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ON BOUNDS OF HOMOLOGICAL DIMENSIONS
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Abstract. Let A be a Nakayama algebra with n simple modules and a sim-
ple module S of even projective dimension. Choose m minimal such that a
simple A-module with projective dimension 2m exists. Then we show that
the global dimension of A is bounded by n + m − 1. This gives a combined
generalisation of results of Gustafson [J. Algebra 97 (1985), pp. 14–16] and
Madsen [Projective dimensions and Nakayama algebras, Amer. Math. Soc.,
Providence, RI, 2005]. In [Comm. Algebra 22 (1994), pp. 1271–1280], Brown
proved that the global dimension of quasi-hereditary Nakayama algebras with
n simple modules is bounded by n. Using our result on the bounds of global
dimensions of Nakayama algebras, we give a short new proof of this result
and generalise Brown’s result from quasi-hereditary to standardly stratified
Nakayama algebras, where the global dimension is replaced with the finitistic
dimension.

Introduction

We always assume that our algebras are finite dimensional over a field K and
furthermore they are connected and nonsemisimple if nothing is stated otherwise.
We assume that all modules are finite-dimensional right modules if nothing is stated
otherwise. Nakayama algebras are defined as algebras such that every indecompos-
able projective left or right module is uniserial. See for example the books [ARS],
[SY], and [Zim] for sections on the basics and importance of Nakayama algebras.

In [Gus], Gustafson showed that a Nakayama algebra with n simple modules and
finite global dimension has global dimension at most 2n− 2, and in [Mad], Madsen
showed that a Nakayama algebra has finite global dimension if and only if it has a
simple module of even projective dimension. We combine and generalise those two
results to the following, which is our first main result.

Theorem A. Let A be a Nakayama algebra with n simple modules and with a
simple module of even projective dimension. Choose m minimal such that a simple
A-module has projective dimension equal to 2m. Then the global dimension of A
is bounded by n+m− 1.

In forthcoming work we discuss whether the bounds n+m−1 are optimal and at-
tained, where we discover a connection with the classification of Nakayama algebras
that are higher Auslander algebras. Recall that the finitistic dimension findim(A)
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of an algebra A is defined as the supremum of all projective dimensions of modules
having finite projective dimension. It is one of the most famous conjectures in the
representation theory of finite-dimensional algebras that the finitistic dimension is
always finite.

In [Bro], Brown showed that the global dimension of quasi-hereditary Nakayama
algebras with n simple modules is bounded by n. Standardly stratified algebras were
introduced as a generalisation of quasi-hereditary algebras. Indeed, it was proven
in [AHLU] that a standardly stratified algebra is quasi-hereditary if and only if it
has finite global dimension. In recent years there was much interest in equalities
and inequalities for the finitistic dimension of standardly stratified algebras; see for
example [MO], [AHLU2], [Mar2], and [Maz].

We prove our second main result for standardly stratified Nakayama algebras.

Theorem B. Let A be a standardly stratified Nakayama algebra with n simple
modules. Then findim(A) ≤ n.

The proof uses our first main result on the bounds of the global dimension to
give a short proof for quasi-hereditary Nakayama algebras. We then classify the
standardly stratified Nakayama algebras of infinite global dimension and look at
their finitistic dimension to obtain our second main result. We remark that a proof
of Proposition 3.2 was also obtained by Aaron Chan with more elementary methods.

1. Preliminaries

1.1. General preliminaries. Throughout A is a finite-dimensional, nonsemisim-
ple, and connected algebra over a field K. We always work with finite-dimensional
right modules, if not stated otherwise. We denote by mod-A the category of finite-
dimensional right A-modules and J denotes the Jacobson radical of an algebra A.
As usual, D := HomK(−,K) denotes the K-duality of an algebra A over the field
K. For background on representation theory of finite-dimensional algebras and
their homological algebra, we refer to [ARS] and [SY].

