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Abstract

The age structure of a fish population has important implications for recruitment processes

and population fluctuations, and is a key input to fisheries-assessment models. The current

method of determining age structure relies on manually reading age from otoliths, and the

process is labor intensive and dependent on specialist expertise. Recent advances in

machine learning have provided methods that have been remarkably successful in a variety

of settings, with potential to automate analysis that previously required manual curation.

Machine learning models have previously been successfully applied to object recognition

and similar image analysis tasks. Here we investigate whether deep learning models can

also be used for estimating the age of otoliths from images. We adapt a pre-trained convolu-

tional neural network designed for object recognition, to estimate the age of fish from otolith

images. The model is trained and validated on a large collection of images of Greenland hal-

ibut otoliths. We show that the model works well, and that its precision is comparable to doc-

umented precision obtained by human experts. Automating this analysis may help to

improve consistency, lower cost, and increase the extent of age estimation. Given that ade-

quate data are available, this method could also be used to estimate age of other species

using images of otoliths or fish scales.

Introduction

Age of fish is a key parameter in age-structured fisheries-assessment models. Age is usually

considered as a discrete parameter (age group) that identifies the individual year class i.e. those

originating from the spawning activity in a given year [1]. An individual is categorized as age

group 0 from the first early larval stage, and all age groups increase their age at 1 January.

Assessment models typically express the dynamics of the individual year class from the age

when they recruit, through sexual maturation, reproduction, and throughout their life cycle

[2]. The models are fitted to data originating from commercial catches and fisheries-indepen-

dent surveys. A sampling program for a specific fish stock typically involves sampling through-

out the year using several different types of fishing gears.

Fish age is typically estimated using samples of individual fish. Since fish growth and age-

at-length varies in time and space (e.g., [3]), linked environmental variables such as
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temperature, food availability and morphology (e.g., fish length) cannot be reliably used as a

proxy for age. Instead, age is determined from a subset of individuals and usually used in con-

junction with length data, and information relating to the time and location of sampling [3].

The age is “read” from the annual zones in otoliths or fish scales. Although simple in principle,

age reading depends on the correct identification of zonation patterns that may consist of both

true annual zones, and zones representing other (unknown) temporal variation [1, 4]. The

process is time consuming, requires a trained eye, and is uncertain. This uncertainty can be

divided into accuracy and precision. Whereas reader precision and between-reader bias can be

assessed from age-readings, the bias of the age estimator is difficult to estimate but may be

assessed using a number of methods (e.g. radiochemical analyses, analysis of chemical tags, or

tag-recapture experiments [5]).

Methods to automatically read otoliths have been proposed, but to date none have proven

satisfactory. Fablet and Le Josse [6] investigated feature extraction from images of otoliths

using statistical learning techniques, including both neural networks and support vector

machines. They considered both biological features, including fish length, sex and catch date,

and geometrical features, including shape and the opaque and translucent zonation patterns.

Using both sets of features, they found that the models did not significantly improve predic-

tions when compared to using just biological data. Robertson and Alexander [7] found that

precision of predicting age of otoliths using neural networks from geometric features could be

improved by using biological features, but the results obtained from neural networks were less

precise than those obtained from experienced readers.

Convolutional neural networks

Artificial neural networks are computational structures inspired by biological neural networks

[8]. They consist of simple computational units referred to as neurons, organized in layers. The

neuron parameters (or weights) are estimated by training the model using supervised learning.

This process consists of two steps: i.) forward propagation, where the network makes a predic-

tion based on the input, and ii) back propagation, where the network learns from its mistake

by calculating the gradient of a loss function, and then uses the gradient to update the neuron

weights.

In recent years, neural networks have become widely successful, especially in the field of

image analysis. In 2016, the neural network designed by Krizhevsky et al. [9] was used to sub-

stantially improve the performance of an important benchmark task, object recognition, and

the results were subsequently improved on by more refined network architectures [10–12],

even to the point of rivaling human abilities. One important improvement was an increase in

the number of layers; this is often referred to as deep learning.

The most remarkable feature of deep learning neural networks is perhaps their generality.

