
RESEARCH ARTICLE

The use of Gompertz models in growth

analyses, and new Gompertz-model

approach: An addition to the Unified-Richards

family

Kathleen M. C. Tjørve*, Even Tjørve

Inland Norway University of Applied Sciences, Elverum, Norway

* kathy.tjorve@inn.no

Abstract

The Gompertz model is well known and widely used in many aspects of biology. It has been

frequently used to describe the growth of animals and plants, as well as the number or vol-

ume of bacteria and cancer cells. Numerous parametrisations and re-parametrisations of

varying usefulness are found in the literature, whereof the Gompertz-Laird is one of the

more commonly used. Here, we review, present, and discuss the many re-parametrisations

and some parameterisations of the Gompertz model, which we divide into Ti (type I)- and

W0 (type II)-forms. In the W0-form a starting-point parameter, meaning birth or hatching

value (W0), replaces the inflection-time parameter (Ti). We also propose new “unified” ver-

sions (U-versions) of both the traditional Ti -form and a simplified W0-form. In these, the

growth-rate constant represents the relative growth rate instead of merely an unspecified

growth coefficient. We also present U-versions where the growth-rate parameters return

absolute growth rate (instead of relative). The new U-Gompertz models are special cases of

the Unified-Richards (U-Richards) model and thus belong to the Richards family of U-mod-

els. As U-models, they have a set of parameters, which are comparable across models in

the family, without conversion equations. The improvements are simple, and may seem triv-

ial, but are of great importance to those who study organismal growth, as the two new U-

Gompertz forms give easy and fast access to all shape parameters needed for describing

most types of growth following the shape of the Gompertz model.

Introduction

The Gompertz model [1] is one of the most frequently used sigmoid models fitted to growth

data and other data, perhaps only second to the logistic model (also called the Verhulst model)

[2]. Researchers have fitted the Gompertz model to everything from plant growth, bird growth,

fish growth, and growth of other animals, to tumour growth and bacterial growth [3–12], and

the literature is enormous. The Gompertz is a special case of the four parameter Richards

model, and thus belongs to the Richards family of three-parameter sigmoidal growth models,
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along with familiar models such as the negative exponential (including the Brody), the logistic,

and the von Bertalanffy (or only Bertalanffy) [13][14]. Numerous parametrisation and re-para-

metrisations of the Gompertz model can be found in the literature, though no systematic

review of these and their properties have been attempted.

The purpose of this paper is firstly to review existing re-parameterisations or model forms

of the Gompertz model and discuss their usefulness, and secondly to present and discuss

revised versions of two useful Gompertz-model forms.

A review of the Gompertz model is useful because of the many re-parameterisations in the

literature, and because confusion and lack of accordance have caused diverging traditions or

practices, which have developed independently within different fields. Here we review 7 re-

parameterisations and a number of versions of one of these.

We subsequently describe two slightly modified or revised Gompertz model forms, which

we label the Unified-Gompertz (or U-Gompertz) models, and to our knowledge are mostly

new to the literature. We label them “unified” versions, because they together simplify the

interpretation of growth rates and the other parameters, in addition to their comparison

between models. These possible U-Gompertz forms are again special cases of the Unified-

Richards (U-Richards) model as described by Tjørve and Tjørve [14]. As U-models, they have

a unified set of parameters, which is comparable across all “U-models”. We will also explain

the purpose of choosing one of the two U-Gompertz forms instead of one of the many other

versions. Already in an earlier paper [14] we showed how we obtained the logistic model and

the von Bertalanffy model from the Richards model by restraining its fourth variable to a given

value, thus we can also in this way obtain U-versions of the logistic and von Bertalanffy models

from the U-Richards model. However, we failed to discuss U-versions of the Gompertz model.

To find these is more difficult, because they are particular limited cases of the Richards model.

We do not present or discuss the linearization of these models, as this is less useful with

today’s computers and software. Neither do we discuss differential versions (forms). With

modern software, we can study the growth rate across time simply by asking for the first and

second derivative of the fitted model, from which one can also graph the change in growth rate

across time. Moreover, the models we propose here have easily interpretable parameters that

fully characterize the slope. It is also not necessary to obtain the second derivative to discuss

the inflection point, also because one of parameters in the models we propose provides us with

the time at inflection directly.

