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Abstract

A global decline of honeybees (Apis mellifera) and other pollinators which are essential for
pollinating crops and wild flowers has been reported throughout the last decades. One major
cause is the loss of available resources due to agricultural intensification. Especially urban
areas seem to become an important habitat for pollinators. In 2017, Stange et al. developed a
habitat suitability model for pollinators indicating habitat quality in terms of available floral
resources and nesting sites for the City of Oslo, Norway. Our aim was to analyse whether the
foraging patterns of honeybees match with highly suitable habitat patches as indicated by the
ESTIMAP model. According to the optimal foraging theory honeybees should visit the closest
and most rewarding habitat patches from the hive location, maximizing energetic intake per
unit time. Hence, we hypothesised that patches which were frequently visited by the studied
honeybees also had a high habitat suitability value and vice versa. We studied honeybee
foraging patterns over the summer 2017 by decoding 506 waggle dances from three bee
colonies located at two study sites in the urban area of Oslo. The waggle dance is a
communication tool of successful foragers to indicate rewarding resource locations to their
nestmates. We used this unique behavioural trait to analyse how the used foraging patches of
our honeybees are correlated with values of the ESTIMAP model by applying a beta regression
model. Moreover, we examined to what extent the foraging patterns of two bee colonies placed

in the same environment overlapped.

After decoding the dances, the foraging patterns showed that visitation probabilities of used
patches were only for one location correlated with the habitat suitability values of the
ESTIMAP model. Furthermore, we ascertained that there was also only a mediocre overlap
between the foraging patterns of the two hives located next to each other. In general, most of
the foraging took place close to the hive locations. With a mean foraging distance of 688 m,
490 m and 425 m respectively, the mean foraging distances of the three urban bee colonies are

much shorter than the foraging distances from their colleagues in rural areas.

Factors that lead to the moderate correlation between the visitation probabilities of the decoded
waggle dances and the ESTIMAP values as well as of the foraging pattern of the hives placed
in the same environment can be of various nature. First, by decoding waggle dances we did
not have insight where honeybees of other hives or wild pollinators forage. Thus, high
suitability habitat patches might have been exploited by other bees. Secondly, human error in



the process of decoding the waggle dances might cause some inaccuracy in plotting the
foraging patterns of our honeybees.

Overall, our study raises more interesting questions about the resource selection of honeybees
and suggests that next to the distance and the nectar-reward of the floral resources, also the

exploitative competition by other bees might play a role in the resource selection of honeybees.
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1. Introduction

Wild and domestic bees are essential to the pollination of wild plants and crops, thus
contributing to the maintenance and health of ecosystems, which in turn is vital to human food
security and well-being (Klein et al. 2018). Pollination can be achieved by animals
(invertebrates as well as vertebrates), wind or water (Barrows 2000). Around 78% to 94%
(depending on the climate zone) of the global cultivated crops and wild plants need pollination
by insects or other animals (Ollerton, Winfree & Tarrant 2011). In this system, bees are the
most important group of pollinators, visiting more than 90% of the 107 main crop types (Klein
et al. 2007). Over 16,000 bee species have been described worldwide (Michener 2000), of
which up to 50 species are managed, and about 12 are commonly used for crop pollination
(Potts et al. 2016). Bees, both managed and wild, are important contributors to pollination on
all continents except for Antarctica (Ollerton 2017). Of all bee species, the European honeybee
(Apis mellifera) is the most commonly managed bee in the world, although there is growing
evidence highlighting the importance of wild pollinators and the significance of diverse
pollinator assemblages in contributing to global crop production (Garibaldi et al. 2013).
Healthy pollinator assemblages and populations are very important for agricultural services:
only the honeybee can increase the yield of 96% of all animal-pollinated crop types (Potts et
al. 2010) with an estimated economic value of € 153 billion per year representing 9.5% of the
global production value for crops used for the human diet industry in 2005 (Gallai et al. 2009).

In addition to economic benefits, pollinators also provide in general, and maybe especially in
urban areas, cultural ecosystem services. Cultural ecosystem services are immaterial benefits
such as recreation, health benefits or the accumulation of knowledge that humans obtain from
ecosystems (Niemeld et al. 2010). For instance, the presence of natural features such as parks
or green zones in cities demonstrably increases the quality of life in cities (Chiesura 2004).
Moreover, spending time in parks and urban forests can reduce stress and improve mental
health (Hartig, Mang & Evans 1991). Pollinators’ contribution to cultural ecosystem services
is particularly conspicuous in urban areas where a growing majority of people now live.
Honeybees can facilitate the bond between humans and the ecosystems in which they live. By
beekeeping, enhancing pollinator health (e.g. through planting wild flowers) or studying and
observing pollinators in their natural environment, people are encouraged to spend more time
in natural areas of cities (Moore & Kosut 2013; Jagrgensen 2014). Furthermore, pollinators and

their products also benefit society indirectly as sources of inspiration for art, music, literature,



religion, traditions, technology and education which contributes to an overall social and
cultural identity (Potts et al. 2016).

Beekeeping can also cause conflicts, especially when honeybees are an introduced species
(Paini 2004). In Norway, the honeybee is an important pollinator of many mass-flowering
crops such as oilseeds, fruits (e.g. apples, plums), legumes (e.g. peas, beans) and berries (e.g.
strawberries) (Totland et al. 2013; Astrom et al. 2014). A subspecies, the European dark bee
(Apis mellifera mellifera) has probably occurred locally in the South of Norway after the last
Ice Age when climate conditions were favourable for pollinators (Milner 1996). Nevertheless,
all honeybees found nowadays in Norway have been introduced, even though swarms can
establish in the wild for short periods (Totland et al. 2013). In cold regions of the world it
appears that most of wild honeybee colonies perish during the winter - almost always due to
starvation (Seeley 1983). Thus, in Norway, honeybees would likely hardly persist without the
facilitation by humans or would only be found at low densities. Winter feeding of colonies
and a general care and maintenance of domesticated colonies is necessary to keep honeybee
colonies healthy and viable. At the same time, this will almost certainly lead to far higher
densities of domesticated honeybees than they would occur in a natural way which might result
in a competition for resources with wild pollinators in Northern areas (Goulson 2004).
Honeybees can outcompete native bees and other flower visitors (Wojcik et al. 2018). The
effects of honeybees on wild bee populations generally depends on the landscape context and
availability of flowering resources: homogeneous landscapes offer less foraging opportunities
for pollinators and increase the potential for competition more than complex and
heterogeneous landscapes (Herbertsson et al. 2016). Pathogens from honeybees present
another risk for wild insect pollinators (Furst et al. 2014). Varroa destructor is an exotic
parasitic mite that can spread several harmful viruses to honeybees, including the deformed
wing virus, viruses belonging to the acute bee paralysis virus complex and the slow bee
paralysis virus which can also be spread to wild pollinators (McMahon et al. 2015). For
instance, the honeybee is the likely source of the deformed wing virus in wild bumblebee

populations (First et al. 2014).

