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Abstract 5 

 6 

The shrimp spawn in autumn, and the females carry their eggs as out roe until spring when the 7 

larvae hatch. Within a period of 2 months the shrimp larvae settle to the bottom. It has been 8 

claimed that the year class strength probably is determined during the larval phase. Today’s 9 

assessment and forecast of the shrimp stock productivity and potential fishing yields is weak. 10 

This is partly due to poor knowledge on population dynamics from hatching until the shrimp 11 

are caught in the fishery at the age of 3 or 4 years. We therefore here identify the most 12 

important abiotic and biotic factors that effect recruitment in addition to spawning stock 13 

biomass. Since 1995 a net attached to the underbelly of the survey trawl used at the annual 14 

cruise in the Barents Sea has caught juvenile shrimp. The abundance of settled shrimp larvae 15 

varies in time and space. The recruitment to the fishery has been quite stable with the 16 

exception of the 1996 year-class which was observed as 1 year old but has not been registered 17 

since. The temporal pattern of the three youngest year-classes are studied in relation to abiotic 18 

factors such as sea temperature, ice index and North Atlantic Oscillation, as well as biotic 19 

factors such as spawning stock biomass and presence of copepods, euphausiids and predating 20 

cod. Recruitment indices and factors identified by Spearmann correlation to be significantly 21 

correlated with recruitment were used as input in a principal component analysis (PCA) and a 22 

generalized additive model (GAM) was applied. Abundance of 1 year old shrimp is positively 23 

correlated to spawning stock biomass the previous year and temperature the last winter and 24 

negatively correlated with the number of 1 year old cod. Two year old shrimp show 25 

significant correlation with temperature while there is a strong negative correlation with 26 

euphausiids. Three year old shrimp are significantly correlated with the number of 2 year old 27 
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shrimp the previous year but negatively correlated to temperature at sampling time. This is 28 

probably due to less overlap with the main predator cod when cold. Ricker functions indicate 29 

an increased density dependent mortality with age. When predicting the recruitment of shrimp 30 

to the fishery the spawning stock biomass, the abundance of cod and euphausiids, as well as 31 

the temperature should be included.  32 

 33 
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 42 

1. Introduction 43 

 44 

The shrimp (Pandalus borealis) is a protandric hermaphrodite changing sex from male to 45 

female at an age of 4 to 7 years in the Northeast Atlantic (Nilssen and Hopkins, 1992). The 46 

shrimp spawn in autumn and the eggs are carried as out roe by the females (ovigerous 47 

females) until spring when the larvae hatch. Within a period of 2−3 months the shrimp larvae 48 

pass through six developmental stages after which they settle to the bottom as post larvae 49 

(Shumway et al., 1985; Ouellet et al. 1990; Bergström, 2000).  50 

It is of major importance for the shrimp stock assessment to get information on the strengths 51 

of the recruiting year classes as early as possible. Today’s assessment forecast of the shrimp 52 

stock productivity and potential fishing yields is weak, partly due to the lack of knowledge on 53 

the population dynamics from hatching until the shrimp are caught in the fishery. According 54 

to Shumway et al. (1985) the year class strength of shrimp is probably largely established 55 

during the pelagic larval stage. In the Barents Sea shrimp larvae are transported 0−300 km 56 

during the larval phase (Pedersen et al., 2003). It is assumed that the transport processes 57 

influence the recruitment both directly as advectional losses of larvae and indirectly through 58 

temperature, food availability and predator-prey interactions (Apollino et al., 1986; Lysy and 59 

Dvinia, 1991; Clarke et al., 1991; Ouellet et al., 1995). Ouellet et al. (2007) found that 60 

survival of the pelagic shrimp larvae was dependent on warming rate and the depth of the 61 

mixed water layer. The object of this study is to define relevant recruitment indices and 62 

identify the environmental factors determining recruitment success. Annual variation in 63 

recruitment and larval survival are related to abiotic factors; temperature, ice coverage, the 64 

North Atlantic Oscillation (NAO), and to biotic factors; spawning stock biomass (SSB) 65 

defined as biomass of ovigerous females the previous year, abundance of zooplankton, 66 

euphausiids and capelin (Mallotus villosus). We will also study the effect of the main predator 67 
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cod (Gadus morhua) as predation has been shown to overrule the positive effect of favourable 68 

temperature conditions on shrimp survival (Wieland et al., 2007). 69 

 70 

2. Material and Methods 71 

 72 

2.1. Study area  73 

 74 

The Barents Sea is a shelf sea with an average depth of 230 m. The circulation is dominated 75 

by the Norwegian Atlantic Current that enters the Barents Sea through the Bear Island 76 

Trench. Some of the Atlantic Water flow eastward parallel to the coast towards Novaya 77 

Zemlya while another part flows northeast wards and into the Hopen Deep (Fig.1). The 78 

relative strength of these two branches varies with the atmospheric fields (Ingvaldsen et al., 79 

2003). South of the Atlantic inflow, the Norwegian Coastal Current continues along the 80 