Because the Gompertz model and its many re-parameterisations are applied in different

fields to different types of growth, the notation differs greatly in the literature. We use a simple

common notation in the main equations presented. Still, researchers of growth from different

fields should find no difficulty in following the discussions, even though the notation is not

that they use in their own work. However, we have sometimes applied some specific notation

for fields in the text, where particular re-parameterisations are prominent.

Lastly, we present a genealogy of useful Gompertz re-parameterisations (Appendix 1), as

our previous paper [14] only gave the genealogy of the other models in the Richards family,

including the negative exponential, the logistic, the von Bertalanffy, and the Richards.

History

The Gompertz [1] model has been in use as a growth model even longer than its better known

relative, the logistic model [2]. The model, referred to at the time as the Gompertz theoretical

law of mortality, was first suggested and first applied by Mr. Benjamin Gompertz in 1825 [1].

He fitted it to the relationship between increasing death rate and age, what he referred to as

“the average exhaustions of a man’s power to avoid death”, or the “portion of his remaining
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power to oppose destruction”. The insurance industry quickly started to use his method of

projecting death risk. However, Gompertz only presented the probability density function.

It was Makeham [15] who first stated this model in its well-known cumulative form, and

thus it became known as the Gompertz-Makeham (or sometimes Makeham-Gompertz)

model, a name we encounter for the first time in Greenwood’s [16] discussions. The first

attempt to use a least-squares method for the Gompertz model to find the best curve, was

attempted, e.g. [17] [18]. However, they did not linearize the model, as is done later, but only

log-transformed the values (dependent variable) to make it easier to determine the sum of

squares. This method seems to have been used until the 1940s [19], when Hartley [20] pro-

posed to and first explained how to linearize the Gompertz model.

From the 1920s the cumulative Gompertz-Makeham model also rapidly became a favourite

in fields other than that of human mortality, for example in forecasting the increase in demand

for goods and services, sales of tobacco, growth in railway traffic, and the demand for automo-

biles [21][22]. Wright [23] was the first to propose the Gompertz model for biological growth,

and the first to apply it to biological data was probably Davidson [24] in his study of body-

mass growth in cattle. In 1931 Weymoth, McMillin, and Rich [25] reported the Gompertz

model to successfully describe the shell-size growth in razor clams, Siliqua patula, and Wey-

mouth and Thompson [26] reported the same for the Pacific cockle, Cardium corbis. Soon,

researchers began to fit the model to their data by regression, and over the years, the common

[15] Gompertz model became a favourite regression model for many types of growth of organ-

isms, such as dinosaurs, e.g. [27] [28], birds, e.g. [13] [29] [30] [31], and mammals e.g. [32]

[33] including those of marsupials, e.g. [34] [35]. The Gompertz model is also frequently

applied to model growth in number or density of microbes [36, 37], growth of tumours [4, 38,

39], and the survival of cancer patients [40].

Several different re-parameterisations of the traditional cumulative Gompertz model are in

use. One of the more important was suggested by Zwietering and colleagues [6] for modelling

growth in number of bacteria, and is currently one of the most common models in microbial

growth [7, 41,42]. Another prominent re-parametrisation of the Gompertz model is the Gom-

pertz-Laird model, proposed by Laird and fitted to tumor growth data [4]. This model is con-

sidered especially useful when we want to discuss the initial value (starting point on the x-

axis), and it is greatly used also for describing growth in birds and animals, especially poultry

[e.g. 9, 43, 44, 45], and livestock [e.g. 46]. However, the model parameters are not easily inter-

pretable without being converted to more useful measurements.

In addition to ordinary monotonically increasing Gompertz re-parameterisations, modellers

of microorganisms in food have developed a number of modified monotonically decreasing

Gompertz models for (thermal, pressure, or electric field) inactivation kinetics. We will not dis-

cuss any of these here, as their interest is limited to this particular type of “growth” studies.

Notation and model types

Here we review Gompertz models found in the literature, focusing on how their parameters

affect curve characteristics (Fig 1). We have chosen to present the models using a notation typ-

ical for organismal growth studies, describing biometric measurements as functions of time;

W(t). Various fields use different notations, for the value measured, for example survival: S(t),
number of cells/bacteria or population size: N(t), density of cells or microorganisms; D(t), con-

centration of organisms C(t), volume V(t), body mass: M(t), and (f) length: L(t). The depen-

dent variable (left hand side of the equation) can also be stated as relative values, for example

given as W(t)/A, where A is the upper asymptote, or W(t)/W0, where W0 is the initial value (or

starting point on the x-axis). The latter then represents the value relative to the starting value
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(described as a “dimensionless” measurement). Sometimes the dependent variable is log-trans-

formed, in particular when modelling microbial growth.

