïve tissue was in vivo evaluated. Results are 

summarized in Figure 7. The CSs were implanted into immune-compromised mice (SCID) because 

it was possible to speculate the insurgence of immunological reaction for the presence of the GFP. 

After 1 and 2 weeks, the regions implanted with the CSs were first  investigated by 

Hematoxylin/Eosin staining; at 1 week, it was already possible to notice the presence of a high-

density cells monolayer in the correspondence of the CS implant site (Figure 7 B). This layer 

resulted as different from the naïve tissue because of the very high density of cells (nuclei in violet) 

tightly interconnected to each others that are characteristics of the CS. Supporting this hypothesis, 

when the control samples implanted with only Gore-Tex membranes, it was not possible to detect 

the same cells layer; only the naïve tissue was stained with some debris of the Gore-Tex membrane. 

As further confirmation of the cells layer-CS correspondence, the same sections were stained by an 

anti-GFP antibody since the cells used for the experiments expressed the green fluorescent protein. 

Results confirmed that the cells layer stained with H/E was actually the CS as the cells were 

positive for the GFP (Figure 7 C). On the opposite, in the control sections, no green signals were 

detected.    
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Figure 7 A-C. In vivo evaluation of the CS adhesion to a naive tissue. Gore-Tex-CS sandwiches were subcutaneous 
implanted into recipient mice (A) and the tissues were collected after 1 and 2 weeks. As first analysis H/E staining 
revealed the presence of a high-density cells layer attached to the tissue below (B); this result was evident after 1 week 
while after 2 weeks new vessels were noticed in the correspondence of the CS implant (B, right panel). The presence of 
the CS was further confirmed by immunofluorescence staining (C); as the CS was composed by GFP+ cells, a clear 
green signal was detected in the correspondence of the cells forming the layer previously detected with H/E. Bar 
scale=200µm. 
 

Another very important finding is related to the presence of vessels that seems to be already 

connected to the CS implanted. Even if this data must be confirmed by more specific staining, it is 

possible to suppose that by the H/E staining. If confirmed, this finding could represent a crucial 

proof for the suitability of the CS in a clinical use. In fact, neo-vascularization represent probably 

one of the most important step for  a positive implantation. The presence of vessels connecting the 

CS with the naïve tissue represent a very encouraging proof of the CS ability to adhere to the naïve 

tissue. 

When the CSs were implanted, no sutures were used. Therefore, the adhesion of the CSs to the 

naïve tissue is to refer only the intrinsic characteristics of the CSs. From this point of view, the 

initial hypothesis that the natural extracellular matrix was still present after the detachment via 

hydrogel inversion phase seems to be confirmed. In fact, as discussed above, the ECM represent the 

natural mean for cells adhesion. The H/E staining results underlined as the CSs were perfectly 

adherent to the naïve tissue with no breaking points. The avoiding of sutures of other connective 

substance (such as fibrin glue) suggested that the optimal CSs adhesion is to refer without any 

doubt to the natural ECM. This finding is very important thinking about the suitability of the CSs 

also for those tissues where is not possible or is very dangerous to apply sutures such as the heart. 
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Thanks to their ability to adhere by the ECM, the use of CSs for those tissues appear as a promising 

hypothesis even if the regenerative potential of the tissue-specific CSs must be still confirmed. 

 

3.4.   CONCLUSIONS. 

In this third part of the Thesis, it was shown the suitability of the MC hydrogel to act as a scaffold 

for the biofabrication of cell sheets. The cells were able to successfully form a continuous 

monolayer that was collected entire with the natural ECM still present by exploiting the hydrogel 

phase inversion. This particular technique is a very promising skill in the tissue engineering field. In 

fact the CSs are able to adhere to the natural thanks to their natural ECM avoiding the use of 

sutures. Furthermore, the implanted CSs showed a very promising ability to integrate with the naïve 

tissue as new vessels were observed towards the implanted regions. Thus, the CSs skill represent an 

encouraging tool for a future clinical application. 
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4.1.    INTRODUCTION. 

