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ABSTRACT

Variability in the Barents Sea ice cover on interannual and longer time scales has previously been shown to

be governed by oceanic heat transport. Based on analysis of observations and results from an ocean circu-

lation model during an event of reduced sea ice cover in the northeastern Barents Sea in winter 1993, it is

shown that the ocean also plays a direct role within seasons. Positive wind stress curl and associated Ekman

divergence causes a coherent increase in the Atlantic water transport along the negative thermal gradient

through the Barents Sea. The immediate response connected to the associated local winds in the northeastern

Barents Sea is a decrease in the sea ice cover due to advection. Despite a subsequent anomalous ocean-to-air

heat loss on the order of 100Wm22 due to the open water, the increase in the ocean heat content caused by

the circulation anomaly reduced refreezing on a time scale of order one month. Furthermore, it is found that

coherent ocean heat transport anomalies occurred more frequently in the latter part of the last five decades

during periods of positive North Atlantic Oscillation index, coinciding with the Barents Sea winter sea ice

cover decline from the 1990s and onward.

1. Introduction

During the last fewdecades, theArctic has experienced

large climatic changes, manifested by its shrinking sea ice

cover (Polyakov et al. 2010). While the most spectacular

decline during summer has occurred on the Pacific side of

theArctic, the largest variability and decline inwinter has

occurred on the Atlantic side in the Barents Sea

(Johannessen et al. 2004; Screen and Simmonds 2010;

Onarheim et al. 2015; Yang et al. 2016). The diminishing

ice cover and the associated impacts have deservedly

received a lot of attention (e.g., Serreze et al. 2007;

Comiso 2012; Parkinson and Cavalieri 2012). Variable

air–sea heat fluxes caused by a changing sea ice covermay

act as important drivers of large-scale atmospheric cir-

culation variability (Screen et al. 2013; Frankignoul et al.

2014; Cohen et al. 2014) and have been considered a

cause for the midlatitude cold winters in recent years

(e.g., Petoukhov and Semenov 2010; Vihma 2014; Cohen

et al. 2014;Mori et al. 2014) and changes to the circulation

in the upper troposphere (Schlichtholz 2014); they have

been connected to surface temperature in midlatitudes

(Schlichtholz 2016), although the causal relationship is

complex (Sorokina et al. 2016). Changes in the sea ice

cover also impact regional marine resources and ecosys-

tems, including species distributions, abundances, and

interactions (Fossheim et al. 2015); availability of light

(Varpe et al. 2015); and commercial offshore activity,

such as shipping and fossil fuel extraction [e.g., Arctic

Climate Impact Assessment (ACIA 2005)].

The Barents Sea is a shelf sea between the deep

Norwegian Sea and Arctic Ocean basins. The hydrog-

raphy in the Barents Sea is dominated by relativelyCorresponding author e-mail: Vidar S. Lien, vidar.lien@imr.no
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warm and saline Atlantic-derived water masses and cold

and less saline Arctic-derived water masses. The Atlantic

water enters from the Norwegian Sea in the southwest

and is topographically steered toward the northeast

(Fig. 1). In the northern parts, the Arctic-derived water

masses dominate, although some Atlantic water enters

from the north at depths below 100m (Lind and

Ingvaldsen 2012). The shallow, southeastern parts are

dominated by coastal water freshened by river runoff.

The sea ice extent in winter is partly determined by the

transition zone between the Atlantic and Arctic water

masses, often termed the Polar Front. To the southeast,

the ice extent is determined by the frontal area between

Atlantic and coastal waters. The Polar Front is topo-

graphically controlled and therefore rather stable in the

west, where the thermal gradient is oriented perpendic-

ular to the direction of the flow. To the northeast, the

thermal gradient is oriented along the flow of Atlantic

water because of heat loss to the atmosphere. Hence, a

positive volume transport anomaly will cause a coherent

temperature increase rather than an advectively propa-

gating temperature anomaly (Sundby and Drinkwater

2007; Chafik et al. 2015). The northeastern Barents Sea is

the area where the winter sea ice extent displays the

largest variability (Årthun et al. 2012; Yang et al. 2016).