Although urban areas can support a notable high richness of pollinator species, the habitat
suitability for a wide range of pollinators in urban areas remains generally unclear (Baldock
et al. 2015). A review on the current knowledge about the effects of urbanization on bee
species suggests that urban areas can be thoroughly positive for the abundance and richness

of bees (Hernandez, Frankie & Thorp 2009). Especially, in an era of agricultural
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intensification, functionally important species in agricultural ecosystems i.e. pollinators suffer
from the current farming procedures (Gallai et al. 2009). For instance, the species richness of
bumblebees can increase in urban areas compared to the surrounding rural habitat. Also,
several studies indicate that it is possible to find a higher abundance of cavity-nesting bee
species in urban settings and fragmented habitats than in suburban areas or predominantly
natural landscapes (Hernandez, Frankie & Thorp 2009). However, the effects of urbanization
may also lead to a shift in bee communities from more specialized (e.g. short mouthparts
pollinators) to more generalist species (e.g. honeybee) (Geslin et al. 2013). In response to
potential deleterious effects of a high honeybee abundance on wild bee populations, Oslo
municipality is considering implementing measures aimed at diminishing the conflict between
wild pollinators and honeybees. The Oslo region is home to the highest biodiversity of red
listed insects and pollinators in Norway (Henriksen, Hilmo & Kalas 2015). At the same time,
the city is undergoing a rapid raise of beekeepers and honeybee colonies (Klima- og
Miljgdepartementet 2009). Thus, the Oslo Urban Environmental Agency has proposed eight
“precautionary zones” within the area of Oslo (Stange et al. 2017). In these zones, beekeeping
will be more strictly regulated. The largest of these suggested precautionary zones covers the
entire coastline along the Oslo fjord as well as many islands located within the fjord containing

habitat suitable for rare and threatened insect pollinator species.

To better understand how pollinators would use the urban area of Oslo, the ESTIMAP
(Ecosystem Service Mapping Tool) model for the City of Oslo was created by researchers of
the Norwegian Institute for Nature Research (Stange et al. 2017). Based on literature studies
and advice from experts, scores that expressed the land unit’s suitability for pollinators in
terms of availability of floral resources and nesting sites were defined. To model the habitat
suitability of the urban area of Oslo for pollinators, spatial data provided by the municipality
was used to generate polygons based on 33 different landscape categories - amongst them 14
different types of forest. In accordance with experts on the local pollinator taxa, the landscape
categories were valued 0 or given a value close to O if they were incapable of providing either
floral resources or nesting sites. In contrast, if the landscape category represented the best
possible habitat within Oslo it was given the highest habitat suitability score 1. For instance,
land cover categories that are expected to offer a continuous availability of floral resources
throughout the whole foraging season received the full habitat suitability value (Stange et al.
2017). The ESTIMAP model shows that in an urban setting, the patches of resources are

usually very heterogenous and of different quality (Stange et al. 2017). However, this spatial
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and temporal distribution of resources is particularly important for central place foragers such
as honeybees (Dukas & Edelstein-Keshet 1998). Central place foragers are animals which start
their foraging excursions from a central location and return to that location between their
searches for resources. The distance bee foragers have to fly to locate floral resources is a key
determinant of survival of colonies, especially where resource patches are widely dispersed
and distant from each other (Schmid-Hempel & Schmid-Hempel 1998). According to the
optimal foraging theory, the optimal usage of the energy and time budgets available for an
individual is straightforward: a foraging activity should be only continued if the resulting gain
in energy per unit food exceeds the loss in time and energy spent per unit food (Goulson, 1999,
MacArthur, 1966). Thus, in context of pollinators, foragers will maximise their net rate of
energy intake by foraging close to the hive location while selecting the most nectar-rewarding
floral resource in the area (NUfiez 1982; Visscher & Seeley 1982). Variation in foraging
distance and area depending on the distribution of resources has already been demonstrated
for honeybees by means of decoded “waggle dances” of foraging bees (Beekman & Ratnieks
2000).

The waggle dance is a fascinating tool of communication that was decoded more than 50 years
ago. Karl von Frisch showed that honeybees communicate the locations where rewarding food
or other resources could be found using ritualized body movements which von Frisch called
dances (Von Frisch 1967). These dances, performed by foragers that returned to their nest, had
been depicted by many observers over several centuries (e.g. Aristotle around 350 B.C.) and
had long been assumed to play an important role in communication about food (Dyer 2002).
Thus, Von Frisch’s discovery that honeybees can communicate spatial information was most
certainly one of the seminal and major findings in behavioural biology in the twentieth century
and was rewarded with a Nobel Prize in Physiology or Medicine in 1973 (Couvillon 2012).
Honeybees perform the waggle dance to communicate rewarding locations where their
nestmates can find either pollen, nectar, water or new nesting sites (Von Frisch 1967; Dyer
2002). The waggle dance consists of multiple circuits of alternating left-hand and right-hand
loops, intersected by a straight segment in which the bee vibrates her abdomen from side to
side. This straight segment is called the waggle run (Von Frisch 1967; Tautz et al. 2004). The
distance and direction of the resource location are encoded in the duration of the waggle run
and in the orientation of the dancing bee relative to vertical during respectively (Von Frisch
1967). The bees use a visual odometer to define the flight distance needed to the resource

location. The distance measurements determined by this odometer are corresponding to the
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structure of the landscapes through which the honeybees navigate. When bees fly through a
structured nature, the facets of the compound eyes of bees register images of objects. This
“optical flow” helps them to determine their flight speed (Tautz 2008). Thus, the honeybee's
sensation of the distance they flew during the foraging trip is not absolute, but highly
dependent on the complexity of the landscape (Tautz et al. 2004). For instance, an experiment
conducted by Tautz et al. (2004) indicated that the bees' sensation of distance travelled (as
translated from the length of the waggle run) is shorter for flights over water (representing a
highly monotonous landscape) than over land. In the orientation vector, the dancing bee
communicates the direction of food relative to the sun and incorporates its determination of
the current solar azimuth (Dyer & Dickinson 1994). The waggle runs will usually be repeated
a variable number of times (1 to >100) in a single dance performance (Seeley, Mikheyev &
Pagano 2000) while variation occur in dance durations and directions (Dyer 2002; De Marco,
Gurevitz & Menzel 2008). Bees which follow the dance take then an average of the runs to
derive a single distance and direction of the resource location (Tanner & Visscher 2008).

To assess the appropriate scale for the precautionary zones in the City of Oslo, to conserve
wild pollinators as well as honeybees and to enhance both their pollination services, it is
important to understand how far honeybee individuals are foraging and how foraging patterns
of honeybees are distributed across the urban landscape of Oslo. Furthermore, it is important
to know how resource availability might influence the observed foraging distances of
honeybees from the three studied colonies. Since bees only dance to advertise the most
profitable resource locations, the dances present filtered information about the most reward-
promising foraging locations known to a colony at that time (Seeley 1994). Based on this
knowledge, the optimal foraging theory and resource availability within the urban area of Oslo,
we compared the predicted resource locations (as shown by the ESTIMAP) with the actual
resources used by the bees which can be derived from the decoded waggle dances. This was
accomplished by using three glass-walled observation bee hives at two locations in Oslo
filming waggle dances from the 1% of July 2017 till the 14" of August 2017. Thus, the decoded
waggle dances allowed us to investigate whether the frequency of visited resource patches
matches the expected floral resource availability (as expressed by the ESTIMAP model). We
predicted that patches which a high visitation frequency by our bees also had a high habitat
suitability value and vice versa. Finally, to assess whether a small number of studied colonies
are representative to make general statements about the foraging behaviour of honeybees in

Oslo, we wanted to quantify if and to what extent the foraging pattern of two colonies placed
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directly next to each other can be considered correlated, thus to what degree the visited
resource locations of both colonies overlap. Based on the optimal foraging theory and the fact
that both colonies had access to the same resource locations we predicted that the foraging

patterns of both colonies would overlap to a large degree.
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2. Material and Methods

2.1 Study species and location

During the summer 2017, we studied three honeybee colonies in the urban area of Oslo,
Norway. This study constituted a pilot stage designed to test waggle dance-based mapping
within the context of a long-term surveillance of honeybee foraging behaviour in Oslo. Time
and expense budgets were limited to utilize only three bee hives at two locations. The City of
Oslo is located at the northernmost end of the Oslo fjord in the eastern part of Norway (59’
55N, 10'45E). Its climate is characterised by mild winters (average January temperature =
-3°C), warm summers (average July temperature = 18°C) and a relatively short growing season
(177 frost-free days per year) (Stange et al. 2017).