4.1.1. Skin self-renewal limitations. 

Numerous factors, of both genetic and traumatic origin, can cause severe skin injuries. Normally, 

epithelia are able to promote a self-renewal process, which begins with deposition of new 

provisional tissue matrix by fibroblasts, followed by inflammation, re-epithelization by 

keratinocytes, and wound revascularization, and concluded by definitive matrix deposition and 

contraction [1] (Figure 1 A-B). Recently, Mascre´ et al. [2] provided a detailed description of two 

cell populations in mouse epidermis, identified by specific markers (K14 and Involucrin), that differ 

in gene expression profile and proliferative and tissue-repair capacity. This finding confirms the 

concept that epidermis contains long-lived quiescent stem cells as well as committed progenitors in 

order to self-promote a general strategy for tissue renewal [3]. So, non-severe superficial wounds 

can be resolved by the skin’s self-healing ability by promoting keratinocyte migration toward 

damaged 

regions [4]. However, in deep injuries, a negative regulation of the wound-healing cascade may 

occur, leading to formation of chronic wounds [5]. In these kind of lesions, re-epithelization can 

only occur from the wound margins; thus, to prevent extensive scar formation and reduce skin 

blemishes, skin grafting is necessary [6].  

 

      

Figure 1 A-B. The normal skin composition (A) and the cascade events of the self repair procedure (B). 
(modified from [11]) 
 
 
 

The first surgical step in treating severe skin wounds is the early excision of damaged skin to avoid 

infections, acute inflammatory response, and marked scar formation [7]. Most frequently, the 

following step includes autologous skin graft (autograft). This procedure is normally performed 

with a dermatome, which cuts thin slices of the epidermis and initial part of the dermis; this is a fast 

and permanent wound-closure method [8]. Nevertheless, whereas this method is effective, it is 
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limited by the available surface area of unaffected skin and creates some degree of additional injury 

[1]. Non-autologous skin grafting (allograft) in some situations represents a suitable alternative to 

autograft. In this case, implantable skin is collected from cadavers. However, allografting leads to a 

significant number of problems, such as viral transmission (e.g., hepatitis B and C or HIV) and 

immunogenic rejection [9]. Moreover, commercial distribution of tissue for allografting is provided 

by a small number of European skin banks, and availability is insufficient to meet the current 

demand. In most severe cases of burns, one effective solution to avoid patient death can be 

represented by the implantation of tissue-engineered skin substitutes. Thanks to the use of these 

engineered substitutes, patients with involvement of a large area of the body have now a better 

chance of survival [10, 11]. 

 

4.1.2.  Tissue-engineered skin substitutes. 

Tissue-engineered skin substitutes represent an efficient way of meeting the deficiency in donor-

skin-graft supplies. They are able to protect damaged regions from fluid loss and contamination and 

promote release of cytokines and growth factors at the wound site, accelerating the wound-healing 

processes [12]. They also act as a temporary protective cover of the wound bed during healing. 

Several commercially available models of engineered skin substitutes have now been developed, 

which apply different techniques and use different cell sources. CeladermTM (Advanced 

BioHealing, New York, NY, USA) is representative of this model, and its efficacy has been 

validated in clinical trials for treating venous leg ulcers [13]. Alloderm®  (LifeCell, New York, NY, 

USA) is a commercially available de-cellularized tissue-engineered skin substitute consisting of a 

cell-free matrix permanently incorporated into the wound bed [14]. A further example, represented 

by engineered skin substitutes and created by the combination of cells and biomaterials, is 

Dermagraft® (Smith and Nephew, London, UK), which comprises human foreskin fibroblasts 

cultured in a biologic polyglactin scaffold. This system provides support for extracellular matrix, 

growth factors, and cytokines released into the wound bed, facilitating the healing process and 

involving quorum sensing, extracellular matrix formation, paracrine interactions, angiogenesis, 

immune system interaction, and neutrophil chemoattraction and activation [15]. Another model is a 

collagen-based, full-thickness, cultured skin substitute [16], which comprises fibroblasts seeded into 

a bovine collagen type I matrix (dermal side), and keratinocytes cultured at the air–liquid interface 

(epidermal side) [17]. These products are available commercially as OrCel® (Fortificell Bioscience, 

New York, USA). All these systems represent very promising tools to face severe skin lesions; 

however, some questions still remain opened. A very crucial one is related to substitutes 
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vascularization; in fact, nowadays no models are available presenting vessels before implantation. 

