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Abstract We have determined the complete mitochon-
drial genome sequences of the codWshes Arctogadus gla-
cialis and Boreogadus saida (Order Gadiformes, Family
Gadidae). The 16,644 bp and 16,745 bp mtDNAs, respec-
tively, contain the same set of 37 structural genes found in
all vertebrates analyzed so far. The gene organization is
conserved compared to other Gadidae species, but with one
notable exception. B. saida contains heteroplasmic rear-
rangement-mediated duplications that include the origin of
light-strand replication and nearby tRNA genes. Examina-
tion of the mitochondrial control region of A. glacialis,
B. saida, and four additional representative Gadidae genera
identiWed a highly variable domain containing tandem
repeat motifs in A. glacialis. Mitogenomic phylogeny based
on the complete mitochondrial genome sequence, the con-
catenated protein-coding genes, and the derived protein
sequences strongly supports a sister taxa aYliation of
A. glacialis and B. saida.
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Introduction

More than 375 complete sequenced mitochondrial genomes
from ray-Wnned Wshes have so far (December 2007) been
submitted to the database (http://www.ncbi.nlm.nih.gov),
and many of these sequences have contributed considerably
to resolving phylogenetic relationships among Wshes. Evo-
lutionary relationships at diVerent taxonomic levels have
been addressed, including Division (Inoue et al. 2003; Miya
et al. 2003), Subdivision (Ishiguro et al. 2003), Genus
(Doiron et al. 2002; Minegishi et al. 2005), and Species
(Yanagimoto et al. 2004; Ursvik et al. 2007).

The circular mitochondrial genomes from ray-Wnned
Wshes are usually small (ca. 17,000 bp), compactly orga-
nized, and encode only a subset of the mitochondrial gene
products (13 protein genes, 22 tRNA genes, 2 rRNA
genes) (Boore 1999). The mitochondrial gene order is
invariable among the ray-Wnned Wshes, except some
notable examples of tRNA gene duplications and rear-
rangements at three diVerent mitogenomic sites. The
tRNA-gene IQM cluster located between the NADH
dehydrogenase subunit 1 (ND1) and ND2 genes is the
most frequently observed rearrangement site (Miya et al.
2001, 2003; Mabuchi et al. 2004; Satoh et al. 2006). The
second rearrangement site includes the tRNA-Glu (E)
gene usually located between ND6 and cytochrome B
(CytB) genes, but occasionally transposed into a position
between CytB and the control region (CR) (Miya and
Nishida 1999; Inoue et al. 2001; Satoh et al. 2006). Inter-
estingly, codWshes belonging to the family Macrouridae
(the grenadiers) frequently harbor tRNA gene rearrange-
ments at both mitogenomic sites (Satoh et al. 2006). A
third rearrangement site was recently reported in WANCY
tRNA gene cluster of the blackspot seabream, including
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oriL disruption and heteroplasmic tRNA gene duplica-
tions (Ponce et al. 2008).

The complete mtDNA genomes have so far only been
reported for a few Gadidae species, a family harboring
commercially and ecologically important codWsh species.
These include Atlantic cod (Gadus morhua, Johansen and
Bakke 1996; Ursvik et al. 2007), walleye pollock (Thera-
gra chalcogramma, Yanagimoto et al. 2004), Norwegian
pollock (Theragra Wnnmarchica, Ursvik et al. 2007),
haddock (Melanogrammus aegleWnus, Roques et al. 2006;
Ursvik et al. 2007), and whiting (Merlangius merlangus,
Roques et al. 2006). In addition, extensive partial mtDNA
sequences were reported recently by Carr and coworkers
for an additional Wve Gadidae species (Coulson et al. 2006).
Several of the Gadidae species have been investigated in
phylogenetic (Carr et al. 1999; Møller et al. 2002; Bakke
and Johansen 2002, 2005; Coulson et al. 2006; Teletchea
et al. 2006; Ursvik et al. 2007) or population studies
(Shields and Gust 1995; Sigurgislason and Arnason 2003;
Arnason 2004; Yanagimoto et al. 2004) based on mtDNA
sequences. These reports show that the Gadidae Wshes are
typically characterized by a monophyletic evolutionary ori-
gin and a low-level geographic structuring of mitochondrial
genotypes.

