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Abstract 

The creation of new programming languages, capable of fully deploying the 

new technological innovations and operating environments, requires more and 

more accurate and affordable analysis. In this study, a technique for the 

generation of formal models for the specification of the semantics of 

programming languages is presented. Tools are used newer than the semantics 

of Kleene - such as the Scott’s theory of the cathegories and mathematical 

theory of the computation, which are here outlined and motivated. 

1. Introduction 

In the last years the need of a theoretical structure, suitable for the 
resolution of the issues arising from the formal analysis and the 
specifications of the semantic aspects of high-level programming 
languages, led researchers and analysts to focus on the development of a 

new denotational semantics theory of programming languages which, 
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among the several approaches that the study of programming language 
semantics has known over the time, is surely the most meaningful one. 

Semantics, on the other hand, provides the meaning of programs 
written in a particular language. This, in mathematical terms, means 
considering semantics as a function with a syntactically correct program 
as input and the description of the function computed by the program 

itself as output. The main players in this theory are Scott and Strachey 
who (together with their colleagues from the University of Oxford) 
demonstrated that, despite the complexity and variety of modern 
programming languages, it is possible - through a small number of 
fundamental semantic constructs - to provide adequate conceptual basis 
to determine short formal models about the meaning of programming 
languages. 

There are many advantages behind the analysis of the semantic 
structure of programming languages. The main feature of a formal 
definition of such languages undoubtably is the possibility, which comes 
from this definition, to have a precise and complete standard reference 
useful for users and those implementing a particular language, to avoid 
omissions, contradictions and ambiguities typical of informal semantic 
descriptions as the historical ones of Algol '60 [10]. Furthermore, in order 
to determine rigorous and precise definitions demonstrations of semantic 
properties of languages, greatly help using a structure of the semantic 
concepts both general and language independent, even for standardizing 
terminologies, clarify similarities and differences among languages. 

The usefulness of a language descriptor goes well beyond the 
possibility of discovering unwanted limitations, incompatibilities or 
ambiguity. Indeed, a general notation for describing semantic could allow 

the development of a real compiler generator, the same way the BNF 
notation which led to the development of analytical generators. Many of 
these objectives and potential of the semantic analysis of programming 
languages have not been achieved, even though - on the other hand - the 
continuing studies and subsequent progresses allow thinking that this 
theory will play a decisive role in the development of computer science. 
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2. Basic Concepts 

One of the achievable objectives through the theory of denotational 
semantics is to demonstrate the possibility of defining the semantics of 
programming languages using essentially the same approach of 
mathematical logic. In the latter, in order to specify a semantic 
interpretation of a formal language, maps from the syntactic constructs 
of the object language in their abstract meanings are defined in an 
appropriate mathematical model. For example, a class of numerals could 
be interpreted by mapping every possible numeral in the number it 
denotes. Similarly, if the object language is that of the predicate calculus, 

every well-defined formula could be mapped into a truth value (true or 
false) on a domain interpretation and meanings specified for constants, 

functions and predicates. You can define the semantics of programming 
languages using essentially the same approach: in fact, even if the 
abstract meanings - proper for a programming language - are more 
complex and less familiar than the truth values and the numbers treated 
in mathematical logic, they are certainly not less mathematical. 

To demonstrate the real possibility of such an approach - and to 
establish some notations and methodological conventions - symbols of a 
particular domain are used, which act as a metavariables on sets of 
variables, expressions, commands and programs [8]. These sets are 

ultimately syntactic categories, and the domain metavariables represent 

arbitrary elements of the corresponding syntactic category. A category 
can therefore be seen as an abstraction of “sets and functions”, where the 
sets are called “C-objects” and represent abstract entities with no 
internal structure. 

In this analysis it is also necessary to introduce the concept of 

morphism and isomorphism.  

Definition 1 (Morphism). Given two structures � �TXS ,  and 

� �,,
YQ  with two different operations T and * respectively on the sets X 

and Y and an application ,: YXf o this application is said morphism if, 

denoting with a and b two elements of X for which � �af  and � �bf  are the 

two corresponding elements of Y, we have � � � � � �,bfafaTbf 
  i.e., to the 
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result of the composition of two elements of X with the law T, in Y we 

have the result of the composition of the two corresponding elements with 
the law .
  

