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Abstract 
Sustainable resource management requires that managers are able to control the harvest 

offtake. This is challenging in systems with multiple objectives and great uncertainties, which 

is often the case in small game harvest management. The difference between the strategies 

implemented by management and the actual harvest bag size (i.e. implementation uncertainty) 

may be substantial, but few studies have so far explored this. In this study I investigated how 

different management strategies and system parameters affected actual offtake in willow 

ptarmigan (Lagopus lagopus L.) harvest, using empirical data and simulating performance of 

strategies and risk of harvest above selected harvest rate thresholds under varying population 

states. I used data from nine independently managed state owned hunting areas in Central and 

South Norway. Two paths were explored; analysing harvest directly (as bagged birds per km
2
) 

and indirectly by combining models for hunting pressure (hunting days per km
2
) and hunter 

efficiency (bagged birds per hunting day). My results show that the best model explaining 

bagged birds per km
2
 included total allowable catch per km

2
 (TAC) set by managers and 

willow ptarmigan density, where number of bagged birds at high TAC and low density was 

comparable to the number at lower TAC and higher density. Hunting pressure was best 

explained by number of sold permits per km
2
 and type of quota, while the best hunter 

efficiency model only included density. The results strongly suggested that hunters were 

relatively more effective at low densities and removed a higher proportion of birds from the 

area when densities were low. The simulations with alternative harvest management scenarios 

revealed that this effect was present for all strategies, whether managers used a constant 

harvest strategy (TAC or effort) or had adapted their strategy to the density estimates. High 

risks at lower densities of harvest rates above the levels associated with sustainability, 

indicate the need for knowledge of population state before hunting permits are sold, and urges 

the use of threshold strategies to balance the competing objectives of hunting opportunities 

and sustainability. Quantified risks of harvest rates over a range of densities enable informed 

manager decisions of trade-offs between competing objectives. This study is one of the first 

approaches to quantifying implementation uncertainty in small game harvest, and shows how 

estimates from empirical analyses may be used as elements of a full management strategy 

evaluation (MSE) framework. 

Keywords: hunter efficiency, MSE, simulation, suitable habitat, sustainable exploitation, 

willow ptarmigan  
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Introduction 
Small game harvest for recreational purposes is a popular activity in many countries, and has 

ecological, sociocultural and economic implications (Storch 2007; Newey, Dahl & Kurki 

2010). Management strategies are differing between regions and species (Willebrand & 

Hörnell 2001; Marboutin et al. 2003; Nichols et al. 2007), and ownership structures have 

impact on the management objectives. In many countries the majority of hunting areas are 

privately owned (e.g. in the UK), while in other areas (e.g. North America and partially 

Fennoscandia) hunting areas or hunting rights are state owned (Mustin et al. 2011). The latter 

often implies that hunting rights is perceived as a common good, although often with some 

restrictions to anticipate “the tragedy of the commons” (sensu Hardin 1968). Many of these 

state controlled areas share similar management features, with common practice of selling 

hunting permits accompanied by individual day or period quotas (Leal & Grewell 1999; 

Andersen et al. 2014). In Norway, managers of state owned land are required by laws and 

regulations to provide hunting opportunities to the public (https://lovdata.no/lov/1975-06-06-

31), while also ensuring sustainability for the hunted population (https://lovdata.no/lov/2009-

06-19-100). In addition, considering that small game hunting in Norway is a recreational 

activity, the traditional harvest models optimising the yield (e.g. Lande, Sæther & Engen 

1997) are not necessarily the most suited. An approach including social aspects in addition to 

the ecological and economic, may be more appropriate for these kinds of systems (Wam, 

Pedersen & Hjeljord 2012). 

Small game harvest managers set restrictions to improve sustainability of hunting, but they 

often lack methods that give them direct control of the actual harvest offtake (unless quotas 

are set very low or hunting is banned). This is apparent from a number of studies involving 

harvest bag size or population responses to harvest (e.g. Connelly et al. 2003; Patton et al. 

2010). Such partial controllability seems evident also in recreational fresh water fishing 

(Allen, Miranda & Brock 1998), and is likely to be a common feature of systems where 

detailed management of both resource and resource users is difficult. Unlike big game hunting 

where the number, sex and age of individuals to be harvested can be decided more accurate 

(Nilsen & Solberg 2006), most small game harvest systems are often associated with 

substantially more uncertainty when it comes to detailed control of harvest. Until now, 

management systems have often incorporated population dynamic uncertainties to a much 

larger extent than other sources of uncertainty (Milner-Gulland, Bunnefeld & Proaktor 2009). 

An important part of harvest management is understanding what drives the actual harvest, but 

https://lovdata.no/lov/1975-06-06-31
https://lovdata.no/lov/1975-06-06-31
https://lovdata.no/lov/2009-06-19-100
https://lovdata.no/lov/2009-06-19-100
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uncertainties on the path between population estimates, management actions and harvest 

yields also should be focused on (Milner-Gulland et al. 2010). Research on the difference 

between management strategies and actual harvest, commonly termed ‘implementation 

uncertainty’ (Christensen 1997), is generally rare (Milner-Gulland et al. 2010). Studies of 

implementation uncertainty has often focused on to which extent resource users comply with 

control rules (Bunnefeld, Hoshino & Milner-Gulland 2011). While this is important in many 

systems, other forms of implementation uncertainty may be of greater concern in other 

situations. In management of large carnivores an important aspect of implementation 

uncertainty is when hunters fail to obtain the set quota, hence management targets of removal 

are not met (Bischof et al. 2012). In recreational small game harvest the objective is the 

opposite, i.e. avoiding overexploitation while still providing hunting opportunities to the 

public. To date, most studies on the link between management decisions and actual harvest 

rate do not address the issue of implementation uncertainty, despite being of great importance 

(Deroba & Bence 2008). 

A framework that specifically includes uncertainties is Management Strategy Evaluation 

(MSE), which enables managers to explore outcomes compared to their objectives (Smith, 

Sainsbury & Stevens 1999; Bunnefeld, Hoshino & Milner-Gulland 2011). MSE investigates 

effectiveness for alternative management strategies through simulations, while incorporating 

lack of accurate knowledge (Milner-Gulland et al. 2010). This framework has so far not had 

many applications in terrestrial systems so far, but has proven to be a useful tool in situations 

with lack of precise information of a system (Edwards et al. 2014). Small game harvest is also 

believed to be appropriate for this framework, given the uncertainties in monitoring, 

management, implementation and population dynamics. This may yield a more holistic view 

of the effect of harvest, and will be a valuable tool for exploring different management 

scenarios. An important step in this process is to explore management strategies and 

implementation uncertainty for exploited populations. 

Long term sustainability of the harvested population is a main objective for any harvest 

management strategy. Exploring all parts of an MSE framework, including levels of 

sustainable harvest, is beyond the scope of this study. Here I investigate the path between 

management decisions and harvest, and explore how the implementation uncertainty affects 

the ability to control offtake. I am using willow ptarmigan (Lagopus lagopus L.) as a model 

species for exploring the drivers of small game harvest, seeking to find functions that predict 

the number of bagged birds. Willow ptarmigan is a medium sized tetraonid (Pedersen & 
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Karlsen 2007), and harvest of the species is a highly relevant topic at a Fennoscandian scale. 

It was recently listed as near threatened (NT) in the Norwegian Red List of Endangered 

Species (Henriksen & Hilmo 2015) as a result of a long-term decrease in abundance (Kålås et 

al. 2014; Lehikoinen et al. 2014). Ptarmigan hunting pressure has seen an increase over time 

(Storch 2007), and in some cases harvest rates on willow ptarmigan as high as 50 % have 

been reported (Kastdalen 1992; Smith & Willebrand 1999). As harvest mortality to a large 

extent is additive to natural mortality (Pedersen et al. 2004; Sandercock et al. 2011), 

sustainable harvest management is imperative. 

