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Abstract—This paper presents a non-wide-sense station-
ary uncorrelated scattering (non-WSSUS) model which
takes accurately into account that the Doppler frequencies
and propagation delays vary with time if the mobile station
(MS) moves. Another feature of the proposed channel
model is that the MS can change its velocity along the route.
The result is that the Doppler spread and the delay spread
deviate from their initial values with increasing time. This
effect motivates the definition of quasi-stationary intervals.
The lengths of these intervals will be analysed in terms
of the velocity parameters. Our analysis shows that real-
world channels can be quasi-stationary but not wide-sense
stationary (WSS), neither in the time domain nor in the
frequency domain. This implies that the generally accepted
WSS and WSSUS assumptions are not fulfilled in practice,
even not if the travelling distance is short.

I. INTRODUCTION

Mobile radio channels are highly dynamic in time,
frequency, and space due to the mobility of the mobile
station (MS) [1], [2]. Bello’s [3] assumption that mobile
radio channels are wide-sense stationary (WSS) com-
bined with the uncorrelated scattering (US) assumption
have played a fundamental role in the area of channel
modelling for almost half of a century. When the focus
was shifted to mobile-to-mobile and vehicular commu-
nications, it turned out that the wide-sense stationary
uncorrelated scattering (WSSUS) assumption is invalid
in vehicular channels [4]–[6].

For the classification of channels in WSSUS and non-
WSSUS channels, it is important to have a metric that
allows to determine how long the WSSUS conditions are
approximately fulfilled. This problem has been addressed
in a number of papers. A first definition of stationarity in
time and frequency based on the local scattering function
and the local correlation function has been introduced in
[7]. Statistical tests based on the evolutionary spectrum
for determining the validity of the WSS assumption have
been proposed in [8], [9]. Experimental contributions
to the problem of identifying quasi-stationary regions
in vehicle-to-vehicle channels can be found in [10]. An

analysis of quasi-stationary regions in urban macrocells
has been presented in [11].

In this paper, we define quasi-stationary intervals
based on the time-variant Doppler spread and the time-
variant delay spread. These characteristic quantities are
not only of key importance for the higher-order statistics
of the temporal and frequency fading behaviour of mo-
bile radio channels but also for the system performance
analysis. Our starting point is a non-stationary geomet-
rical model from which we derive a new non-WSSUS
model. The proposed non-WSSUS model includes time-
variant angles of arrival (AOA) and captures the effects
caused by a change of the speed and the angle of motion
(AOM) of the MS. These phenomena result in time-
variant Doppler frequencies and time-variant propagation
delays for which exact and approximate expressions will
be derived. Moreover, we will analyse the temporal
behaviour of the spectral moments, including the trend
of the mean Doppler shift, Doppler spread, mean delay,
and delay spread. In non-WSSUS channels, the time-
variant Doppler spread (delay spread) deviates from
its initial values with increasing time or, equivalently,
with increasing distance from the MS’s starting point.
This motivates the definition of quasi-stationary intervals
based on the Doppler (delay) spread. The analysis of the
quasi-stationary intervals in four different propagation
scenarios shows that a change of the mobile speed
has a greater influence than a change of the AOM if
the scatterers are sufficiently far away from the MS.
Furthermore, our analysis shows that the quasi-stationary
intervals w.r.t. time are much shorter than the quasi-
stationary intervals w.r.t. delay. One important result of
our study is that non-WSSUS channels can accurately
be modelled over large observation intervals by using
a second-order Taylor expansion of the time-variant
Doppler frequencies, while the time-variant propagation
delays call for a third-order Taylor expansion.

The remainder of this paper is divided into six sec-
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tions. Section II describes the non-stationary multipath
propagation scenario and the corresponding geometrical
channel model. Section III presents the non-WSSUS
model. Its spectral moments are analysed in Section IV.
Section V introduces the definition of quasi-stationary
intervals. The numerical results of the analysis of the
quasi-stationary intervals are presented in Section VI.
Finally, Section VII draws the conclusion.