Two main types of Gompertz models

An important realization is that most Gompertz models can be divided into two groups

according to type of location parameter, though this has not yet been called to attention in the

literature. Most three-parameter Gompertz models have two “shape” parameters that affect

curve shape and one “location” parameter that shifts the curve horizontally without changing

its shape. The shape parameters change curve shape but leave the value of the location parame-

ter unaltered. The parameter value is kept constant either relative to the x-axis or relative to

the y-axis, characterising type I and type II of Gompertz models, respectively.

In the type I models, a single parameter controls the time (i.e. x-value) at which a specific

point on the curve occurs. The point represents a fixed proportion (or percentage) of the

upper asymptote, and the time at which this point occurs is not affected by the other parame-

ters (though all other points along the curve are). In some models this points falls at the inflec-

tion, which in the Gompertz model occurs at 36.8% of the upper asymptote (Fig 1). In other

models, it falls at some other fixed percentage of the asymptote.
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Fig 1. Shape characteristics of the (Unified) Gompertz model (unbroken line). The inflection value is fixed at 36.79% of the upper

asymptote. Here the upper asymptote (A) is set at 10.0, maximum absolute growth rate (KU) to 1.5, time at inflection (Ti) to 2.0, and the

startng point (W0) to 1.0. With a set asymptote and growth rate, time of inflection follows from a given starting point or vice versa.

Maximum growth rate is represented by the tangent at inflection (dashed line).

https://doi.org/10.1371/journal.pone.0178691.g001
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In type II models, a single parameter controls the starting value for the curve (i.e. the inter-

section with the y-axis). In these re-parameterisations, the other parameters do not affect the

starting point. Fig 2A and 2B illustrates how the shape parameter changes the curve in a type I

model, (Fig 2A) and in a type II model (Fig 2B). Most of the models reviewed here fall into

either of these two types, and type II is the commoner of the two.

Model review

Some of the re-parametrisations of the Gompertz model found in the literature are more useful

than others, because they have easy interpretable parameters. One valuable and commonly

found re-parameterisation is:

WðtÞ ¼ Aexpð� expð� kGðt � TiÞÞÞ; ð1Þ

where W(t) is the expected value (mass or length) as a function of time (for example days since

birth or hatching) and t is time, A represents the upper asymptote (adult value), kG is a

growth-rate coefficient (which affects the slope), and Ti represents time at inflection. The Ti-

parameter shifts the growth curve horizontally without changing it shape and is therefore what

is often termed a location parameter (whereas A and kG are shape parameters), which means

that this is a type I model. However, more specifically we will refer to model (1) as a Ti-form,

because Ti-is one of the parameters, opposed to the W0 form (which does not include Ti-). We

have a W0-form of a model in the case that W0 is the value (starting point/intersection) on the

y-axis (intersection). All W0-models are type II. In an earlier work [14] we systemized a num-

ber of Ti—and W0 forms for other growth models in the Richards family: the negative expo-

nential, the logistic, and the von Bertalanffy.

Most other re-parameterisations of the Gompertz model found in the literature are less use-

ful, in that their parameters are more difficult to interpret, for example:

WðtÞ ¼ Aexpð� expð� kGt þ bÞÞ; ð2Þ

and

WðtÞ ¼ Aexpð� cexpð� kGtÞÞ; ð3Þ

which are both type II models, but where the b-parameter and the c-parameter both make the

starting point behave as a relative value (a percentage of the upper asymptote), and neither of

the two represent the relative value for the starting point (which therefore has been derived

from some equation). Thus it is not correct as, for example, Kurnianto and colleagues [47]

state, that the c- parameter (in model (3)) has “no specific biological significance”. We see that

one can convert the location-parameter values between models (1), (2), and (3) from the fol-

lowing equations: b = ln(c) so that c = exp(b), b = kG�Ti so that Ti = b/kG, and c = exp(kGTi) so

that Ti = ln(c)/kG. Still, we have to conclude that model (1) is more useful than the other two,

as we get the Ti parameter directly, instead of having to calculate it.

