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Abstract: Recently, M. Bouafoa, et al. [5] (Journal of optimization Theory and Appli-

cations, August, 2016),investigated a new kernel function which differs from the self-regular

kernel functions. The kernel function has a trigonometric Barrier Term. In this paper we

generalize the analysis presented in the above paper for Semidefinit Optimization Problems

(SDO). It is shown that the interior-point methods based on this function for large-update

methods, the iteration bound is improved significantly. For small-update interior point meth-

ods the iteration bound is the best currently known bound for primal-dual interior point

methods. The analysis for SDO deviates significantly from the analysis for linear optimiza-

tion. Several new tools and techniques are derived in this paper.

AMS Subject Classification: 90C22, 90C31

Key Words: interior-point, kernel function, primal-dual method semidefinite optimization,

large update, small update

1. Introduction

We consider the standard semidefinite optimization problem (SDO)

(SDP ) p∗ = inf
X

{Tr(CX) : Tr(AiX) = bi(1 ≤ i ≤ m),X � 0} ,

and its dual problem (SDD)
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(SDD) d∗ = sup
y,S

{
bT y :

m∑

i=1

yiAi + S = C,S � 0

}
,

where C and Ai are symmetric n × n matrices, b, y ∈ Rm, and X � 0 means
that X is symmetric positive semidefinite and Tr(A) denotes the trace of A (i.e.,
the sum of its diagonal elements). Without loss of generality the matrices Ai
are assumed to be linearly independent. Recall that for any two n×n matrices,
A and B their natural inner product is given by

Tr(ATB) =

n∑

i=1

n∑

j=1

AijBij.

IPMs provide a powerful approach for solving SDO problems. A
comprehensive list of publications on SDO can be found in the SDO

homepage maintained by Alizadeh [1]. Pioneering works are due to Alizadeh
[1, 2] and Nesterov et al[11]. Most IPMs for SDO can be viewed as natural

extensions of IPMs for linear optimization (LO), and have similar polynomial
complexity results. However, to obtain valid search directions is much more
difficult than in the LO case. In the sequel we describe how the usual search
directions are obtained for primal-dual methods for solving SDO problems.

Our aim is to show that the kernel-function-based approach that we presented
for LO in [7] can be generalized and applied also to SDO problems.

1.1. Classical search direction

We assume that (SDP) and (SDD) satisfy the interior-point condition (IPC),
i.e., there exists X0 ≻ 0 and (y0, S0) with S0 ≻ 0 such that X0 is feasible
for (SDP) and (y0, S0) is feasible for (SDD). Moreover, we may assume that
X0 = S0 = E, where E is the n × n identity matrix [12]. Assuming the IPC,
one can write the optimality conditions for the primal-dual pair of problems as
follows.

Tr(AiX) = bi, i = 1, . . . ,m
m∑

i=1

yiAi + S = C (1)

XS = 0

X,S � 0.

The basic idea of primal-dual IPMs is to replace the complementarity condition
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XS = 0 by the parameterized equation

XS = µE; X,S ≻ 0,

where µ > 0. The resulting system has a unique solution for each µ > 0. This
solution is denoted by (X(µ), y(µ), S(µ)) for each µ > 0; X(µ) is called the
µ-center of (SDP ) and (y(µ), S(µ)) is the µ-center of (SDD). The set of µ-
centers (with µ > 0) defines a homotopy path, which is called the central path
of (SDP ) and (SDD) [12, 13]. The principal idea of IPMs is to follow this
central path and approach the optimal set as µ goes to zero. Newton’s method
amounts to linearizing the system (1), thus yielding the following system of
equations.

Tr(Ai∆X) = 0, i = 1, . . . ,m
m∑

i=1

∆yiAi +∆S = 0 (2)

X∆S +∆XS = µE −XS.

This so-called Newton system has a unique solution (∆X,∆y,∆S). Note that
∆S is symmetric, due to the second equation in (2). However, a crucial point is
that ∆X may be not symmetric. Many researchers have proposed various ways
of ‘symmetrizing’ the third equation in the Newton system so that the new
system has a unique symmetric solution. All these proposals can be described
by using a symmetric nonsingular scaling matrix P and by replacing (2) by the
system

Tr(Ai∆X) = 0, i = 1, . . . ,m
m∑

i=1

∆yiAi +∆S = 0 (3)

∆X + P∆SP T = µS−1 −X

Now ∆X is automatically a symmetric matrix.