  Definition 2 (Isomorphism). A morphism YXf o:  in a category 

C is an isomorphism if there exists XY o:g  such as Xidgf   and 

Yidfg   or, in terms of commutative diagram: 

 

Figure 1. An isomorphism. 

Let us observe that such g, if exitst, is unique; in fact, if another 

morphism h should exits with: 

Xidhf   and Yidfh   

then 

� � � � .hhidhgffhggidyg X       

When this unique g exists, it is called “inverse of f” and is listed 

with .1�f  Two objects X and Y in a category C are isomorphic if there is 

an isomorphism .: YXf o  This is denoted by .1�# YX  In order to 

define a category C, let us suppose a collection of C-objects !,,, ZYX  

and consider - for each ordered pair � �YX ,  of these items - the set 

� �YXC ,  of the functions from X to Y said C-morphisms of X in Y 

(hereafter the term “map” will be used as a synonym for morphism). Let 

us also suppose a composition function is available which associates to 

each ordered pair of morphisms � �gf ,  of the form YXf o:  and 
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ZYg o:  a third morphism of the type ,: ZXgf o  with the same 

domain of f and codomain of g. You can then define a category C if the 

above defined elements and objects are subject to the following three 
axioms: 

1. All possible sets of type � �YXC ,  are disjoint; 

2. The composition function is associative; 

3. For each object X there is an identity morphism XXidX o:  

with the following property: for every morphism XYg o:  is 

ggoidX   and for every morphism YXf o:  is .fidof X   

An example category is the set of subsets of N (natural numbers) with 

all the partial functions of N in N.  

With regard to the concept of isomorphism, note that it is practically 

an equivalence relationship on the objects of a category C, for which it 

does not necessarily always exist. I.e., it is to be verified that if - taken 
two items in a category and a map between these objects - there is really 
an opportunity to determine the outputs starting from entries to the map 

and vice versa. This concept leads, as it were, to the duality law, which 

helps in solving problems that arise in the design or verification of a 
programming language. The implication of this law in the theory of 
categories stems from the fact that, in the latter, every theorem or 
deduction meanwhile is in effect because there is a dual theorem which is 
a demonstration of the original one, obtained by reversing the meaning of 
“arrows”. This property of the categories is one of the most interesting 
advantages over other computational techniques, just because it 
sometimes allows to determine constructs and semantic theorems 
starting from terminal elements in order to produce semantic constructs 
backward. We note, therefore, that stating the “isomorphism” of two 
objects implies the existence, between them, of all the above said 
conjectures. 

As regards the meaning interpretive functions are defined of three 
types, whose codomains should be constructed according to the meaning 
of the corresponding syntactic class; the interpretive functions will be 
used to determine a path from the syntactic constructs to their 
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mathematical meanings. These three types of functions are called partial 
functions, total functions and multi functions and are defined as follows. 

Definition 3 (Partial function). Given two sets X and Y, and 

considered a subset A of X, a function f connecting every element of A to 

only one element of Y is called partial function (or partially defined). 

We will say that X is the domain of such a function, while A is the 

definition domain, indicated with � �.fDD  

Definition 4 (Total function). If � � ,XfDD   i.e., if the definition 

domain of f coincides with the whole domain X, then f will be said a total 
function. 

The set of all partial functions of X into Y will be denoted with 

� �.,YXPfn  In other words, a function f is partial if, taken � �nxx ,,1 !  

inputs, it is not defined for some ;x  otherwise, if it is defined for each 

input � �,,,1 nxx !  it is said a total function. The set of all total functions 

of X into Y will be denoted with � �.,YXTot  For each set X, the identity 

function of X is the total function XXidX o:  such that � � xxidX   for 

every .Xx �  

Definition 5 (Multifunction). A multifunction from X to Y is, 

instead, a total function defined from X to all subsets of Y. 

The set of all multifunctions from X to Y will be denoted with 

� �.,YXMfn  For every function � �YXpff ,K�  the function of  is defined 

in � �.,YXfnM  as:  

� �
� �^ ` � �

¯
®
­

I
�

 
.otherwise,
,if, fDDxxf

xf o  

Every program has therefore only one meaning given by the 
interpretive function of the programs which delineates, for every possible 
input, the output that will be produced at the end of the implementation. 

The evaluation of an expression is more complex, because it requires 
to take account of the state of a variable when the expression is 
evaluated. An expression will have a unique value for each possible state; 
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each state represents the current value of a variable. You can then define 

a function S, having domain V ar and codomain N, outlining each of these 

states. Consequently, the interpretive function for the commands will be 
the status of the transaction it specifies. 

