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Abstract
We provide an overview of studies on seafood intake in relation to obesity, insulin resistance and type 2 diabetes. Overweight and obesity
development is for most individuals the result of years of positive energy balance. Evidence from intervention trials and animal studies
suggests that frequent intake of lean seafood, as compared with intake of terrestrial meats, reduces energy intake by 4–9%, sufficient to
prevent a positive energy balance and obesity. At equal energy intake, lean seafood reduces fasting and postprandial risk markers of insulin
resistance, and improves insulin sensitivity in insulin-resistant adults. Energy restriction combined with intake of lean and fatty seafood seems
to increase weight loss. Marine n-3 PUFA are probably of importance through n-3 PUFA-derived lipid mediators such as endocannabinoids
and oxylipins, but other constituents of seafood such as the fish protein per se, trace elements or vitamins also seem to play a largely neglected
role. A high intake of fatty seafood increases circulating levels of the insulin-sensitising hormone adiponectin. As compared with a high meat
intake, high intake of seafood has been reported to reduce plasma levels of the hepatic acute-phase protein C-reactive protein level in some,
but not all studies. More studies are needed to confirm the dietary effects on energy intake, obesity and insulin resistance. Future studies
should be designed to elucidate the potential contribution of trace elements, vitamins and undesirables present in seafood, and we argue that
stratification into responders and non-responders in randomised controlled trials may improve the understanding of health effects from intake
of seafood.

Key words: Seafood: Fish: Obesity: Type 2 diabetes: Marine PUFA: Body-weight regulation: Glucose regulation

Introduction

Obesity affects virtually all ages and socio-economic groups
and is about to overwhelm both developed and developing
countries. Excess adiposity is a well-established risk factor for
overall premature mortality and major chronic diseases,
including cardiometabolic diseases, type 2 diabetes (T2D), as
well as cancer such as postmenopausal breast cancer and col-
orectal cancer(1–3). Leaving genetics aside, weight gain and loss
are inevitably related to energy consumed and energy used,
although psychological, cultural and sociodemographic factors
are all known to contribute to this energy imbalance. Besides
increasing physical activity, changing dietary patterns is the
single most prevailing tool to curb this escalating problem(4). In
this respect, the quality and type of food will also matter as
certain nutrients strongly influence appetite, satiety, energy
expenditure and thermogenesis, and thereby obesity
development.
Lean and fatty fish are both considered nutritious and a great

source of protein, iodine and various vitamins and minerals, but
fatty fish contain some important nutrients in higher quantities
such as n-3 fatty acids and vitamin D (Fig. 1). In the dietary

guidelines for Americans, intake of approximately 225 g varied
seafood weekly, including lean and fatty fish to provide a
weekly dose of 1·75 g EPA and DHA is recommended(5).
According to the European Food Safety Authority (EFSA), the
food-based dietary guidelines for fish consumption range from
100 to 300 g weekly in most countries(6). The Nordic Nutrition
Recommendations(7) and the Norwegian Food-based Dietary
Guidelines are somewhat higher and include 300–450 g pure
fish weekly, of which 200 g should be fatty fish (salmon, trout,
mackerel or herring)(8).

In the USA, seafood consumption in general is reported to be
as low as 63 g/week, of which 50% is shrimp(9). In contrast, in
40- to 69-year-old Japanese, a median fish consumption of 580 g
weekly has been observed(10). The mean intake of fish in the
general Norwegian population aged 18–70 years is reported to
be 450 and 300 g weekly among men and women, respec-
tively(11). In Western Norway, a median total fish intake of
530 g/week has been reported among men and women aged
46–49 and 71–74 years(12) and 680 g weekly among 62-year-old
patients with coronary artery disease(13). Although fish intake
among adults and elderly in Norway seems to live up to
the guidelines, recent data indicate that the mean intake
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(168 g/weekly) among younger individuals (aged 9 and 13
years) does not meet the recommendations(14). In addition, the
frequency of fish consumption among 66% of young European
overweight adults is lower than usually recommended(15).
Seafood is considered an essential part of a healthy diet, but
whether replacing meat with fish and seafood or increasing the
intake of fish and seafood will limit the development of obesity,
insulin resistance and T2D remains an open question.
Research on the health effects of fish and seafood consump-

tion has to a large extent been focused on the content of marine
n-3 PUFA, and a number of clinical intervention trials doc-
umenting their effects have been published. However, seafood
also represents a rich source of high-quality protein and further
contributes to a better nutritional status due to the content of
other essential nutrients, such as vitamin D, vitamin B12, the B
vitamins niacin and pantothenic acid, as well as the trace ele-
ments iodine and Se. On the other hand, the content of As and
heavy metals such as Cd, Pb and Hg has been of concern in
terms of seafood safety. Further, fatty fish in particular also
contain persistent organic pollutants (POP) such as poly-
chlorinated biphenyls, dioxins and brominated flame retardants
that all have been associated with obesity and diabetes devel-
opment(16,17). Here, we aim to review observational studies and
intervention trials related to obesity, insulin resistance and T2D
with a main focus on fish or seafood consumption, but we also
include studies reporting on intake of single components from
seafood. Finally, we review animal trials and describe the pos-
sible mechanisms by which both fatty and lean seafood may
influence the development of obesity, insulin resistance and T2D.

Observational studies with seafood intake and obesity

Individuals adhering to the so-called prudent diet, char-
acterised by a higher consumption of non-hydrogenated fat,
vegetables, eggs, fish and other seafood, are less likely to be
obese than individuals having a high intake of refined grains,
red meats, processed meats, French fries, condiments and
regular sugar-containing soft drinks(18). Healthy dietary pat-
terns comprising intake of seafood have also been associated
with a low BMI in Japan(19) and Jakarta(20). Additionally, a few
prospective studies have investigated the relationship between
fish consumption and body-weight gain. In the European
Prospective Investigation into Cancer and Nutrition (EPIC)
study, comprising 249 558 women and 95 199 men from ten
European countries, overall fish consumption was weakly
positively associated with increase in body weight in women,
but not in men(21). It has to be mentioned that in the EPIC
study the median follow-up period was only 5 years, and
among women, data differed between the different countries,
i.e. in Greece, the Netherlands and UK negative associations
for total fish intake and body-weight gain were observed(21). It
is not yet known if the differences relate to cultural differences
regarding how seafood-containing meals are composed, use
of condiments, or preparation methods. In a Norwegian study
using data from two cross-sectional surveys, the population-
based Tromsø 4 and Tromsø 6 studies (http://tromsounder-
sokelsen.no), data from 4528 individuals with a follow-up of
13 years showed that individuals with an intake of fatty fish
once/week or more exhibited increased waist circumference
compared with those eating fatty fish less than once/week(22).
In contrast, men who consumed lean fish more than once/
week had decreased waist circumference, but this association
was not statistically significant after multiple adjustments(22).
However, data from this study indicate that the type of fish
also may be of importance when evaluating intake of seafood
and obesity development. In a large American study, the
association between 4-year changes in consumption of dif-
ferent protein sources and body weight has been investigated
in three prospective US cohorts over a 16- to 24-year follow-up
period (Nurses’ Health Study, Nurses’ Health Study II, and
Health Professionals Follow-Up Study) including 120 784 men
and women without chronic disease or obesity at baseline(23).
Whereas increased intake of protein from meats, chicken with
skin and regular cheese was associated with weight gain,
increased intake of seafood together with peanut butter, wal-
nuts, other nuts, chicken without skin, yogurt and low-fat
cheese was associated with weight reduction(23). However, it
should be mentioned that changes in most protein foods were
inversely correlated with changes in carbohydrate at baseline.
The authors emphasise that dietary replacements, especially
replacing protein-rich food for carbohydrate-rich foods, are
crucial for long-term weight maintenance. Originally, Iso
et al.(24) reported that participants in the Nurses’ Health Study
with a high intake of fish had a higher risk of obesity. How-
ever, these women also had a high intake of poultry, which is
rich in the n-6 PUFA linoleic acid(25). This may be of impor-
tance as intake of poultry and linoleic acid has been positively
correlated with obesity(26). Further, the possible protective
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Fig. 1. Content of nutrients and undesirables typically found in different
amounts in lean and fatty seafood. Larger font size indicates higher level. PCB,
polychlorinated biphenyls; BFR, brominated flame retardants; POP, persistent
organic pollutants.
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effect of marine n-3 PUFA on obesity development(27–29) may
be counteracted by linoleic acid(26).
A great number of publications have described the health-

beneficial effects of marine n-3 PUFA on obesity-related dis-
orders. Hence, fatty fish such as salmon, herring and mackerel
have been considered health beneficial largely due to their high
content of marine n-3 PUFA. As a high consumption of meat is
associated with weight gain and consumption of fish and sea-
food with weight loss(23), exchanging meat for seafood should,
in theory, be beneficial in terms of weight loss. However, only a
limited number of human intervention studies using fatty fish
have actually been performed on obese subjects.