An algebra is called basic in case the regular module does not contain a projec-
tive module of the form P 2 as a direct summand for an indecomposable projective
module P . Every algebra is Morita equivalent to a basic algebra and we thus as-
sume that all our algebras are basic if nothing is stated otherwise. Note that all
the homological notions in this text are invariant under Morita equivalence and
thus it is no restriction on the generality of our results to assume that our algebras
are basic. For a fixed set of primitive orthogonal idempotents e1, e2, . . . , en with
1 = e1 + e2 + · · · + en, we denote by Si = eiA/eiJ , Pi = eiA, and Ii = D(Aei)
the simple, indecomposable projective, and indecomposable injective modules, re-
spectively, corresponding to the primitive idempotent ei, for 1 ≤ i ≤ n. The global
dimension is defined as the supremum of all projective dimensions of modules.
Thus the global dimension coincides with the finitistic dimension in case the global
dimension is finite.

An algebra A is called a Nakayama algebra in case every indecomposable left
or right module is uniserial. We refer to [AF] and [SY] for results on Nakayama
algebras which we collect in the following without proof. A Nakayama algebra
either has no simple projective module or it has a unique simple projective module.
In the last case the algebra is triangular and hence the global dimension is bounded
by n − 1. If the Nakayama algebra is not triangular and has n simple modules, it
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is possible to order the primitive idempotents such that there are projective covers

ei+1A → eiJ,

for 1 ≤ i ≤ n− 1, and a projective cover

e1A → enJ.

Fix such an order e1, e2, . . . , en of primitive orthogonal idempotents. This order
is uniquely defined up to a cyclic permutation. We also have τ (Si) ∼= Si+1, for
1 ≤ i ≤ n−1, and τ (Sn) ∼= S1, where τ denotes the Aulander–Reiten translate. The
Nakayama algebra A is uniquely determined by the length ci of the indecomposable
projective modules eiA. The sequence [c1, c2, . . . , cn] is called the Kupisch series
for A. One can show that ci+1 ≥ ci − 1, for all 1 ≤ i ≤ n − 1, and c1 ≥ cn − 1.
Conversely, any sequence of integers greater than or equal to 2 satisfying those
requirements is the Kupisch series for some Nakayama algebra. We look at the
indices i of the ci modulo n so that ci is defined for all i ∈ Z. A Nakayama algebra
is self-injective if and only if its Kupisch series is constant. In case the algebra is
not self-injective, then after a cyclic reordering of the indices one can always get
c1 = cn − 1 with c1 minimal among the ci. Every indecomposable module of a
Nakayama algebra is isomorphic to a module of the form eiA/eiJ

k. For explicit
calculations of minimal projective resolutions or injective coresolutions in Nakayama
algebras, see for example [Mar].

The following lemma is a direct consequence of the classification of Nakayama
algebras by their diagrams; see Chapter 10.3 of [DK] (note that in this textbook
Nakayama algebras are called serial algebras). In Theorem 10.3.1 of [DK] it is
proven that the diagram of a Nakayama algebra is either a directed line or a directed
cycle.

Lemma 1.1. Let A be a connected Nakayama algebra having no simple projective
module, and let e ∈ A be a primitive idempotent. Then A/AeA is a connected
Nakayama algebra of finite global dimension. The algebra eAe is also a connected
Nakayama algebra which is semisimple if and only if the length of eA as an A-
module is less than or equal to n. If the algebra eAe is not semisimple, then A/AeA
is hereditary.

