
A Novel Fault-Tolerant Routing Technique for
Mesh-of-Tree based Network-on-Chip Design

Mohit Upadhyay∗, Monil Shah∗, P. Veda Bhanu∗, Soumya J∗, Linga Reddy Cenkarmaddi†, and Henning Idsøe†
∗Department of EEE, Birla Institue of Technology and Science-Pilani, Hyderabad, Telangana, India - 500078
∗{mupadhyay09@gmail.com, shahmonil1996@gmail.com, vedabhanuiit2010, soumyatkgp}@gmail.com

†Department of Information and Communication Technology, University of Agder, Norway
†{linga.cenkeramaddi, henning.idsoe}@uia.no

Abstract—Due to the increase in the number of processing
elements in System-on-Chips (SoCs), communication between the
cores is becoming complex. A solution to this issue in SoCs
gave rise to a new paradigm called Network-on-Chips (NoCs).
In NoCs, communication between different cores is achieved
using packet based switching techniques. In the deep sub-micron
technology, NoCs are more susceptible to different kinds of faults
which can be transient, intermittent and permanent. These faults
can occur at any component of NoCs. This paper presents a
novel Fault-Tolerant Routing (FTR) technique for Mesh-of-Tree
(MoT) topology in the presence of router faults. The proposed
technique is compared with routing technique without any faults.
The results show improvements interms of the number of data
packets reaching to any given destination node from any source
node in MoT network in presence of faults.

Keywords—System-on-Chip, Network-on-Chip, Fault-
Tolerance, Mesh-of-Tree Topology, Routing.

I. INTRODUCTION

Over the years according to Moore’s law, the number of
transistors on a chip are increasing exponentially [1]. Due to
this, the number of Integrated Circuits (ICs) integrated on a
single chip are increasing. This has led to increased communi-
cation complexities in a System-on-Chip (SoC) [2] communi-
cation architecture. Besides the communication infrastructure,
there are many challenges faced during SoC design such as
signal integrity, increase in delay due to coupling capacitances,
cross talk effects [3]. This has motivated many researchers
in the industry and academia to find the communication
backbone of many-core based SoCs to meet the inter-core
communication demands. Network-on-Chip (NoC) [4] has
been found to be a viable alternative for designing modular
and scalable communication architecture. NoC consists of
three components namely Network Interfaces (NIs), Routers
or Switches and Links. In NoC, the communication between
different IP cores is achieved through packet-based switching
technique [5].

In the deep submicron technology, ICs are always limited by
random fabrication defects which are impossible to eliminate
even in the best manufacturing process. These defects lead to
three different kinds of faults namely intermittent, transient
and permanent faults [6]. In this work, we have designed
a reliable and efficient fault-tolerant NoC while considering
permanent faults occurred in routers. In [7], they have re-
ported about different topologies used in an NoC and their

advantages. In [8], 3-D based topologies have been presented
which increases the parallelism. Most of the routing techniques
reported in the literature are for standard topologies like Mesh
and Torus. A review of different routing algorithms in NoC
with advantages and disadvantages have been summarized
in [9]. The Mesh-of-Tree (MoT) based topology has many
advantages like small diameter, small router degree, large
bisection width along with a symmetric and recursive structure
when compared to the direct network topologies like mesh or
torus [10]. This has motivated us to design an efficient fault-
tolerant routing technique for MoT topology based NoC. We
have used the same addressing scheme reported in [11]. The
rest of the paper is organised as follows. Section II gives a
brief overview of the MoT topology and its addressing scheme.
Section III describes the fault-free routing algorithm. Section
IV describes the proposed fault-tolerant routing algorithm.
Section V gives a comparison of both the algorithms. Section
VI recites the experimental results followed by conclusion.

II. OVERVIEW

This section gives an idea about the structure of MoT
topology and its advantages. The addressing scheme of the
MoT structure is discussed in the section II.B.

A. Mesh-of-Tree Structure

The MoT topology is a hybrid interconnect network. The
properties of MoT topology [9] have been described below.