Furthermore, also the post-implantation neo-vascularization lack has been reported as a common 

trouble related to skin substitutes [18]. Rejection is another open questions; most of these 

substitutes are composed by artificial polymers not always able to perfectly integrate into host body 

[19]. Moreover, when polymers are enriched with cells, these are often non-self leading to 

inflammation reactions processes. In this context, the cell sheet (CS) technology represent an 

interesting alternative. In fact, it allow to implant a layer of cells without the necessity of a polymer 

as scaffold, skipping all the risks related to the polymer biocompatibility. The cell source could be 

the patient itself, allowing the possibility to implant self-cells. Moreover, it has been previously 

showed (Chapter 3) as the CS have the ability to spontaneously adhere to the naïve tissue without 

the use of sutures by the cells natural ECM. The in vivo model previously detailed in the results 

session of the Chapter 3 suggested that the CS were vascularized after a short period, giving 

encouraging promises for the successful ability to adhere to damaged skin leading to the 

regeneration process. 

 

4.1.3.  Elastin-based biopolymers for biomedical applications. 

Bio-mimicry, the concept of taking inspiration from nature is perhaps among the most appealing 

strategies to create customized biomaterials with finely tuned peculiar features. Elastomeric proteins 

are among the components that received considerable attention. Elastin, one of the components of 

the extracellular matrix, possesses rubber-like elasticity undergoing deformation without rupture 

and provides an important model for biomaterials design. Another peculiar extensively studied 

characteristic of elastomeric proteins is coacervation. Under appropriate conditions of 

concentration, ionic strength and increasing temperature, the protein is known to separate from 

solution as a second phase. It has been shown that this behavior is mainly due to the presence of the 

hydrophobic (VPGXG) pentapeptide, typical of the mammalian protein [20]. In the human protein, 

the most structurally regular sequence is represented by the repetition of the (VAPGVG) 

hexapeptidic motif. It has been shown that the VAPGVG motif is biologically functional [20].  

By a molecular biology approach, a regularly repeated domain from human tropoelastin was chosen 

as a basic modulus to obtain the Human Elastin-Like Polypeptides (HELPs). These artificial 

proteins can be employed in the production of innovative micro- and nano-structured biomaterials 

with a huge potential for employment in the biotechnological and biomedical fields [21]. 
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4.1.4.  Aim of the work. 

In this part of the Thesis, the CS technology was applied for the skin regeneration purpose. 

Considering the 3rd degree burn as clinical problem, the CS were realized with human primary 

fibroblasts extracted from the gingival tissue (HGF) considering that patients normally does not 

present enough or potentially regenerative skin regions. In order to improve the CS-skin model, a 

layer of HELPs has been used as feeder for HGF cultivation on the MC-hydrogel. The purpose was 

to improve the mechanical and biochemical features of the implantable CS. The HELP-HGF CS 

were collected and used for skin regeneration in a 3rd degree model in mice consisting in the skin 

complete excision. The natural regeneration was considered as control. The skin-CS implant give 

very promising results as the skin defect was successfully repaired in about 1 week, while the 

natural process needed at least 2 weeks. 

 

4.2.     MATERIALS and METHODS. 

4.2.1.  Primary Human Gingival Fibroblast extraction and cultivation. 

Primary human gingival fibroblasts (HGF) were isolated from a fresh gingival biopsy collected 

from tissue excided from healthy teeth obtained from orthodontic procedures. The entire tissue was 

minced with a surgical blade and digested 45 minutes at 37°C with a solution of 1% Type I 

collagenase I, 0.1% dispase I (Worthington) and 25% trypsin (Sigma) in a serum free minimal 

essential medium alpha modification (α-MEM, Sigma). Afterwards, digested solution was 0.45µm 

filtered in order to remove undigested debris and centrifuged 10 minutes at 800 rpm. The pellet was 

then resuspended in α-MEM supplemented with 10% foetal bovine serum (FBS, Sigma), 1% 

antibiotics/antimycotics (penicillin/streptomycin/gentamycin, Anti-Anti, Sigma) and plated into 

new polystyrene Petri plates containing fresh medium. Cells were grown up to a maximum of about 

80% confluence and detached with trypsin/EDTA before use; cells from passage 1 to 3 were used 

for experiments. 

