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Abstract
How fisheries will be impacted by climate change is far from understood. While some fish

populations may be able to escape global warming via range shifts, they cannot escape

ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic car-

bon dioxide (CO2) emissions in marine waters. How ocean acidification affects population

dynamics of commercially important fish species is critical for adapting management prac-

tices of exploited fish populations. Ocean acidification has been shown to impair fish lar-

vae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause

behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod

larvae under OA and incorporate these effects into recruitment models. End-of-century lev-

els of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a dou-

bling of daily mortality rates compared to present-day CO2 concentrations during the first 25

days post hatching (dph), a critical phase for population recruitment. These results were

consistent under different feeding regimes, stocking densities and in two cod populations

(Western Baltic and Barents Sea stock). When mortality data were included into Ricker-

type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of cur-

rent recruitment for the two populations, respectively. Our results highlight the importance

of including vulnerable early life stages when addressing effects of climate change on fish

stocks.

Introduction
The understanding of the effect of global change on fish populations is critical for sustainable
exploitation and management of fisheries [1]. Ocean warming has already triggered poleward
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range shifts of many marine fish populations caused by their thermal tolerance [2–4]. However,
higher latitudes provide no refuge with respect to the concomitant pH decline, caused by the
dissolution of the major greenhouse gas CO2 in ocean waters. This “other CO2 problem”, also
dubbed ocean acidification (OA) [5], is an inevitable consequence of anthropogenic release of
CO2. The potential consequences of ocean acidification on commercially important fish popu-
lations are intensely debated [6,7], but currently unresolved since data on population-level pro-
cesses, e.g. recruitment to the stock, are almost entirely lacking [8–10].

Adult fishes have been shown to tolerate extreme CO2 concentrations of up to 16,000 μatm
[11], which led to the premature conclusion that fishes are less vulnerable to ocean acidification
than for example calcifying organisms [12]. However, it is becoming increasingly evident that
early life stages such as eggs and larvae are more susceptible to decreased ocean pH [7,13]. This
is partly due to insufficient acid-base regulation prior to the formation of gills [14]. Recent
studies have shown a diverse range of impacts of predicted future CO2 concentrations on larval
fish, particularly on sensory abilities like olfaction [15], behaviour [16,17], otoliths [18–20],
development, tissue and organ structure [13,21]. Studies also found effects on survival of eggs,
more specifically hatching success [22], and survival of very early larval stages [7,23]. Other
studies were not able to find an effect on survival [24,25].

Survival, however, is the most important parameter to assess recruitment, thus of para-
mount importance for stock management. Recruitment to an exploited fish stock is defined as
that point of time when a year-class enters the fished population, i.e. at an age of 1 year in the
case of Western Baltic cod, and at an age of 3 years in Barents Sea cod. Here we assess larval
mortality as a key variable to predict population growth and size [26,27] in Atlantic cod
(Gadus morhua, L.) under end-of-century CO2 concentrations. This is one of the most impor-
tant species for commercial fisheries of the North Atlantic, It is of particular importance since
landings of many cod stocks have decreased in the past decades with some stocks collapsing
[28]. Any additional source of mortality, particularly one with a trend, should therefore be
closely monitored and incorporated into management strategies.

We designed two experiments, in which the survival of cod larvae was quantified in direct
response to increased pCO2 levels as predicted for the end of the century. Atmospheric CO2

concentrations have been continuously rising since the beginning of industrialisation and are
currently exceeding 400 μatm. A third of the excess CO2 is absorbed by the world’s oceans,
resulting in ocean acidification, leading to an estimated decrease in pH of 0.4 units (pCO2 ~
1,000 μatm) by the end of the century [5,29,30]. Eggs and larvae from the Western Baltic cod
stock, caught in the Øresund, and from the Arcto-Norwegian Barents Sea cod stock were kept
under control (~400–500 μatm) and high CO2 (~1100 μatm) concentrations in two separate
experiments until 25 and 22 days post-hatching (dph) respectively and survival was monitored
closely.

Methods and Materials
For the Western Baltic experiment, adult cod were caught in the Øresund (55°58’N, 12°38’E) in
March 2013 and strip-spawned. An equal volume of eggs was placed in 90 L rearing tanks at
the Sven Lovén Centre, Kristineberg, Sweden. Three tanks were kept under ambient CO2 con-
centrations of 426 ± 47 μatm and three tanks were kept under increased CO2 conditions of
1033 ± 255 μatm. The temperature was kept constant at 7°C and the light regime was matched
weekly to the ambient sun rise and sun set. After hatching the larvae were fed with natural
plankton from the Gullmars Fjord under green water conditions with Nannochloropsis. (Food
density estimates are given in Table A in S1 File). Survival was measured daily by collecting
and counting all dead larvae from the bottom of the tanks. Initial number of larvae (on average
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~800 larvae per tank) was then back-calculated to calculate survival in percentage. It was
shown in separate experiments that dead larvae were easily found even after more than 24
hours post mortem in the tanks.