The Arctic cod (Arctogadus glacialis) and Polar cod
(Boreogadus saida) are endemic to the Arctic Ocean, and
considered key species in Arctic ecosystems (Smetacek
and Nicol 2005). Both are important for commercial Wsh-
eries in the production of Wshmeal and Wsh oil (Cohen
et al. 1990). Only two reported studies have included both
these species in mtDNA-based phylogeny. Møller and
coworkers analyzed approximately 400 nt positions of the
CytB gene, and concluded that A. glacialis and B. saida
apparently have to be considered as sister taxa, but this
clustering was not well supported in their statistical tests
(Møller et al. 2002). Recently, a phylogenetic analysis
based on almost complete mitochondrial genome
sequences of several Gadidae species, including A. gla-
cialis and B. saida, was reported. This study corroborated
the Wndings by Møller and coworkers, but with improved
statistical support (Coulson et al. 2006). In an attempt to
further approach the Gadidae taxonomy, we have deter-
mined the complete mitochondrial genome sequences of
A. glacialis and B. saida and performed phylogenetic anal-
ysis based on both the nucleotide and the derived amino
acid sequences. Sister taxa aYliation of A. glacialis and
B. saida was strongly supported. Interestingly, the
sequencing analyses identiWed a novel gene arrangement
within the mitochondrial genome of B. saida that involves
duplications of tRNA genes and the origin of light strand
replication (oriL).

Materials and methods

Fish samples and DNA extraction

The B. saida specimens (Bs1 and Bs2) and the A. glacialis
specimen (Ag1) were collected from the Arctic Ocean, and
DNA was extracted from muscle tissue by using the
mtDNA Extractor CT Kit from Wako as previously
reported (Ursvik et al. 2007).

PCR ampliWcation, cloning, and DNA sequencing

The PCR and sequencing primers (Table 1) were designed
from the published Atlantic cod mtDNA sequence
(X99772; Johansen and Bakke 1996) and used to amplify
the mitochondrial genomes in 1–4 kb fragments. Each PCR
reaction (25 �l) included the total DNA sample as well as
0.2 mM dNTPs, 0.2 �M of each primer, and 0.6 U of
Expand HiFidelity polymerase and buVer (Roche). The
PCR reactions were performed in a Peltier 200 Thermal
cycler with the following cycling parameters: 94°C initial
denaturation for 2 min., 30 cycles with 94°C denaturation
for 15 s, 53°C annealing for 30 s, 68°C elongation for
2–3 min, and a Wnal extension at 72°C for 7 min. The total
ampliWed reactions were run on 0.8 or 1% agarose gels con-
taining ethidium bromide, and bands were excised and puri-
Wed with Qiagen gel extraction kit. PCR products from the
control region were inserted into the p-Drive vector
(Qiagen) and transformed in E. coli EZ competent cells.
Positive clones were veriWed with plasmid isolation
(Wizard plasmid puriWcation kit) and EcoRI restriction
cutting followed by agarose gel electrophoresis. Direct
sequencing was performed on the remaining PCR products
on both strands using the BigDye version 3.1 kit (Applied
Biosystems) with the same primers as in the PCR and inter-
nal primers. The sequencing reaction mixture included
10–60 ng of the PCR-template, 0.35 �M primer, 2 �l Big-
Dye mix, 1 �l 5£ reaction buVer in a 10 �l volume. The
sequencing products were analyzed in an ABI genetic
analyzer (Applied Biosytems).

Data analyses

Computer analyses of DNA sequences were performed
using software from DNASTAR Inc. The phylogenetic
analyses were based on two sets of multiple alignments of
nucleotide sequences derived from the complete mitochon-
drial genomes of 16 specimens representing eight closely
related species within the Gadidae family. One alignment
set was constructed from 16,783 nucleotide positions cov-
ering the complete mitochondrial genomes except the
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Table 1 PCR and DNA 
sequencing primers

Primer Sequence (5�, 3�)