Intervention studies with fatty seafood and obesity

Results from published intervention studies suggest that seafood
may accelerate weight loss induced by energy restriction
(Table 1). In a study by Mori et al.(30), sixty-three overweight
patients that underwent treatment for hypertension were ran-
domised to a daily fish meal, a weight-loss regimen, the two
regimens combined, or a control group for 16 weeks. The fish
meals comprised Greenland turbot, canned sardines, canned
tuna or canned salmon, providing an average of 3·65 g marine
n-3 PUFA/d. The subjects assigned to the weight-loss groups
had a dietary programme in which their daily energy intake was
individually decreased by 2000–6500 kJ/d for 12 weeks to
achieve a weight loss of 5–8 kg. There was no significant
change in body weight in the seafood and no-seafood groups
that maintained their usual energy intake, but increased weight
loss was observed when energy restriction was combined with
a daily fatty fish meal. A strength of this trial is the measurement
of n-3 and n-6 PUFA in plasma indicating compliance with fish
intake in the fish groups.
In line with this, Thorsdottir et al.(31) and Ramel et al.(32) have

demonstrated that inclusion of fatty fish, or fish oil as part of an
energy-restricted diet, significantly increased weight loss in
young overweight adults. In this study, 278 overweight men
and women (20–40 years) from Iceland, Spain and Ireland were
subjected to weight loss induced by 30% energy restriction for
8 weeks. One group received 1·3 g of marine n-3 PUFA from
capsules/d and one group received three portions of 150 g
salmon/week, corresponding to an average daily intake of 2·1 g
marine n-3 PUFA during the 8 weeks of energy restriction. The
diets did not vary in their influence on weight loss in women,
but in men inclusion of either fatty fish or fish oil in the diet with
energy restriction resulted in approximately 1 kg greater weight
loss after the first 4 weeks compared with a similar diet without
seafood or n-3 PUFA supplement.
In line with the possible ability of marine n-3 PUFA to

accentuate weight loss induced by energy restriction, Kunešová
et al.(33) have demonstrated greater weight loss in severely
obese women when 2·8 g marine n-3 PUFA/d were included in
an energy-restricted diet during a 21 d trial. Of note, a combined
intervention using marine n-3 PUFA and minor energy restric-
tion exerted synergism in the prevention of obesity also in
mice(34). Further, Kabir et al.(35) reported that 3 g fish oil/d
reduced total fat mass and adipocyte size in a 2-month

randomised controlled trial (RCT) with type 2 diabetic women.
Good compliance was seen in all the above-mentioned trials. In
line with Kabir et al.(35), an inverse association has been
observed in patients between abdominal obesity and amount of
marine n-3 PUFA in adipose tissue samples(36) and also
between the amount of marine n-3 PUFA in subcutaneous
adipose tissue and reduced adipocyte size(37). However, other
similar trials have failed, and a lack of consensus between
animal trials and human intervention studies apparently
exists(38). A meta-analysis of the potential of n-3 PUFA to reduce
obesity in humans with a description of the lack of consistency
in study designs was recently published elsewhere(39), and will
not be further discussed here. It should, however, be men-
tioned that a small reduction in body fat mass is not always
accompanied by reduced body weight. For instance, in a cross-
over trial, Couet et al.(40) reported that replacement of 6 g of
dietary fat (butter, olive oil, sunflower-seed oil and peanut oil)
with 6 g of marine n-3 PUFA/d given as capsules for 3 weeks
led to a reduced body fat mass without a concomitant reduction
in body mass. Still, a meta-analysis(41) where twelve trials met
the eligibility criteria reported on a significantly higher weight
loss in the intervention groups (fatty fish or marine n-3 PUFA)
compared with the control groups.

Fatty fish is a rich dietary source of fat-soluble vitamins,
including vitamin D. Obesity often coexists with low intake of
Ca and with vitamin D insufficiency(42). Dietary Ca may lead to
a negative energy balance by its ability to reduce intestinal fat
absorption because of formation of insoluble Ca–fatty acid
soaps, which pass unabsorbed through the intestinal tract and
are excreted in the faeces. A number of meta-analyses have
investigated whether a sufficient Ca intake may prevent or
reduce obesity, but there is a lack of consensus(43). The link
between vitamin D and obesity is not yet completely under-
stood, but obesity-related vitamin D deficiency has been related
to reduced bioavailability of vitamin D from cutaneous and
dietary sources because of its deposition in body fat compart-
ments(44). A very limited number of studies examining the effect
of vitamin D supplementation on weight loss have been per-
formed, and two recent reviews on the topic concluded that
although epidemiological associations are clear, more inter-
vention studies are needed to conclude on whether increasing
vitamin D intake can attenuate weight gain or augment weight
loss(42,45). Thus, whether improved vitamin D and/or Ca status
by fatty fish intake could contribute to reduced obesity needs to
be further elucidated.

Animal trials with fatty seafood and potential mechanisms
of actions

In view of the promising rodent studies performed by us and
others documenting the ability of marine n-3 PUFA to attenuate
and/or totally prevent high-fat diet-induced obesity in
rodents(26,34,46–56), one would expect fatty fish to effectively
attenuate obesity. However, only a limited number of studies
have been published, and the results in terms of the potential
anti-obesogenic effect from experiments using fatty fish are far
less convincing. Still, several reports from Sweden suggest that
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herring may have some anti-obesogenic properties, including
an experiment where high-fat/high-sucrose diets supplemented
with either minced herring fillets or minced beef were fed to
male LDL receptor-deficient mice for 16 weeks. Despite
increased body weight, body composition was equal and the
size of adipocytes in epididymal fat was reduced in herring-fed
mice compared with beef-fed mice(57). Further, it was demon-
strated that offspring of herring-fed C57BL/6 mice were less
obese than offspring of beef-fed dams at 9 week of age. The
fatty acid composition in the breast milk was strongly affected
by inclusion of herring in the maternal diet, and this translated
into increased levels of n-3 PUFA in several tissues of the off-
spring of dams fed the herring-containing diet(58). Further, rats
fed high-energy diets with herring exhibited smaller adipocytes
in the mesenteric adipose tissue depots than rats fed high-
energy diets with chicken(59). Conversely, mice fed very high-fat
diets with salmon became more obese than mice fed the
‘control’ casein-based diets with similar macronutrient compo-
sition(60). However, although casein is commonly used as the
protein source in commercially available rodent diets, casein
may not represent an adequate reference control compared
with many other protein sources as casein has anti-obesogenic
properties in obesity-prone C57BL/6J mice(61,62).
Interestingly, the fatty acid composition in salmon feed and,

hence, salmon fillets may be of importance(63,64). Feeding sal-
mon aquatic feed with 50% replacement of the traditionally
used marine oils with vegetable oils, soyabean oil in particular,
resulted in a profoundly increased n-6:n-3 PUFA ratio in salmon
fillets(65). Fatty acid composition in tissues and erythrocytes in
mice fed diets containing the salmon mirrored the fatty acid
composition of the fillets, and an increased n-6:n-3 PUFA ratio
was associated with a more obese phenotype(63,66). Conversely,
an increased ratio of n-3:n-6 PUFA in the fish feed, salmon
fillets, and in erythrocytes collected from the mice fed the
salmon was accompanied with reduced adipose tissue mass
and reduced abundance of arachidonic acid (AA) in the phos-
pholipid pool in the livers of the mice(63,64,66). The levels of
hepatic ceramides and AA-derived pro-inflammatory mediators
decreased, whereas the abundance of oxylipins derived
from EPA and DHA was increased(66). Similarly, in plasma and
liver, the levels of AA-derived endocannabinoids,
2-arachidonoylglycerol and anandamide, N-arachidonoyletha-
nolamine, decreased, whereas the levels of EPA- and DHA-
derived endocannabinoids increased(63,66). It is well known that
endogenously produced AA-derived endocannabinoids can
promote obesity(26,67). Hence, reduced production of AA-
derived and/or increased production of n-3-derived endo-
cannabinoids and oxylipins may explain why the n-6:n-3 PUFA
ratio in salmon modulates metabolism in mice consuming the
salmon.
Dietary composition plays an important role in shaping the

microbiota, and it is currently widely accepted that the com-
position of the gut microbiota is linked to obesity(68). Compared
with diets rich in SFA, a diet rich in marine n-3 PUFA led to a
higher Bacteroidetes:Firmicutes ratio after 14 weeks(69).
Although challenged, a decreased Bacteroidetes:Firmicutes
ratio has traditionally been associated with obesity(70). Further,
it is reported that mice fed fish oil have increased levels of

Akkermansia muciniphila(71), which has been associated with
protection against diet-induced obesity(72). Of interest, it was
recently demonstrated that a specific protein isolated from the
outer membrane of A. muciniphila, named Amuc_1100, is able
to improve the gut barrier and partly recapitulates the beneficial
effects of A. muciniphila(73). However, to what extent fatty
seafood is able to modulate the composition and function of the
gut microbiota warrants further investigation.