The four-parameter Gompertz

In growth-curve analyses of bacterial (or microbial) counts, in particular, the fitting of a four-

parameter Gompertz model, as suggested by Gibson et al. [36] [48] (but sometimes errone-

ously attributed to Jeffries et al. [49]), who only discusses a three-parameter Gompertz), has

become commonplace. Using our notation (for comparison), this model becomes:

WðtÞ ¼ Bþ Aexpð� expð� kGðt � TiÞÞÞ; ð4Þ

revealing that it is a parameterisation of model (1). The extra parameter in this model, A,
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represents the lower asymptote of the curve, but serves as a location parameter that moves the

model curve vertically, without changing its shape. Therefore, the upper asymptote becomes A
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Fig 2. Two kinds of type II models. Both panes show Gompertz curves four different starting-point values

(W0). Panel 2a illustrates how the W0-parameter affects the curve in type-IIa models (where W0 acts as a

location parameter, keeping the upper asymptote constant), and panel 2b illustrates how the W0-parameter

affects the curve in type-IIb models (where W0 acts as shape parameter, changing the upper asymptote).

https://doi.org/10.1371/journal.pone.0178691.g002
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+B. The dependent variable, W(t) (or L(t), usually described as the log count of bacteria at

time t [36], meaning that the dependent variable is log-transformed. A is typically described as

the asymptotic log-count as time decreases infinitely. To be precise, (4) is not a Gompertz

model when the dependent variable is log-transformed. However, Jefferies et al. [49] show

how model (1) can be log transformed to become:

lnWðtÞ ¼ lnA � expð� kGðt � TiÞÞ: ð5Þ

A simple rewrite of the four-parameter Gompertz, (4), provides what we have referred to as

a “compressed form” of the Gompertz model (see [14] for discussion of compressed forms):

WðtÞ ¼ Bþ ðA � BÞexpð� expð� kGðt � TiÞÞ; ð6Þ

where B, which is the lower asymptote, compresses the curve by lifting the lower asymptote

without altering the upper asymptote (see also Appendix 1 for a genealogy of Gompertz

models).

Both in microbiology (cell or bacteria counts) and in studies of organismal growth, the

growth-rate coefficient, kG, found in many of the Gompertz versions, is often referred to as the

“relative growth rate” at inflection (thus maximum relative growth rate). This is incorrect, if

we assume that “relative growth rate” must be interpreted as the growth rate given as a propor-

tion (or percentage) of the upper asymptote per time unit, (W/A)�t–1. This mistake (or impre-

ciseness) is found both when model (1) [48] and model (3) [36][48] are proposed for microbial

growth, and this impreciseness has been copied by a very large number of authors. However,

to find maximum relative growth rate (i.e. at inflection and relative to maximum value) we

must divide kG with the base of the natural logarithm (kG/e). Accordingly, the absolute growth

rate is found by multiplying the relative growth rate with the value for the upper asymptote

(kG�A/e).

The Zwietering modification

The re-parameterisation proposed by Zwietering and colleagues [6] is often called a “modified

Gompertz” (e.g.[50]) and is typically applied to bacterial growth data, especially in food. It can

be given as:

WðtÞ ¼ Aexp � exp
e � KZ

A
ðTLag � tÞ þ 1

� �� �

: ð7Þ

This is a type I Gompertz model where KZ is the absolute growth rate (i.e. tangent to the curve)

at time TLag, termed the “lag time”, which is interpreted as the time between when a microbial

population is transferred to a new habitat recovers and when a considerable cell division oc-

curs. TLag falls at where W(t) = A�exp(-e). This means that the so-called lag time (TLag) always

occurs at the same percentage (6.6%) of the upper asymptote. This means that the location

parameter (Ti in models (4) to (6)) is modified to control some other than position than the

inflection time.

When this model is fitted to microbial growth data, the dependent variable is typically

transformed into the logarithm of the relative population size (ln (N(t)/N0, where N0 is popula-

tion size at t = 0) [6]. An important advantage of the Zwietering re-parameterisation is that the

growth coefficient (KZ) constitutes the absolute growth rate at inflection, and that A (the upper

asymptote) does not affect this parameter. However, for many types of growth TLag is less intu-

itive than the Ti-parameter.
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The Zweifel and Lasker re-parameterisation

