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Abstract 

The main objective in research on sustainable fishery management is to understand the effects 

of fisheries on the resources and predict the Maximal Sustainable Yield. The von Bertalanffy 

growth model, commonly used in stock assessment, is suboptimal for the calculation of yield, 

because it cannot be integrated to omit time from the equation. Here, we present a new model 

to be used as the scientific basis to calculate yield and provide advices for optimal ecological 

harvesting strategies. The model builds on the principle of exact science and utilizes 

population measurements from scientific acoustic trawl surveys as input in a real population 

dynamical model. The model expands the theory of relativity to include the transition of 

biomass into energy and will improve simulation models used in fisheries science.  

 

Introduction 

A main objective in fisheries management is to track the impact of fisheries on the fish stocks 

and predict the Maximum Sustainable Yield (MSY)1. In the classical Beverton & Holt model 

(1957)2, the yield by recruit is estimated by assuming that growth and mortality are functions 

of age. The instantaneous mortality can be expressed as a simple differential equation, 

whereas the von Bertalanffy asymptotic growth model (1938) 3 used by Beverton and Holt, 

presupposes constant growth of different year classes and is a function of age, e.g. 

accumulated time. This growth model is also used in modern dynamic models which make 

summations of each year class instead of integrating over all ages1. It usually fits length–age 

data well 4 and any seasonal pattern of growth and mortality can be included in these modern 

models 1. However, growth is highly dynamic and changes with variations in temperature and 

food availability. The von Bertalanffy’s growth model cannot be integrated, which in 

mathematical terms prevents the stock models to truly be defined as dynamical models and 
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thereby fishery management to be defined as exact science. When including the presented 

dynamic growth model in population models, fishery management can be characterized as 

exact science. 

 

What do we mean with exact science? 

After Vilhelm Bjerknes 5 laid the theoretical foundation for the study of motions in the 

atmosphere and the oceans with the baroclinic density distributions, he argued that the 

weather prognosis should be considered as an initial value problem of mathematical physics, 

and carried out by integrating the governing equations forward in time, starting from the 

observed atmospheric state. He formulated the principle which is referred to as the numerical 

weather prediction which can be separated into two:  

A sufficiently accurate description of the atmospheric condition at one moment in time 

A sufficiently accurate description of the physical laws which cause the transition from one 

atmospheric state to another.  

Bjerknes divided the input data in the model in three different subjects: 

Diagnosis of the atmospheric state based on observations at a moment in time 

Prognoses of the future atmospheric state calculated from the physical laws 

Variables: wind, temperature, air pressure, humidity, clouds 

In quantitative biology terms, the Bjerknes principles can be structured as exact dynamical 

science and expressed as: 
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Diagnosis: The state of the stocks based on observations at a moment in time 

Prognosis: The future states of the stocks based on population dynamical models  

Variables: Population size in numbers and weight, recruitment, growth and mortality 

 

Diagnosis  

The capelin (Mallotus villosus) stock in the Barents Sea was the first example of a quota 

regulated fishery where the advice was based on 1) hydroacoustic measurements and 2) an 

estimation of the spawning stock size which provided an optimal harvest of the stock 6 7. The 

acoustic methods have improved tremendously, and today, acoustic survey is a standard 

method to assess pelagic fish stocks 8.  

The experiences made during the project indicated that the abundance estimates resulting 

from the hydroacoustic trawl surveys had to be structured in length-age matrices (Table 1) to 

be able to calculate the mortality and increment of growth by cohort (year class) independent 

of accumulated time. The distribution of fish in number to the different age groups was 

achieved by reading shells and otholits in fish from trawl samples and the transition to 

biomass by calculation of a standard Fulton’s condition factor from weight and length 

measurements of the sample 9.  