II. THE MULTIPATH PROPAGATION SCENARIO

Fig. 1 shows a typical multipath propagation sce-
nario, where a fixed and unobstructed base station (BS)
transmits electromagnetic waves. A part of the trans-
mitted waves will be redirected towards the MS by N
fixed scatterers Sn which are located around the MS
at the positions (xn, yn) for n = 1, 2, . . . , N . Both the
BS and the MS are equipped with monopole antennas
having omnidirectional radiation patterns. Furthermore,
we assume non-line-of-sight propagation conditions and
single-bounce scattering. At time t = 0, the MS is
located at the origin of the xy-plane. With reference to
Fig. 1, the distance from the BS to the origin (0, 0) of the
coordinate system is denoted by D, and rn designates
the distance from the nth scatterer Sn to the origin (0, 0).
The angle between the propagation direction of the nth
incident wave and the x-axis at time t = 0 defines the
initial AOA αn = αn(0). Note that the distance rn(t)
and the associated AOA αn(t) vary with time t if the MS
travels along a predefined route from the origin (0, 0) to
the point (x(t), y(t)). The route of the MS from (0, 0)
to (x(t), y(t)) is completely determined by the MS’s
velocity ~v(t), which can be presented in the following
form

~v(t) = v(t)e jαv(t) (1)

where v(t) and αv(t) are called the speed and the AOM,
respectively. For t = 0, we obtain from (1) the initial
velocity ~v0 = ~v(0), the initial speed v0 = v(0), and
the initial AOM αv = αv(0). Of special interest will be
the case where the speed v(t) and the AOM αv(t) vary
linearly with t according to

v(t) = v0 + a0t (2a)
αv(t) = αv + b0t (2b)

where a0 denotes the acceleration or deceleration pa-
rameter, depending on whether a0 > 0 or a0 < 0, and
b0 is called the angular speed. At time t, the position
(x(t), y(t)) of the MS is determined by

x(t) =

t∫
0

v(z) cos(αv(z)) dz (3a)

y(t) =

t∫
0

v(z) sin(αv(z)) dz . (3b)

From the location (xn, yn) of the nth scatterer Sn and
the position (x(t), y(t)) of the MS, the time-variant
AOAs αn(t) can be obtained as (see Fig. 1)

αn(t) = atan2(yn − y(t), xn − x(t)) (4)

for all n = 1, 2, . . . , N , where atan2(y, x) denotes the
four-quadrant inverse tangent function.

In the following, we assume that the MS moves with
given velocity ~v(t) through a propagation area that is
characterized by N fixed scatterers Sn located at known
positions (xn, yn).
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Fig. 1. Geometrical model for a non-stationary multipath propagation
channel, in which the MS travels with a time-variant velocity ~v(t)
from the origin (0, 0) along a predefined route (- - -) to the point
(x(t), y(t)).

III. NON-WSSUS CHANNEL MODEL

From the geometrical model in Fig. 1, one can derive
the following time-variant impulse response of a non-
WSSUS channel model (without proof)

h(τ ′, t) =

N∑
n=1

cne
j[2π

t∫
0

fn(t
′)dt′+θn]

δ(τ ′ − τ ′n(t)) (5)

where the model parameters cn, fn(t), θn, and τ ′n(t)
are called the path gain, Doppler frequency, phase,
and propagation delay of the nth path, respectively.
The path gains cn are supposed to be constant over
the observation interval Tobs, and the phases θn are
independent and identically distributed (i.i.d.) random
variables, each of which is uniformly distributed over 0
to 2π, i.e., θn ∼ U(0, 2π]. The Doppler frequencies fn(t)
and propagation delays τ ′n(t) vary with time t according
to

fn(t) = fmax(t) cos(αn(t)− αv(t)) (6)

and

τ ′n(t) =
1

c0

[√
D2 + r2n + 2Drn cos(αn)

+
√
(rn cos(αn)− x(t))2 +(rn sin(αn)− y(t))2

]
(7)

respectively. In (6), fmax(t) represents the maximum
Doppler frequency, which is given by fmax(t) =



v(t)f0/c0, where f0 denotes the carrier frequency and
c0 designates the speed of light. Note that (6) and (7)
hold for all t and for all routes that do not interfere with
scattering objects. For short observation intervals Tobs or
short routes, the Doppler frequencies fn(t) in (6) can be
approximated by a first-order Taylor expansion around
t = 0 according to

fn(t) ≈ fn + knt (8)

where

fn = fn(0) = fmax cos(αn − αv) (9)

kn = ḟn(0)

= fmax

[
a0
v0

cos(αn−αv) + (b0−γn) sin(αn−αv)

]
(10)

γn = α̇n(0) =
v0
rn

sin(αn − αv) (11)

and fmax = fmax(0) = f0v0/c0. The overdot in (10) and
(11) denotes time derivative. The approximation in (8)
reveals the impact of the velocity parameters v0, a0, av,
and b0 [see (2a,b)] on the temporal behaviour of the time-
variant Doppler frequencies fn(t). Even if the MS moves
with constant speed v0 (a0 = 0) along a straight line
(b0 = 0), it follows that in general γn = α̇n(0) 6= 0, and
thus kn 6= 0. For the often assumed case of ~v(t) = const.,
this means that the Doppler frequencies fn(t) vary with
time due to the change of the AOA αn(t). From the
fact that time-variant Doppler frequencies fn(t) result
in multipath channels which are non-WSS in the time
domain, we can conclude that all real-world channels
are non-WSSUS channels. In other words, the WSS
assumption is not satisfied in real-world channels.