The data utilised in this study is from state owned hunting areas with a clear ‘common good’ 

strategy. Their harvest regulations are evaluated by exploring the link between management 

decisions and their implementation, and management decisions are assumed to be linked to 

the current population state (primarily willow ptarmigan density). Parameters included for 

analyses are all expected to have a potential impact on harvest, and include population 

estimates (widely assumed to be correlated with harvest, e.g. Cattadori et al. (2003)), different 

harvest limitations and hunting pressure (implicitly assumed to affect harvest), habitat 

structure (as indicated by Pedersen et al. (1999)) and weather (may affect performance or 

effort). The target here is not to identify all possible predictors that might be related to harvest 

bags, but to discover the best model among the selected parameters. Best functions for 

predicting number of bagged birds are further incorporated with their uncertainties into 

simulations, revealing how several common management strategies lead to a varying level of 

harvest at different population estimates. 

A prerequisite for sustainable harvest management is to understand how the management 

strategies affect the actual harvest offtake. The objectives of this study are to explore this by 

1) empirical evaluation of several common harvest regulations and strategies for 

willow ptarmigan in Norway, focusing on i) what was the role of management 

strategies and system parameters in the observed harvest (i.e. number of birds shot 

per km
2
), and ii) how did managers adapt their strategy in relation to population 

changes, 

2) modeling implementation uncertainty under different harvest decision scenarios and 

population states, as part of an MSE framework with estimates from the empirical 

data, by quantifying risk of exploitation above specific harvesting thresholds. 
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Materials and methods 

Study area and period 
I approached all of the 23 management units (MUs) currently registering population estimates 

in a nationwide database (Hønsefuglportalen, http://honsefugl.nina.no; Nilsen, Pedersen and 

Vang (2013)). These 23 MUs together represent a high proportion of the areas offering willow 

ptarmigan hunting of some magnitude. An additional eight MUs involved in a previous study 

(Pedersen & Storaas 2013) were also contacted, but this group were all either non-respondents 

or lacked the required data. 16 MUs provided data for this study, but as the data was initially 

collected for management purposes, not all managers had gathered all types of data. Data was 

collected as anonymised raw data or as partial or complete variable values. For each MU there 

were several points of contact after the first reception of data, to validate data quality and 

collection method and to ensure comparability between data from different areas. National 

regulations limit hunting season from September 10
th

 to February 28
th

 

(https://lovdata.no/forskrift/2012-03-01-190), but MUs usually implement stronger 

restrictions and collect data more extensively in the first month of the season. Also 

considering that most of the birds are bagged in this period (Kastdalen (1992); supported by 

raw data in this study) and the added population estimate uncertainty arising from movements 

of birds between areas later in the season (Brøseth et al. 2005), I analysed data only from the 

early hunting period. Using data from 2008-2015, a total of 42 observations within nine MUs 

were included in the analyses (Appendix Fig. S1), not including two observations removed 

due to outliers (described later). In all areas willow ptarmigan hunting was performed as 

walked-up hunting with shotguns, with or without use of pointing dogs, and none of the areas 

have had extensive predator control or habitat management. Generally it is easier to obtain 

access to hunting opportunities for locals in an area, but the dominant feature in all areas is 

that most hunters are visitors from other municipalities (Wam, Andersen & Pedersen 2013), 

making it likely that hunters are undistinguishable between areas. 

The study areas are of different sizes and parameter values needed to be scaled for this. All 

MUs are located mainly in the northern boreal and alpine bioclimatic zones (Moen 1999). As 

willow ptarmigan only utilise parts of this habitat (Pedersen & Karlsen 2007), suitable areas 

sizes were obtained to reduce an otherwise large bias. All habitat and area size estimations 

were performed in ArcGIS 10.3 (Esri Inc., www.esri.com). Shapefiles for MU borders 

publicly available from The Norwegian Mapping Authorities (http://kartverket.no/Kart/) were 

http://honsefugl.nina.no/
https://lovdata.no/forskrift/2012-03-01-190
http://www.esri.com/
http://kartverket.no/Kart/


6 
 

altered correspondingly to hunting refuges and other area reductions or expansions. Based on 

satellite vegetation maps (Johansen, Aarrestad & Øien 2009), I used a map of bioclimatic 

zones (Blumentrath & Hanssen 2010 after Moen 1999) to remove high and middle alpine 

zones, since willow ptarmigan generally prefer the lower zone (Pedersen & Karlsen 2007). 

The method is an adaption from Gjershaug et al. (2010), who considered willow ptarmigan 

habitat as all lower alpine areas plus forests dominated by birch (Betula pubescens Ehrh.). 

While this definition seems reasonable in a large scale study over a variety of landscapes, 

even more precise estimates could be calculated as the study areas were exclusively in or near 

mountains. By including suitable bogs and other open areas below the lower alpine zone, and 

excluding all lakes and rivers, I obtained an approximation of area sizes reflecting suitable 

habitat for willow ptarmigan (for a complete description of vegetation types in my analysis, 

see Appendix Tab. S1). 

 

Harvest and management strategy data 
Data from MUs was collected primarily by e-mail, with supporting phone calls. I included 

only year by MU combinations that contained all the necessary information (Table 1). 

Number of bagged birds and active hunting days were scaled by the proportion of responding 

hunters (range 0.37-1.00, mean 0.71). The number of sold hunting permits would be expected 

to be important for both harvest offtake and effort. Permits were valid for five or seven days, 

with the exception of a small number of permits sold for ten or fifteen days in two of the 

MUs. Initial data exploration did not indicate differences between these groups large enough 

to raise concerns, and they were not separated for the analyses. In three MUs the number of 

local permits had not been recorded for the early years. In these cases I assumed an equal 

proportion of locals between years and estimated the number of missing permits from the 

years with complete records (9-14 % added). The MUs differ in length of the period they 

distribute hunters during the first month, from 10 to 25 days of ‘early hunting period’. As 

most birds are probably shot in the beginning (Kastdalen 1992), length of prime season might 

affect the total harvest offtake. A related parameter that was considered was the start of the 

hunting season. The MUs either provide hunting opportunities from September 10
th

, or they 

postpone the start with five to ten days (categorised in the analyses as ‘early’ or ‘postponed’ 

start). 



7 
 

Data on the proportion of hunters using pointing dogs is rarely available, but it seems fair to 

assume that this proportion is equal between areas, thus being of less importance here. In all 

the study areas willow ptarmigan was by far the most important hunted small game species 

(based on information from the MUs). Sold permits were generally valid for all small game, 

where other species were mostly a bycatch. Possible bias caused by variations in amount of 

this bycatch is not considered. Quotas were of three types; daily quotas (bag-limits), period 

quotas and two observations with both the previous types simultaneously. I did not include 

quota sizes directly in the harvest analyses because of relatively few observations within each 

quota type and limited amount of variation in period quota sizes. Instead I used total 

allowable catch scaled by area size (TAC) as a function of sold permits and quota sizes. For 

period quotas TAC = number of sold permits × quota size, while for day quotas TAC = 

number of hunting days in sold permits × quota size. For the combination quotas, TAC was 

calculated similarly to period quotas, as this represented the maximum possible catch in these 

two cases. Revealing the impact TAC had on harvest is of major importance, as it 

incorporates the two main strategies managers apply to restrict harvest; restricting effort and 

restricting bag size. 

 

System data 
Estimates of population density for willow ptarmigan were obtained through line transects, 

following distance sampling methods (Thomas et al. 2010). In August each year, volunteer 

personnel used trained pointing dogs to search both sides of the transect line, and recorded 

cluster size and perpendicular distances to observed birds. This procedure has been shown to 

be a suited variation of distance sampling techniques, respecting the assumptions of the 

method (Pedersen et al. 1999). The nationwide database for population estimates (Nilsen, 

Pedersen & Vang 2013) contained raw data from line transects traversed in many of the years 

for my study areas. Missing records were obtained from the MUs, either as spreadsheets or 

the original field forms. Three data entries contained coordinates of observed birds, but 

without a cluster size. Here the minimum possible cluster size (i.e. 1) was entered, assuming 

this alteration affected the results less than deleting the observation. 