 

4.2.2.  Methylcellulose hydrogel– Human Recombinant Elastin composite preparation. 

Methylcelulose (MC) derived thermo-reversible hydrogel was prepared as previously described in 

Chapter 3, paragraph 3.2.1. Two hundred microliters of liquid hydrogel were spotted into each wells 

of a 24 multiwell plate that was hydrated O.N. and heated 2 hours at 37°C prior to use. The Human 

Elastin-Like Polypeptides (HELP) were kindly provided by Prof. Antonella Bandiera; HELP were 

prepared as described elsewhere [21] and used at a final concentration of 4mg/ml. At this 

concentration, the sol-gel transition of HELP solution results as no reversible; thus, a continuous 
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HELP layer was realized onto the hydrogel surface by spotting 50µl of liquid HELP solution. 

Afterwards, MC-hydrogel-HELP composites were incubated at 37°C 2 hours prior to use with cells 

to allow the complete HELP layer solidification; to improve cells adhesion, 20µl of type I collagen 

(BD Bioscience, 2mg/ml) were even used to coat HELP surface (Figure 2 A). Cells (HGF) were 

seeded at high-density (3x104/cm2) onto the MC-hydrogel-HELP surface and cultivated 48 hours at 

37°C, 5% CO2 atmosphere using α-MEM. Cells adhesion and spread were investigated by 

immunofluorescence staining using phallodin (AbCam, 1:500) to visualize F-actins cytoskeleton 

structure; images were collected using a fluorescence microscope (Leica DM5500 B, Leica 

Microsystems, IL, USA). The colorimetric MTT assay (Sigma) was used as described in the 

previous chapters in order to verify cells viability. 

 

4.2.3.  HELP-HGF CS collection and in vitro characterization. 

Cells were cultivated onto MC-hydrogel-HELP composites for 48 hours, daily checking the cells 

adhesion, spread and confluence by fluorescence microscope. After 48 hours, HGF formed a 

continuous monolayer and the cell sheets formed by HELP and HGF (named by now skin-CS for 

their application) were detached by lowering the system temperature to 4°C for 20 minutes allowing 

the MC-hydrogel gel-sol phase transition. Skin-CS spontaneously detached from the hydrogel 

surface as monolayer that were collected, washed 3 times with PBS and used for in vitro 

characterization. Skin-CS were washed 3 times with PBS, fixed 30 minutes at room temperature 

with 4% phosphate buffered formaldehyde, embedded in Kilik (Sigma-Aldrich, St.Louis, MO, 

USA) tissue freezing compound and stored at -80°C. Samples were cryosectioning at 10µm and 

slices were seeded 30 minutes onto charged glasses (SuperFrost, Menzel-Glaser, Germany); 

afterwards samples were stained with phalloidin (AbCam, 1:500),  type II collagen (AbCam, 1:150) 

and a HELP-specific primary antibody. Samples were incubated O.N. at 4°C with the primary 

antibody and then co-stained with the appropriate secondary antibody (1:500). Samples were 

observed with fluorescence microscope (Leica DM5500 B, Leica Microsystems, IL, USA). 

 

4.2.4.  In vivo 3rd degree burn treatment using skin-CS. 

Skin-CS were in vivo tested for their regenerative potency towards damaged skin. All animal 

procedure was performed after local committee approval and by using pre-approved surgical 

procedures. A 3rd degree burn skin damage was in vivo simulated using nude mice (Hsd:Athymic 

Nude-Foxnnu mice, obtained from Harlan) as described by Ma et al. [22]. Briefly, a 1cm diameter 

skin excision was create using forceps into the dorsal side (both left and right side) of recipient 
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mice; the right side excision was filled using the skin-CS as regenerative tool, while the left side 

was not treated and considered as control for the mice natural regeneration ability. The skin-CS 

were attached to the skin defects by spotting some drops of fibrin glue (prepared following the 

manufacturer’s instructions (Sigma)) around the excision boundaries. The same procedure was 

followed for the control excisions. Mice were sacrified after 1, 2 and 3 weeks after implantation; the 

skin excisions regions were collected, fixed by 24 hours immersion in buffered formalin and stored 

at -80°C embedded in  Kilik (Sigma-Aldrich, St.Louis, MO, USA) tissue freezing compound.  