Previous studies on the air–ice–ocean relationship in

the Barents Sea have been based on correlation and

lead–lag analyses, pointing to a lagged response of sea

ice to upstream advective ocean temperature anomalies.

However, the mechanisms governing the response in the

sea ice cover to oceanic and atmospheric forcing are not

yet fully understood. The time lag between the inflow of

ocean temperature anomalies through the Barents Sea

Opening in the southwest and the associated changes

in sea ice cover downstream is reported to be be-

tween one month (e.g., Sandø et al. 2010) and one

FIG. 1. Map showing the bathymetry and general circulation pattern of the Barents Sea.

Black line shows the position of the section across the Barents Sea Opening; shaded area

shows the box in the northeastern Barents Sea used in budget calculations; NvZ denotes

Novaya Zemlya. The whole area depicted is included within the model domain.
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year (e.g., Schlichtholz 2011;Årthun et al. 2012; Onarheim

et al. 2015). A one-year time lag is consistent with an ad-

vection speed of less than 5cms21, similar to the observed

current speeds in the Barents Sea Opening (Ingvaldsen

et al. 2002), and involves subsurface advection of the

ocean temperature anomalies below the seasonally mod-

ified surface water masses and a subsequent reemergence

downstream (Schlichtholz 2011; Nakanowatari et al.

2014). The one-month time lag reported by Sandø et al.

(2010) was based on 12-month smoothed data and was

therefore difficult to interpret, and they did not explore

any possible mechanism. Other studies argue for a close

coupling between the variability in the sea ice cover and

the properties of the Atlantic water and the atmospheric

circulation, but without studying the mechanisms in detail

(Ozhigin et al. 2011; Smedsrud et al. 2013). Variations in

sea ice cover on short time scales (i.e., days to weeks) have

been attributed to wind-driven ice drift (e.g., Kimura and

Wakatsuchi 2001), although atmospheric forcing has also

been shown to affect sea ice cover on longer and up to

interannual time scales (Sorteberg and Kvingedal 2006;

Pavlova et al. 2014; Herbaut et al. 2015).

A critical assumption in the understanding of the

Barents Sea air–ice–ocean relationship is that ocean

temperature anomalies propagate from an upstream

formation area to the ice edge downstream. Here, we

provide a mechanistic understanding of the response of

sea ice to ocean heat anomalies modulated by changes in

volume transport. Continental shelf waves induced by

atmospheric-driven Ekman transports and the piling

up of water toward the coast of Norway (Gill and

Schumann 1974; Ingvaldsen et al. 2004; Skagseth et al.

2011; Lien et al. 2013a) are shown to result in a coherent

ocean heat transport anomaly through the Barents Sea

that impacts the sea ice cover concomitantly. We com-

bine observations and a numerical ocean general circu-

lation model to study in detail a period of increased

Atlantic water flow through the Barents Sea in February

1993 and quantify the relationship between this in-

creased oceanic heat transport and a simultaneous re-

duction in the sea ice cover. Furthermore, we find that

similar oceanic conditions occurred more frequently in

the latter part of the last five decades during periods

of positive North Atlantic Oscillation index (NAO;

Hurrell 1995).

2. Data

a. Atmosphere

Air–ocean heat fluxes, including longwave and short-

wave radiation and turbulent latent and sensible heat, and

wind stress data for the period 1979–2014 were obtained

from the European Centre for Medium-Range Weather

Forecasts interim reanalysis (ERA-Interim; Dee et al.

2011). Acknowledging that most atmospheric reanalyses,

such asERA-Interim, use parameterized algorithms based

on typical conditions at lower latitudes, we assume that

temporal variability is still reasonably well represented at

high latitudes, such as theBarents Sea. See Smedsrud et al.