Line transects have been positioned by the respective MUs (often in cooperation with research 

institutions), and visual inspection of line placement according to the suitable habitat analyses 

supported an assumption of transects being representative for the terrain. The total data set 
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(n=2885) was analysed in R version 3.2.3 (R Core Team 2015), using the package ‘Distance’ 

(Miller 2015). Each year by management unit (n=42) was analysed separately, as the intention 

here was to provide independent population estimates for each observation. There is notable 

uncertainty in the data, partially a result of number of bird spottings within each management 

unit often bordering the recommended minimum value of 40 to 60 observations (Buckland et 

al. 1993). As there is no fixed line width and some dogs might have searched wider than 

others, I chose to truncate the highest 10 % of observations in each analysis. To avoid 

overfitting models, I used a half-normal detection function for all (assuming a fixed slope of 

the detection curve and only estimating the scale), shown in previous studies to be suitable 

(Pedersen et al. 1999). By this I avoid that model selection is affected by small changes in 

amount of data, which I consider important given the uncertainties. Further, by applying the 

same function and truncation to all models there is high comparability between years and 

MUs. Clusters are defined as the object of interest to avoid dependent observations, and I 

expect no size bias from clusters. The number of chicks per female willow ptarmigan 

(“production”) was calculated from the assumptions of equal sex ratios and that all broods 

consist of two adults, where the exceeding number in the clusters is chicks. An overall mean 

of 8.8 % of suitable terrain was sampled (effective strip width mean = 108 m with coefficient 

of variation (CV) = 12.8 %). One outlier with high density (33.9) was removed because data 

inspection revealed low sampling effort (50 % effort compared to other years in the same 

MU). 

To investigate if there had been variation in hunting success related to how open the 

landscape is, distribution of vegetation features was used as a proxy. The principal idea is that 

suitable open landscape yields more shooting opportunities than forested areas. Reusing the 

satellite vegetation maps (Johansen, Aarrestad & Øien 2009), I calculated the amount of birch 

forest (map categories 6-8, see Tab. S1) within the suitable habitat. As much of these areas are 

in the low alpine zone, the mean proportion of forest habitat was 10.4 % (range 2.9 – 17.2), 

and the rest being bogs, heathland or other open areas. I have no small scale information of 

locations of shot birds, but assume that proportion of forest within suitable habitat gives a 

realistic image of the average hunting terrain. One observation had a very high proportion of 

forest (31.5 %) relative to the others. While this value without doubt is representative for the 

habitat, it has still been removed from the data set because it was the only observation from a 

tenth MU, and had a clear impact on the statistical analyses. 
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Climatic conditions is a potential predictor for the number of days a hunter with a permit 

chose to hunt, and could also have impact on effectiveness because it may affect the 

performance of hunters or dogs. As I was interested in how different weather conditions acted 

on a local scale over a short time span, I used weather variables measured locally, as 

recommended by Frederiksen et al. (2014). Based on data from The Norwegian 

Meteorological Institute (publicly available from http://eklima.met.no), I withdrew daily 

registrations of temperature and precipitation for the time span of the early period length for 

each MU and year. For all areas I chose the closest weather stations providing the requested 

data, on average 2.2 stations (min 1 – max 3) for precipitation and 1.2 stations (1 – 2) for 

temperature (more stations measure precipitation than temperature). Where data from more 

than one station had been used, I took the arithmetic average of the stations around each MU 

to include in the analyses. In total, data from 21 stations with a mean distance of 8.2 km 

(range 3.2 – 21.7) from the MU borders were used (distances analysed with ArcGIS 10.3, 

ESRI Inc.).  

 

Empirical evaluation 
To achieve the study objective of investigating observed harvest related to management 

strategies and system parameters, I chose two paths for analyses (Fig. 1); one where I 

analysed harvest directly with number of bagged birds per km
2
 as response (model 1), and 

another where I analysed harvest as a function of hunting pressure and hunter efficiency 

(model 2). Defining hunting pressure as ‘hunting days per km
2
’ (model 2a) and hunter 

efficiency as ‘bagged birds per hunting day’ (model 2b; commonly known as catch-per-unit-

effort, CPUE), I used the relationship hunting days / km
2
  × bagged birds / hunting days = 

bagged birds / km
2
 to explore an alternative path to actual harvest. All the following analyses 

were performed in R version 3.2.3 (R Core Team 2015). 

There was a likely spatial and temporal dependency in the data set, as the observations are 

repeated counts within the same areas. I checked for dependency by fitting a full model and 

inspecting the residuals versus MUs, then versus years (Zuur et al. 2009). As residuals for 

several MUs and years were completely above or below the zero line, dependency had to be 

accounted for. No obvious sequence was discovered for the dependency, thus temporal 

autocorrelation was not considered. As I wanted to model effect of predictors conditional on 

group characteristics, without wanting to explore the differences between the individual years 

http://eklima.met.no/
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or MUs, I chose to use MU and year as random factors with random intercept only in mixed 

models (package ‘lme4’, Bates et al. (2015)). This procedure takes the dependency into 

account while maintaining models more parsimonious (Bolker 2007). 

As the study areas are very different in size, the number of bagged birds in model 1 needed to 

be scaled for area size. Instead of analysing bagged birds divided by area as a density with 

normal distribution, I used area as an offset to get the response per km
2
 as recommended by 

e.g. Zuur et al. (2009). Similar approaches were done for the other models with count data 

(model 2a with hunting days as response and area size as offset, model 2b with bagged birds 

as response and hunting days as offset). This allows for heterogeneity, and fits the distribution 

of my data. By visual inspection, the data appeared to be in a negative binomial distribution. 

All models were overdispersed if using a Poisson distribution, thus I used negative binomial 

models (Zuur et al. 2009). 

For all candidate models I favoured simplicity, and included a maximum of three predictors 

simultaneously. Only logical candidate models were tested. I modeled number of bagged 

birds per km
2
 (model 1) as functions of TAC, sold permits, quota type, hunting pressure, start 

of hunting season and length of hunting season, and the system predictors density, production, 

temperature, precipitation and habitat structure. TAC and sold permits were scaled by area 

size in all analyses to be modeled as values per km
2
. One logical two-way interaction was 

included; start of hunting season with TAC (if starting the season early TAC may have a 

stronger effect than otherwise). The interaction term was modeled with other predictors one at 

the time, and no three-way interactions were considered in the analyses. Model 2a with 

hunting pressure as response instead of predictor, was modeled with the same predictors as 

model 1, except from habitat structure which is not believed to affect hunting pressure once a 

permit has been bought in a given area. Hunter efficiency in model 2b was modeled as 

functions of the management predictors TAC, quota type and start of hunting season (all 

expected to be relevant for the number of birds bagged per hunter day), and the system 

predictors of the first two models. 

A Pearson correlation of 0.6 between predictors was used as a collinearity threshold. For 

categorical variables correlated predictors were identified through logic and boxplots. Several 

predictors were correlated, including density and production, TAC and quota type, starting 

time with temperature and length of hunting period (later start was often accompanied by 

shorter hunting period), and sold permits with habitat structure. The last correlation implied 
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more permits in more forested areas, possibly a result of managers considering denser areas to 

tolerate higher crowding. In addition, hunting pressure when used as a predictor was 

correlated with TAC and sold permits, which could be expected, and also with quota types. 

All removed predictors were tested again in the best models by replacing the variable it was 

correlated with (Zuur, Ieno & Elphick 2010). Best models were selected using Akaike 

information criterion corrected for small sample sizes (AICc; package ‘AICcmodavg’, 

Mazerolle (2016)) where models with AICc < 2 were considered equal (Akaike 1973; 

Johnson & Omland 2004). 

To explore how different willow ptarmigan densities lead to a response in the TAC set by 

managers, I first performed a Spearman correlation test on density versus TAC on subsets of 

all MUs. Positive correlation values above 0.5 was used as a criterion for a more than random 

positive relation between the parameters. This method implies that MUs that had a low TAC 

in all years without increasing it at higher densities was not included. One MU was ignored 

due to too few observations for an effective correlation test. Visual inspection of paired line 

plots of TAC and density through years confirmed the selection of three MUs in a group that 

adapted their TAC in relation to density estimates, hereby referred to as an adaptive 

management strategy (Walters 1986). The remaining six MUs were categorised as having a 

non-adaptive strategy. These two groups were analysed separately (TAC model, Fig. 1) to 

reveal strength of the relation with density, using linear models with Gaussian error 

distribution and with no random effects warranted. 