Intervention studies with lean seafood and obesity

Components in fish besides the marine n-3 PUFA are often
overlooked, but in the context of weight management, several
human intervention studies suggest that components of lean
seafood also may be of importance (Table 1). First, in the
previously mentioned study by Thorsdottir et al.(31), it was
demonstrated that inclusion of lean fish, 150 g cod for 3 d per
week, in an energy-restricted diet was as efficient as salmon to
increase weight loss by approximately 1 kg in overweight
young males. Increasing the fish intake to 150 g cod for 5 d per
week resulted in a 1·7 kg significantly greater weight loss than
intake of an isoenergetic diet(74). Second, in a recent 8-week
intervention study with free-living subjects, it was shown that
daily self-administration of capsules with 3 g of fish protein per
d for 4 weeks decreased the percentage of body fat and
increased the percentage of muscle in overweight adults(75).
However, during the last 4 weeks of the study, when the daily
protein supplementation was increased to 6 g/d, the differences
in body composition disappeared(75). In a cross-over study with
two 4-week diet periods in which the participants were given
daily lunch and dinner meals with either lean seafood or non-
seafood (mainly lean meat), we did not observe differences in
body composition between diets in healthy adults. Of impor-
tance, energy intake was kept equal for each individual
between lean seafood and the non-seafood diet periods(76).
Despite no differences in body composition, 4 weeks of high
lean seafood as compared with no seafood intake altered lipid
and glucose metabolism, as evident from changes in fasting and
postprandial serum metabolites(76,77) as well as differences in
the urine metabolome(78). As obesity development may take
years, it is possible that the above-mentioned studies were of
too short duration to detect any sustained difference in body
composition, but may indicate prevention against obesity. Still,
inclusion of seafood in an energy-restricted diet may be useful
to increase weight loss. However, presently there is not suffi-
cient evidence from RCT to state that seafood affects body
composition differently from other protein-rich foods when
individuals are consuming their habitual amount of energy.

Although still controversial, different types of high-protein
diets are popular. Given the high protein content and virtually
no carbohydrate content in lean fish, an increased intake of fish
would necessarily lead to increased protein intake. Increasing
dietary proteins increase satiety and diet-induced thermogen-
esis, and during weight loss dietary proteins have a favourable
effect on body composition due to sparing of fat-free
mass(79–82). Moreover, in a European multicentre trial, it was
demonstrated that just a modest increase in dietary protein

N
ut

ri
tio

n 
R

es
ea

rc
h 

R
ev

ie
w

s
Seafood, obesity and type 2 diabetes 149

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0954422418000240
Downloaded from https://www.cambridge.org/core. Fiskeridirektoratet. Biblioteket, on 11 Jun 2019 at 11:23:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0954422418000240
https://www.cambridge.org/core


Nutrition Research Reviews

Table 1. Randomised controlled trials (RCT) with fatty and/or lean fish on obesity

Author Subjects Health Design Background diet Intervention groups Duration Main results

Mori et al. (1999)(30) n 63
42 M
21 F
Mean age: 54·1

(SEM 1·8) years
Age range: 40–70

years

Hypertension
BMI >25 kg/m2

Mean BMI: 34·9 (SEM
1·1) kg/m2

RCT Self-selected (1) Control
(2) Fish
(3) Weight loss (energy-restricted

diet)
(4) Fish + weight loss

Fish groups: including 3·65 g/d n-3
PUFA (turbot, sardines, tuna,
salmon)

16 weeks Weight decreased by 5·6 (SEM 0·8)
kg in energy restriction groups.
NS differences in weight loss in
seafood and no-seafood groups
maintaining usual energy intake

Thorsdottir et al.
(2007)(31); Ramel
et al. (2010)(32)

n 278
120 M
158 F
Mean age: 38·9

(SD 5·4) years
Age range: 20–40

years

Healthy Mean BMI:
30·1 (SD 1·4) kg/m2

BMI range: 27·5–
32·5 kg/m2

RCT Self-selected Energy-restricted diets
(1) Control (sunflower capsules, no

seafood)
(2) Lean fish (3 × 150g cod/week)
(3) Fatty fish (3 × 150g salmon/

week)=2·1 g/d n-3 PUFA
(4) Fish oil (capsules, no

seafood)= 1·3 g/d n-3 PUFA

8 weeks Weight and waist circumference
decreased significant more in fatty
fish (–7·0±3·5 kg), lean fish
(–6·6±2·8 kg) and fish oil groups
(–6·7±3·6 kg) (energy-restricted
diets) compared with control –
5·3±3·0 kg) in male subjects

Ramel et al.
(2009)(74)

n 126
Age range: 20–40

years

Healthy
Mean BMI: 30·2 (SD

1·4) kg/m227·5–
32·5 kg/m2

RCT Self-selected Energy-restricted diets
(1) Control (no seafood)
(2) Lean fish (3 × 150g cod/week)
(3) Lean fish (5 × 150g cod/week)

8 weeks Dose–response relationship; weight
loss increased significantly with
increasing doses of cod: cod 3
× /week –0·67 kg; cod 5 × /week –

1·73 kg compared with control
Aadland et al.

(2016)(76)
n 20
7 M
13 F
Mean age: 50·6

(SEM 3·4) years

Healthy
Mean BMI: 25·6
(SEM 0·7) kg/m2

RCT,
cross-
over

3 weeks run-in period
with diet in accordance
with Norwegian
recommendations

No energy-restriction
(1) Lean seafood 7 d/week
(2) Non-seafood 7 d/week
Fish: cod, pollock, saithe, scallops

2 × 4 weeks,
5 weeks
washout

No diet effect on body composition

M, male; F, female.
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intake effectively prevented weight regain after a major weight
loss in obese subjects(83,84). In contrast to anecdotal sugges-
tions, seafood proteins have been demonstrated to be more
filling than proteins from red meat and chicken(85,86).
Uhe et al.(86) compared the acute satiating effect of beef,

chicken fillet without skin and gummy shark meals by adminis-
trating grilled whole chunks of 50 g of protein of each type
together with 200ml of water to the subjects participating the
study. The meal sizes were not reported, but as lean seafood
contains more water than terrestrial meats, it is likely that the
gummy shark meal was larger than the two other meals. The
subjects rated repeatedly how hungry or full they felt during
180 min following commencement of the meals. Satiety was
greater after the seafood meal than after intake of meals based on
the other protein sources and this was related to lower digestion
rate and a higher postprandial tryptophan:large neutral amino
acid ratio. The authors hence suggested involvement of the
neurotransmitter serotonin (5-hydroxytryptamine) as one of the
signals mediating the satiety. A higher postprandial tryptophan:
large neutral amino acid ratio would imply that more tryptophan
enters the brain. As a result, serotonin synthesis would increase
and possibly interact within the hypothalamus with endogenous
orexigenic (neuropeptide Y/Agouti-related protein) and anor-
ectic (α-melanocyte stimulating hormone) peptides(86).
Borzoei et al.(85) served healthy males an isoenergetic protein-

rich (47 energy percent (%E) protein) lunch meal, consisting of a
dish containing either minced cod or minced beef. An ad libitum
standardised evening meal was served 4 h after the start of the
lunch meals. Food intake was measured, and appetite was rated
by visual analogue scales. The results showed that the point
estimates were somewhat lower for hunger and higher for sati-
ety, but no significant differences were observed. However, in
participants who ate the fish lunch meal, energy intake at the
evening meal was significantly lower and the subjects did not
feel less satiated, and no subsequent energy compensation after
the evening meal was found on the test day(85). In contrast to the
results from the study of Borzoei et al.(85), we found no differ-
ence on appetite sensation or energy intake after consumption of
balanced meals (26%E protein) with either cod or lean veal in a
recent study(87). Moreover, we observed no differences in plasma
levels of ghrelin, a known orexigenic hormone.
Five intervention studies have been performed with lean

seafood as part of a lean white meat diet in comparison with a
lean red meat diet. The primary endpoint of these studies was
plasma lipids, but they also recorded energy intake. In a cross-
over study with 129 healthy American females (n 55) and males
(n 74) aged 23–70 years, the participants consumed at
least 140 g/d of either lean beef, or poultry (chicken and turkey)
4 d/week and fish (cod, perch and sole) 3 d/week for two diet
periods of 3 months each(88). Even though the difference was
not significant, the mean energy intake was 9% lower for both
sexes in the lean white meat diet period (including lean fish)
relative to the energy intake in the lean red meat diet period. In
another cross-over study from the same group using similar
conditions, energy intake during the lean white meat diet per-
iod was lower (–9% in females and –16% in males) as com-
pared with energy intake during the lean red meat diet period,
but did not reach statistical significance(89). A cross-over study

in 145 hypercholesterolaemic American men and women (18–
75 years) compared the effect of consuming at least 170 g/d for
5–7 d/week of lean red meat (beef, veal or pork) with the same
amount of lean white meat (poultry or fish) for two diet periods
of 9 months(90). Energy intake was significantly lower (–4·5%;
P= 0·004) during the lean white meat diet period as compared
with energy intake during the lean red meat period. Neither
data on body weight nor on the type or amount of lean fish
consumed were specified in this study(90). Data from diet period
1 in the cross-over study by Hunninghake et al.(90) were pub-
lished separately as a parallel-arm study with eighty-nine sub-
jects in the lean red meat group, and 102 subjects in the lean
white meat group. In diet period 1, energy intake tended
(P= 0·06) to be reduced in the lean white meat group relative to
the lean red meat group. Concomitantly, changes in body
weight during the 9 months’ study were + 0·8 kg for the lean red
meat group and –0·5 kg in the lean white meat group, but the
difference was not significant(91). Finally, in a cross-over study,
thirty-nine hypercholesterolaemic South-African participants,
aged 20–53 years, consumed prudent diets with either lean beef
(5 d/week) and lean mutton (2 d/week) or with skinless
chicken (5 d/week), hake (1 d/week) and pilchards or tuna (1
d/week) for two diet periods of 6 weeks(92). Both prudent diets
reduced energy intake as compared with baseline intake, but
the lean white meat diet reduced energy intake more than the
lean red meat diet. The changes in body weight were –0·5 kg for
the red meat diet period, and –1·2 kg for the lean white meat
diet period, but the difference was not significant(92). Taken
together, the inclusion of lean seafood, in particular at the
expense of red meat, is likely to reduce energy intake and,
hence, body-weight gain. Unfortunately, however, these studies
have to our knowledge not reported on hormone levels related
to satiety.