For the Barents Sea cod experiment adult fish were caught alive in the Barents Sea (70°15’N,
19°00’E) in March 2014 and transferred to the National Cod Breeding Centre, Tromsø. They
were kept in large breeding tanks (25 m3) with flow-through from the fjord and at weekly
matched ambient light regimes. All naturally produced eggs were collected using collectors
behind the surface skimmer outflow. These were transferred to incubators with either ambient
(503 ± 89 μatm CO2) or increased CO2 (1179 ± 87 μatm) concentrations. After peak hatch
(more than 50% eggs hatched), 11,000 larvae were transferred into each of twelve 190 L rearing
tanks with a constant flow-through of water from a common header tank. For the egg incuba-
tion and the start of the experiment the temperature was set to 6°C and was later raised to 10°C
in all tanks at constant light conditions (24h). Larvae were fed with Nannochloropsis and Bra-
chionus at different intervals for the high and the low food treatment (seven compared to three
times daily), while the prey concentrations per feeding remained the same for both treatments.
(For information on the feeding conditions, see Table B in S1 File). It should be noted, that even
though the low food treatment only provided a fraction of the total amount of prey of the high
food treatment, it is likely still higher than prey densities, which the larvae would experience in
the field. However, this is difficult to compare, since we provided very high densities for short
periods at the feeding times, which were then washed out of the tanks again. Therefore no steady
density of prey was provided, but during feeding times prey densities were extremely high. This
allowed for the exclusion of density and competition effects, which may have otherwise arisen
due to different larval densities in the different treatments. Larvae in one tank in the ambient
CO2 treatment were abruptly lost over night, due to an unknown factor, resulting in six repli-
cates for the high CO2 treatment and five for the ambient treatment, each divided equally into
the high and low food treatment. Starting on 8 dph survival was measured every four to six days
by calculating the density of the larvae in the tanks. Five times 0.8 l of water was sampled from
each tank over the whole water column using a pipe that could be closed at the bottom and the
larvae contained in the pipe were subsequently counted in each sub sample. Prior to sampling
an even distribution of larvae in the rearing tanks was achieved by increasing the aeration.

For both experiments the mean mortality coefficient was calculated after non-linear curve
fitting of a negative exponential function for each replicate tank. Mean daily mortality rates (in
percentage per day) were compared between treatments using a t-test (Western Baltic stock)
and a two-way ANOVA (Barents Sea stock) after appropriate data transformation to achieve
homogeneity of variances.

Ambient and increased CO2 levels were achieved by controlling the pH values in a header
tank with pH sensors connected to an IKS computer system. If the values deviated from the set
target pH a magnetic valve opened automatically, which allowed a pulse of CO2 from a CO2

bottle to be injected into the header tank. The volume of the header tank ensured a thorough
mixing and equilibration of CO2 before the water entered the rearing tank thereby assuring
constant conditions in the rearing tanks. The pH was furthermore manually checked every day
in the rearing tanks with a separate pH sensor (WTW pH/Cond 340i/3320). Water chemistry,
including DIC and alkalinity, was tested at the beginning and the end of the experiment for the
Western Baltic cod experiment and weekly for the Barents Sea cod experiment based on the
Best Practices Guide [31]. Further details regarding methods and carbon chemistry analysis are
available in the Supporting Information.

All experiments were carried out in accordance to the national rules and regulations at the
site of the experiments and all efforts where undertaken to minimize stress and suffering of the
animals. Issues for work on vertebrate animals were obtained for each experiment and location.
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For the experiment in Kristineberg with the Western Baltic cod the ethics permit number is
332–2012 issued by the Swedish Board of Agriculture (Jordbruksverket). For the experiment in
Tromsø on the Barents Sea cod the ethics permit number is FOTS ID 6382, issued by the Nor-
wegian Animal Research Authority (Forsøksdyrutvalget). In accordance with these permits
animals were euthanized after the experiment or whenever some were taken out for density
measurements using Tricaine methanesulfonate (MS222). No endangered or protected species
were used in these experiments and no other special permits were necessary.