Zweifel and Lasker’s [51] re-parameterisation was copied by Ricker [5] in his book and found

its way into the study of fish growth. Today it is often referred to as the Ricker model. It is a

good example of a plain type II model where the location parameter represents the absolute

value of the starting point on the x-axis. This model is mostly used for fish growth [e.g. 52–57],

but it is also fitted to growth data from other animals, for example crustaceans [e.g. 58]. It can

be expressed as:

WðtÞ ¼W0expðmð1 � expð� kGtÞÞÞ; ð8Þ

Where the value of the growth coefficient, kG, is comparable to that in models (1) to (6). W0 is

specified as the initial value (number, density, mass, length etc.). It gives the starting point on

the growth curve, though also changing the upper asymptote, because it changes the starting

point (intersection with the y-axis) by scaling the curve vertically. In addition, the third param-

eter, m, affects the upper asymptote (A) by scaling the model vertically. The upper asymptote

is found by A = W0 exp(m). Both kG and m affects the time of inflection.

Both Zweifel and Lasker [51] and Ricker [5] used the letter k to denote our m, some other

notation for our kG, and t0 to denote our Ti (time of inflection). This has caused some misun-

derstandings, as the growth coefficient kG has erroneously been described as “a dimensionless

parameter” and our m has erroneously been described as the growth rate. Moreover, kG�m
has been described as “growth rate at t = 0” e.g. [5]. However, absolute growth rate at t = 0 (the

initial growth rate) is W0�kG�m (and the relative growth rate at t = 0 becomes kG�m/ exp(m).

Moreover, maximum relative growth (found at time of inflection) becomes e�kG�m.

This model, (8), is also, as is model (1) (see model (5) above), sometimes encountered log-

transformed (e.g.[54] [59]), in our notation stated as:

lnWðtÞ ¼ lnW0 þmð1 � expð� kGtÞÞ: ð9Þ

The Gompertz-Laird

Another, and very frequently encountered, type II re-parametrisation is the version of the

Gompertz model originally proposed in 1974 by Laird [4][38][60] to describe the growth of

tumour size but it is often fitted to growth in numbers (populations) of cells and microbes.

The Laird re-parameterisation prevails even today as the most frequently fitted Gompertz ver-

sion in cancer research, and is now also commonly fitted to growth data in other fields, in par-

ticular those of domestic (poultry and livestock) [9, 43–46] and marine (e.g. molluscs, fish, and

dolphins) [61–66] animals. It is referred to as the Gompertz-Laird or simply the Gompertz, or

even the “modified Gompertz”, as is also model (8). Therefore, one often has to examine the

equation to determine whether model (8) or the Gompertz Laird has been used. Moreover, we

also found that many authors who stated that they had used the Gompertz-Laird in fact had

used some other re-parameterisation, usually model (8).

With the notation of Aggrey [9] (often encountered in studies of growth in domestic ani-

mals) the Gompertz-Laird model becomes:

WðtÞ ¼W0exp
L
K

� �

ð1 � expð� KtÞÞ
� �

: ð10Þ

We may consider this model as a variant of model (8) (or vice versa), but in reality their

parameters behave quite differently. The W0-parameter is comparable to those of model (8),

but the other parameters are not. The interpretation of the K- and the L-parameters vary in the

literature and are often ambiguous or not well explained.
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The model is again (as is model (10)) unusual in that the W0-parameter not only changes

the intersection with the x-axis by repositioning the curve horizontally, but rescales the x-axis,

so that all values increase or decrease proportionally. Thereby W0 (contrary to other models)

not only affects the initial value (W0), but also the upper asymptote, A. Thus, while in most of

the other (type II) models discussed here W0 behaves as a location parameter (shifting the

whole curve horizontally), in model (10) W0 turns more into a shape parameter.

The L-parameter has been described as “the initial specific growth rate” [9], which is a term

that is difficult to understand. In reality, L measures neither relative growth nor maximum

growth (which falls at inflection). However, the absolute growth rate conveniently becomes

W0 �L at t = 0. Thus, L is the initial absolute growth rate divided by the initial value. To further

complicate interpretation, the L-parameter also changes the upper asymptote, A, and the

inflection time, Ti. Consequently, L affects three shape characteristics of the growth curve, in

addition to growth rate. This makes it difficult to interpret this parameter and compare its val-

ues between data sets. It is sometimes erroneously described as maximum relative growth

(rate) [67–70].