In a similar manner, we can approximate the propa-
gation delays τ ′n(t) by a second-order Taylor expansion
as

τ ′n(t) ≈ τ ′n + κ′nt+
η′n
2
t2 (12)

where

τ ′n = τ ′n(0) =
1

c0

[√
D2 + r2n + 2Drn cos(αn) + rn

]
(13)

κ′n = τ̇ ′n(0) = −
fn
f0

(14)

and

η′n = τ̈n(0) = −
kn
f0
. (15)

A first look at the approximation in (12) shows that
the first two terms of the time-variant propagation delays
τ ′n(t) depend only on the velocity parameters v0 and αv,
but not on a0 and b0. A second look at (12) reveals
that only the third term captures the effects of the
acceleration a0 and the angular speed b0, which explains
the motivation for using a second-order Taylor expansion

for τ ′n(t). This means that the propagation delays τ ′n(t)
vary approximately in a linear fashion with time t, if the
MS moves with constant speed v0 in a given direction
determined by the AOM αv. As the propagation delays
τ ′n(t) vary with time t, we can conclude that multipath
channels also do not satisfy the WSS assumption in the
frequency domain.

By substituting (8) and (12) in (5), we can approxi-
mate the time-variant impulse response h(τ ′, t) of non-
WSSUS channels by

h(τ ′, t) ≈
N∑
n=1

cne
jθ(t)δ(τ ′ − τ ′n − κ′nt−

η′n
2
t2) (16)

where θ(t) = 2π
(
fnt+

kn
2 t

2
)
+ θn. If the propaga-

tion delays τ ′n(t) are almost constant and equal to a
common fixed delay τ ′0 within the observation interval,
i.e., if τ ′n(t) ≈ τ ′n − κ′nt ≈ τ ′0 for t ∈ [0, Tobs] and
n = 1, 2, . . . , N , then the multipath channel described
by (16) can be modeled by a non-stationary complex
channel gain of the form

µ(t) =

N∑
n=1

cne
j[2π(fnt+ kn

2 t2)+θn] . (17)

The expression above is known as a sum of chirps
(SOCh) process [12] which captures here the effects of
both velocity variations and AOA variations through the
influence of the parameters a0, b0, and γn.

IV. TIME-VARIANT SPECTRAL MOMENTS

A. Time-Variant Mean Doppler Shift and Doppler
Spread

By integrating the nth component of the time-variant
impulse response h(τ ′, t) in (5) over τ ′, we obtain the
complex channel gain

µn(t) = cne
j[2π

t∫
0

fn(t
′) dt′+θn]

(18)

of the nth multipath component. The mean power σ2
n of

this multipath component can be obtained as

σ2
n = E

{
|µn(t)|2

}
= c2n . (19)

Hence, from the assumption that the path gain cn does
not vary with time t over sufficiently short observation
intervals Tobs or the position (x(t), y(t)) of the MS, it
follows that the mean path power σ2

n of the nth received
multipath component µn(t) equals the constant c2n. With
this preliminary note in mind, we can refer to [13] and
define the time-variant average Doppler shift B(1)

f (t) as
the ratio of the sum of the power-weighted instantaneous
Doppler shifts and the total received path power, i.e.,

B
(1)
f (t) =

N∑
n=1

c2nfn(t)

N∑
n=1

c2n

. (20)



Analogously, the time-variant Doppler spread B(2)
f (t) of

non-WSSUS channels with constant path gains and time-
variant Doppler frequencies fn(t) can be defined as [13]

B
(2)
f (t) =

√√√√√√√√
N∑
n=1

c2nf
2
n(t)

N∑
n=1

c2n

−
(
B

(1)
f (t)

)2
. (21)

Note that the evaluation of (20) and (21) by using the
expression of fn(t) in (6), we can obtain the exact
solution of B(1)

f (t) and B(2)
f (t), respectively. Otherwise,

by using the first-order Taylor expansion in (8), we
obtain the corresponding approximations of B(1)

f (t) and
B

(2)
f (t).