 

Simulating harvest rates 
The results from the empirical evaluations were used as estimates with uncertainties in 

simulations of harvest levels under different scenarios, by use of the two structurally different 

pathways between management and implementation models (Fig. 1). As I was not targeting to 

explore the true feedback from the biological system on different harvest levels, I used a 

simplified theta-logistic density dependent population model (E.Nilsen, unpubl.) and 

parametrised it to simulate densities mainly within the range of densities in my study areas. 

Thus, all simulation runs were fitted with a start population equal to the median value in my 

data set (11.5 birds per km
2
), carrying capacity k = 17 to limit the upper tail, intrinsic rate of 

increase rm = 0.6 and theta θ = 0.5 to reflect density dependent growth of a small animal, 

environmental stochasticity 
2
 = 0.02 (Aanes et al 2002) and time frame t = 100. Uncertainty 



12 
 

in the observation model was set according to the median uncertainty from the distance 

sampling analyses, CV = 0.24. All simulations were replicated 10,000 times. 

For the first path, the harvest decision model used the simulated population state from the 

observation model, yielding values for TAC as output. Here, and in all the following models, 

the estimates and standard errors from the empirical analyses (Tab. 2) were used to replicate 

model uncertainty. The relationship between density and TAC for the two groups of 

management strategies were divided in further analyses. For the non-adaptive group, a model 

with only intercept was the best model (i.e. a constant TAC), and three levels of TAC are 

being tested in the simulations. The output from the TAC model was part of the input for the 

first implementation model (1), which was also directly related to the population density 

estimate (Fig. 1). 

In the second path, the empirical analyses showed that one of the predictors for hunting effort 

was the ‘school’ of quota type the management preferred, and there was no clear indication of 

groups with adaptive versus non-adaptive management within different quota types. Visual 

plot inspection suggested that the previously categorised adaptive group differed slightly from 

the non-adaptive group also when looking at sold permits alone, but the intercept-only model 

was better. Because of this I chose to explore harvest offtake at different constant effort 

strategies only, although still assuming that there is some connection between population 

estimates and the management decisions affecting effort (model 2a). Population state was on 

the other hand input for the hunter efficiency model (model 2b), which together with the 

hunting effort model was used to build implementation model 2. Strategies explored 

contained the two main quota types and three representative levels of sold permits per km
2
. 

For both implementation model paths, estimate uncertainties are included in all steps, as there 

is not only uncertainty in the implementation; even if managers decide to set a TAC or effort 

based on a given criteria, this may well be slightly adjusted later as a result of e.g. social 

pressure from hunters. Final output for each observation from the two implementation models 

was the expected harvest in number of willow ptarmigan per km
2
. 

Sandercock et al. (2011) found that harvest of 15 % of the population was at least partially 

compensated by a decrease in natural mortality, while 30 % harvest lead to super-additive 

mortality. Another study showed that willow ptarmigan harvest rates of 20-30 % was 

common in Sweden (Willebrand, Hörnell‐Willebrand & Asmyhr 2011). Based on these 

indications for what might be sustainable, the quantitative output from my simulations were 
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used to estimate the risk of exploitation above harvest rates of 15 and 30 %, for the 

management strategies tested. In addition, different values for uncertainties in the observation 

model and implementation model were applied to investigate robustness to changes in 

population estimate precision, and vulnerability to underestimation of errors in the 

implementation models. 
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Results 
The initial habitat analyses revealed that on average 70.3 % (range 28.3 – 92.3 %) of the MU 

areas are suitable habitat for the species, giving an effective size range of the study areas of 

113.7 to 1058.0 km
2
 (mean 473.4 km

2
). Densities ranged from 4.0 to 24.7 willow ptarmigan 

per km
2
, with mean density 11.8 (mean CV = 24.8 %). Production estimates were between 2.0 

and 6.1 chicks per hen, averaging at 3.5 (mean CV = 14.1 %). 

 

Empirical analyses 
The number of bagged birds per km

2
 (model 1) was modeled as a function of management 

controlled parameters and system variables. Model selection by AICc (Tab. 3) indicated that 

the best model included total allowable catch per km
2
 (TAC) and willow ptarmigan density 

(Tab. 2). Both TAC and density was positively related to number of bagged birds, and the 

combined effects suggest that a low TAC at higher densities gives harvest rates comparable to 

a high TAC at low densities (Fig. 2). The number of bagged birds increased with density in a 

non-linear fashion, indicating that a higher proportion of birds are removed from the area at 

low densities. 

The model selection procedure provided strong support (Tab. 3) for number of sold permits 

per km
2
 and type of quota as predictors of hunting pressure (hunting days per km

2
; model 2a). 

The number of sold (purchased) hunting permits explained much of the variation in hunting 

pressure, but there were also clear differences between quota types (Tab. 2). Daily quotas 

generally resulted in higher hunting pressure than period quotas, when the number of sold 

permits was the same (Fig. 3). Quotas that were combinations of these had an effect in 

between the main types, but no inference should be made from this with only two 

observations with combination quotas in the data set. 

For hunter efficiency (model 2b), two models performed equally well, within AICc = 2 

(Tab. 3). Bagged birds per hunting day could either be modeled as a function of density alone, 

or as density and habitat structure together. For density as sole predictor, hunters clearly 

responded with higher efficiency with increasing density (Tab. 2). The slope of the 

relationship also suggests that hunters were relatively more effective at lower densities, as an 

increase in density was not met with a proportional increase in catch per hunting day (Fig. 4). 

The model with density and habitat structure together, suggests (with notable uncertainty in 
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the estimate) that an increasing proportion of forest in the hunting area reduced the efficiency. 

I chose the most parsimonious model as the sole best model, but acknowledge the fact that the 

other model might be important. Considering also that one observation was removed because 

it was an outlier in the habitat parameter, and that the inclusion of this observation would have 

lowered the estimate errors substantially, I present the alternative model in Appendix Fig. S2. 

The residuals versus fitted values for all the above selected models were in accordance with a 

negative binomial distribution, and the random effects were normally distributed within each 

level. 

The grouping of MUs into categories with either adaptive or non-adaptive management 

strategy, gave two main scenarios for simulating effects of harvest decisions (TAC model). 

For both groups, TAC was modeled as a function of density, to reveal the response of 

managers to different population states. For the adaptive group, the model with density was 

better than the alternative intercept-only model (AICc = 4.22, AICc weight = 0.89, slope ± 

SE: 0.546 ± 0.197, r
2
 = 0.33). For the non-adaptive group it was the other way round, with the 

intercept-only model being better than the model with density included (AICc = 2.23, AICc 

weight = 0.75, intercept ± SE: 8.545 ± 1.294). This implies that for the non-adaptive group I 

defined, the model that best describes the management strategy is a constant TAC where 

density is disregarded. 

 

Simulations 
Exploration of implementation uncertainty in the first pathway from population state to 

harvest (Fig. 1), was performed through simulating harvest rate under four different scenarios; 

the adaptive strategy, using estimates from the empirical analyses, and three scenarios of 

constant TAC. The TAC of the non-adaptive group ranged from 1.2 to 21.2, and the chosen 

scenarios represent the majority within this range with TAC equaling 5, 10 and 15 (SE = 1.5). 

The adaptive strategy had a fairly constant harvest rate (proportion of population harvested) 

along medium and high density values, but this increased notably as densities decreased (Fig. 

5). At 5 birds per km
2
 there was a 41.5 % risk of harvest above the 15 % level (cf. Tab. 4 for 

all means and standard errors). This is comparable to a constant TAC of 5, which, being the 

most conservative of the scenarios, also yielded lower harvest rates at higher densities. A 

TAC of 10, slightly above average in the data, had a 21.7 % risk of harvest above the 15 % 

level at 10 birds per km
2
, but this risk increased to 90.5 % when density dropped to 5 birds per 
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km
2
. For TAC equal 15 harvest rates were generally high, with a 41.8 % risk of harvest above 

the 30 % level at 5 birds per km
2
 and notable risks of harvesting above 15 % also at medium 

and high densities. 

The second pathway to harvest rates involved two main quota types, with three scenarios of 

sold permits per km
2
 within each type. The data ranged from 0.27 to 1.86 permits, but with 

uneven spread, thus most of the data set was represented within scenarios of 0.5, 0.75 and 1.0. 