With sufficient training data, they can be used to classify raw data (e.g. an array of pixels)

directly i.e. no explicit design of low-level features is necessary. The network’s lower layers

learn to distinguish between primitive features automatically, typically identifying sharp edges

or color transitions. Subsequent layers then learn to recognize more abstract features as combi-

nations of lower layer features, and finally merge this information to provide a high level classi-

fication. In a convolutional neural network (CNN), the layers are organized as a stack of

convolutions, applying the same filters across the whole image. An important advantage of this

approach is that the number of parameters to be learned is reduced, which again reduces the

amount of data and computation necessary for training.

Here we explore whether a CNN can be used to reliably estimate the age of an otolith from

an image. We implement a network architecture and train it on otolith images from Greenland
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halibut (Reinhardtius hippoglossoides). We then evaluate the precision of our classifier by com-

paring it to existing age estimates from human experts.

Methods and materials

Data collection and preprocessing

The data set consists of pre-existing images of otoliths from the Institute of Marine Research

(IMR, Bergen, Norway) image archive. Fish otoliths were collected and photographed as part

of the IMR data collection program for Greenland halibut on cruises between 2006 and 2017.

The otolith-derived age data constitutes an important input to the stock assessment program,

and represents a valuable source of historical information. The data set is comprised of 4109

images of otolith pairs and 657 images of single otoliths, totaling 8875 otoliths. As the present

study only investigated historical pre-existing data, and did not involve the collection of new

animals, ethics approval was not necessary.

The process of reading the otoliths from the images is described in Albert et al. [13]. The

images have a resolution of 2596 x 1944 pixels. During preparation and transportation, the

otoliths were sometimes damaged or lost, which resulted in only one of the two otoliths being

present. The images also varied in distance to object, lighting, and background. Examples of

image variation and damaged otoliths are shown in Fig 1.

The age of each otolith pair had previously been estimated by one of two expert readers

from the same lab (IMR facilities in Tromsø, Norway). The estimated age distribution for all

8875 images is shown in Fig 2. Until recently, there was no standardized method for the age

reading of Greenland halibut otoliths. But as a result of two International Council for the

Exploration of the Sea workshops [14, 15], two different methods were recommended, both of

which resulted in reasonably accurate age estimates. The age estimates in this study were based

on one of these methods, named the ‘whole right otolith’ method [13, 15, 16]. In a flatfish like

Greenland halibut, the growth patterns differ between the two otoliths. While the left otoliths

show a centric growth pattern, the right otoliths are clearly acentric. The longest growth axis

from the center to the edge is therefore found in the right otoliths. This longest growth axis

consistently shows more patterns attributable to annuli than any other growth axes of the

whole left or right otoliths [13, 16]. Since reader ID is not recorded for each otolith, there is

potential for reader-specific bias in the data.

Prior to the analysis, the images of the paired otoliths were split, resulting in separate

images of the left and right otoliths. Due to variation in the placement of the otoliths in the

original images, the new split images were reviewed and the split adjusted manually. The hori-

zontal position of the split varied by up to 350 pixels. In some cases, the otoliths overlapped

horizontally, resulting in images containing a small fraction of the other otolith. This overlap

was rarely more than 30 pixels. Finally, images of individual otoliths were rescaled to a stan-

dard size of 400 x 400 pixels. Although this caused images to be stretched or shrunk, CNNs

have shown to be robust to random transformations [17, 18]. The process is illustrated in Fig

3. Information relating the paired otolith images to the separated right and left ototith images

was retained in order to predict the age of the pairs, and evaluate the accuracy of predicting

left and right otoliths.

Convolutional neural network architecture

We used a classifier model based on the Inception v3 [19] model. This is a state of the art

48-layer architecture for image classification, and the successor to the network [20] that won

the 2014 ImageNet competition [21]. There are several competing architectures, and variations

of ResNet [10] (ResNet50, ResNet101, and ResNet152), Inception v4 [22], and DenseNet121
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Fig 1. Example of otolith images. Otoliths can have loose fragments (A), vary in size (B), or be broken (C).

https://doi.org/10.1371/journal.pone.0204713.g001
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[23] were considered, but preliminary testing showed small differences in results, with the pre-

liminary performance of most configurations varying less than 10%.