1.2. Preliminaries on standardly stratified algebras. See [DR] for an intro-
duction to quasi-hereditary algebras and [Rei], [ADL], and [FM] for the basics
of standardly stratified algebras. We just briefly recall the most important def-
initions. Let (A,E) be an algebra together with an ordered complete sequence
of primitive orthogonal idempotents E = (e1, e2, . . . , en). Then the sequence of
standard right A-modules is defined by Δ = (Δ(1), . . . ,Δ(n)), where Δ(i) =
eiA/eiJ(ei+1 + ei+2 + · · · + en)A for 1 ≤ i ≤ n with Δ(n) = enA. The sequence
of proper standard right A-modules Δ̄ is defined by Δ̄ = (Δ̄(1), . . . , Δ̄(n)), where
Δ̄(i) = eiA/eiJ(ei + ei+1 + · · · + en)A for 1 ≤ i ≤ n. Dually, one can define left
standard modules Δo(i) and left proper standard modules Δ̄o(i). The costandard
modules ∇(i) and proper costandard modules ∇̄(i) are then defined as the modules
D(Δo(i)) and D(Δ̄o(i)). For a set of modules C, let F(C) be the full subcategory of
mod-A of all modules M with a filtration 0 ⊆ Ms ⊆ · · · ⊆ M1 = M , such that every
subquotient is isomorphic to an object in C. A module is called proper standardly
filtered in case M ∈ F(Δ̄) with Δ̄ := {Δ̄(1), . . . , Δ̄(n)}. The algebra A is called
standardly stratified in case A ∈ F(Δ̄). In view of [AHLU, Theorem 2.4], we define
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A to be quasi-hereditary, in case it is standardly stratified and has finite global
dimension. In case A and Aop are both standardly stratified, then A is called prop-
erly stratified (here we use a characterisation of properly stratified algebras found
in [Rei] after Theorem 3.6).

We remark that if a Nakayama algebra is standardly stratified, the order of
primitive idempotents defining the Kupisch series does not have to coincide with
the sequence E defining the standardly stratified structure.

The next proposition collects several results from the literature that we will need
in this article.

Proposition 1.2. Let A be a finite-dimensional algebra.

(1) Let e be a primitive idempotent of an algebra A such that AeA is projective
as a right A-module. In case an A-module M has finite projective dimen-
sion, then the eAe-module Me is projective.

(2) Let A be a standardly stratified algebra. Then AenA is projective as a right
A-module, and A/AenA is again standardly stratified.

(3) A Nakayama algebra with no simple projective module is quasi-hereditary
if and only if there is a simple module of projective dimension equal to 2.

(4) Let e be an idempotent such that AeA is projective as a right A-module,
and let X be an A/AeA-module. Then pdA(X) ≤ pdA/AeA(X) + 1.

(5) Let e be an idempotent such that AeA is projective as a right A-module and
the algebra eAe is semisimple. Then gldim(A) ≤ gldim(A/AeA) + 2.

(6) Let e be a primitive idempotent such that AeA is projective as a right A-
module. Suppose A/AeA has finitistic dimension equal to k. Then A has
finitistic dimension at most k + 2.

Proof.

(1) See [AHLU2, Lemma 2.4].
(2) See the part above Proposition 1.1 in [AHLU2].
(3) This is part of Proposition 3.1 of [UY].
(4) This is a special case of Lemma 5.8 of [APT].
(5) This is a special case of Theorem 5.4 of [APT].
(6) See [AHLU2, Theorem 2.2].

�

2. Upper bounds of the global dimension for Nakayama algebras

In this section A will always denote a Nakayama algebra.
Suppose A has no simple projective module. Let S denote a complete set of

representatives of the isomorphism classes of simple A-modules. Following [Mad],
we define a function ψ : S → S by ψ(S) ∼= (τ−1)w(S)S, where w(S) is the length
of the injective envelope of S, for each S ∈ S. We say that S ∈ S is ψ-regular if
ψr(S) = S for some r ≥ 1. Dual definitions were earlier considered in [Gus].

In [Mad] we find the following criteria for finite global dimension.

Theorem 2.1 ([Mad, Theorem 3.3]). Let A be a Nakayama algebra having no
simple projective module. The following are equivalent.

(a) A has finite global dimension.
(b) The set of ψ-regular simple A-modules is exactly the set of simple A-modules

with even projective dimension, and ψ is a cyclic permutation on this set.
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(c) There is a simple A-module with even projective dimension.

Denote by Sψ ⊆ S the set of ψ-regular simple A-modules.

Theorem 2.2. Let A be a Nakayama algebra with n simple modules and with a
simple module of even projective dimension. Choose m minimal such that a simple
A-module has projective dimension equal to 2m. Then the global dimension of A is
bounded by n+m− 1.

Proof. If m = 0, then A is triangular and the global dimension is bounded by n−1.
Suppose m > 0. By Theorem 2.1, the global dimension of A is finite. We have

gldimA = max
S∈S

id(S) = max
S∈S

pd(S)

and also

gldimA ≤ max
S∈Sψ

pd(S) + 1.