Population level effects
Considering the potential impact of ocean acidification on fisheries requires scaling from phys-
iological responses to population-level processes. A simple way is to consider how ocean acidi-
fication could modify the parameters of growth, mortality and reproduction in a single-species.
Here we concentrate on the modification of the parameters of the stock-recruitment relation-
ship in an age-structured fishery model.

The effect of ocean acidification was assessed by modifying the density-independent param-
eter α of a Ricker type stock recruitment relationship. Ocean acidification causes a higher larval
mortality rate. This leads to a density-independent mortality rate a caused by acidification. In
the baseline scenario (no acidification) a = 0, while in the acidification scenarios, e-a is the frac-
tion of larvae surviving the effect of acidification. We used our experimental data to quantify
this effect, and to compare scenarios (See Supporting Information). We used ICES data for
Western Baltic cod for the years 1970 to 2014 and for Arcto-Norwegian cod for the years
1946–2014 to estimate the stock-recruitment relationship for the baseline scenario. We assume
log-normal auto-correlated errors, and estimated the model. (Further details regarding the
recruitment models are available as Supporting Information.) Because the severity of ocean
acidification induced mortality on recruitment depends on the duration of the additional mor-
tality, two developmental stages were chosen as termination for the enhanced mortality [20].
Based on the experimental temperatures at day 23 days post hatching the larval gut has reached
its typical spiral form (and potentially altered function) while at 30 dph gills become visible on
the gill arches. These two time points were used to evaluate the effect of increased mortality on
recruitment success assuming the same mortality estimates until 30 dph as shown in the exper-
iments until 22 dph and 25 dph. Mortality during the recruitment process consists of both den-
sity-independent and density-dependent effects. For simplicity we assume that the effect of
ocean acidification on the survival will only influence the density-independent mortality dur-
ing the recruitment phase potentially biasing the data to be on the conservative side.

Results
The effect of CO2 was consistent among stocks and experimental conditions, i.e. different feed-
ing conditions. At increased CO2 concentrations the daily mortality rates had approximately
doubled in both experiments, from 7 to 13% in the Barents Sea stock (Fig 1a) and from 9.2 to
20.4% in the Western Baltic Sea stock (Fig 1b) (Western Baltic experiment, T-test, t = -3.749,
df = 2.41, p = 0.024; Barents Sea experiment Two-way ANOVA F = 8.434, df = 1, p = 0.023). In
the Barents Sea experiment the food density had no detectable effect on mortality rate, neither
as main effect nor in interaction with the CO2-treatment (for additional statistics, see Tables C
and D in S1 File). Cod larvae therefore appear to be negatively affected by ocean acidification
even when ad libitum prey densities should ensure that energy is available for potential acid-
base regulation mechanisms.

Next, the experimentally assessed larval mortality rates were incorporated into a Ricker-
type stock-recruitment model that was parametrized for the two studied cod populations. We
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Fig 1. Effect of increased CO2 on early life survival ofGadusmorhua from (a) Barents Sea cod (b) Western
Baltic cod. Each symbol represents the value of one replicate tank. Lines depict the number of survivors according
to the fitted negative exponential function.

doi:10.1371/journal.pone.0155448.g001
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concentrated on altering the larval mortality in order to evaluate the overall stock-recruitment
relationship to assess their effects on population dynamics (for details see Supporting Informa-
tion). The model results show that for both mortality scenarios increased larval mortality due
to ocean acidification will reduce recruitment substantially. Recruitment levels will be reduced
on average to only 8% of the baseline scenario in the case of Western Baltic cod for ocean acidi-
fication-induced mortality periods of 23 days (and 4% for a mortality period of 30 days), and
to 24.5% (and 17% respectively) in Arcto-Norwegian cod (Figs 2 and 3).

Discussion
Under realistic scenarios of end-of-century ocean acidification, early larval survival of cod was
significantly reduced in two separate experiments with two different Atlantic cod stocks.
Results were consistent under different feeding regimes and strongly suggest that there is a
severe effect of ocean acidification on Atlantic cod larvae and recruitment.

Mass spawning fishes such as cod have many offspring with low survival probability in
nature. The salient question is whether our experimental conditions provide appropriate con-
trols with reasonable natural mortality levels. Larval survival rates are naturally low even under
ambient CO2 concentrations and optimal feeding conditions. The mortality is mainly caused
by the difficulty in a successful first feeding once the yolk sac is absorbed [27]. Other studies
find similar mortality rates as our control values in the two experiments during early larval
development [32,33]. Survival of larvae in our experiment from the Western Baltic stock was
lower than for the Barents Sea stock, since they were fed with natural plankton in concentra-
tions as provided by the fjord, while the larvae from the Barents Sea stock were kept under
aquaculture conditions aiming for the production of the highest numbers of fingerlings for
stocking of industrial scale production net pens.