Considering an A x B MoT structure (where A and B denotes
the number of row trees and column trees respectively) has the
following properties:

• Number of Routers = 3 * (A * B) - (A + B).
• Diameter = 2 ∗ (log2A) + 2 ∗ (log2B).
• Bisection width = min (A, B).
• Symmetric and recursive structure.
For an A x B MoT structure, the number of routers are as

follows:
• Number of leaf router = A * B.
• Number of stem router = 2 * (A + B).
• Number of root router = A + B.
The Fig. 1 shows an 4 X 4 MoT structure, having 4 row

trees and 4 column trees. The leaf routers are attached to both
the trees. Two cores are connected to each of the leaf router.

© 2018 IEEE.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other Works. DOI: 10.1109/TENCON.2018.8650056

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agder University Research Archive

https://core.ac.uk/display/225896163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. 4x4 MoT Structure along with the cores attached

B. Addressing Scheme

In a MoT, the each router address consists of four different
fields: (i) Row Number (RN) (ii) Column Level (CL) (iii)
Column Number (CN) (iv) Row Level (RL). For every row
tree, the value of RN is fixed; thus, for a 4 X 4 MoT, RN values
are 00,01,10 and 11. The RL values are gradually incremented
by 1 from the leaf level to the root level of a row tree. In a row
tree, CL is 00 for all the routers. CN is assigned as 00,01,10 and
11 for the column trees. For a column tree, the CLvalues are
incremented by 1 from the leaf level to the column level. The
RL values for all column tree routers is equal to 00. A core has
the same address as its associated router with one exception
that an additional Core-ID bit is introduced for each core at
the same leaf router.

III. ROUTING ALGORITHM

The routing algorithm follows a deterministic approach. Due
to this, it is always ensured that the data packet reaches its des-
tination through the specified shortest path. This ensures that
the proposed network is always livelock free. This algorithm
has been proposed in [11]. The following abbreviations are
used to describe the algorithm.

• adrs curr is used to denote current router address
• adrs dest is used to denote the destination router address
Each leaf and stem router executes the algorithm reported

in [11]. In root routers, no routing is performed and routers
are replaced by First In First Out (FIFO) buffers. The routing
algorithm is given as Algorithm 1.

In the Part I of the above algorithm, if there is a difference
in the RN of current and destination addresses it signifies that
the current and the destination routers are at different row
trees. Therefore the packet is to be routed to the root of the
column tree so that RN of the current router becomes equal to
that of the destination router. For example, if router address of
the source router and the destination router are 00-00-00-00
and 11-00-11-00. The path traversed by the packet is 00-00-
00-00, then 0X-01-00-00 then XX-10-00-00. Therefore, after

Algorithm 1 Non-FTR Algorithm
Input: Address of the Source router (RN, CL, CN, RL), and

the Destination router (RN, CL, CN, RL).
Output: Shortest Path from Source Router (RN, CL, CN, RL)

to Destination Router (RN, CL, CN, RL).
if RNof adrs curr 6= RNof adrs dest then

Route to the Column Parent; Part I
else if CLof adrs curr 6= CLof adrs dest then

Route to the Column Child having equal RN as adrs dest;
Part II

else if CN of adrs curr 6= CN of adrs dest then
Route to the Row Parent; Part III

else if RL of adrs curr 6= RL of adrs dest then
Route to the Row child having equal CN as adrs dest;

Part IV
else if Destination Core-ID = 0 then

Route to Core 1;
else

Route to Core 2;
Part V

end if

Part I the packet will reach whose RNis same as the destination
router.

In Part II of the algorithm, if there is a difference in CL

of the current and destination addresses are found, it signifies
that the current router is not at the leaf level, as all destination
cores are at leaf level. Therefore, the packet is to be forwarded
to the leaf level of the column tree for which RN is equal to
the destination router. For the above example, the path that is
traversed by the packet is XX-10-00-00, then 1X-01-00-00 and
then 11-00-00-00. So, after Part II the packet reaches a router
whose RN and CL are same as those of destination router. So,
the packet is at the same row tree as the destination router.

In Part III, a difference in CN of the current and destination
routers signifies that the current and destination routers are
at different column tree levels. So, the packet should be
forwarded towards the root of the row tree until CN of current
router is equal to that of the destination. For the above
example, path traversed by the packet is 11-00-00-00, then 11-
00-0X-01 and then 11-00-XX-10. So, after Part III the packet
reaches a router whose first three fields are the same as the
destination.