We selected hive locations that provided variation in the availability of flowering resources in
the immediate vicinity. We placed one hive on the peninsula of Bygday, surrounded by land
characterized by agricultural fields, forests and residential zones. We placed two other bee
hives in the Sogn Hagekoloni allotment gardens in the Ulleval district (hereafter Ulleval 1 &
Ulleval 2) about 3 km directly north of the city’s centre (see Figure 1). The two hives in Ulleval
are placed closed together at a distance of around 20 cm and offered the possibility to evaluate
whether the same foraging patterns emerged with regard to communicated resource locations
and access to the same floral resources (for a picture of the setup of the hives see section Data
collection). The allotment gardens in the immediate vicinity contained presumably higher
abundance of ample floral resources than could be found on the Bygdgy peninsula, with low
suitability foraging habitat to the south and moderate-to-highly suitable foraging habitat to the
north of the Sogn location. Moreover, these two selected locations (Bygdey and Ulleval)
allowed us to test whether honeybee foraging patterns would mirror the distribution of the

floral resources surrounding the hives as shown by the ESTIMAP model.

Each colony consisted of approximately 5,000 workers of mixed European race,
predominantly Apis mellifera carnica (around 90%) (Jgrgensen, personal communication).
We controlled for the effects of genetic background by dividing bees and brood from one large
colony onto two frames that were then divided and used in the observation hives at the Sogn
location. Additionally, we used queens bred from worker eggs from the same hive to assure
that the two queens have the same, or at least a similar genetic background. We housed

colonies in glass-walled observation hives consisting of two vertically stacked Langstroth-
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style deep frames and periodically removed bees over the study period to keep a consistent
number of bees and to prevent swarming (Seeley 1995).

O Hive location Bygdey
@ Hive location U1 & U2

o %

Figure 1 One bee hive is located on the peninsula of Bygdgay, the oter

two bee hives (U1 & U2) are located in the Sogn Hagekoloni allotment
gardens in Ulleval.

2.2 Data collection

We filmed honeybee dances in observation hives on 28 days between July 1st to August 14th,
2017. We filmed only on days with suitable foraging weather (over 15 degrees, no strong wind
or rain). On each of the days we recorded videos (25 frames per second) for one to two hours
per hive, using a Canon EOS 700D camera positioned approximately 0.3 m from the glass
case and focused on the lower frame where most dances occurred. Moreover, we covered the
hives and camera with an awning during filming (see Figure 2) because direct sun exposure
might redirect the bee’s impression of the foraging direction and would lead to errors in the
foraging directions dancing bees communicate (Seeley 2009).



Kdv—,— e TR

& Ulleval 1 § Ulleval 2

Figure 2 The bee hives Ulleval 1 + 2 and the camera are about to be covered
with an awning (A). Once the awning is on top of the hives, the lid of the hives
could be opened and the filming process of the dances on the lower frame
could start (B).

We used a digital clock that was attached to the glass wall of the hive and visible within the
video clip to document the exact time of each waggle dance. We stored all videos on external
hard drives and processed them with a video editing program (Filmora Version 8.4.0,
Wondershare Softare Co, Ltd.). We played the footage until we detected a bee performing a
waggle dance. We decoded the waggle dances following the protocol of Couvillon et. al.
(2012). The duration of the waggle run was measured by going frame by frame through the
footage to detect the start and the end of the vibration of the bee’s body. The time was taken
by the timer of the video editing program with a precision of 0.04 sec. To define the direction
of the foraging location indicated by the dancing bee, we measured the angle towards the
vertical of the hive with the open source software OnScreenProtractor (Version 0.5) which
measures the angle as a clockwise heading from the vertical of the hive (see Figure 3). Time
of the day (derived from the digital clock in the video frame) was used in the calculation of
solar azimuth using the R function “sunPosition”. To obtain the final angle, we added the
azimuth to the angle measured with the OnScreenProtractor.
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Vertical

Resource

Figure 3 Angle of the dance towards the vertical of the hive (B) shows the
direction of the resource in relation to the sun (A).

2.3 Data analysis

We translated observed waggle dances into communicated foraging locations by determining
the duration (in seconds) and angular direction (degrees from vertical) for each dance.
However, both components contain noise in their signals: waggle runs performed by different
bees can differ slightly in their length and direction even though they aim to indicate the same
foraging location (Towne & Gould 1988; Couvillon et al. 2012b). Translating and plotting the
dances as specific points would therefore highly overestimate the accuracy of the foraging
location (Schiirch et al. 2013). We used a probabilistic approach, and applied a Bayesian
duration to distance calibration model created by researchers from the University of Sussex,
hereafter called the “Sussex calibration model” (Schirch et al. 2013). A calibration curve is a
model representing the duration of the averaged waggle runs against the distance to the
resource location (Scheiner et al. 2013). Generating a calibration curve specifically for the
Oslo area was beyond the scope of this study and deemed unnecessary by the authors of the
calibration model we used (Schurch, personal communication). Because we were interested in
the honeybees’ general foraging patterns, we did not differentiate between dances for nectar

versus pollen. We quantified the error in the prediction of distances from run durations with
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JAGS 4.3.0 from within R with the package rjags (Plummer 2016). Schiirch et al. (2013) built
first a linear model with duration as the response variable and distance as the predictor (see

Figure 4) and reformulated the linear model then in a Bayesian framework.

15 2 25 3 35 4

Waggle run duration (s)

0 05 1

0 200 400 600 800 1000 1200 1400
Distance to resource location (m)

Figure 4 Linear duration to distance calibration model for the landscapes of
Sussex. Model parameters can be acquired from Schirch et al. (2013).

The waggle run duration was modelled as a Normal distribution N(u,z) with a Gamma prior
for the precision T ~ Gamma(0.01,0.01). To model unknown distances based on waggle run
duration measurements, we assumed N (ux,tx) with a prior expectation for the mean px ~
Uniform(0, 14000) and tx ~ Gamma(0.01,0.01). As suggested by Schirch et al., we chose the
non-informative uniform prior « x as the only prior so that the dances would range from 0 to
14 km. We used four MCMC chains and a burn-in of 300,000 iterations. We thinned the results
by taking every 100th sample from an updated 100,000 iterations which resulted in a final
sample size of 1000 simulations per dance. Thus, using a Bayesian linear calibration curve
gave us the possibility to calculate new distances from known waggle run durations including

an error distribution around the estimated distance.

To calculate the directional scatter for each dance, we used a von Mises distribution. We used

therefore the rvonmises function from the circular package with a final sample size of 1000
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and the concentration parameter x set to 24.9 as estimated by Schiirch et al. (2013) (Agostinelli
& Lund 2017). A concentration parameter which is zero represents a circular distribution that
is uniform, if it is greater than zero the distribution is ranging in a sector of the circle (Mardia
1975). Thus, for each initial heading as derived from the waggle dance we had now 1000
simulated headings ranging in a certain scatter. Finally, we combined the calibrated distance
distributions from the calibration model with the directional component: we calculated the
foraging locations by adding the simulated distance*simulated heading vectors to the
coordinates of the hive location. This latter approach ensured us that one foraging location is
not only plotted as a single point, but as a probability distribution which can be represented as

a colour-coded probability cloud.