Definition 6 (Initial object). This is the case then to specify that an 

object A in a category C is initial if, for each object X in C, there is exactly 

one morphism from A to X. Such unique morphism is denoted with: 

.:! XA o  

In this respect there is the following: 

Theorem 1. If A and B are both initial objects in a category C, then 

BA o:!  is an isomorphism. 

Then, if C has an initial object, it is unique to a single isomorphism. 

Definition 7 (Terminal object.) An object A in a category C is 

terminal if for all CX �  there exists only one C-morphism from X to A, 

denoted with [7]: 

.:! AX o  

Therefore, when a program of the type “read variable; execute 
command; write result” is executed, then the implementation must 
fulfill the following steps: 

 1. Establish an initial state in which all the variables are initialized; 

 2. An element of the definition domain is read and stored; 

3. The body of the program runs and at the end it will be in a final 
state; 

4. The expression is evaluated with regard to the final state, and the 
latter is the output. 

Moreover, in case of iterative construction, the formal definition gives 
accurate answers about when and how often the control function should 
be evaluated, and about the conduct that this function must take if the 
value is zero. 

 Note that the definition of categories does not require any special 
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constraints on the deployment of the language, as would have an 
implementation-oriented model, because nothing is specified about how 
functions should be computed and represented. Truly, for the definition 
of programming languages’ semantics, you need only a simple procedure 
to assess the correct mathematical function, and this is what more can be 
done appropriately in a “standard” specification. The role of the only 
operational models of languages is simply to formalize methods for the 
implementation of the language, so that the accuracy of the latter can be 
verified through a reference to the definition of the standard [9]. What 
more can be done to help the verification of programs written in a 
language taken into consideration, is to catalog the useful deduction 
rules for the language constructs, as indicated by Hoare and Wirth [3]. 

In conclusion, the semantic analysis of a programming language is 
based on its denotational definition, but including on the one hand formal 
models of deployment, and on the other implementations of “surface”- so 
to speak - properties of the language constructs, and more abstractly of 
deeper theorems about the language in its entirety. 

3. Expressions and Environments 

Once we made the notion that the semantic interpretation of an 

expression defines its value, and that dealing with expressions so-called 

“pure” only the value is semantically important, it’s easy to understand 

how it is possible that a sub-expression can be replaced by any other 

expression having the same value, without this change having any effect 

on the whole value. This linguistic property is defined referential 
transparency and the languages or subsets of languages having this 

feature are said applications [11]. 

 We must however pay attention to the full concept of expression. It is 

much deeper than most programming languages can let one think: in 

them, the only forms of expression recognized as such are the atomic 

constituents (constant identifiers, etc.) and combinations operator-

operand in the various syntactic working rules. The sub-applications, in 

fact, also include other forms of expressions typical of mathematical 

dissertations, such as: 
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;3in5let � x xx  

� � � �;5in3let fxxf � x  

� �5fx  where � �
� �¯

®
­

��
 

 
.otherwise,1

.0if,1
nfn

n
nf  

 These involve the concept of tying an identifier to a denotation; all 

this corresponds to the various forms of local declaration in programming 

languages, which consists in the declaration of local variables, definitions 

of functions, formal parameter lists, iteration controlling the variables 

and so on. The use of bounded construction leads in general to evaluating 

an expression over an environment, which provides a value for each free 

variable of the expression. 

 The concept of abstraction is important for the study of expressions. 

In Church’s notation an abstract expression takes the form ,.EIO  where 

I is an identifier (the bounded variable) and E is an expression (the body 

usually containing I). Informally, the value of EI.O (in a given 

environment) is the function mapping an argument value, to which it is 

applied, to the value of E relative to the extended environment linking I 
to the argument. For example, in any environment 0.xO  denotes the 

constant function of value 0, xx.O  denotes the identity function, 2.xxO  

denotes the square function, and yxx �O .  denotes the function whose 

result is the sum of its argument and the value of y in that environment. 

 In order for the value of an abstract expression to be a function, it 

may look like the operator part of a combination operator-operand. For 

example, one can rewrite: 

� �5f  where � � 2xxf   

as     

� �� �.5. 2xxO  

 Although abstract expressions are not used in programming practice, 

they play a key role in the semantic analysis of programming languages. 