In Part IV, due to a difference in RL of current and
destination router, it is clear that the current router is not a
leaf router. Therefore, the packet should be traversed towards
the leaf level of the row tree whose CN is same as that of
the destination router. For the above given example, the path
followed is 11-00-XX-10, then 11-00-1X-10 and then 11-00-
11-00. So, after Part IV the packet reaches the destination
router where the destination core is present.

In Part V, based on the Core-ID bit, the packet is forwarded
to the destination core. So, in this way the proposed algorithm
always governs the packet to reach the destination in a
specified path.

This routing algorithm does not take faults into account.
Hence, it fails when a fault is introduced in the system.

IV. PROPOSED FAULT-TOLERANT ROUTING ALGORITHM

The proposed fault-tolerant algorithm also follows the de-
terministic approach. The algorithm uses the same addressing
scheme given in the section II.B. The proposed algorithm is
given as Algorithm 2.

Algorithm 2 FTR Algorithm
Input: Address of the Source router (RN, CL, CN, RL),

Address of the Destination router (RN, CL, CN, RL) and
Address of the Faulty router (RN, CL, CN, RL)

Output: Path from Source router (RN, CL, CN, RL) to Desti-
nation router (RN, CL, CN, RL) .
if CN of adrs curr - CN of adrs dest ≤ 1 and CN of adrs curr
= CN of adrs fault then

check-even-odd (CN);
equate-row (adrs curr, adrs dest)
equate-col (adrs curr, adrs dest)

else if RNof adrs curr - RNof adrs dest ≤ 1 and RNof
adrs curr = RNof adrs fault then

check-even-odd (RN)
equate-col (adrs curr, adrs dest)
equate-row(adrs curr,adrs dest)

else if CN of adrs curr = CN of adrs dest then
equate-col (adrs curr, adrs dest);
equate-row (adrs curr, adrs dest);

else
equate-row (adrs curr, adrs dest);

end if
if RNof adrs curr 6= RNof adrs fault then

equate-col (adrs curr, adrs dest);
else

check-even-odd (RN);
equate-col (adrs curr, adrs dest);
equate-row (adrs curr, adrs dest);

end if
if Destination Core-ID = 0 then

Route to Core 1;
else

Route to Core 2;
end if

In our Algorithm, there are three functions implemented
they are check-even-odd (addr), equate-row (addr1, addr2) and
equate-col (addr1, addr2). The function check-even-odd (addr)
is a user defined function which checks whether argument addr
is even or odd, then it increments the argument if it is even and
decrements if it is odd. The function equate-row (addr1, addr2)
is equal to the combination of Part I and Part II mentioned
in the algorithm 1. It brings the packet from the addr1 to the
same row tree as addr2. The function equate-col (addr1, addr2)
is equal to the combination of Part III and Part IV mentioned
in algorithm 1. It brings the packet from the addr1 to the same
column tree as addr2.

There are two main parts in the algorithm proposed in [11].
Initial part will equate row numbers (RN) between current
router and destination router. Similarly in the second part
of the algorithm [11] it will equate column numbers (CN)
between current router and destination router. Our algorithm
uses these two parts independently depending upon the case.
In our algorithm, it checks whether the fault is in row tree
or column tree. If the fault is in a column tree i.e., column
tree as the current router, the algorithm first makes the column
numbers equal and then it makes the row number equal. This
simply means that the packet is routed to go through the row
root first and later on to column root. If the fault is in a row
tree, the packet is manually re-routed to the adjacent row tree
and then the packet is passed to go through the adjacent row
root.

In the next section, we give a brief comparison between
Algorithm proposed in [11] and our Algorithm. We will
demonstrate the working of our algorithm by using a few
examples.