1.2. Nesterov-Todd direction

In this paper we consider the symmetrization schema of Nesterov-Todd [14].
So we use

P = X
1
2

(
X

1
2SX

1
2

)− 1
2
X

1
2 = S− 1

2

(
S

1
2XS

1
2

) 1
2
S− 1

2 ,
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where the last equality can be easily verified. Let D = P
1
2 , where P

1
2 denotes

the symmetric square root of P . Now, the matrix D can be used to scale X
and S to the same matrix V , namely [12, 15]:

V :=
1√
µ
D−1XD−1 =

1√
µ
DSD. (4)

Obviously the matrices D and V are symmetric, and positive definite. Let us
further define

Āi :=
1√
µ
DAiD, i = 1, 2, . . . ,m;

and

DX :=
1√
µ
D−1∆XD−1; DS :=

1√
µ
D∆SD. (5)

We refer toDX andDS as the scaled search directions. Now (3) can be rewritten
as follows:

Tr(ĀiDX) = 0, i = 1, . . . ,m.
m∑

i=1

∆yiĀi +DS = 0, (6)

DX +DS = V −1 − V.

In the sequel, we use the following notational conventions. Throughout this
paper, ‖·‖ denotes the 2-norm of a vector. The nonnegative and the positive
orthants are denoted as Rn

+ and intRn
+, respectively, and Sn, Sn

+, and intSn+
denote the cone of symmetric, symmetric positive semidefinite and symmetric
positive definite n×nmatrices, respectively. For any V ∈ Sn, we denote by λ(V )
the vector of eigenvalues of V arranged in increasing order, λ1(V ) ≤ λ2(V ) ≤
, . . . , λn(V ). For any square matrix A, we denote by η1(A) ≤ η2(A) ≤, . . . ,≤
ηn(A) the singular values of A; if A is symmetric, then one has ηi(A) = |λi(A)| ,
i = 1, 2, . . . , n. If z ∈ Rn and f : R → R, then f (z) denotes the vector in Rn

whose i-th component is f (zi), with 1 ≤ i ≤ n, and if D is a diagonal matrix,
then f(D) denotes the diagonal matrix with f(Dii) as i diagonal component.
For X ∈ Sn, X = Q−1DQ, where Q is orthogonal, and D a diagonal matrix,
f(X) = Q−1f(D)Q. Finally if v is a vector, diag(v) denotes the diagonal matrix
with the diagonal elements vi.

2. New search direction

In this section we introduce the new search direction. But we start with
the definition of a matrix function [16, 17].
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Definition 1. Let X be a symmetric matrix, and let

X = Q−1
X diag(λ1(X), λ2(X), . . . , λn(X))QX ,

be an eigenvalue decomposition of X, where λi(X), 1 ≤ i ≤ n denotes the i-
th eigenvalue of X, and QX is orthogonal. If ψ(t) is any univariate function
whose domain contains {λi(X); 1 ≤ i ≤ n} then the matrix function ψ(X) is
defined by

ψ(X) = Q−1
X diag(ψ(λ1(X)), ψ(λ2(X)), . . . , ψ(λn(X)))QX .

and the scalar function Ψ(X) is defined as follows [13]:

Ψ(X) :=

n∑

i=1

ψ(λi(X)) = Tr(ψ(X)). (7)

The univariate function ψ is called the kernel function of the scalar function Ψ.

In this paper, when we use the function ψ(·) and its first three derivatives
ψ′(·), ψ′′(·), and ψ′′′(·) without any specification, it denotes a matrix function
if the argument is a matrix and a univariate function (from R to R) if the
argument is in R.

Analogous to the case of LO, the kernel-function-based approach to SDO is
obtained by modifying Nesterov-Todd direction [13].

The observation underlying our approach is that the right-hand side V −1−V
in the third equation of (6) is precisely −ψ′(V ) if ψ(t) = (t2 − 1)/2− log t, the
latter being the kernel function of the well-known logarithmic barrier function.
Note that this kernel function is strictly convex and nonnegative, whereas its
domain contains all positive reals and it vanishes at 1. As we will now show
any continuously differentiable kernel function ψ(t) with these properties gives
rise to a primal-dual algorithm for SDO.

Given such a kernel function ψ(t) we replace the right-hand side V −1−V in
the third equation of (6) by −ψ′(V ), with ψ′(V ) defined according to Definition
1. Thus we use the following system to define the (scaled) search directions DX

an DS :

Tr(ĀiDX) = 0, i = 1, . . . ,m.
m∑

i=1

∆yiĀi +DS = 0 (8)

DX +DS = −ψ′(V ).
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Having DX and DS , △X and △S can be calculated from (5). Due to the
orthogonality of △X and △S, it is trivial to see that DX⊥DS, and so

Tr(DXDS) = Tr(DSDX) = 0. (9)