Finnmark and Kola coast. In the northern and eastern parts of the Barents Sea, Arctic water 81 

flow southwest wards near the surface. The Atlantic inflow continues towards northeast 82 

below this layer. The Barents Sea has several bank areas with associated anticyclonic 83 

circulation. The Atlantic inflow to the Barents Sea shows considerable inter-annual variability 84 

(Ådlandsvik and Loeng, 1991).        Fig. 1 85 

 86 

The major water masses in the investigated area are Atlantic Water with salinity over 35‰, 87 

and the colder and fresher Arctic Water. These water masses are separated by the Polar Front. 88 

In the western Barents Sea the position of the front is relatively stable, although it seems to be 89 

pushed northwards during warm climatic periods (Loeng, 1991; Ingvaldsen, 2005). In the 90 

eastern part the position of the front has large seasonal, as well as year to year variations. Ice 91 

conditions also show large seasonal and year to year variations. In the winter the ice can cover 92 

most of the northern Barents Sea, while in the summer the whole sea may be ice-free.  93 

 94 
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2.2. Abiotic factors 95 

 96 

The climate of the Barents Sea shows substantial variations, and the temperature fluctuations 97 

at the Vardø-N section along 31
o
13’E (Fig. 1) gives a good representation of the climate 98 

variability in the central Barents Sea (Ingvaldsen et al., 2003) and the position of the Polar 99 

Front in the Hopen Deep (Skjoldal et al., 1987). The mean temperature in the section, 100 

between 50−200 m depth, was calculated from 72
o
15’N to 74

o
15’N.  The section is sampled 4 101 

times a year (January, March, June−July and August−September). In addition to January and 102 

March temperatures (best available measure of winter temperature) the annual mean 103 

temperature was used in the correlation analysis.  104 

 105 

From a temperature atlas where all observations from August−October each year have been 106 

interpolated to a regular grid, a section along the Hopen Deep between 74
o
N and 76

o
30’N at 107 

50 to 200 m was defined to provide a time series of temperature in the northernmost parts of 108 

the Barents Sea where shrimp is most abundant (Fig. 1). Temperatures from 109 

August−September each year were used instead of annual means, because by including winter 110 

temperatures the section could not extend as far north. As the temperature level for the rest of 111 

the year is determined by the winter temperature, the annual variation is clear also in the 112 

summer temperature (Ottersen et al., 2000). Bottom temperatures in the Hopen Deep (Fig. 1 113 

Area E) were extracted from a similar temperature atlas and mean temperatures were 114 

calculated. The Russian section defined along the Kola meridian at 33 30’ E (Bochkov 1982 115 

and Tereshchenko, 1996) gives a good indication of the temperature variation in the southern 116 

Barents Sea (Ingvaldsen et al., 2003). The annual mean temperature for the upper 200 m from 117 

70 30’N to 72 30’ N, were calculated and used in the correlation analysis.  118 

 119 

The North Atlantic Oscillation (NAO) is one of the most prominent and recurrent patterns of 120 

seasonal and long-term atmospheric variability in the North Atlantic Ocean and is there fore 121 
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used in this study. The NAO index from NCAR (Hurrell, 1995) is a much used, but crude 122 

indicator of the south-westerly winds in the Norwegian and Barents Sea, and has significant 123 

effect on the Barents Sea temperatures (Ottersen et al., 2003).  124 

 125 

The ice index is an integrated value for the ice coverage between 25
o
E and 45

o
E in the 126 

Barents Sea and is a good indicator of the climate conditions. A definition of the index is 127 

given by Ådlandsvik and Loeng (1991), and values are updated annually by the Institute of 128 

Marine Research (Skogen et al., 2007). Note that a low index corresponds to heavy ice 129 

conditions.  130 

 131 

2.3. Biotic factors 132 

 133 

Since 1987, the zooplankton abundance has been monitored on annual surveys during the 134 

Norwegian-Russian 0-group and capelin surveys that are carried out in autumn. The 135 

zooplankton biomass in the Barents Sea is dominated by Calanus finmarchicus, and the 136 

biomass estimate is based on net-hauls from bottom to surface (Dalpadado et al., 2003; 137 

Skogen et al., 2007). Euphausiids (Thysanoessa inermis, T. raschii, T. longicaudata and 138 

Meganyctiphanes norvegica) have been monitored in the Barents Sea since 1952 at demersal 139 

fish surveys conducted by Russian scientists at PINRO. A net is attached to the survey trawl 140 

and sampled in the autumn and winter period when euphausiids are concentrated close to the 141 

bottom and show no vertical migration (Drobysheva et al., 2003). 142 

 143 

The number of 1 year old capelin sampled in August was included in the correlation analysis 144 

since there may be a relationship between the shrimp and the capelin directly by capelin 145 

feeding on shrimp juveniles or indirectly by both being prey for the cod (Skogen et al., 2007). 146 

The Arctic Fisheries Working Group report (Anonymous, 2006) lists the number of cod in 147 
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age group 3, whereas Bjarte Bogstad (IMR) provided data on age groups 1 and 2. The number 148 

of cod in each year class is the output of the VPA. 149 

 150 

2.4. Shrimp spawning stock and recruitment 151 

 152 

Annual shrimp surveys have been conducted by Norway in the Barents Sea every spring in 153 

the period 1982−2004. Between 100 and 200 stations have been towed with 3 knots
1
 for one 154 

hour, 30 minutes or, since 1992 for 20 minutes. Shrimp are sexed and length measured on 155 

board the vessel. The spawning stock biomass is presented as the weight (ton) of reproducing 156 

females (egg carrying females and females with hatched eggs) per square nautical mile
2
 (nm-