B. Time-Variant Mean Delay and Delay Spread

By invoking similar arguments as in the previous
subsection, we can define the time-variant mean delay
B

(1)
τ ′ (t) and the time-variant delay spread B

(2)
τ ′ (t) of

non-WSSUS channels with constant gains cn and time-
variant propagation delays τ ′n(t) as

B
(1)
τ ′ (t) =

N∑
n=1

c2nτ
′
n(t)

N∑
n=1

c2n

(22)

and

B
(2)
τ ′ (t) =

√√√√√√√√
N∑
n=1

c2n(τ
′
n(t))

2

N∑
n=1

c2n

−
(
B

(1)
τ ′ (t)

)2
(23)

respectively. Notice that the exact solutions of B(1)
τ ′ (t)

and B
(2)
τ ′ (t) are obtained, if we evaluate (22) and (23),

respectively, by using the expression for τ ′n(t) according
to (7). On the other hand, the corresponding approxima-
tions of B(1)

τ ′ (t) and B
(2)
τ ′ (t) can be obtained by using

the second-order Taylor expansion of τ ′n(t) as provided
in (12).

V. QUASI-STATIONARY MOBILE RADIO CHANNELS

Stochastic processes are usually classified into strict-
sense, WSS, and non-WSS processes, where the latter
is often used as a synonym for non-stationary processes.
In the following, we will introduce quasi-stationary pro-
cesses, which can be grouped between WSS processes
and non-stationary processes, as illustrated in Fig. 2.

A stochastic process is called WSS if its mean
is constant and its autocorrelation function depends
only on the time difference τ = t1 − t2 [14]. If the
autocorrelation function of a stochastic process is
independent of time t and only a function of the time
difference τ , then all kth-order moments are constant.

Non-stationary
processes

Quasi-stationary
processes

stationary processes
Wide-sense

Strict-sense
stationary
processes

Fig. 2. Classification of stochastic processes.

A WSS channel must therefore have a constant mean
Doppler shift and a constant Doppler spread. In
Section IV, we have seen that the mean Doppler shift
B

(1)
f (t) and the Doppler spread B

(2)
f (t) vary with

time t, meaning that the considered channel model is
non-WSS w.r.t. time t. A measure for the deviation
of the time-variant Doppler spread B

(2)
f (t) from the

stationary case B(2)
f (t) = const., is given by the relative

error |B(2)
f (t) − B

(2)
f (0)|/B(2)

f (0). This motivates the
following definition of quasi-stationary intervals Tq .

Definition 5.1: The shortest time interval Tq for which
the absolute value of the relative error of the Doppler
spread

ε(Tq) =
|B(2)
f (Tq)−B(2)

f (0)|

B
(2)
f (0)

=
q

100%
(24)

equals q percent is called the quasi-stationary interval
w.r.t. time t.

Quasi-stationary intervals T ′
q w.r.t. delay τ ′ can be

defined analogously.

Definition 5.2: The shortest time interval T ′
q for which

the absolute value of the relative error of the delay spread

ε(T ′
q) =

|B(2)
τ ′ (T ′

q)−B
(2)
f (0)|

B
(2)
τ ′ (0)

=
q

100%
(25)

equals q percent is called the quasi-stationary interval
w.r.t. delay τ ′.

Note that the values of Tq and T ′
q are infinite if the

channel model fulfills the WSSUS condition. A mobile
radio channel is considered as quasi-stationary w.r.t.
time over the finite interval (0, Tq] up to q = 10%.
Analogously, the channel is said to be quasi-stationary
w.r.t. delay τ ′ over the finite interval (0, T ′

q] up to
q = 10%. Finally, we mention that the mobile radio



channel behaves like a non-stationary channel if the
observation duration Tobs exceeds Tq (T ′

q).

VI. NUMERICAL RESULTS

In the following, we consider a multipath propagation
scenario consisting of N = 10 scatterers. The extended
method of exact Doppler spread (EMEDS) [15] has been
applied to compute the path gains cn and the initial AOA
αn = αn(0) according to

cn = σ0

√
2

N
and αn =

2π

N

(
n− 1

4

)
(26)