The algorithm considered in this paper is described in Figure 1. The inner

Generic Primal-Dual Algorithm for SDO

Input:
a kernel function ψ(t);
a threshold parameter τ ≥ 1;
an accuracy parameter ǫ > 0;
a barrier update parameter θ, 0 < θ < 1;

begin
X := E; S := E; µ := 1; V := E;
while nµ ≥ ǫ do
begin

µ := (1− θ)µ;
V := V√

1−θ ;

while Ψ(V ) ≥ τ do
begin

Find search directions by solving system (8);
Determine a step size α;
X = X + α△X;
y = y + α∆y;
S = S + α△S;

Compute V from (4);
end

end
end

Figure 1: Generic primal-dual interior-point algorithm for SDO.

while loop in the algorithm is called inner iteration and the outer while loop
outer iteration. So each outer iteration consists of an update of the barrier
parameter and a sequence of one or more inner iterations. Note that by using
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the embedding strategy [12], we can initialize the algorithm with X = S = E.
Since then XS = µE for µ = 1 it follows from (4) that V = E at the start
of the algorithm, whence Ψ(V ) = 0. We then decrease µ to µ := (1 − θ)µ,
for some θ ∈ (0, 1). In general this will increase the value of Ψ(V ) above the
threshold value τ . To get this value smaller again, and coming closer to the
current µ-center, we solve the scaled search directions from (8), and unscale
these directions by using (5). By choosing an appropriate step size α, we move
along the search direction, and construct a new triple (X+, y+, S+) with

X+ = X + α△X y+ = y + α∆y S+ = S + α△S. (10)

If necessary, we repeat the procedure until we find iterates such that Ψ(V ) no
longer exceed the threshold value τ , which means that the iterates are in a
small enough neighborhood of (X(µ), y(µ), S(µ)). Then µ is again reduced by
the factor 1−θ and we apply the same procedure targeting at the new µ-centers.
This process is repeated until µ is small enough, i.e. until nµ ≤ ǫ. At this stage
we have found an ǫ-solution of (SDP ) and (SDD). Just as in the LO case, the
parameters τ, θ, and the step size α should be chosen in such a way that the
algorithm is ‘optimized’ in the sense that the number of iterations required by
the algorithm is as small as possible. Obviously, the resulting iteration bound
will depend on the kernel function underlying the algorithm, and our main task
becomes to find a kernel function that minimizes the iteration bound.

The rest of the paper is organized as follows. In Section 3 we introduce the
kernel function ψ(t) considered in this paper and discuss some of its properties
that are needed in the analysis of the corresponding algorithm. In Section 4
we derive the properties of the barrier function Ψ(V ). The step size α and
the resulting decrease of the barrier function are discussed in Section 5. The
total iteration bound of the algorithm and the complexity results are derived
in Section 6. Finally, some concluding remarks follow in Section 7.

3. Our kernel function and some of its properties

Recently in [5] investigated new kernel functions with trigonometric barrier for
linear optimization. The extension to P∗(κ)-linear complementarity problem
was also presented in [10]. The obtained complexity for large-update improve
significantly the complexity obtained in [6, 7]. In this paper we consider kernel
functions of the form
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ψ(t) =
t2 − 1

2
+

4

pπ
(tanp (h(t)) − 1) , (11)

with h(t) = π
2t+2 , and to show that the interior-point methods for SDO

based on these function have favorable complexity results.
Note that the growth term of our kernel function is quadratic. However,

this function (11) deviates from all other kernel functions since its barrier term

is trigonometric as 4
pπ

(
tanp

(
π

2t+2

)
− 1
)
. In order to study the new kernel

function, several new arguments had to be developed for the analysis.
This section is started by technical lemma, and then some properties of

the new kernel function introduced in this paper are derived.
3.1. Some technical results

In the analysis of the algorithm based on ψ(t) we need its first three deriva-
tives. These are given by

ψ′(t) = t+
4h′(t)

π
sec2 (h(t))

(
tanp−1 (h(t))

)
, (12)

ψ
′′

(t) = 1 +
4

π
sec2 (h(t)) g(t). (13)

ψ
′′′

(t) =
4

π
sec2 (h(t))

(
k(t)h′(t)3 + r(t)h′′(t)h′(t)

)
h′′′(t) (14)

+
(
tanp−1 (h(t)) h′′′(t)

)
, (15)

with

g(t) :=
(
(p− 1) tanp−2 (h(t)) + (p+ 1) tanp (h(t))

)
h′(t)2

+ h′′(t) tanp−1 (h(t)) ,

k(t) := (p− 1) (p− 2) tanp−3 (h(t)) + 2p2 tanp−1 (h(t))

+ (p+ 1) (p+ 2) tanp+1 (h(t)) ,

and

r(t) := 3 (p− 1) tanp−2(h(t)) + 3 (p+ 1) tanp (h(t)) , (16)

and the first three derivatives of h are given by

h′(t) =
−π

2 (t+ 1)2
; h′′(t) =

π

(t+ 1)3
; h′′′(t) =

−3π

(t+ 1)4
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The next lemma serves to prove that the new kernel function (11) is eligible.
Lemma 2 (Lemma 3.2 in [5]). Let ψ be as defined in (11) and t > 0.