157 

2). Aschan and Sunnanå (1997) described in detail the procedures for sampling, stratification, 158 

length measurements and sex determination. 159 

 160 

As the survey trawl (Campelen 1800) only caches large shrimp (carapace length (CL) >15 161 

mm equals total length > 6 cm) efficiently, sampling techniques for sampling the smallest 162 

shrimp have been tested and evaluated (Larsen et al., 1993; Aschan et al., 2000). In 1995 a 163 

fine meshed (8 mm) juvenile bag with a 1 m² opening was attached to the lower trawl belly 164 

one meter in front of the junction to the cod end (Nilssen et al., 1986; Aschan and Sunnanå, 165 

1997). Because the juvenile bag samples both 1 and 2 year old shrimp escaping the trawl 166 

trough the belly and thereby does not require additional sampling time, it was chosen as the 167 

main sampling tool for small shrimp. Indices for 3 years old and also for 2 year old shrimp 168 

were produced from the cod end sample. 169 

 170 

The samples were weighted to the shrimp catch at each station and the strata size in a swept 171 

area calculation before calculating the average density by sub-area (A−F, Fig. 1). Number of 172 

shrimp in each 1 mm interval was calculated for the years 1989−2004 and for the belly bag 173 

                                                           
1
 1 knot = 1 nautical mile/h = 1.852 km/h = 0.514 ms−1 

2
 1 square nautical mile = (1.852 km)2 = 3.4299 km2  
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for the years 1995−2004. The young shrimp (< 15 mm) are divided into age groups; age 1: CL 174 

<9 mm, age 2: 9 mm< CL< 12 mm and age 3: 12 mm< CL< 15 mm, according to the length 175 

at age key generated from the Hopen Deep (Aschan, 2001). This length at age key is based on 176 

data collected since 1990 and is not necessarily applicable on shrimp collected in the 1980’s. 177 

However, when describing the long time spatial recruitment pattern the index of 2 year old 178 

shrimp, defined as above, is presented by area for year class 1980 to 2002. 179 

 180 

2.5. Numerical analysis 181 

 182 

Regression analysis between 2 year old shrimp caught in the juvenile bag and same age 183 

shrimp caught in the cod end was run to identify if the latter could be used as a recruitment 184 

index and thereby provide a longer time series.  185 

 186 

The spawning stock recruitment relationship was studied by fitting linear regression and the 187 

Ricker (1954) spawning stock recruitment model to recruitment indices of age 1 (1994−2003 188 

year class), age 2 (1989−2002 year class) and age 3 shrimp (1986−2001 year class) and 189 

spawning stock biomass. The formula for the Ricker model is: 190 

 191 

)( SSBbeSSBaR  192 

 193 

where R is the recruitment, SSB is our measure of the spawning stock biomass in the year of 194 

recruitment, and a and b are constants.  195 

 196 

We used two criteria for determining the fit of the models, the adjusted R
2
 where a larger 197 

value indicates a better fit, and the akaike information criterion (AIC) where smaller value 198 

indicate a better more parsimonious model (Quinn and Keough 2002). 199 

 200 
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As the shrimp recruitment is likely to depend on the spawning stock biomass a survival index 201 

was established for age 1 and age 2 as recruitment per unit of SSB which produced these 202 

recruits. For age 3 the survival index is the number of age 3 recruits per age 2 recruits the 203 

previous year. 204 

 205 

A correlation analysis between recruitment measures, recruitment indices and survival indices 206 

(age 1, age 2 and age 3), and abiotic and biotic parameters was run using Spearman's rho 207 

statistic to estimate a rank-based measure of association. The rank Spearman correlation 208 

coefficient (rho) is calculated after the variables have separately been transformed to ranks 209 

and is a conservative measure on monotonic relationships between the variables. The 210 

Spearman correlation is robust and has been recommended when data do not necessarily 211 

come from a bivariate normal distribution (Quinn and Keough 2002). The populations in 212 

nature, in this study temperature, species abundance etc., seldom have a normal distribution, 213 

and one can not assume that the data are normally distributed. When using our few data 214 

Shapiro−Wilkins normality test indicated normality for some variables (annual mean 215 

temperature Vardø P = 0.02, Capelin P = 0.008, Cod 1 P = 0.05, Cod 2 P = 0.02, Age 2 P = 216 

0.03 and Survivals = Age 3/Age 2 P = 0.01), but normality plots showed that the outermost 217 

points did not follow the normal distribution. 218 

 219 

All variables were tested for autocorrelation for a lag of one, two and three years. Where 220 

autocorrelation was significant (P< 0.05), we corrected for it by adjusting the degrees of 221 

freedom used in the Spearman's rho statistics. This adjustment was done in accordance with 222 