Inception v3 classifies images with a size of 299 x 299 pixels into one of 1000 categories. To

use this model to analyze the otolith images, some modifications to the network were neces-

sary. First, the input layer was scaled to match the image size of 400 x 400 pixels. Since age esti-

mation is a regression problem, the output layer was changed from a 1000-dimension output

vector, representing class probabilities, to a single numeric output. Finally, the objective (or

loss) function, used in optimization, was changed from cross entropy to mean squared error

(MSE) defined as

MSE ¼
1

n

Xn

t¼1

ðŷt � ytÞ
2

ð1Þ

where ŷt is the CNN prediction and yt is the read age, and n is the number of predictions.

The CNN layers were loaded with pre-trained (using ImageNet data) and publicly available

weights, as opposed to using random initialization, which is inefficient [24]. All layers were set

to trainable i.e. the values of the individual neuron weights were updated during training.

Training the convolutional neural network

The CNN was implemented using the standard software packages Keras [25] with TensorFlow

[26], and computation was performed using CUDA version 9.1 and CuDNN with nVidia

(nVidia Corp., Santa Clara, California) P100 accelerator cards.

Fig 2. Age distribution of all 8875 images.

https://doi.org/10.1371/journal.pone.0204713.g002
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The data set was split into training, validation and testing sets, containing 92%, 4% and 4%

of the images, respectively. The validation set was used to control (and terminate) the training

process, while final accuracy was estimated using the test set. All single images were placed in

the training set, so that the testing and validation sets only contained paired images.

Augmentation is an important technique for training deep CNNs on limited data sets [9].

This process applies a set of random transformations that preserve class, whilst artificially

inflating the training data set size. Therefore, the classifier is unlikely to encounter the exact

same input twice, and is less likely to overfit the data i.e. learning to recognize individual input

images, rather than identifying general features. We applied standard image augmentation to

our data set using Keras and TensorFlow. The images were rotated randomly between 0 and

360 degrees, reflected by the vertical or horizontal axis, and vertically shifted by +/- 10 pixels.

Fig 3. A pair of otoliths from 2014 with an estimated age of 13 years. Due to the size difference between the otoliths,

the image was split with a substantial offset from the middle (A). There was also a small horizontal overlap causing a

fragment of the right otolith to remain in the left image. Resizing causes stretching of the images (B), which is

particularly evident in the image of the left otolith.

https://doi.org/10.1371/journal.pone.0204713.g003
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In addition, standard image normalization for CNNs was applied, mapping the 0-255 pixel val-

ues for each image to values between 0 and 1.

The configuration of the training process is determined by a set of hyperparameters. Batch

size defines the number of images to be processed at a time during training, and the gradient

of the error function for the current parameter is calculated for each batch. The optimizer

function determines how the weights are modified from the gradient. Here, we used stochastic

gradient descent (SGD), rmsprop, and Adam [27]. Weight decay is a regularization method

that causes the weights to gravitate towards smaller values, limiting the nonlinear behavior of

the classifier.

GridSearchCv from ScikitLearn [28] and KerasRegressor from Keras were used to perform

a grid search of the hyperparameter values shown in Table 1. The optimal values of the hyper-

parameters were found using the Adam optimizer function [27], a batch size of 20, learning

rate of 0.0004, and a decay value of 0. In addition, the patience, which controls termination of

training, was set to 20, the epoch was set to 150, and steps was set to 1600. In total, a complete

training run can process 4.8 million images.

Comparing accuracy to human experts

To compare the performance of the CNN model with that of human experts, we used the same

method that is used when evaluating human versus human precision [29]. Since the actual age

of the fish is unknown, the accuracy cannot be assessed and so the coefficient of variation

(CV) of the (assumed) independent estimators is used. For a given otolith j, estimator i pro-

vides an age estimate Xij for otolith j, and the CV for that individual otolith j is given as

CVj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PR
i¼1

ðXij � XjÞ
2

R � 1

s

Xj
;

ð2Þ

where R is the number of individual estimators and Xj ¼
1

R

PR
i¼1

Xij. To assess the overall per-

formance across the otoliths for the full data set, the mean CV is used and defined as

CV ¼
1

J

XJ

j¼1

CVj; ð3Þ

where J is the number of otoliths.

To evaluate the CNN model, we estimated the CV using the CNN as one estimator (i = 1),

and the human-read age as the other (i = 2), resulting in two individual estimators and hence,

an R value of 2.

Since the CNN is reading both images, we used two different definitions of the CNN to

read otoliths, i.e. two different definitions of the age estimate, X1j (c.f. Eq (2)). The first

Table 1. Hyperparameter configurations explored.