The underlying mechanism governing the possible pre-
ventive effect of lean seafood on body-weight gain is not clear.
However, one possible mechanism is the generation of bioac-
tive peptides through the digestion of food proteins. Bioactive
peptides tend to have two to twenty amino acid residues, and
may either be effective after absorption in the gut or they may
induce a local effect in the gastrointestinal tract(93). These
bioactive peptides have been suggested to influence energy
intake and body-weight regulation(94). In addition, lean seafood
is generally a rich source of iodine(95), which may be of rele-
vance as inadequate iodine status is a major threat worldwide,
and approximately two billion individuals are estimated to have
inadequate iodine intake(96). Little is known about the rela-
tionship between BMI and iodine status, but obesity was
recently associated with a higher risk of iodine deficiency,
which might lead to hypothyroidism(97). Still, whether iodine
present in fish and seafood could play a role in the prevention
of obesity remains an open question.

Animal trials with lean seafood, obesity and potential
mechanisms of actions

Animal studies suggest that lean seafood is less obesogenic than
meat from terrestrial animals. Rats fed a high-fat diet containing
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Alaska pollock as the protein source gained less visceral fat than
rats fed chicken(98). Further, we have observed lower adiposity
in mice fed a Western diet containing a mixture of lean seafood
(ling, rosefish, cod, wolf fish) and muscle from Canadian scal-
lop than in mice fed a Western diet containing a mixture of
skinless chicken breast, pork tenderloin and beef sirloin(99).
This was accompanied with reduced energy intake (8% lower
in seafood-fed mice), but we also observed lower feed effi-
ciency and a higher spontaneous locomotor activity. In a
comparable dietary setting, obesity development was reduced
by exchanging meat from lean pork with cod(100). Here, we
included a second group of pork-fed mice that were pair-fed
with the group of mice fed cod. The pair-fed mice were mildly
energy restricted, as the ad libitum cod-fed mice consumed 6%
less energy than ad libitum pork-fed mice. Still, feed efficiency
in the pair-fed mice consuming the pork-based feed was sig-
nificantly higher than that of cod-fed mice. Whereas adiposity in
the cod-fed mice was significantly lower than in ad libitum
pork-fed mice, adiposity in the pair-fed pork group was in
between. Fat mass in the pair-fed mice was not significantly
different from either of the ad libitum-fed groups. Feed effi-
ciency and adipose tissue mass were also lower in mice fed
high-fat diets (67%E fat, 18%E sucrose and %E protein) with a
mixture of cod and scallop than in mice fed the high-fat diet
based on skinless chicken fillet(62). Further, spontaneous loco-
motor activity tended to be decreased in chicken-fed mice
when shifting from low-fat to high-fat diets. Together, pair-
feeding experiments suggest an important contribution of
higher spontaneous locomotor activity and decreased feed
efficiency to the anti-obesogenic effect, but decreased energy
intake also appears to contribute when animals are fed ad
libitum. Of note, whereas no difference was observed in first-
choice preference between the diets containing lean seafood
and lean meat, mice were observed to eat significantly more
meat-containing diets than seafood-containing diets during the
following 6 h(99). Although several studies have reported
reduced energy intake when mice are fed diets containing lean
seafood compared with lean meat, the underlying mechanisms
by which seafood may increase satiety have not yet been
elucidated.
The anti-obesogenic effect of lean seafood may be related to

the content of taurine and glycine. We have demonstrated that
intake of taurine and glycine was negatively correlated with
adiposity in mice fed either chicken, cod, crab or scallop in high-
fat, high-sucrose diets(101). This is in line with experiments
reporting that both taurine(102,103) and glycine(104,105) can reduce
fat mass in rodents. Further, intake of diets containing a fish
protein hydrolysate, rich in taurine and glycine, reduced adipose
tissue mass in rats(106,107). In the rat experiments, the reduced
adiposity was accompanied with elevated plasma bile acid
concentration(108). Bile acid-mediated activation of farnesoid X
receptor and TGR5 (bile acid membrane receptor) may affect
metabolism and energy expenditure in rats. However, we did not
observe differences in circulating bile acids in mice, despite large
differences in intake of glycine and taurine(101). It was recently
demonstrated that taurine supplementation was able to prevent
high-fat diet-induced weight gain and increased visceral fat
mass(102). Further, taurine supplementation alleviated high-fat

diet-induced disturbances in circadian rhythms, such as 24 h
patterns of plasma insulin and leptin, possibly by normalisation
of high-fat diet-induced down-regulation expression of clock
genes in pancreatic islets(102). We have observed that cod/scal-
lop-fed mice tended to be more active than casein- and chicken-
fed mice in the dark phases(101). Thus, it is possible that seafood
may attenuate high-fat diet-induced disturbances in the circadian
rhythm. However, further experiments are needed to identify the
mechanisms behind the observed differences.

Compared with fatty seafood, the amount of marine n-3
PUFA present in lean seafood is low. However, it is important to
note that a large fraction of the phospholipids present in lean
seafood contains EPA and DHA(109,110). It has been reported
that the bioavailability of EPA and DHA as well as their ability to
modulate endocannabinoid signalling and the anti-obesogenic
effect are higher when they are present in phospholipids than in
TAG(111,112). However, we recently demonstrated that addition
of phospholipid-bound, but not TAG-bound, n-3 PUFA to a
pork-based diet led to a small increase in weight gain(113).
Further, freezing initiates hydrolysis of the phospholipids pre-
sent in the fillet, but the anti-obesogenic effect of frozen stored
cod was more pronounced than fresh cod(113). Still, feeding
mice Western diets where meat from lean pork was exchanged
with stored frozen cod for 12 weeks lowered the n-6:n-3 ratio in
liver phospholipids and in erythrocytes(100). Concomitantly,
lower circulating levels of N-arachidonoylethanolamine and 2-
arachidonoylglycerol, the two major AA-derived endocannabi-
noids, were observed. The accompanied reduced adiposity in
cod-fed mice suggested that the content of marine n-3 PUFA is
sufficient to modulate endocannabinoid signalling and obesity
development in mice. The endocannabinoid receptor CBI is an
important regulator of appetite, and although not directly
shown, a reduced ratio of n-6:n-3-derived endocannabinoids
may also reduce appetite. The endocannabinoid receptor CBI is
suggested to influence gut permeability via interaction with the
gut microbiota, and may thus link the gut microbiota to adip-
osity(114). Comparison of the gut microbiomes of mice fed
Western diets with lean seafood or meat from lean terrestrial
animals revealed significant differences in the relative abun-
dance of operational taxonomic units belonging to the orders
Bacteroidales and Clostridiales(99). Based on functional ana-
lyses, it appeared that the gut microbiota in seafood-fed mice
had higher capacity for amino acid transport and biosynthesis of
tyrosine and phenylalanine. The gut microbiota in meat-fed
mice appeared to have higher capacity for lysine degradation
and had higher abundance of genes involved in the pentose
phosphate and glucoronate pathways. Further, intake of taurine
has been demonstrated to reduce the abundance of Proteo-
bacteria, especially Helicobacter and increase SCFA content in
faeces(115). Intake of non-digestible carbohydrates may lead to
production of SCFA, mainly acetate, propionate and butyrate,
that may enter the systemic circulation and counteract obesity in
both rodents and humans(116). However, the importance of the
gut microbiota in mediating the anti-obesogenic effect of lean
seafood in animal studies is not yet known. Based on findings
from animal studies, potential mechanisms linking intake of
lean seafood to effects on energy intake and metabolism are
presented in Fig. 2.
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Observational data with seafood intake and development
of type 2 diabetes

As mentioned earlier, the large prospective cohort study by
Smith et al.(23) (>120 000 participants) showed that over time
higher intake of seafood, chicken fillet without skin and plain-
or artificially sweetened yoghurt was associated with reduced
body weight(23). It is generally accepted that obesity is posi-
tively associated with the development of insulin resis-
tance(117,118), which may progress to T2D. In obese subjects
who develop insulin resistance and T2D, adipose tissue dys-
function may be one underlying mechanism(119). Thus, if sea-
food intake can prevent obesity, there is also a rationale for
seafood intake to prevent insulin resistance, yet the potential
impact of seafood consumption on the development of insulin
resistance and T2D is not fully clarified.
In prospective cohort studies the results are inconclusive as

fish intake in general has been associated with reduced fasting
plasma glucose in participants from Cyprus(120), with lower risk
of T2D in Japanese men, but not women(121), and with lower
incidence of T2D in Chinese women(122). Intake of lean fish, but
not fatty fish, was found to have beneficial effects on metabolic
syndrome components(22) and T2D(123) in Norwegians. Non-
fried fish consumption was associated with lower incidence of
the metabolic syndrome in American adults(124). Intake of total,
lean and fatty fish was found to be beneficial for reducing the
risk of T2D, whereas shellfish increased the risk in participants
from England(125). Intake of shellfish and fried fish was also
associated with increased risk of T2D in men from Sweden(126).
Other results from prospective cohort studies indicate that
higher seafood intake in general did not prevent the

development of T2D(126), or was even associated with moder-
ately increased incidence of T2D(127–129).