(2013) for a discussion on the differences between various

datasets containing atmospheric heat fluxes in the Barents

Sea. Additional wind stress data extending back to 1979

were obtained from theNCEP–NCAR reanalysis (Kalnay

et al. 1996).

b. Sea ice

Monthly averaged sea ice concentrations (Fig. 2) for

the period 1979–2014 were obtained from National

Snow and IceData Center (NSIDC), Boulder, Colorado

(Cavalieri et al. 1996). The NSIDC web page (www.

nsidc.org/data/NSIDC-0051) states that care is needed

when interpreting the observations of sea ice concen-

tration in areas where new sea icemakes up a substantial

part of the sea ice cover, which include our area of study

during winter. Our interpretation of the sea ice con-

centration data from the northeastern Barents Sea is

based on the assumption that errors related to issues

with newly formed sea ice are constant in time: that is,

that the observed temporal variability of sea ice con-

centration can be considered to be valid. The monthly

mean sea ice data were deseasoned and detrended by

removing the 1979–2014 seasonal cycle and linear trend

before calculating anomalies.

c. Ocean model

We utilize the Regional Ocean Modeling System

(ROMS; Shchepetkin and McWilliams 2005), a three-

dimensional baroclinic ocean general circulation model

that uses topography-following s coordinates in the

vertical. The s coordinates map all 32 model layers in all

grid points independent of the bottom depth, which

ensures high vertical resolution in shelf areas such as the

Barents Sea. Themodel simulation was performed on an

orthogonal, curvilinear grid with a horizontal resolution

of 4 km covering theNordic, Barents, andKara Seas plus

the Nansen Basin of the Arctic Ocean. In the vertical we

applied 32 sigma layers with a minimum depth of 10m.

The modeled period is 1958–2014, starting from an al-

ready spun-up initial condition in 1958. However, the

first two years have been discarded as model spinup.

We have used a 10-km-resolution atmospheric re-

analysis for the Nordic seas area as forcing (Reistad

et al. 2011). The Simple Ocean Data Assimilation, ver-

sion 2.1.6, reanalysis (SODA 2.1.6; Carton et al. 2000;

Carton and Giese 2008) was used both for initialization
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and lateral boundary forcing by applying the radiation and

nudging boundary conditions scheme by Marchesiello

et al. (2001). The nudging time scales are 0.25 days and

25 days for incoming and outgoing information, re-

spectively. Themodel includes a dynamic–thermodynamic

sea ice module based upon an elastic–viscous–plastic rhe-

ology (Hunke and Dukowicz 1997; Hunke 2001). The ice

thermodynamics are based on those ofMellor and Kantha

(1989) and Häkkinen and Mellor (1992). The ice module

includes two ice layers and one snow layer. The ice cover

and upper ocean are separated by a molecular sublayer

(Mellor et al. 1986). For more details on the sea ice mod-

ule, seeBudgell (2005). Initial and boundary conditions for

the sea ice were obtained from a regional simulation using

FIG. 2. (a) Difference in wind stress curl (contours; 1027 Nm23) and Ekman transport (arrows; m2 s21) between

Februaries with positive and negative wind stress curl anomalies exceeding one std dev, computed over the entire

Barents Sea (668–828N, 158–608E; land excluded), from ERA-Interim. Red and green contours show positive and

negative anomalies, respectively. Shaded areas denote values outside one std dev (corresponding to a confidence

level of 68%). Thick black line shows average February ice edge position as defined by 15% sea ice concentration.

(b) As in (a), but showing differences in observed sea ice concentration, with the 1979–2014 linear trend removed.

Contour interval is 10%. (c) As in (a), but showing anomalies in February 1993, relative to the 1979–2014 February

average. Thick black line shows ice edge in February 1993, as defined by 15% sea ice concentration. (d) Observed

sea ice concentration anomaly in February 1993, relative to the linearly detrended 1979–2014 February average.

Contour interval is 10%. Thick black line shows ice edge in February 1993, as defined by 15% sea ice concentration.

(e) As in (d), but based on model results. (f) Observed air–ocean heat (turbulent 1 radiative) flux anomalies in

February 1993, relative to the 1979–2014 February average (Wm22; positive upward).
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the Miami Isopycnic Coordinate Ocean Model (MICOM;

Sandø et al. 2012). Tidal forcing based on a global ocean

tides model (TPXO4) was included by imposing surface

elevation and corresponding barotropic velocity compo-

nents at the open boundaries, as proposed by Flather

(1976) and Chapman (1985), respectively. The sea surface

salinity was subject to a restoration toward climatological

values based on the SODA dataset, with an e-folding time

of 180 days.