Hyperparameter Values explored

Batch size 8, 12, 16, 20

Learning rate 0.1, 0.01, 0.0004, 0.0001

Optimizer SGD, rmsprop, Adam

Weight decay 0.01, 0.001, 0

https://doi.org/10.1371/journal.pone.0204713.t001
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definition, was derived from an average taken over an image pair, and is given by

X1j ¼
X½R�1j þ X½L�1j

2
ð4Þ

whereas the second definition only considers the right otolith, i.e. X1j ¼ X½R�1j , where X½L�1j and

X½R�1j are the CNN-predicted age of the left and right otolith respectively. The first definition is

based on our approach and the latter is based on what an expert reader would do [13] for this

specific data set, and both were tested.

To evaluate the merit of CNN versus pure reader-based CVs, the latter was taken from the

literature [13, 16]. A drawback of this approach is that any between-reader bias may affect the

reader-based CV by an unknown amount.

Results

Predictions were made on the test set for the different configurations and the MSEs of single

otolith predictions of age were recorded. The MSE and CV of pair-wise predictions were

also recorded. Calculated CV values were then used to select the optimum CNN model.

The MSE values of the predictions made for the left and right otoliths and both otoliths

combined were 3.27, 2.71 and 2.99 respectively (Table 2). Using the average of the predictions

for each of the paired otoliths resulted in the lowest MSE value (2.65).

Fig 4 shows that using both otoliths in an ensemble reduces prediction variance. There was

also a clear tendency for the system to predict a lower age for older individuals, when com-

pared to human readers. The variance of the predictions also increased with the age of the

otolith.

For Greenland halibut, the mean CV between human experts has previously been reported

as 12% and 16.3% [13, 16]. Using otolith pairs, we achieved a mean CV of 8.89%. Fig 5 shows

predictions for left and right otoliths separately. Age was correctly estimated for 48 out of the

164 tested otolith-pairs (29%). In addition, 63 cases (38%) were estimated to be one year off

the read age.

Discussion

The objective of this study was to investigate to what extent a deep CNN could be adapted to

predict age from otolith images. Using a data set of Greenland halibut otoliths, we trained and

validated an Inception-3 network and showed that it performed at a level close to human accu-

racy. Deep neural networks have been shown to outperform more conventional methods

across a range of problems [9], and given their generality, we hypothesized that they would

perform well on this rather difficult task. Several different network architectures were used,

and most configurations were able to perform well, which further supports our hypothesis.

A simplistic approach was taken when preprocessing the images. Potentially informative

properties, such as size, proportion and orientation, were lost through rescaling and augmen-

tation, but this did not notably affect the network’s ability to predict age. The classifier

Table 2. MSE (Eq 1) and mean CV (Eq 3) for predictions. The statistics are calculated on on single, left, right and

paired (both left and right) otolith images.

Metric Single Left Right Paired

MSE 2.99 3.27 2.71 2.65

mean CV 9.47 9.97 8.97 8.89

https://doi.org/10.1371/journal.pone.0204713.t002
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Fig 4. Age predictions. Predictions are shown using single otoliths (A) and using the average prediction of each pair (B), compared to the

age estimated by a human reader.

https://doi.org/10.1371/journal.pone.0204713.g004
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Fig 5. Age predictions. Predictions are shown for the right (A) and left (B) otoliths compared to the age as estimated by a human reader.

https://doi.org/10.1371/journal.pone.0204713.g005
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functioned robustly across varying backgrounds. Traditionally, preprocessing algorithms have

also been used to enhance features for the classifier. We also experimented with various pre-

processing techniques. For example, we ran the images through a hill shading algorithm before

training, but it did not improve results. This supports the conventional wisdom that deep neu-

ral networks are able to identify informative features directly, and that developing specialized

preprocessing techniques is likely to be unnecessary.

We found a much stronger correlation between the otolith pixel area and CNN predicted

age in the test set, than the correlation between pixel area and the human-read age. This indi-

cates that size is a major feature associated with age in the CNN, despite the fact that the

images of single otoliths, produced by splitting paired otolith images, varied in size and were

rescaled by different proportions. Therefore, a future task of this work is to apply randomized

scaling as an augmentation feature, to determine how sensitive the results are with regard to

otolith size.