V. COMPARISON OF PROPOSED ALGORITHM WITH THE
PREVIOUS ALGORITHM

This section does a comparison of Algorithm proposed in
[11] and our Algorithm by using few examples. The example
shown in Fig. 2 is the case when the source router address
is 00-00-00-00, the destination router address is 11-00-11-00.
The fault address is taken to be XX-10-00-00, then the CN

of the current/source router and the fault router are the same.
So, the packet will now go through the row tree and then the
column tree. So, the path traversed by the packet will be 00-00-
00-00, 00-00-0X-01, 00-00-XX-10, 00-00-1X-01,00-00-11-00,
0X-01-11-00, XX-10-11-00, 1X-01-11-00, 11-00-11-00.

Fig. 2. Source Router at 00000000, Destination Router at 11001100 and Fault
Router at XX100000

Algorithm proposed in [11] which is non fault-tolerant (non-
FTR) fails at the stem level. According to the algorithm, the
packet will first start at the leaf router 00-00-00-00, and then
it will move on to the stem whose address is 0X-01-00-00.
After the packet reaches the stem, the algorithm will try to

route the packet through the root whose address is XX-10-00-
00. But, in this example this particular root is faulty and so,
it cannot be used for communication. Hence it fails to reach
the destination.

We take another example shown in Fig. 3 where the source,
destination and the fault router addresses are 00-00-00-00, 11-
00-11-00 and 11-00-XX-10 respectively. In this case according
to our Algorithm, the packet follows the path 00-00-00-00,
0X-01-00-00, XX-10-00-10, 1X-01-00-00, 10-00-00-00, 10-
00-0X-01, 10-00-XX-10, 10-00-1X-01, 10-00-11-00, 1X-01-
11-00, 11-00-11-00.

Fig. 3. Source Router at 00000000, Destination Router at 11001100 and Fault
Router at 1100XX10

In the example shown in Fig. 3, we can see that the
Algorithm proposed in [11] will fail after it reaches the row
tree root. According to the algorithm, the packet starts at the
router 00-00-00-00, then it moves to 0X-01-00-00, then to
XX-10-00-00 and then to 1X-01-00-00 and moves on to 11-
00-00-00. Here the algorithm reported fails as it will try to
move the packet towards to 11-00-0X-01 and then to the row
root 11-00-XX-10, but this is not possible as this row root is
faulty. Hence, the routing algorithm fails at the root level.

Fig. 4. Source Router at 00000000, Destination Router at 11000000 and Fault
Router at XX100000

Similarly, the example shown in Fig. 4 is the case when the

source router address is 00-00-00-00, the destination router
address is 11-00-00-00. The fault address is taken to be XX-
10-00-00, then the CN of the current/source router and the fault
router are the same. So, the packet will now go through the
adjacent column tree. So, the path traversed by the packet will
be 00-00-00-00, 00-00-0X-01, 00-00-01-00, 0X-01-01-00,XX-
10-01-00, 1X-01-01-00, 11-00-01-00, 11-00-0X-01, 11-00-11-
00.

For this example, algorithm proposed in [11] fails at the
column root itself. The algorithm will route the packet to 00-
00-00-00, and then to 0X-01-00-00 and then to the column
root XX-10-00-00. But, in this case the column root is faulty.
Hence, the routing is incorrect. Our proposed algorithm routes
the packet as shown in Fig. 4.

As we can observe from all the examples (a,b and c)
the packet routes the packets successfully to their respective
destination routers.

VI. EXPERIMENTAL RESULTS

In this section, we compare both the algorithms by varying
the size of the network and also by varying the percentage of
faults.

Here, we have assumed that the fault can occur only in root
routers. However, stem faults and leaf faults will be considered
as futurescope of the work. We have compared algorithm
[11] and our algorithm by varying the percentage of faults
in the MoT network and the percentage of packets reaching
the destination incase of faults. In all those cases algorithm
proposed in [11] simply stalls due to a fault in its way, most
of those cases are taken care of when the packet is routed using
our Algorithm. In case of our proposed algorithm, the faulty
router is completely bypassed by taking another path. As we
can observe from Fig. 5, 6 and 7 even when the number of
faults are increased, more packets have reached their respective
destination routers when they are routed using our algorithm.