 

4.2.5.  Hystological analysis. 

Tissues samples were cryosectioning at 10µm and slices were seeded 30 minutes onto charged 

glasses (SuperFrost, Menzel-Glaser, Germany); afterwards samples were stained with Hematoxylin 

and Eosin (H/E) following manufacturer’s instructions (Sigma) in order to evaluate the new-formed 

tissue around the skin excision. Furthermore, slices were incubated with anti-alpha smooth muscle 

antibody (α-SMA, 1:150, AbCam)  and co-stained with the 4’,6-diamidino-2-phenylindole (DAPI, 

Sigma) the in order to study the neovascularisation and co-visualize the cells nuclei.  

 

 

4.4.    RESULTS and DISCUSSION. 

4.4.1.  MC-hydrogel-HELP composites production. 

The Human Elastin-Like Polypeptides (HELP) solution successfully adhered to the 

methylcellulose-based (MC) hydrogel forming a continuous and homogeneous layer (Figure 2 B). 

The HELP solution was prepared at a concentrations of 4mg/ml; this high amount was voluntary 

selected as the HELP solution-gelation phase was not anymore reversible. In fact, HELP 

polypeptides act in solution as an hydrogel by moving from a liquid solution at 4°C to a solid-gel 

phase at 37°C. However, HELP hydrogel could not be considered as a smart materials like MC-

hydrogel since the use of enzymes is necessary to carry on the phase transition. Thus, temperature is 

not the only parameter necessary for the transition to the gel phase. Furthermore, a HELP peculiar is 

that the eventually phase reversion to the liquid phase is inseparable related to the polypeptides 

concentration; the selected 4mg/ml concentration allow to obtain a very compact layer of elastin 

which gel phase is not reversible anymore to the liquid phase. 
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Figure 2 A-C. Representative scheme of the skin-CS biofabrication using the MC-hydrogel as scaffold and the elastin 
layer as cells support (A).  The addiction of the HELP layer has not interposed the hydrogel phase-transition process for 
the CS production; the composites resulted as stable and comparable with the previous model with collagen alone (B). 
The HELP layer (cells free) was successfully detached from the hydrogel surface (C). 
 

 

This step is fundamental for the successful HELP-enriched cell sheet (CS) detachment; in fact, the 

spontaneous CS detachment is leaded by the temperature decrease that permit the MC-hydrogel 

phase transition from gel to liquid. If the HELP layer was still sensitive to temperature, this step 

inevitably damaged the layer that was reported to the liquid phase too. Thanks to the high 

polypeptides concentration, the HELP layer remained in the gel phase even when the temperature 

was lowered, allowing the detachment of a continuous layer (Figure 2 C). This layer represent the 

holding structure for the skin-CS development.  

 

4.4.2.  HELP-HGF CS production. 

Human gingival primary fibroblasts (HGF) were successfully extracted from fresh tissue isolates; 

after tissue digestion, single cells suspension attached to plates surface and proliferate (Figure 3 A). 

Cells seeded onto HELP layer correctly attached to the surface in about 12 hours; afterwards, a cells 

monolayer was observed after 48 hours of cultivation (Figure 3 B). Cells viability was verified by 

the MMTT assay: at each time-points, cells viability percentage was comparable with controls and 

no statistically significant differences were observed between the two groups (Figure 3 C). This 

findings are encouraging because they are very similar with the data obtained with mouse 

fibroblasts and described previously in Chapter 3. Therefore, the presence of the HELP layer seems 

to not interfere with  the cells adhesion, spread and viability. 
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Figure 3 A-C. Human primary fibroblasts were obtained by enzymatic digestion of fresh tissues and used from passage 
1 to 3 (A). The cells seeded onto HELP layers adhered to the surface in about 12 hours and a continuous layer was 
observed after 48 hours by phalloidin staining (B in red). Finally, cells viability onto HELP surface was comparable 
with controls (C). Bars represent means and standard deviations, bar scale=200µm. 
 

This is an important step in the protocol development. The improvement of the CS tool by the 

addiction of the HELP layer was aimed to enhance the mechanical properties and the matrix 

complexity of a model studied for the skin regeneration. In fact, skin represents a stratified complex 

tissue holding a remarkable flexibility from a mechanical point of view. Thus, the skin-CS present 

an elastin layer that (I) act as an improvement of the natural cells ECM and (II)  confers to the CS a 

better mechanical ability to fit with natural tissue.  