Some of the discrepancy in the varying outcomes from the
different prospective cohort studies might be related to geo-
graphical differences since meta-analysis of prospective studies
performed in Western countries found positive associations
(USA) or no associations (Europe), whereas analysis of studies
performed in Eastern countries (Asia and Australia) found
inverse associations between seafood consumption and risk of
T2D development(130–132). However, it is also likely that some
of the discrepancy in the different prospective cohort studies is
caused by the use of semi-quantitative FFQ that may cause
erroneous food intake reporting. Further, differences in intake
of fish v. other protein sources related to cultural dietary habits
and meal compositions, use of condiments as well as total
energy intake probably differ between Western and Eastern
populations. Additionally, an ecological study including forty-
one countries with different sociodemographic characteristics
reported between diabetes, obesity and total fish and seafood
consumption showing that the prevalence of T2D increased
significantly with obesity in countries with low seafood con-
sumption, and further that a high intake of fish and seafood was
associated with reduced risk for diabetes in countries with a
high prevalence of obesity(133). It is also possible that pre-
paration methods of the fish or dietary contaminants in fish may
influence the relationship(126,134). It should, however, be men-
tioned that an unbiased assessment of dietary intake has been
used in some recent studies by analysing multiple biomarkers in
blood and associated the levels of these biomarkers with glu-
cose tolerance status and, furthermore, used measurements of
such biomarkers for the prediction of T2D. For example, in the
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Fig. 2. Potential mechanisms by which seafood intake may influence energy intake and metabolism based on data from animal studies. BA, bile acids; LA, linoleic
acid; AA, arachidonic acid; AEA, N-arachidonoylethanolamine; 2-AG, 2-arachidonoylglycerol; FXR, farnesoid X receptor; TGR5, bile acid membrane receptor (also
known as Gpbar1); CB1, cannabinoid receptor type 1.
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study by Savolainen et al.(135), use of multiple biomarkers
indicated that a higher consumption of fatty fish, whole grains
and vegetable oils was associated with better glucose tolerance
and reduced risk of T2D.

Acute effects of fatty fish intake on postprandial glucose
metabolism

The development of insulin resistance and T2D often takes
several years. It is therefore very difficult, not to say impossible,
to perform RCT to study how specific dietary patterns influence
the development of these metabolic disorders. Rather it is
common practice to study the impact of diets on markers of
glucose metabolism and insulin sensitivity such as serum con-
centrations of glucose or insulin. One cross-over study with
healthy, overweight Swedish men (aged 41–67 years; n 17)
compared the acute effect of ingesting 150 g of pickled or baked
herring with 150 g of baked beef in complex test meals(136). The
test meals were balanced in relation to fat and protein intake,
but not to carbohydrates in the case of pickled herring. Com-
pliance regarding PUFA changes in plasma was good. The
postprandial insulin response was equal after intake of baked
herring and baked beef, but higher after the pickled herring
meal, likely reflecting the higher carbohydrate content in this
meal (81 v. 47 g in the two other meals)(136).

Frequent high intake of fatty fish and effects on insulin
sensitivity

Several RCT have tested the effect of a frequent intake of sea-
food on markers of glucose regulation and insulin sensitivity
(Table 2). Intake of one daily fatty fish meal in combination
with light or moderate exercise was studied in Australian
overweight T2D subjects (aged 30–65 years) who were not
taking insulin(137). The daily fish intake varied depending on the
endogenous fat content of the chosen fish species (Greenland
turbot/halibut about 200 g/d, canned salmon about 54 g/d,
canned tuna about 102 g/d and canned sardines about 106 g/d),
and was dosed to provide 3·65 g n-3/d. After 8 weeks’ inter-
vention, individuals with an intake of one daily meal with fatty
fish exhibited significantly elevated levels of glycated Hb
(HbA1c) and self-reported blood glucose, but moderate exer-
cise in combination with fatty fish improved glycaemic control
more than exercise alone did(137). In a later study from the same
group, the effect of daily intake of the same type and amounts
of fatty fish was studied for 16 weeks in Australian overweight
patients that suffered from and were medicated for hyperten-
sion(30). Consumption of fatty fish was examined independently
and in combination with weight loss. Even though the differ-
ences did not reach statistical significance, daily intake of one
meal with fatty fish for 16 weeks slightly elevated fasting blood
glucose and insulin concentrations, as well as AUC following a
75 g oral glucose tolerance test as compared with the control
group. In contrast, the combination of daily fatty fish intake and
weight loss was more efficient in improving glucose metabolism
than weight loss alone(30).

In a randomised parallel pilot trial, thirty-five overweight and
obese Spanish T2D patients (not taking insulin or antidiabetic
drugs) consumed or did not consume 100 g sardines/d for 5 d
per week for 6 months(138). Both the control (standard diabetes
diet, no sardines) and the sardine group (standard diabetes diet
+ 100 g sardines/d) reduced fasting insulin concentration and
homeostasis model of assessment insulin resistance (HOMA-IR)
to comparable levels. The blood level of HbA1c was sig-
nificantly reduced in the control group, and tended to be
reduced (P= 0·08) in the sardine group(138).

The effects of daily intake of 150 g rainbow trout farmed
either on marine ingredients or with a high content of vegetable
ingredients were compared with the daily intake of 150 g
chicken fillet in sixty-eight healthy Danish men (aged 40–70
years) in a randomised, parallel 8-week study. No diet effect
was found on fasting glucose or insulin concentrations or on
HOMA-IR(139). Another study compared the effect of eating
125 g farmed salmon daily for 4 weeks with no fish consump-
tion for another 4-week period (control period) in forty-eight
healthy Scottish adults (aged 20–55 years). There was no sig-
nificant effect of daily salmon consumption on fasting glucose
or insulin levels, or on HOMA-IR(140).

The effect of consuming 80g oily fish/d five times per week
was investigated in a randomised, parallel, 8-week intervention
study with 126 adult Chinese women (aged 35–70 years) with
baseline high serum TAG levels(141). The women ingested Nor-
wegian farmed salmon, herring or Chinese farmed pompano, or
a mixture of commonly eaten meats (pork/chicken/beef/lean
fish). After 8 weeks, no diet effect was observed on fasting serum
glucose and insulin concentrations or on HOMA-IR(141).

In an American randomised cross-over study with 4-week
diet periods and 4–8 weeks washout periods, nineteen healthy
men (n 8) and women (n 11), aged 40–65 years, consumed 90,
180 or 270 g of farmed salmon two times/week(142). After 4-
week diet periods, no diet effect was observed on fasting glu-
cose or insulin concentrations or on HOMA-IR. All these trials
showed good compliance regarding expected changes in n-3
PUFA levels from pre- to post-intervention according to the
intervention groups.

Animal trials with fatty seafood and potential mechanisms
of actions

As mentioned above, replacement of fish oil with vegetable oil
in salmon feed influences the metabolic effect of the salmon on
mice. In particular, the reduced ratio of n-3:n-6 PUFA in the fish
feed, when fish oil was exchanged with soyabean oil, was
reflected in the n-3:n-6 ratio in the salmon, and hence also in
the mouse diets. This was associated with increased adiposity,
whole-body insulin resistance and hepatic steatosis in mice fed
feed containing the farmed salmon(66). It was suggested that the
low n-3:n-6 PUFA ratio led to a lower ratio between n-3- and
n-6-derived oxylipins and this might underlie the observed
marked metabolic differences. It is not fully elucidated whether
a causal link exists between non-alcoholic fatty liver disease
(NAFLD) and insulin resistance, but their often co-occurrence
and strong links to inflammation are well documented(143,144).
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Marine n-3 PUFA efficiently attenuate high-fat diet-induced
insulin resistance and NAFLD in rodents, and this may be
directly linked to their ability to attenuate obesity development
as well as low-grade inflammation(145,146). It has been suggested
that n-3 PUFA mediate their anti-inflammatory and insulin-
sensitising effect via activation of the GPR120 receptor/
FFAR4(147). However, conflicting reports suggesting that
GPR120/FFAR4 may not be the sole effector have
emerged(148,149), and a number of additional mechanisms
probably play a role.
Marine n-3 PUFA may replace AA in phospholipids and

thereby influence the oxylipin profile. Oxylipins are a broad
group of oxygenated polyunsaturated lipids that include the
twenty-carbon eicosanoids (PG, leukotrienes and thrombox-
anes) as well as a number of alcohols, ketones, epoxides and
diols. Marine n-3 PUFA released from liver phospholipids may
also be converted into other n-3-derived lipid mediators such
as endocannabinoids and eicosanoids that potentially may
attenuate the development of both NAFLD and insulin resis-
tance(150,151). For instance, resolvin D1 has been reported to
improve insulin sensitivity in obese diabetic mice, and resol-
vin E1 and protectin D1 are reported to have both insulin-
sensitising and anti-steatotic effects(152,153). Compared with
mice fed salmon with a low content of marine n-3 PUFA,
increased content of marine n-3 PUFA in the salmon led to
lower levels of oxylipins derived from AA and higher levels of
those derived from EPA and DHA in the liver(66). Incorpora-
tion of marine n-3 PUFA from mouse feed containing salmon
into phospholipids in the liver of mice ingesting the feed
furthermore leads to reduced substrate availability for endo-
genous endocannabinoid synthesis(26,66), representing an
additional mechanism by which the n-3:n-6 ratio PUFA can
influence the development of hepatic steatosis and insulin
resistance.
Different types of fatty acids have also different capacities to