Day quotas overall gave higher harvest rates (Fig. 6), and even with a modest 0.5 permits per 

km
2
 there was a 31.8 % risk of harvest above the 15 % level at 5 birds per km

2
 (Tab. 5). Risk 

rapidly increased with increasing number of sold day quota permits, and at 1.0 permits harvest 

rates averaged at 15 % at high density and 30 % at 3.9 birds per km
2
. For period quotas with 

1.0 permits sold there was still substantial risk of overshooting the 15 % level at lower 

densities, but the risk was greatly reduced when going down to 0.75 permits per km
2
. 

Comparing the performance of the adaptive TAC model under the low and high 90 % interval 

of the density estimations’ coefficients of variation (CV = 0.15 and 0.38 respectively), 

demonstrated high robustness to observation uncertainty. Increasing the implementation 

models’ uncertainties however, while still giving small differences in harvest rate means, risk 

of harvesting above the tested thresholds was increased. This was especially clear for the 30 

% threshold, where risk of harvest above the level was unproportionately high compared with 

the increase in model uncertainty. This implies that the effect of potential bias not taken into 

account in this study could be severe. 
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Discussion 
Managers use a number of strategies to avoid excessive harvest in small game populations, 

e.g. to limit the number of sold hunting permits, implement quotas or alter the hunting season 

(Kurki & Putaala 2010)). However, without knowledge of the effect of such measures, 

managers have no real control of harvest offtake even if they implement limitations. The 

results from the analyses of harvest data in this study clearly indicated that both density and 

management procedures have to be taken into account when predicting actual harvest. When 

analysing number of bagged birds per km
2
 directly (implementation model 1), the best model 

included both TAC and willow ptarmigan density. As TAC is a function of sold permits and 

quota size, managers may use this knowledge to adjust one or both of these parameters to get 

closer to the desired harvest level. Predicting number of bagged bird per km
2
 under a range of 

densities within different levels of TAC (Fig. 2) suggests that if TAC is set at a high level 

(third quartile in this study; TAC = 11.2), harvest at 5 birds per km
2
 is 59 % higher than if 

TAC was set at a low level (first quartile; TAC = 3.6). However, a great proportion of permits 

for willow ptarmigan hunting in Norway (including in this study) is sold before density 

estimates are obtained in August. This practise leaves less flexibility to the management to 

react to current population states with a change in TAC, and would be assumed to force the 

use of stricter quota regulations. On the other hand, the managers may also ignore the 

predicted increase in harvest, and the lack of flexibility in this situation might have 

contributed to the small number of MUs categorised in this study as managing in an adaptive 

way. 

The modest positive relationship between density and number of bagged birds indicate that 

harvest offtake is more stable when density decrease, than what would be expected if there 

was a linear relationship between density and bagged birds per km
2
. This is in line with the 

findings of Willebrand, Hörnell‐Willebrand and Asmyhr (2011), with only slight differences 

in the model estimates, but not supporting the linear relationship found by Cattadori et al. 

(2003) when log-transforming both response and predictor. Willebrand, Hörnell‐Willebrand 

and Asmyhr (2011) suggested that hunters compensate for few encounters by hunting longer 

days at low densities, and that there may be a saturation effect at higher densities. An 

additional explanation may come from density often being correlated with production (Steen 

& Erikstad 1996), shown as brood sizes in the beginning of the hunting season. A hunter 

encountering two birds together will have a chance of killing both (using a shotgun with two 

shells), but if there were e.g. twelve birds together in a brood, two birds would normally still 
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be the maximum amount of birds killed in a single encounter, but then with a smaller relative 

effect for the harvest rate. 

The second path to exploring implementation uncertainty involved combining the models for 

hunting pressure and hunter efficiency. Hunting pressure affects total bag size (Caro et al. 

2015) and extinction risk (Keane, Brooke & Mcgowan 2005), and needs to be taken into 

account in harvest management strategies. I found that sold permits together with quota type 

best explained hunting pressure, where period quotas yielded the lowest effort. Period quotas 

(interquartile range 5 – 10) in the study areas in most cases provided a lower TAC than day 

quotas (interquartile range 2 – 3). While the possibility to distribute the period quota over 

available days occasionally might have increased offtake, it is a likely assumption that the 

majority of hunters were unable to fulfill their quotas (Bischof et al. 2012; Eriksen, Moa & 

Hagen 2014), regardless of quota type. Still, in cases where the period quotas were fulfilled, 

the successful hunter had to stop hunting regardless of any days left in the permit, thus 

hunting pressure would be limited. However, I propose that the lower hunting pressure related 

with period quotas also had a behavioural basis, where hunters with period quotas might have 

expected to fulfil their quota within the period, thus holding back on the effort to avoid 

fulfilling it too early. Another aspect to consider in quota choice is the hunters’ general 

satisfaction (Wam, Andersen & Pedersen 2013), where hunters seem to prefer quotas for 

longer periods instead of day quotas (Andersen et al. 2014). 

When modeling hunter efficiency, i.e. bagged birds per hunting day, density was the only 

predictor in the most parsimonious model. This relationship is not very different from the 

relationship of density and bagged birds per km
2
, and the effect is comparable here; efficiency 

is higher with decreasing density, relative to the proportion of the population being harvested. 

Similar effects have been found previously, both for willow ptarmigan and in other systems 

(Harley, Myers & Dunn 2001; Post et al. 2002; Hörnell-Willebrand 2005). A maximum 

number of hunting days allowed in an area is a common strategy implemented to limit 

overexploitation (Hörnell-Willebrand 2010), but as hunters are relatively more effective at 

lower densities this method should be used with caution. If managers fail to adjust the allowed 

number of hunting days in accordance with the increased relative efficiency, they face greater 

uncertainty of the actual harvest and risk high harvest levels at low densities. 

The competing model for hunter efficiency indicated that efficiency decreased with an 

increase of forest. This supports the suggestions by (Pedersen et al. 1999), that birds are 
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bagged at a higher rate in open areas than in more forested habitat. The relationship may 

reflect habitat use of willow ptarmigan during early hunting season, or it may be a result of 

better shooting opportunities in open landscape. In my study areas there were generally low 

proportions of birch forest, but as this may be an important aspect for understanding hunter 

efficiency in denser areas, further studies should be done to shed more light on this. The 

weather parameter was expected to be more important than the results show, as poor weather 

could be assumed to affect both effort and harvest success negatively. Either there were no 

relations between weather and these responses, or the way weather was analysed did not 

reveal it. I speculate that by using average values over entire periods, differences that could 

have affected the responses on a day-to-day basis may have been clouded. Another matter that 

might have affected the analyses is the possibility of non-response bias in hunting reports. 

While no such bias is known, the importance for the analyses would be decreased as non-

responders in one area are unlikely to differ from those in others. It is also possible that the 

difference between permits valid for five or seven days may have influenced the results 

slightly, but I have no indication of this happening. A final aspect to consider is the possibility 

of non-compliance with harvest rules, which would have increased harvest compared to my 

findings. Although rule breaking in recreational harvesting has been shown by others (St John 

et al. 2010), the MUs infrequently controlled hunters and information provided for this study 

indicated that cheating is not a major issue. Also considering that quotas were relatively high, 

non-compliance with rules was assumed to be minimal and covered by the model estimate 

errors, thus following the recommendation of Bunnefeld, Hoshino and Milner-Gulland (2011) 

of keeping a simpler framework. If, however, managers wish to quantitatively explore the 

uncertainties arising from hunters not abiding by the rules, a management procedure 

facilitating control measures would be preferred. Period quotas would in this matter require 

suitable systems, while controlling compliance with day quotas is simply a matter of 

inspecting the bag in the terrain. 