This inequality follows from Theorem 2.1 and the fact that if the global dimension
of A is g, then there exist a simple module of projective dimension g and a simple
module of projective dimension g − 1.

Let d be the number of simple A-modules that are not ψ-regular. Then for any
S ∈ S we have that ψd(S) is ψ-regular, and hence by dualising the main argument
from [Gus] we get id(S) ≤ 2d. So

gldimA ≤ 2d.

Let S′ be a simple module with pd(S′) = 2m. Then

Sψ = {S′, ψ(S′), . . . , ψn−d−1(S′)}.

It follows from repeated use of [Mad, Proposition 3.2(b)] that maxS∈Sψ pd(S) ≤
2m+ 2(n− d− 1) = 2m+ 2n− 2d− 2. Hence

gldimA ≤ 2m+ 2n− 2d− 1.

Adding the two inequalities together, we get

2 · gldimA ≤ 2m+ 2n− 1.

Since gldimA must be an integer, we conclude that

gldimA ≤ m+ n− 1. �

We will discuss whether the bounds n + m − 1 for given m are attained in
forthcoming work, where this is related to the classification of higher Auslander
algebras with high global dimension inside the class of Nakayama algebras. We just
give one example for m = 1.

Example 2.3. Let A be the Nakayama algebra with Kupisch series [2, 2, 2, . . . , 2, 3],
which has n simple modules and all but one indecomposable projective module
have length 2. Then the simple module Si has projective dimension n − i + 1, for
1 ≤ i ≤ n, and hence the global dimension is n. The simple module Sn−1 has
projective dimension 2, and thus m = 1. As a consequence, the bound n +m − 1
is attained in case m = 1.
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3. Standardly stratified Nakayama algebras

and their finitistic dimension

This section gives bounds on the finitistic dimension of standardly stratified
Nakayama algebras. We can assume that all algebras involved are not self-injective
as the next lemma shows. We note that the next lemma is a generalisation of the
main result in [AC], where the authors proved the same result with the additional
assumption that A is a Nakayama algebra. We note that it seems that the authors
in [AC] forgot to look at the local case, but their argument works with nearly the
same proof in the general case.

Lemma 3.1. Let A be a self-injective algebra. Then A is standardly stratified if
and only if A is local. A is never quasi-hereditary.

Proof. Since the first syzygy Ω1 is an equivalence on the stable module category
mod-A (see for example section IV.8 in [SY]), every indecomposable nonprojective
module M has infinite projective dimension. But every standard module Δ(i),
1 ≤ i ≤ n, has finite projective dimension by Proposition 1.3 of [PR], and thus
every Δ(i) is projective and hence also injective because A is self-injective. By the
definition of standard modules, Δ(i) = eiA/(eiJεi+1A) with εi+1 := ei+1 + ei+2 +
· · ·+ en. Thus Δ(i) = eiA/(eiJεi+1A) is projective for every 1 ≤ i ≤ n if and only
if (eiJεi+1A) = 0 for every 1 ≤ i ≤ n.

Assume the algebra has at least two simple modules and take i = 1. Then the
condition (e1Jε2A) = 0 together with our assumption that A is connected implies
that e1Jei = 0 for all i > 1 and that there is a j > 1 with ejJe1 	= 0. Now this
implies that e1A has socle isomorphic to the socle of D(Ae1) and also ejA has socle
isomorphic to the socle of D(Ae1). (Here the socle of indecomposable projective
modules in a self-injective algebra is simple.) This is a contradiction, since a basic al-
gebra is self-injective if and only if there is a permutation π : {1, . . . , n} → {1, . . . , n}
such that soc(eiA) ∼= top(eπ(i)A) for all 1 ≤ i ≤ n. Thus A has to be local.