activate Toll-like receptors (TLR), and altered macrophage
polarisation is suggested as a mechanism by which marine n-3
PUFA alleviate obesity-induced inflammation and insulin resis-
tance(154). It has been reported that reduced TLR activation,
reduced white adipose tissue inflammation, and improved
insulin sensitivity in mice fed marine n-3 PUFA, compared with
mice fed lard, may in part be attributed to differences in
microbiota composition(71). The importance of the gut micro-
biota in the development of insulin resistance is now recog-
nised, but it is not yet clear to what extent the composition and
function of the gut microbiota can be modulated by fatty fish.
Using the ‘gold standard’ euglycaemic–hyperinsulinaemic

glucose clamp, Lindqvist et al.(59) demonstrated that inclusion
of herring oil, but not herring mince or herring press juice, into a
high-energy diet prevented insulin resistance in rats. This
finding indicated that the lipid content of herring was respon-
sible for the beneficial effect. Using the same technique, results
from our laboratory demonstrated that adult male rats exposed
to crude, but not refined, salmon oil developed insulin resis-
tance(155). Fat-soluble environmental pollutants known as POP
are present in fatty fish, and there has been growing concern
regarding their potential role in the development of T2D(17). We
have previously observed that POP of marine origin accumulate

in adipose tissue concomitant with the development of obesity
and insulin resistance in mice fed farmed Atlantic salmon(60).
However, mice fed a high-fat diet containing both protein and
fat from whale were leaner and more insulin sensitive than
control casein-fed mice, despite a high accumulation of POP in
adipose tissue(156). Additionally, when the levels of poly-
chlorinated biphenyls and dichlorodiphenyltrichloroethane
(DDT) were reduced by 50% in salmon fillets by partial
replacement of fish oil with vegetable oils in the salmon feed,
we observed aggravated insulin resistance and hepatic lipid
accumulation(64). Further, exposing mice to four of the most
abundant POP found in fatty fish, either as single compounds or
mixtures, had no effect on obesity development, glucose tol-
erance or insulin sensitivity(157). Still, this study demonstrated
that the dietary composition of macronutrients profoundly
modulates POP accumulation, an important parameter that
needs to be to be included in future studies.

Acute effects of lean seafood intake on postprandial
glucose metabolism

In an acute test meal study, Soucy & LeBlanc(158) served healthy
Canadian adults either 125 g (n 8) or 250 g (n 7) of cod fillet or
beef in a cross-over design. After the 125 g meals, plasma
insulin concentration, concentrations of several amino acids
and total amino acids, and carbohydrate oxidation were higher
180 min after intake of beef as compared with intake of the cod
meal. These differences were not observed after the 250 g
meal(158). As lean seafood contains more water than terrestrial
meat, consuming fillets of the same weight will result in a higher
protein intake from the terrestrial meat. Thus, Soucy &
LeBlanc(159) performed another study in healthy adults, in
which they compared either 43 g protein from cod fillet (250 g
cod) or beef (195 g beef), or 250 g of cod or beef fillet (equal to
43 g cod protein and 55 g beef protein)(159). At both protein
doses, the postprandial amino acid response and oxygen con-
sumption were higher after the beef meals as compared with
after the cod fillet intake, indicating differences in energy
metabolism following the two meals. No significant difference
was found for postprandial insulin concentration. In both stu-
dies, the meals consisted of only cod fillet or beef (i.e. no car-
bohydrates) and the postprandial plasma glucose remained at
the pre-meal levels(158,159).

Recently, we compared the postprandial glucose metabolism
after consumption of complete test meals (2012 kJ; 25·5, 33·5
and 41%E from protein, fat and carbohydrate, respectively)
with either 115·5 g cod fillet or 100 g veal in overweight adults
(n 21). We observed no difference in postprandial concentra-
tions of glucose, lactate, insulin or C-peptide following inges-
tion of meals with cod or veal(87). The acute meal effect of cod
has also been compared with non-meat protein sources. In one
test meal study, healthy women (n 17) received three test meals
(2300 kJ; 33, 26 and 41%E from protein, fat and carbohydrate,
respectively) with 45 g protein as cod fillet, cottage cheese (milk
protein), or soya protein isolate. Ingestion of the cod protein
meal resulted in higher postprandial AUC for glucose
(0–120 min), and lower serum insulin:glucose and insulin:C-
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peptide ratios, as compared with the cottage cheese meal,
suggesting that different protein sources affect glucose and
insulin metabolism differently(160). In obese, non-diabetic adults
(n 11) ingestion of high-energy, high-fat (about 4920 kJ; 15, 66
and 19%E from protein, fat and carbohydrate, respectively)
liquid test meals resulted in lower postprandial glucose and
higher insulin concentrations after consumption of 45 g whey
isolate as compared with after intake of 45 g cod fillet, gluten or
casein(161). Thus, even though the acute postprandial effect of
test meals containing cod on glucose metabolism has been
tested under varying settings, the general picture is that minor
differences in postprandial concentrations of insulin and glu-
cose are found comparing red meats with cod, whereas milk
proteins, in particular whey, induce a higher postprandial
insulin response leading to reduced postprandial glucose con-
centrations as compared with the intake of cod.
After a meal, gut incretin hormones are secreted and promote

postprandial insulin secretion and regulate glucagon secretion,
and the interest in selective glucagon-like peptide-1 (GLP-1)
receptor agonists for the treatment of T2D and obesity has
increased(162). Secretion of GLP-1 from the intestine, together
with secretion of cholecystokinin (CCK) from duodenal cells,
will also participate in mediating satiety signals. High-protein
diets are suggested to increase satiety, partly by inducing
secretion of incretins, and different protein sources may affect
secretion of GLP-1 and CCK differently(163,164). As mentioned
above, whey protein intake induces a high postprandial insulin
response, probably due to a rapid increase in postprandial
amino acids, including branched-chain amino acids, known to
induce insulin secretion(165). Whey is also known to induce
postprandial increased levels of GLP-1 and gastric inhibitory
peptide (GIP). Furthermore, amino acids and peptides from
whey digestion are suggested to inhibit dipeptidyl peptidase 4,
thereby prolonging signalling through GLP-1 and GIP by pre-
venting their degradation(165). Protein from cod is reported to be
less effective than pea protein and wheat protein in increasing
CCK and GLP-1 release in human duodenal tissue(166). Whether
seafood protein is more effective than proteins from terrestrial
animals to induce secretion of incretins is to our knowledge not
known, but a fish protein hydrolysate has been reported to
stimulate secretion of both GLP-1 and CCK(167). Slightly over-
weight (25 kg/m2 ≤ BMI < 30 kg/m2) subjects (n 109) between
18 and 55 years were subjected to a mild hypoenergetic
(−300 kcal/d; –1255 kJ/d) diet and randomised to receive 1·4 or
2·8 g fish protein hydrolysate from blue whiting or whey protein
as placebo for 90 d. The serum levels of CCK and GLP-1 were
measured after 45 and 90 d. Compared with placebo, both the
1·4 and 2·8 g fish protein hydrolysate dose increased CCK and
GLP-1 levels at both time points. This was accompanied with
reduced body weight, fat mass, as well as reduced waist, thigh
and hip circumferences(167).

Frequent high lean seafood intake and effects on insulin
sensitivity

The effect of frequent lean seafood intake on glucose regulation
and insulin sensitivity has also been studied (Table 2). In

randomised controlled 4-week intervention studies with a cross-
over design, a high proportion (69–75%) of the daily protein
intake (18–20%E protein) was given as either lean seafood or as
lean non-seafood sources (primarily lean meats). From these
studies, it was shown in Canadian men and postmenopausal
women that daily inclusion of lean fish fillets for 28 d, at the
expense of other animal protein sources, resulted in elevated
serum sex hormone-binding globulin(168,169) as well as higher
HDL2-cholesterol concentrations(168,170). Under similar study
settings, these differences were not found in premenopausal
women in whom rather a decrease in serum TAG level
was observed(171). As elevated serum concentrations of HDL2-
cholesterol and sex hormone-binding globulin and reduced
serum TAG levels are associated with improved insulin sensi-
tivity(172,173), these observations support that a frequent high
intake of lean fish, as compared with frequent high lean meat
intake, might improve insulin sensitivity in adults. In line with
these observations, improved insulin sensitivity was confirmed
by the hyperinsulinaemic clamp technique in Canadian men
and women who were insulin resistant at start of the interven-
tion, but had significant improvement in insulin sensitivity by
ingesting cod daily for 4 weeks (58–68% of daily protein intake)
as compared with intake of a lean meat-based diet(174).

We have shown in Norwegian healthy men and women that
a high (60% of total protein) daily intake of lean seafood for
4 weeks reduced postprandial concentrations of C-peptide and
lactate, without affecting glucose or insulin concentrations as
compared with an equal amount of non-seafood diet (mainly
lean meats)(76). Moreover, we also found reductions in fasting
and postprandial concentrations of TAG, medium-sized VLDL
particles and the TAG:HDL-cholesterol ratio(76,77). As elevated
concentrations of C-peptide(175) and lactate(176,177), as well as an
increased TAG:HDL-cholesterol ratio(178,179), may be useful
predictors of dysregulated glucose metabolism and/or early
markers of insulin resistance, our data are in line with the
above-mentioned observations that a frequent high intake of
lean seafood may prevent, and possibly reverse, insulin resis-
tance relative to a frequent high intake of meat-based diets.