So far, as we have seen, it was not specified any particular base of 
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interpretation domain, but simply was assumed the existence of a values’ 

space expressible for E and an interpretation function .O  Now, in order 

to determine the value of an expression which may contain identifiers 

generally free, it is necessary to know the values to which these 

identifiers are linked in that context. The set of indentifier associations 

and their denotations in any context is called environment. 

4. The Mathematical Foundations 

There are some mathematical problems raised by the fact that the 

semantic models make typically use of higher order functions, which 

make the definition of the interpretive function of expressions not as 

simple as we have seen previously. These functions are those whose 

arguments are whether functions or other infinite objects. A concrete 

example is given by the interpretive function of the expressions, which 

has an environment function as an argument. Examples of computational 

phenomena easily constructed using higher order functions are 

procedures, whose parameters or results are procedural (the flow of 

inputs and outputs of a not ending program as an operating system, or a 

common program inserted in a loop) and reentrant data structures. 

 One of the reasons for which the higher order functions in the 

semantic model create problems from the mathematical point of view is 

the need for recursive definition [4]. The traditional approach to specify 

the mathematical meaning of a recursively defined function (due to 

Kleene and other scholars) is to demonstrate that there is a partial 

function on a not numerable domain which is the only limit of a sequence 

of partial functions, each of which is at least as well-defined as the 

preceding items in the sequence. Of all the partial functions that could 

satisfy the equation defined, this limit is the least defined and is also the 

“natural” solution from the computational point of view. In other words, 

the taken solution is the smallest of the “upper bounders”, meant as all 

the functions that could satisfy the defined equation. These solutions are 

also called fixed points of the recursively defined function. The less 

defined fixed point is the only function that has this property and 

therefore it is said minimum fixed point [20]. Kleene in one of his most 

important results showed that each recursive program P has a single 
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minimun fixed point represented with .Pf  The problem with this 

approach comes at a time when it must be generalized to handle 

recursive definitions of functionals whose arguments and results can be 

even partial functions or functionals, or other infinite and recursively 

defined objects. 

 Another problem in applying Kleene’s theories arises from the 

possibility of self-application of higher order functions, such as 

procedures applied to themselves of the type � �.ff  These are those self-

activating (i.e., dynamically reentrant). The problem, then, arises from 

the indiscriminate use of self-applicable functions, which leads to 

paradoxical contradictions of simple theories. A classical example is given 

by a predicate which is true when its argument is a predicate that is false 

when it is applied to itself: that is to say, if � �qp  is true when � �qq  is 

false, then we would have that � �pp  is true if � �pp  is false, which is 

absurd. 

 In essence defining semantics becomes more complicated if you must 

interpret recursive functions, because defining the “meaning” of recursion 

is not so obvious, as in the case of instructions as “if-then-else”. It is 

useful, therefore, to better define the meaning of recursive function. 

Definition 8 (Recursive function). Let X and Y be sets. A 

recursive specification for a function � �YXnPff ,�  is a function * such 

that the value of � �xf  (recursive specification) is obtained starting from x 

and from a finite number of values of f by function: 

� � � � � �� �� �.,,0 nffxf !* *  

The problem arises: “what is the semantics of ?"*  The goal is to 

establish a function f such � �;ff * at this point f will b the semantics 

relative to the recursive specification .*  

 A recursive specification defines therefore a function in terms of 

itself. Sometimes, however, there are examples of recursive specifications 

which show that the desired denotational semantics is not always 

entirely clear. It can indeed happen that the recursive specification is 

seen as “an equation”. You can then have situations where its solution is 
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total and unique, but it can also happen that its equational solution is 

not unique. If the recursive specification is seen instead as an algorithm 

who calls itself, then there can be more than one algorithmic solution, 

depending on the calling strategies; besides, not always an algorithmic 

solution has an equational one or, again, there are algorithms that do not 

terminate. 

 A mathematical theory of computation providing satisfactory 

solutions to these problems has been developed by Scott using concepts 

of mathematical logic and topology. The basis of Scott’s theory lies in the 

fact that this characterizes classes of data models, called domains, and 

classes of functions (including the high order ones) general enough to 

allow natural models of computational phenomena (including recursion 

and self-application) but also sufficiently restricted by a number of 

axioms in order to avert all theoretical paradoxes and allow finite 

approximations. These axioms are justified by showing that 

mathematically consistent spaces and semantic models can be 

constructed satisfying the same conditions. In other words, the main 

feature of Scott’s domains is that a sequence of better and better 

approximations, in a domain, must converge to a limit that best lends 

itself within the same domain. In order, however, to “protect” these 

limitations, the operations defined on the data model must be continuous 

(this concept is much more general than that of the analysis just after the 

application scope was defined).  