The K–parameter affects both maximum growth and the upper asymptote, as does the kRI-

parameter in model (8). Thus both L and K affect maximum growth rate (i.e. growth rate at

inflection). However, the K-parameter affects neither inflection time, nor the initial growth

rate (W0L), which are both affected by the L-parameter. According to Aggrey [9], the K-

parameter is the “rate of exponential decay of initial specific growth rate”, a statement copied

by many subsequent papers on poultry and livestock growth (see above). This means that it

influences how fast the growth curve levels off (towards its asymptote). Thereby K also affects

the time of inflection, maximum relative growth rate, and upper asymptote.

Summing up which parameters control the three main shape characteristics, we find that

L and K both affect maximum relative growth rate and time of inflection, whereas all three

parameters, L, K, and W, together control the upper asymptote. This makes it more difficult

to interpret the parameter values of model (10) than for example model (1), where each pa-

rameter only affects one of these shape characteristics. The strength of the Gompertz-Laird

is the inclusion of the W0-parameter, which gives us the fitted value at the starting point

(and allows us to restrict the starting point by fixing it to a particular value), and that the start-

ing-point growth rate is easy to calculate. The weakness of the Gompertz Laird is the compli-

cated interpretation of its parameters, in addition to the loss of the Ti -parameter (time of

inflection) and the A-parameter (easily recognizable as time of inflection and asymptote,

respectively).

Simpler W0-forms

Another type-2 re-parameterisation, is that suggested by Norton [39]. It is sometimes incor-

rectly considered to be a Gomperz-Laird model, and is given as:

WðtÞ ¼W0exp ln
A
W0

� �

ð1 � expð� kGtÞÞ
� �

: ð11Þ

This model (11) has very different parameters from Laird’s model. It has the same growth-rate

coefficient and the same parameter for the initial value (or starting point) as model (8). The

model does not (contrary to the Gompertz-Laird) alter its upper asymptote when the starting-

point parameter, W0, is changed. Because the parameters are easily interpretable and control

single curve characteristics, Norton’s re-parameterisation is a very useful one. However, we
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can rearrange this model to a more convenient form:

WðtÞ ¼W
A
W0

� �1� expð� kG�tÞ

: ð12Þ

This is the exact same model as (11). However, several other and maybe simpler versions of

this model can be found, for example the one proposed by Rogers et al. [71], given as:

WðtÞ ¼ Aexp ln
W0

A

� �

expð� kGtÞ
� �

: ð13Þ

An easy way to achieve this model version is to derive it from Eq (3), because c = ln (A)–ln

(W0) (thus substituting ln (A/W0) for c, or ln (W0/A) for (–c), which both give model (12)) (see

also for example Mignon-Grasteau et al. [72]). (The log-transformed version of (13) is found

in Appendix 1). By rearrangement we can rewrite (13) (or indeed also (11) and (12)) into a

simpler form (which we have not seen previously in the literature):

WðtÞ ¼ A
W0

A

� �expð� kG �tÞ

: ð14Þ

This re-parameterisation (14) can also be rearranged into other forms (see Appendix 1), which

should be recognized as restructured versions of the exact same re-parameterisation of the

Gompertz, together Eqs (11), (12) and (13).

Terming model (1) the Ti−form and terming model (11) to (14) the W0-forms of the tradi-

tional Gompertz, we designate the simplified model (14) the preferred version. The two com-

plementary models form (1) (the Ti-form) and (14) (the W0-form) which supplement each

other, because they together provide parameter values for four easily interpretable parameters,

each controlling only one shape characteristic. Specifically, A controls the upper asymptote;

W0 controls the intersection with the x-axis (starting point), kG controls the slope at inflection

(maximum growth rate), and Ti controls the age at inflection (age time at maximum growth

rate).

Fitting the two model forms to data gives us the exact same curve and values for four

parameters, A, k, Ti, and W0. Therefore, this W0-form, (14), because it has the W0-parameter,

becomes a useful and simple alternative to fitting the Gompertz-Laird.

Two kinds of W0-parameters

In the above, we described two ways the W0-parameter may affect the growth curve. In all

models, naturally, W0 controls the starting value (i.e. the intersection with the x-axis). How-

ever, by changing its value, one necessarily affects the curve. In some models W0 acts as a loca-

tion parameter (Fig 2A) that shifts the curve horizontally without changing its shape. In other

models W0 acts as a shape parameter that scales the whole curve vertically (Fig 2B), thereby

affecting the value of the upper asymptote. In other words, the model forces the starting point

to behave like a relative value, meaning that when changing its absolute value, it is still locked

at a given percentage of the upper asymptote.