L42 GAT GGA CCC TAG AAA GTC C

H171 AGA TGT GCC TGA TAC CTG CT

L290 GAA AGC TTG ACT TAG TTA AG

H414 TGA CTT CGG ATG CGT ATA AC

H617 TAG AAC AGG CTC CTC TAG

L985 GAG GCA AGT CGT AAC AT

L1223 CGC AAG GGA ACG CTG AAA

H1275 AGG TAC GAG TAG AAA ACT CTG

L1757 CTT ACC AGG CTG TCT TAT GC

H1805 GTC CGT TCC GAC TTA CAC

L2222 ATT ACA TAA GAC GAG AAG AC

L2776 TGT GTT AGA GTG GCA GAG CC

H3069 AGT GCA AGT ACT GGC AA

H3562 AGC CCA GAA ATA GTA CAG CT

L3760 TGG CAC TAG TGA TTT GAC AT

H4559 AGC CAA GAT GTG CGA TTG AT

L4876 TAA GCC TTT ACT TTT ATC T

L5232 CTC TTA GTT AAC AGC TAA GC

H5475 AGG GTG CCA ATG TCT TTG TG

L5572 TCG AGC AGA GCT AAG TCA AC

L6604 ATG TAT AGG AGC TGT CTT TG

H6880 TCA ACT GCT ATT ACT TCC CG

L7208 ATC ACC CGT AAT AGA AGA GT

H7790 TCA AAG TGT TCT AGA GGA AC

L7901 TGG AAG CAG GTG ACT CCC AA

H8439 ATG ACC TAG TGC ATG AGT TG

L8575 TTA CAG CTA ATC TTA CAG CA

H8764 GTG GTA TGC ATG AGC TTG GT

L9302 TTC AAG GAC TGG AGT ACT AT

L9859 TCC CAT GAG GAG ATC AAC TG

H10545 TGA CTT GCA AGG AGT ATT AG

L10603 TAT AAA CCG CCA ACG TA

L10923 CTG ATG AGC TGC TTG GCA TG

L11407 GAC CAC ATG ATG ATT TAT TG

H11887 ACT TGG AGT TGC ACC AAG AG

L12121 TAT AGA GGC TGT AAC TTC TT

H12608 TCA TGG GTG AAG TCC AAA CT

L12760 TCA GAC TGC ACT AAC TCT CT

H13913 GTG AGT ACC TGT AGA TGA GT

L14068 AGC TAA AGC TGC ACA ATA AG

L14331 CCA CCG TTG TTA TTC AAC T

H14746 AAT TAC GGT AGC TCC TCA GAA TGA TAT TTG TCC TCA

L15250 CTC GAT TCT AGT CCT CAT GG

L15498 GAA ACT GCC CTA GTA GCC A

L15500 ACT GAG CTA CTA GGG CAG TTT C

H15666 GTT TAA TTT AGA ATT CTA GCT TTG G

H16390 AAC CGA GGA CTA GCT CCA CC

SP6 GATTTAGGTGACACTATAG

T7 AATACGACTCACTATAG

Note: primers are numbered and 
named according to the Atlantic 
cod sequence X99772
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highly variable ETAS (extended termination associated
sequence) domain within the control region. The second
alignment set was constructed by aligning the 11,400
nucleotide positions (3,800 amino acids) of the 13 concate-
nated protein-coding gene excluding the stop codons. This
nucleotide alignment set was translated to amino acids and
used in phylogenetic analysis. The multiple alignments
were constructed using ClustalX version 1.81 (Thompson
et al. 1997) and manual reWnements. Molecular phyloge-
nies were reconstructed by using the tree-building methods
of minimum evolution (ME) and maximum parsimony
(MP) in MEGA version 3.1 (Kumar et al. 2004) and
MEGA version 4.0 (Tamura et al. 2007), as well as maxi-
mum likelihood (ML) in PAUP* (version 4.0b10) (Swo-
Vord 2002). ME trees were built from all the nucleotides
present in both nucleotide alignment sets. Furthermore, ME
trees were built from the alignment of the nucleotides of the
13 concatenated protein-coding genes by using synony-
mous substitutions, codon positions 1 and 2, and translated
amino acids. For all the ME analyses, diVerent models of
nucleotide or amino acid substitutions were used. MP trees
were built from both alignment sets using all nucleotides,
and from the alignment of the nucleotides of the 13 concat-
enated protein-coding genes using codon nucleotide posi-
tions 1 and 2, as well as translated amino acids. Analyses
that include nucleotides were performed by heuristic
searches using close-neighbor-interchange (CNI) search
level 3 and production of initial trees by random addition of
sequences (100 replications), while the max–mini branch
and bound tree search option was used for construction of
trees from the translated amino acid alignment. ML trees