Then,

ψ′′(t) > 1, (17-a)

tψ′′(t) + ψ′(t) > 0, (17-b)

tψ′′(t)− ψ′(t) > 0, (17-c)

and ψ′′′(t) < 0. (17-d)

It follows that ψ(1) = ψ′(1) = 0 and ψ′′(t) ≥ 0, proving that ψ is defined
by ψ′′(t).

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ) dζdξ. (18)

The second property (17-b) in Lemma 2 is related to Definition 2.1.1 and Lemma
2.1.2 in [13]. This property is equivalent to convexity of the composed function
z 7→ ψ(ez) and this holds if and only if ψ(

√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) for any
t1, t2 ≥ 0. Following [3], we therefore say that ψ is exponentially convex, or
shortly, e-convex, whenever t > 0.

Lemma 3. Let ψ be as defined in (11), one has

ψ(t) <
1

2
ψ′′(1) (t− 1)2 , if t > 1.

Proof. By Taylor’s theorem and ψ(1) = ψ′(1) = 0, we obtain

ψ(t) =
1

2
ψ′′(1) (t− 1)2 +

1

6
ψ′′′(ξ) (ξ − 1)3 ,

where 1 < ξ < t if t > 1. Since ψ′′′(ξ) < 0, the lemma follows.

Lemma 4. Let ψ be as defined in (11), one has

tψ′(t) ≥ ψ(t), if t ≥ 1.

Proof. Defining g(t) := tψ′(t)− ψ(t) one has g(1) = 0 and g′(t) = tψ′′(t) ≥
0. Hence g(t) ≥ 0 and the lemma follows.

At some places below we apply the function Ψ to a positive vector v. The
interpretation of Ψ(v) is compatible with Definition 1 when identifying the
vector v with its diagonal matrix diag (v). When applying Ψ to this matrix we
obtain

Ψ(v) =

n∑

i=1

ψ(vi), v ∈ intRn
+.
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4. Properties of Ψ(V ) and δ(V )

In this section we extend Theorem 4.9 in [4] to the cone of positive definite
matrices. The next theorem gives a lower bound on the norm-based proximity
measure δ(V ), defined by

δ(V ) = 1
2‖ψ

′(V )‖ =
1

2

√√√√
n∑

i=1

ψ′(λi(V ))2 =
1

2
‖DX +DS‖ , (19)

in terms of Ψ(V ). Since Ψ(V ) is strictly convex and attains its minimal value
zero at V = E, we have

Ψ (V ) = 0 ⇔ δ (V ) = 0 ⇔ V = E.

We denote by ̺ : [0,∞) → [1,∞) the inverse function of ψ(t) for t ≥ 1. In
other words

s = ψ(t) ⇔ t = ̺(s), t ≥ 1, (20)

Theorem 5. Let ̺ be as defined in (20). Then

δ(V ) ≥ 1
2ψ

′ (̺ (Ψ(V ))) .

Proof. If V = E then δ(V ) = Ψ(V ) = 0. Since ̺(0) = 1 and ψ′(1) = 0, the
inequality holds with equality if V = E. Otherwise, by the definitions of δ(V )
in (19) and Ψ(V ) in (7), we have δ(V ) > 0 and Ψ(V ) > 0. Let vi := λi(V ),
1 ≤ i ≤ n. Then v > 0 and

δ(V ) = 1
2

√√√√
n∑

i=1

ψ′(λi(V ))2 = 1
2

√√√√
n∑

i=1

ψ′(vi)2.

Since ψ(t) satisfies (17-d) we may apply Theorem 4.9 in [4] to the vector v.
This gives

δ(V ) ≥ 1
2ψ

′
(
̺

(
n∑

i=1

ψ(vi)

))
.

Since
n∑

i=1

ψ(vi) =

n∑

i=1

ψ(λi(V )) = Ψ(V ),

the proof of the theorem is complete.



PRIMAL-DUAL ALGORITHMS FOR SEMIDEFINIT... 807

Lemma 6. If Ψ(V ) ≥ 1, then

δ(V ) ≥ 1

6
Ψ(V )

1
2 . (21)

Proof. The proof of this lemma uses Theorem 5 and Lemma 4. Putting
s = Ψ(V ), we obtain from Theorem 5 that

δ(V ) ≥ 1
2ψ

′ (̺ (s)) .

Putting t = ̺(s), we have by (20),

ψ(t) =
t2 − 1

2
+

4

pπ
(tanp (h(t))− 1) = s, with h(t) =

π

2t+ 2
, t ≥ 1.