This means that we can divide type II Gompertz models into two groups, type IIa (where

W0 is a location parameter) and type IIb (where W0 is a shape parameter). Model (8) and (10)

have W0-parameters that scale the curve vertically, whereas models (11) to (14) have W0-

parameters that shifts the curve horizontally.
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The Unified-Gompertz

The traditional three-parameter Gompertz model, as the version shown in Eq (1), is a special

case of the four-parameter Richards model, for example given as:

WðtÞ ¼ Að1 � ð1=dÞ � expð� kRðt � TiÞÞÞ
d
; ð15Þ

where kR is the model-specific growth constant controlling maximum growth rate, and the d-

parameter controlling the inflection value (e.g. mass or length). This model, (15), suffers from

the same problem as the traditional Gompertz models, including models (1) and (14), namely

that the growth parameter (kG) is not comparable to growth coefficients in versions of other

traditional models, for example versions of the logarithmic model and the von Bertalanffy

(which are also species cases of the Richards model). Moreover, these growth parameters (or

growth coefficients) are more difficult to interpret because they do not constitute the absolute

or relative growth rate. We [14] therefore recommended two Richards-model forms, which we

termed the Unified-Richards (or U-Richards). The first of these, the Ti-form of the U-Richards

[14, 73], is given as:

WðtÞ ¼ A 1þ ðd � 1Þ � exp
� kUðt � TiÞ

dd=1� d

� �� �1=1� d

; ð16Þ

where d is the fourth parameter (shifting the inflection value). The second, the W0-form of the

U-Richards, [14] then becomes:

WðtÞ ¼ A 1þ
W0

A

� �1� d

� 1

 !

� exp
� kU � t
dd=1� d

� � !1=1� d

: ð17Þ

Unified versions of the logistic model and the von Bertalanffy model are achieved by substi-

tuting the d-parameter model (16) and (17) with a constant; d = 2 and d = 2/3, respectively.

However, the Gompertz models are not reached simply by limiting the d-parameter to a fixed

value, because it is calculated as a limit. This is because these model forms converge to Gom-

pertz models when d!1, but d6¼1 (as the traditional Richards models also do). This means

that we achieve U-Gompertz forms by substituting ℯ�kU for kG in model (1) and (14). The Ti-

form of the U-Gompertz then becomes:

WðtÞ ¼ Aexpð� expð� e � kUðt � TiÞÞÞ: ð18Þ

Moreover, the U-Gompertz of the simple W0-form presented in Eq (14) becomes the natural

alternative when we prefer the model to return the starting value (W0) rather than the inflec-

tion time (Ti). The W0-form can then be reformulated to become:

WðtÞ ¼ A
A
W0

� �expð� e�kU�tÞ

: ð19Þ

This also means that by dividing the kG-value of Gompertz models (1) and (14) with ℯ, we

obtain the maximum relative growth rate at inflection, kU. Thus kU = kG/ℯ = k/2.71828. The

subscript “U” may notate the universality of this growth coefficient, representing relative

growth rate rather than being a mere coefficient.

By re-parameterizing Gompertz forms (1) and (14), the traditional kG-parameter has given

way for the new kU-parameter in two new model forms, (18) and (19). We term these the Uni-
versal-Gompertz (or U-Gompertz). In these two forms not only A, W0, and Ti are readily inter-

pretable (as they are in model (1) and (14)), but also the k-parameter, kU, which has become
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the maximum relative growth rate. The absolute growth rate then becomes A�kU. Note that kU

does not affect Ti (as kZ does in model (4)), but does affect W0 (unless Ti = 0, meaning that the

inflection point falls at the x-axis).

Because the two U-Gompertz forms in essence are the same model, we can also calculate

W0 in model (19) from Ti in model (18) or vice versa, instead of fitting both model forms to

the same data set. The conversion equations, replacing kZ/A for kU, then becomes:

W0 ¼ A � expð� expðe � kUTiÞÞ; ð20Þ

and

Ti ¼
ln � ln W0

A

� �� �

e � kU
: ð21Þ

This conversion is possible also between the W0 and Ti-parameters of model (1) and (14). We

find these conversion equations by substituting kG for ℯ�kU in (18) and (19).