For all the dances, we determined the probability (from 0 to 1) that a specific bin (25m x 25m)
has been visited as pvisited = 1 - (1 -pvisited,) * (1 - pvisited,) * - x (1 - pvisited,,)
where (1 - pvisited;) is the probability that a certain square had not been visited according
to a certain dance i. We chose the size of the bins so that the resulted probabilities would range
from 0 to 1. We analysed then the relationship between the foraging probability and landscape
attributes by first plotting the dance probability as a raster layer, converting simulated foraging
locations to raster values which we created by using the rasterize function from the raster
package in R (Hijmans 2017). This probability could be then visualized as a heat map. To
project the dances on a map, we imported the raster layer into QGIS (QGIS Development
Team 2018) and placed the raster layer on top of a Google satellite map. Additionally, we
plotted the hive location, the 50" and the 99'" foraging distance percentile. The resulting figure
allowed us to have an overview of the urban area of Oslo in which the observed honeybees

are foraging. For all the data analysis, we used the R version 3.4.1 (R Core Team 2017).

2.4 Landscape analysis

Since honeybees only perform the waggle dance when they return from a profitable location,
the information retrieved from the waggle dance is a good indicator for suitable habitat
available and known to the colony (Seeley 2014). The honeybee measures the profit based on
the relative caloric reward since they must spend time and energy visiting flowers

(Waddington & Holden 1979). The benefit to cost ratio depends on a complex of factors



20

(Waddington 1980). A major factor is the flight distance which is largely determined by the
flower spacing around the hive. Therefore, the visitation probability is decreasing non-linearly
with distance from the hive (Couvillon, Schiirch & Ratnieks 2014a) as shown in Figure 5
where we exemplarily used the decoded distances of the Bygday hive. Thus, to evaluate the
relative importance of habitat suitability as expressed by the ESTIMAP values to honeybees,
we corrected not only for distance but also for 1/distance by adding it as a covariate in the
model as conducted in a previous study using dance decoding to study honeybee foraging
behaviour (Couvillon, Schiirch & Ratnieks 2014a). Since our dependent variable, the visitation
probability, assumes values from 0 to 1, we logit transformed the probability and used the
following linear model to describe the relationship between the visitation probability and the

distance to the hive: pyisiteq.iogic ~ distance + I(1/distance).

1.0

Probability of bin visitation
00 02 04 06 08

l | | | l
0 1000 2000 3000 4000

Distance (m)

Figure 5 The black points represent the probabilities of each bin visited
during the study period in relation to the distance from the hive location (here:
Bygdgay location).

To explain the further procedure and the next steps of the spatial analysis of the decoded
waggle dances, we used the data of the hive that was located on Bygdgay as an example. Results
and values for the location Ulleval 1 and Ulleval 2 are given in the result section. Our ultimate
goal was to know which areas are visited more, while taking into account the fact that bees
value some resources more than others. For instance, Schurch et al. (2013) showed that a
nature reserve 2 km to the south-east of their studied bee hive would without the correcting of

distance not show up as an important foraging location since it is too far away — even though
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the nature reserve was frequently visited and represented a good habitat for pollinators. The
residuals of the linear model expressed therefore the corrected measure for the variation in the
visitation probability once distance is accounted for. When we plotted the residuals of the
model for the Bygdgy dances, it was visible that areas with a high visitation probability are
clustered together (see Figure 6), which is an indicator for spatial autocorrelation. In this
context, the level of spatial autocorrelation showed to which degree the visitation probability
of one bin is more similar with the visitation probabilities of its neighbouring bins than with
the visitation probabilities of bins further away. To check for spatial non-independence of the
25m x 25m bins, we calculated the Moran’s I value with the Moran.lI function from the ape
package (Paradis, Claude & Strimmer 2004). A Moran’s | value of 0.973 confirmed that the
values of the visitation probability cluster spatially and indicated therefore a high degree of
spatial non-independence of our data at this resolution. This occurred for two reasons. First,
the method we used to plot the dances implies that we visualize honeybee visitation as a
probability distribution. Second, adjacent areas tend to share similar land-use characteristics
(Couvillon, Schiirch & Ratnieks 2014a).

To deal with the spatial autocorrelation we adapted a blocking design, which is an approved
method to correct for autocorrelation (Keitt et al. 2002; Couvillon, Schirch & Ratnieks
2014a). We used the gstat package in R to calculate the variogram to be able to apply the right
block size (Pebesma 2004; Graler, Pebesma & Heuvelink 2016). A variogram is a function
that describes the level of spatial dependence of a random spatial field. The fitted variogram
model provided us with a range of 423.61 m and a psill of 0.05. The range represents the
distance limit beyond which the data are no longer correlated. Thus, we chose a block size of
400m x 400m (0.16 km?) to minimize the spatial dependence as well as to incorporate the
foraging resolution of the honeybees. A block side length of 400 m implies that the smaller
bins must increase by a factor of 16. We created a random block raster with the aggregate

function which can be laid over the raster of the ESTIMAP model (Figure 7).
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Figure 6 Visitation probabilities of 25 x 25m bins of the colony on Bygday
before (A) and after (B) the linear model was corrected for distance.
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Figure 7 The random blocks on top of the ESTIMAP model representing
habitat suitability values from 0 to 1.

Since we wanted to correct for spatial autocorrelation we fitted a model where each block has
its own intercept by adding the block variable as a random factor in a linear mixed model.

Thus, we expanded the previous model in the following Way: py;siteq.iogic ~ distance +

I1(1/distance) + (1|block). To build the linear mixed effect model, we used Ime4 package
(Bates et al. 2015). A residual plot from the null model illustrates that, instead of grouping
together, the colours — representing the visitation probability — are now randomly distributed
across the map (see Figure 8). Since each block possess its own intercept, we could extract the
visitation probability for each of the blocks. The 99th percentile for the distances of the dances
is 2840 m for the Bygday location. Therefore, we decided that no block should be included in
the analysis whose closest corner was beyond 2840 m. This resulted in 185 included bins
compromising in total an area of 29.6 km2. By ranking the blocks, we could asses which of

the 185 blocks are the most visited by the honeybees of the three locations (see Figure 9).
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Figure 9 The number visible in each block indicates its rank relating to the
visitation probability when the influence of distance has been removed. Rank
number 1 is the most visited block, rank number 185 is the least visited block.
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2.5 Overlap analysis

Since we had a “replicate” design with two hives (Ulleval 1 and Ulleval 2) at one location, we
wanted to quantify if and to what extent the visited resource patches of the two colonies can
be considered similar. Thus, we compared the two visitation probability raster layers of
Ulleval 1 and Ulleval 2 with the Jaccard coefficient. The Jaccard coefficient is a well-known
measurement of similarity between two data sets (Kobayakawa et al. 2009). In this context,
the coefficient is equal to the intersection between the two raster layers (Ulleval 1 N Ulleval
2) divided by the union between the two raster layers (Ulleval 1 u Ulleval 2). The comparison
of two layers resulting in a similarity coefficient of 0.0 would indicate no common raster cells
at all, whereas a value of 1.0 would show a complete overlap of the two raster layers. We
imported the two raster layers in QGIS and used then the raster calculator to compute the
intersection and the union. We computed one Jaccard coefficient for the whole raster layers
where all visited raster squares are included, and we computed a second Jaccard coefficient
where only the raster squares that lie within the 50th percentile foraging distances of the two

hives are involved.

