

International University of Africa Deanship of Graduate Studies

Faculty of pure and Applied Science

Department of Applied Chemistry

Analysis of wastewater of AL GUNEID Sugar Factory

A dissertation submitted in Partial Fulfillment of the Requirement for the Degree of M.Sc. in Industrial Chemistry

Prepared by:

Husam aldeen Mohamed Talha

Supervised by:

Dr. Salma Omer Al-Hag Ali

Khartoum-Sudan April 2016

بِسْمِ ٱللهِ ٱلرَّحْمَٰنِ ٱلرَّحِيمِ

الآيـــــة

قال تعالى:

(وَجَعَلْنَا مِنَ الْمَاءِ كُلَّ شَيْءٍ حَيٍّ)

سورة الانبياء الاية 30 صدق الله العظيم

Dedication

- To worship none of small.....
- 70 Moin and Dad
- To each of the characters and taught me specially of Dr. Salma Omer Al—Hag Ali
- To my fellow trail of science and knowledge.
- To all of you dedicated this research, hoping that the diameter utilized remains in a sea of science broad tempestuous.

Husam

Acknowledgement

That there was deserves thanks and praise after god in the completion of the thankfulness of Dr Salma Omer al-Hag Ali supervisor of the study and follow-up and fine precious advice and thanksgiving after Dr sheikh Idreis for the handling fatherly and humanitarian and noble.

Brother Mr. Abdul Aziz Abubakar not forgets all those who contributed even going so far as this study saw the light . and ask the God to reward every one's best reward.

Husam

Abstract

No doubt sugar industry has Avery economical and social importance, but It's also has many disadvantage, first of these disadvantage is wastewater.

This research investigate the sources of wastewater from sugar industry such as cane washing water, filtration water, condenser water, boiler water and from molass water.

Its study investigate the also treatment method of wastewater from sugar industry (biological and chemical).

The research use method of wastewater from sugar industry by analytical performing tests to measure (TSS,TDS,PH,BOD,COD....etc) and then determine if this water can be used for recycling and irrigation.

When we compare the results obtained from analysis samples are compound with standards, it is found that huge difference which confirms that of the treated wastewater cannot he used for human uses but can used for irrigation.

مستخلص الدراسه

- لاشك ان صناعة السكر لها اهميه اقتصادية واجتماعيه بالغه إلا ان لهذه الصناعه الكثير من السلبيات المتمثله في مياه الصرف الصناعيه (wastewater).
- تناول البحث مصادر مياه الصرف الناتجة من صناة السكر معددا هذه المصادر ,مياه غسيل القصب ,مياه المرشحات ,مياه المكثفات ,مياه الغلايات ,مياه غسيل المولاس .
- تناول البحث ايضا المخاطر البيئيه الناتجه من طريقة التخلص من مياه الصرف الصناعي مباشرة في النيل دون معالجتها.
- تناول البحث ايضا طرق معالجة مياه الصرف الناتجه من صناعة السكر (الاحيائيه,والكيميائيه).
- كما تناول البحث طرق تحليل مياه الصرف الناتجه من صناعة السكر بإجراء احتبارات لقياس (TSS,PH,TDS,.....etc) ومن ثم تحديد امكانية استحدام هذا الماء من عدمه.
- عند مقارنة النتائج المتحصل عليها مع المقاييس العالميه وجد ان هنالك فروقات شاسعه مما يؤكد عدم صلاحيه مياه الصرف الناتجه من صناعة السكر للاستخدام الادمى وغيره الابعد معالجتها.

Table of Contents

Content	Page
الاية	I
Dedication	II
Acknowledgement	III
Abstract	IV
المستخلص	V
Table of content	VI
List of table	VII
List of figure	VIII
Chapter one	
Introduction	
1-Background	2
1-1 sugar cane industry	2
1-2waste production from sugar factory	4
1-3 research Target	4
Chapter Two	
Literature review	
2-1 waste water treatment process	7
2-2 process description	9
2-3 uses of solid wastes	21
2-4 liquid waste	22
2-8Environment & safety	24
3-2 waste generation	24
3-4 safety	29
Chapter three	
Materials and Method	
3-1 total suspended salts	31
3-3 Chloride test	31
3-5Phosphorus test	31
3- 6 Calcium & Magnesium test	32

3-7 Chemical oxidation demand COD test	33
3-8 Bio Oxidation demand BOD test	33
3-9mathods of treatment	33
Chapter four	
Results and Discussion	
4-1 Results	43
4-2discussion	46
Chapter five	
Recommendation & Conclusion	
5-1 conclusion	64
5-2 recommendation	64
References	65

List of table

Table	Page
Table (4-1): characteristics of wastewater discharged by al Gunid Sugar Mill untreated	42
Table (4-2): Result of analysis of biologically treated sugar cane wastewater	43
Table (4-3):Bureau of Indian Standards (BIS) of sugar industry wastewater	43
Table (4-4): Sudanese standards of sugar industry wastewater	44
Table (4-5): comparative of sugar Mill treated and untreated effluent with Sudanese standards	44
Table (4-6): comparative of sugar Mill treated and untreated effluent with Bureau of Indian Standards (BIS)	45
Table (4-7): show the chemical and physical composition of bagase and mudcake	45

List of Figure

figure	Page
Figure (1-5) :Flame Photometer	39
Figure (2-5) :Conductivity meter	39
Figure (3-5):Spectro photometer	39
Figure (4-5):Turbidimete	40
Figure (5-5):PH meter	40
Fig(4-1)PH value of the wastewater untreated	46
and treated and Sudanese standard	
Fig (4-2) BOD value of the wastewater	47
untreated and treated and Sudanese standard.	
Fig (4-3) COD value of the wastewater	48
untreated and treated and Sudanese standard.	
Fig (4-4) TDS value of the wastewater untreated	49
and treated and Sudanese standard	
Fig (4-5) TS value of the wastewater untreated	50
and treated and Sudanese standard.	
Fig (4-6) TSS value of the wastewater untreated	51
and treated and Sudanese standard.	
Fig (4-8) Sulphate value of the wastewater	52
untreated and treated and Sudanese standard	
Fig (4-9) PH value of the wastewater untreated	53

and treated and Bureau of Indian Standards (BIS).	
Fig (4-10) BOD value of the wastewater untreated and treated and Bureau of Indian Standards (BIS).	54
Fig (4-11) COD value of the wastewater untreated and treated and Bureau of Indian Standards (BIS).	54
Fig (4-12) TDS value of the wastewater untreated and treated and Bureau of Indian Standards (BIS).	55
Fig (4-13) TS value of the wastewater untreated and treated and Bureau of Indian Standards (BIS).	56
Fig (4-14) TSS value of the wastewater untreated and treated and Bureau of Indian Standards (BIS).	57
Fig (4-15) chloride value of the wastewater untreated and treated and Bureau of Indian Standards (BIS).	58
Fig (4-16) Sulphate value of the wastewater untreated and treated and Bureau of Indian Standards (BIS).	59