Pyper and Peterman (1998): 223 

 224 
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where N
*
 is the effective number of degrees of freedom on the time series X and Y, N is the 227 

sample size and rxx(j) and ryy(j) are the autocorrelations of X and Y at lag  j. Following the 228 

recommendation by Pyper and Peterman (1998) a maximum of N/5 lags were included in the 229 

calculation of effective number of degrees of freedom. Therefore two lags where included for 230 

1 year old shrimp and three lags for 2 and 3 year old shrimp. All statistical analyses in this 231 

study were run in R 2.5.0 (R Development Core Team, 2007). 232 

 233 

Relevant abiotic and biotic factors identified by the Spearman correlation analysis as 234 

significant, were used as input when running a principal component analysis (PCA). A 235 

generalized additive model (GAM) in the function “ordisurf“ in R fits surfaces of density of 236 

recruits (age 1, age 2 and age 3) to the respective principal component ordinations (PC1 and 237 

PC2). The generalized additive model (GAM) is a generalized linear model (GLM), in which 238 

the linear predictor is replaced by a user specified sum of smooth functions of the covariates 239 

plus a conventional parametric component of the linear predictor. The function “gam” uses 240 

thinplate splines in two dimensions, and automatically selects the degree of smoothing by 241 

generalized cross validation (Oksanen, 2007).  242 

 243 

3. Results 244 

 245 

3.1. Abiotic factors 246 

 247 

From 1985 to 1989 there were in general low temperatures in the Barents Sea, while the 248 

period 1990−1995 was characterized by warm conditions (Fig. 2). In 1996 a sudden 249 

temperature drop occurred and it stayed cold until 1998. Since then temperatures have been 250 

high, with the exception of 2003 which was close to the long-term mean. Prior to 2000−2001 251 

the mean temperature, the January and the March temperatures in the Vardø-N section, the 252 

NAO index and the ice index varied much in the same manner indicating warm conditions 253 
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with small amounts of ice during high NAO, but after 2000−2001 there is not a good 254 

correlation between the NAO and other parameters. The ice index follows in general the 255 

variations in mean temperature, but with a lag of 1−3 years. An exception was in 2003, when 256 

there were large amounts of ice despite the temperatures not being correspondingly low. The 257 

reason was a late onset of melting in spring 2003. In the Hopen Deep the ice edge was close 258 

to 75
o
N through the entire winter, which is close to normal, but the ice edge reached 76

o
N 259 

about a month later than in 2002.         Fig. 2 260 

 261 

It was cold in the Hopen section in 1987, 1996 and 2003, while the warmest years were 1989, 262 

1999 and 2004 (Fig. 2). The bottom temperature in the Hopen Deep (area E) shows much of 263 

the same variability as the mean temperature in the Hopen section (50−200 m). However, 264 

some differences are evident, and the most pronounced difference is the strong increase in 265 

bottom temperature in 1987−1992, followed by a rapid decrease in 1993. In 1996 and 2003 266 

the bottom temperatures were low, but the decrease was not as extreme as observed at 50−200 267 

m depth. 268 

 269 

The temperature along the Hopen section is significantly correlated with the bottom 270 

temperature in the Hopen Deep, with the Vardø annual mean temperature and with the NAO 271 

(Spearmann correlation rho = 0.68, 0.70 and 0.85 respectively). The temperature in Hopen 272 

and Kola sections has the same variability, but there are large deviations between the time 273 

series after the year of 1999 and therefore there is no correlation (rho -0.40). The very low 274 

temperatures measured in Hopen in the years 1996 and 2003 were not observed in Kola.  275 

         276 
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 277 

3.2. Biotic factors 278 

 279 

The zooplankton and euphausiid biomass increases in the 90’s and stay above the long-term 280 

mean until 2004. However, both variables show great variation between years (Fig. 3). Cod 281 

has very good recruitment in the period 1991−1998. Capelin has a negative correlation to cod 282 

of age 1−4 (rho: -0.44 to -0.63) while zooplankton has a positive correlation with cod age 1, 2 283 

and 3 (rho: 0.66-0.69). This is the consequence of low densities of cod giving rise to high 284 

numbers of capelin predating on copepods.       Fig. 3 285 

 286 

3.3. Shrimp spawning stock and recruitment 287 

 288 

The recruitment indices given for age 2 shrimp caught in the cod end of the survey trawl and 289 

in the juvenile bag attached to the belly of the trawl are well correlated (R
2
 = 0.80) (Fig. 4). 290 

We therefore used the longer time series for number of age 2 shrimp caught in the cod end in 291 

the correlation analysis.          Fig. 4 292 

 293 

The biomass of spawning females, recruitment index for age 2 and age 3 shrimp may vary by 294 

a factor of 4−5, while the recruitment index for 1 year old shrimp vary by a factor of 10. This 295 

indirectly indicate that the greatest mortality occur between age 1 and 2. Recruitment indices 296 

for 2 and 3 year old shrimp and spawning stock biomass sampled in the cod end each year 297 

since 1989 reveals high spawning stock and good recruitment of age 2 shrimp in the early and 298 

the late 90’s (Fig. 5). The recruitment indices for 1 year old shrimp sampled in the belly bag 299 

since 1995 show strong year-classes in 1999 and 2000. Both spawning stock biomass and 300 

recruitment of all age classes are on a historically low level in 2004.    Fig. 5 301 