2.6 ESTIMAP analysis

To analyse whether the foraging locations of honeybees will be spatially distributed according
to expected floral resource availability (as expressed by the ESTIMAP) we imported the
ESTIMAP model into R. Since each block is now ranked from least visited to most visited we
wanted to assess the mean ESTIMAP value for each of these ranked blocks. Therefore, we
rasterized the model with the same block size factor as the rank raster while calculating the
mean habitat suitability value for each new block. Thus, we ended up with a data frame
containing information about the rank, the visitation probability, the habitat suitability value
as given by the ESTIMAP and the distance of each block from the hive. To determine whether
the ESTIMAP values can predict the probability of visitation, we used a beta regression model
to analyse the mean ESTIMAP values of each block against the visitation probability of each
block (Cribari-Neto & Zeileis 2009). Moreover, we tested whether the variable “distance” and
the interaction between the ESTIMAP value and the distance have a positive influence on the
model fit. The Akaike information criterion (AIC) was used for comparing the models. We
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then selected the model with the smallest AIC score. This determined an overall p value, as
well as the sign of the parameter estimate which allowed us to understand whether the mean
ESTIMAP value is increasing or decreasing with an increase in the probability of visitation

and thus the ranking.
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3. Results

We decoded a total of 506 waggle dances from the 01.07.18 to the 14.08.18. Recorded dances
which were included in the data analysis ranged from 15 dances per hive per day to 1 dance
per hive per day (see Appendix; AppTable 1 - AppTable 10). The probability distributions of
all foraging locations with the 99th and 50th percentile foraging distances of the three studied
bee colonies are shown in Figure 10 (for an enlarged view see Appendix; AppFigure 1 -
AppFigure 3). The mean, the minimum and maximum foraging distance of all three bee hives

are shown in Table 1.

Table 1 The mean with 95% CI, the minimum and maximum foraging
distance of all three bee hives

Location Mean predicted 95% CI Min  predicted Max predicted
distance (m) distance (m) distance (m)

Bygday 688.39 685.95;690.84  0.007 4039.79

(211 dances)

Ulleval 1 490.95 488.03;493.87  0.006 5236.82

(190 dances)

Ulleval 2 425.27 422.98;427.56 0.019 2741.46

(105 dances)
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Figure 10 Honeybees of three observation hives were studied at two locations
in Oslo (Bygdgy: A; Ulleval: B, C). Shown is the distribution of foraging locations
and the probability that a bin (25m x 25m) has been visited. The colour code
ranges from dark blue to red, where blue indicates a low probability and red a
high probability of visitation.

3.1 Landscape analysis

The results showed that for all three bee colonies the linear models indicate that the dance

probability decreases with an increase of distance from the hives (see Figure 11).

Since habitat patches with a high visitation probability were clustered together for all three
bee hives, we calculated the Moran’s I value. The Moran’s I values of the three datasets of the
25 x 25 m bins containing the honeybee visitation probability indicate a high level of spatial
autocorrelation, which means that there is no statistically independence between adjacent bins
(Bygdgy: 0.973; Ulleval 1: 0.877; Ulleval 2: 0.954). To correct for this spatial autocorrelation,
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we applied a randomized blocking design. To apply the appropriate block size, we calculated
a variogram for each of the three datasets. Fitting an exponential model to the variogram gave
a good fit. The results of the variogram gave 423.6 m for the range of the Bygday location,
313.2 m for the range of Ulleval 1 and 215.6 m for the range of Ulleval 2. Therefore, we chose
a block size of 400m x 400m for the location on Bygdgay, for Ulleval 1 we chose 300m x300m
and for the Ulleval 2 location we chose 200m x 200m blocks. By using the blocking design,
the distance beyond the data were spatially autocorrelated decreased to the following extent:
for the location of Bygday, the psill is now 0.0003, and the range is 184.1 m, for Ulleval 1 the
psill is now 0.0002 and the range is 119.4 m and for Ulleval 2 the psill is now 0.0002 and the
range is 80 m. This implied that the range beyond the data are not spatially autocorrelated
anymore decreased by 56.5% for Bygday, 61.9% for Ulleval 1 and by 62.9 % for Ulleval 2.

The 99th percentiles for the distances of the decoded waggle dances are 2840 m (Bygday),
3270 m (Ulleval 1) and 1908 m (Ulleval 2) respectively. We decided to exclude each block
from the analysis whose closest corner was beyond the 99" percentiles. Thus, we included 185
blocks for Bygday, 416 for Ulleval 1 and 332 for Ulleval 2 which we then used to investigate
the effect of the habitat suitability of the blocks on the visitation probability with beta
regression models (see ESTIMAP analysis). We estimated the foraging area of each bee
colony according to the used blocks. The estimated foraging area of each bee colony was 29.6
km2 for Bygdgy and, 37.4 km2 and 13. 3 km? for the Ulleval 1 and Ulleval 2 colonies.

The five highest ranked blocks, which represent the blocks that are communicated the most
often by dancing foragers as profitable areas, were for all the three locations in close vicinity
to the hives — even when distance to the hives is factored out (see Figure 12, squares 1 - 5).
For Bygdgy, these squares include mainly agricultural fields and residential areas.
Interestingly, the block that covers mostly the allotment gardens (lower left block closet to the
hive location outlined in red) is visited the most by bees of the Ulleval 1 hive and the second

most frequently by the bees of Ulleval 2. The other squares contain mainly residential areas.
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Figure 12 Ranking of the blocks from 1 to 185 for Bygday (A), from 1 to 416
for Ulleval 1 and from 1 to 332 for Ulleval 2. The blue point indicates the hive
location. The squares outlined with red represent the square that covers the
allotment gardens which are in close vicinity to Ulleval 1 and 2.
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3.2 Overlap analysis

The Jaccard coefficient comparing the overlap between the raster layers of Ulleval 1 and 2
amounted to a value of 0.50. When looking at the area where 50% of all dances occurred, the
Jaccard's coefficient value decreased to 0.39. Even though the colonies were placed in the
same environment, were of equal size and had the same genetic background, foragers from

Ulleval 1 and Ulleval 2 exploited different forage patches.

3.3 ESTIMAP analysis

Our results show that the foraging locations of the honeybees of all three colonies cover a wide
spectrum of used habitat types in Oslo, with some blocks used more than others. The habitat
suitability values of visited blocks ranged from 0.00 to 0.91. The mean ESTIMAP value of the
patches which were used as a resource location accounted to 0.36. If focused on the five
patches that had the highest visitation probabilities of each bee hives the mean ESTIMAP

value increased to 0.42.