In the Gompertz model, the value at inflection (Wi) is locked at 36.8% of the upper asymp-

tote, and is calculated as Wi = A/ℯ. The Wi-value of the U-Richards, however, is controlled by

the d-parameter, and it is calculated as Wi = A/d1/(1–d)
. It is an important feature that the kU

-parameter (maximum relative growth rate) in the U-Richards model, (16) and (17), is the

same as in new U-Gompertz model, (18) and (19). This means that if both models are fitted,

either to the same or to different data sets, the kU-parameter can be compared between the

two models without any conversion equation. This also holds for the other models (U-logistic

and U-Bertalanffy) in the U-Richards family [14]. The growth constants of the traditional

models (logistic, Gompertz, von Bertalanffy, and Richards) are, unfortunately, not directly

comparable.

Absolute growth rate. Earlier authors have also noted, more or less explicitly, that it is

possible to re-parameterize the Gompertz model so that the growth parameter returns a rela-

tive or an absolute growth rate, as in model (7), above; although the growth rate in this model

[6] is the absolute rate at the starting point (t = 0) rather than at time of inflection (Ti) (e.g.

model (18) and (19). However, we may re-parameterise models (18) and (19) in order to re-

turn absolute instead of relative growth rates at inflection (KU), i.e. maximum absolute growth

rates. The Ti-form of the U-Gompertz model (18) then becomes:

WðtÞ ¼ Aexp � exp �
e � KUðt � TiÞ

A

� �� �

; ð22Þ

and the W0-form of the U-Gompertz (19) becomes:

WðtÞ ¼ A
A
W0

� �exp � e�KU�t=Að Þ
: ð23Þ

This offers a choice between W0-type models that return maximum absolute growth instead of

relative growth. Whether one chooses model (18), (19), (22), or (23) depends on which param-

eter value is most convenient to discuss and to compare between data sets. If the purpose is to

compare statistically values between data sets, one should fit the model that returns the value;

absolute or relative growth rate, that one wants to compare. The software then usually provides

standard errors (or confidence intervals) for the parameter values
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Conclusion

This article’s main contributions are the new U-Gompertz model forms, and pertaining delib-

erations. The changes relative to traditional models are simple, and may seem trivial, but are of

great importance to those of us who study organismal growth. The two new U-Gompertz

forms provide easy interpretation of all shape parameters, also because each parameter only

affects one shape characteristic. In addition, the parameter for maximum growth rate is com-

parable to the growth-rate parameter of all models in the U-family. This makes it easier to

describe most types of organismal growth following the shape of the Gompertz model and to

compare fitted parameter values across models. Moreover, confidence intervals are easily cal-

culated for estimated parameters, but are difficult to obtain from derived measurements that

have to be calculated from parameter values. Therefore, directly biologically interpretable

parameters are preferable, like those returned by the two U-Gompertz forms. Being able to cal-

culate confidence intervals for the fitted values, we can also compare these values between data

sets, by applying for example a t-test or an ANOVA.

This development also fills a gap in our 2010 paper [14], which reviews and discusses the

U-model family, including re-parametrisations of the negative exponential, logistic, and von

Bertalanffy models, but not the Gompertz model. In addition, we present a rearrangement,

which we have not seen in the literature, of the W0-version of the traditional Gompertz model

in a simpler form.

When studying growth, one is sometimes more interested in the starting point, W0, of the

curve than the exact upper asymptote, as should be the case in growth studies of poultry and

livestock more than in wild birds and mammals. Then one will probably want to choose a

model that directly returns a W0-value. The W0-form of the Gompertz, and preferably the

U-Gompertz, is a good alternative to the Gompertz-Laird. The L-parameter of the Gompertz-

Laird (which does not have a simple interpretation) and the lack of an A-parameter are prob-

lematic in this model. We believe that both the Ti and the new W0-form of the U-Gompertz

model gives easy and fast access to the shape parameters needed for most types of growth stud-

ies. Because of its W0-parameter, the W0-form of the U-Gompetrz promises to be a useful

alternative also to the traditional Gompertz-Laird. The U-Gompertz forms are even alterna-

tives to the two U-Richards forms, when a three-parameter model is preferred. Still, the use-

fulness of the U-models, like the U-Richards and the U-Gompertz, and their W0-forms in

particular, have yet to be firmly established, though the W0-form of the U-Richards has already

been successfully fitted to, for example, the growth of yoghurt bacteria [74][75], and the

growth of wader chicks [76][77][78].

Supporting information
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