A third-order upstream scheme was applied for hor-

izontal advection of tracers and momentum. Because of

the diffusive nature of this advection scheme, both the

explicit horizontal diffusion and viscosity coefficients

were set to zero. A nondiffusive fourth-order centered

scheme was applied for vertical advection of tracers and

momentum. The generic length scale (GLS; Umlauf and

Burchard 2003; Umlauf et al. 2003) mixing scheme, us-

ing the k–v setup, was used for subgrid-scale parame-

terization of vertical turbulentmixing ofmomentum and

tracers. The GLS mixing scheme has been found to

produce realistic results in coastal applications where

tidal mixing is important (Warner and Geyer 2005;

Warner et al. 2005).

The model simulation has been shown to realistically

reproduce ocean transports, hydrographic properties,

and sea ice cover in the Barents Sea, in terms of both

their absolute values and variability (Lien et al. 2013a,b,

2014, 2016; see also Figs. 2d,e herein).

3. Methods

By comparing Februaries with positive and negative

wind stress curl anomalies that exceed one standard

deviation (Fig. 2a) we find that positive wind stress curl

anomalies and associated Ekman divergence calculated

from winds coincide with negative anomalies in the sea

ice concentration both to the northeast and the south-

east in the Barents Sea (Fig. 2b). The pattern of sea ice

concentration anomalies corresponding to this anoma-

lous atmospheric circulation resembles that of other

studies (e.g., Yang et al. 2016), which suggests that the

northeastern Barents Sea is a hotspot for winter sea ice

variability, and, because of the presence of Atlantic

water, also associated heat flux anomalies (e.g.,

Sorokina et al. 2016). The choice of one standard de-

viation in Fig. 2a ensures a reasonable number of events

(7 positive and 7 negative out of a total of 35 in the pe-

riod 1979–2014) and yet retains statistical significance

(68%). The results do not differ qualitatively with other

choices of significance level. Qualitatively similar re-

sults, although with weaker amplitudes, are obtained if

we increase or decrease the area used to calculate the

average wind stress curl.

We investigate in detail processes for the impact of

wind-driven ocean circulation on the sea ice cover using

the month with the maximum forcing (February 1993;

Table 1) as a test case, assuming the best signal-to-noise

ratio and under the assumption that the identified

mechanism should apply to similar events of atmo-

spheric forcing.

To explore the downstream ocean and ice responses

to regional atmospheric forcing, we define a box in the

northeastern Barents Sea that covers the Atlantic water

pathway through the northeastern Polar Front area

where the largest changes in the sea ice cover and ocean-

to-air heat fluxes are observed both in terms of decadal

trends (Yang et al. 2016; Sorokina et al. 2016) and the

February 1993 anomaly (Figs. 2d,f).

The Norwegian Coastal Current responds rapidly to

changes in atmospheric forcing (Skagseth et al. 2011).

Thus, conditions favorable for increased Atlantic water

inflow to the Barents Sea will also favor increased ocean

transport along the Norwegian and Russian coast and

into the shallow southeastern Barents Sea. While this is

associated with a reduction in sea ice (Fig. 2b), the as-

sociated turbulent heat flux anomalies are smaller and

therefore of limited importance for the Arctic climate

(Fig. 2f; see also Sorokina et al. 2016). We therefore

focus our study on the Atlantic water pathway through

the Barents Sea.

To relate the heat transport estimates to those re-

ported in the literature, the heat transport is calculated

with T adjusted byTref 5 20.18C, commonly referred to

as the average temperature of the water masses leaving

the Arctic Ocean (Aagaard and Greisman 1975). To

resolve the effects of volume transport and temperature

on the oceanic heat transport, we decompose the mod-

eled heat transports into mean and fluctuating parts,

using 1960–2014 as the averaging period. The calculated

heat transport anomaly is then

TABLE 1. Time and amplitude (1.0 3 1026 Nm23) of the nine

largest values of the monthly mean wind stress curl averaged over

the Barents Sea, based on ERA-Interim (ERAI) and NCEP. The

numbers are sorted in descending order. The area used is 668–828N,

158–608E. Values over land have been excluded.