The best beta regression models with the lowest AIC scores had the the following formula:
visitationprob ~ ESTIMAPvalue + distance + ESTIMAPvalue * distance,data =

dances, link = "logit". Overall, we found a significant effect of the ESTIMAP values on
the visitation probabilities on Bygday and a non-significant effect of the ESTIMAP values on
the visitation probabilities of the Ulleval locations. (Bygdegy: Pseudo R-sg.= 0.204, Log-
likelihood= 750.378, AIC= -1490.756; Ulleval 1: Pseudo R-sq.= 0.431, Log-likelihood=
1624.536, AIC=-3237.073; Ulleval 2: Pseudo R-sg.= 0.518, Log-likelihood= 1454.034, AIC=
-2896.069). By assessing the sign of the estimate (minus or plus value), we could then
determine whether the ESTIMAP value is associated with a lower or higher visitation
probability than expected. These values could be then be paired with the p value to allocate
significance. For the dances of Bygday the ESTIMAP value is a significant predictor of the
visitation probability: Each additional unit of the ESTIMAP value increases the estimated log-
odds of the visitation probability by 0.089 meaning that the odds that the visitation probability
will increase by 1.09 times while holding all other predicting variables constant. For the dances
of Ulleval 1, each additional unit of the ESTIMAP value increases the estimated log-odds of

the visitation probability by 0.030. However, the ESTIMAP value is not a significant predictor
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of the visitation probability in this model. For Ulleval 2, each additional unit of the ESTIMAP
value decreases the estimated log-odds of the visitation probability by 0.029. Also, in this case
the ESTIMAP value of the blocks is not a significant predictor. Thus, the visitation
probabilities were not correlated with the expected availability of floral resources mapped

around the two hives at Ulleval but were correlated on Bygday (see Table 2).

Table 2 Coefficients of the models for the locations of Bygday, Ulleval 1
and Ulleval 2

Bygdey Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.416e-01 4.873e-03 70.101 < 2e-16 ***
ESTIMAPvalue 8.867e-02 1.325e-02 6.694 2.18e-11 ***
distance 9.487e-06 2.131e-06 4.451 8.55e-06 ***
ESTIMAPvalue:distance -3.681e-05 6.030e-06 -6.104 1.03e-09 ***
Ulleval 1 Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.995e-02 1.097e-02 7.289 3.12e-13 ***
ESTIMAPvalue 3.047e-02 2.190e-02 1.391 0.164
distance -1.600e-05 3.839¢-06 -4.168 3.07e-05 ***
ESTIMAPvalue:distance -1.302e-05 8.333e-06 -1.562 0.118
Ulleval 2 Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.026e-02 6.877e-03 8.762 < 2e-16 ***
ESTIMAPvalue -2.926e-02 1.447e-02 -2.023 0.0431 *
distance -2.612e-05 4.326e-06 -6.039 1.55e-09 ***
ESTIMAPvalue:distance 2.049e-05 9.833e-06 2.083 0.0372 *
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4. Discussion

In this study, we analysed waggle dances of honeybees in three bee colonies in the City of
Oslo to understand their foraging patterns. First, we examined how well the foraging patterns
of two hives having the same access to resource locations were overlapping. Secondly, we
investigated how well a habitat suitability model can predict profitable flight patterns of the
studied honeybees. Our results showed that with a Jaccard coefficient of 0.5 the two foraging
patterns of Ulleval 1 and Ulleval 2 only overlapped to a mediocre level. Furthermore, our
results indicated that the visitation probabilities of the Bygdgy hive were correlated with the
habitat suitability values of the ESTIMAP model. Thus, an increase in the ESTIMAP value
led to an increase in the visitation probability. For Ulleval 1 and Ulleval 2 however, the
ESTIMAP values did not play a significant role in predicting the visitation probability. In the
following part, we address potential limitations of the study. We then discuss our findings and
results, first in the frame of our predictions, and after that in the broader context of urban
pollinator ecology and the conservation management of pollinators in cities.

4.1 Potential shortcomings

There are three main shortcomings of our work. First of all, since our time was limited to set
up the study design in summer 2017, we were unable to create our own duration-to-distance
calibration curve unique to the bee strains we used and the urban landscape of Oslo. To create
a duration-to-distance calibration curve, worker bees have to be trained to feeders according
to the standard training procedure by von Frisch (Von Frisch 1967; Schirch et al. 2013). This
resulting distance calibration is not universally applicable; it is rather connected to the
structure of the landscape through which the honeybee flies (Esch et al. 2001). However, our
decoded dances that we created with the Sussex calibration model showed that the used
duration-to-distance transformation reflected some important landmarks when plotted on the
Google satellite map. For instance, most of the visited resource locations of Bygdey are
located within the area of the peninsula and depict therefore reasonably well its shoreline.
Moreover, most dances of the Ulleval locations were within the limits of the allotment gardens
while there were almost no dances within the area of the Ullevaal stadium which represents a

highly unsuitable habitat for pollinators (see Figure 13). Although our results showed that the
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used Sussex calibration curve performed reasonably well, we still believe that a duration to
distance calibration curve generated for the urban landscape of Oslo would produce a more

accurate picture of the foraging patterns of our bees.
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Figure 13 Within the boundaries of the Sogn Hagekoloni allotment gardens
(red outline) it was possible to find the most predicted foraging locations
while hardly any waggle dance indicated a suitable resource location within
the boundaries of the Ullevaal Stadion (blue outline).

Secondly, various techniques have been applied throughout the time to decode waggle dances.
During the lifetime of von Frisch, the waggle dances were analysed straight from the
observation hive with the aid of stopwatches and protractors (Couvillon 2012). With the
progress of modern technology, waggle dances can be analysed by going frame by frame
through recorded videos (Couvillon et al. 2012a). Thus, by using the computer screen as a
virtual observation hive, we were able to extract duration and direction of the waggle run
manually. Although this approach allows measurements with higher precision, manual
decoding from the videos is still prone to errors in the duration and direction measurements

(Wario et al., 2017). For instance, Wario ef al. (2017) ascertained that there was a standard
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deviation of 6.6° when letting eight trained researchers measure the angles of waggle runs.
Hence, when discussing the results, the possible inaccuracy of the decoding process should be

kept in mind.

The third limitation resulted from the nature of our statistical data analysis. To analyse the
visitation probability (values from 0 to 1) we logit transformed the data so that the transformed
visitation probability assumed values in the real line. In this way, we could then perform a
standard linear regression analysis. This latter approach, nevertheless, has several
shortcomings (Cribari-Neto & Zeileis 2009). First, the regression parameters of our linear
model are only interpretable in terms of the mean of logit transformed visitation probability,
and not in terms of the visitation probability mean itself. Secondly, regression models
involving probability data are usually heteroscedastic: the data are more variable around the
mean and show less variation around the lower limit (0) and upper limit (1) of the standard
unit interval (0-1). Third, since the distributions of probabilities are normally not symmetric,
the hypothesis testing based on the Gaussian approximations for interval estimation could be
fairly inaccurate in smaller data sets (Cribari-Neto & Zeileis 2009). Thus, one should be aware

of these limitations when interpreting and using the results of our regression model.

4.2 Discussion of the results

Our results clearly showed that most foraging from the urban colonies was at relatively short
distances (mean predicted distance: 425m — 688m), indicating abundant high-quality forage
within short distances around the two study locations. In general, honeybees possess a great
potential to survey a wide range of landscapes for resource locations (Couvillon, Schiirch &
Ratnieks 2014a). One reason is their capability of performing long-distance foraging trips of
around 10 km (Von Frisch 1967). Honeybees from a single location are therefore able to scout
through a large area. So, how did our results align with previous studies which investigated
honeybee foraging using waggle dances decoding? A study from Brighton showed that the
foraging of bee colonies placed in the city centre was mainly local (monthly mean distances
0.5-1.2 km) and mostly within the area of the city (monthly means: 78-92 %) (Garbuzov,
Schiirch & Ratnieks 2015). In contrast with this, bee colonies placed in a rural area close to
Sheffield showed a mean foraging distance of 5.5 km for the month of August (Beekman &

Ratnieks 2000) while another study reported a mean foraging distance of around 2.2 km in the
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summer months (June — August) by bees placed in a rural area around Brighton (Couvillon,
Schiirch & Ratnieks 2014b). Thus, the distances published by Garbuzov et al. (2015) and our
distances were shorter than those from studies where bee hives were located in rural areas and
thus supported the idea that bees in urban areas need to fly shorter distances to fulfil their need
for nutrients and other resources. Honeybees are very skilled in estimating their foraging
economics and successful foragers perform the waggle dance only after assessing a visited
location as a high-quality feeding location (Seeley 2009). The short distances advertised by
our decoded dances, therefore, indicate that the urban area of Oslo provides a sufficiently high
resource availability to meet the foraging needs of honeybees which can support honeybees
on Bygday and in the Ulleval district.