The primitive domains must be formed by adding to finite or not 

numerable sets as {true, false} or ^ `!! 2,1,0,1,-2,-,  two special symbols 

A and F respectively called “bottom” and “top”. The first represents the 

completely undetermined information also called initial, while the later 

represents the consistent or entirely determined information. The 

primitive sets considered are: 

^ ` ),numberswhole(,2,1,0,1,2, oN !! ��  

^ ` ),valuestruth(, ofalsetrueT   

^ ` � �,characters,'b','a' oH !  
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where ^ `o!  denotes the addition of the special symbols A  and F. In such 

domains the notion of approximation is really simple: A  “approximates” 

all elements and all elements “approximate” F, while all other pairs are 

incomparable. Therefore, there are not trivial limits or recursive 

definitions of elements in primitive domains, while the added domain 

structure is needed just to meet the general demands of axioms and 

provides a basis for the construction of more complex domains. 

 A large number of nonprimitive domains can be built through 

appropriate transactions. In fact, if 1, DD  and 2D are domains, then the 

following are also domains: 

 ,i. 21 DD u  

 ,ii. 21 DD �  

 ,iii. 21 DD o  

 ,iv. DDDDn uuu "  

 .v. 210 !��� 
 DDDD  

 Apart from the special treatment of A  and F, the elements of 

21 DD u  are ordered pairs whose first components are elements of 1D  

and whose later components are in .2D  One element of 21 DD �  

corresponds to an element of 1D or .2D  The domain 21 DD o  consists of 

continuous functions from 1D  to .2D  nD  and 
D  are respectively 

domains of tuples and of all finite fists of elements of .D  Each of these 

built domains also contains special elements  A  and F and, in some 

cases, even partial items with approximation relations of the constituent 

domains, derived from them. For example, in the case of a domain made 

of functions ,21 DD o  f approximates g when � �xf  approximates � �xg  

for all .1Dx �  Several constructions can be combined into a domain 

definition, Sintactically it is assumed that the operator of binary domains 

“×” has the highest priority and “o” the lowest (and it associates at right 

as above). 
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 Returning to the concept of continuity, it can be said that constants 

and identity functions on each domain are continuous, and that any 

function defined through abstractions and combinations is continuous 

only if its sub expressions are still continuous on the domain. It is 

important to note, moreover, that on primitive domains the requirement 

of continuity comes down to monotonity concept. 

Definition 9 (Monotonity). We can thus say that a function f is 

monotone when, if x “approximates” y, then � �xf  “appromimates” � �.yf  

Each partial function f on a set can then be extended to total 

continuous functions on the corresponding domain defining  � �  Ax f 
 

(sinceA  approximates each element), � � FF  f  (since F is approximated 

by each item) and � �  Axf  if the partial function is undefined in .x  

 These extensions are designated “doubly strict” (doubly rigid). It is 

possible, however, to have less strict extensions of functions when a 

function is constant in comparison to one of its arguments: then you do 

not need to have A as a result, even if that argument is undefined. 

 We can now deal with the above mentioned problem related to the 

specification of the mathematical meaning of a recursive definition. This 

problem consists in finding a fixed-point function DY  that produces an 

appropriate solution to equations of the form � �,fFf   given the higher 

order transformation .: DDF o  It is clear that if D  is a domain, then 

there is an approximation relation on it and a starting element ;A  so, 

using monotonity we have that � �AF  approximates � �� �,AFF  and 

inductively: 

� � � �� � � � !! ,,,,, AAAA iFFFF  

Is a sequence of better and better approximations which, due to 

continuity, converge to a limit f such that � �AiF  approximates 

0t�if and � � .ffF   

 It was considered a special induction technique called fixed point 
induction. This technique is a powerful tool that can be used to prove 
assertions about the minimum fixed point of functions [6]. 
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 You can also show that for every domain there is a continuous 

function of fixed point � � DDDYD oo:  such that, for each continuous 

:: DDF o  

1. � � � � ��A fo
i

iD FFY lim  of successive approximations, is a 

solution for the equation � �;fFf   

2. each other solution of the equation is approximated by � �.FYD  

This result is a generalization of Kleene’s theorem of classical 

recursion [4] in which the approximation relation allows both arguments 

and results of recursively defined functions to be higher order partially 

defined objects, instead of strictly defined or undefined. The arguments 

can be generalized to give meaning to arbitrarily complex systems of 

mutually recursive definitions. The problem of self-application is 

resolved, too, by the Scott’s theory showing that both domains and 

domain’s items can be recursively defined. 