ERAI NCEP

Time Amplitude Time Amplitude

Jan 1993 0.3503 Feb 1993 0.3887

Feb 1993 0.3459 Jan 1993 0.3395

Jan 1992 0.3422 Jan 2000 0.3370

Jan 2000 0.3199 Jan 1992 0.3297

Dec 1982 0.3095 Jan 1997 0.3072

Feb 1995 0.3038 Nov 1996 0.3024

Nov 1996 0.2949 Feb 1995 0.2953

Nov 1986 0.2752 Dec 1982 0.2950

Dec 2004 0.2714 Dec 2004 0.2858
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Q0 5Q2 rc
p
T V5 rc

p
(VT 0 1V 0T1V 0T 0) ,

where r5 1027.0 kgm23 is the density of seawater, cp 5
3985 J kg21K21 is the specific heat capacity of seawater,

T is the temperature (8C), and V is the volume transport

(Sv; 1 Sv [ 106m3 s21) through the section. The T V

represents the mean seasonal cycle over the period

1960–2014, whereas T0 and V0 are deviations from the

mean. Daily averages of Q0 used to study the winter of

1993 in detail have been deseasoned (Fig. 3). Monthly

averages of Q used to study the full modeled period

(1960–2014; Fig. 5) have been calculated using de-

trended T.

4. Results

Figure 2c shows the wind stress curl and associated

Ekman transport anomalies in February 1993, as compared

with the long-term composite of February anomalies

(Fig. 2a). Corresponding anomalies in sea ice concentra-

tion are shown in Figs. 2d and 2b, respectively. The con-

tributions to the ocean heat transport anomalies through

the Barents Sea Opening and into the box in the north-

eastern Barents Sea are shown in Figs. 3a and 3b, while

Fig. 3c shows the energy budget for the box. During Jan-

uary and February 1993, the anomalous atmospheric cir-

culation led to an increase in the heat transport by the

Atlantic water flow through the Barents Sea Opening

(Fig. 3a). The enhanced heat transport was modulated by

an increase in the volume transport [Q(V 0, T)] and oc-

curred both in themain southern branch of theBarents Sea

throughflow and the northern branch, as proposed by Lien

et al. (2013a) (indicated by dotted arrow in Fig. 1 herein).

The effect of the increased heat transport to the Barents

Sea was a simultaneous ocean heat convergence in the box

downstream in the northeastern Barents Sea (Fig. 3b), con-

sistent with an atmospheric-driven barotropic ocean circula-

tion anomaly through the Barents Sea (Lien et al. 2013a).

The resulting heat budget for the box additionally

considering the contributions of heat exchange with the

atmosphere and freezing/melting of sea ice is shown in

Fig. 3c. The estimate of the total surface heat flux is

obtained by subtracting the contribution from heat

storage and ice melting from the net lateral heat con-

vergence. The elevated ocean heat transport anomaly

(Figs. 3a,b) was mainly distributed between an initial

increase of the ocean heat storage until 1 February and

subsequent reduction, and heat loss to the atmosphere

reaching a maximum of almost 300Wm22 on 8 Febru-

ary. In addition, there was a relatively small but con-

sistent heat loss of about 20Wm22 from melting sea ice

that differed from the climatological mean in February

characterized by sea ice freezing.

To resolve the effect of the ocean circulation

anomalies, a comparison with the mean seasonal cycle is

required for the ocean heat storage and sea ice terms

(Fig. 4). In February 1993, the cumulative change in

ocean heat content increased or remained elevated as

compared with the long-term seasonal cooling (Fig. 4a).