 

4.4.3.  Skin-CS characterization. 

Detached skin-CS immunofluorescence staining are reported in Figure 4. The cell sheets are 

composed by cells tightly connected to each other forming a continuous monolayer as showed by 

phalloidin stain. Cells morphology resulted as correct confirming the adhesion study results. One of 

the  improvement speculated by the addiction of the elastin layer was related  to the enrichment of 

the natural ECM. Collagen II staining confirmed that the cells forming the detached skin-CS (I) 

successfully produced and (II) maintained their natural matrix. This finding is very important since 

a crucial feature of the cell sheet technology is the ability of adhere to a naïve tissue without the use 

of sutures thanks to the presence of cells ECM that act as “glue”. Cells produced high amount of 
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collagen as reported in Figure 4, upper panel. By staining the skin-CS sections in the lateral side, it 

was possible to appreciate the monolayer of cells interconnected and supported by the elastin layer 

(lower panel). Cells correctly spread onto elastin layer forming a complex composite.  

 

    

Figure 4. Immunofluorescence staining of detached skin-CS. The cells sheets resulted as formed by high-density cells 
interconnected to each others; furthermore, cells were able to produce collagen onto the elastin layer (upper panel). By 
cutting the skin-CS in the lateral side, it was possible to appreciate the cells monolayer interconnected with the elastin 
layer that act as matrix in addition to the natural collagen (lower panel). Bar scale=50µm. 
 

 

Thus, it was verified the possibility to prepare a cells-elastin skin-CS. The entire protocol was 

comparable to the cell sheet production using the MC-hydrogel as scaffold described in Chapter 3 

as no significative modifications were applied. This is an important data since it suggests that it is 

possible to introduce improvements in the cell sheet without compromise the hydrogel thermo-

reversibility. So, it will be possible in the future to further improve the technology (for example by 

trying to orientate the cells). The skin-CS composites reported matrix very interesting features; in 

fact, the presence of the natural collagen produced by the cells was verified together with the 

connection with the elastin layer. Therefore, the entire matrix of the skin-CS resulted as very 

complex allowing to improve the adhesion to natural tissue. The regenerative potency and the 

ability to support the mechanical stress related with the natural skin will be verified by the in vivo 

test. 
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4.4.4.  Skin-CS regenerative potency in vivo evaluation. 

The implanted skin-CS were able to adhere to the mice tissue without sutures and to promote skin 

regeneration in a significative lower time lap compared to the natural process. In vivo assay results 

are summarized in Figure 5.  

     

Figure 5 A-C. In vivo 3rd degree burn skin damage repair (A). The skin-CS were attached to the skin defect using 
fibrin glue (A, right panel); after 1 week the skin-CS implant side showed to be able to promote a faster regeneration (B, 
right side) compared to the natural tissue regeneration ability (B, left side). After 3 weeks, also the natural repair 
process regenerated the damaged region (C, left) even if the skin-CS implanted side appeared as more compact (C, 
right).  
 

 

After 1 weeks after skin-CS implant, a great difference was noticed compared to the control. In fact, 

the skin-CS were able to promote a very fast and successful regeneration of the artificial damage 

(Figure 5 B). On the opposite, the natural repair process did not showed new generated skin. The 

natural process was comparable with the skin-CS only after 3 weeks (Figure 5 C); however, by 

handling the skin for the excision after mice sacrifice, it was possible to notice that the CS 

implanted skin was more dense and thick.  The differences between the skin regeneration induced 

by CS and natural process were very noticeable by hematoxylin/eosin (H/E) staining of the 

collected tissues and by the neovascularization investigation by immunofluorescence (IF).  

In Figure 6 are reported the H/E and IF analysis of the 1 week sections. 
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Figure 6 A-C. 1 week implants analysis. H/E analysis of the skin defect regions revealed that the skin-CS was effective 
in the regenerative process induction (A, stars indicate the new formed tissue, arrows and lines the defect limits) that 
was not yet started in the natural repair process (B). Furthermore, in the skin-CS implants region, new blood vessels 
were noticed by staining with a-SMA (C, in red); no vessels were visualized in the controls. Bar scale=200µm. 
 