built from the alignment covering the near complete mt
genome were based on the sequence evolution model
HKY + I+ G selected by the computer program WinModel-
test version 4b (Posada and Crandall 1998), while trees
built from the alignment of the nucleotides (all nt positions,
and codon positions 1 and 2) of the 13 concatenated pro-
tein-coding genes used the evolution model GTR + I+ G
selected by WinModeltest. The reliabilities of tree branch-
ing points of the ME, MP, and ML trees were evaluated by
bootstrap analyses (2,000 replications).

Results and discussion

Gene content and organization of A. glacialis and B. saida 
mitochondrial genomes

The complete mitochondrial genome sequences of A. gla-
cialis (isolate Ag1) and B. saida (isolate Bs1) were deter-
mined by a primer walking approach and found to be
16,644 and 16,745 bp, respectively. These sizes are similar
to those of other known Gadidae species (Johansen and
Bakke 1996; Yanagimoto et al. 2004; Roques et al. 2006;
Ursvik et al. 2007). The circular mtDNA genomes contain
the same set of 13 protein coding genes, 22 transfer RNA
genes, and 2 ribosomal RNA genes found in all sequenced
vertebrate mtDNA to date, and in an overall organization
similar to most bony Wsh mitochondrial genomes (Fig. 1a).
Furthermore, GC contents, base compositions, and codon
usages were found to be very similar to other sequenced
Gadidae mitochondrial genomes (see Roques et al. 2006).

Fig. 1 Gene content and organization of A. glacialis and B. saida
mitochondrial genomes. A linear map of the circular mtDNA is pre-
sented. All genes, except ND6 and eight of the transfer RNA genes
(indicated by the standard one-letter symbols for amino acids), are en-
coded by the H-strand. Transfer RNA genes encoded by the L-strand
are indicated below the diagram. Abbreviations: SSU and LSU mito-
chondrial small- and large-subunit ribosomal RNA genes, ND1–6
NADH dehydrogenase subunits 1–6, COI–III cytochrome c oxidase

subunits I–III, A6 and A8 ATPase subunits 6 and 8, CytB cytochrome
B, oriH and oriL origin of H-strand and L-strand replication; CR con-
trol region containing the D-loop. The mtDNA regions containing se-
quence duplications in A. glacialis (CR) and B. saida (WANCY tRNA
cluster) are indicated below the mt-genome organization map. The
complete mitochondrial genomes of B. saida and A. glacialis have
been assigned the accession numbers AM919428 and AM919429,
respectively, in the EMBL Database
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Rearrangements and heteroplasmic duplications 
of oriL and Xanking tRNA genes in B. saida

Initial analysis indicated the DNA sequencing heterogene-
ity within the tRNA gene cluster Xanking the origin of
light-strand replication (oriL) in B.saida. A PCR-ampliWca-
tion and DNA sequencing approach was included to study
this region in more detail. The tRNA gene cluster and some
Xanking sequences were ampliWed from DNA isolated from
two specimens of B. saida as well as from one A. glacialis
(Fig. 2a) and subsequently separated by agarose electro-
phoresis (Fig. 2b). Although A. glacialis generated a prod-
uct (DNA I) consistent with the typical vertebrate
organization (see Fig. 2a), the two B. saida specimens gen-
erated larger products (DNA II and DNA III). Interestingly,
one of the B. saida specimens (Bs2) appears heteroplasmic
in the tRNA gene/oriL cluster, since both the DNA II and
DNA III products were observed (Fig. 2b).