The managers reacted in different ways to low population estimates; either they closed the 

hunting terrain (not included in the study, but one of the MUs closed their area in 2015), 

adapted by adjusting sold permits or quota sizes to give a lower harvest, or they did not 

change their procedures in a manner affecting harvest (non-adaptive). Managers make 

adjustments between years to achieve sustainability, but there is a general lack of defined 

goals for sustainable harvest (Andersen 2015), which may explain why many of the MUs 

ended up in the non-adaptive group. Although not part of my study objectives, the current 
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data showed a clear trend of decrease in TAC proportional to abundance through the years 

(see Appendix Fig. S3 for details). The intent here is not to infer on amount of MUs with 

different procedures, but to show the effect on harvest from strategies adapting to density 

levels or not. Also, given that the population model was parametrised to yield a range of 

densities present within the study, the simulations should be seen as predictions of harvest in 

time t, and not as population development in t+i. 

Overexploitation of a harvested species may lead to continued low abundance (Courchamp, 

Clutton-Brock & Grenfell 1999) or in worst case extinctions (Sutherland 2001), and constant 

management strategies are problematic in this aspect (Fryxell et al. 2010). The reasoning 

behind choosing a constant TAC model is assumed to be that managers either believe that 

hunting mortality is compensatory, contrary to a number of studies (Small, Holzwart & Rusch 

1991; Smith & Willebrand 1999; Pedersen et al. 2004; Gibson et al. 2011; Sandercock et al. 

2011), or that they trust hunters to bag less when densities are low. This study strongly 

contradicts the latter aspect, as all competing scenarios gave increased harvest levels at lower 

densities. Harvest rates and risk of harvest above the specified thresholds were always 

substantially increased at low density, even with TAC as low as 5. A further implication for 

the non-adaptive strategies is that even if managers set a low constant quota, there is still a 

need for obtaining population estimates to know when densities are low. The exception would 

be if TAC is set extremely low, implying that both quotas and number of sold permits are 

close to zero, which would compromise satisfaction for hunters and objectives for managers 

(Andersen et al. 2008; Andersen et al. 2010). In the second implementation model path, 

where managers control effort to limit harvest offtake, the general image was not very 

different. Thus, to avoid high harvest rates without knowledge of the population state, 

managers would have to choose very precautionary strategies (Bunnefeld, Hoshino & Milner-

Gulland 2011). Within the quota sizes represented in my data, reducing the number of sold 

permits will lower the risk of high harvest rates by affecting TAC and effort. Setting period 

quotas may give higher hunters satisfaction (Andersen et al. 2014), and will often enable 

managers to sell more permits before reaching the TAC decided upon, than they would with 

day quotas. 

For the adaptive group TAC was increased with increasing density estimates, enabling more 

permits to be sold when there were more birds to hunt. Through the simulations, this strategy 

was shown to give an offtake at a steady rate and with low risk of harvest levels higher that 15 

% from approximately 10 birds per km
2
 and upwards. However, even if the risks of harvesting 
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above the 15 % threshold might have been acceptable to managers at medium densities and 

higher, this strategy also gave a substantially increased harvest when there were few birds to 

hunt. As shown theoretically before (Lande, Sæther & Engen 1997), managers must consider 

the pit-falls of high harvest rates at low densities. A reasonable option given the results of this 

study is implementing proportional threshold strategies (Lande, Sæther & Engen 1997; 

Andersen & Thorstad 2013). This would imply that managers mirror their TAC or effort to 

changes in density, but also that they close the area for hunting when population estimates are 

below a certain limit. 

The adaptive TAC model was the only management model directly related to density, and 

simulations indicated that it was very robust to different observation uncertainties in the 

current data. However, risk of high harvest levels increased notably with increased 

implementation model uncertainty, suggesting that this should be a matter of continued focus. 

More research is recommended to uncover other potential sources of bias and measure their 

effect. 

 

Management implications 
The quantified ecological risks of harvest levels above 15 and 30 % is applicable for informed 

trade-off decisions against economic and social advantages by offering hunting opportunities. 

Although ecological sustainability will supersede the other two in long terms (if the harvest is 

not ecologically sustainable the resource will implicitly not last), manager decisions on short 

terms may be influenced by other factors than population state (McAllister et al. 1999). When 

risk of high harvest rates is substantial, managers defying this risk increase the probability that 

harvest affect population development negatively (Sandercock et al. 2011). This study shows 

that in a small game harvest system where detailed control of actual offtake is connected with 

uncertainty, the proportion of the population being harvested typically increase with 

decreasing density. A consequence of this is that management should not only be based on 

controlling effort or constant relations between total allowable catch and density, but must 

include thresholds for taking the increased proportion into account. The result of inadequate 

management strategies to deal with this is a substantial risk of harvest rates above previous 

indications of sustainable harvest levels (Sandercock et al. 2011; Willebrand, Hörnell‐

Willebrand & Asmyhr 2011). 
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I have shown a method for quantifying implementation uncertainty in small game harvest 

management by using knowledge from empirical evaluations, and suggest this to be evolved 

to further explore adaptive harvest management options. The next step from here is to 

incorporate the method into a full MSE framework for this system, including all known 

sources of uncertainty and investigations of management objectives (Rademeyer, Plagányi & 

Butterworth 2007), to increase the ability of informed decision-making for managers. 
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Tables 
 

Table 1. Parameters used to explore the relationship between harvest, management strategies 

and system characteristics. 

Parameter Description 

Responses 
 

 
Bagged birds per km2 Total number of bagged birds per km2 suitable habitat, scaled by hunter response rate 

 
Hunting pressure (also predictor) Hunting days per km2 suitable habitat, scaled by hunter response rate 

 
Hunter efficiency Number of bagged birds per hunting day, scaled by hunter response rate 

Management decisions 
 

 
Sold permits Number of sold permits per km2 suitable habitat 

 
Length of prime season Number of days hunters are distributed on 

 
Season start Categorical: 1) Season opening September 10th, or 2) postponed (i.e. 5-10 days later) 

 
Quota type Categorical: 1) Day quota, 2) period quota or 3) a combination of the two 

 
Total allowable catch per km2 (TAC) 

Function of 1) number of hunting days in sold permits × daily quota, or  
   2) number of sold permits × period quota, both per km2 suitable habitat 

System characteristics 
 

 
Willow ptarmigan density Estimates from distance sampling line transects 

 
Willow ptarmigan production Number of chicks per female, assuming equal sex ratio and brood sizes > 2 

 
Habitat structure Proportion of highland birch forest in suitable terrain 

 
Precipitation Daily average precipitation (local weather stations) for available hunting days in each area 

 
Temperature Daily average temperature (local weather stations) for available hunting days in each area 
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Table 2. Parameter estimates from the best negative binomial models following AICc model 

selection, with model 1) bagged birds per km
2
, 2a) hunting days per km

2
 (hunting pressure) 

and 2b) bagged birds per hunting day (hunter efficiency) respectively. For the hunter 

efficiency model, both models within AICc = 2 is shown. 

Parameter Estimate (log) SE (log) 

1)   

(Intercept) -0.725 0.189 

Density 0.033 0.008 

TAC 0.061 0.007 

   2a) 
  Quota type (Intercept)* 0.009 0.147 

Quota type: Combination -0.152 0.116 

Quota type: Period -0.428 0.085 

Sold permits 1.128 0.159 

   2b) 
  (Intercept) -1.204 0.169 

Density 0.058 0.010 

   (Intercept) -0.905 0.357 

Density 0.057 0.010 

Habitat -2.653 2.830 

TAC = total allowable catch per km2 
*Quota type (Intercept) represents daily quotas 
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Table 3. AICc model selection tables of top five models and null models from empirical 

analyses, where 1) is models bagged birds per km
2
, 2a) hunting days per km

2
 (hunting 

pressure) and 2b) bagged birds per hunting day (hunter efficiency). 