Animal trials with lean seafood and potential mechanisms
of actions

From studies with rats, it has been shown that both cod and
soya protein feeding resulted in reduced fasting and post-
prandial glucose and insulin responses, as well as improved
peripheral insulin sensitivity, relative to rats fed the milk protein
casein(180). In follow-up studies with a high-fat, high-sucrose
diet, cod protein feeding, as compared with soya protein and
casein feeding, prevented rats from developing skeletal muscle
insulin resistance(181) by normalising skeletal muscle insulin-
stimulated phosphoinositide 3-kinase activity and downstream
protein kinase B (Akt) signalling and by improving translocation
of GLUT4 to cell-surface membranes(182). The above-mentioned
rat studies(180–182) were performed with diethyl ether-extracted
cod fillets to remove the small amount of endogenous fat pre-
sent in the cod fillets. It is therefore tempting to speculate that
the cod protein fraction, or molecules present in the protein
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Table 2. Randomised controlled trials (RCT) with fatty and lean fish on insulin sensitivity

Author Subjects Health Design Background diet Intervention meals Duration Results

Dunstan et al. (1997)(137) n 49
37 M
12 F
Mean age: 53 (SD 7·7)

years
Age range: 30–65 years

Type 2 diabetes (no insulin)
Mean BMI: 29·6 (SD 3·5)

kg/m2

RCT, parallel 4 weeks baseline
period – normal
diet

(1) Fish + moderate
exercise

(2) Fish and + light
exercise

(3) No fish +
moderate exercise

(4) Control (no fish +
light exercise)

Fish: 7 d/week
(turbot, sardines,
tuna,
salmon)=3·65 g n-
3 PUFA/d

8 weeks Fish groups elevated
levels of glycated
Hb and blood
glucose compared
with controls

Mori et al. (1997)(30) n 63
42 M
21 F
Mean age: 54·1 (SD 1·8)

years
Age range: 40–70 years

Hypertension
Mean BMI: 31·6

(SD 1·05) kg/m2

RCT, parallel 4 weeks baseline
period – normal
diet

(1) Control (weight-
maintaining diet)

(2) Fish (weight-
maintaining diet +
fish daily)

(3) Weight loss
(energy-restricted
diet)

(4) Fish + weight loss
(energy-restricted
diet + fish daily)

Fish: 7 d/week
(turbot, sardines,
tuna,
salmon)=3·65 g n-
3 PUFA/d

16 weeks Fish + weight loss
group improved
glucose and insulin
metabolism

Balfego et al. (2016)(138) n 32
14 M
18 F
Mean age: 60·6 (SEM 2·1)

years
Age range: 40–70 years

Type 2 diabetes (no insulin)
Mean BMI: 29·7 (SEM 0·9)

kg/m2

RCT, parallel, pilot 2 weeks lead-in
period

(1) Control (standard
diet, no sardines)

(2) Sardine (standard
diet + sardines
100 g for 5 d per
week)

6 months Both groups reduced
fasting insulin +
HOMA-IR to
comparable levels
(NS group
differences).
Glycated Hb
reduced in the
control group

Hallund et al. (2010)(139) n 68
68 M
Mean age: 53 (SD 8·3)

years
Age range: 40–70 years

Healthy
Mean BMI: 24·7 (SD 2·3)

kg/m2

RCT, parallel Normal diet (1) Farmed trout –
marine diet

(2) Farmed trout –
vegetable diet

(3) Chicken 150 g for
3–4 d per week

8 weeks NS diet effects on
fasting glucose,
insulin or HOMA-IR

Zhang et al. (2012)(141) n 126
126 F
Mean age: 55·8 (SD 6·7)

years
Age range: 35–70 years

Hypertriacylglycerolaemia
Mean BMI: 26·7 (SD 3·3)

kg/m2

RCT, parallel 2 weeks run-in
(normal diet)

(1) Salmon
(2) Herring
(3) Pompano
(4) Control (meat).

Fish/meat: 80 g for
5 d per week

8 weeks NS diet effects on
fasting glucose,
insulin or HOMA-IR
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Table 2. Continued

Author Subjects Health Design Background diet Intervention meals Duration Results

Raatz et al. (2013)(9) n 19
8 M
11 F
Mean age: 51·6 (SEM 1·5)

years
Age range: 40–65 years

Healthy
Mean BMI: 29·2 (SEM 0·6)

kg/m2

BMI range: 25–35 kg/m2

RCT, cross-over Normal diet Different doses of
farmed salmon: 90,
180, 270 g 2 x/
week

3 × 4 weeks, 4–
8 weeks
washout

NS diet effects on
fasting glucose,
insulin or HOMA-IR

Jacques et al. (1992)(169) n 15
15 F
Mean age: 62·5 (SEM 0·3)

years
Age range:

53–79 years

Healthy
Postmenopausal
Mean BMI: 26 (SEM 1) kg/m2

RCT, cross-over Pre-experimental diet
(similar to normal
diet)

(1) Lean white fish
(cod, sole,
haddock, halibut,
pollock)

(2) Non-fish (lean
beef, pork, egg,
milk)

70–75% of daily
protein replaced
with protein from
the intervention
meals

2 × 4 weeks,
5 weeks
washout

Elevated serum sex
hormone-binding
globulin and higher
HDL-cholesterol in
lean fish compared
with non-fish group
(related to
improved insulin
sensitivity)

Lacaille et al. (2000)(168) n 11
11 M
Age range: 19–27 years

Healthy
Mean BMI: 24·0 (SEM 1·0)

kg/m2

RCT, cross-over Pre-experimental diet
(similar to normal
diet)

(1) Lean fish (cod and
sole)

(2) Non-fish (lean
beef, pork, veal,
eggs, skimmed
milk, milk products)

2 × 4 weeks,
5 weeks
washout

Elevated serum sex
hormone-binding
globulin and higher
HDL-cholesterol in
lean fish compared
with non-fish group
(related to
improved insulin
sensitivity)

Gascon et al. (1996)(171) n 14
14 F
Mean age: 22·4 (SEM 0·9)

years

Premenopausal
Mean BMI: 22 (SEM 1·0)

kg/m2

RCT, cross-over Pre-experimental diet
(similar to normal
diet)

(1) Lean fish (cod and
sole)

(2) Non-fish (lean
beef, pork, veal,
eggs, skimmed
milk, milk products)

2 × 4 weeks,
5 weeks
washout

No effects on insulin
sensitivity

Aadland et al. (2016)(76) n 20
7 M
13 F
Mean age: 50·6 (SEM 3·4)

years

Healthy
Mean BMI: 25·6 (SEM 0·7)

kg/m2

RCT, cross-over 3 weeks run-in period
with diet in
accordance with
Norwegian
recommendations

(1) Lean seafood 7 d/
week

(2) Non-seafood 7 d/
week

Fish: cod, pollock,
saithe, scallops

2 × 4 weeks,
5 weeks
washout

Reduced
postprandial
C-peptide +
lactate, no effect on
glucose + insulin
concentrations in
seafood compared
with non-seafood
group, but
reduction in TAG
(early markers of
improved insulin
sensitivity)

M, male; F, female; HOMA-IR, homeostasis model of assessment insulin resistance.
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fraction, may prevent the development of insulin resistance
and T2D.
This protective effect may not be restricted to cod as it has

also been demonstrated that protein from sardines attenuates
fructose-induced insulin resistance, obesity and accompanying
inflammation in adipose tissue in rats(183). However, in an
experiment where rats were fed hydrolysed proteins from either
bonito, herring, mackerel or salmon in a high-fat, high-sucrose
diet, neither of the hydrolysed fish protein sources influenced
glucose tolerance compared with casein(184). Still, using the
hyperinsulinaemic–euglycaemic clamp technique, it was
demonstrated that hydrolysed proteins from salmon prevented
high-fat, high-sucrose-induced whole-body insulin resistance.
Further, compared with casein-fed rats, rats fed hydrolysed
salmon as well as hydrolysed bonito, herring and mackerel had
lower expression of inflammatory markers in white adipose
tissue. Of note, however, only hydrolysed salmon protein led to
reduced white adipose tissue mass(184).
Compared with mice fed lean seafood, we have observed

impaired glucose tolerance and mild insulin resistance in mice
fed Western diets with lean meat from terrestrial animals(99).
The observed changes in microbiota tyrosine and phenylala-
nine metabolism might be of relevance, as increased fasting
plasma concentrations of the aromatic amino acids are asso-
ciated with the development of insulin resistance and T2D(185).
Further, an increased capacity for production of branched-chain
amino acids (BCAA) in the gut microbiota and increased plasma
levels of BCAA have also been shown to be associated with
insulin resistance(186). Still, the link between the gut microbiota,
circulating amino acids and the development of insulin resis-
tance is far from understood.
Evidently, reduced fat accumulation and thereby reduced infil-

tration of pro-inflammatory macrophages may, at least in part,
explain why the development of insulin resistance is attenuated by
inclusion of some dietary fish proteins. However, other mechan-
isms may also be involved. In rats, at least cod protein appears to
prevent the development of insulin resistance in muscle inde-
pendent of adipose tissue mass(180,182), and insulin-stimulated
glucose uptake has been stimulated in L6 myocytes exposed to a
cod-derived amino acid mixture(181), indicating a direct effect of
these amino acids on glucose uptake activated by insulin. Further,
a higher dietary content of the amino acids arginine, glycine,
taurine and lysine as found in cod protein has previously been
associated with anti-inflammatory effects in rats(187).