On the other hand, assume now that A is local and self-injective with simple
module S. Then Δ̄(1) = S and thus it is trivial that A is Δ̄-filtered, since there
is a unique simple module S. This implies that A is standardly stratified. As a
self-injective algebra, A always has infinite global dimension and can thus never
be quasi-hereditary. (Recall that we do assume that A is not semisimple in our
article.) �

Since local Nakayama algebras are self-injective and local algebras in any case
are of finitistic dimension 0, we assume from now on that our algebras have at least
two simple modules.

Proposition 3.2. Let A be a connected Nakayama algebra having no simple projec-
tive module and having at least two simple modules. Let A be standardly stratified
but not quasi-hereditary, and assume that A is not self-injective. Then there is a
simple module of infinite projective dimension, and all other simple modules have
projective dimension equal to 1.

Proof. Let n denote the number of simple A-modules and assume that A is stan-
dardly stratified. Let e1, e2, . . . , en be an ordering of the primitive idempotents for
A to be standardly stratified. By definition Δ̄(n) = enA/enJenA and Δ(n) = enA.
By Proposition 1.2(2), we have that AenA is projective. Since A is a Nakayama
algebra, we have enJenA = yA for an element y ∈ enJen \ enJ

n+1en (which is
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unique up to multiplication by a field element), and thus Δ̄(n) = enA/yA. We now
look at two cases.

Case 1. Assume Δ̄(n) = Δ(n), which is equivalent to enA/yA = enA or yA = 0.
This shows that enJen = 0, and hence the algebra enAen is semisimple. We can
apply Proposition 1.2(5) and Lemma 1.1 to see that A has finite global dimension
and thus is quasi-hereditary.

Case 2. Now assume that Δ̄(n) 	= Δ(n), which is equivalent to yA 	= 0. We show
that in this case the simple module Sn has infinite projective dimension. Since
enyen 	= 0, we have that the local algebra enAen is not semisimple and thus a self-
injective Nakayama algebra, since for any Nakayama algebra A, eAe is a Nakayama
algebra again for any idempotent e. Let M := Sn, and use Proposition 1.2(1) to see
that M has infinite projective dimension, or else the simple module Men would be
projective over the local self-injective connected algebra enAen, which is impossible.
By Lemma 1.1, the algebra A/AenA is hereditary. Now Proposition 1.2(4) gives
that every simple A-module Si not isomorphic to Sn has projective dimension at
most 2. But such an Si cannot have projective dimension 0 by assumption on A
and not projective dimension 2 since then A would be quasi-hereditary and thus
have finite global dimension. So all simple A-modules except Sn have projective
dimension 1, and this proves the proposition. �

The following proposition gives the possible Kupisch series for Nakayama alge-
bras that are standardly stratified but not quasi-hereditary.

Proposition 3.3. Let A be a (nonself-injective) Nakayama algebra with n simple
modules and a simple module of infinite projective dimension and all other simple
modules of projective dimension 1. Then the Kupisch series of A is of the form

[k + qn, k + n− 1 + qn, k + n− 2 + qn, k + n− 3 + qn, . . . , k + 2 + qn, k + 1 + qn],

where 2 ≤ k ≤ n and q ≥ 1, or k = n+ 1 and q ≥ 0.

Proof. Note that in a Nakayama algebra the simple module Si = eiA/eiJ has
projective dimension 1 if and only if eiJ is projective if and only if eiJ ∼= ei+1A if
and only if ci − 1 = ci+1 in the Kupisch series [c1, c2, . . . , cn] of A. Since A has all
but one simple module of projective dimension 1, the Kupisch series of A has the
form [x, x+n−1, x+n−2, x+n−3, . . . , x+1]. Thus we can write the Kupisch series
as stated. In case q ≥ 1 or k ≥ n + 1, the Loewy length of the algebra is at least
2n, and thus the algebra has infinite global dimension by [Gus] or alternatively by
showing that in this case the first simple module has infinite projective dimension.
In case q = 0 and k ≤ n, the first simple module has projective dimension 2, and
thus the algebra is quasi-hereditary by Proposition 1.2(3). �

We give a corollary of the previous proposition.

Corollary 3.4. Let A be a standardly stratified Nakayama algebra. Then A is even
properly stratified.