 302 
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The recruitment of shrimp varies between areas and years (Fig 6). The Hopen Deep (E) is the 303 

most important area for recruitment with the highest density of recruits. The mean density of 304 

age 2 shrimp in the Tiddly Bank (B) and Thor Iversen Bank (C) is less than 30% of  the 305 

density in the Hopen Deep (E). Off Finnmark (A), in the Bear Island Trench (D) and off Bear 306 

Island (F) the density of age 2 shrimp is even lower with a mean density less then 15 % of the 307 

mean density in the Hopen Deep. Except for the period 1994−1997, the number of recruits in 308 

the Hopen Deep (E) has a strong covariation with the bottom temperature in the Hopen Deep 309 

(Fig. 2 and Fig. 5). The poor covariation in 1994−1997 is probably due to the high number of 310 

1 and two year cod in that period (Fig. 3), and possibly due to unusual inter-annual variability 311 

in the temperature.          Fig. 6 312 

 313 

The spawning stock recruitment relationship fits both to the linear model and the Ricker 314 

model, but F−statistics give the linear model the best fit for all age groups (P<0.001) (Fig. 7 315 

and Table 1). The AIC indicates that the stock recruitment model fit gets weaker for each age 316 

group. That is due to the biotic and abiotic factors affecting the survival rate of young shrimp 317 

over time.            Fig. 7 318 

 319 

Some of the variables (SSB, Age 2, Cod 1) turned out to have a significant (P<0.05) 320 

autocorrelation, but only at lag 1. The correlation between Age 1 and Cod 1 (-0.6) and Age 2 321 

and SSB (-0.46) turned out to be insignificant when degrees of freedom were adjusted for 322 

(Table 2). However, survival (Age 1/SSB) and Cod 1 still have a significant negative 323 

correlation. All abiotic and biotic factors presented were included in the correlation analysis, 324 

but only variables giving significant correlation (P<0.05) were included in Table 2. Thereby 325 

the Kola temperature, ice index, zooplankton and cod age 3 are excluded. The correlation 326 

analysis reveals that for age 1 shrimp the most important positive factor, after spawning stock 327 

biomass the previous year, is the temperature in January and March the same year. The 328 

presence of cod age 1 and 2 the previous year is important negative factors (Table 2.). Age 1 329 
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shrimp is positively correlated with capelin but negatively, although not significantly 330 

correlated (rho = -0.45) with zooplankton. Age 2 shrimp is not significantly correlated with 331 

spawning stock biomass (rho = 0.46), is significantly correlated with temperatures (Vardø and 332 

Hopen sections and Hopen bottom) and NAO the previous year, but has a significant strong 333 

negative correlation with euphausiids (rho = -0.8). Age 3 shrimp is significantly correlated 334 

with age 2 shrimp the previous year and negatively correlated to the temperature at the 335 

sampling time (Vardø in March). Simultaneously, the survival of 3 year old shrimp, as 336 

previously seen for age 1 shrimp, seem to be good when the young capelin thrives.  337 

 338 

The principal components 1 and 2 contribute 92%, 79% and 70% to the correlation between 339 

factors selected for the PCA ordination to be fitted to the distribution of age 1, 2 and 3 shrimp 340 

(Table 3). The generalized additive model has the best fit to the age 1 and age 2 shrimp while 341 

the deviance explained by the model for age 3 is only 16% (Table 3). The density of shrimp 342 

of age 1 and 2 is projected on the respective PCA ordination plots (Fig. 8). In the PCA plot 343 

the isolines show how the recruitment, of age 1 and age 2 change along the 3 most important 344 

factors. The PCA for age 1 and age 2 visualizes how the recruitment is very dependent on 345 

SSB and temperature. While the presence of young cod and euphausiids reduces shrimp 346 

recruitment.           Fig. 8 347 

 348 

4. Discussion 349 

When evaluating the effect of environmental factors on shrimp recruitment, the ambient 350 

temperature is the most obvious factor to study. The NAO and the ice index were included as 351 

they may represent the large scale climate variability of the Barents Sea. The NAO influences 352 

on the Barents Sea in several ways. It may have an effect through changing the wind field, 353 

thereby changing the position of the Polar Front and the ice edge, and by increasing the 354 

northward flow of Atlantic Water in the Barents Sea. This response is direct with no lag as it 355 

is related to the wind conditions at the time. The NAO has also an indirect effect as it often 356 
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cause changes to the temperature of the Atlantic Water in the Norwegian Sea which is 357 

subsequently advected into the Barents Sea. Due to this a lag between the NAO and the 358 

Barents Sea temperatures has been identified by several authors (e.g. Furevik, 2001). When 359 

using the ocean temperatures this advected, lagged signal is already in the time series, and 360 

there will therefore be no additional information available by lagging NAO and shrimp.   361 

The influence of the NAO is strongest when it is in a well defined positive or negative phase 362 

with several high- or low-index years following. Prior to 2001 the NAO index had well 363 

defined positive or negative phases, while since 2001 it has been low and irregular (Fig. 2). 364 