Larval fish survival under ocean acidification has so far been shown in only one other
study by Baumann et al. (2012) [7], albeit in a non-commercial fish species, the Atlantic sil-
verside (Menidia menidia). In their study reduced larval survival was observed at 1100 ppm, a
level of ocean acidification, which is predicted to occur globally at the start of the next cen-
tury under the IPCC RCP 8.5, during the first week post hatch. Chambers et al. (2013) [22]
found a decreased hatching success (reflecting embryonic development) of the summer
flounder by 50% under 1860 ppm. This is a realistic ocean acidification level for the environ-
ment of this species within this century, even though values on a global average are predicted
to be lower. Munday et al. (2015) [25] found no effect on the survival of yellowtail kingfish
larvae. Other studies, like Munday et al. (2009b) [24]; Franke & Clemmesen (2011) [34];
Frommel et al. (2013) [35]; Hurst et al. (2013, 2015) [36,37], have addressed hatching success
and have not seen any effects of ocean acidification. We are confident that this does not nec-
essarily indicate that these species will not be affected or that our results present a contradic-
tion. It is well known that early life stages of marine fish go through several bottlenecks with
high mortalities during development and that different populations of the same species can
react differently to CO2 stress [35]. Our results show that the first days and weeks after hatch-
ing are a vulnerable phase to ocean acidification. So far studies on tropical fish have not seen
an ocean acidification effect on survival [38]. This is not surprising, since early development
in the studied species is very different from temperate fish and newly hatched larvae are fur-
ther developed and physiologically more competent thus less vulnerable to physiological
stressors. Furthermore the study by Munday et al. (2011), and other studies like Hurst et al.
(2013), only quantified survival at a single day, which may not have been the final day of any
additional mortality. Additionally, even if this was an end-point measurement, it does not
allow for calculations of mortality rates.
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Fig 2. Recruitment functions under baseline and under ocean acidification scenarios for (a) the Barents Sea cod
and (b) the Baltic Sea cod. The baseline scenario is based on no OA and spawning stock biomass at ICES precautionary
biomass levels (BPA) in dependence of the duration of OA-induced mortality. For better visualization a different scaling on
the second y-axes was chosen for the impacted recruitment.

doi:10.1371/journal.pone.0155448.g002
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One factor that this study is not taking into account is possibility that parental exposure to
the high CO2 environment could limit the adverse effects of ocean acidification. This kind of
transgenerational adaptation has been shown to mediate negative growth effects of OA in trop-
ical reef fish [39]. However since most commercially important fish species are quite large and
temperate fish species reach sexual maturity late, it will be difficult to perform experiments
with long parental exposure time. Furthermore it cannot be ruled out, that ocean acidification
might also have an additional negative effect on gonadal development in adult fishes, which
might further reduce recruitment potential.

Range shifts are responses of many fish populations to track the poleward movement of
their thermal range [2]. Unfortunately, this may exacerbate direct CO2 effects identified here,
since oceanic waters in higher latitudes will take up more CO2 due to higher solubility and
experience lower carbonate saturation [40]. Previously, ocean acidification has been shown to
affect marine fish larvae’s sensory abilities, morphology of the otoliths, cause tissue damage
and behavioural differences [13,17,18,19,21].

Here we give the first demographic estimates for Atlantic cod under realistic end-of-century
ocean acidification levels which are urgently needed to estimate whether these exploited fish
populations could potentially expect population declines as a direct consequence of ocean acid-
ification. The estimated recruitment declines shown are severe, of similar magnitude as popula-
tion collapses due to overfishing [41] and have highly significant implications for the

Fig 3. Population recruitment under ocean acidification (OA) for Western Baltic cod (black line and symbols)
and Barents Sea cod (grey line and symbols).Recruitment is given relative to a baseline scenario of no OA and
spawning stock biomass at ICES precautionary biomass levels (BPA) in dependence of the duration of OA-induced
mortality. Two important points in larval development are highlighted. Standard deviations displayed only for
selected days to improve readability.

doi:10.1371/journal.pone.0155448.g003
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governance of exploited fish populations. We show that indeed, increased mortality will affect
recruitment at the population level, demonstrating that any future management of exploitation
must directly consider effects induced by global change.

Supporting Information
S1 File. Supporting Information on experimental set-up, carbon chemistry, statistics and
recruitment modelling.
(DOCX)
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