We derive an upper bound for t, as this suffices for our goal. One has from
(18) and ψ′′(t) ≥ 1,

s = ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ) dζdξ ≥

∫ t

1

∫ ξ

1
dζdξ =

1

2
(t− 1)2,

which implies
t = ̺ (s) ≤ 1 +

√
2s. (22)

Assuming s ≥ 1, we get t = ̺ (s) ≤ √
s +

√
2s ≤ 3s

1
2 . Now applying Lemma 4

we may write

δ(V ) ≥ 1

2
ψ′(̺(s)) ≥ ψ (̺(s))

2̺ (s)
=

s

2̺ (s)
≥ 1

6
s

1
2 =

1

6
Ψ(V )

1
2 .

This proves the lemma.

Note that since τ ≥ 1 we have at the start of each inner iteration that
Ψ(V ) ≥ 1. Substitution in (21) gives

δ(V ) ≥ 1

6
. (23)

5. Analysis of the algorithm

In the analysis of the algorithm the concept of exponential convexity [4, 8] is
again a crucial ingredient. In this section we derive a default value for the step



808 M. El Ghami

size and we obtain an upper bound for the decrease in Ψ(V ) during a Newton
step.

5.1. Three technical lemmas

The next lemma is cited from [16, Lemma 3.3.14 (c)].
Lemma 7. Let A,B ∈ Sn be two nonsingular matrices and f(t) be given

real-valued function such that f(et) is a convex function. One has

n∑

i=1

f(ηi(AB)) ≤
n∑

i=1

f(ηi(A)ηi(B)),

where ηi(A), and ηi(B) i = 1, 2, ..., n denote the singular values of A and B
respectively

Lemma 8. Let A, A+B ∈ Sn
+, then one has

λi(A+B) ≥ λ1 − |λn(B)| , i = 1, 2, ..., n.

Proof. It is obvious that λi(A + B) ≥ λ1(A + B). By the Rayleigh-Ritz
theorem (see [18]), there exists a nonzero X0 ∈ Rn, such that

λ1(A+B) =
XT

0 (A+B)X0

XT
0 X0

=
XT

0 AX0

XT
0 X0

+
XT

0 BX0

XT
0 X0

.

We therefore may write

λ1(A+B) ≥ XT
0 AX0

XT
0 X0

−
∣∣∣∣
XT

0 BX0

XT
0 X0

∣∣∣∣

≥ min
X 6=0

XTAX

XTX
−max

X 6=0

∣∣∣∣
XTBX

XTX

∣∣∣∣ = λ1 − |λn(B)| .

This completes the proof of the lemma.
A consequence of condition (17-b) is that any eligible kernel function is

exponentially convex [13, Eq. (2.10)]:

ψ(
√
t1t2) ≤

1

2
(ψ (t1) + ψ (t2)) , ∀t1 > 0,∀t2 > 0. (24)

This implies the following Lemma, which is crucial for our purpose.

Lemma 9. Let V1 and V2 be two symmetric positive definite matrices,
then

Ψ

(
(V

1
2
1 V2V

1
2
1 )

1
2

)
≤ 1

2
(Ψ(V1) + Ψ(V2)) , ∀V1 ≻ 0,∀V2 ≻ 0.
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Proof. For any nonsingular matrix U ∈ Sn, we have

ηi(U) =
(
λi(U

TU)
) 1

2 =
(
λi(UU

T )
) 1

2 , i = 1, 2, ..., n.

Taking U = V
1
2
1 V

1
2
2 , we may write

ηi(V
1
2
1 V

1
2
2 ) =

(
λi(V

1
2
1 V2V

1
2
1 )

) 1
2

= λi

(
(V

1
2
2 V1V

1
2
2 )

) 1
2

, i = 1, 2, ..., n.

Since V1 and V2 are symmetric positive definite, using Lemma 7 one has

Ψ

(
(V

1
2
1 V2V

1
2
1 )

1
2

)
=

n∑

i=1

ψ

(
ηi(V

1
2
1 V

1
2
2 )

)
≤

n∑

i=1

ψ

(
ηi(V

1
2
1 )ηi(V

1
2
2 )

)
.

Since η1(V
1
2
1 ), η1(V

1
2
2 ) > 0 we may use that ψ(t) satisfies (17-b) for t > 0. Using

(24), hence we obtain

Ψ

(
(V

1
2
1 V2V

1
2
1 )

1
2

)
≤ 1

2

n∑

i=1

(
ψ

(
η2i (V

1
2
1 )

)
+ ψ

(
η2i (V

1
2
2 )

))

=
1

2

n∑

i=1

(ψ (λi(V1)) + ψ (λi(V2))) =
1

2
(Ψ(V1) + Ψ(V2)) .