Model par AICc AICc AICc weight 

1)     

Density + TAC 6 528.86 0.00 0.59 

Density + TAC + Habitat 7 531.68 2.83 0.14 

Density + TAC × S.start 8 532.53 3.68 0.09 

Density + Hunting pressure 6 533.70 4.85 0.05 

Prod. + Quota type + Temp. 8 534.12 5.27 0.04 

Null 4 577.51 48.66 0.00 

     2a) 
    Sold permits + Quota type 7 540.20 0.00 0.89 

Sold permits + TAC 6 545.92 5.72 0.05 

Sold permits + TAC + S.start 7 546.51 6.31 0.04 

Sold permits + TAC × S.start 8 548.38 8.18 0.01 

Sold permits + Precipitation 6 550.94 10.74 0.00 

Null 4 602.11 61.91 0.00 

     

2b)     

Density 5 542.71 0.00 0.36 

Density + Habitat 6 544.63 1.91 0.14 

Density + TAC 6 544.94 2.22 0.12 

Density + Precipitation 6 545.13 2.42 0.11 

Density + Temp. 6 545.45 2.73 0.09 

Null 4 565.40 22.69 0.00 

TAC = total allowable catch per km2, S.start = season start, Prod. = production, 
Temp. = Temperature 
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Table 4. TAC strategy harvest rates. The table shows harvest rate means, and risks of harvest 

rates, above two specified levels (15 and 30 %) for simulated scenarios within the TAC 

strategies (model 1). Means and risks are presented for three levels of willow ptarmigan 

density, where the values are calculated over the range ± 1 of the density level (e.g. 4-6 for 

density 5). 

 
Density 5 ± 1 

 
Density 10 ± 1 

 
Density 15 ± 1 

TAC strategy 
HR Mean 

(SD) 
RHR > 
0.15 

RHR > 
0.30  

HR Mean 
(SD) 

RHR > 
0.15 

RHR > 
0.30  

HR Mean 
(SD) 

RHR > 
0.15 

RHR > 
0.30 

Adaptive TAC 
0.147 

(0.040) 
41.5 % 0.3 % 

 
0.109 

(0.034) 
11.1 % 0.0 % 

 
0.103 

(0.039) 
10.7 % 0.2 % 

Constant, TAC = 5 
0.149 

(0.036) 
43.2 % 0.2 % 

 
0.094 

(0.022) 
1.6 % 0.0 % 

 
0.075 

(0.019) 
0.2 % 0.0 % 

Constant, TAC = 10 
0.211 

(0.052) 
90.5 % 5.9 % 

 
0.128 

(0.031) 
21.7 % 0.0 % 

 
0.102 

(0.026) 
4.7 % 0.0 % 

Constant, TAC = 15 
0.295 

(0.077) 
99.5 % 41.8 % 

 
0.175 

(0.044) 
69.0 % 1.1 % 

 
0.138 

(0.036) 
32.7 % 0.0 % 

HR = Harvest rate, SD = Standard deviation, RHR = simulated risk of harvest rates above specified levels, TAC = total allowable catch per km2 
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Table 5. Effort strategy harvest rates. The table shows harvest rate means, and risks of harvest 

rates, above two specified levels (15 and 30 %) for simulated scenarios within the effort 

strategies (model 2), given the quota sizes in the study. Means and risks are presented for 

three levels of willow ptarmigan density, where the values are calculated over the range ± 1 of 

the density level (e.g. 4-6 for density 5). 

Effort strategy Density 5 ± 1 
 

Density 10 ± 1 
 

Density 15 ± 1 

Quota 
type 

Permits per 
km2 

HR Mean 
(SD) 

RHR > 
0.15 

RHR > 
0.30  

HR Mean 
(SD) 

RHR > 
0.15 

RHR > 
0.30  

HR Mean 
(SD) 

RHR > 
0.15 

RHR > 
0.30 

Day 0.50 
0.137 

(0.035) 
31.8 % 0.1 % 

 
0.098 

(0.026) 
3.8 % 0.0 % 

 
0.088 

(0.025) 
2.0 % 0.0 % 

 
0.75 

0.190 
(0.052) 

77.1 % 3.3 % 
 

0.131 
(0.036) 

26.5 % 0.1 % 
 

0.118 
(0.035) 

16.3 % 0.0 % 

 
1.00 

0.260 
(0.077) 

95.9 % 26.2 % 
 

0.175 
(0.052) 

65.4 % 2.3 % 
 

0.157 
(0.051) 

49.7 % 1.4 % 

Period 0.50 
0.089 

(0.025) 
1.7 % 0.0 % 

 
0.064 

(0.018) 
0.1 % 0.0 % 

 
0.058 

(0.017) 
0.0 % 0.0 % 

 
0.75 

0.118 
(0.033) 

15.9 % 0.0 % 
 

0.085 
(0.025) 

1.6 % 0.0 % 
 

0.077 
(0.024) 

0.9 % 0.0 % 

 
1.00 

0.163 
(0.050) 

54.6 % 1.4 % 
 

0.114 
(0.036) 

14.8 % 0.0 % 
 

0.103 
(0.034) 

8.9 % 0.0 % 

HR = Harvest rate, SD = Standard deviation, RHR = simulated risk of harvest rates above specified levels 
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Figures 
 

 

Figure 1. Schematic structure of two paths between population states and the implementation 

models. Solid lines indicate connections modeled in this study, where implementation model 

1 (bagged birds per km
2
) depended on density and management decisions from the TAC 

models (TAC = total allowable catch per km
2
). Implementation model 2 is a function of 

management decisions of effort from model 2a (hunting pressure, defined as hunting days per 

km
2
) and hunter efficiency from model 2b (defined as bagged birds per hunting day), using 

the relationship hunting days / km
2
  × bagged birds / hunting days = bagged birds / km

2
. The 

TAC models include two groups and their relation to the estimated density. The dashed line 

indicates an assumed connection between estimated density and the management decisions in 

the effort model. 
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Figure 2. Number of bagged birds per km
2
 in relation to willow ptarmigan density and total 

allowable catch per km
2
 (TAC). The relationship is plotted with three selected values 

(representing the first, second and third quartile in the current data set) of TAC as examples, 

to visualise the number of bagged birds at various densities, conditional on a level of TAC. 

The individual observations are included as points for additional information, but as the 

parameters are conditional on the random structure (area and year) in the model, the 

observations cannot directly be interpreted to belong to the nearest prediction line. For 

standard errors, cf. Tab. 2. 
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Figure 3. Hunting days per km
2
 (i.e. hunting effort) as a function of sold hunting permits per 

km
2
 and quota type. The upper line predicts the hunting effort with daily bag-limits, and the 

lower line vice versa with period quotas. The two observations with quotas that are 

combinations of the others are not included in the predictions. For standard errors, cf. Tab. 2. 
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Figure 4. Hunter efficiency, measured as bagged birds per hunting day (commonly referred to 

as catch-per-unit-effort, CPUE) modeled in relation to willow ptarmigan density. Dashed lines 

are 95 % CI. 
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Figure 5. Simulations of four TAC strategy scenarios. The plots show proportion harvested in 

relation to willow ptarmigan density under a) adaptive TAC strategy, where the management 

adjusts total allowable catch per km
2
 (TAC) in relation to the observed density, and three 

constant TAC strategy scenarios; b) constant TAC = 5, c) constant TAC = 10 and d) constant 

TAC= 15. Simulated values (t = 100 with 10,000 replications) are shown in grey. Black line is 

the line for the same simulation without uncertainty in any parameters, representing average 

mean values along the x-axis over an infinite number of simulations. Black crosses indicate 

where the average mean value reaches 15 and 30 % harvest rate levels (where applicable). 
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Figure 6. Simulations of six effort strategy scenarios. The plots show proportion harvested in 

relation to willow ptarmigan density), given the quota sizes in the study, under day quota 

scenarios with a) 0.5, b) 0.75 and c) 1.0 sold permits per km
2
, and period quota scenarios with 

d) 0.5, e) 0.75 and f) 1.0 sold permits per km
2
. Simulated values (t = 100 with 10,000 

replications) are shown in grey. Black line is the line for the same simulation without 

uncertainty in any parameters, representing average mean values along the x-axis over an 

infinite number of simulations. Black crosses indicate where the average mean value reaches 

15 and 30 % harvest rate levels (where applicable). 
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Appendix: Supplementary material 
Table S1. Vegetation types included and excluded in the calculations to obtain area size of 

suitable habitat for willow ptarmigan. The table is adapted from Johansen, Aarrestad and Øien 

(2009) p.34, and the method an adaptation from Gjershaug et al. (2010). After removing all 

areas within high and medium alpine zones with a map of bioclimatic zones (Blumentrath & 

Hanssen 2010), categories 6-10 and 12-21 (filled circles) were included as suitable terrain. 