4.2.1 Overlap analysis

With a Jaccard coefficient of 0.50, we found only a moderate level of foraging overlap between
the two Ulleval colonies. Focusing on the 50" percentile of the foraging distance, the result
indicated an even smaller overlap with a Jaccard coefficient of 0.39. Therefore, we could
conclude that the foragers of the two colonies exploited different patches in the study period

even though they started their foraging from the same location.

The foraging patterns of a colony, defined as the patches where honeybees fly to for resources,
is influenced by many factors such as the colony size, the nutritional needs of the colony, the
distribution of pollen and nectar, chance factors, as well as the foraging patterns and densities
of competing pollinators (Waddington et al. 1994). The observation that two bee colonies
being located at the same place have two different foraging patterns is not novel (Beekman et
al. 2004). According to Beekman et al. (2004), equal-sized colonies show no consistent
difference in the intake and need of pollen and nectar. Hence, the finding that colonies use
different foraging patches cannot be simply explained by different nutritional needs. The most
likely explanation for the finding that colonies forage on different patches, even when placed
in the same environment, is based on the availability and abundance of resource patches and
on chance factors (Beekman et al. 2004). Especially when the number of available resource
patches is large, as it is possible to find it in urban environments, different colonies will
discover and exploit a different subset of all the available patches. When foraging honeybees
from a colony are recruited by nestmates and actively exploiting a certain patch, it is more
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likely that they persist with this resource than to switch to an unknown patch even though
other patches around have equal quality (Detrain & Deneubourg, 2008). Thus, a forager will
remain exploiting that patch for as long as this particular location is rewarding and may also
communicate the patch to her nestmates if she thinks the profit is sufficient enough (Seeley
1995).

The level of interspecific and intraspecific competition can alter the foraging behaviour and
diet breadth, leading to a more generalist foraging behaviour of some pollinators (Morse
1977). Especially more generalist pollinators like the bumble bee (Bombus terrestris) can shift
to a different subset of available plant species depending on the degree of intraspecific
competition (Fontaine, Collin & Dajoz 2008). According to the optimal foraging theory, an
increase or decrease of resource availability is correlated with an increase or decrease
respectively in diet breadth (MacArthur & Pianka 1966). Hence, when resources are limited
because of competition the diet breadth of some species can increase (Schoener 1971). As a
result, the observed foraging patterns of our honeybee colonies were most likely not only based
on the available forage but were also influenced by the way how the scouts of the colonies
discovered different patches and by the potential competition caused by other honeybees and
wild pollinators (see more details in ESTIMAP analysis). In other words, depending on some
factors different foraging patterns could emerge from several bee colonies at the same location.
Thus, we were not able to make any general statements about the foraging behaviour of
honeybees in Oslo. For instance, we were unable to exclude that honeybees would not visit
the islands in the Oslo fjord which represent excellent habitat for pollinators and host some
rare and threatened insect pollinator species (Henriksen, Hilmo & Kalads 2015). Hence,
although it seemed that our studied honeybees did not fly over the water towards the islands
in the Oslo fjord, other colonies at the same site could utilize a foraging footprint that might
extend further beyond the peninsula. Our results should be interpreted with this in mind.
Moreover, our findings raised therefore more interesting questions and thoughts about the
mechanism of resource selection of honeybees and might query study designs that use only
one bee hive per study location to predict where honeybees are most likely to exploit resource
locations. Questions such as “Are honeybees optimal foragers after all?”” or “Do honeybees
have an omniscient overview about available resource locations?” can be addressed in future

studies based on the observation hives in Oslo and the ESTIMAP model.
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4.2.2 ESTIMAP analysis

The ESTIMAP habitat suitability model did not appear to provide a very strong indicator of
bee foraging probability. Evaluating the predictive power of a habitat suitability model is very
important, both for applied and theoretical research questions (Hirzel et al. 2006). However,
while model evaluators based on presence/absence data of the target species have received a
lot of attention (Fielding & Bell 1997), evaluation of models based on presence-only data are
more seldom. Their first step in evaluating a habitat suitability model usually consists of
defining a habitat suitability threshold (often 0.5) that is supposed to separate unsuitable
patches (habitat suitability value below threshold) where the species should be absent, from
suitable patches (habitat suitability value above threshold) where it is supposed to be present
(Hirzel et al. 2006). According to this threshold the ESTIMAP model performed rather poorly
in predicting foraging presence since the mean ESTIMAP value of the patches where
honeybee foraging took place accounted only for a value of 0.36 or 0.42 respectively if focused

on the patches with the five highest visitation probabilities.

However, factors that lead to prediction errors can be of various nature. During the analysis of
the ESTIMAP model, we came across three prominent reasons that might explain why the
ESTIMAP model performed rather poorly in predicting the visitation probabilities of patches
around the hive locations. First, many habitat suitability models - including the ESTIMAP
model - produce maps showing a continuous scale of the habitat suitability for the target
species. This type of output obviously contains more information than a map that predicts only
the presence or absence of the target species which is certainly less convenient for wildlife and
conservation management. However, studies showed that a continuous gradient can be
sometimes misleading since actual presence data often exhibit a wide range of habitat
suitability values (from 0 to 1). Hence, even good predictive models can suffer from
uncertainty, making the usage of a continuous habitat suitability scale in some cases too
ambiguous (Hirzel et al. 2006). Secondly, since all the dances were decoded manually, and
we applied the Sussex calibration curve to translate the dances into real foraging locations,
human error might cause a certain degree of inaccuracy that might lead to an insufficient

plotting of the used foraging pattern.

A more important factor that the ESTIMAP model had not the strongest predictive power
might be caused by a prediction error that is arising directly from the ecology of the target

species (biotic errors) (Fielding & Bell 1997). Biotic errors can arise because not all
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behavioural-relevant processes of the target organism have been addressed in the model. Very
common processes that are difficult to incorporate in a habitat suitability model are intra- and
interspecific interferences. Unfortunately, these relevant data are in many cases difficult to
acquire (Fielding & Bell 1997). Competition for nutrients or the intra- and interspecific
competition between multiple species has the potential to reshape the presence of the target
species (Austin & Gaywood 1994). A common example is the competition for nesting sites
between the peregrine falcons (Falco peregrinus) and Golden Eagles (Aquila chrysaetos) at
the coast of Southwest Scotland (Ratcliffe 2010). Peregrine falcons were outcompeted from
their usual breeding sites on a particular cliff after Golden Eagles got re-established in 1945
in Scotland. Afterwards the Golden Eagles abandoned this cliff again and the falcons returned
for breeding. Hence, depending on the presence of the Golden Eagle, the cliff was either
occupied or avoided by the target species even though the cliff was constantly highly suitable
as a breeding site (Fielding & Bell 1997).