Table 1 represents the diagnoses of the capelin population in time steps, and a time series of 

annual measurements in the autumn made it possible to predict the state of the stock based on 

previous acoustic measurements. For this prediction, a model was established to give 

scientific advices on the capelin fishery in the Barents Sea 7. The model can simulate different 

harvesting strategies but has received little attention among fishery scientists despite the long 

period it has been in use in quota regulation for the capelin fishery. We suggest that this 

model structure is used generally as diagnosis for fish stocks.  
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Prognosis 

A real dynamic population model calculates changes in biomass independent of time. Such a 

model is often formulated with differential equations where the change is initially measured 

as a function of time. Since no quantitative definition of time exists, the time factor is 

traditionally removed by integration. However, the differential models describing increment 

in biomass of fish cannot be integrated 10 11 12 2.  

Another way to quantify changes in mass than using differential equations was introduced by 

Albert Einstein in1905. He assumed that the change in particle velocity is a result of adding 

energy to the particle independent of time (E=mc2), where the change per unit added energy is 

largest when the velocity of the particle is small, and decreases towards a maximum value; the 

speed of light 13. Here, energy and mass are equivalent and transmutable and independent of 

time. Einstein’s postulate met considerable skepticism amongst the mathematicians, but was 

effectively proven by the testing of the nuclear bombs.  

In a similar way, we have established a simple equation of growth increment by postulating 

that the length increment (dL) is proportional with the length (Ls) and that dL is reduced 

towards a maximum length (Lmax): 

                           

                                        dL = k ∙ (Lmax – Ls)       1 

 

k is a variable determined by food availability, temperature and other environmental factors, 

e.g. it describes the transformation of biomass into energy. Eq. 1 includes only measurable 

factors so that dL can be summed arithmetically by year classes using modern computer 
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techniques. The simple equation provides the new essential basis in our model, and expands 

the theory of relativity to include biomass. It postulates that biomass, similarly to other 

physical mass, is equivalent with energy. In other words, the dynamics we are observing are 

based on a common natural law formulated mathematically by Albert Einstein in 1905.  

The similarity between an asymptotic von Bertalanffy model and the instantaneous model of 

growth increment is illustrated in Figure 1 where the 1983 year class of herring is given as 

example.  Figure 1a illustrates the calculated increase in body length as a function of body 

length using Eq. 1, which is the basis for calculation of yield. The corresponding growth 

curve by age is calculated from Figure 1a and visualized in Figure 1b. The points are observed 

values. The lower observed growth rate of 2-3 year old herring compared to the older fish 

corresponds with the migration of the year class from the Barents Sea to the warmer 

Norwegian Sea, e.g. it is caused by a change in k, probably due to the increase in the sea 

water temperature.  

 

Parameters, variables and simulation 

Our growth model contains only one parameter, Lmax. The model presupposes that a fish 

stock is made up by a group of individuals with different Lmax at hatching. The individual 

Lmax is genetically determined, does not change during life and is not affected by 

exploitation. It is different from L∞, which per definition is connected to time and has no 

individual variation.  

Clearly, there are a considerable number of variables that determine the value of k, and the 

parameterization will demand expertise within oceanography and in biological fields such as 

genetics and nutrition.  
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In future simulation models, we suggest to calculate yield from instantaneous growth 

increment (Eq. 1, Fig 1a) and instantaneous total mortality stepwise for each length group 

(Table 1).  

 

In an ecological and harvesting perspective  

The instantaneous growth function enables us to calculate the differences in yield by 

harvesting fish of different lengths.  For herring, 80% of the potential somatic growth is 

reached before first spawning which occurs at a length of about 30 cm (Figure 1a). It is thus 

clear that from a yield perspective it is beneficial to harvest immature fish. This is also the 

principle of production of most of our farm animals, including farmed fish. Size limitations in 

fishery may therefore defeat its own end, and prevent a maximum utilizion of the marine 

resource. A similar perspective is presented by Borrell (2013) 14. 