This is probably the cause for the poor correlation between the NAO and the other parameters 365 

after 2001. The age 1 and 3 shrimp show no correlation with NAO while the age 2 shrimp is 366 

significantly correlated with this index (Table 2).  Age 2 shrimp also show a significant 367 

correlation to the Vardø and Hopen temperatures and as the NAO and these temperatures are 368 

significantly correlated (0.88 for NAO and Hopen), we consider this a temperature effect.  369 

 370 

The best recruitment index for age 1 shrimp is received by using the juvenile bag. However, 371 

the time series is short and because age 2 shrimp caught in the cod end is correlated to the 372 

shrimp caught in the juvenile bag and provides a longer time series they are considered the 373 

best recruitment measure (Fig. 4). Due to high and variable natural mortality from age 1 to 374 

age 3, age 1 shrimp is not the best recruitment indicator to be used for fishery prognosis. The 375 

index of age 2 shrimp is significantly correlated to available abiotic and biotic factors whereas 376 

this correlation is weaker for the index of age 3 shrimp (Table 2 and Table 3). We consider 377 

age 2 shrimp to be the best indicator of recruitment as has also been concluded for shrimp 378 

stocks off West Greenland, Iceland and elsewhere(Wieland, 2004; Skuladottir, 1990). 379 

 380 

The index of 3 year old shrimp from the cod end is hard to predict as the effect of several 381 

abiotic and biotic factors co-occur over time and the correlation to these factors get weak. A 382 

better correlation might have been received if the environmental factors (e.g. temperature and 383 
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cod) would have been integrated over the last three years before running the correlation 384 

analysis. However, the index of age 3 shrimp gives an indication on the recruitment to the 385 

shrimp fishery the next year, and may be used as a recruitment index in future assessment 386 

work. A problem using this index is however, that a fraction of this age group is caught in the 387 

commercial trawl and may have been exposed to fishing mortality. 388 

 389 

One year old shrimp are significantly correlated to spawning stock biomass, and the relation 390 

is almost linear (Table 1, Fig. 7). Even if the Cushings match/mismatch hypothesis, effective 391 

for the larval phase, may explain some of the inter annual variability in shrimp recruitment 392 

(Ouellet et al., 2007), the winter temperature and cod predation seem to be of essential 393 

importance as they together with the SBB stand for more than 97 % of the deviance explained 394 

by the GAM function (Fig. 8, Table 3). Crustaceans (krill, amphipods and shrimp) seem to be 395 

the dominant prey of 1 year old cod, composing up to 40−80% of their diet. In some years 396 

Pandalus borealis made up for 30−37% of the Total Fullness Index (Dalpadado and Bogstad, 397 

2004). According to Dalpadado and Bogstad (2004) the cod reduces its crustaceans consume 398 

at age 2 and moves to fish prey at age 3, consequently the negative correlation with shrimp 399 

recruits gets weaker with shrimp and cod age (Table 2).   400 

 401 

The positive correlation between shrimp and the winter temperature may be a direct effect of 402 

decreasing natural mortality, as temperatures below -1 ºC are known to result in reduced 403 

abundance and temperatures below -1.6 ºC result in extinction of shrimp (Smidt, 1981; 404 

Wieland 2005). However, the positive correlation between one year old shrimp and 405 

temperature and capelin may be related to food competition and overlap between shrimp and 406 

capelin as also shrimp feed on Calanus finmarchicus (CI−CVI) (Harvey and Morrier 2003). 407 

During winter the capelin is distributed according to the position of the Polar Front, so during 408 

cold winters the capelin is concentrated in the Hopen Deep while during warm winters it is 409 

spread over a larger area (Gjøsæter, 2008). In warm years, the distribution of capelin in 410 
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summer has a more northerly distribution, north and east of the Hopen Deep, than in cold 411 

years. Consequently there is less overlap between shrimp and capelin in warm years than in 412 

cold years both during summer and winter. Although capelin by far is controlling the 413 

abundance of copepods (Dalpadado and Skjoldahl 1996; Gjøsæter et al. 2000), less overlap in 414 

warm years leaves more C. finmarchicus available for the shrimp in the Hopen Deep. This 415 

may explain the negative, although not significant, correlation (-0.45) between one year old 416 

shrimp and zooplankton. Dalpadado et al. (2003) found correlation coefficients 0.57−0.72 417 

between temperature and capelin biomass. The positive response of one year old shrimp and 418 

capelin to high temperatures may thereby be the result of less overlap and consequently less 419 

food competition. 420 

 421 

The 2 year old shrimp show a positive response to temperature (Table 2). This relationship is 422 

common when studying fish recruitment in the Barents Sea. Abundance estimates of 0-group 423 

cod exhibit a close relationship with sea temperature variability at the Kola section (Nilssen et 424 

al., 1994). Covariability in early growth and year class strength of cod, haddock and herring is 425 

explained by their common positive response to temperature (Ottersen and Loeng, 2000). The 426 

striking negative correlation with euphausiid biomass may have several explanations. The 427 

dominating euphausiids in the Barents Sea are Meganyctiphanes norwegica, a boreal species 428 

found in Atlantic water, and Thysanoessa inermis, T. raschii and T. longicaudata having an 429 