Fig. 5. Performance Variation on varying the number of faults in 4x4 Mesh-
of-Tree Structure

According to the graphs shown in Fig. 5, 6 and 7, the
number of faults were increased in both the cases, percentage
of packets reaching their respective destination routers were
higher when they were routed according to our algorithm

Fig. 6. Performance Variation on varying the number of faults in 8x8 Mesh-
of-Tree Structure

Fig. 7. Performance Variation on varying the number of faults in 16x16
Mesh-of-Tree Structure

Fig. 8. Performance Variation with respect to Size of Network

in comparison to when they were routed using algorithm
proposed in [11].

The scalability of our Algorithm is demonstrated in Fig. 5,6
and 7, where it can be seen that the algorithm can be scaled
up to 16x16, 8x8 structure and besides the implementation in
the original 4x4 MoT structure.

Using these results, it can also be seen that our algorithm
is able to route data packets even when there are faults in the
root level, and also that the scalability of the algorithm has

Fig. 9. Performance Variation with respect to Size of Network

Fig. 10. Performance Variation with respect to Size of Network

also been tested here.
According to Fig. 8, it can be seen that in the case when

onle one router fails in the network, there is no loss of packets
in this case. This shows the superiority of our algorithm
compared to the algortihm proposed in [11]. In the Fig. 8, 9
and 10, it can be seen that when the packets are routed using
our routing algorithm loss of packets is significantly lower in
comparison to the packets which are routed using the routing
algorithm proposed in [11].

According to Fig. 8,9, and 10, it can be seen that percentage
of packets lost reduces as the size of the network increases.
This is due to the fact that faults are assumed only at the
root level. As the size of the network is increased, the
communication between the leaves increases as faults are not
assumed at the lower levels, so this leads to increase in the
communication between the leaves because the packets can
be transmitted using the lower level routers, rather than the
root router where the faults are assumed to occur. This is the
reason why the packet loss reduces with increase in network
size.

VII. CONCLUSION

We have implemented a fault-tolerant routing algorithm
for MoT topology based NoC. The results show significant

improvement in sending the packets to the respective desti-
nation routing when using our routing algorithm compared
to the routing algorithm reported in the literature. Our future
work includes extending our algorithm to faulty stem and leaf
routers.

ACKNOWLEDGEMENTS

This work is partially supported by the research project No.
ECR/2016/001389, Dt. 06/03/2017, sponsored by the SERB,
Govt. of India.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff.” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp.
33–35, Sept 2006.

[2] “International technology roadmap for semiconductors,” Tech. Rep.,
2015.

[3] Y.-H. H. Wen-Chung Tsai, Ying-Cherng Lan and S.-J. Chen, “Networks
on chips: Structure and design methodologies,” Journal of Electrical and
Computer Engineering, Oct. 2011.

[4] L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, Jan 2002.

[5] W. J. Dally and B. Towles, “Route packets, not wires: on-chip inter-
connection networks,” in Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232), 2001, pp. 684–689.

[6] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods
for fault tolerance in networks-on-chip,” ACM Comput. Surv.,
vol. 46, no. 1, pp. 8:1–8:38, Jul. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2522968.2522976

[7] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect archi-
tectures,” IEEE Transactions on Computers, vol. 54, no. 8, pp. 1025–
1040, Aug 2005.

[8] H. Naghibi Jouybari and K. Mohammadi, “A low overhead, fault tolerant
and congestion aware routing algorithm for 3d mesh-based network-on-
chips,” Microprocess. Microsyst., vol. 38, no. 8, pp. 991–999, Nov. 2014.
[Online]. Available: http://dx.doi.org/10.1016/j.micpro.2014.09.005

[9] V. Rantala, T. Lehtonen, and J. Plosila, “Network on chip routing
algorithms,” 2006.

[10] F. T. Leighton, Introduction to Parallel Algorithms and Architectures,
1st ed. San Mateo, CA: Morgan Kaufmann, 1992.

[11] S. Kundu and S. Chattopadhyay, “Network-on-chip architecture design
based on mesh-of-tree deterministic routing topology,” Int. J. High
Perform. Syst. Archit., vol. 1, no. 3, pp. 163–182, Dec. 2008. [Online].
Available: http://dx.doi.org/10.1504/IJHPSA.2008.021797