This completes the proof.

5.2. The decrease of the proximity in the inner iteration

In this subsection we are going to compute a default value for the step size α
in order to yield a new triple (X+, y+, S+) as defined in (10). After a damped
step, using (5) we have

X+ = X + α△X = X + α
√
µDDXD =

√
µD (V + αDX)D,

y+ = y + α∆y,

S+ = S + α△S = X + α
√
µD−1DSD

1 =
√
µD−1 (V + αDS)D

−1.

Denoting the matrix V after the step as V+, we have

V+ =
1√
µ

(
D−1X+S+D

) 1
2 .
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Note that V 2
+ is unitarily similar to the matrix 1

µ
X

1
2
+S+X

1
2
+ and hence also to

(V + αDX)
1
2 (V + αDS) (V + αDX )

1
2 .

This implies that the eigenvalues of V+ are the same as those of the matrix

Ṽ+ :=
(
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

) 1
2
.

The definition of Ψ(V ) implies that its value depends only on the eigenvalues
of V . Hence we have

Ψ
(
Ṽ+

)
= Ψ(V+) .

Our aim is to find α such that the decrement

f(α) := Ψ (V+)−Ψ(V ) = Ψ
(
Ṽ+

)
−Ψ(V ) , (25)

is as small as possible. Due to Lemma 9, it follows that

Ψ
(
Ṽ+

)
= Ψ

((
(V + αDX)

1
2 (V + αDS) (V + αDX )

1
2

) 1
2

)

≤ 1
2 [Ψ (V + αDX) + Ψ (V + αDS)] .

From the definition (25) of f(α), we now have f(α) ≤ f1(α), where

f1(α) :=
1
2 [Ψ (V + αDX) + Ψ (V + αDS)]−Ψ(V ) .

Note that f1(α) is convex in α, since Ψ is convex. Obviously, f(0) = f1(0) = 0.
Taking the derivative with respect to α, we get

f ′1(α) =
1
2Tr

(
ψ′ (V + αDX)DX + ψ′ (V + αDS)DS

)
.

Using the last equality in (8) and also (19), this gives

f ′1(0) =
1
2Tr

(
ψ′(V ) (DX +DS)

)
= −1

2Tr
(
ψ′(V )2

)
= −2δ(V )2.

Differentiating once more, we obtain

f ′′1 (α) =
1
2Tr

(
ψ′′ (V + αDX)D

2
X + ψ′′ (V + αDS)D

2
S

)
. (26)

In the sequel we use the following notation:

λ1 := min(λi(V )), δ := δ(V ).

Lemma 10. One has

f ′′1 (α) ≤ 2δ2 ψ′′ (λ1 − 2αδ) .
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Proof. The last equality in (8) and (19) imply that ‖DX +DS‖2 = ‖DX‖2+
‖DS‖2 = 4δ2. Thus we have |λn(DX)| ≤ 2δ and |λn(DS)| ≤ 2δ. Using Lemma
8 and V + αDX � 0, As a consequence we have, for each i,

λi(V + αDX ) ≥ λ1 − α |λn(DX)| ≥ λ1 − 2αδ,

λi(V + αDS) ≥ λ1 − α |λn(DS)| ≥ λ1 − 2αδ.

Due to (17-d), ψ′′ is monotonically decreasing. So the above inequalities imply
that

ψ′′(λi(V + αDX )) ≤ ψ′′(λ1 − 2αδ), ψ′′(λi(V + αDS)) ≤ ψ′′(λ1 − 2αδ).

Substitution into (26) gives

f ′′1 (α) ≤ 1
2ψ

′′ (λ1 − 2αδ) Tr
(
D2
X +D2

S

)
= 1

2ψ
′′ (λ1 − 2αδ)

(
‖DX‖2 + ‖DS‖2

)
.

Now, using that DX and DS are orthogonal, by (9), and also ‖DX +DS‖2 =
4δ2, by (19), we obtain

f ′′1 (α) ≤ 2δ2 ψ′′ (λ1(V )− 2αδ) .

This proves the lemma.
Using the notation vi = λi(V ), 1 ≤ i ≤ n, again, we have

f ′′1 (α) ≤ 2δ2 ψ′′ (v1 − 2αδ) , (27)

which is exactly the same inequality as Lemma 3.1 in [7]. This means that our
analysis closely resembles the analysis of the LO case in [7]. From this stage on
we can apply similar arguments as in the LO case. In particular, the following
two lemmas can be stated without proof.

Lemma 11. [Lemmas 3.3 and 3.4 in [9]] Let ρ be the inverse function of
−1

2ψ
′(t) for t ∈ (0, 1]. Then the largest value of the step size α satisfying (27)

is given by

α̂ :=
1

2δ
[ρ (δ)− ρ (2δ)] .