Studies comparing frequent intake of lean and fatty fish on
regulation of glucose metabolism

A few studies have compared the intake of lean fish v. fatty fish
in relation to glucose metabolism. One RCT investigated the
effect of consuming two portions/week of white fish (cod,
prawns, fishcakes, canned tuna) or fatty fish (salmon, mackerel,
salmon fishcakes, canned salmon) for 24 weeks in overweight
and obese UK men and women aged 35–65 years(188). Com-
pliance was evaluated and changes in fatty acid status corre-
lated well with dietary intake. There was no significant diet
effect on fasting plasma glucose and insulin concentrations, or

on plasma measures following a 75 g oral glucose tolerance
test(188). In a Swedish randomised study with cross-over design,
eight women and eight men, aged 37–75 years and diagnosed
with T2D, consumed daily diets with lean or fatty fish for two
consecutive 3·5-week diet periods(189). Compliance was
accounted for, and linoleic acid measured in plasma increased
following intake of the n-6 diet, and plasma n-3 PUFA increased
following intake of the fatty fish diet. The participants did not
receive insulin treatment, but thirteen of the sixteen participants
were treated with oral antidiabetic drugs. Following the lean
fish diet period, fasting blood glucose was reduced, and fasting
serum C-peptide tended to be reduced, as compared with after
the fatty fish diet period. Moreover, following a breakfast meal,
the postprandial glucose AUC was reduced, and the insulin
AUC was increased after the lean fish period, as compared with
after the fatty fish diet period(189). In a Norwegian parallel-arm
pilot study with free-living young subjects (20–35 years of age)
who were supplied with 750 g/week (150 g portions 5 d/week),
the dietary effects of cod (n 13), farmed salmon (n 14) or
chicken fillet without skin (n 11) were compared for 4 weeks of
intervention(190). No significant differences were found
between diet groups on fasting and postprandial glucose,
insulin or C-peptide concentrations following ingestion of a
standardised breakfast meal (1905 kJ; 8 g fat, 8 g protein and
85 g carbohydrates) at baseline and after 4 weeks of interven-
tion. A similar study design was used in a second study by
Helland et al.(191) with 750 g fish/week (150 g portions 5 d/
week) administered to free-living, healthy, overweight Norwe-
gian adults (18–69 years). The trial was performed over a period
of 8 weeks with three parallel intervention arms including a lean
fish group (n 22; cod), a fatty fish group (n 23; farmed salmon)
and a control group (n 20; no fish). The results from the primary
outcome measures, serum postprandial glucose concentration,
showed that high intake of fatty fish, but not lean fish, reduced
postprandial glucose at 90 and 120 min after a standardised test
meal. The postprandial C-peptide concentration was sig-
nificantly reduced at 120 min after the test meal in the fatty fish
group only. Analyses of fatty acids composition showed good
compliance.

Seafood intake and C-reactive protein

Low-grade inflammation may be one underlying mechanism of
metabolic disease, and C-reactive protein (CRP) is an acute-
phase protein whose elevated circulating level has been asso-
ciated with poor glycaemic control(192,193), development of
T2D(194,195) and mortality in T2D(196). Two intervention studies
have reported reduced CRP levels after seafood intake, one
cross-over study in insulin-resistant subjects comparing 4-week
diet periods with cod or non-fish diets(197), and one multi-
centre, parallel, randomised controlled intervention study in
which participants received dietary advice alone or in combi-
nation with 150 g fish twice weekly; 300 g salmon/week or
300 g cod/week for 6 months(198). Moreover, in a Greek cross-
sectional study, reduced levels of inflammatory markers were
reported in individuals consuming > 300 g of fish/week as
compared with non-fish consumers(199).
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By contrast, in other intervention studies with fatty fish such
as herring(141,200), sardines(138), farmed salmon(140–142), farmed
trout(139), a mixture of fatty fish species(201) or fatty (farmed
salmon) and lean (cod)(190) no changes in CRP concentrations
were observed.
A CRP concentration >3mg/l is associated with an increased

OR for developing T2D(194). In older Australians consuming
either a diet rich in fatty fish or a non-fish diet, a secondary
analysis revealed that the participants with baseline CRP levels
>3mg/l increased their CRP values after the meat-based non-
fish diet as compared with after the fatty fish diet(201). Thus,
these results indicate that a high fish intake may in some cases,
but not all, be beneficial to reduce CRP levels in subjects.

Seafood intake and adiponectin

Adiponectin is a signalling molecule secreted from adipocytes
that have anti-inflammatory and insulin-sensitising properties.
Low circulating adiponectin levels are a risk marker of incident
prediabetes(202), and higher adiponectin levels are associated
with reduced risk of T2D(203). The adiponectin level is increased
by activation of PPAR-γ, which is, among others, activated by
PUFA(204). Intervention studies with fatty fish rich in marine n-3
PUFA, such as farmed salmon(140,141,190), herring and farmed
Chinese pompano(141), and sardines(138) consistently increased
adiponectin concentration. In contrast, intervention studies with
lean seafood, less rich in marine n-3 PUFA, did not elevate the
adiponectin level(76,190,197). Thus, based on available data, only
intake of fatty seafood is associated with an increased
adiponectin level.

Future perspectives for intervention studies

A common drawback in relation to most randomised clinical
trials and dietary intervention trials in general is the study
design with primary endpoints and outcomes in relation to all
participants in each arm of the study, with no stratification
between responders and non-responders. While the impor-
tance of personalised or stratified medical treatment now
receives considerable attention and large programmes are
being pursued in many countries, the intervention studies
discussed in the present review did not consider stratification
in relation to possible responders and non-responders in the
examined groups except for differences between males and
females. While genetic background including specific single
penetrant polymorphisms or mutations for long has been
known to profoundly affect the response to intake of certain
dietary components such as phenylalanine and lactose, the
importance of the gut microbiota in relation to metabolic
responses to dietary intake has only recently been convin-
cingly documented(205). Until now official dietary advice has
also in general been based on the belief that one size fits all,
neglecting the inter-individual variabilities in dietary respon-
ses. A seminal article published in 2015 demonstrated the
power of personalised dietary recommendation based on the
composition and functional potential of the gut microbiota(39).
Since then it has been demonstrated how dietary metabolic

responses in relation to risk factors for CVD and T2D show
inter-individual variability, and that responses to certain
changes in lifestyle vary between individuals(205). All this calls
for a re-evaluation of how to design and interpret intervention
studies, which in the future should combine personalised
information on genetics, epigenetics, metabolomics and
metagenomics. This also implies the use of big data, the
development of novel machine learning algorithms, and
eventually the use of artificial intelligence. Thus, it is possible
that beneficial effects in response to previous dietary inter-
vention trials have been blurred by the study design, and that
reanalysis of available data using stratification according to
responders/non-responders would reveal more interesting
beneficial effects of specific diets to a subgroup of individuals
taking part in the intervention trials.

Conclusion

Overweight and obesity development is for most individuals
the result of years of positive energy balance. A growing
body of evidence from intervention trials and animal studies
suggests that a frequent intake of lean seafood, as compared
with intake of terrestrial meats, reduces energy intake typi-
cally in the range of 4–9 %, a reduction sufficient to prevent a
positive energy balance and obesity. The data from
lean seafood intake are largely in agreement with
observational data.

Regarding the intake of fatty fish, observational data from one
study indicate that intake of fatty fish was associated with
increased body weight. Data from intervention trials or animal
studies do not support the observational data linking a high
fatty fish intake to body weight gain. During weight reduction,
i.e. energy restriction, intake of both lean and fatty seafood may
increase body-weight loss. Intake of marine n-3 PUFA is
probably of importance for reduced fat mass, possibly through
n-3 PUFA-derived signalling molecules like endocannabinoids
and oxylipins.

As with obesity, the development of insulin resistance and
T2D normally occurs over many years. The majority of data,
both from interventions and from animal studies, suggest that a
frequent intake of lean seafood as compared with intake of
terrestrial meats reduces both fasting and postprandial risk
markers of insulin resistance, as well as improving insulin
sensitivity in already insulin-resistant adults. The exception is
shellfish and fried lean fish, the intake of which is associated
with impaired glycaemic control. In healthy subjects, a high
intake of fatty fish appears to have neutral effect on fasting
markers of insulin sensitivity, but intake of fatty fish has been
reported to improve postprandial glycaemic control. A high
intake of fatty fish in subjects with diabetes or hypertension may
impair glycaemic control, unless combined with exercise or
weight reduction.

Intake of fatty fish increases plasma concentration of the
insulin-sensitising adipocyte-derived signal molecule adipo-
nectin. As compared with a high meat intake, high intake of
seafood has been reported to reduce the hepatic acute-phase
protein CRP plasma level in some, but not all studies.
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Further studies are needed to confirm the dietary effects on
energy intake, obesity and insulin resistance. In addition, future
studies should be designed to elucidate the potential con-
tribution of trace elements, vitamins and undesirables present in
seafood. Finally, we argue that stratification into responders and
non-responders in randomised clinical trials may improve the
understanding of health effects from intake of seafood in future
trials.
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