The open circle represents smaller areas (0.0 - 1.7 % of total) in satellite shadow (or otherwise 

unclassifiable areas). The values within this category were distributed on the other categories, 

proportionally to the amount of the others in each management unit area. The habitat structure 

parameter was calculated as proportion of birch forest (cat. 6-8) in relation to other suitable 

categories. Vegetation types are typically distributed as mosaics in the landscape, and for 

some types only parts of the areas would be suitable (e.g. in the snow-patch vegetation types), 

but removing higher alpine zones is assumed to greatly improve precision. 

Vegetation type Included as suitable terrain 

Forests 
  

1 Coniferous forest, dense canopy layer 

 2 Coniferous and mixed forest, open canopy layer 

 3 Lichen-rich pine forest 

 4 Low herb forest and broad leaved deciduous forest 

 5 Tall herb - tall fern deciduous forest 

 6 Bilberry - low fern birch forest ● 

7 Crowberry birch forest ● 

8 Lichen-rich birch forest ● 

Bogs and swamps 
 

9 Ombrotrophic bog and low-grown lawn vegetation ● 

10 Tall-grown lawn vegetation ● 

11 Wet mires, sedge swamps and reed beds 
 

Open areas in mountains or lowland 
 

12 Exposed alpine ridges, scree and rock complexes ● 

13 Graminoid alpine ridge vegetation ● 

14 Heather-rich alpine ridge vegetation ● 

15 Lichen-rich heatland ● 

16 Heather- and grass-rich early snow patch communities ● 

17 Fresh heather and dwarf-shrub communities ● 

18 Herb-rich meadows ● 

19 Grass and dwarf willow snow-patch vegetation ● 

20 Bryophyte late snow patch vegetation ● 

21 Glacier, snow and wet snow-patch vegetation ● 

Other 
  

22 Water 
 

23 Agricultural areas 
 

24 Cities and built-up areas 
 

25 Unclassified/shadow areas ○ 
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Table S2. Comparison between simulations of base models (adaptive TAC, constant TAC = 

10, day and period quotas with 0.75 sold hunting permits per km
2
) and models where 

implementation model errors have been increased by 20, 50 and 100 % respectively. For the 

adaptive TAC model, comparisons with different levels of uncertainties in the observation 

model is also included (using the outer 90 % interval values of coefficients of variation (CV) 

from the data set, base model CV = 0.24). The table shows harvest rate means, and risks of 

harvest rates, above two specified levels (15 and 30 %) for simulated scenarios, given the 

quota sizes in the study. Means and risks are presented for three levels of willow ptarmigan 

density, where the values are calculated over the range ± 1 of the density level (e.g. 4-6 for 

density 5). 

  
Density 5 ± 1 

 
Density 10 ± 1 

 
Density 15 ± 1 

Strategy 
  

HR Mean (SD) 
RHR > 
0.15 

RHR > 
0.30  

HR Mean 
(SD) 

RHR > 
0.15 

RHR > 
0.30  

HR Mean 
(SD) 

RHR > 
0.15 

RHR > 
0.30 

Adaptive TAC 
           

 
Model 0.147 (0.040) 41.5 % 0.3 % 

 
0.109 (0.034) 11.1 % 0.0 % 

 
0.103 (0.039) 10.7 % 0.2 % 

 
Impl.error × 1.2 0.149 (0.045) 43.2 % 0.6 % 

 
0.110 (0.038) 13.5 % 0.1 % 

 
0.104 (0.043) 12.7 % 0.3 % 

 
Impl.error × 1.5 0.152 (0.054) 43.9 % 1.7 % 

 
0.112 (0.045) 16.9 % 0.4 % 

 
0.107 (0.051) 15.7 % 0.7 % 

 
Impl.error × 2.0 0.159 (0.072) 46.6 % 4.7 % 

 
0.117 (0.060) 22.1 % 1.5 % 

 
0.112 (0.068) 20.4 % 2.1 % 

 
Obs.model 
CV = 0.15 

0.146 (0.039) 40.4 % 0.2 % 
 

0.109 (0.032) 10.4 % 0.0 % 
 

0.103 (0.036) 9.9 % 0.1 % 

 
Obs.model 
CV = 0.38 

0.147 (0.041) 41.5 % 0.4 % 
 

0.110 (0.037) 12.4 % 0.1 % 
 

0.105 (0.045) 12.6 % 0.5 % 

Constant TAC = 10 
           

 
Model 0.211 (0.052) 90.5 % 5.9 % 

 
0.128 (0.031) 21.7 % 0.0 % 

 
0.102 (0.026) 4.7 % 0.0 % 

 
Impl.error × 1.2 0.213 (0.061) 87.0 % 8.6 % 

 
0.129 (0.037) 25.0 % 0.1 % 

 
0.103 (0.031) 7.8 % 0.0 % 

 
Impl.error × 1.5 0.218 (0.075) 83.3 % 13.1 % 

 
0.132 (0.046) 29.2 % 0.5 % 

 
0.105 (0.040) 12.3 % 0.1 % 

 
Impl.error × 2.0 0.228 (0.103) 77.6 % 19.6 % 

 
0.138 (0.064) 33.7 % 2.4 % 

 
0.110 (0.057) 19.1 % 1.0 % 

Day quota, 
0.75 permits/km2            

 
Model 0.190 (0.052) 77.1 % 3.3 % 

 
0.131 (0.036) 26.5 % 0.1 % 

 
0.118 (0.035) 16.3 % 0.0 % 

 
Impl.error × 1.2 0.191 (0.058) 75.2 % 4.7 % 

 
0.132 (0.041) 28.6 % 0.2 % 

 
0.119 (0.040) 19.0 % 0.1 % 

 
Impl.error × 1.5 0.195 (0.067) 72.7 % 7.3 % 

 
0.134 (0.048) 31.1 % 0.6 % 

 
0.121 (0.048) 22.6 % 0.5 % 

 
Impl.error × 2.0 0.201 (0.086) 69.8 % 12.0 % 

 
0.139 (0.063) 34.9 % 2.2 % 

 
0.127 (0.065) 27.9 % 2.1 % 

Period quota 
0.75 permits/km2            

 
Model 0.118 (0.033) 15.9 % 0.0 % 

 
0.085 (0.025) 1.6 % 0.0 % 

 
0.077 (0.024) 0.9 % 0.0 % 

 
Impl.error × 1.2 0.121 (0.037) 19.4 % 0.1 % 

 
0.086 (0.028) 2.7 % 0.0 % 

 
0.078 (0.027) 1.7 % 0.0 % 

 
Impl.error × 1.5 0.123 (0.042) 22.4 % 0.0 % 

 
0.087 (0.032) 4.6 % 0.0 % 

 
0.079 (0.032) 3.4 % 0.0 % 

  Impl.error × 2.0 0.126 (0.055) 26.8 % 1.1 % 
 

0.091 (0.042) 8.6 % 0.2 % 
 

0.083 (0.043) 7.3 % 0.2 % 

 HR = Harvest rate, SD = Standard deviation, RHR = simulated risk of harvest rates above specified levels, TAC = total allowable catch per km2 
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Figure S1. Map showing the spatial distribution of study areas (dark polygons) in Central and 

South Norway, and the frequency of observations in the different years of the study period (n 

= 42). Generally there has been an increase in the number of management units (MUs) 

collecting harvest data. The lower number of observations again in 2015 is a result of one MU 

being closed for hunting and several others not finishing the data collection from hunters in 

time for this study. 

 

 

  



44 
 

 

Figure S2. Hunter efficiency, measured as bagged birds per hunting day (commonly known 

as catch-per-unit-effort, CPUE), modeled as a function of density and proportion of forest in 

hunting grounds. The solid prediction lines for three fixed example levels of density (first, 

second and third quartile of the data set), show a decreasing hunter efficiency with increasing 

proportion of forest. These predictions and the observations (circles) are from the data set 

used in all other analyses. The asterisk is the previously removed outlier, and the dashed line 

shows the prediction line for the low density level with the habitat outlier included. 
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Figure S3. Decrease in TAC proportional to estimated abundance over the study period. Solid 

line is a regression line through the observation, dashed line indicates the logical limit for 

what might actually be shot, i.e. 100 % of the population. Average proportional TAC = 82 %. 

 

 

 