The growth function also enables us to understand the efficiency with which energy is 

transported upwards in the nutrient chain. For herring, the somatic growth per unit added 

energy is about 5 to 10 times higher for 0-group fish (<15 cm) than for fish above 15 cm 

(Figur 1a). This is in accordance with the fact that seabirds along the Norwegian coast mainly 

feed on 0-group fish 15, which represents an efficient utilization of zooplankton biomass and 

energy. 

The hypothesis that individual Lmax is determined genetically, and follows the animal 

throughout life, may explain the many reports that exploitation of fish stocks and especially 

size limited fisheries, leads to a decrease in length and age at which the fish become sexually 

mature 14 16 17 18. Selecting the large fish will cause relatively higher mortality of fish with a 

high individual Lmax than in the smaller fish, and the genetic makeup of the next generation 

will change accordingly.  
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The question as to whether the decrease in fish size at first maturity is a genetic or plastic 

response is still open 14, but this effect of fisheries points to the need for balanced harvesting 

of body sizes within a stock, and of species within an  ecosystem, to diminish fishing induced 

ecological changes. The need for balanced harvesting has led to the concept of dynamic size 

spectra 19, where productivity on different trophic levels is calculated, still based on the von 

Bertalanffy growth function, and used to predict yield in the whole system. Our growth model 

gives an improved estimation of yield, dependent on the environment and taking into account 

the transfer of energy between trophic levels. It can be used in different models, including the 

simulation model, Systmod 20, which is already developed for multiple species.  
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Figure Legend 

Figure 1. Modeled and observed growth in the 1983 year class of Norwegian Spring 

Spawning herring with k-value 0.35 and Lmax=36.0 cm a) Instantaneous growth: Length 

9 

 



increment as function of length, and b) Average length by age, calculated from 1a (dashed 

line) and observed (points). 
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Table 1. Diagnosis of the Barents Sea capelin stock. The estimated number of capelin by 

length and age group measured during the acoustic survey in autumn 1980.  

Total length 
(cm) 

Age Total 
number x 
107 

Biomass 
ton x 103 1 2 3 4 5 

6.5 - 6.9 105     105 1.0 
7.0 - 7.4 411     411 4.1 
7.5 - 7.9 418     418 4.2 
8.0 - 8.4 862     862 14.7 
8.5 - 8.9 2354     2354 47.1 
9.0 - 9.4 3760     3760 87.9 
9.5 - 9.9 3928 25    3953 120.3 
10.0 - 10.4 3690 75    3765 145.7 
10.5 - 10.9 5731 388    6119 284.1 
11.0 - 11.4 6134 1186 13   7333 387.5 
11.5 - 11.9 3314 2556 4   5874 363.4 
12.0 - 12.4 1276 3456 52   4784 353.1 
12.5 - 12.9 595 3221 170 4  3990 346.2 
13.0 - 13.4 256 3115 459 14  3844 390.8 
13.5 - 13.9 59 2724 1131 14  3928 452.5 
14.0 - 14.4   1836 2317 108   4261 561.5 
14.5 - 14.9  756 2811 197  3764 554.0 
15.0 - 15.4  422 2776 381  3579 604.5 
15.5 - 15.9  92 1800 464 1 2357 447.6 
16.0 - 16.4  43 1453 469 29 1994 437.3 
16.5 - 16.9  7 878 410  1295 327.2 
17.0 - 17.4  7 510 384  901 257.2 
17.5 - 17.9   442 339  781 250.8 
18.0 - 18.4   271 230  501 182.8 
18.5 - 18.9   178 108  286 115.0 
19.0 - 19.4   131 85  216 91.3 
19.5 - 19.9     19 55   74 36.5 
Number x 107 32893 19909 15415 3262 30 71509  
Number > 
14.4 cm 0 1327 11269 3122 30 15748  
Biomass (ton x 103)      6868.3 
Biomass fish >14.4 cm           3304.2 
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Figure 1 
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