enting author:

Floris.vanbeest@hihm.nd

Floris M. van Beest

# Diversionary Feeding Stations for Moose in Southern Norway

Floris M. van Beest<sup>1,2</sup> Hege Gundersen<sup>2</sup> Karen Marie Mathisen<sup>1,3</sup> Jos M. Milner<sup>1</sup> & Christina Skarpe<sup>1</sup>

<sup>1</sup> Faculty of Forestry and Wildlife Management, Hedmark University College, Evenstad, Norway

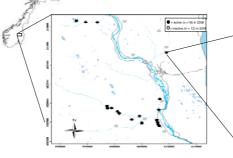
<sup>2</sup> Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Norway

<sup>3</sup> Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden

# Background

Browsing ungulates provided with supplemental feed create a gradient in browsing pressure which is typically greatest near the feeding station and decreases as a function of distance from it<sup>1</sup>, but how browsing pressure changes over time is currently unknown. Moreover, high browsing pressure by moose (*Alces alces*) may have indirect effects on ecosystem functioning<sup>2</sup>.

## Methods


We quantified spatiotemporal changes in browsing pressure of moose on commercial and non-commercial tree species around 30 feeding stations (Fig. 1) after 5-10 years and 15-20 years of winter feeding. Browsing pressure was analyzed as a function of distance from feeding station using GAMM.

# Results

Despite 2-3 fold higher faecal pellet group numbers in the vicinity of feeding stations after 15-20 years of feeding, leader stem and lateral twig browsing within 200 m of feeding stations increased only on the commercially valuable Norway spruce (*Picea abies*), a species normally avoided by moose (Figs 2 & 3). Furthermore, leader stem browsing was high up to 1 km from feeding stations for most tree species (~60%) and did not decrease with increasing distance.

## Discussion

Our study indicates that as winter feeding continues over time, there is an increased risk of excessive browsing close to feeding stations which may lead to fine-scale resource depletion. Moreover, browsing remained high up to 1 km from feeding stations which can have important economic implications<sup>3</sup> and may negatively impact biodiversity in unproductive boreal forests<sup>4,5</sup>.





### Figure 1

Map of the study area showing the spatial distribution of feeding stations (n = 30).



## Figure 2

Mean and predicted proportion of species-specific leader stems browsed by moose up to 200 m from feeding stations in 1998 (5-10 years of feeding) and 2008 (15-20 years of feeding). Leader stem browsing on RAW species (Rowan, Aspen & Willow) and birch species (Silver & Downy birch) was not recorded in 1998.

### Figure 3

Mean and predicted proportion of species specific lateral twigs browsed by moose up to 200 m from feeding stations in 1998 (5-10 years of feeding) and 2008 (15-20 years of feeding). Lateral twig browsing on Norway spruce was absent in 1998.

This study was funded by



#### References:

<sup>1</sup> Gundersen, H. et al. (2004) Supplemental feeding of migratory moose Alces alces: forest damage at two spatial scales. Wildlife Biology, **10**, 213-223.
<sup>2</sup> Persson, I. L., et al. (2007) Browse biomass production and regrowth capacity after biomass loss in deciduous and conilerous trees: responses to moose browsing along a productivity gradient. Olkos, **116**, 1639-1650

<sup>4</sup> Suominen, O. et al. (2008) Impact of simulated moose densities on abundance and richness of vegetation, herbivorous and predatory arthropods along a productivity gradient. *Ecography*, **31**, 636-645.

<sup>5</sup> Pedersen, S. et al. (2007) Moose winter browsing affects the breeding success of great tits. *Ecoscience*, **14**, 499-506.

<sup>&</sup>lt;sup>3</sup> Ward, A. I. et al. (2004) Modelling the cost of roe deer browsing damage to forestry. *Forest Ecology and Managment*, **191**, 301-310