arctic boreal distribution (Drobysheva et al., 2003). M. norwegica reaches the length of 45 430 

mm and is primarily a carnivore aiming for copepod prey, including overwintering Calanus 431 

spp. (Dalpadado et al., 2003; Kaartvedt et al., 2002). Thysanoessa ssp. is smaller (25−35 mm) 432 

and has been classified as herbivores although T. raschii seems to switch to detritus feeding in 433 

winter (Hopkins et al., 1989, Drobysheva et al., 2003; Pedersen et al., 2008). The age 2 434 

shrimp and M. norwegica have the same size and are likely to compete for the same food 435 

source, as juvenile shrimp are known to be active feeders and obtain most of their food, 436 

euphausiids and copepods, from the macro plankton (Berenboim, 1981; Wienberg, 1980; 437 
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Wienberg 1982). In winter shrimp and M. norwegica may crop on overwintering copepods 438 

that may be a scarce food source in deep water also in the Barents Sea (Kaartvedt et al. 2002). 439 

As indicated before the mortality in the second year seems to be high, especially in years after 440 

good recruitment. The reduced food supply may be a limiting factor not only when 441 

euphausiids are abundant, but also when density of 2 year old shrimp is high. This increase in 442 

density-dependent mortality with age is illustrated by the change in the shape of the Ricker 443 

curve with age (Fig. 7). This is probably caused by intra-specific competition due to 444 

limitations in available prey in combination with predation.  445 

 446 

The recruitment indices are influenced by variable natural mortality rates and catchability 447 

(Hannah, 1993). Although the spawning stock number was high in 1996 to 1999 the 448 

recruitment of age 2 shrimp did not show an increase in the same manner as seen previously, 449 

probably as a result of increased natural mortality due to cod predation (Fig. 3). Cold 450 

temperature conditions in the Hopen Deep as observed in 1987, 1996 and 2003 (Fig. 2) 451 

increases the natural mortality of 1 and 2 year old shrimp either directly, or indirectly as the 452 

habitat overlap with cod probably increases as female shrimp and larvae move along 453 

temperature gradients (Rasmussen et al., 2000), and get a more southern distribution as they 454 

escape the cold water. Pedersen et al. (2003) showed by a transport model that high numbers 455 

of larvae settled in the area around Bear Island, that also serves as nursery area for cod 456 

(Skogen et al., 2007). The young cod feed on the young shrimp causing high natural mortality 457 

and low abundance of age 2 shrimp off Bear Island (Fig 6). 458 

 459 

The absence of  the 1996 year class in the survey as 3 year olds in year 1999 is thereby caused 460 

by several co-occurring factors, the low spawning stock number and the distribution of the 461 

spawning females in 1996, temperature conditions and cod consumption. Similar 462 

environmental conditions may explain the low abundance of the 1987 and the 2001 year class 463 

at age 3 (Fig. 5). Wieland (2005) concluded that a moderate increase in temperature from 1°C 464 
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to 3°C above a lower threshold of optimal range in the northern regions off West Greenland 465 

extended the favourable distribution area for shrimp and recruitment of age 2 shrimp. A 466 

similar temperature reduction was observed in the in the Hopen Deep in the northern Barents 467 

Sea in 1987, 1996 and 2003 (Fig. 2). As seen here for shrimp, studies on cod recruitment in 468 

the Barents Sea indicate that the North East Arctic cod is also affected by temperature through 469 

a variety of pathways (Hjermann et al., 2007) 470 

 471 

The spawning stock biomass seem to have a significant effect on the number of age 1 and age 472 

2 shrimp but this correlation is not detectable for age 3 shrimp, probably because the effect of 473 

temperature, predation by 1 and 2 year cod and euphausiids governs the development of the 474 

year classes (Table 1, Fig. 7). So, even if the female biomass may vary with a factor of 5 475 

between years, a low number of female shrimp does not alone cause low recruitment. 476 

 477 

 Even if the larval face is important (Quellet et al., 2007), the year class strength does not 478 

seem to be established during the larval stage as has been claimed by Shumway et al. (1985). 479 

The density of 1 year old shrimp is directly dependent on SSB the previous year and is further 480 

influenced by cod predation after the larvae settled. 481 

 482 

Environmental fluctuations rather than changes in spawning female biomass are the primary 483 

causes of shrimp stock fluctuations (Hancock, 1973; Garcia 1983). Therefore approaches 484 

including an environmental factor e.g. natural variability, temperature have been suggested 485 

and three dimensional interpretations have been proposed (Garcia, 1983; Hannah, 1999). This 486 

is supported by our study where the ambient factor temperature, and the biotic factors 487 

spawning stock biomass, cod age 1 and 2 as predators and euphausiids as competitors all 488 

affect the recruitment significantly. When modelling the recruitment of shrimp in the Barents 489 

Sea the spawning stock number, the annual mean Vardø temperature, the number of 1 and 2 490 

year cod, and the euphausiid abundance the previous year should be included.  491 
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Figure text: 664 

 665 

Fig.1. A schematic description of the circulation of the Barents Sea. Arrows show the current 666 

of Atlantic water (dark grey) and Arctic water (light gray) (after Aure et al., 2000). Main 667 

survey areas are East Finnmark (A), Tiddly Bank (B), Thor Iversen Bank (C), Bear Island 668 