Proof. The result is clear in case A is quasi-hereditary or self-injective, since the
opposite algebra of a quasi-hereditary algebra is again quasi-hereditary in general
and the opposite algebra of a local self-injective Nakayama algebra is again a local
selfinjective Nakayama algebra. Now assume that A is standardly stratified with
infinite global dimension and not self-injective. Assume A has n simple modules.
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By Proposition 3.3, the Kupisch series of A is of the form [c, c + n − 1, c + n −
2, . . . , c+ 1] for some natural number c ≥ 2. By Exercise 1 of Chapter 32 of [AF],
the Kupisch series [d1, d2, . . . , dn] of the opposite algebra of a Nakayama algebra
with Kupisch series [c1, c2, . . . , cn] has the property that the di are a permutation of
the ci. As explained in the preliminaries we can assume that in a general Kupisch
series we have cn = c1 + 1 with c1 minimal among the ci and ci+1 ≥ ci − 1. Those
conditions, together with the fact that the Kupisch series of the opposite algebra
is a permutation of the Kupisch series of A, force that the Kupisch series of the
opposite algebra of A coincides with the Kupisch series of A. Thus A is isomorphic
to its opposite algebra and the result is clear. �

The next proposition shows that any Nakayama algebra with a Kupisch series as
in Proposition 3.3 is indeed standardly stratified. Thus this gives a classification of
the standardly stratified Nakayama algebras that are not quasi-hereditary. Since it
is elementary to decide whether a Nakayama algebra with a given Kupisch series
is standardly stratified or not and since we do not need the result in the following,
we leave the proof of the next proposition to the interested reader.

Proposition 3.5. Let A be a Nakayama algebra with a Kupisch series as in Propo-
sition 3.3. Then A is standardly stratified.

We can now give a proof of our second main result.

Theorem 3.6. Let A be a Nakayama algebra with n simple modules that is stan-
dardly stratified. Then findimA ≤ n. If A is not quasi-hereditary, then findimA ≤
2.

Proof.

Case 1 (Quasi-hereditary case). If a Nakayama algebra has a simple projective
module, then it is triangular and hence its global dimension is bounded by n− 1.

By Proposition 1.2(3), we know that a Nakayama algebra having no simple
projective module is quasi-hereditary if and only if there exists a simple module
of projective dimension equal to 2. By Theorem 2.2, this implies that the global
dimension, which is equal to the finitistic dimension, is bounded by n+ 1− 1 = n.

Case 2 (Infinite global dimension case). Now assume that our algebras are stan-
dardly stratified with infinite global dimension. Clearly, the result is trivial in the
self-injective case, since self-injective algebras have finitistic dimension equal to 0.

Now assume that the algebras are additionally nonself-injective. Then we use
Proposition 3.3 to calculate the finitistic dimension of those algebras. Assume that
the algebra has at least two simple modules. Let e be a primitive idempotent
such that AeA is projective. In Proposition 3.3 we saw that each indecomposable
projective module has length at least n + 1, so eAe is not semisimple by Lemma
1.1. Also by Lemma 1.1, the algebra A/AeA is hereditary. Thus by Proposition
1.2(6), the finitistic dimension of A is at most 3.

Let M be an A-module with pd(M) = 3. From Proposition 2.2(a) in [Mad] it
follows that all simple composition factors of M have odd projective dimension, so
they all have projective dimension 1 by Proposition 3.2. But a module cannot have
larger projective dimension than the maximum pd of its composition factors, and
we reach a contradiction. So in the infinite global dimension case findimA ≤ 2.

�
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Example 3.7. Let n ≥ 2. This example shows that the bounds in the previous the-
orem are optimal. First note that the algebra in Example 2.3 is a quasi-hereditary
algebra with n simple modules and global dimension n. Thus the finitistic dimen-
sion is equal to the global dimension since the global dimension is finite. This shows
that the bound n for the finitistic dimension is optimal. The Nakayama algebra
with Kupisch series [4, 5] is standardly stratified with infinite global dimension.
The unique indecomposable injective nonprojective module has projective dimen-
sion 2. Thus the bound 2 for finitistic dimensions of standardly stratified Nakayama
algebras with infinite global dimension is also optimal.
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