During this period, there was enhanced melting of sea

ice from below, amounting to 0.15m above the clima-

tological average (Fig. 4b). The ice growth from frazil ice

formation and ice growth in leads remained close to the

climatological averages (Figs. 4c,d). The combined ef-

fect was a halt to the net growth of ice in the north-

eastern Barents Sea throughout February because of

anomalous melting. The contribution from ice melting

FIG. 3. Modeled heat transport and budget based on daily av-

erages filtered with a 4-day Hamming window. (a) Heat transport

anomalies through the Barents SeaOpening section, relative to the

1960–2014 average and Tref 5 20.18C. Positive values are toward

the east. Thick black line denotes total anomaly; thick gray line

denotes anomaly related to varying volume transport; dashed black

line denotes anomaly related to varying temperature; dashed gray

line denotes anomaly related to both varying volume transport and

temperature. (b) Net lateral heat convergence anomaly in the area

denoted by a shaded box in the northeastern Barents Sea (see

Fig. 1). The graphs denote the different heat transport components

as described in (a). (c) The heat budget components within the box:

net lateral heat convergence (Q; i.e., net ocean heat transport into

box area; thick black line); daily change in ocean heat content

(DOHC; thick gray line); the heat lost to melting sea ice (Ice;

dashed line); and the residual (Sflx; thin black line), which com-

prises the heat fluxes through the ocean surface as well as diffusive

heat advection through lateral boundaries not accounted for in the

daily averaged lateral transports. Surface heat flux is counted as

negative upward (i.e., heat loss from ocean to atmosphere). Note

that (a) and (b) depict anomalies (i.e., deviations from the mean),

while (c) shows net values.
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from the top was negligible. Furthermore, the wind

conditions during the event of elevated wind stress curl

caused an initial anomalous net sea ice export from the

box accounting for almost 0.25m (Fig. 4f). The positive

sea ice anomaly southeast of Spitsbergen (Figs. 2d,e) is

consistent with ice advection due to the anomalous

northerly winds in the northwestern Barents Sea in

February 1993 (Fig. 2c). After the initial export of sea ice

out of the box, the anomalous ocean heat content pre-

vented the exported sea ice to be replaced by net

freezing throughout February.

The negative anomaly in the sea ice concentration

seen in both observations and the model (Figs. 2d,e)

allowed for a larger than normal heat loss to the atmo-

sphere through surface heat fluxes (Fig. 2f). The

monthly averaged net surface heat loss, as computed

from the model heat budget within the box, exceeded

200Wm22 in February (not shown). This represents an

anomaly of 100Wm22 relative to the climatological

mean of;100Wm22 in February, in agreement with the

heat flux anomaly in the northeastern Barents Sea in the

atmospheric reanalysis (Fig. 2f).

To quantify the frequency of occurrence for events

similar to the event described above, we extend our

study to include the whole ocean model archive of

1960–2014. We focus on strong signals, defined as

anomalies simultaneously exceeding 1.96 standard

deviations (corresponding to a confidence level of

95%), detectable in monthly averaged heat transport

anomalies through the Barents Sea Opening and into

the box. Furthermore, we use coherent (i.e., simulta-

neous) heat transport anomalies as a proxy for condi-

tions favorable for the event described above. We then

find a tendency of increased frequency of occurrence in

the 1990s and onward compared with the preceding

decades (Fig. 5). Out of a total of 16 occurrences, 5

happened during the 30 years prior to 1990 compared

with 11 during the following 25 years. If we reduce the

threshold to 1.65 standard deviations (corresponding

to a confidence level of 90%), then 19 out of 33 events

occurred after 1990.

5. Discussion

We have shown that positive wind stress curl and as-

sociated Ekman divergence in the Barents Sea causes a

coherent increase in the Atlantic water heat transport.

The immediate response connected to the associated

local winds is a decrease in the sea ice cover due to ad-

vection in the northeastern Barents Sea. Despite the

subsequent anomalous ocean-to-air heat loss due to the

open water, the increase in the ocean heat content

caused by the circulation anomaly reduced refreezing

on a time scale of order one month.

In terms of the immediate sea ice response to wind

forcing, our results agree with Kimura and Wakatsuchi

(2001). Wind-driven ice advection is certainly a mech-

anism in effect that applies both to on- and off-ice wind

conditions. However, for these winds to generate ocean

heat transport anomalies, they need to be part of a

larger-scale atmospheric field causing an anomalous

Atlantic flow through the Barents Sea (Ingvaldsen et al.