 

In Figure 6 A, the skin-CS implanted region is showed. The arrows indicate the limit of the artificial 

defect created by skin excision, while the stars indicate the new-formed tissue. In the skin-CS 

implant, the regeneration was clear. New tissue was visualized all around the limits of the excision; 

moreover, the new-formed tissue appeared as compact and thick with no lack regions. On the 

opposite (Figure 6 B), the control sections appeared as devoid of tissue in the excision region. This 

is a very important finding as suggest that the cells layer composing the skin-CS was successfully 

attached to the naïve tissue undergoing and helping the restoration process. Moreover, the elastin-

collagen complex matrix of the skin-CS lead to the formation of a thick and dense layer comparable 

with the natural tissue. During the first 7 days of implantation, mice were daily checked and no 
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movements limitation caused by the skin excision were noticed; moreover, none of the mice 

reported the skin-CS detachment during the test period as confirmation of the optimal adhesion 

property of the cells elastin-improved ECM. Another important result is related to the presence of 

blood vessels inside the excision region where the skin-CS were implanted (Figure 6 C); in fact, 

neovascularization is a crucial step in the regenerative process, as the vessels are the “tools” to 

include the new-formed tissue into the natural counterpart biochemical signaling. The lack of 

vessels normally lead to the failure of the implant. Obviously, in the control no vessels were 

visualized as no tissues was present yet; this data was confirmed by DAPI staining that evidenced 

the excision region limits (Figure 6 C).  

Results after 3 weeks of implant are reported in Figure 7. After 21 days, the skin-CS implanted 

regions resulted as completely repaired with no lack of tissue in the neo-formed part (Figure 7 B). at 

this time-point, also the controls showed the presence of new-formed tissue in the excision regions. 

Thus, also the natural repair process was effective in the skin regeneration. However, the H/E 

staining revealed that the skin-CS region was composed by a more dense and thick tissue, 

comparable to the natural one. This is not a surprising data because the regenerative process was 

found to be effective since the first week, suggesting that the new-formed tissue was undergoing a 

complete integration in the following two weeks. The better host-guest integration of the skin-CS 

derived new-formed tissue was confirmed by the neovascularization analysis. The control showed 

the presence of vessels confirming that the natural process was effective undergoing after 3 weeks; 

however, the number and complexity of vessels network was superior for the skin-CS regions. This 

represent a confirmation of the H/E results that lead to suppose that the regenerative process was 

induced by the presence of the skin-CS faster than the natural process; thus, even if after 3 weeks it 

was possible to notice for both control and skin-CS a regeneration process, the skin-CS derived new 

formed tissue was completing the integration process, while the controls were still facing the 

production of tissue and vessels. 

In conclusion, the skin-CS regenerative potency in a 3rd degree burn defect was confirmed. The 

implant of skin-CS improved the natural ability of the naïve tissue to repair the tissue damage. This 

is the most important finding thinking of a possible clinical application. In fact, the appliance of 

skin-CS could be moved in a patient self-process by collecting a small biopsy from the gingival 

tissue skipping the rejection process. The skin-CS could be applied to the damaged tissue without 

sutures; the regenerative potency of the skin-CS could help the repair of the injured tissue and, more 

important, supply to the loss of the regenerative process in the damaged site such as 3rd degree 
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burns. Thus, even if more evidence are still necessary to validate the clinical use of the skin-CS, this 

tool represent a very promising technique for skin tissue engineering. 

  

Figure 7 A-C. 3 weeks implants analysis. After 21 days, the natural skin regeneration process was observed (A, stars 
indicate the new tissue and arrows the limit of the excision); however, the skin-CS implants reported a new-formed 
tissue more compact and thick (B) more similar to the naïve one. Furthermore, the skin-CS regions showed a more 
complete vessels network (C) than the controls. Bar scale=200µm. 
 

 

4.5.   CONCLUSIONS. 

In this fourth part of the Thesis, it was demonstrated the regenerative potency of the cell sheet (CS) 

technology for skin repair. In vivo 3rd degree burn defects were successfully repaired in 1 week, 

while after 3 weeks a dense and high-vascularized tissue was formed. The skin-CS induced repair 

was more effective and fast than the natural one. The CS was even improved by the introduction of 

the elastin layer as scaffold for cells, showing how the CS technique represent a suitable  tool for 

further improvements in order to expand the use of CS for  the treatment of other tissues. 
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