Trench (D), Hopen Deep (E) and Bear Island (F). The Hopen, the Vardø-North and the Kola 669 

section (stippled lines) are shown. 670 

 671 

Fig. 2. Annual mean, January and March temperature in the Vardø section (50−200 m), 672 

summer temperature (August−September) in the Hopen section (50−200 m) and Kola section 673 

annual mean (0−200 m), bottom temperature in the Hopen Deep (area E in Fig. 1), NAO 674 

winter index and ice index. A low ice index corresponds to heavy ice conditions and vice 675 

versa. 676 

 677 

Fig. 3. Zooplankton biomass, index of euphausiid abundance (updated from Drobysheva et 678 

al., 2003) and number of capelin, cod age 1, age 2 and age 3. 679 

 680 

Fig. 4. Two year old shrimp caught in the juvenile bag attached to the underbelly of the 681 

survey trawl plotted against 2 year old shrimp caught in the cod end, 1995−2004.  682 

 683 

Fig. 5. Recruitment indices for 2 and 3 year old shrimp (standardized to the mean) and 684 

biomass of spawning females (SSB) sampled in the cod end each year. Recruitment indices 685 

for 1 year old shrimp (standardized to the mean) sampled in the belly bag since 1995. The 686 

indices represent the whole Barents Sea.  687 

 688 

Fig. 6. Number of recruits as 2 year old shrimp by each sub area (A−E) in Fig. 1. 689 
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 690 

Fig. 7.  Number of recruits at age 1 (1994−2003 year class), at age 2 (1989−2002 year class) 691 

and at age 3 (1986−2001 year class) plotted against spawning stock biomass for 692 

corresponding year classes. Linear regression and the Ricker stock-recruitment model y = a * 693 

x *exp(-b*x) are fitted, and the parameter values received are given in Table 1. 694 

 695 

Fig. 8. Spline surfaces of shrimp at age 1 (No. x 100 nm-2) upper panel and at age 2 (No. x  1000 696 

nm-2) bottom panel, fitted to principal component ordinations of selected environmental 697 

factors.  The years plotted refer to the year-class in both panels. 698 

699 
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Table 1. Parameter values (a and b) with respective standard error for linear regression 700 

through origin and the Ricker curve. Adjusted R−squared, the degrees of freedom and, 701 

P−value for F−test and AIC values are given. 702 

 703 

  Age 1 Age 2 Age 3 

  Linear Ricker Linear Ricker Linear Ricker 

       

a 4.29 1.65 5.71 4.22 22.43 74.61 

st. 

error 0.67 1.36 0.77 2.57 2.99 23.69 

b  -0.35  -0.09  0.39 

st. 

error  0.22  0.17  0.12 

R2 

(adj.) 0.80 0.78 0.79 0.74 0.77 0.76 

d.f. 9 12 13 12 15 14 

P <0.001 ns <0.001 ns <0.001 <0.01 

AIC 64 105 101 103 136 153 

 704 

705 
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Table 2. Spearmann rank correlation between shrimp at age 1, 2 and 3, and survival (Age 706 

1/SSB, Age 2/SSB and Age 3/Age 2) and explanatory abiotic (January and March 707 

temperature Vardø section the same year, mean annual temperature Vardø section, the Hopen 708 

section and bottom temperature from the Hopen Deep, and the the NAO the previous year) 709 

and biotic factors (capelin, euphausiids and cod age 1 and 2). SSB is lagged to the year of 710 

recruitment of each age group. Correlation factor (rho) is given only for significantly 711 

correlating factors (P< 0.05). Values given in parenthesis turned out not to be significant 712 

when correction for autocorrelation was conducted. 713 

 714 

  Age 1 Age1/SSB Age 2 Age 2/SSB Age 3 Age 3/Age 2 

Sampling years 1995−2004 1991−2004 1989−2004 

Age 2 shrimp     0.43  

SSB 0.90  (-0.46)    

Temp. Vardø   0.75 0.55   

Temp. Vardø J. 0.77 0.90     

Temp. Vardø M.  0.70   -0.51  

Temp. Hopen   0.62 0.51   

Temp. Hopen b.   0.55    

NAO   0.58 0.48   

Capelin 0.63     0.49 

Euphausiids   -0.81 -0.52   

Cod 1 year (-0.60) -0.63     

Cod 2 years   -0.62         

715 



 32 

Table 3. Contribution of eigenvalues for PC1, PC2 and PC3 received from the Principal 716 

Component Analysis and adjusted R
2
 values and deviance explained from the Generalized 717 

Additive model. 718 

 719 

 Age 1 shrimp Age 2 shrimp Age 3 shrimp 

Principal Component Analysis:    

Contribution to correlation    

PC1 70.8 % 63.6 % 47.0 % 

PC2 21.1 % 16.2 % 24.1 % 

PC3 5.7 % 14.3 % 22.3 % 

    

Generalized Additive Model :    

R
2
 (adj.) 0.92 0.56 0.04 

Deviance explained 97.6% 62.6% 16.6% 

 720 