Moreover

α̂ ≥ 1

ψ′′ (ρ (2δ))
.

For future use we define

α̃ :=
1

ψ′′ (ρ(2δ))
. (28)

By Lemma 11 this step size satisfies (27).
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Lemma 12. If the step size α is such that α ≤ α̂ then

f(α) ≤ −α δ2.

Using the above lemmas from [7] we proceed as follows.

Theorem 13. Let ρ be as defined in Lemma 11 and α̃ as in (28) and
Ψ(v) ≥ 1. Then

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
≤ − δ

p

1+p

1320p
.

Proof. Since α̃ ≤ α̂, Lemma 12 gives f(α̃) ≤ −α̃ δ2, where α̃ = 1
ψ′′(ρ(2δ)) as

defined in (28). Thus the first inequality follows.

To obtain the inverse function t = ρ(s) of −1
2ψ

′(t) for t ∈ (0, 1], we need to
solve t from the equation

−
(
t+

4h′(t)

π
sec2 (h(t))

(
tanp−1 (h(t))

))

=

(
−t+ 4h′(t)

π
csc2 (h(t))

(
tanp+1 (h(t))

))
= 2s.

This implies,

csc2 (h(t))
(
tanp+1 (h(t))

)
=

−π
4h′(t)

(2s+ t) .

For t ≤ 1, we get 2π(t+1)2

4π (2s+ t) ≤ 2 (2s+ 1) . Hence, putting t = ρ (2δ) ,
which is equivalent to 4δ = −ψ′(t). Using that sin2 (h(t)) ≤ 1 we get

tan(h(t)) ≤ (8δ + 2)
1

1+p . (29)

Since sec2 (h(t)) = 1+tan2 (h(t)), By (29), thus we have tan2 (h(t)) ≤ (8δ + 2)
2

1+p ,

tanp−2 (h(t)) ≤ (8δ + 2)
p−2
1+p , tanp−1 (h(t)) ≤ (8δ + 2)

p−1
1+p and tanp (h(t)) ≤

(8δ + 2)
p

1+p . Since h′′(t) = 8π
8(t+1)3

≤ 3π
4 , and h′(t)2 = 4π2

16(2t+1)4
≤ π2

4 for all

0 ≤ t ≤ 1, and using also (8δ + 2) ≥ 1 this implies

ψ′′ (t) ≤
(
1 +

4

π
2

(
2p
π2

4
+ π

))
(8δ + 2)

p+2
1+p = (9 + 4pπ) (8δ + 2)

p+2
1+p
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By (28), thus we have

α̃ =
1

ψ′′ (ρ (2δ))

≥ 1

(9 + 4pπ) (8δ + 2)
p+2
1+p

.

Also using (23) (i.e., 6δ ≥ 1) and p ≥ 2 we get,

α̃ ≥ 1

(9 + 4pπ) (8δ + 12δ)
p+2
1+p

=
1

(9 + 4pπ) (20δ)
p+2
1+p

≥ 1

1320pδ
p+2
1+p

.

Hence

f(α̃) ≤ − δ2

1320pδ
p+2
1+p

= − δ
p

1+p

1320p
.

Thus the theorem follows.
Substitution in (21) gives

f(α̃) ≤ − δ
p

1+p

1320p
≤ − Ψ

p

2(1+p)

1320p (6)
p

1+p

≤ −Ψ
p

2(1+p)

7920p
.

5.3. A uniform upper bound for Ψ

In this subsection we extend Theorem 3.2 in [4] to the cone of positive definite
matrices. As we will see the proof of the next theorem easily follows from
Theorem 3.2 in [4].

Theorem 14. Let ̺ be as defined in (20). Then for any positive vector v
and any β > 1 we have:

Ψ(βV ) ≤ nψ

(
β̺

(
Ψ(V )

n

))
.

Proof. Let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0 and

Ψ(βV ) =
n∑

i=1

ψ(λi(βV )) =
n∑

i=1

ψ(βλi(V )) =
n∑

i=1

ψ(βvi) = Ψ(βv).
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Due to the fact that ψ(t) satisfies (17-c), at this stage we may use Theorem 3.2
in [4], which gives

Ψ(βv) ≤ nψ

(
β̺

(
Ψ(v)

n

))
.

Since

Ψ(v) =
n∑

i=1

ψ(vi) =
n∑

i=1

ψ(λi(V )) = Ψ(V ),

the theorem follows.
Before the update of µ we have Ψ(V ) ≤ τ , and after the update of µ to

(1 − θ)µ we have V+ = V√
1−θ . Application of Theorem 14, with β = 1√

1−θ ,

yields that

Ψ(V+) ≤ nψ

(
̺
(
τ
n

)
√
1− θ

)
.