In our study we were only able to visualize the visited patches of three hives. In fact, around
the two locations where our three observation hives were placed also other bee hives were
located. For instance, in the Sogn Hagekoloni allotment gardens there were three other bee
hives each hosting around 60000 bees placed around the two observation hives in the summer
months of 2017 (Larssen, personal communication). In these cases, we had no insight where
honeybees of other colonies exploited resources around our two study locations. Moreover,
we had also no information about the density and abundance of wild pollinators on Bygdey
and in the Ulleval district. Hence, we had no empirical data if and how the presence of other
honeybees and wild pollinators might have influenced the foraging patterns of our studied
colonies. Stange et al. (2017) used a pan trap design to achieve a validation of the ESTIMAP
model. The results showed that the total bee abundance, bee species richness, and bumblebee
abundance all increased significantly with an increase in the ESTIMAP habitat suitability
scores (ESTIMAP values measured within an area of 50 m radius around the trap locations).
However, solitary bees' abundance and the abundance of honeybees did not vary significantly
with the habitat suitability as given by the ESTIMAP model (Stange et al. 2017). Thus, this
method seems to be a better approach to evaluate a habitat suitability model for pollinators.
At the same time, their results demonstrate that honeybee abundance is not correlated with the
ESTIMAP values. The findings of Stange et al. (2017) and our findings might raise the
hypothesis that honeybees as generalist foragers are less dependent on high quality resource

locations. Moreover, one could question whether honeybees have an omniscient view of the



41

resource locations and their nectar-rewards surrounding the hive location. An additional point
to consider is the fact that the ESTIMAP model estimates suitability of a patch averaged over
an entire growing season (Stange et al. 2017). Our filming, however, took place from the
beginning of July to mid-August and captured therefore only half of the foraging season which
starts in Norway around April (Jargensen 2014). The foraging pattern and range of honeybees
vary significantly during the foraging season (Couvillon, Schirch & Ratnieks 2014b).
Decoding waggle dances over the full foraging season might therefore provide a different
foraging pattern and a different match with the ESTIMAP model. However, these hypotheses
and questions must undergo a more detailed and thorough research which was outside the
scope of this study. Finally, we have learned and must admit that using the decoded waggle
dances as presence data might be not the most appropriate method to validate a habitat

suitability model for pollinators.

4.2.3 Our results in the context of urban pollinator ecology and the
conservation management of pollinators in cities

Since land loss to urbanization is expected to increase throughout the upcoming years, urban
pollinator ecology is an emerging research field. However, published studies of pollinator
ecology in urban and suburban areas are still relatively rare (Hernandez, Frankie & Thorp
2009). The honeybee is only one species of pollinator, but our dance decoding data showed
that studying honeybees” foraging patterns could have a wider relevance. In particular, we
know now that the bees of all three colonies foraged mostly in the vicinity of the hives and
exploited also resource locations in residential areas. This shows that honeybee dance
decoding could locate important areas that might support also other pollinator species since
the honeybee is a quite generalist forager and would exploit resource patches where typically
other insect pollinators would also forage (Biesmeijer & Slaa 2006). Residential gardens and
other private sites in cities play a unique role in the suitability and conservation of bee habitats
since the creation and maintenance of the gardens are conducted by individual owners or
organizations (Hernandez, Frankie & Thorp 2009). In California, techniques in garden design
and plant management were identified through e.g. surveys of urban bee habitats. These
techniques appear to increase the environmental suitability of habitats for bees. For instance,
the creation of habitats with a more stable availability of floral resources over the whole
foraging period increased the establishment of new bee populations and successional
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populations of pollinators. To maintain both wild pollinators and honeybees, Oslo
municipality should therefore promote conservation practices aiming at preserving the

functionality of plant-pollinator networks at both public and private scale.
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5. Conclusion and future perspectives

To our knowledge, this is the first study that compares the foraging patterns of honeybees with
a habitat suitability map for pollinators in an urban setting. Our findings suggest that using the
decoded waggle dances as species presence data might be not the most appropriate method to
test a habitat suitability model for pollinators. However, we gained insight in the foraging
behaviour of our three studied bee colonies: compared to colonies placed in rural areas, our
urban honeybees showed relatively short mean foraging distances. Moreover, we know now
that two colonies located in the same environment do not necessarily use the same resource
patches. This finding gave interesting insight in the optimal foraging of honeybees. Next to
the distance and the nectar-reward of the floral resources, also the exploitative competition by
other bees might play a role in the resource selection of honeybees. However, we must keep
in mind that both the use of the Sussex calibration curve and the manual decoding of the
waggle dances might cause some inaccuracy in plotting the foraging patterns of our
honeybees.

Urban areas are increasing rapidly in size and abundance. Even though the habitat suitability
for pollinators of urban areas is likely to differ between cities, regions and climate zones, urban
areas could have the potential to represent important source areas and refuges for pollinators.
However, while there has been increasing interest in enhancing agricultural areas for
pollinators, far less attention has been paid to how urban areas can be made more pollinator-
friendly. Therefore, identifying suitable habitats in urban areas for pollinators as given by the
ESTIMAP, gives us an idea on where pollinators are likely to forage and where potential
conflicts between honeybees and other pollinators might occur. Addressing public and private
landowners should be part of the strategy of the Oslo municipality to conserve wild pollinators

while at the same time allow lively honeybee populations.

This current study was the start of long-term surveillance of foraging patterns of honeybees in
the City of Oslo. In 2018, next to the two existing locations Bygdgy and Ulleval, there were
two new locations established and each location was fitted now with three observation
beehives meaning that data will be collected from 12 beehives at four different locations. This
new approach will give us the chance to conduct a more thorough statistical analysis and to
make more detailed statements about the resource selection of honeybees. Moreover, we will
use a computer software that automatically detects and decodes waggle dances to reduce the

inaccuracy caused by the manual decoding.
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The waggle dance decoding is a very vivid demonstration of how scientists can use natural
behaviours to study resource selection. Already in 2017, the waggle dance project gained
attention and interest by a lot of citizens of Oslo. In the following years of the project, we can
use this public recognition of the ecological value of pollinators (and in particular honeybees)
as an important flagship group for raising public awareness of human impacts on biodiversity
in the City of Oslo.
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Appendix

AppTable 1 Average measurements for the dances 1-50 of the Bygdgay hive
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AppTable 2 Average measurements for the dances 51-100 of the Bygday

hive
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AppTable 3 Average measurements for the dances 101-150 of the Bygday
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AppTable 4 Average measurements for the dances 151-211 of the Bygday
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AppTable 5 Average measurements for the dances 1-50 of the Ulleval 1
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AppTable 6 Average measurements for the dances 51-100 of the Ulleval 1
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AppTable 7 Average measurements for the dances 101-150 of the Ulleval 1
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AppTable 8 Average measurements for the dances 151-190 of the Ulleval 1
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AppTable 9 Average measurements for the dances 1-50 of the Ulleval 2
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AppTable 10 Average measurements for the dances 51-105 of the Ulleval 2

hive
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AppFigure 1 Shown is the distribution of foraging locations and the probability
that a bin (25m x 25m) has been visited for the hive on Bygdgy. The colour
code ranges from dark blue to red, where blue indicates a low probability and
red a high probability of visitation.
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AppFigure 2 Shown is the distribution of foraging locations and the probability
that a bin (25m x 25m) has been visited for the Ulleval 1 hive. The colour
code ranges from dark blue to red, where blue indicates a low probability and
red a high probability of visitation.
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AppFigure 3 Shown is the distribution of foraging locations and the probability
that a bin (25m x 25m) has been visited for the Ulleval 2 hive. The colour
code ranges from dark blue to red, where blue indicates a low probability and
red a high probability of visitation.
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