where σ0 = 1. The phases θn have been obtained
from N realizations of a random generator having a
uniform distribution over (0, 2π]. The positions (xn, yn)
of the N fixed scatterers Sn have been computed by
using xn = rn cos(αn) and yn = rn sin(αn), where
αn is given by (26) and rn was set to 50 m for all
n = 1, 2, . . . , N . A carrier frequency f0 of 5.9 GHz
has been chosen, and the observation duration Tobs was
set to 5 s. The velocity parameters v0, a0, αv, and b0
are listed in Table I for four different non-stationary
propagation scenarios. Scenario I considers the standard
case that the MS moves with a constant speed v0 along
the x-axis. This scenario allows to study the isolated
effect of time-variant AOAs αn(t). Scenario II takes in
addition into account the effect caused by an angular
speed b0 of π/10 rad/s. Finally, the Scenarios III and
IV are aimed to obtain insight into the influence of
the acceleration parameter a0. For these scenarios, the
initial speed v0 = v(0) was set to 3 km/h and the
finishing speed v(Tobs) equals 16.5 km/h for Scenario III
and 30 km/h for Scenario IV. This chosen parameter
constellation results in an initial maximum Doppler
frequency fmax = fmax(0) of 16.4 Hz and finishing
maximum Doppler frequencies fmax(Tobs) of 90.14 Hz
(Scenario III) and 164 Hz (Scenario IV).

TABLE I
LIST OF VELOCITY PARAMETERS FOR FOUR NON-STATIONARY

PROPAGATION SCENARIOS.

v0 (km/h) a0 (m/s2) αv (rad) b0 (rad/s)
Scenario I 3 0 0 0
Scenario II 3 0 0 π/10
Scenario III 3 0.75 0 π/10
Scenario IV 3 1.5 0 π/10

Fig. 3 shows the behaviour of the time-variant Doppler
spread B

(2)
f (t) over the observation interval [0, Tobs].

One objective of this figure is to visualise the deviations
of B(2)

f (t) obtained by using the exact expression of
fn(t) according to (6) and the approximate solution
presented in (8). Obviously, the approximate solution
is quite accurate over the observation interval [0, Tobs].
Another conclusion that can be drawn from the results in
Fig. 3 is that the acceleration parameter a0 has a much
larger effect than the angular speed b0.

Fig. 4 demonstrates the corresponding results for the
time-variant delay spread B′(2)

τ (t). The presented graphs
have been obtained by evaluating B

′(2)
τ (t) in (23) in

combination with the exact expression of τ ′n(t) according
to (7) and the approximate solution presented in (12).
Similar conclusions as drawn from Fig. 3 also pertain
to this figure. In addition, we can conclude from a
comparison of the results in Figs. 3 and 4 that the
Doppler spread B

(2)
f (t) reacts much more sensitive to

the velocity parameters listed in Table I than the delay
spread B

′(2)
τ (t). This must be seen in perspective that

typical channel sounders have a Doppler resolution of
about 1 Hz and a delay resolution in the order of 10 ns.

Figs. 5 and 6 present the obtained quasi-stationary
intervals Tq and T ′

q , respectively. The results have been
obtained by solving (24) and (25) numerically for each of
the four non-stationary propagation scenarios specified
in Table I. A comparison of the graphs in Figs. 5 and 6
reveals clearly that the quasi-stationary intervals Tq are
much shorter than T ′

q .
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Fig. 3. Time-variant Doppler spread B(2)
f (t) of non-WSSUS channels

for the four non-stationary propagation scenarios specified in Table I.
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VII. CONCLUSION

In this paper, we have presented a non-WSSUS model
with time-variant Doppler frequencies and time-variant
propagation delays. For the time-variant Doppler fre-
quencies and the propagation delays, exact and approxi-
mate expressions have been derived. Moreover, we have
analysed the temporal behaviour of the spectral moments
with emphasis on the Doppler spread and the delay
spread. The deviation of the time-variant Doppler and
delay spreads with increasing values of time from their
initial values motivated the definition of quasi-stationary
intervals. Under the assumption of isotropic scattering
and the considered velocity scenarios, our analysis of the
quasi-stationary intervals has revealed that a change of
the mobile speed has a greater effect than a change of the
AOM. Another finding of our analysis was that the quasi-
stationary intervals w.r.t. time are much shorter than the
quasi-stationary intervals w.r.t. delay. From our study,
we can finally conclude that non-WSSUS channels can
accurately be modelled over large observation intervals
by using a second-order Taylor expansion of the time-
variant Doppler frequencies and a third-order expansion
of the time-variant propagation delays. In this case, the

resulting non-WSSUS model can be interpreted as an
extension of the sum-of-chirps model w.r.t. frequency
selectivity. The analysis of the time-variant correlation
and spectral properties of such non-stationary processes
is a topic for future research.
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