Therefore we define

L = L(n, θ, τ) := nψ

(
̺
(
τ
n

)
√
1− θ

)
(30)

In the sequel the value L(n, θ, τ) is simply denoted as L. A crucial (but triv-
ial) observation is that during the course of the algorithm the value of Ψ(V )
will never exceed L, because during the inner iterations the value of Ψ always
decreases.

6. Complexity

We are now ready to derive the iteration bounds for large-update methods. An
upper bound for the total number of (inner) iterations is obtained by multiply-
ing an upper bound for the number of inner iterations between two successive
updates of µ by the number of barrier parameter updates. The last number is
bounded above by (cf. [19, Lemma II.17, page 116])

1

θ
log

n

ǫ
.

To obtain an upper bound K for the number of inner iterations between two
successive updates we need a few more technical lemmas.
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The following lemma is taken from Proposition 1.3.2 in [13]. Its relevance is
due to the fact that the barrier function values between two successive updates
of µ yield a decreasing sequence of positive numbers. We will denote this
sequence as Ψ0, Ψ1, . . ..

Lemma 15. Let t0, t1, · · · , tK be a sequence of positive numbers such that

tk+1 ≤ tk − κt1−γk , k = 0, 1, · · · ,K − 1,

where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊
t
γ

0
κγ

⌋
.

Lemma 16. If K denotes the number of inner iterations between two
successive updates of µ, then

K ≤ 7920pΨ
2+p

2(1+p)

0 .

Proof. The definition of K implies ΨK−1 > τ and, according to Theorem
13, ΨK ≤ τ and

Ψk+1 ≤ Ψk − κ (Ψk)
1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
7920p and γ = 2+p

2(1+p) . Application of Lemma 15, with tk = Ψk yields
the desired inequality.

Using ψ0 ≤ L, where the number L is as given in (30), and Lemma 16 we
obtain the following upper bound on the total number of iterations:

7920pL
2+p

2(1+p)

θ
log

n

ǫ
. (31)

6.1. Large-update

We just established that (31) is an upper bound for the total number of itera-
tions, using

ψ(t) =
t2 − 1

2
+

4

pπ

(
tanp

(
π

2t+ 2

)
− 1

)
, for t ≥ 1, p ≥ 2

and (22), by substitution in (30) we obtain

L ≤ n

(
̺( τ

n
)√

1−θ

)2

− 1

2
≤ n

2 (1− θ)

(
θ + 2

√
2
τ

n
+

2τ

n

)
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=

(
θn+ 2

√
2τn+ 2τ

)

2 (1− θ)
.

Using (31), thus the total number of iterations is bounded above by

K

θ
log

n

ǫ
≤ 7920p

θ
(
2 (1− θ)

2+p

2(1+p)

)
(
θn+ 2

√
2τn+ 2τ

) 2+p

2(1+p)
log

n

ǫ
.

A large-update methods uses τ = O(n) and θ = Θ(1). The right-hand side

expression is then O
(
pn

2+p

2(1+p) log n
ǫ

)
, as easily may be verified.

6.2. Small-update

For small-update methods one has τ = O(1) and θ = Θ
(

1√
n

)
. Using

Lemma 3, with ψ′′(1) = pπ+8
4 , we then obtain

L ≤ n (pπ + 8)

8

(
ρ
(
τ
n

)
√
1− θ

− 1

)2

.

Using (22), then

L ≤ n (pπ + 8)

8



1 +

√
2τ
n√

1− θ
− 1




2

.

Using 1 −
√
1− θ = θ

1+
√
1−θ ≤ θ, this leads to L ≤ (pπ+8)

8(1−θ)
(
θ
√
n+

√
2τ
)2
. We

conclude that the total number of iterations is bounded above by

K

θ
log

n

ǫ
≤ 7920 (pπ + 8)

2+p

2(1+p)

θ (8 (1− θ))
2+p

2(1+p)

(
θ
√
n+

√
2τ
) 2+p

1+p

log
n

ǫ
.

Thus the right-hand side expression is then O
(√
n log n

ǫ

)
.

7. Concluding Remarks

In this paper we extended the results obtained for kernel-function-based
IPMs in [5] for LO to semidefinite optimization problems. The analysis in this
paper is new and different from the one using for LO. Several new tools and
techniques are derived in this paper. The proposed function has a trigono-
metric barrier term but the function is not logarithmic and not self- regular.
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For this parametric kernel function, we have shown that the best result of it-
eration bounds for large-update methods and small-update can be achieved,
namely O

(
log n

√
n log n

ǫ

)
, for large-update and O

(√
n log n

ǫ

)
for small-update

methods.
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