Four of the ampliWed DNA fragments (DNA I from Ag1,
DNA II from Bs1 and Bs2, and DNA III from Bs2) were

eluted from the gel, cloned into a plasmid vector, and sub-
sequently DNA-sequenced. The results are summarized in
Fig. 2c and conWrmed rearrangement-mediated duplica-
tions and insertions that include oriL and nearby tRNA
genes in B. saida. In the DNA II product oriL and tRNA-
Asn gene (N) were perfectly duplicated, but oriL was
followed by a 40-bp unique noncoding (NC) sequence.
Furthermore, a truncated tRNA-Ala gene (�A) was located
between the NC region and the duplicated tRNA-Asn gene.
The DNA III product was identical to DNA II, but with a
duplicated insertion (Fig. 2c).

An extensive partial mitochondrial genome sequence was
reported from B. saida (Coulson et al. 2006). Unfortunately,
the tRNA gene cluster sequence in this specimen was not
well resolved, and probably the insertion escaped notice.
Related tRNA gene rearrangements to those we observe in
B. saida have been reported in another vertebrate system, the
mitochondrial genomes of lungless salamanders (Mueller
and Boore 2005). Duplication of the oriL region and Xank-
ing tRNA genes was observed, as well as the presence of

Fig. 2 Duplication of oriL and Xanking tRNA genes in B. saida.
a Schematic map of the analyzed mtDNA region (WANCY tRNA gene
cluster). The cluster was ampliWed using a forward primer (FP; L4876)
and a reverse primer (RP; H5785). b Separation of ampliWed products
in a 0.8% agarose gel. M, the size marker 1 Kb Plus DNA Ladder from
Invitrogen (right). Analyzed ampliWed DNA bands named I, II, and III
are indicated (left). Two specimens of B. saida (Bs1 and Bs2) were
analyzed in addition to the A. glacialis specimen (Ag1). Both Bs1 and

Bs2 appear heteroplasmic in the WANCY tRNA gene cluster. The
additional smaller DNA bands (less than 800 bp) are due to unspeciWc
primer bindings to sequences present in the total DNA preparations.
c Schematic summary of sequence analyses of the fragments I, II, and
III. The multiple copies of oriL (presented as a hairpin structure),
tRNA-Asn (N), and truncated tRNA-Ala (�A) present in B. saida are
identical in sequence. NC noncoding sequence
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truncated tRNA genes. Interestingly, all these mitochondrial
gene rearrangements appear closely linked to the origin of
replication, and the authors suggest that imprecise biochemi-
cal processes during mtDNA replication may contribute to
such rearrangements (Mueller and Boore 2005). Recently, a
heteroplasmic rearrangement was reported at the same
tRNA gene cluster of the Wsh blackspot seabream (Ponce
et al. 2008). Our Wnding of DNA replication-induced
mtDNA rearrangements in B. saida supports this arrange-
ment as a widespread, but sporadic, molecular feature within
vertebrates. The molecular implication in mtDNA replica-
tion of multiple oriL copies has not yet been investigated.

Direct repeat motifs in the control region of A. glacialis

The major noncoding region noted within A. glacialis and
B. saida mitochondrial genomes is located between the

tRNA-Pro (P) and tRNA-Phe (F) genes. This region, named
the control region (CR), constitutes about 7% of vertebrate
mitochondrial genomes and commonly contains the dis-
placement loop (D-loop), the promoters for heavy and light
strand transcription, the heavy-strand replication origin
(oriH), and several binding sites of speciWc protein factors
(Falkenberg et al. 2007). The CRs of A. glacialis and B.
saida (Fig. 3a) are divided into three domains, namely, the
extended termination-associated sequence (ETAS) domain,
the central conserved (CC) domain, and the conserved
sequence block (CSB) domain. Although the vertebrate
CSB domain contains important functional sequences
involved in oriH replication (CSB-2 and CSB-3) and tran-
scription initiation (Foran et al. 1988; Sbisa et al. 1997), the
CC domain still lacks functional assignment. The ETAS
domain is highly variable among the Gadidae and harbors
heteroplasmic tandem repeats (40 nt HTR motif) in G. morhua