 This brings our brief excursus on Scott’s theory of computation to an 

end. It has been shown how this theory solves the problems raised by the 

higher order interpretation and how you can then proceed on the analysis 

of increasingly complex languages with the assurance that the resulting 

semantic models are mathematically correct, as long as one only deals 

with functions and domains defined using the bove-stated method. The 

semantic idea introduced (environments, categories, sequences of 

approximations) provides a conceptual structure for the formal semantic 

specification of almost all configurations of high level programming 

languages, and stands as conceptual basis to address issues such as 

indeterminism, time compilers [23] and more complex control structures 

as backtracking, coroutines and parallelism. 

5. Conclusions 

Nowadays, because of the continuing need to develop and design 
formal tools able to exploit the great potential that the technology offers, 
analysts and industry experts increasingly become aware that there may 
not be an adequate progress in the field if there is not a solid conceptual 
substrate consistent and not ambiguous. For this purpose the availability 
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of conceptual tools as Scott’s denotational semantics of programming 
languages is important which, through all its interpreations and 
abstractions, is an approach that can solve the most complex formal 
aspects easily and naturally. 

 This work is intended to highlight the impact that Scott’s theory had 

and may have on the description of the semantics of programming 

languages. The denotational theory was examined, starting with the 

ideas and basic concepts that led Scoot’ and Strachey to develop the 

conceptual construct starting from abstract algebra, mathematical logic 

and set theory. 

 It was used, to the purpose, an abstract concept of operation which, 

starting from any object (initial or not) provides a certain result. It was 

subsequently introduced a more general concept of set, apart the proper 

one of the set theory, in which such an interpretation is not always 

orthodox (in fact, the set theory almost always implies restrictions on the 

types, prohibiting to consider operations whose domain consists of all 

objects). It outlines as a useful approach to avoid the inconvenience that 

may be experienced in dealing with more abstract concepts, rather 

derived from the habit to think in set terms coming from the objective 

difficulty to formulate a mathematical system based on a less restrictive 

concept of operation. 

 This is why a formulation of a doctrine based on the theory of 

categories was given, despite its fundamentals are not yet fully well 

developed. It was intended to give greater emphasis to the Scott’s 

formulation - in connection with his research on the semantics of 

programming languages - on the possibility of giving a more 

sophisticated interpretation of semantic models in which the terms are 

intended as a succession of functions and none of them remains without 

interpretation (the Scott’s general theory of models and his motivations 

in terms of “computer science” are published in [13]; these models have 

led to very interesting results, even though most of them has not yet been 

published). 

 We also led ourselves to a different resolution of the problem of 

recursion, based on a mathematical rather than computational 
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interpretation of recursive definitions, describing the essential idea of 

considering the recursive definition as a correct mathematical equation 

by replacing the concept of “is” (classic of a computational approach) with 

the “=” one for the equivalence relations. This approach allows you to 

think of recursively defined functions as fixed point functions of an 

higher type compared to the fixed point functions used by Kleene, which 

first provided an elegant treatment of recursion. Of great practical 

importance is that this mathematical approach has also led to the 

discovery and use of a powerful induction rule to prove the observations 

of certain recursively defined functions. 

 This discussion, ultimately, although formulated in terms of a 

general and unspecified programming language, wanted to express the 

basic idea of the theory of denotational semantics of formal languages 

and indicate its potential about solving the fundamental problem of any 

recursive program: how to describe its precise meaning. It can hardly be 

called a program, let alone the language that defines it may be so, until 

this issue is not defined. 

 The objective of this approach is meant to prove, finally, the existence 

of an appropriate balance between strict formulations, the breadth of 

applications and conceptual simplicity. The essential purpose is to show 

that, insisting on appropriate level of abstraction and using the correct 

mathematical rules, it is possible to frame a method which can be 

described as “the mathematical meaning of a language”. 
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