2004; Skagseth et al. 2011; Lien et al. 2013a). A regional

dependence has also been found in the strengths of the

two branches of Atlantic water flow toward the Arctic

through the Fram Strait (Chafik et al. 2015) and the

Barents Sea (Lien et al. 2013a). Thus, the regional wind

field over the Barents Sea area induces a mode of vari-

ability on time scales of about one month affecting

changes in ocean circulation and sea ice, as well as

ocean-to-air heat exchange.

Climate variability in the Barents Sea on annual and

longer time scales has been linked to changes in tem-

perature of the inflowing Atlantic water (Helland

Hansen and Nansen 1909). Anomalies of heat transport

modulated by changes in temperature [i.e.,Q(V, T 0)] in
the Nordic and Barents Seas can either be formed lo-

cally or regionally through changes in air–sea heat fluxes

(Schlichtholz 2013; Furevik 2000), or advected north-

ward from the North Atlantic (Furevik 2001; Sandø

FIG. 4. (a) Cumulative daily change in ocean heat content within

the box area (shaded box; Fig. 1). Thick black line denotes condi-

tions in 1993. Dashed line denotes climatological conditions (1960–

2014 average) based on monthly averages interpolated to daily

averages. (b) As in (a), but for cumulative ice growth from below

(positive 5 freezing). (c) As in (a), but for cumulative frazil ice

growth. (d) As in (a), but for cumulative ice growth in leads. (e) As

in (a), but for net ice advection through the boundaries of the box

(positive is import into the box).
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et al. 2010; Nakanowatari et al. 2014; Årthun and

Eldevik 2016). The advective nature and annual time

scales of these temperature anomalies enable pre-

dictability of the downstream sea ice cover (Årthun et al.

2012; Onarheim et al. 2015). Hence, also accounting for

the regional mode of Barents Sea variability docu-

mented here and by others (Lien et al. 2013a; Chafik

et al. 2015) might further improve the precision of

seasonal-scale sea ice predictions.

We find that atmospherically driven coherent heat

transport anomalies through the Barents Sea are a

significant feature of the regional climate variability.

Considering the whole simulation period (1960–2014)

the occurrences of similar events have increased after

1990 (Fig. 5). Although the mechanism modulating

Barents Sea ocean transport anomalies is forced re-

gionally (Ingvaldsen et al. 2004; Skagseth et al. 2011;

Lien et al. 2013a; Chafik et al. 2015), a positive NAO

means a northward shift of the storm tracks in the

Nordic seas and also an increase in the number of low

pressure systems within the Nordic seas (e.g., Bader

et al. 2011). This may also increase the number of at-

mospheric cyclones that enters the Barents Sea region,

generating barotropic transport anomalies. Indeed, we

find that 6 out of a total 16 months with the discussed

coherent heat transport anomalies through the

Barents Sea occurred in months with normalized NAO

above 1 and 15 out of 16, if only requiring a positive

NAO. No such anomalies were found during months

with NAO below 21 (Fig. 5). Since the events of re-

duced sea ice cover identified here are connected to a

positive NAO state, they differ from the proposed

teleconnections between increased Barents Sea heat

fluxes and cold winters in midlatitudes associated

with a negative NAO (e.g., Petoukhov and Semenov

2010). Rather, the mechanism investigated here in

detail supports the hypothesis of a positive feedback

loop where increased surface heat fluxes cause en-

hanced cyclonic activity favorable for increased

Barents Sea inflow (Ikeda 1990;Ådlandsvik and Loeng

1991; Bengtsson et al. 2004). This is as opposed to the

nonconclusive findings by Smedsrud et al. (2013),

which were based on investigations at coarser spatio-

temporal resolution.
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FIG. 5. Normalized monthly heat transport anomalies, relative to 1960–2014 average, through the Barents Sea

Opening section (solid lines) and heat convergence anomaly in the box area (dashed lines). Arrows indicatemonths

when both anomalies exceed 1.96 std dev (corresponding to 95% confidence). Red (blue) arrows denote months

with normalized NAO above (below) 1. Black arrows denote months with NAOwithin one std dev from the mean.

The temperature was detrended before the heat transports were calculated.
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