Fig. 3 Organization and variability of the control region in Gadidae
species. a Schematic organization of the mitochondrial control region
(CR) in A. glacialis and B. saida. CR is located between the tRNA
genes Pro (P) and Phe (F), and contains the highly conserved termina-
tion association sequence (TAS), the conserved sequence box D (CSB-
D), the pyrimidine sequence run (Py-run) in the CC-domain, and the
two conserved sequence boxes in the CSB-domain associated with
oriH (CSB-2 and CSB-3). b Detailed view of the highly variable
extended termination association sequence (ETAS-domain) in com-
pletely sequenced mitochondrial genomes representing six Gadidae

genera (Arctogadus, A. glacialis AM919429; Boreogadus, B. saida
AM919428; Gadus, G. morhua X99772; Theragra, T. Wnnmarchica
AM489718; Melanogrammus, M. aegleWnus AM489717; Merlangius,
M. merlangus DQ020496). The 40-bp heteroplasmic tandem repeat
(HTR) motif present in G. morhua, and the A and B copies of the two
direct repeat motifs (DR1, 23 bp; DR2, 26 bp) in A. glacialis, are
boxed. The 5� end of the tRNA-Pro gene, TAS, and the heteroplasmic
pyrimidine run (HPyR) are indicated below the sequence alignment.
HPyR is heterogenic both within and between Gadidae specimens
(Yanagimoto et al. 2004; Ursvik et al. 2007)
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(Johansen et al. 1990; Arnason and Rand 1992; Johansen
and Bakke 1996) at the RS1 site (nomenclature by Savolai-
nen et al. 2000). Interestingly, the A. glacialis ETAS
domain contains two direct repeat motifs (DR1 and DR2)
present in two copies each (Fig. 3b). While the 23 bp DR1
motif partly overlaps the G. morhua HTR, the 26 bp DR2
motif contains the pyrimidine run (HPyR) known to be het-
eroplasmic in Gadidae (Yanagimoto et al. 2004; Ursvik
et al. 2007). These functional unassigned A. glacialis
sequence motifs are apparently conserved among the Gadi-
dae Wshes, but are present in single copy in most species
investigated except A. glacialis.

Mitogenomic phylogeny strongly supports sister taxa 
aYliation of A. glacialis and B. saida

Several mtDNA-based reports have included A. glacialis
and/or B. saida in phylogenetic analysis (e.g., Carr et al.,
1999; Møller et al. 2002; Bakke and Johansen 2005; Telet-
chea et al. 2006; Coulson et al. 2006). A common Wnding is
that Arctogadus and Boreogadus appear more related to
Gadus and Theragra than to any other genera within the
Gadidae family. Møller and coworkers reported parsimony
clustering of Arctogadus and Boreogadus, but without sig-
niWcant statistical support (Møller et al. 2002). Similarly,
both parsimony and likelihood analyses based on near com-
plete mitochondrial genome data sets support sister taxa
aYliation of A. glacialis and B. saida, but with some statis-
tical restrictions (Coulson et al. 2006). In an attempt to fur-
ther investigate the taxonomy of A. glacialis and B. saida,
we performed mitogenomic-based phylogeny that included
two specimens of each taxa. Thus, eight species represent-
ing Wve closely related Gadidae genera (Arctogadus, Bore-
ogadus, Gadus, Theragra, and Melanogrammus) were
included. Phylogenetic analyses were performed on data-
sets based on the alignment of the almost complete mito-
chondrial genome (16,783 nuclotide positions) and on the
alignment of the nucleotides of the 13 concatenated pro-
tein-coding genes (all 11,400 positions, synonymous sub-
stitutions, or only Wrst and second codon positions), and on
the derived protein sequences (3,800 amino acid positions).
All trees resulted in essentially identical tree topologies. A
representative ML tree is presented in Fig. 4, and supports
the conclusions by Møller et al. (2002) and Coulson et al.
(2006) that A. glacialis and B. saida are closely related to
the genera Gadus and Theragra. These analyses could not
conclusively resolve some of the internal relationships
between the Gadus and Theragra species, but strongly sup-
port the notions that G. macrocephalus/G. ogac and T.
chalcogramma/T. Wnnmarchica have to be considered as
only two, not four, distinct Gadidae species (Coulson et al.
2006; Ursvik et al. 2007). Finally, we conclude that A. gla-
cialis and B. saida represent sister taxa with a more recent

common evolutionary origin compared to the other Gadi-
dae species investigated. This conclusion was further sup-
ported in our analyses by high bootstrap values in all trees
reconstructed by ME, MP, and ML.
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