While we have not performed an extensive analysis of cases where the network failed to cor-

rectly predict age, a cursory inspection revealed that image inconsistencies (some examples are

shown in Fig 6) could impact the results. This suggests that if the process of taking the images

could be standardized, e.g. using consistent equipment, range, lighting conditions etc., then

results could be improved.

The cost function applied was not adjusted for an imbalanced data set i.e. a prediction bias

for the more abundant year classes would of been penalized more than classes with relatively

lower abundances. This could explain the lower prediction accuracy for older otoliths, as there

were relatively fewer otoliths from older fish. One way to mitigate this is by implementing a

cost function that weights classes evenly i.e. each year class inflicts the same cost [30]. How-

ever, for ages that are critical to assessment, incorrect predictions should be associated with

higher penalties.

Since the model is a supervised machine learning algorithm, the learning can only be as

good as the underlying precision and accuracy. Since the accuracy is unknown [13], we treated

the CNN as an individual reader and computed the same mean CV as is used in human versus

human comparisons. We achieved a mean CV of 8.89%, which is considerably lower than the

reported mean CV of human readings, ranging from 12 to 16.3% [13, 16]. However, a

between-reader bias could have increased the reported CVs. In our case, each otolith in the

test set was only read by one of two readers from the same lab. Therefore, it is reasonable to

assume that in this case the bias is likely to be negligible. The large variation in reported CVs

also indicates that this is a sensitive measure, and that not too much importance should be

attached to our relatively low CV.

A common criticism of CNNs is that the exact features used in the process are unknown.

During the training and testing of the CNN, we set aside 4% of the data set for validation (dur-

ing training), and 4% for testing (after training), meaning that 8% of the data was not used to

train the network. However, when the method is in production, it is important to keep validat-

ing the method by continuing to collect training data. This is particularly important if the

method is used as part of a monitoring time-series.

Using CNNs to make age predictions can be more efficient than expert-read predictions. If

cost savings are the key motivation for implementing automated aging of otoliths, a common

objection is that any cost savings relies on the assumption that the actual reading is the factor

that drives the cost. In reality, the time required for otolith preparation, i.e. removing the oto-

liths and preparing the sample for imaging, may take more time than the actual reading, and

so the savings would be marginal. However, skilled readers require years of training, which

should be considered when determining cost. Assuming that the current staff is maintained

and used to generate validation data, the sampling program could be scaled up without the
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necessity to train more readers. Furthermore, if the network is indeed able to learn characteris-

tics of individual readers, it is possible to explore downstream effects of using different readers,

as well as interpreting otoliths using an ensemble that emulates multiple readers for increased

accuracy.

In their recent rewiew, Fisher and Hunter [31] found that digital image analysis systems

provided little improvement in cost-effectiveness over manual otolith analysis. Although

machine learning systems were included in their study, no modern deep learning convolu-

tional network was considered. In light of the accuracy we have demonstrated from such a sys-

tem, this conclusion may need to be revised.

Future work should include testing the method on other species and new features. The

method could also be adapted to specific use cases or enhanced by other predictors. Organiz-

ing data and collecting images and age labels for a wider range of species is required to move

forward. It is likely that the patterns used to age Greenland halibut are similar to the general

patterns for other species, which makes the classifier ideal for using transfer learning.

Fig 6. Examples of images where the network failed to correctly predict age. A) Dark images of otoliths with deep

lobes are read as 12 years, and predicted as 15.7 (left), and 15.6 (right). B) Lighter otoliths below are read as 21 years,

and predicted as 15.6 (left and right).

https://doi.org/10.1371/journal.pone.0204713.g006
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Furthermore, a general CNN could be trained using otolith images from multiple species, and

then fine-tuned to each specific species. Other features like age-at-maturation (spawning

zones) could also be read from otoliths, and where training data are available, the network

could be adjusted to predict these features as well.

Conclusion

Age determination from otoliths is an important input for management of marine fish stocks.

Here, we predicted age of Greenland halibut by training a CNN using otolith images. The

results indicate that automating the data processing for this intrinsically complicated process

is possible. On top of its ability to learn aging, the method offers improved efficiency, the possi-

bility to learn how to read otoliths across species, and, given proper attention to the collection

of validation data, increased consistency over time. Since age is an essential component of any

age-based model, the method will have an impact on the management of fish resources and

our understanding of ecosystem dynamics.
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